びdoubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NARENDRA AWASTHI

CHEMICAL EQUILIBRIUM

Exercise

1. A reversible reaction is one which
A. proceeds in one direction
B. proceeds in both directions
C. proceeds spontaneously
D. all the statements are wrong

Answer: b
2. The equilibrium constant K_{c} for the reaction $P_{4(g)} \Leftrightarrow 2 P_{2(g)}$ is 1.4 at $400^{\circ} \mathrm{C}$. Suppose that 3 moles of $P_{4(g)}$ and 2 moles of $P_{2(g)}$ are mixed in 2 litre container at $400^{\circ} \mathrm{C}$. What is the value of reaction quotient $\left(Q_{c}\right)$?
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. 1
D. none of these

Answer: b

- Watch Video Solution

3. In a chemical reaction, equilibrium is said to have been established when the

> A. opposing reacation ceases
B. concentrations of reactants and product are equal
C. velocity of opposing reaction is the same as that of forward reaction
D. reaction ceases to generate heat

Answer: bc

- Watch Video Solution

4. The equilibrium constant for a reaction is K, and the reaction quotient is Q. For a particular reaction mixture, the ration $\frac{K}{Q}$ is 0.33 . this means that:
A. the reaction mixture will equilirate to from more reactant species
B. the rection mixture will equilirate to from more product species
C. the equlibrium ratio of reactant to product concentration will be 3
D. the equilibrium ratio of reactant to product concentrations will be
0.33

Answer: b

- Watch Video Solution

5. Consider the reaction $2 \mathrm{SO}_{2(g)}+O_{2}(g) \leftrightarrow 2 \mathrm{SO}_{3(g)}$ for which $K_{c}=278 M^{-1} 0.001$ mole of cash of the reagents ${S O_{2(g)}, O_{2}(g) \text { and }}^{2}$ $\mathrm{SO}_{3}(\mathrm{~g})$ are mixed in a 1.0 l flask. Determine the reaction quotient of the system and the spontaneous direction of the system.
A. $Q_{c}=1000$, the equilibrium shifts to the right
B. $Q_{c}=1000$, the equilibrium shifts to the left
C. $Q_{c}=0.001$, the equilibrium shifts to the left
D. $Q_{c}=0.001$, theequilibrium shifts to the right

Answer: a

6. In Q.No .5, if the mixture of gases was allowed to come to quilibrium .The volume of the reaction vessel was then rapidly increased by a factor of two As a result of the change in the reaction quotient $\left(Q_{c}\right)$ would:
A. increase because of the pressure decrease
B. decrease because of the pressure decrease
C. remain the same because the equilibrium constant is indendent of volume
D. increase because the reaction is endothermioc

Answer: a

- Watch Video Solution

7. For the reaction $A_{(g)}+3 B_{(g)} \Leftrightarrow 2 C_{(g)}$ at $27^{\circ} C .2$ mole of A, 4 moles of B and 6 moles of C are present in 2 lit vessel. If K_{c} for the reaction is
1.2, the reaction will proceed in
A. Forward direction
B. backward direction
C. neither direction
D. none of these

Answer: a

- Watch Video Solution

8. For a reversible gaseous reaction $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}$ at equilibrium , if some moles of H_{2} are replaced by same number of moles of T_{2} (T is tritium , isotope of H and assume isotopes do not have different chemical properties) without affecting other parameters, then:
A. the sample of ammonia obtained after something will be radioactive.
B. moles of N_{2} after the change will be different as compared to moles of $N)(2)$ present before the change
C. the volue of K_{p} or K_{c} will change
D. the average molecular mass of new equilibrium will be same as that of old equilibrium

Answer: a

- Watch Video Solution

9. For the synthesis of ammonia by the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in the Haber's process ,the attainment of equilibrium is correctly predicated by the curve
A.

(b)

B. time \rightarrow
(c)

C.
time \rightarrow
D.

Answer: a

Watch Video Solution
10. The figure shows the change in concentration of species A and B as a function of time.

The equilibrium constant K_{c} for the reaction $A(g) \Leftrightarrow 2 B(g)$ is :

A. $K_{c}>1$
B. $K<1$
C. $K=1$
D. data insufficient

Answer: a

11. Attainment of the equilibrium $A(g) \Leftrightarrow 2 C(g)+B(g)$ gave the following graph . Find the correct option .(\% dissociation=Fration dissoiated $\times 100$)

A. At $\mathrm{t}=5 \mathrm{sec}$ equilibrium has been reached and $K_{c}=40(\mathrm{~mol} / \text { litre })^{2}$
B. At $t=5 \mathrm{sec}$ equilibrium has been reached and \% dissciation of A is 20\%
C. At $\mathrm{t}=5 \mathrm{sec}$ equilibrum has been reached and \% dissocition of A is 30\%
D. none of these
12. Using moler concentrations, what is the unit of K_{c} for the reaction ?
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$
A. M^{-2}
B. M^{2}
C. M^{-1}
D. M

Answer: b

Watch Video Solution
13. What is the unit of K_{p} for the reaction ?
$C S_{2}(g)+4 H_{4}(g) \Leftrightarrow C H_{4}(g)+2 H_{2} S(g)$
A. atm
B. $a t m^{-2}$
C. $a t m^{2}$
D. $a t m^{-1}$

Answer: b

D Watch Video Solution

14. What is the equilibrium expression for the reaction, $P_{4(s)}+5 O_{2(g)} \Leftrightarrow P_{4} O_{10(s)} ?$.
A. $K_{c}=\left[O_{2}\right]^{5}$
B. $K_{c}=\left[P_{4} O_{10}\right] / 5\left[P_{4}\right]\left[O_{2}\right]$
C. $K_{c}=\left[P_{4} O_{10}\right] /\left[P_{4}\right]\left[O_{2}\right]^{5}$
D. $K_{c}=1 /\left[O_{2}\right]^{5}$

Answer: d

15. At $527^{\circ} \mathrm{C}$, the reaction given below has $K_{c}=4$
$\mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$
what is the K_{p} for the reaction ?

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)
$$

A. $16 \times(800 R)^{2}$
B. $\left(\frac{800 R}{4}\right)^{-2}$
C. $\left(\frac{1}{4 \times 800 R}\right)^{2}$
D. none of these

Answer: c

- Watch Video Solution

16. The equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
at temperature T is 4×10^{-4}.

The value of K_{c} for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. 4×10^{-4}
B. 50
C. 2.5×10^{2}
D. 0.02

Answer: b

- Watch Video Solution

17. The equilibrium constant K_{c} for the following reaction at $842^{\circ} \mathrm{C}$ is
7.90×10^{-3}.What is K_{p} at same temperature ?

$$
\frac{1}{2} f_{2}(g) \Leftrightarrow F(g)
$$

A. 8.64×10^{-5}
B. 8.26×10^{-4}
C. 7.90×10^{-2}
D. 7.56×10^{-2}

Answer: d

- Watch Video Solution

18. The equilibrium constant K_{p} for the following rection at $191^{\circ} C$ is 1.24 . what is K_{c} ?
$B(s)+\frac{3}{2} F_{2}(g) \Leftrightarrow B F_{3}(g)$
A. 6.7
B. 0.61
C. 8.30
D. 7.6

Answer: d

19. For the equilibrium $S O_{2} C l_{2(g)} \Leftrightarrow S O_{2(g)}+C l_{2(g)}$. What is the temperature at which $\frac{K_{p}(\mathrm{~atm})}{K_{c}(M)}=3$?
A. $0.027 K$
B. 0.36 K
C. 36.54 K
D. 273 K

Answer: c

- Watch Video Solution

20. For the reversible reaction
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ at $500^{\circ} \mathrm{C}$. The value of K_{p} is 1.44×10^{-5}
, when partial pressure is measured in atmosphers. The corresponding value of K_{c} with concentration in $\mathrm{mol} L^{-1}$ is

$$
\text { A. } 1.44 \times 10^{-5} /(0.082 \times 500)^{-2}
$$

B. $1.44 \times 10^{-5} /(8.314 \times 773)^{-2}$
C. $1.44 \times 10^{-5} /(0.082 \times 773)^{2}$
D. $1.44 \times 10^{-5} /(0.082 \times 773)^{-2}$

Answer: d

- Watch Video Solution

21. For the reaction $C O_{(g)}+C l_{2(g)} \Leftrightarrow C O C l_{2(g)}$. $T h e K_{p} / K_{c}$ is equal to
A. $\sqrt{R T}$
B. RT
C. $\frac{1}{R T}$
D. 1.0
22. Why the concentrations of pure liquids and pure solids are ignored from equilibrium constant expressions?
A. density of solid and liquid are independent of their quantities.
B. solids and liquids react slowly.
C. solids and liquids at equilibrium do not interact with gaseous phase.
D. the molecules of solids and liquids cannot migrate to the gaseous phose.

Answer: a

- Watch Video Solution

23. A catalyst
A. increase the equilibrium concentration of the product.
B. change the equilibrium constant of the reaction.
C. shortens the time to rach equilibrium.
D. supplies energy to the reaction.

Answer: c

- Watch Video Solution

24. What is the effect of temperature on a system at equilibrium?
A. Equililbrium constant will remain constant.
B. Equilibrium constant will decrease .
C. Equilibrium constant will increase.
D. Can not be predicted.

