© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - S CHAND PHYSICS (ENGLISH)

THERMAL RADIATION

Solved Examples

1. A metal ball of diameter 14 cm and mass

10 kg is heated to a temperature of $227^{\circ} \mathrm{C}$ and
suspended in a box whose waals are at a
temperautre of $27^{\circ} \mathrm{C}$. What is the maximum rate at which its temperature will fall ? Stefan's constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} K^{-4}$, specific heat capacity of the metal $=420 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

2. What is the heat lost from the body of a person her hour whose body temperature is $37^{\circ} \mathrm{C}$ and the surrounding temperature is 20°

C ? The emissivity of the skin is 0.92 and the
surface area of skin is $1.6 \mathrm{~m}^{2}$. (Asssume that the person is unclothed.)

D Watch Video Solution

3. Two black bodies at temperautre 400 K and 500K are placed in an evacuated enclosure whose wall are at 300 K . Find the ratio of their rates of cooling.
4. The sun radiates energy at the rate of $6.4 \times 10^{7} \mathrm{Wm}^{-2}$. Calculate its temperature assuming it to be a black body.

D Watch Video Solution

5. Calculate the black body temperature of the sun from the following data :- Stefan's constant $=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$. Solar constant $=1500 W / M^{2}$. Radius of the sun $=$
$7 \times 10^{8} \mathrm{~m}$. Distance between sun and earth $=$ $1.5 \times 10^{11} \mathrm{~m}$.

- Watch Video Solution

6. Calculate the colour temperautre of the sun assuming that the wavelength of maximum energy in the solar spectrum is 0.48 micron and the Wien's constant is $0.228 \times 10^{-2} \mathrm{mK}$.
7. A liquid cools from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 5 minutes. If the temperautre of the surrounding is $30^{\circ} \mathrm{C}$, what is the time taken by the liquid to cool from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$?

D Watch Video Solution

8. Calculate the wavelength at which a hot body radiates maximum energy if its surface temperature is $3200^{\circ} \mathrm{C}$. Wien's constant 0.00289 mK .
9. The wavelength of greatest radiation intensity inside a greenhouse is 9.66×10^{-6} m. Calculate the corresponding temperature. Wien's constant is 0.00289 mK .

- Watch Video Solution

Additional Solved Problems

1. An aluminiumum foil of relative emittance
0.1 is placed in between two concentric spheres at temperatures 300 K and 200 k respectively. Calculate the temperature of the
foil after the steady state is reached. Assume
that the spheres are perfect black body radiators. Also calculate the rater of energy transfer between one of the spheres and the foil.

$$
\left[\sigma=5.67 \times 10^{-8} \text { S.I. Unit }\right]
$$

2. A black body initially at $27^{\circ} \mathrm{C}$ is heated to
$327^{\circ} \mathrm{C}$. How many times is the total radiation emitted at the higher temperature than that emitted at the lower temperature ? What is
the wavelength of the maximum energy radiation at the higher temperature ? Wien's constant $=2.898 \times 10^{-3} \mathrm{mK}$.

- Watch Video Solution

3. A black body with an initial temperature of $300^{\circ} \mathrm{C}$ is allowed to cool inside an evacuated enclosure surrounded by melting ice at the rate of $0.35^{\circ} \mathrm{C}$ per second. If the mass, specific heat and surface area of the body are 32 gm , $420 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and $8 \mathrm{~cm}^{2}$ respectively, calculate the stefan's constant.
4. The time taken by a liquid to cool from $65^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ is 5 minutes and cools to $47^{\circ} \mathrm{C}$ in the next 5 minutes, calculate the room temperature and the temperature of the body after another 5 minutes.

- Watch Video Solution

Conceptual Short Answer Questions With

Answers

1. 'The earth without its atmosphere would be inhospitably cold'. Why?

D Watch Video Solution

2. "A solid sphere of copper of radius R and a hollow sphere of the same material of inner radius r and outer radius R are heated to the
same temperature and allowed to cool in the same environment. Which of them starts cooling faster ?"
3. "A body with larger reflectivity is a poor emitter". Why?

