© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - S CHAND PHYSICS (ENGLISH)

THERMAL CONDUCTION

Solved Example

1. A uniform metal rod $A B 80 \mathrm{~cm}$ long is
heated at the end A and the end B is kept in
ice. The temperature of the end A is $100^{\circ} \mathrm{C}$ and
that of the end B is $0^{\circ} C$. The rod is covered
with wool such that there is no loss of heat
from the surface of the rod. Assuming steady
state find (i) the temperature gradient along
the rod, (ii) the temperature at a point D distance 60 cm from the end A and (iii) the distance of the point C from the end A where the temperature is $65^{\circ} \mathrm{C}$.

D Watch Video Solution
2. The area of a glass window is $1.2 m^{2}$. The thickness of the glass is 2.2 mm . If the temperature outside is $36^{\circ} \mathrm{C}$ and the temperature inside is 26°, calculate the heat flowing into the room every hour. Thermal conductivity of glass is $0.8 W \mathrm{~m}^{-1} \mathrm{~K}^{-1}$.

- Watch Video Solution

3. One of the faces of a copper cube of side 7.7
cm is maintained at $100^{\circ} \mathrm{C}$ and the opposite
face at $30^{\circ} \mathrm{C}$. If the thermal conductivity of copper is $385 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. Calculate the rate of heat flow through the cube?

D Watch Video Solution

4. A thermacole' icebox is a cheap and efficient method for storing small quantities of cooked
food in summer in particular. A cubical icebox of side 30 cm has a thickness of 5.0 cm . If 4.0
kg of ice is put in the box, estimate the amount of ice remaining after 6 h . The outside
temperature is $45^{\circ} C$, and co-efficient of thermal conductivity of thermacole is $0.01 \mathrm{Js}^{-1} \mathrm{~m}^{-1} K^{-1}$. [Heat of fusion of water $\left.=335 \times 103 \mathrm{Jkg}^{-1}\right]$

D Watch Video Solution

5. Two slabs of thickness x_{1} and x_{2} and thermal conductivities k_{1} and k_{2} are in thermal contact with each other as shown in

Fig. 11.4. The temperature of their outer surfaces are $\quad T_{1}$ and $T_{2} \quad$ respectively.
$\left(T_{1}>T_{2}\right)$. Find the temperature at the surface.

D Watch Video Solution

6. A boiler is made of a copper plate 3 mm
thick. The inner surface of the copper plate is
coated with a layer of tin of thickness 0.3 mm .

The surface of the plate exposed to the gas at
$700^{\circ} \mathrm{C}$ is $150 \mathrm{~cm}^{2}$. Find the maximum amount of
steam that could be produced per hour at
atmospheric pressure. The coefficient of thermal conductivities of copper and tin are $397 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ and $63 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$.

- Watch Video Solution

7. In an experiment to determine the thermal conductivity of copper with Searle's apparatus, 100 gm of water flowed in 4.2 minutes past the cold end of the copper bar, its initial and final temperatures being $25^{\circ} \mathrm{C}$ and $52^{\circ} \mathrm{C}$
respectively. If the temperature difference between two points in the bar 10 cm apart is
$23^{\circ} \mathrm{C}$ and the area of cross-section of the bar is
$5 \mathrm{~cm}^{2}$, calculate the coefficient of thermal conductivity of copper. Specific heat capacity of water $4,200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

D Watch Video Solution

8. A bar of length 30 cm of uniform crosssection of $5 \mathrm{~cm}^{2}$ consists of two halved $A B$ of copper and $B C$ of iron welded together at B.

The end A is maintained at $200^{\circ} \mathrm{C}$ and the end
C at $0^{\circ} \mathrm{C}$ and the sides are thermally insulated. Find the rate of flow of heat along the bar when the steady state is reached.

Thermal conductivities are copper $378 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ and iron $50.4 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ (Fig.
11.12)

D Watch Video Solution

9. In fig. 11.13 two metal bars of thickness
x_{1} and x_{2} and coefficient of thermal
conductivities K_{1} and K_{2}, placed end to end.
What is the coefficient of thermal conductivity
of a uniform slab of thickness $x_{1}+x_{2}$ whose
conductivity is the same as that of the system
of two bars ? Assume that there is no heat loss from the lateral sides.