Answer: a

25. The equilibrium constant for the reaction $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$ is 4×10^{-4} at 200K. In presence of a catalyste, equilibrium is attaincd ten times faster. Therefore, the equilibrium constant in the presence of the catalyst at 200 K is
A. 40×10^{-4}
B. 4×10^{-4}
C. 4×10^{-3}
D. difficult to compute without more data

Answer: a

- Watch Video Solution

26. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
the equilibrium constant K_{p} changes with
A. total pressure
B. catalyst
C. concentration of H_{2} and I_{2}
D. temperature

Answer: d

- Watch Video Solution

27. For the following three reactions a, b and c equilibrium constant are given
a) $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}, K_{1}$
b) $\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \leftrightarrow \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)}, \mathrm{K}_{2}$
c) $\mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \leftrightarrow \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2(g)}, \mathrm{K}_{3}$

Which of the following relations is correct?
A. $K_{3}=\frac{K_{1}}{K_{2}}$
B. $K_{3}=\frac{K_{1}^{2}}{K_{2}^{2}}$
C. $K_{3}=K_{1} K_{2}$
D. $K_{3}=\sqrt{K_{1}} \cdot K_{2}$

Answer: d

- Watch Video Solution

28. For the reaction $2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{5}(g)$ if the equilibrium constant is K_{p}, then the equilibrium constant for the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ would be :
A. K_{P}^{2}
B. $\frac{2}{K_{P}}$
C. $\frac{1}{K_{p}^{2}}$
D. $\frac{1}{\sqrt{K_{p}}}$

Answer: c

29. The equilibrium constant (K_{c}) for the reaction
$2 \mathrm{HCl}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
is 4×10^{-34} at $25^{\circ} \mathrm{C}$.what is the equilibrium constant for the reaction ?
$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{HCl}(\mathrm{g})$
A. 2×10^{-17}
B. 2.5×10^{33}
C. 5×10^{16}
D. none of these

Answer: d

- Watch Video Solution

30. At a certain temperature , the following reactions have the equilibrium constants as shown below:
$S(s)+O_{2}(g) \Leftrightarrow S O_{2}(g), K_{c}=5 \times 10^{52}$
$2 S(s)+3 O_{2}(g) \Leftrightarrow 2 S O_{3}(g), K_{c}=10^{29}$
what is the equilibrium constant K_{c} for the reaction at tahea same
temperature?
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
A. 2.5×10^{76}
B. 4×10^{23}
C. 4×10^{-77}
D. none of these

Answer: c

- Watch Video Solution

31. Given
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), K_{1}$
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), K_{2}$
$H_{2}(g)+\frac{1}{2} O_{2} \Leftrightarrow H_{2} O(g), K_{3}$
The equilibrium constant for
$2 \mathrm{NH}_{3}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)$
will be
A. $K_{1} K_{2} K_{3}$
B. $\frac{K_{1} K_{2}}{K_{3}}$
c. $\frac{K_{2} K_{3}^{3}}{K_{1}}$
D. $\frac{K_{1} K_{3}^{2}}{K_{3}}$

Answer: d

- Watch Video Solution

32. In the reaction $X_{(g)}+Y_{(g)} \Leftrightarrow 2 Z_{(g)}, 2$ moles of X , I mole of Y and I mole of Z are placed in a 10 lit vessel and allowed to reach equilibrium. If final concentration of Z is 0.2 M , then K_{c}. for the given reaction is
A. 1.60
B. $\frac{80}{3}$
C. $\frac{16}{3}$
D. none of these

Answer: c

- Watch Video Solution

33. An equilibrium mixture for the reaction, $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2}(g)+S_{2}(g)$ has 1 mole of $H_{2} \mathrm{~S}$, 0.2 mole of H_{2} and 0.8 mole of S_{2} in 2 L flask. The value of K_{C} in $\mathrm{mol} L^{-1}$ is
A. 0.0004
B. 0.008
C. 0.016
D. 0.160

Answer: c

34.

$\left[C S_{2}\right]=0.120 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.10,\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.20$ and $\left[\mathrm{CH}_{4}\right]=8.40 \times 10^{-5} \mathrm{M}$ for the following reaction at $900^{\circ} \mathrm{C}$ at eq.Calculate the equilibrium constant $\left(K_{c}\right)$.

$$
C S_{2}(g)+4 H_{2}(g) \rightarrow \mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} S(g)
$$

A. 0.0120
B. 0.0980
C. 0.280
D. 0.120

Answer: c

- Watch Video Solution

35. The equilibrium constant for the following reaction is 10.5 at $500 \mathrm{~K} . \mathrm{A}$
$[\mathrm{CO}]=0.250 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.120 \mathrm{M}$ what is the $\left[\mathrm{CH}_{3} \mathrm{OH}\right]$?
$\mathrm{CO}(g)+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
A. 0.0378
B. 0.435
C. 0.546
D. 0.0499

Answer: a

- Watch Video Solution

36. When sulphur (in the form of S_{8}) is heated at temperature T, at equilibrium , the pressure of S_{8} falls by 30% from 1.0 atm , because $S_{8}(g)$ in partially converted into $S_{2}(g)$.

Find the value of K_{P} for this reaction.
A. 2.96
B. 6.14
C. 204.8
D. none of these

Answer: a

- Watch Video Solution

37.9.2 g of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ is taken in 1 lit vessel and heated. At equilibrium, 50 \% is dissociated . Equilibrium constant (mol/lit) [MW = 92]
A. 0.1
B. 0.4
C. 0.2
D. 2

Answer: c

38. Two moles of NH_{3} when put into a proviously evacuated vessel (one litre) pertially dissociate into N_{2} and H_{2}. If at equilibrium one mole of NH_{3} is present, the equilibrium constant is
A. $3 / 4 \mathrm{~mol}^{2}{ }^{2}$ litre e^{-2}
B. $27 / 64$ mol $^{2}{ }^{2}$ litre ${ }^{-2}$
C. $27 / 32 \mathrm{~mol}^{2} l$ litre e^{-2}
D. $27 / 16 \mathrm{~mol}^{2}{ }^{2}$ litre ${ }^{-2}$

Answer: d

- Watch Video Solution

39. In the presence of excess of anhydrous (in torr) of water taken up is governed by $K_{p}=10^{12} \mathrm{~atm}^{-4}$ for the following reaction at 273 K $\mathrm{SrCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$

What is equilibrium vapour pressure (in torr) of water in a closedvessel that contains $\mathrm{SiCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(s)$?
A. 0.001 torrO
B. 10^{3} torr ${ }^{`}$
C. 0.76 torr
D. $1.31 \rightarrow r r$

Answer: c

- Watch Video Solution

40.

$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CuSO}_{4}, 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}, \mathrm{K}_{p}=4 \times 10^{-4} \mathrm{~atm}^{2}$
. If the vapour pressure of wateris 38 torr then percentage of relative humidity is: (Assume all data at constant temperature)
A. 4
B. 10
C. 40
D. none of these

- Watch Video Solution

41. $N H_{4} H S(s) \Leftrightarrow N H_{3}(g)+H_{2} S(g)$

The equilibrium pressure at $25^{\circ} \mathrm{C}$ is 0.660 atm . What is K_{p} for the reaction?
A. 0.109
B. 0.218
C. 1.89
D. 2.18

Answer: a

42. for the reaction $2 A_{(g)} \Leftrightarrow B_{(g)}+3 C_{(g)}$, at a given temperature, K_{c} $=16$. What must be the volume of the falsk, If a mixture of 2 mole cach A, B and C exist in equilibrium ?
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. none of these

Answer: b

- Watch Video Solution

43. When I mole of pure ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is mixed with 1 mole of acetic acid at $25^{\circ} \mathrm{C}$ with one lit volume, the equilibrium mixture contains $2 / 3$ mole each of ester and water.
$\mathrm{CH}_{2} \mathrm{OH}_{(l)}+\mathrm{CH}_{3} \mathrm{COOH}_{(l)} \leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
The ΔG° for the reaction at 298 K is:
A. $\frac{1}{4}$
B. 2
C. 3
D. 4

Answer: a

- Watch Video Solution

44. $I_{2(a q)}+I_{(a q)}^{-} \Leftrightarrow I_{3(a q)}^{-}$. We started with I mole of I_{2} and 0.5 mole of l^{-}in one litre flask. After equilibrium is reached, excess of $\mathrm{AgNO} \mathrm{O}_{2}$ gave 0.25 mole of yellow precipitate. Equilibrium constant is
A. 1.33
B. 2.66
C. 2.0
D. 3.0

Answer: a

- Watch Video Solution

45. At $87^{\circ} \mathrm{C}$, the following equilibrium is established
$H_{2}(g)+S(s) \Leftrightarrow H_{2} S(g), K_{p}=7 \times 10^{-2}$
If 0.50 mole of hydrogen and 1.0 mole of sulphur are heated to $87^{\circ} \mathrm{C}$ in
1.0 L vessel, what will be the partial pressure of $\mathrm{H}_{2} \mathrm{~S}$ at equilibrium?
A. $0.11 M$
B. $0.022 M$
C. $0.044 M$
D. 0.08 M

Answer: a

46. For the equilibrium $2 \mathrm{SO}_{3}(g) \leftrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$ the partial pressure $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} gases, at 650 K are respectively 0.3 bar ,0.6 bar and 0.4 bar. IF the moles of both the oxides of sulphur are so adjusted as equal, what will be the partial pressure of O_{2}.
A. 0.4 atm
B. 1.0 atm
C. 0.8 atm
D. 0.25 atm

Answer: a

- Watch Video Solution

47. Peqfor $\mathrm{NH}_{4} \mathrm{COONH}_{2(s)} \leftrightarrow 2 \mathrm{NH}_{3(g)}+\mathrm{CO}_{2(g)}$ at certain temperature is 0.9 atm . Then, partial pressure of Ammonia at equilibrium (in atm)
A. 0.128
B. 0.426
C. 4.76×10^{-3}
D. none of these

Answer: c

- Watch Video Solution

48. In the system $A_{(s)} \Leftrightarrow 2 B_{(g)}+3 C_{(g)}$. If the concentration of C at equilibrium is increased by a factor of 2 . It will casuse the equilibrium concentration of B to change to:
A. Two times original value
B. One half of its original value
C. $2 \sqrt{2}$ times to the original value
D. $\frac{1}{2 \sqrt{2}}$ times the original value

- Watch Video Solution

49. For the reaction $A+B \Leftrightarrow C+D$, the concentrations of A and B are equal . The equilibrium concentration of C is twice that of $\mathrm{A} . K_{C}$ of the reaction is
A. $\frac{4}{9}$
B. $\frac{9}{4}$
C. $\frac{1}{9}$
D. 4

Answer: d

50. The equilibrium constant K_{c} for the $S O_{2(g)}+N O_{2(g)} \Leftrightarrow S O_{3(g)}+N O_{(g)}$ reaction is 16 . if 1 mole of each of all the four gases is taken in $l d m^{3}$ vessel, the equilibrium concentration of NO would be
A. $0.4 M$
B. $0.6 M$
C. $1.4 M$
D. 1.6 M

Answer: d

Watch Video Solution

51. Discuss the effect of temperature on the rate of a reaction.
A. always increases
B. always decreases
C. first increases and then decreases
D. may increase or decrease depending upon the nature of the reaction

Answer: a

D Watch Video Solution

52. A: A catalyst increases the rate of a reaction.

R: In presence of a catalyst, the activation energy of the reaction increases.
A. increasing the actvation energy of a reaction
B. increasing the value of rataaaea constant $\left(K_{f}\right.$ and $\left.K_{b}\right)$
C. increasing the enthalpy change of the reaction
D. decreasing the enthalpy change of the reaction
53. At a certain temperature, only $50 \% \mathrm{HI}$ is dissociated at equilibrium in the following reaction:
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
the equilibrium constant for this reaction is:
A. 0.25
B. 1.0
C. 3.0
D. 0.5

Answer: a

- Watch Video Solution

54. The equilibrium constant for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ is 16 at $1000^{\circ} \mathrm{C}$. If 1.0 mole of H_{2}
and 1.0 mole of CO_{2} are placed in one litre flask, the final equilibrium concentration of $C O$ at $1000^{\circ} \mathrm{C}$ is
A. 0.533
B. 0.0534
C. 0.535
D. none of these