D Watch Video Solution

4. What is the difference between radiation
and thermal radiation?
5. "Water pipes are painted with aluiminium paints". Why?

D Watch Video Solution

6. Is it neccesary that all black coloured bodies to be regarded as perfectly black bodies ?

- Watch Video Solution

7. Why do animals curl into ball during winter
8. A car is left in Sunlight on a hot day with all
the window closed. After sometime, it is found that she inside of a car is considerably warmer than the air outside. Why?

- Watch Video Solution

9. "Air is a bad conductor of heat, but still we do not feel warm without clothes". Why?

Watch Video Solution

10. If the temperature of a black body is raised
from 300 K to 600 K by what factor the rate of emission shall increase?

- Watch Video Solution

Long Answer Questions

1. State Stefan's law. Sketch graphs showing
the distribution of energy in the spectrum of
black body radiation at three temperatures, and indicate which curve corresponds to the highest temperature.

- Watch Video Solution

2. What is a black body ? On what factor does
the radiation emitted depend ? Will the total
radiation from it be more or less as compared to another body maintained at the same temperautre ? How does total energy radiated
from it change with temperature? Is it
possible for a black body to radiate white light
?

- Watch Video Solution

3. (a) Describe the principle of (i) a thermopile and (ii) a bolometer and show how these devices are used.
(b) Define the term black body. What is meant by black body radiation ? As the temeprature of a black body rises, what changes take place in (i) the total energy radiated from it and (ii)
the energy distribution amongst the wavelengths radiated ?

D Watch Video Solution

4. State Stefan's law and Wien's displacement
law. Draw graphs showing the distribution of energy in the spectrum of a black body. Explain what quantity is plotted against the wavelength . By considering how this energy
distribution varies with tempaerature expalin
the colour changes which occur when a piece
of iron is heated from cold to near the melting point.

D Watch Video Solution

5. (a) State and explain Kirchhoff's law.
(b) Describe an experiment to verify it.
(c) Give two examples to illustrate Kirochhoff's
law.
6. (a) State Newton's law of cooling.
(b) Derive Newton's law of cooling from

Stefan's law,
(c) What is the limitation of Newton's law?
(d) Derive the shape of the cooling curve of a hot body using Newton's law of cooling.

D Watch Video Solution

Short Answer Questions

1. What is the difference between radiation and thermal radiation?

D Watch Video Solution

2. Will a black body appear black at any temperature? If so when?
3. Give two reasons why fluorspar prism is preffered over glass prism for the study of black body spectrum.

D Watch Video Solution

4. Why we use a number of antimony-bismuth couple in a thermopile?

D Watch Video Solution
5. What is the advantage of a linear thermopile?

D Watch Video Solution
6. Mention four properties of thermal radiation.

D Watch Video Solution
7. "The inside of Ferry's black body is blackened but nickel polished outside." Why?

- Watch Video Solution

8. What is meant by temperature radiation?

- Watch Video Solution

9. Name the factors on which the thermal radiation emitted by a hot body depend."

- Watch Video Solution

10. Define emissivity.

D Watch Video Solution

11. What is the difference between absorptive power and spectural absorptive power ?

- Watch Video Solution

12. What is the difference between absorptive power and spectural absorptive power?

D Watch Video Solution

13. What is the ralation connecting absorpative, reflecting and transmitting power of a body?

D Watch Video Solution

14. What is the significance of Kirchhoff's law?

- Watch Video Solution

15. Explain the formation of Fraunhofer lines using Kirchhoff's law .

- Watch Video Solution

16. What is Stefan's constant ?
17. What is the difference between Stefan's law and Newton's law of cooling ?

D Watch Video Solution

18. State Wien's displacement law. Why is it called so ?

D Watch Video Solution
19. Name the law which helps us to explain the
distribution of energy in the spectrum of a black body for
(i) short wavelength only (ii) long wavelength only.

D Watch Video Solution
20. Explain Prevost's theory of heat exchanges.
21. Which body will emit more radiation under the similar condition, a black body or polished body?