- Watch Video Solution

10. A, B and C are three identical rods made of different materials and placed end-to-end as shown in Fig. 11.16. The thermal conductivity of A is twice that of B and four times that of C.

The free end of A is kept at 100° and that of C
is kept at $0^{\circ} \mathrm{C}$. Find the temperature of the $A B$
junction and the $B C$ junction.

- Watch Video Solution

11. Calculate the rate of increment of the thickness of ice layer on a lake when thickness of ice is 10 cm and the air temperature is
$-5^{\circ} C$. If thermal conductivity of ice is 0.008
cal $\mathrm{cm}^{-1} \mathrm{~s}^{-1 \circ} \mathrm{C}^{-1}$, density of ice is
$0.91 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and latent heat is 79.8 cal gm^{-1}. How long will it take the layer to become 10.1 cm ?

D Watch Video Solution

12. A, B and C are three identical rods made of different materials and placed end-to-end
as shown in Fig. 11.16. The thermal conductivity of A is twice that of B and four times that of C.

The free end of A is kept at 100° and that of C
is kept at $0^{\circ} \mathrm{C}$. Find the temperature of the $A B$
junction and the BC junction.

- Watch Video Solution

13. An iron bar of uniform cross-section and
length one metre is kept with its one end in contact with ice at $0^{\circ} C$ and the other end in contact with water at $100^{\circ} \mathrm{C}$. The temperature at a certain point of the bar is $150^{\circ} \mathrm{C}$ so that during the steady state, the quantity of ice melting is equal to that of steam produced in
the same interval of time. Find the distance of the point ? [See Fig. 11.17]
14. In Lee's disc experiment two discs are separated by gap of thickness 5 mm . The space between the discs contains a gas of thermal conductivity $3.88 \times 10^{-5} \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. At the steady state the temperature, of the two sides of discs are 368 K and 333 K . If the area of cross-section the slab is $25 \mathrm{~cm}^{2}$, calculate the quantity of heat crossing the gas per second.

- Watch Video Solution

1. Stainless steel cooking pans are preferred with an extra copper bottom. Why?

- Watch Video Solution

2. At what common temperature would a block of wood and a block of metal feel equally cold or equally hot when touched?
3. Two metal rods 1 and 2 of the same length
have same temperature difference between
their ends. Their thermal conductivities are
K_{1} and K_{2} and cross-section areas
A_{1} and A_{2} respectively. What is the required condition for the same rate of heat conduction in them?

- Watch Video Solution

4. A thermal conductor is heated at one end.

What is the theoretical value of its thermal conductivity in order that the other end also attains the same temperature?

- Watch Video Solution

5. Pieces of glass and copper are heated to the
same temperature. Why does the piece of copper feel hotter on touching?

6. Thermal conductivity of air is less than that

 of felt but felt is a better heat insulator in comparison to air. Why?
D Watch Video Solution

7. Woollen clothes are worn in winter, Why?

- Watch Video Solution

8. Two shirts are warmer than a single shirt of double the thickness. Why?

D Watch Video Solution

Long Answer Questions

1. Describe an experiment to determine the coefficient of thermal conductivity of a good conductor by Searle's method.
2. Explain Lee's disc method of finding the thermal conductivity of a bad conductor.

- Watch Video Solution

3. (a) Compare thermal conductivity and electrical conductivity
(b) Explain Wiedemann Franz law.
4. (a) Discuss the heat flow through a composite slab.
(b) Derive an expression for the rate of increase of thickness of ice on a lake.

- Watch Video Solution

5. Explain the term temperature gradient. The two ends of a metal bar are maintained at two different consistant temperatures. On a single graph draw sketches to show the variation of temperature along the bar when its surface is
(i) perfectly lagged and (ii) unlagged. Explain the shape of the two sketches.