Answer: b

- Watch Video Solution

55. A1 273 K and I atm, I Lof $N_{2} O_{4(g)}$ decomposes to $\mathrm{NO}_{2(\mathrm{~g})}$ as given, $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} 2 \mathrm{NO}_{2(\mathrm{~g})}$, At equilibrium . original volume is 25% lessthan the exisiting volume percentage decomposition of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ is thus,
A. 0.25
B. 0.33
C. 0.66

D. 0.5

Answer: b

- Watch Video Solution

56. The equilibrium constant for the reaction
$\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}$ is 5 . How many moles of CO_{2} must be added to I lit container already containing 3 moles of each of CO and $\mathrm{H}_{2} \mathrm{O}$ to make 2M equilibrium concentration of CO ?
A. 15
B. 19
C. 5
D. 20

Answer: b

57. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ for the reaction initially the mole ratio was 1: 3 of $N_{2} . H_{2}$. At equilibrium 50% of each has reacted. If the equilibrium pressure is p , the partial pressure of NH_{3} at equilibrium is
A. 4.5 atm
B. 3.0 atm
C. 2.0atm
D. 1.5 atm

Answer: b

- Watch Video Solution

58. Ammonia under a pressure of 1.5 atm at $27^{\circ} \mathrm{C}$ is heated to $374^{\circ} \mathrm{C}$ in a closed vessel in the presence of a catalyst. Under the conditions, NH_{3} is partially decomposed according to the equation. $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$ the vessel is such that the volume remains etfectively constant where as
pressure increases to 50 atm. Calculate the percentage of NH_{3} actually decomposed
A. 65%
B. 61.3%
C. 62.5%
D. 64%

Answer: b

- Watch Video Solution

59. 0.1 mole of $N_{2} O_{4}(g)$ was sealed in a tube under one atmospheric conditions at $25^{\circ} \mathrm{C}$ Calculate the number of moles of $\mathrm{NO}_{2}(g)$ preesent , if the equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)\left(K_{P}=0.14\right)$ is reached after some time :
A. 1.8×10^{2}
B. 2.8×10^{2}
C. 0.034
D. 2.8×10^{-2}

Answer: c

- Watch Video Solution

60.5 moles of SO_{2} and 5 moles of O_{2} are allowed to react .At equilibrium , it was found that 60% of $S O_{2}$ is used up .If the pressure of the equilibrium mixture is one atmosphere, the partial pressure of O_{2} is :
A. 0.52 atm
B. 0.21 tm
C. 0.41aatm
D. 0.82 atm

Answer: c

61. $\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$ for the reaction initially the mole ratio was 1: 3 of N_{2}. H_{2}. At equilibrium 50% of each has reacted. If the equilibrium pressure is p , the partial pressure of NH_{3} at equilibrium is
A. $\frac{p}{3}$
B. $\frac{P}{4}$
C. $\frac{P}{6}$
D. $\frac{p}{8}$

Answer: a

- Watch Video Solution

62. 2.0 mole of PCl_{5} were nttoducedd in a vessel of 5.0 L capacity of a particular temperature At equilibrium, PCl_{5} was found to be 35% dissociated into PCl_{3} and Cl_{2} the value of K_{c} for the reaction
$P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
A. 1.89
B. 0.377
C. 1.33
D. 13.3

Answer: d

- Watch Video Solution

63. At certain temperature compound $A B_{2}(g)$ dissociates accoring to the reacation
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
With degree of dissociation α Which is small compared with unity, the expression of K_{p} in terms of α and initial pressure P is :
A. $p \frac{\alpha^{3}}{2}$
B. $\frac{P \alpha^{2}}{3}$
C. $P \frac{\alpha^{3}}{3}$
D. $\frac{P \alpha^{2}}{2}$

Answer: a

- Watch Video Solution

64. At a given temperature, Ke is 4 for the reaction $H_{2(g)}+\mathrm{CO}_{2(g)} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)}$. Initially 0.6 moles each of H_{2} and CO_{2} are taken in 1lit flask. The equilibrium concentration of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is
A. $\frac{x^{2}}{(1-x)^{2}}$
B. $\frac{(1-x)^{2}}{(1-x)^{2}}$
C. $\frac{x^{2}}{(2+x)^{2}}$
D. $\frac{x^{2}}{(1-x)^{2}}$

Answer: a

65. If D_{T} and D_{o} are the theoretical and observed vapour densities at a definite temparature and α be the degree of dissocition of a substance ,thenaplha in the terms of D_{o}, D_{T} and n (number of moles of products formed formed from 1 mole reactant) is calculated by the formula :
A. $\alpha=\frac{D_{o}-D_{T}}{(1-n) D_{T}}$
B. $\alpha=\frac{D_{T}-D_{o}}{(n-1) D_{T}}$
C. $\alpha=\frac{D_{T}-D_{o}}{(n-1) D_{o}}$
D. $\alpha=\frac{D-D_{T}}{(n-1) D_{T}}$

Answer: c

- Watch Video Solution

66. For the dissociation of $P C I_{5}$ into $P C I_{3}$ and $C l_{2}$ in gaseous phase reaction, If " d ' is the observed vapour density and ' D ' theoretical vapour density with ' α ' as degree of dissociation. Variation of $\frac{D}{d}$ with ' α ' is given by which graph?
(a)

(b)

B.

C.
D. none of these

Answer: a

Watch Video Solution

67. At $27^{\circ} \mathrm{C}$ and 1 atm pressure, $\mathrm{N}_{2} \mathrm{O}_{4}$ is 20% dissociation into NO 。 What is the density of equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at $27^{\circ} \mathrm{C}$ and 1 atm?
A. $3.11 g /$ litre
B. $2.11 \mathrm{~g} /$ litre
C. $4.5 \mathrm{~g} /$ litre
D. none of these

Answer: a

- Watch Video Solution

68. COCl_{2} gas dissociates according to the equation, $\mathrm{COCl}_{2} \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$. When heated to 700 K the density of the gas mixture at 1.16 atm and at equilibrium is $1.16 \mathrm{~g} /$ litre The degree of dissociation of COCl_{2} at 700 K is :
A. 0.28
B. 0.50
C. 0.72
D. 0.42

Answer: c

D Watch Video Solution

69. The degree of dissociation of I_{2} molecule at $1000^{\circ} \mathrm{C}$ and under 1.0 atm is 40% by volume. If the dissociation is reduced to 20% at the same temperature, the total equilibrium pressure on the gas will be:
A. 1.57 atm
B. 2.57atm
C. 3.57 atm
D. 4.57 atm

Answer: d

70. Determinre the value of equilibrium constant $\left(K_{C}\right)$ for the reaction $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$
if 10 moles of $A_{2}, 15$ moles of B_{2} and 5 moles of AB are placed in a 2 litre vessel and allowed to come to equilibrium . The final concentration of $A B$ is 7.5 M :
A. 4.5
B. 1.5
C. 0.6
D. none of these

Answer: a

- Watch Video Solution

71. At $87^{\circ} \mathrm{C}$, the following equilibrium is established
$H_{2}(g)+S(s) \Leftrightarrow H_{2} S(g), K_{p}=7 \times 10^{-2}$

If 0.50 mole of hydrogen and 1.0 mole of sulphur are heated to $87^{\circ} \mathrm{C}$ in
1.0 L vessel, what will be the partial pressure of $H_{2} S$ at equilibrium?
A. 0.966 atm
B. 1.38 atm
C. 0.0327 atm
D. 1atm

Answer: a

- Watch Video Solution

72. Pure PCl_{5} is introduced into an evacuated chamber and to equilibrium at $247^{\circ} \mathrm{C}$ and 2.0 atm .The equilibrium gases mixure contains 40% chlorine by volume .

Calculate K_{p} at $247^{\circ} \mathrm{C}$ for the reaction
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
A. 0.625 atm
B. $4 a t m$
C. 1.6 atm
D. none of these

Answer: c

- Watch Video Solution

73. For the reaction $\mathrm{SnO}_{2(s)}+2 \mathrm{H}_{2(g)} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{Sn} n_{(d)}$. Calculate K_{p} at 900K, where the equilibrium steam hydrogen mixture was $45 \% H_{2}$ by volume.
A. 1.49
B. 1.22
C. 0.67
D. none of these

Answer: a

74. For the
$\mathrm{XCO}_{3} \Leftrightarrow \mathrm{XO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{p}=1.642 \mathrm{~atm} \quad$ at $727^{\circ} \mathrm{C}$ If 4 moles of XCc was put into a 50 litre container and heated to $727^{\circ} \mathrm{C}$

What mole percent of the XCO_{3} remains unreacted at equilibrium ?
A. 20
B. 25
C. 50
D. none of these

Answer: d

- Watch Video Solution

75. $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ may be converted to Fe by the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ for which $K_{c}=8$ at temp.

$720^{\circ} c$.

What percentage of the H_{2} ramains unreacted after the reaction hascome to equilibrium ?
A. $\sim 22 \%$
B. $\sim 34 \%$
C. $\sim 66 \%$
D. $\sim 78 \%$

Answer: b

D Watch Video Solution

76. $A B_{3}(g)$ is dissociates as $A B_{3}(g) \Leftrightarrow A B_{2}(g)+\frac{1}{2} B_{2}(g)$

When the initial pressure of $A B_{3}$ is 800 torr and the pressure developed at equilibrium is 900 torr, what fraction of $A B(g)^{\text {' }}$ is dissociated?
A. 10%
B. 20%
C. 25%
D. 30%

Answer: c

- Watch Video Solution

77. At 1000 K , a sample of pure NO_{2} gases decomposes as :
$2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
The equilibrium constant K_{P} is 156.25 atm .Analysis showns that the partial pressure of O_{2} is 0.25 atm at equilibrium .The parital pressure of NO_{2} at equilibrium is :
A. 0.01
B. 0.02
C. 0.04
D. none of these

- Watch Video Solution

78. pure nitrosyl chloride (NOCl) gas was heated to $240^{\circ} \mathrm{C}$ in a 1.0 L container .At equilibrium the total pressure was 1.0 atm and the NOCl pressure was 0.64 atm . What would be the value of K_{P} ?
A. 1.02atm
B. $16.875 \times 10^{-3} \mathrm{~atm}$
C. $16 \times 10^{-2} \mathrm{~atm}$
D. none of these

Answer: b

- Watch Video Solution

79. At a certain temperature the equilibrium constant K_{c} is 0.25 for the reaction $A_{2(g)}+B_{2(g)} \leftrightarrow C_{2(g)}+D_{2(g)}$ If we take 1 mole of each of
the four gases in a 10 litre container, what would be equilibrium concentration of $A_{2(g)}$?
A. 0.331 M
B. 0.033 M
C. 0.133 M
D. 1.33 M