- Watch Video Solution

22. Which star is at a higher temperature, a red star or a blue star ?

- Watch Video Solution

23. Mention a method to measure the temperature of a star.

D Watch Video Solution
24. "The earth is not in thermal equilibrium with the sun." Why ?
25. Mountaineers caught in a storm sometimes survive by digging a cave in snow. How do they keep warm in the ice cave?

D Watch Video Solution

Very Short Answer Questions

1. Name the method of heat transfer which
does not depends on gravity?

- Watch Video Solution

2. Does a body at $0^{\circ} \mathrm{C}$ radiate any heat?

- Watch Video Solution

3. Name the instrument used to measure temperature using the radiation emitted from the body?
4. What is (i) the absorbing power and (ii) the reflecting power of a 'perfect black body' ?

D Watch Video Solution
5. "A hot liquid' remains hot and a cold liquid remains cold in a thermos flask." Explain how ?

D Watch Video Solution

6. "Lamp black and platinum black are used as
perfect black body one for absorption of heat radiation." Why ?

D Watch Video Solution

7. At what temperature does a body strip radiating heat ?

D Watch Video Solution
8. "A black dot on as a porcelain cup apppears
dark. But when heated to a high temperature
it becomes brighter than the rest of the cup."
Why ?

D Watch Video Solution

Selected Problems From Stefan S Law

1. Calculate the amount of radiant energy from
a black body at a temperature of (i) $27^{\circ} \mathrm{C}$ (ii)
2727° С. $\sigma=5.67 \times 10^{-8} W m^{-2} K^{-4}$.

D Watch Video Solution

2. Calculate the energy radiated per minute by a black body of surface area $200 \mathrm{~cm}^{2}$, maintained at $127^{\circ} \mathrm{C}$.
$\sigma=5.7 \times 10^{-8} W m^{-2} K^{-4}$

D Watch Video Solution
3. A black body having an area of $2 \times 10^{-4} \mathrm{~m}^{2}$
for its radiating surface radiates energy of
16.42 J in 15 minutes. What is the temperature of the body?

- Watch Video Solution

4. Calcualte the maximum amount of heat which may be lost per second by radiation
from a sphere of 10 cm in diameter and at a temperature of $227^{\circ} \mathrm{C}$ when placed in an
encloser at a temperature of $27^{\circ} \mathrm{C}$.
$\sigma=5.7 \times 10^{-8} W m^{-2} K^{-4}$.

D Watch Video Solution

5. Calculate the energy radiated per minute from a filament of an incandescent lamp at $3,000 \mathrm{~K}$ if the surface area is $10^{-4} m^{2}$ and its relative emitted is 0.425 .
6. The energy radiated per hour from the surface of a filament 0.5 cm long and of radius
0.32 cm of an incandescent lamp at a certain temperature is $2.625 \times 10^{5} \mathrm{~J}$. If the relative emittance of the surface is 0.8 calculate the temperature of the filament.

D Watch Video Solution

7. A thin brass rectangular sheet of sides 10 cm
and 5 cm is heated in a furnace to $500^{\circ} \mathrm{C}$ and
taken out. How much electric power is needed to maintain the sheet at this temperature ? Its emissivity is 0.25 .

D Watch Video Solution

8. Calculate the power of an incandescent
lamp whose filament has a surface area of
$0.19 \mathrm{~cm}^{2}$ and is at a temperature of 3645 K .
Emmisivity of the surface is 0.4,
$\sigma=5.7 \times 10^{-8} W m^{-2} K^{-4} ?$
9. The temperature of an elactric bulb changes
from 2000 K to 3000 K due to a.c. voltage fluctuations. Calculate the percentage rise in electric power consumed?

D Watch Video Solution

10. A black body of mass $\cdot 0.10 \mathrm{~g}$ is kept in a black enclosure or temperature $27^{\circ} \mathrm{C}$. The temperature of the body is $127^{\circ} \mathrm{C}$ and the area of the emittimg surface in $10^{-3} \mathrm{~m}^{2}$. If its
specific heat capacity is $420 \mathrm{~J} k g^{-1} k^{-1}$ find the rate of cooling of the body. $\sigma=5.67 \times 10^{-8} W m^{-2} K^{-4}$.