D Watch Video Solution

Short Answer Questions

1. What is heat transfer ? Explain conduction of heat.

- Watch Video Solution

2. Define thermal conductivity. Give its S.I. unit

 and dimensional formula.
- Watch Video Solution

3. "After the steady state, the temperature of a conductor does not rise, even though heat is supplied",. Why?

- Watch Video Solution

4. When you touch a piece of metal and a piece of wood simultaneously, metal appears colder or hotter. Can wood and metal feel equally cold or hot when touched?

D Watch Video Solution

5. "We supply electric current continuously to
an electric heater. But the temperature of the heater remains constant after some time." Why?
6. The specimen is taken in the form of 'disc' in Lee's disc method to find the thermal conductivity is a bad conductor. Why?

- Watch Video Solution

7. "Cooking utensils are provided with wooden handles". Why?
8. "Ice is packed in saw dust". Why ?

D Watch Video Solution

9. "Birds swell their feathers in winter." Why?

D Watch Video Solution
10. "In winter metals appear colder than wood." Why ?
11. Is there any connection between object's
feeling hot or cold and its thermal conductivity?

D Watch Video Solution

12. In what way the steady state heat flow analog to the flow of (i) an electric current and
(ii) an incompressible liquid?
13. "A blanket keeps our body warm in winter, but the same blanket can protect ice from melting". Explain how?

D Watch Video Solution

14. The top of a lake is frozen. Air in contact is
at $-15^{\circ} \mathrm{C}$. What do you expect the maximum
temperature of water (i) in contact with the
lower surface of ice an (ii) at the bottom of the
lake ?

- Watch Video Solution

15. Two rods A and B are of equal length. Each
rod has its ends at temperatures T_{1} and T_{2}.
What is the condition that will ensure equal rate of flow of heat through the rods A and B ?

- Watch Video Solution

16. A composite slab is made of two parallel
layers of two different materials of thermal
conductivities K_{1} and K_{2} are of same
thickness. Show that the equivalent thermal
conductivity of the slab is $\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$

D Watch Video Solution

17. Explain the difference between 'steady state' and 'variable state' of a thermal conductor.

18. What is the significance of Wiedmann Franz

 law?D Watch Video Solution
19. Mention the two processes responsible for the conduction of heat.

D Watch Video Solution

Very Short Answer Questions

1. "Insulators also contain electrons, but they are not conductors." Why?

D Watch Video Solution

2. "Water can be boiled in a paper cup". Explain
how?

- Watch Video Solution

3. "It is hotter at the same distance over the top of a fire than in front of it" Why ?

D Watch Video Solution

4. Two bodies of different temperatures
T_{1} and T_{2} if brought in thermal contact, do not necessarily settle to the mean temperature $\left(T_{1}+T_{2}\right) / 2$. Why?

D Watch Video Solution

5. Pieces of glass and copper are heated to the

 same temperature. Why does the piece of copper feel hotter on touching?
(Watch Video Solution

Selected Problems Taken From The Previous Years Isc Aissce Hssce Various States Boards Roorke Qns Ncert Text From Rate Of Heat Flow

1. An iron plate $10^{-5} \mathrm{~m}^{2}$ area, $4 \times 10^{-3} \mathrm{~m}$
thick has its opposite faces maintained at 373

K and 223 K respectively. How much heat flows through the plate per second ? Thermal conductivity of iron $=80 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

2. Calculate the rate of flow of heat through a metal sheet 0.02 m thick and area $50 \times 10^{-4} \mathrm{~m}^{2}$ with its two sides at 273 K and 293 K respectively. Given $K=0.2$ cal cm ${ }^{-1} S^{-1} c^{-1}$.

D Watch Video Solution

3. Steam at 373 K is passed through a tube of radius 0.5 m and length 3 m . If the thickness of the tube is 2 mm and $K=2 \times 10^{-4}$ in C.G.S. units find the rate of loss of heat in $J s^{-1}$. Room temperature is $9^{\circ} \mathrm{C}$.

- Watch Video Solution

4. A cylindrical metallic rod 0.5 m long conduct
heat at the rate of $50 \mathrm{Js}^{-1}$ when its ends are
kept a $400^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively.