Answer: c

- Watch Video Solution

80. At $200^{\circ} \mathrm{CPCl}_{5}$ dissociates as follow, $P C l_{s(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$. It was found that the equilibrium vapour. are 62 times as heavy as hydrogen. The degree of dissociation of PCl_{5} at $200^{\circ} \mathrm{C}$ is nearly.
A. 10%
B. 42%
C. 50%
D. 68%

Answer: d

- Watch Video Solution

81. For the dissociation reaction $N_{2} O_{4}(g) \Leftrightarrow 2 N O_{2}(g)$, the degree of dissociation (α) in terms of K_{p} and total equilibrium pressure P is:
A. $\alpha=\sqrt{\frac{4 P+K_{p}}{K_{P}}}$
B. $\alpha=\sqrt{\frac{K_{P}}{4 P+K_{p}}}$
C. $\alpha=\sqrt{\frac{K_{P}}{4 P}}$
D. none of these

Answer: b
82. Consider the following equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
Then the select the correct graph , which shows the variation in concentratins of $\mathrm{N}_{2} \mathrm{O}_{4}$ Against concentrations of NO :

A.
B.
(b)

C.
(d)

D.
83. The vapour pressure of mercury is 0.002 mm Hg at $27^{\circ} C . K_{c}$ for the process $H g(l) \Leftrightarrow H g(g)$ is :
A. 0.002
B. 8.12×10^{-5}
C. 6.48×10^{-5}
D. 1.068×10^{-7}

Answer: d

- Watch Video Solution

84. Calculate the equilibrium constant $\left(K_{c}\right)$ for the reaction given below, if at equilibrium maxture contains 5.0 mole of $A_{2}, 3$ mole of B_{2} and 2 mole of $A B_{2}$ at 8.21 atm and 300 K
$A_{2}(g)+2 B_{2}(g) \Leftrightarrow 2 A B_{2}(g)+$ Heat
A. 1.333
B. 2.66
C. 20
D. none of these

Answer: b

- Watch Video Solution

85. For the reaction (1)and(2)
$A(g) \Leftrightarrow B(g)+C(g)$
$X(g) \Leftrightarrow 2 y(g)$
Given $, K_{p 1}: K_{p 2}=9: 1$
If the degree of dissocition of $A(g)$ and $X(g)$ be same then the toal pressure at equilibrium
(1) and(2) are in the ratio:
A. $3: 1$
B. $36: 1$
C. 1:1
D. $0.5: 1$

Answer: b

- Watch Video Solution

86. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$. If some HCl gas is passed into the reaction mixture at the equilibrium of this R reaction,
A. more NH_{3} is produced
B. Less $\mathrm{NH}_{3}(\mathrm{~g})$ is produced
C. No affect on the equilibrium
D. K_{p} of the reaction is decreased

Answer: b

87. In which of the following equilibrium ,change in volume of the system does not alter the number of moles:
A. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
B. $P C l_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+C l_{2}(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2} \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Answer: a

- Watch Video Solution

88. For the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g), \Delta H=-93.6 \mathrm{KJmol}^{-1}$
The number of moles of H at equilibrium will increase If :
A. volume is increased
B. volume is decreased
C. argon gas is added at constant volume
D. NH_{3} Is removed

Answer: a

D Watch Video Solution

89. The volume of the reaction vessel containing an equilibrium mixture is increased in the following reaction $S O_{2} \mathrm{Cl}_{2(g)} \Leftrightarrow S O_{2(g)}+C l_{2(g)}$ when equilbrium is re-establised.
A. The amount of $C l_{2}(g)$ remains unchanged
B. the amount of $C l_{2}(g)$ increases
C. The amount of $S O_{\circ} \mathrm{Cl}_{2}(g)$ decreases
D. The amount of $S O$ 。 (g) decrsases
90. Some inert gas is added at constant volume to the following reaction at equilibrium. $\mathrm{NH}_{4} H_{5(s)} \Leftrightarrow N H_{3(g)}+H_{2} S_{(g)}$ predict the effect of adding the inert gas.
A. The equilibrium shifts in the forward dircetion
B. The equilibrium shifts in the backward direction
C. The equilibrium remins unaffected
D. The value of K_{p} is increased

Answer: c

- Watch Video Solution

91. Consider thr reaction where $K_{p}=0.497$ at 500 K
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$

If the three gasses are mixed in a right container so that the partial pressure of each gas in initially 1 atm ,then which is correct observation ?
A. More $P C l_{5}$ will be produced
B. More PCl_{3} will be produced
C. Equilibrium will be eatablished when 50% reaction is complete
D. none of these

Answer: a

- Watch Video Solution

92. The prepation of $\mathrm{SO}_{3}(g)$ by reaction $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)$ is an exothermic reaction .If the preparation follows the following temperature -pressure relationship for \% yield, then for temperatures
T_{1}, T_{2} and T_{3} the correct option is:

A. $T_{3}>T_{2}>T_{1}$
B. $T_{1}>T_{2}>T_{3}$
C. $T_{1}=T_{2}=T_{3}$
D. Nothing could be predicated about temperature though given

- Watch Video Solution

93. In a vessel containing $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} at equilibrium, some helium gas is introduced do that total pressure increase while temperature and volume ramain constant .According to Le Chatelier's principle , the dissociation of NH_{3} :
A. Increases
B. decreases
C. remains unltered
D. changes unpredictably

Answer: c

94. Le - Chatelier principle is not applicable to :
A. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
B. $F e(s)+S(s) \Leftrightarrow F e S(s)$
C. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow N H_{3}(g)$
D. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$

Answer: b

- Watch Video Solution

95. Consider the following reactions .In which case the formation of product is favoured by decreasing pressure?
(1) $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g), \Delta H^{\circ}=+172.5 K j$
(2) $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H^{\circ}=-91.8 K J$
(3) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H^{\circ}=181 K J$
(4) $2 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g), \Delta \mathrm{H}^{\circ}=484.6 \mathrm{KJ}$
A. 2,3
B. 3, 4
C. 2,4
D. 1,4

Answer: d

- Watch Video Solution

96. In which of the following reactions, the formation of product is favoured by decrease in temperature?
(1) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H^{\circ}=181$
(2) $2 \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta H^{\circ}=566$
(3) $H_{2}(g)+I_{2} \Leftrightarrow 2 H I(g), \Delta H^{\circ}=-9.4$
(4) $H_{2}(g)+F_{2}(g) \Leftrightarrow 2 H F(g), \Delta H^{\circ}=-541$
A. A) 1,2
B. B) 2 only
C. C) 1,2,3
D. D) 3,4

Answer: d

- Watch Video Solution

97. For which of the following reactions is product formation favoured by low pressure and high temperature
A. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g), \Delta H^{\circ}=-9.4 K J$
B. $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g), \Delta H^{\circ}=172.5 \mathrm{KJ}$
C. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}, \Delta \mathrm{H}^{\circ}=-21.7 \mathrm{KJ}$
D. 30 _(2)(g)hArr2O_(3)(g), DeltaH ${ }^{\wedge}(@)=285 \mathrm{~K}^{`}$

Answer: b

- Watch Video Solution

98. For which of the following reactions is product formation favoured by low pressure and high temperature
A. $C O_{2}(g)+C(s) \Leftrightarrow 2 C O(g), \Delta H^{\circ}=172 K J$
B. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}, \Delta \mathrm{H}^{\circ}=-21.7 \mathrm{KJ}$
C. $2 O_{3}(g) \Leftrightarrow 3 O_{2}(g), \Delta H^{\circ}=-285 \mathrm{Kj}$
D. $H_{2}(g)+F_{2}(g) \Leftrightarrow 2 H F(g), \Delta H^{\circ}=-541 K j$

Answer: c

- Watch Video Solution

99. Which of the following reactions will get affected by increasing the pressure? Also mention whether chasnge will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
(ii) $C H_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
(iii) $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
(iv) $4 \mathrm{NH}_{3}+(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
A. 2,3
B. 1,4
C. 2,4
D. 2,3,4

Answer: a

- Watch Video Solution

100. If the pressure in a reaction vessel for the following reaction is increased by decreasing the volume ,what will happen to the concentrations of CO and CO_{2} ?

$$
\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Heat}
$$

A. both the [CO$]$ and $\left[\mathrm{CO}_{2}\right]$ will decrease
B. neither the [CO] nor the $\left[\mathrm{CO}_{2}\right.$] will change
C. the [CO] will decrease and the $\left[\mathrm{CO}_{2}\right]$ will increase
D. both the $[\mathrm{CO}]$ and $\left[\mathrm{CO}_{2}\right]$ will increase

Answer: d

- Watch Video Solution

101. Consider the following reaction and determine which of the conditions will shift the equilibrium postion to the right ?
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat
A. Increasing the temperature
B. increasing the pressure
C. adding a catalyst
D. none of above is correct

Answer: d

102. The conversion of ozone into oxygen is exothermic under what conditions is ozone is most stable?
$2 O_{3}(g) \Leftrightarrow 3 O_{2}(g)$
A. At low pressure and low temperature
B. At high pressure and high temperature
C. At high pressure and low temperature
D. At low pressure and high temperature

Answer: b

- Watch Video Solution

103. A System at equilibrium is described by the equation of fixed temperature T .
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

What effect will an increases in the total pressure caused by a decreases in volume have on the equlibrium?
A. Concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ increases
B. Concentrations of $\mathrm{SO}_{2}(\mathrm{~g})$ increases
C. Concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ increases
D. Concentration of all gases increaseses

Answer: d

- Watch Video Solution

104. The concentration of $2 \mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(g)$ is an exothermic equilibrioum. This means that:
A. equilibration of this gas mixture will be slower at high temperature
B. A mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ will occupy twice the volume of a mole of NO_{2} at the same?
C. the equilibrium will move to the right if an equilibrium maxture is cooled
D. the postion of equilibrium will move to the left with increasing gas
pressure

Answer: c

- Watch Video Solution

105. For a physical equilibrium, $H_{2} \mathrm{O}$ (Ice) $\Leftrightarrow H_{2} \mathrm{O}$ (Water) which of the following is the true statement:
A. The pressure changes do not affect the equilibrium
B. More of ice melts if preeure on the system is increased
C. More of liquid freezes if prssure on the system is increased
D. The pressure changes may increase may increase or decrease the

- Watch Video Solution

106. Assertion: A pressure cooker reduces cooking time

Reason: The boiling point of water inside the cooker is increased
A. the higher pressure inside the cooker crushes the food material
B. cooking involes chemical change helped by a rise I teperature
C. heat is more evenly dissributed in the cooking space
D. boiling point of water involed in cooking is increased

Answer: d

- Watch Video Solution

107. In exothermic reaction
(a)

A.
(b)

B.
(c)

C.