D Watch Video Solution

11. If each square cm of the sun's surface radiates energy at the rate of $6.42 \times 10^{3} \mathrm{Js}^{-1} \mathrm{~cm}^{-2} \quad, \quad$ calculate the temperature of the sun's surface in degree celsius, assuming Stefan's law applies to the
$\left.5.67 \times 10^{-8} W m^{-2} K^{-4}\right)$

D Watch Video Solution

12. Considering the sun as a perfect sphere of radius $6.8 \times 10^{8} \mathrm{~m}$, calculate the energy radiated by it one minute. Take the temperature of sun as 5800 k and $\sigma=5.7 \times 10^{-8}$ S.I. unit.
13. A sphere of radius 5 cm at $1027^{\circ} \mathrm{C}$ is suspended in a vaccum in an enclosure at
$127^{\circ} \mathrm{C}$. Assuming the sphere to be a black body calculate the rate of loss of heat.

D Watch Video Solution

Selected Problems From Wien S Displacement Law

1. Calculate the effective temperature of the
sun . Given that the wavelength of maximum
energy in the solar spectrum is 475 mm and Wien's constant is $2.898 \times 10^{-3} \mathrm{mK}$.

D Watch Video Solution

2. Two stars radiate maximum energy at wavelength $3.6 \times 10^{-7} \mathrm{~m}$ and $4.8 \times 10^{-7} \mathrm{~m}$ respectively. What is the ratio of their temperatures ?
3. The surface temperature of a hot body is
$1227^{\circ} \mathrm{C}$. Find the wavelength at which it radiates maximum energy. Given Wien's constant $=0.2892 \mathrm{~cm}$. K.

- Watch Video Solution

4. Calculate the surface temperature of moon.

Given that $\lambda_{m}=14$ micrometer where λ_{m} is
the wavelenght of the maximmum intensity of emission. Wien's constant $=0.2892 \mathrm{~cm} . \mathrm{K}$.
5. The operating temperature of an indirectly heated filament of a vaccum tube is around 1050K. At what wavelength will it radiate maximum ? Given $\mathrm{b}=0.288 \mathrm{~cm} \mathrm{~K}$.

D Watch Video Solution

6. Calculate the temperature at which a body may appear (i) deep red (7900A) and (ii) blue (5000A).
7. the maximmum temperature reached during an atomic explosion was of the order of $10^{7} \mathrm{~K}$.

Calculate the wavelength of maximum energy $\mathrm{b}=0.293 \mathrm{~cm} \mathrm{~K}$.

- Watch Video Solution

8. The temperature of a furnace is $2324^{\circ} \mathrm{C}$ and
the intensity is maximum in its radiation
spectrum nearly at 12000A. If the intensity in
the spectrum of a star is maximum nearly at 4800A, calculate the surface temperature of the star.

- Watch Video Solution

9. If wavelength of maximum intensity of radiation emitted by sun and moon are $0.5 \times 10^{-6} \mathrm{~m}$ and $10^{-4} \mathrm{~m}$ respectively.

Calculate the ratio of their temperatures
10. A black body emits radiation of maximum intensity at a wavelength of 5000A when the temperature of the body is $1227^{\circ} \mathrm{C}$. If the temperature of the body is increased by 1000°

C, calculate the wavelength corresponding to the maximum intensity.

D Watch Video Solution

11. Two black bodies A and B emit radiations
with peak intensities at wavelengths 4000 A
and 8000 A respectively. Compare the total energy emitted per unit area per second by the two bodies.

D Watch Video Solution

12. A body cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 6 minutes, the temperature of the surroundings being $25^{\circ} \mathrm{C}$. What will be its temperature after another 6 minutes?
13. A body in a room cools from $85^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 5 minutes. Calculate the time taken to cool from $80^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ if the surrounding temperature is $30^{\circ} \mathrm{C}$.

- Watch Video Solution

14. A body initially at $80^{\circ} \mathrm{C}$ cools to $64^{\circ} \mathrm{C}$ in 5 minutes and to $52^{\circ} \mathrm{C}$ in 10 minutes. What will be the temprature after 15 minutes and what is the temperature of the surroundings?