Coefficient of thermal conductivity of metal is
$72 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. What is the diameter of rod?

D Watch Video Solution

5. The glass windows of a room have a total area of $5 \mathrm{~m}^{2}$ and glass thickness is 3 mm .

Calculate the rate at which heat escapes from
the room per minute by conduction when the inside of the windows is at a temperature
$15^{\circ} \mathrm{C}$ and the outside temperature is $-10^{\circ} \mathrm{C}$.
Thermal conductivity $=0.84 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$.
6. Heat is flowing through two cylindrical rods of the same material. The diamters of the rods are in the ratio $1: 2$ and the length in the ratio
$2: 1$. If the temperature difference between the ends is same then ratio of the rate of flow of heat through them will be

- Watch Video Solution

Selected Problems Taken From The Previous Years Isc Aissce Hssce Various States Boards Roorke Qns Ncert Text From Mass Of Ice Melted

1. One face of the a cube of side 0.2 m is in contact with ice and the opposite face is in contact with steam. If all other sides are well
lagged, calculate the mass of ice that melts during one hour. Thermal conductivity of the metal $=40 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. L.H. of fusion of ice $=336 \mathrm{~kJ} \mathrm{~kg}^{-1}$.
2. The opposite faces of a cubical block of iron of cross-section $4 \times 10^{-4} \mathrm{~m}^{2}$ are kept in contact with steam and melting ice. Calculating the amount of ice melted at the end of 5 minutes. Given $K=0.2 \mathrm{cal} \mathrm{cm}$ ${ }^{-1} \mathrm{~S}^{-1}{ }^{\circ} \mathrm{C}^{-1}$.

- Watch Video Solution

3. A copper rod of length 60 cm long and 8 mm in radius is taken and its one end is kept
in boiling water and the other end in ice at
$0^{\circ} C$. If 72 gm of ice melts in one hour with is
the thermal conductivity of copper ? Latent of fusion of ice $=336 \mathrm{KJ} / \mathrm{Kg}$.

- Watch Video Solution

4. One side of an iron plate one metre square
is kept at $100^{\circ} \mathrm{C}$ and the other side is at $0^{\circ} \mathrm{C}$.

The thickness of the plate is 1 cm . If all the
heat conducted across the plate in one minute
is used in melting ice, calculate the amount of
ice so melted. Thermal conductivity of iron $=0.162$ in C.G.S. unit L.H. of fusion of ice $=80 \mathrm{cal} / \mathrm{gm}$.

D Watch Video Solution

5. Two beakers, identical in all respects, but made of different materials, are filled with equal amounts of ice at $0^{\circ} C$. Toe ice in one beaker melts in one minute whereas that in
the other beaker melts in five minutes. Find
the ratio of the thermal conductivities of the material of the two beakers.

D Watch Video Solution

6. A brass boiler has a base area of $0.15 \mathrm{~m}^{2}$ and
thickness is 1.0 cm . It boils water at the rate of
$6.0 \mathrm{~kg} / \mathrm{min}$. When placed on a gas stove.

Estimate the temperature of the part of the
flame in contact. With the boiler. Thermal conductivity of brass $=109 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
7. Show that in a compound slab the temperature gradient in each position is inversely proportional to the thermal conductivity. [See Fig. 11.18 (a)]

D Watch Video Solution

8. A slab consists of two parallel layers of iron
and brass 10 cm and 10.9 cm thick and of
$500 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ and $109 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
respectively. The area of opposite faces are
$2 m^{2}$ each and are at temperatures 373 K and
273 K. Find heat conducted per second across
the slab and also the temperature of the interface.

D Watch Video Solution

9. An ice box is built of wood of thickness 1.75
cm . The box has an inner lining of cork 2 cm
thick. If the difference in temperature between
the interior of the box and outside is $12^{\circ} \mathrm{C}$,
calculate the temperature of the interface
between wood and cork. Thermal conductivity
of wood and cork are respectively
0.25 and 0.05 in S.I. unit.