D.

Answer: c

- Watch Video Solution

108. In which of the following plots, an endothermic reaction if correctly
(a)

A.
(b)

B.
C.

D.

Answer: b

- Watch Video Solution

109. A schematic plot of $\ln K_{e q}$ versus inverse of temperature for a reaction is shown below

the reaction must be:
A. Exothermic
B. Endothermic
C. One with negligible enthalpy change
D. Highly spontanceous at ordinary temperature

Answer: a

- Watch Video Solution

110. The correct realtionship between free energy change in a reaction and the corresponding equilibrium constant K_{C} is
A. $\Delta G^{\circ}=R T \operatorname{In} K$
B. $\Delta G^{\circ}=-R T \operatorname{In} K$
C. $\Delta G=R T \operatorname{In} K$
D. $\Delta G=-R T \operatorname{In} K$

Answer: b

- Watch Video Solution

111. For the chemical equilibrium,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
$\Delta_{r} H^{\ominus}$ can be determined from which one of the following plots?
(a)

1/T
A.
B.
(b)

C.
(c)

(d)

D.

Answer: a

- Watch Video Solution

112. K_{p} has the value of $10^{-6} \mathrm{~atm}^{3}$ and $10^{-4} \mathrm{~atm}^{3}$ at 298 K and 323 K respectiely for the reaction
$\mathrm{CuSO} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{CuSO}_{4}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta_{r} H^{\circ}$ for the reaction is :
A. $7.7 \mathrm{KJ} / \mathrm{mol}$
B. $-147.41 \mathrm{KJ} / \mathrm{mol}$
C. $147.41 \mathrm{KJ} / \mathrm{mol}$
D. none of these

Answer: c

- Watch Video Solution

113. Van's Hoff's equation shows the effect of temperature on equilibrium constants K_{c} and K_{p}.the K_{P} varies with tempertaure according to the realation:
A. $\log \frac{K_{p 2}}{K_{p 1}}=\frac{\Delta H^{\circ}}{2.303 R}\left(\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right)$
B. $\log \frac{K_{p 2}}{K_{p 1}}=\frac{\Delta H^{\circ}}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
C.
D.

Answer: b

- Watch Video Solution

114. For a reaction, the value of K_{p} increases with increase in temperature
.The Delta H for the reaction would be
A. positive
B. negative
C. zero
D. cannot be prediacted

Answer: A

115. The most stable oxides of nitrogen will be :
A. $2 \mathrm{NO}_{2}(g) \Leftrightarrow N_{2}(g)+2 \mathrm{O}_{2}(g),, K=6.7 \times 10^{16} \mathrm{molL} L^{-1}$
B. $2 N_{2} O_{5}(g) \Leftrightarrow 2 N_{2}(g)+50_{2}(g),, K=1.2 \times 10^{-24} \mathrm{~mol}^{5} L^{-5}$
C. $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g),, K=2.2 \times 10^{30}$
D. $2 N_{2} O(g) \Leftrightarrow 2 N_{2}(g)+O_{2}(g),, K=3.5 \times 10^{33}, m o l L^{-1}$

Answer: A

- Watch Video Solution

116. When I mole of pure ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is mixed with 1 mole of acetic acid at $25^{\circ} \mathrm{C}$ with one lit volume, the equilibrium mixture contains $2 / 3$ mole each of ester and water.
$\mathrm{CH}_{2} \mathrm{OH}_{(l)}+\mathrm{CH}_{3} \mathrm{COOH}_{(l)} \leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$ The ΔG° for the reaction at 298 K is:
A. 3435 J
B. 4 J
C. -3435 J
D. zero

Answer: C

- Watch Video Solution

117. What must be true of value of ΔG° for a reaction if
$K=1$
A. $-R T$
B. -1
C. 0
D. $+R T$

Answer: C

118. A plot of Gibbs energy of a reaction mixture against the extent of the reaction is :
A. minimum at eqilibrium
B. zero at equilibrium
C. miximum at equilibrium
D. None of these

Answer: A

- Watch Video Solution

119.

For
the
reaction
at
300
 the value of equilibrium constant ?
A. 0
B. 1
C. 10
D. None of these

Answer: B

- Watch Video Solution

120. Solid $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ decomposes as
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{~s}) \Leftrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If the total pressure is 0.2 bar at 420 K , what is the standard free energy change for the given reaction $\left(\Delta_{r} G^{\circ}\right)$?
A. $840 \mathrm{~kJ} / \mathrm{mol}$
B. $3.86 \mathrm{~kJ} / \mathrm{mol}$
C. $6.98 \mathrm{~kJ} / \mathrm{mol}$
D. $16.083 \mathrm{~kJ} / \mathrm{mol}$

Answer: D

- Watch Video Solution

121. The standard free energy change of a reaction is $\Delta G^{\circ}=-115 \mathrm{~kJ} / \mathrm{mol}^{-1}$ at 298 K . Calculate the value of $\log _{10} K_{p}$ $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. 20.16
B. 2.303
C. 2.016
D. 13.83

Answer: A

122. The following equilibrium constants were determined at 1120 k :
$2 C O_{(g)} \Leftrightarrow C_{(s)}+C O_{2(g)}, K p_{I}=10^{-14} \mathrm{~atm}^{-1}, \mathrm{CO}_{(g) 0+C l_{2(g)} \Leftrightarrow \mathrm{COCl}_{2(g)},}$,
What is the equilibrium constant Kc for the following reaction at 1120K:

$$
C_{(s)}+C O_{2(g)}+2 C l_{2(g)} \Leftrightarrow 2 C O_{2} C l_{(g)}
$$

A. $3.31 \times 10^{11} M^{-1}$
B. $5.5 \times 10^{10} M^{-1}$
C. $5.51 \times 10^{6} M^{-1}$
D. None of these

Answer: A

- Watch Video Solution

123. One mole of $N_{2}(\mathrm{~g})$ is mixed with 2 moles of $H_{2}(\mathrm{~g})$ in a 4 litre vessel If 50% of $\mathrm{N}_{2}(\mathrm{~g})$ is converted to $\mathrm{NH}_{3}(\mathrm{~g})$ by the following reaction:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$

What will the value of K_{c} for the following equilibrium ?
$N H_{3}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g)$
A. 256
B. 16
C. $\frac{1}{16}$
D. None of these

Answer: C

124.

The gas A_{2} in the left flask allowed to react with gas B_{2} present in right flask as $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g), K_{c}=4$ at $27^{\circ} C$. What is the concentrartion of $A B$ when equilibrium is established ?
A. 1.33 M
B. 2.66 M
C. 0.66 M
D. 0.33 M

Answer: C

125. Assume that the decomposition of HNO_{3} can be represented by the following equation
$4 \mathrm{HNO}_{3(g)} \Leftrightarrow 4 \mathrm{NO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{O}_{2(g)} \quad$ and the reaction approaches equilibrium at 400K temperature and the copper turnning 0 atm pressure. At cquilibrium partial pressure of HNO_{3} is 2 atm . Calculate Kc in $(\text { mole } / L)^{3}$ at 400 K .
A. 4
B. 8
C. 16
D. 32

Answer: D

- Watch Video Solution

126. For the cqiuilibrium $\mathrm{LiCl} 3 \mathrm{NH}_{3(s)} \mathrm{LiCl} \mathrm{NH}_{3(s)}+2 N H_{3(g)}, \mathrm{Kp}=9$ atm 2 at $37^{\circ} \mathrm{C}$. A 5 lires vesel contains 0.1 mole of LiCl NH_{3}. How many moles of NH_{3} should be added to the llask at this temperature to derive the backward reaction for completion ?
A. 0.2
B. 0.59
C. 0.69
D. 0.79

Answer: D

- Watch Video Solution

127. Solid Ammonium carbamate dissociates as:
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$.

In a closed vessel, solid ammonium carbonate is in equilibrium with its dissociation products. At equilibrium, ammonia is added such that the
partial pressure of NH_{3} at new equilibrium now equals the original total pressure. Calculate the ratio of total pressure at new equilibrium to that of original total pressure. Also find the partial pressure of ammonia gas added.
A. 4
B. 9
C. $\frac{4}{9}$
D. $\frac{2}{9}$

Answer: C

- Watch Video Solution

128. For the reaction $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
K_{p} is 5×10^{-2} atm. Calculate the mole per cent of $C_{2} H_{6}(g)$ at equilibruium if pure $C_{2} H_{6}$ at 1 atm is passed over a suitable catalyt at 900K :
A. 20
B. 33.33
C. 66.66
D. None of these

Answer: C

- Watch Video Solution

129. $2 \mathrm{NOBr}(g) \Leftrightarrow 2 N O(g)+\operatorname{Br} 2(g)$. If nitrosyl bromide (NOBr) 40% dissociated at certain temp. and a total pressure of 0.30 atm K_{p} for the reaction $2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \Leftrightarrow 2 \mathrm{NOBr}(g)$ is
A. 45
B. 25
C. 0.022
D. 0.025

- Watch Video Solution

130. Consider the partial decomposition of A as $2 A_{(g)} \Leftrightarrow 2 B_{(g)}+C_{(g)}$ At equilibrium $700 \mathrm{~m} /$ gaseous mixture contains 100 ml of gas C at 10 atm and 300K. What is the value of Kp for the reaction?
A. $\frac{40}{7}$
B. $\frac{1}{28}$
C. $\frac{10}{28}$
D. $\frac{28}{10}$

Answer: C

131. At a certain temperature and 2 atm pressure equilibrium constant $\left(K_{p}\right)$ is 25 for the reaction
$\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$ Initially if we take 2 moles of each of the four gases and 2 moles of inert gas, what would be the equilibrium pparital pressure of NO_{2} ?
A. 1.33 atm
B. 0.1665 atm
C. 0.133 atm
D. None of these

Answer: C

- Watch Video Solution

132. 0.020 g of selenium vapour at equilibrium occupying a volume of 2.463 mL at 1 atm and $27^{\circ} \mathrm{C}$. The selenium is in a state of equilibrium according to reaction
$3 S e_{2}(g) \Leftrightarrow S e_{6}(g)$
What is the degree of association of selenium ?
(At.mass of se $=79$)
A. 0.205
B. 0.315
C. 0.14
D. None of these

Answer: B

- Watch Video Solution

133. Determine the degree of association (polymerisation) for the reaction in aqueous solution . $6 \mathrm{HCHO} \Leftrightarrow C_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. If observed molar mass of HCHO and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is 150 :
A. 0.50
B. 0.833
C. 0.90
D. 0.96

