©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NARENDRA AWASTHI

IONIC EEQUILIBRIUM

Exercise

1. Morphine $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}\right)$, which is used medically to relieve to pain is a base. What is its conjugate acid?
A. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}^{+}$
B. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}$
C. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}^{-}$
D. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}^{+}$
2. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is
A. $H_{3} P O_{4}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
c. HPO_{4}^{2-}
D. PO_{4}^{3-}

Answer:

- Watch Video Solution

3. The strongest Bronsted base in the following anion is:
A. $C N^{-}$
B. Cl^{-}
C. I^{-}
D. Br^{-}

Answer:

- Watch Video Solution

4. What salt can furnish H^{+}in its aqueous solution?
A. $\mathrm{NaH}_{2} \mathrm{PO}_{2}$
B. $\mathrm{Na}_{2} \mathrm{HPO}_{3}$
C. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
D. All of these

Answer:

- Watch Video Solution

5. Which is the set of amphiprotic species?
A. $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{HPO}_{4}^{2-}, \mathrm{HCO}_{3}^{-}$
B. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HPO}_{3}^{2-}, \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
C. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{3}^{-}, \mathrm{H}_{2} \mathrm{O}$
D. All of these

Answer:

- Watch Video Solution

6. The K_{a} values for HPO_{4}^{2-} and HSO_{3}^{-}are 4.8×10^{-13} and 6.3×10^{8} repectively. Therefore, it follows the HPO_{4}^{2-} is ... acid than HSO_{3}^{-}and PO_{4}^{3-} is a base than SO_{3}^{2-}
A. weaker, stronger
B. stronger, weaker
C. weaker, weaker
D. stronger, stronger

Answer:

- Watch Video Solution

7. Given the following K_{a} values, determine which species is the strongest base?

$$
\mathrm{HSO}_{4}^{-}=1.2 \times 10^{-2}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}=6.3 \times 10^{-8}, \mathrm{HCO}_{3}^{-}=4.7 \times 10^{-11}
$$

A. CO_{3}^{2-}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. SO_{4}^{2-}
D. HPO_{4}^{2-}

Answer:

8. Given that K_{w} for water is $10^{-13} M^{2}$ at $62^{\circ} \mathrm{C}$, compute the sum of pOH and pH for a neutral aqueous solution at $62^{\circ} \mathrm{C}$:
A. 7.0
B. 13.30
C. 14.0
D. 13.0

Answer:

- Watch Video Solution

9. The value of the ion product constant for water, $\left(K_{w}\right)$ at $60^{\circ} \mathrm{C}$ is $9.6 \times 10^{-14} \mathrm{M}^{2}$ what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a neutral aqueous solutoin at $60^{\circ} \mathrm{C}$ and an aqueous solution with a $\mathrm{pH}=7.0$ at $60^{\circ} \mathrm{C}$ are respectively?
A. 3.1×10^{-8} acidic
B. 3.1×10^{-7}, neutral
C. 3.1×10^{-8}, basic
D. 3.1×10^{-7}, basic

Answer:

- Watch Video Solution

10. For pure water:
A. pH increases while pOH decreases with rise in temperature
B. pH decreases while pOH increases with rise in temperature
C. both pH and pOH decreases with rise in temperature
D. both pH and pOH increases with rise in temperature

Answer:

11. A beer has a pH of 4.30. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
A. 3.0×10^{-4}
B. 2.0×10^{-4}
C. 2.0×10^{5}
D. 5.0×10^{-5}

Answer:

- Watch Video Solution

12. The hydrogen ion concentration of the oceans is about $2 \times 10^{-9} \mathrm{M}$.

What is the pH ?
A. 8.85
B. 9.3
C. 7.85
D. 8.7

Answer:

D Watch Video Solution

13. The hydroxide ion concentration of a wine is $8 \times 10^{-11} \mathrm{M}$. What is the pH of the wine?
A. 2.10
B. 2.9
C. 3.9
D. 4.9

Answer:

D Watch Video Solution

14. The pH of a solution is 5 . to this solution acid was added so that its pH value bcomes 2.0. The increase in H^{+}concentration is :
A. 100 times
B. 5 times
C. 2.5 times
D. 1000 times

Answer:

- Watch Video Solution

15. A solution has a $\mathrm{pH}=9$. It is 1000 times more basic than the original solution. What was the pH of the original solution?
A. 12
B. 6
C. 9
D. 10

Answer:

16. Equal volumes of two HCl solutions of $\mathrm{pH}=3$ and $\mathrm{pH}=5$ were mixed. What is the $p H$ of the resulting solution?
A. 3.5
B. 4.0
C. 4.5
D. 3.3

Answer:

- Watch Video Solution

17. pOH of $0.002 \mathrm{MHNO}_{3}$ is :
A. $11+\log 2$
B. $11-\log 2$
C. $-3+\log 2$
D. None of these

Answer:

- Watch Video Solution

18. Number of equivalents of HCl present in 100 mL of its solution whose pH is 4:
A. 10^{-4}
B. 10^{-3}
C. 10^{-2}
D. 10^{-5}

Answer:

19. To a 10 mL of $10^{-3} \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution water has been to make the total volume of one litre. Its pOH would be :
A. 3
B. 12
C. 9
D. 5

Answer:

- Watch Video Solution

20. The pH of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 1 . Assuming complete ionisation, find the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution :
A. 0.1
B. 0.2
C. 0.05

Answer:

- Watch Video Solution

21. pH of a strong diprotic acid $\left(H_{2} A\right)$ at concentrations:
(i) $10^{-4} \mathrm{M}$, (ii) $10^{-4} \mathrm{~N}$
are respectively:
A. 3.7 and 4.0
B. 4 and 3.7
C. 4 and 4
D. 3.7 and 3.7

Answer:

- Watch Video Solution

22. Calcium hydroxide is a strong base. Compute $\left[\mathrm{Ca}^{2+}\right]$ and $\left[\mathrm{OH}^{-}\right]$ "for" a solution that is prepared by dissolving 0.60 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ in enough water to make a 1500 mL of solution.
[Atomic mass : $C a=40, O=16, H=1$]
A. $5.4 \times 10^{-3}, 9.1 \times 10^{-13}$
B. $5.4 \times 10^{-3}, 1.08 \times 10^{-2}$
C. $5.4 \times 10^{-3}, 5.4 \times 10^{-3}$
D. $8.1 \times 10^{-3}, 8.1 \times 10^{-3}$

Answer:

- Watch Video Solution

23. pH of $10^{-6} \mathrm{M} \mathrm{HCl}$ (aq.) is :
A. just less then 6
B. exactly equal to 6
C. just greater than 6
D. just less than 7

Answer:

- Watch Video Solution

24. $10^{-5} \mathrm{MHCI}$ solution at $25^{\circ} \mathrm{C}$ is dilluted 1000 times. The pH of the diluted solution will
A. be equal to 8
B. lie between 7 and 8
C. lie between 6 and 7
D. remain unchanged

Answer:

25. 4.0 g of NaOH and 4.9 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are dissolved in water and volume is made upto 250 mL .

The pH of this solution is:
A. 7.0
B. 1.0
C. 2.0
D. 12.0

Answer:

- Watch Video Solution

26. A 25.0 ml sample of 0.1 M HCl is titrated with 0.1 M NaOH . What is the pH of the solution at the points where 24.9 and 25.1 ml of NaOH have been added?
A. $3.70,10.70$
B. $3.30,10.30$
C. $3.70,10.30$
D. 3.0, 11.0

Answer:

- Watch Video Solution

27. What is the pH of solution in which 25.0 mL of 0.1 M NaOH is added to 25 mL of 0.08 M HCl and final solution is diluted to 500 mL ?
A. 3
B. 11
C. 12
D. 13

Answer:

28. What is the pH of a solution in which 10.0 mL of $0.010 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{-}$(2) is added to 10.0 mL of 0.010 M HCl ?
A. 2.30
B. 1.50
C. 11.70
D. 7.00