D Watch Video Solution

10. Two rods A and B of same area of crosssection are joined together end to end The free end of the rod A is kept in melting ice at 300 K and free end of B rod at 400 K . The rods
are of the same length. The conductivity of A is

3 times that of B. Calculate the temperature of the junction of the rods.

D Watch Video Solution

11. Two identical metal rods A and B are joined end to end. The free end of A is kept at $27^{\circ} \mathrm{C}$ and the free end of B at $37^{\circ} \mathrm{C}$. Calculate the temperature of the interface. Thermal conductivity of $A=385 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$, that of B $110 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$.
12. Two flat sheets of thickness d_{1} and d_{2} and
thermal conductivities K_{1} and K_{2} are joined together. If the open face of the first sheet is maintained at temperature θ_{1} and the other open face of the second sheet at θ_{2}. Calculate
the temperature of the interface of two
sheets. What is the conductivity of the composite sheets ?

- Watch Video Solution

13. Two plates of equal area are placed in contact with each other. The thickness of the plates are 2.0 cm and 3.0 cm respectively. The outer face of first plate is at $-25^{\circ} \mathrm{C}$ and that of second plate is at $+25^{\circ} \mathrm{C}$. The conductivities of the plates are in the ratio

2:3. Calculate the temperature of the common surface of the plates.
14. Two identical sheets of metal are welded end to end as shown in Fig. 11.19. 20 J of heat flows through $0^{\circ} \mathrm{C}$ it in 4 cm . If the sheets are welded as shown in Fig. (b), find the time taken for the same amount of heat to flow through the sheets.

- Watch Video Solution

15. Calculate the thermal conductivity of the composite rod. The two rods A and B are made
of two different materials of thermal conductivities K_{1} and K_{2} and are welded together.

D Watch Video Solution

16. A cylinder of radius r made of a material of
thermal conductivity K_{1} is surrounded by a cylindrical shell of inner radius r and outer radius $2 r$ made of a material of thermal conductivity K_{2}. The two ends of the
combined system are maintained at two different temperatures. There is no loss of heat across the cylindrical surface and the system is in steady state. Show that the effective thermal conductivity of the system is $\left(K_{1}+3 K_{2}\right) / 4$.

D Watch Video Solution

17. A wall has two layers A and B each made of different materials. (See Fig. 11.21). The layer A is 10 cm thick and B is 20 cm thick The thermal
conductivity of A is thrice that of B. Using
thermal equilibrium, temperature difference
across the wall is $35^{\circ} \mathrm{C}$. What is the temperature difference across the layer A ?

D Watch Video Solution

Selected Problems Taken From The Previous Years Isc Aissce Hssce Various States Boards

Roorke Qns Ncert Text From The Rate Of Increase Of Thickness Of Ice On A Lake

1. Calculate the time in which a layer of ice 6 cm thick, on the surface of a pond will increase in thickness by 2 mm . Temperature of the surrounding air

$$
=-20^{\circ} \mathrm{C}, L=333 \mathrm{KJ} \mathrm{~kg}^{-1} \quad \text { Conductivity }
$$

of ice $=0.08 \mathrm{cal} \mathrm{s}-1 \mathrm{~cm}-1 \circ \mathrm{C}-1$..

- Watch Video Solution

2. The thickness of ice on a Jake is 6 cm and the temperature of air is $-10^{\circ} \mathrm{C}$. At what rate is
the thickness of ice increasing ? Thermal conductivity of ice $=2 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. Density of ice $=920 \mathrm{~kg} \mathrm{~m}^{3}$, specific latent heat of ice $=336 \mathrm{KJ} \mathrm{kg}^{-1}$

D Watch Video Solution

3. A pond has a layer of ice of thickness 0.25 m
on its surface the temperature of the atmosphere is $10^{\circ} C$. Find out the time required to increase the thickness of the layer of ice 0.5 mm . K of ice $=2 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$.

Density of ice $=900 \mathrm{~kg} \mathrm{~m}^{-3}$ latent heat of fusion of ice $=336 \mathrm{KJ} \mathrm{kg}^{-1}$.