Answer: D

- Watch Video Solution

134. A reaction system in equilibrium according to reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ in one litre vessel at a given temperature was found to be 0.12 mole each of SO_{2} and SO_{3} and 5 mole of $\mathrm{O}_{2} \mathrm{In}$ another vessell of one litre contains 32 g of SO_{2} at the same temperature. What mass of O_{2} must be added to this vessel in order that at equilibrium 20% of SO_{2} is oxidized to SO_{3} ?
A. 0.4125
B. 11.6 g
C. 1.6 g
D. None of these

Answer: B

- Watch Video Solution

135. The equilibrium constant Kp for the reaction $N_{2} O_{4(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)}$ is 4.5. What would be the average molar naSs (in $\mathrm{g} / \mathrm{mol}$) of an eyuilibriunm mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} formed by the dissociation of pure $V_{2} O_{4}$ at a total pressure of 2 atm ?
A. 69
B. 57.5
C. 80.5
D. 85.5

Answer: B

136. A flask containing 0.5 atm pressure of $A_{2}(g$, some solid AB added into flask which undergoes dissociation according to

$$
2 A B(s) \Leftrightarrow A_{2}(g)+B_{2}(g), K_{p}=0.06 \mathrm{~atm}^{2}
$$

The total pressure (in atm) at equilibrium is :
A. 0.70
B. 0.6
C. 0.10
D. None of these

Answer: A

- Watch Video Solution

137. A vessel of 250 litre was filled with 0.01 mole of $S b_{2} S_{3}$ and 0.01 mole of H_{2} to attain the equilibrium at $440^{\circ} \mathrm{C}$ as
$S b_{2} S_{3}(s) 3 H_{2}(g) \Leftrightarrow 2 S b(s)+3 H_{2} D(g)$ After equilibrium, the $H_{2} S$ formed was analysed was analysed by dissloved it in water and treating
with execedd of Pb^{20+} to give 1.19 g of PbS as precipitate. What is the value of K_{c} at $440^{\circ} C$?
A. 1
B. 2
C. 4
D. 8

Answer: A

- Watch Video Solution

138. For the reaction $2 A(g)+B(g) \Leftrightarrow C(g)+D(g), K_{c}=10^{12}$.if initially $4,2,6,2$ moles of A, B, C, D respectively are taken in a 1 litre vessel, then the equilibrium concentration of A is :
A. 4×10^{-4}
B. 2×10^{-4}
C. 10^{-4}
D. 8×10^{-4}

Answer: A

- Watch Video Solution

139. The equilibrium constant for the following reaction in aqueous solution is 0.90 .
$H_{3} \mathrm{BO}_{3}+$ glycerin $\Leftrightarrow\left(\mathrm{H}_{3} \mathrm{BO}_{3}-\right.$ glycerin $)$

How many mole of glycerin should be added per litre of $0.10 \mathrm{MH}_{3} \mathrm{BO}_{3}$ so that 80% of the $\mathrm{H}_{3} \mathrm{BO}_{3}$ is converted to the boric-acid glycerin complex ?
A. 4.44
B. 4.52
C. 3.6
D. 0.08

(D) Watch Video Solution

140. Rate of diffusion of ozonised oxygen is $0.4 \sqrt{5}$ times that of pure oxygen. What is the percent degree of association of oxygen assuming pure O_{2} in the sample initially ?
A. 20
B. 40
C. 60
D. 'None of these

Answer: C

- Watch Video Solution

141. One lit of SO_{3} was placed in a two litre vessels of a certain temperature. The following equilibrium was established in the vessel $2 \mathrm{SO}_{3(g)} \Leftrightarrow 2 \mathrm{SO}_{2(g)}+O_{2(g)}$ the equilibrium mixture reacted with 0.2
mole KMnO , in acidic medium. Kc value is $1.25 x 10^{-x}$ then the value of x is:
A. 0.50
B. 0.25
C. 0.125
D. None of these

Answer: C

- Watch Video Solution

142. At $800^{\circ} C$, the following equilibrium is established as
$F_{2}(g) \Leftrightarrow 2 F(g)$
The cojmpositionof equilibrium may be determinded by measuring the rate of effusion of theh kmixture through a pin hole. It is found that at $800^{\circ} \mathrm{C}$ and 1 atm mixture effuses 1.6 times as fast as SO_{2} effuse under the similar conditions. (At. mass of $\mathrm{F}=19$) what is the value of K_{p} (in atm)
A. 0.315
B. 0.685
C. 0.46
D. 1.49

Answer: D

- Watch Video Solution

143. The equilibrium constant for the ionisation of $\mathrm{RNH}_{2(g)}$ in water as $R \mathrm{RH}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{RNH}_{3(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$is 8×10^{-6} at $25^{\circ} \mathrm{C}$. Find the pH of a solution at equilibrium when pressure of $\mathrm{RNH}_{2(\mathrm{~g})}$ is 0.5 bar.
A. ≈ 12.3
B. ≈ 11.3
C. ≈ 11.45
D. None

- Watch Video Solution

144. The molecularity of a complex reaction given below is :
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
A. 1.0 M
B. 1.5 M
C. $2.166 M$
D. 1.846 M

Answer: D

- Watch Video Solution

145. Two solid compounds X and Y dissociates at a certain temperature as follows
$X(s) \Leftrightarrow A(g)+2 B(g), K_{p 1}=9 \times 10^{-3} a t m^{3}$
$Y(s) \Leftrightarrow 2 B(g)+C(g), K_{p 2}=4.5 \times 10^{-3} \mathrm{~atm}^{3}$
The total pressure of gases over a mixture of X and Y is :
A. 4.5 atm
B. 0.45 atm
C. 0.6 atm
D. None of these

Answer: B

- Watch Video Solution

146. For a gaseous reaction
$a A(g)+b B(g) \Leftrightarrow c C(g)+d D(g)$
equilibrium constants K_{c}, K_{p} and K_{x} are represented by the following reation

$$
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{P c^{c} \cdot P_{D}^{d}}{P_{A}^{a}} \text { and } K x=\frac{x_{C}^{c} \cdot x_{D}^{d}}{x_{A}^{a} \cdot x_{B}^{b}}
$$

where $[A]$ represents molar concentrationof A, p_{A} represents partial pressure of A and P represents total pressure, x_{A} represents mole fraction of A

On the basis of above work-up select the write option
A. $K_{p}=K_{c}(R T)^{\Delta n g}, K_{x}=K_{p}(R T)^{\Delta n g}$
B. $K_{c}=K_{c}(R T)^{\Delta n g}, K_{p}=K_{x} P^{\Delta n g}$
C. $K_{c}=K_{x} P^{\Delta n g}, K_{p}=K_{x} P^{\Delta n g}$
D. $K_{c}=K_{p}(R T)^{-\Delta n g}, K_{x}=K_{p}(R T)^{\Delta n g}$

Answer:

- Watch Video Solution

147. For a gaseous reaction
$a A(g)+b B(g) \Leftrightarrow c C(g)+d D(g)$
equilibrium constants K_{c}, K_{p} and K_{x} are represented by the following reation
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{P c^{c} . P_{D}^{d}}{P_{A}^{a}}$ and $K x=\frac{x_{C}^{c} \cdot x_{D}^{d}}{x_{A}^{a} \cdot x_{B}^{b}}$
where $[A]$ represents molar concentrationof A, p_{A} represents partial pressure of A and P represents total pressure, x_{A} represents mole fraction of A

For the reaction $\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g), K_{p}>K_{x}$ is obtained at :
A. 0.5 atm
B. 0.8 atm
C. 1 atm
D. 2atm

Answer:

- Watch Video Solution

148. For a gaseous reaction

$$
a A(g)+b B(g) \Leftrightarrow c C(g)+d D(g)
$$

equilibrium constants K_{c}, K_{p} and K_{x} are represented by the following reation
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{P c^{c} . P_{D}^{d}}{P_{A}^{a}}$ and $K x=\frac{x_{C}^{c} \cdot x_{D}^{d}}{x_{A}^{a} \cdot x_{B}^{b}}$
where $[A]$ represents molar concentrationof A, p_{A} represents partial pressure of A and P represents total pressure, x_{A} represents mole fraction of For the following equilibrium relation betwen K_{c} and K_{c} (in terms of mole fraction) is
$P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
A. $K_{c}=K_{x}(R T)^{-1}$
B. $K_{c}=K_{x}(R T)$
c. $K_{c}=K_{x}\left(\frac{R T}{P}\right)$
D. $K_{c}=K_{x}\left(\frac{P}{R T}\right)$

Answer:

- Watch Video Solution

149. Variation of equilibrium constan K with temperature is given by van't Hoff equation
$I n K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constans K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
For an isomerization $X(g) \Leftrightarrow Y(g)$ the temperature dependency of equilibrium cohnstant is given by :
$\ln K=2-\frac{1000}{T}$
The value of $\Delta_{r} S^{\circ}$ at 300 K is:
A. 2 R
B. $\frac{2}{R}$
C. 1000 R
D. None of these

Answer:

150. Variation of equilibrium constan K with temperature is given by van't Hoff equation
$I n K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constans K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
Select the correct statement :
A. Value of $K_{e q}$ always increases with increasing temperature
B. For expthermic reaction of value of $K_{e q}$ increases with decreasing
in temperature
C. For endothermic reaction value of $K_{e q}$ increases with decreasihng in temperature
D. For exothermic reactionslope is $(\log K V s .1 / T)$ negative

Answer:

151. $\mathrm{N}_{2} \mathrm{O}_{3}$ is an unstable oxide of nitrogen and it decomposes into NO (g) and $\mathrm{NO}_{2}(\mathrm{~g})$ where $\mathrm{NO}_{2}(\mathrm{~g})$ is further dimerise dimerise into $\mathrm{N}_{2} \mathrm{O}_{4}$ as
$N_{2} O_{3}(g) \Leftrightarrow \mathrm{NO}_{2}(g)+N O(g) \quad, K_{p_{1}=2.5}$ bar
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad: K_{P 2}$
A flask is initially filled with pure $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ having pressure 2 bar and equilibria was established.

At equilibrium partial pressure of $\mathrm{NO}(\mathrm{g})$ was found to be 1.5 ber.
The equilibrium partiaal pressure of $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ is:
A. 0.5 bar
B. 1.0 bar
C. 1.5 bar
D. 0.1 bar

Answer:

152. $\mathrm{N}_{2} \mathrm{O}_{3}$ is an unstable oxide of nitrogen and it decomposes into NO (g) and $\mathrm{NO}_{2}(\mathrm{~g})$ where $\mathrm{NO}_{2}(\mathrm{~g})$ is further dimerise dimerise into $\mathrm{N}_{2} \mathrm{O}_{4}$ as $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \quad, K_{p_{1}=2.5}$ bar
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad: K_{P 2}$
A flask is initially filled with pure $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ having pressure 2 bar and equilibria was established.