(D) Watch Video Solution

Selected Problems Taken From The Previous Years Isc Aissce Hssce Various States Boards Roorke Qns Ncert Text From Thermal Resistance

1. The ratio of the thermal conductivities of
two different materials is $1: 2$. The thermal
resistance of the rods of these materials
having the same thickness are equal. Find the ratio of the length of rods.

D Watch Video Solution

2. Calculate the thermal conductivity of the composite rod. The two rods A and B are made of two different materials of thermal conductivities K_{1} and K_{2} and are welded together.

D Watch Video Solution

3. Three rods $A B, B C$ and $C D$ are connected as shown is Fig.11.23. They are of the same length and area of cross-section. The thermal resistance of $A B$ is $15 \mathrm{KW}^{-1}, B C$ is $10 \mathrm{KW}^{-1}$ an $C D$ is $15 \mathrm{KW}^{-1}$. If the free ends are maintained at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, calculate the rate of heat flowing through the combination.
4. Four rods are joined and their free ends are maintained at $100^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. What is the temperature of the junction C ? The thermal resistances of rods of $A B$ and $C D$ are $10 \mathrm{KW}^{-1}$ each and $B C$ and $D E$ are $15 \mathrm{KW}^{-1}$ each.

D View Text Solution

5. A well insulated box is packed with ice at $0^{\circ} \mathrm{C}$ and kept in a room at a temperature of $30^{\circ} \mathrm{C}$.

The lid of the box is made of a cardboard sheet of thickness 4 mm and area $100 \mathrm{~cm}^{2}$. If the ice melts at the rate of 0.045 kg per hour, calculate the thermal conductivity of cardboard assuming that heat can enter the box only through the lid. [L.H. of fusion of ice $=336 \mathrm{KJ} / \mathrm{kg}]$

- Watch Video Solution

6. A sheet of rubber and a sheet of cardboard,
each 5 mm thick are pressed together and
their outer faces are maintained respectively
at $0^{\circ} \mathrm{C}$ and $18^{\circ} \mathrm{C}$. If the thermal conductivities
of rubber and cardboard are respectively 0.13
and $0.05 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. find the quantity of heat
which flows in one hour across a piece of composite sheer if area is $100 \mathrm{~cm}^{-2}$.

- Watch Video Solution

7. Calculate the rate of loss from a room through a glass window of area $1.5 m^{2}$ and thickness $2.5 \times 10^{-3} \mathrm{~m}$, when the
temperature of the room is $25^{\circ} \mathrm{C}$ and that of
the air outside is $10^{\circ} \mathrm{C}$. Assume that the inner
glass surface is at the room temperature. [
Thermal conductivity of glass
$\left.=1.2 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}\right]$

(Watch Video Solution

Selected Problems Taken From The Previous Years Isc Aissce Hssce Various States Boards Roorke Qns Ncert Text From Experiment To Determine K

1. In an experiment to find the thermal conductivity of rubber, a tube of length 10 cm with external radius 0.5 cm and internal radius
0.3 cm is immersed in 0.28 g of water at $30^{\circ} \mathrm{C}$ contained in a copper calorimeter of mass
0.20 kg and specific heat capacity
$385 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$. Through the tube, steam is
passed for 10 minutes and the final maximum
temperature of water and calorimeter is $42^{\circ} C$
. Calculate the thermal conductivity of rubber.
Specific heat
capacity
of
water
$=4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$.

- Watch Video Solution

2. In an experiment to find the thermal conductivity of rubber, a tube of length 10 cm with external radius 0.5 cm and internal radius
0.3 cm is immersed in 0.28 g of water at $30^{\circ} \mathrm{C}$ contained in a copper calorimeter of mass
0.20 kg and specific heat capacity $385 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$. Through the tube, steam is passed for 10 minutes and the final maximum temperature of water and calorimeter is $42^{\circ} \mathrm{C}$
. Calculate the thermal conductivity of rubber.

Specific heat capacity of water
$=4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$.

- Watch Video Solution