At equilibrium partial pressure of $\mathrm{NO}(\mathrm{g})$ was found to be 1.5 ber.
The equilibrium partial presure of $\mathrm{NO}_{2}(\mathrm{~g})$ is:
A. 6.6 bar
B. 3.3bar
C. 4.23 bar
D. 8.3 bar

Answer:

153. $\mathrm{N}_{2} \mathrm{O}_{3}$ is an unstable oxide of nitrogen and it decomposes into $\mathrm{NO}(\mathrm{g})$ and $\mathrm{NO}_{2}(\mathrm{~g})$ where $\mathrm{NO}_{2}(\mathrm{~g})$ is further dimerise dimerise into $\mathrm{N}_{2} \mathrm{O}_{4}$ as
$N_{2} O_{3}(g) \Leftrightarrow \mathrm{NO}_{2}(g)+N O(g) \quad, K_{p_{1}=2.5}$ bar
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad: K_{P 2}$
A flask is initially filled with pure $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ having pressure 2 bar and equilibria was established.

At equilibrium partial pressure of $\mathrm{NO}(\mathrm{g})$ was found to be 1.5 bar.
The value of $K_{P 2}$ is
A. $0.16 \mathrm{bar}^{-1}$
B. $0.32 \mathrm{bar}^{-1}$
C. $0.48 \mathrm{bar}^{-1}$
D. $0.64 \mathrm{bar}^{-1}$

Answer:

- Watch Video Solution

154. If a system at equilibrium is subjected to a change of any one of the factors such as concentration, pressure or temperature, the system adjusts itself in such a way so as to minimise the effect of that change. Effect of change in concentration on equilibrium:

As we add or remove reactant (or product) the ratio of equilibrium concentratio become ' Q ' (reaction quotient) and depending upon.
$Q<K$: equilibrium will shift ihn forward direction
$Q>K$ equilibrium will shift in backward direction
Effect of change in pressure :
If a system in equilibrium consists of gases, then the concentrations of all the components can be altered by changing the pressure. When the pressure on the system is increased, then equilibrium will shift in the direction in which there is decrease in number of moles i.e., towards the direction in which there is decrease in volume.

Effect of change in pressure on melting point : There are two rypes of solids:

Solids whose volume decreases on melting, e.g., ice, diamond, carborundum, magnesium nitride and quartz.

Solid (higher volume) \Leftrightarrow Liquid (higher volume)
The process of melting is facillitated at high pressure, thus melting point is lowered.

Solid whose volume increase on melting, e.g., $\mathrm{Fe}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$, etc.
Solid (lower volume) \Leftrightarrow Liquid (higher volume)
In this case the process of melring becomes difficult at high pressure, thuse melting point becomes high.

Solubility of substances : When solid substance are dissolved in water, either heat is evolved.
for endothermic solubility process solubility increase with increase in temperature. For exothemic solubility decrease with increase in temperature.

Solubility of gases in liquids : when a gas dissolves in liquid, there is decreases in voolume. Thus increase of pressure will faavour the dissolution of gas in liquid.

Effect of temperature : For endotherimic reacrtion as temperature increases reaction shift in backward direction
$A^{\prime} X^{\prime}(\mathrm{g})$ solute when dissolved in water heat is evolved. Then solubility of' X ' will increase :
A. high temperature, low pressure
B. low temperature, high pressure
C. high temperature, high pressure
D. low temperature, low pressure

Answer:

D Watch Video Solution

155. If a system at equilibrium is subjected to a change of any one of the factors such as concentration, pressure or temperature, the system adjusts itself in such a way so as to minimise the effect of that change.

Effect of change in concentration on equilibrium:
As we add or remove reactant (or product) the ratio of equilibrium concentratio become 'Q' (reaction quotient) and depending upon.
$Q<K$: equilibrium will shift inn forward direction
$Q>K$ equilibrium will shift in backward direction
Effect of change in pressure :

If a system in equilibrium consists of gases, then the concentrations of all the components can be altered by changing the pressure. When the pressure on the system is increased, then equilibrium will shift in the direction in which there is decrease in number of moles i.e., towards the direction in which there is decrease in volume.

Effect of change in pressure on melting point : There are two rypes of solids:

Solids whose volume decreases on melting, e.g., ice, diamond, carborundum, magnesium nitride and quartz.

Solid (higher volume) \Leftrightarrow Liquid (higher volume)
The process of melting is facillitated at high pressure, thus melting point is lowered.

Solid whose volume increase on melting, e.g., $\mathrm{Fe}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$, etc.
Solid (lower volume) \Leftrightarrow Liquid (higher volume)
In this case the process of melring becomes difficult at high pressure, thuse melting point becomes high.

Solubility of substances : When solid substance are dissolved in water, either heat is evolved.
for endothermic solubility process solubility increase with increase in
temperature. For exothemic solubility decrease with increase in temperature.

Solubility of gases in liquids : when a gas dissolves in liquid, there is decreases in voolume. Thus increase of pressure will faavour the dissolution of gas in liquid.

Effect of temperature : For endotherimic reacrtion as temperature increases reaction shift in backward direction

$$
F e(l) \Leftrightarrow F e(s)
$$

Above equilibrium is favaured at :
A. high pressure, low temperature
B. high pressure, high temperature
C. low pressure, high temperature
D. low pressure, low temperature

Answer:

156. What is the effect of pressure on gaseous chemical equilibrium?
A. total pressure at equilibrium will remain same
B. concentration of all the component at equilibrium will change
C. concentration of all the component at equilibrium will ramin same
D. equilibrium will shift in the beckward direction

Answer:

- Watch Video Solution

157. A catalyst
A. increase the average kinetic energy of reactiong molecules
B. decreases the activation energy
C. can alters the reaction mechanism
D. Can change pre-exponential factor

Answer:

D Watch Video Solution

158. Which of the following is correct about the chemical equilibrium ?
A. $(\Delta G)_{T, p}=0$
B. Equilibrium constant is independent of initial concentration of reactants
C. Catalyst has no effect on equilibrium state
D. Reaction stops at equilibrium

Answer:

- Watch Video Solution

159. For the reaction $A B_{2(g)} \Leftrightarrow A B_{(g)}+B_{(g)}$ if α is negligiable w.rt 1 then degree of dissociation (α) of $A B_{2}$ is proportional to
A. $\frac{1}{P}$
B. $\frac{1}{V}$
C. $\frac{1}{\sqrt{P}}$
D. \sqrt{V}

Answer:

- Watch Video Solution

160. Consider the reaction given below. In which cases will the reaction proceed toward right by increasing the pressure ?
A. $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B. $\mathrm{Cl}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{HCl}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
C. $\mathrm{CO}_{2}(g)+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
161. Ammonia is a weak base that reacts with water according to the equation
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$
Select the correct option (s) that can increase the moles of ammonium ion in water:
A. Addition of HCl
B. Addition of NaOH
C. Additon of $\mathrm{NH}_{4} \mathrm{Cl}$
D. Addition of $\mathrm{H}_{2} \mathrm{O}$

Answer:

- Watch Video Solution

162. Consider the reaction $2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{CO}_{2}(g)+$ Heat Under what conditions shift is undeterminable ?
A. Addition of O_{2} and decrease in volume
B. Addition of CO and removal of CO_{2} at constant volume
C. Increase in temperature and decrease in volume
D. Addition of CO and increase in temperature at constant volume

Answer:

- Watch Video Solution

163. What will be the effect of addition of catalyst at constant temperature ?
A. The equilibrium constant will remain constant
B. ΔH of the reaction will remain constant
C. K_{f} and K_{b} wil increase upto same extent
D. equilibrium composition will change

Answer:

- Watch Video Solution

164. For the reaction $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$ the forward reaction at constant temperature is favoured by
A. introducing an inert gas at constant volume
B. introducing chlorine gas at constant volume
C. introducing an inert gas at constant pressure
D. increasing the volume of the container

Answer:

- Watch Video Solution

165. Exothermic formation represented by equation

$$
C l_{2(g)}+3 F_{2(g)} \Leftrightarrow 2 C l F_{3}(g) . \Delta \mathrm{H}=-339 \mathrm{KJ} . \text { Which of the following will }
$$ increase the quantity of CIF_{3} in equilibrium mixture?

A. increasing the temperature
B. increasing the volume of the container
C. adding of F_{2} gas
D. adding of inert gas at constant pressure

Answer:

- Watch Video Solution

166. For the following equilibrium, $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(g)$ the increase in the pressure causes
A. formation of more $\mathrm{H}_{2} \mathrm{O}$
(I)
B. formation of more $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. increase in b.p of $\mathrm{H}_{2} \mathrm{O}(l)$
D. decrease in b.p. of $\mathrm{H}_{2} \mathrm{O}(l)$

Answer:

- Watch Video Solution

167. Heating a II group metal cabonate leads to decomposition on $\mathrm{BaCO}_{3(s)} \Leftrightarrow B a O_{(s)}+C O_{2(g)}$, equilibrium will shift left
A. by addition of BaO (s)
B. by addition of $\mathrm{CO}_{2}(\mathrm{~g})$
C. by decreasing the temperature
D. by decreasing the volume of the vessel

Answer:

168. $N_{2}(g)$ and $H_{2}(g)$ are allowed to react in a closed vessel at given temp. and pressure for the formation of $\mathrm{NH}_{3}(\mathrm{~g}),\left[\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+22.4 \mathrm{kcal}\right]$ If $\mathrm{He}(\mathrm{g})$ is added at equilibrium at constant pressure than which is/are correct ?
A. Concentration of $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{NH}_{3}(\mathrm{~g})$ decrease.
B. Moles of $\mathrm{NH}_{3}(\mathrm{~g})$ decreases.
C. The extent of cooling depends on amount of he (g) added.
D. Concentration of N_{2} and H_{2} increases and concentration of NH_{3} decreases.

Answer:

- Watch Video Solution

169. Column-I and Column-II contains four enteries each. Entries of

Column-I are to be matched with, some entries of Column-II One or more than one entries of Column-I may have the mathching with the same

entries of Column-II

Column-I
(A) $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(B) $\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{COCl}_{2}(g)$
(C) $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$
(D) $\mathrm{HCl}(g) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
Column-II
(P) $K_{p}>K_{c}$ above room temperature
(Q) $K_{p}=K_{c}$ above room temperature
(R) $K_{p}<K_{c}$ above room temperature
(S) K_{p} and K_{c} not defined

- Watch Video Solution

170.

Match
the
following
columns

Column-I
(A) $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$
(B) $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
(C) $2 \mathrm{HF}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{F}_{2}(g)$
(D) $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Column-II

[^0]Watch Video Solution

Column-I

(A) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta H=-\mathrm{ve}$
(B) $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g) ; \Delta H=+\mathrm{ve}$
(C) $A(g)+B(g) \rightleftharpoons 2 C(g)+D(g) ; \Delta H=+\mathrm{ve}$
(D) $\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; \Delta H=+\mathrm{ve}$

Column-II

(P) K increases with increase in temperature
(Q) K decreases with increase in temperature
(R) Pressure has no effect
(S) Moles of product increase due to addition of inert gas at constant pressure

(B) $\frac{K_{10+T^{\circ} \mathrm{C}}}{K_{T \cdot \mathrm{C}}}=\frac{1}{2}$
(C) $A(g)+B(g) \rightleftharpoons C(g)$
(D) $X(s)+Y(g) \rightleftharpoons Z(g)$

Column-II
(P) Endothermic
(Q) Not affected by pressure
(R) Exothermic
(S) Affected by volume

Column-I

(A) Pressure increased in $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(B) Pressure increased in
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
(C) Temp. increased and pressure increased $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$; $\Delta H=285 \mathrm{~kJ}$
(D) Pressure decreased and moles of N_{2} increased
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) ;$ $\Delta H=66.4 \mathrm{~kJ}$

Column-II

(P) Equilibrium shifted in forward direction
(Q) Equilibrium shifted in backward direction
(R) Equilibrium remains unaffected
(S) Theoretically we cannot predict

- Watch Video Solution

174. Assertion (A): The endothermic reactions are favoured at lower temperature and the exothermic reactions are favoured at higher temperature.

Reason (R) : when a system in equilibrium is disturbed by changing the temperature, it will tend to adjust itself so as to overcome the effect of the change.
A. If both the statements are TRUE and STATEMENT-2 is the correct
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

175. (A) : The melting point of ice decreases with increase of pressure.
(R) : Ice contracts on melting.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE

Answer: A

- Watch Video Solution

176. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The equilibrium of $A(g) \Leftrightarrow B(g)+c(g)$ is not affected by changing the volume.

STATEMENT-2: K_{c} for the reaction does not depend on volume of the container.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

177. If the rate for the chemical reaction is expresssed at Rate $=K[A][B] "$ then
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE
178. For the reaction $A(g) \rightarrow B(g)+C(g)$, write the intergrated rate equation in terms of total pressure ' P ' and the partial pressures $P_{A} P_{B} P_{C}$.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

179. Under certain conditions, the equilibrium constant for the decomposition of $\mathrm{PCl}_{5}(\mathrm{~g})$ into $\mathrm{PCl}_{3}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ is $0.0211 \mathrm{~mol} L^{-1}$.

What are the equilibrium concentrations of $P C l_{5}, \mathrm{PCl}_{3} d$ and $C l_{2}$ if the initial concentration of PCl_{5} was 1.00 M ?
A. If both the statements are TRUE and STATEMENT- 2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

180. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: For a reaction at equilibrium, the Gibb's free energy of reaction is minimum at constant temp. and pressure.

STATEMENT-2: The Gibb's free energy of both reactants and products increases and become equal at equilibrium.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

181. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The physical equilibrium is not static but dynamic in nature.

STATEMENT-2: The pysical equilibrium is a state in which two opposing process are proceeding at the same rate.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

182. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: Equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.

STATEMENT-2: Equilibrium constant depends upon the way in which the reaction is written.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

183. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: If $Q_{p}<K_{p}$ reaction moves in direction of reactants.

STATEMENT-2: Reaction quotient is defined in the same way as equilibrium constant at any stage of the reaction.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

D Watch Video Solution

184. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ if the volume of vessel is reduced to half of its original volume, equilibrium concentration of all gases will be doubled.

STATEMENT-2: According to Le- Chatelier's principle, reaction shifts in a direction that tends to minimized the effect of the stess.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

185. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The equilibrium constant of the exothermic reaction at high temperature decreases.

STATEMENT-2: since $\ln \frac{K_{2}}{K_{1}}=\frac{\Delta H^{\circ}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$ and for exothermic reaction,
$\Delta H^{\circ}=$-ve and thereby, $\frac{K_{2}}{K_{1}}<1$
A. If both the statements are TRUE and STATEMENT-2 is the correct
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

186. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: For the reaction at certainn temperature
$A(g)+B(g) \Leftrightarrow C(g)$
there will be no effect by addition of inert gas at constant volume.

STATEMENT-2: Molar concentration of all gases remains constant.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

187. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: For the physical equilibrium $\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(l)$ on increasing temperature and increasing pressure more water will form.

STATMENT-2: Since forward reaction is endothermic in nature and voume of water is greater than that of the volume of ice.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

188. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The catalyst does not alter the equilibrium constant.
STATEMENT-2: Because for the catalysed reaction and uncatalysed reaction ΔH reamains same and equilibrium constant depends of ΔH.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

189. In the reaction, $C_{(s)}+C O_{2(g)} \leftrightarrow 2 C O_{(g)}$ the equilibrium pressure is 12 atm . If 50% of CO_{2} reacts, calculate K_{P}. If $K_{P}=y^{2}$ then what is 'y"?
190. Calculate partial pressure of B at equilibrium in the following equilibrium
$A(s) \Leftrightarrow B(g)+2 C(g), \quad K_{P}=32 a t m^{3}$.

- Watch Video Solution

191. In a gaseous reaction $A+2 B \Leftrightarrow 2 C+D$ the initial concentration of B was 1.5 times that of A. At equilibrium the concentration of A and D were equal. Calculate the equilibrium constant K_{C}.

- Watch Video Solution

192. For the reaction $A(g) \Leftrightarrow B(g), K_{C}=10$
$B(g) \Leftrightarrow C(g), K_{C}=2$
$C(g) \Leftrightarrow D(g), K_{C}=0.01$
Calculate K_{C} for the reaction $D(g) \Leftrightarrow A(g)$.

(D) Watch Video Solution

193. 5 litre vessel contains 2 moles of each of gases A and B at equilibrium. If 1 mole each of A and B are removed. Calculate K_{C} for the reaction $A(g) \Leftrightarrow B(g)$

- Watch Video Solution

194. Calculate K_{P} for the reaction $A(g) \Leftrightarrow B(s)+2 C(g), K_{C}=0.2$ at 305 K.

- Watch Video Solution

195. A mixture of 3 moles of $\mathrm{SO}_{2}, 4$ moles of $\mathrm{NO}_{2}, 1$ mole of SO_{3} and 4 moles of NO is placed in a 2.0 L vessel. $S_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)+\mathrm{NO}(g)$.

At equilibrium, the vessel is found to contain 1 mole of SO_{2}. Calculate the value of K_{C}.

(D) Watch Video Solution

196. The density of an equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 1 atm and 373.5 K is $2.0 \mathrm{~g} / \mathrm{L}$.

Calculate K_{C} for the reaction $N_{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

- Watch Video Solution

197. In aa chemical reaction equilibrium is established when :

- Watch Video Solution

198. Calculate the equilibrium concentration ratio of C to A if equimolar ratio of A and B were allowed to come to equilibrium at 300 K .

$$
A(g)+B(g) \Leftrightarrow C(g)+D(g), \Delta G^{\circ}=-830 \mathrm{cal} .
$$

- Watch Video Solution

199. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm, pressure . Ammonium hydrogen sulphide decomposes to yield NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask. When the decomposition reaction reaches equilibrium the total pressure in the flask rises to 0.84 atm . The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is

- Watch Video Solution

200. The gaseous reaction : $A(g)+n B(g) \Leftrightarrow m C(g)$ is represented by following curves

What is the value of $n+m$?

- Watch Video Solution

Level 1 Q 93 To Q 122

1. An equilibrium mixture at 700 K of $0.05 \mathrm{M} N_{2}(g)$ and $0.2 M N H_{3}(g)$ is present in a container .Now if this equilibrium is disturbed by adding N 。 (g) so that its concentration becomes 0.15 M just after addition then which of the following graph represents the above situation more appropriately:
A.
(a)

B.

C.

D.

Answer: a

- Watch Video Solution

Level 2

1. Calculate $\Delta_{r} G$ for the reaction at $27^{\circ} C$
$H_{2}(g)+2 A g^{+}(a q) \Leftrightarrow 2 A g(s)+2 H^{+}(a q)$

Given : $P_{H 2}=0.5$ bar, $\left[\mathrm{Ag}^{+}\right]=10^{-5} \mathrm{M}$,

$$
\left[H^{+}\right]=10^{-3} M, \Delta_{r} G^{\circ}\left[A g^{+}(a q)\right]=77.1 \mathrm{~kJ} / \mathrm{mol}
$$

A. $-154.2 \mathrm{~kJ} / \mathrm{mol}$
B. $-178.9 \mathrm{~kJ} / \mathrm{mol}$
C. $-129.5 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: C

- Watch Video Solution

Others

1. Variation of equilibrium constan K with temperature is given by van't Hoff equation
$I n K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constans K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
Variation of $\log _{10} \mathrm{~K}$ with $\frac{1}{T}$ is shown by the following graph in which straight line is at 45° hence ΔH° is :
A. $-4.606 \mathrm{~kJ} / \mathrm{mol}$
B. $-19.147 \mathrm{~kJ} / \mathrm{mol}$
C. $-8.314 \mathrm{~kJ} / \mathrm{mol}$
D. $-10 \mathrm{~kJ} / \mathrm{mol}$

Answer:

- Watch Video Solution

2. Variation of equilibrium constan K with temperature is given by van't Hoff equation
$I n K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constans K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$ Theequilibriumcons $\tan t \mathrm{~K}_{-}(\mathrm{p})$
f or thefollow \in greactionis1at27^(@)C and 4at47^(@)C.
$\mathrm{A}(\mathrm{g}) \mathrm{h} \operatorname{ArrB}(\mathrm{g})+\mathrm{C}(\mathrm{g}) F$ or thereactioncalcateenthalpychan $\geq f$ or the $\mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g}) \mathrm{h} A r r A(\mathrm{~g})(\text { Given : } \mathrm{R}=2 \mathrm{cal} / / \mathrm{mol}-\mathrm{K})^{\prime}$

A. $-13.31 \mathrm{Kcal} / \mathrm{mol}$
B. $13.31 \mathrm{Kcal} / \mathrm{mol}$
C. $-19.2 \mathrm{Kcal} / \mathrm{mol}$
D. $-55.63 \mathrm{Kcal} / \mathrm{mol}$

Answer:

[^0]: (P) no unit
 (Q) $\mathrm{atm}^{-1 / 2}$
 (R) atm^{-1}
 (S) atm^{-2}