Answer:

- Watch Video Solution

29. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}^{+}\right]=10^{-6} \mathrm{M} .1 \mathrm{f} 100 \mathrm{~mL}$ of 0.2 M HCl is added to 200 mL of 0.1 M KOH at $90^{\circ} \mathrm{C}$ then pH of the resulting solution will be :
A. 5
B. 6
C. 7
D. None of these

Answer:

- Watch Video Solution

30. What change will occur for the following reaction if the hypochlorous acid solution is diluted from 0.1 to 0.01 M ?
$\mathrm{HOCl}($ aq. $)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{OCl}^{-}($aq. $)+\mathrm{H}_{3} \mathrm{O}+($ aq. $)$
A. a decrease in the fraction of acid ionized
B. an increase in the fraction of acid ionized
C. no change in the fraction of acid ionized
D. we can not predict

Answer:

31. Given K_{a} values of 5.76×10^{-10} and 4.8×10^{-10} for NH_{4}^{+}and HCN respectively. What is the equilibrium constant for the following reaction?
$N H_{4}^{+}(a q)+.C N^{-}(a q.) \Leftrightarrow N H_{3}(a q)+.H C N(a q$.
A. 0.83
B. 1.2
C. 8.0×10^{-11}
D. 27.6×10^{-10}

Answer:

- Watch Video Solution

32. Which is the strongest acid ($p K_{a}$ value is given)?
A. $\mathrm{HCOOH}[3.77]$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}[4.22]$
C. $\mathrm{CH}_{3} \mathrm{COOH}[4.7]$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}[4.88]$

Answer:

- Watch Video Solution

33. Given : Enthalpy of ioinization of two acids :
$\triangle H^{\circ}(H C N)=45.2 \mathrm{~K} \mathrm{Jmol}^{-}$
$\triangle H^{\circ}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=2.1 \mathrm{KJmol}^{-}$
which relationshop for the two acids is true ?
A. $p K_{a}(\mathrm{HCN})=p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
B. $p K_{a}(\mathrm{HCN})>p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
C. $p K_{a}(\mathrm{HCN})<p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
D. $p K_{a}(\mathrm{HCN})=\frac{45.2}{2.1} p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

- Watch Video Solution

34. What is the hydronium ion concentration of a 0.25 M HA solution?
$\left(K_{a}=4 \times 10^{-8}\right)$
A. 10^{-4}
B. 10^{-5}
C. 10^{-7}
D. 10^{-10}

Answer:

- Watch Video Solution

35. What is the percent dissociation (α) of a 0.01 M HA solution?

$$
\left(K_{a}=10^{-4}\right)
$$

A. 9.5%
B. 1%
C. 10.5%
D. 17%

Answer:

- Watch Video Solution

36. Given the two concentration of $\operatorname{HCN}\left(K_{a}=10^{-9}\right)$ are 0.1 M and 0.001 M respectively. What will be the ratio of degree of dissociation?
A. 1
B. 0.1
C. 0.003
D. 0.01

Answer:

37. A 0.10 M solution of HF is 8.0% dissocaited What is the K_{a} ?
A. 6.4×10^{-10}
B. 8.8×10^{-4}
C. 6.95×10^{-4}
D. 7.6×10^{-4}

Answer:

Watch Video Solution

38. A weak base $M O H$ of 0.1 N concentration shows a $p H$ value of 9 .

What is the percentage degree of ionization of the base?
A. 0.01%
B. 0.001%
C. 0.1%
D. 0.02%

Answer:

- Watch Video Solution

39. 0.01 M HA (aq.) is 2% dissociated, $\left[O H^{-}\right]$of solution is :
A. 2×10^{-4}
B. 10^{-8}
C. 5×10^{-11}
D. 5×10^{-12}

Answer:

40. If degree of dissociation is 0.01 of decimolar solution of weak acid HA then $p K_{a}$ of acid is :
A. 2
B. 3
C. 5
D. 7

Answer:

- Watch Video Solution

41. What concentration of HCOO^{-}is present in a solution of weak of $0.01 \mathrm{M} \mathrm{HCOOH}\left(K_{a}=1.8 \times 10^{-4}\right.$ and 0.01 M HCl ?
A. 1.8×10^{-3}
B. 10^{-2}
C. 1.8×10^{-4}
D. 10^{-4}

Answer:

- Watch Video Solution

42. Chose the correct code

Column-I
(P) $p K_{b}$ of $X^{-}\left(K_{a}\right.$ of $\left.H X=10^{-6}\right)$
(Q) $\mathrm{pHof} 10^{-8} \mathrm{MHCl}$
(R) \quad pHof $10^{-2} \mathrm{M}$ acetic and acid solution $\left(\right.$ Take K_{a} ofaceticacid $=1.6 \times$
$(S) \quad \mathrm{pOH}$ of a solution obtained by mixing equal volumes of solution with
A. $P Q R S$
A. $\begin{array}{llll}1 & 2 & 4 & 3\end{array}$
$\begin{array}{llll}P & Q & R & S\end{array}$
B.

4	3	2	1

$\begin{array}{llll}P & Q & R & S\end{array}$
C.
$\begin{array}{llll}2 & 1 & 4 & 3\end{array}$
D. $\begin{array}{cccc}P & Q & R & S \\ 1 & 2 & 3 & 4\end{array}$

Answer:

43. How much water must be added to 300 mL of a 0.2 M solution of $\mathrm{CH}_{3} \mathrm{COOH}$ for the degree of dissociation of the acid to double ? (Assume K_{a} of acetic is of order of $10^{-5} \mathrm{M}$)
A. 600 mL
B. 900 mL
C. 1200 mL
D. 1500 mL

Answer:

- Watch Video Solution

44. What $\left[\mathrm{NH}_{4}^{+}\right]$in a solution that contains $0.02 \mathrm{MNH}_{3}\left(K_{b}=1.8 \times 10^{-5}\right)$ and 0.01 MKOH ?

$$
\text { A. } 9 \times 10^{-6}
$$

B. 1.8×10^{-5}
C. 3.6×10^{-5}
D. None of these

Answer:

- Watch Video Solution

45. A hand book states that the solubility of $R N H_{2}(\mathrm{~g})$ in water at 1 atm and $0^{\circ} \mathrm{C}$ is 22.41 volumes of $R N H_{2}(\mathrm{~g})$ per volume of water. $\left(p K_{b} o f R N H_{2}=4\right)$ Find the max. pOH that can be attained by dissolving $R \mathrm{NH}_{2}$ in water:
A. 1
B. 2
C. 4
D. 6

- Watch Video Solution

46. The $\left[H^{+}\right]$of a resulting solution that is 0.01 M acetic acid $\left(K_{a}=1.8 \times 10^{-5}\right)$ and 0.01 M in benzoic acid $\left(K_{a}=6.3 \times 10^{-5}\right):$
A. 9×10^{-4}
B. 81×10^{-4}
C. 9×10^{-5}
D. 2.8×10^{-3}

Answer:

- Watch Video Solution

47. 6.0 g weak acid HA (mol.mass $=60 \mathrm{~g} / \mathrm{mol}$.) is dissolved in water and formed $10 \mathrm{~m}^{3}$ solution. If $K_{a}(H A)=10^{-9}$, then pOH of solution is :
[Given: $\log 4=0.6$]
A. 7
B. greater than 6.7 and less than 7.0
C. greater than 7.0 and less than 7.3
D. greater than 7.3

Answer:

- Watch Video Solution

48. Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, a diprotic acid has $K_{a 1}=4.0 \times 10^{-7}$ and $K_{a 2}=7.0 \times 10^{-11}$. What is the $\left[\mathrm{HCO}_{3}^{-}\right]$of a 0.025 M solution of carbonic acid?
A. 7.8×10^{-3}
B. 6.6×10^{-4}
C. 10^{-10}
D. 1.0×10^{-4}

Answer:

- Watch Video Solution

49. Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, a diprotic acid has $K_{a 1}=4.0 \times 10^{-7}$ and $K_{a 2}=5.0 \times 10^{-11}$. What is the $\left[\mathrm{CO}_{3}^{2-}\right]$ of a 0.025 M solution of carbonic acid?
A. 5.5×10^{-9}
B. 5.5×10^{-8}
C. 7.0×10^{-9}
D. 5.0×10^{-11}

Answer:

- Watch Video Solution

50. Selenious acid $\left(\mathrm{H}_{2} \mathrm{SeO}_{3}\right)$, a diprotic acid has $K_{a 1}=3.0 \times 10^{-3}$ and $K_{a 2}=5.0 \times 10^{-8}$. What is the $\left[\mathrm{OH}^{-}\right]$of a 0.30 M solution of selenious acid?
A. 2.85×10^{-3}
B. 5.0×10^{-6}
C. 3.5×10^{-12}
D. 3.5×10^{-13}

Answer:

- Watch Video Solution

51. Which of the hydrated species may exist?

I: $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$, II: $\mathrm{H}_{3} \mathrm{O}^{+}$, III : $\mathrm{H}_{3} \mathrm{O}_{2}^{-}$, IV : $\mathrm{H}_{7} \mathrm{O}_{3}^{+}$
A. II only
B. I and II
C. I, II and IV
D. I, II, III and IV

Answer:

- Watch Video Solution

52. Consider the following salts. Which one(s) when dissolved in water will produce an acidic solution?
53. $\mathrm{NH}_{4} \mathrm{Cl}$, 2. KHSO_{4}, 3. NaCN , 4. KNO_{3}
A. 2 and 3
B. 1 and 2
C. only 3
D. 2 and 4

Answer:

53. Consider the following salts. Which one(s) when dissolved in water will produce a basic solution?
54. RbClO_{4}, 2. NaNO_{2}, 3. $\mathrm{NH}_{4} \mathrm{Cl}$, 4. NaCl
A. 1 and 3
B. only 2
C. 1 and 2
D. 3 and 4

Answer:

- Watch Video Solution

54. At $25^{\circ} \mathrm{C}$ dissociation constants of acid HA and base BOH in aqueous solution are same. The pH of 0.01 M solution of HA is 5 . The pOH of 10^{-4} M solution of BOH at the same temperature is :
A. 3.5
B. 4
C. 6
D. None of these

Answer:

- Watch Video Solution

55. Which of the following solutions has the highest pH ?
A. $0.2 \mathrm{MHClO}_{4}$
B. $0.20 \mathrm{MCH}_{3} \mathrm{COOH}$
C. 0.020 MHCl
D. 0.2 MNaCl

Answer:

56. pH of solutions of four sodium salts $\mathrm{NaW}, \mathrm{NaX}, \mathrm{NaX}, \mathrm{NaY}$ and NaZ were found to be $7.0,9.0,10.0$ and 11.0 respectively. If each solution has concentration 0.1 M , the weakest acid is :
A. HW
B. HX
C. HY
D. HZ

Answer:

- Watch Video Solution

57. The pH values 0.1 M solution of HCOONa (I), HCOOH (II), $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ (III), NaOH (IV) $\mathrm{HCl}(\mathrm{V})$, will be in the order :

$$
\text { A. IV }>\text { III }>\text { I }>\text { II }>\text { V }
$$

B. IV $>$ I $>$ III $>$ II $>$ V
C. II $>$ III $>$ I $>$ IV $>$ V
D. $\mathrm{V}>\mathrm{II}>$ III $>\mathrm{I}>$ IV

Answer:

D Watch Video Solution

58. pH of an aqueous NaCl solution at $50^{\circ} \mathrm{C}$ should be :
A. 7
B. >7
C. <7
D. 0

Answer:

59. Upon hydrolysis of sodium carbonate, the reaction takes place between:
A. Na^{+}and water
B. Na^{+}and OH^{-}
C. CO_{3}^{2-} and water
D. CO_{3}^{2-} and H^{+}

Answer:

- Watch Video Solution

60. The solution of blue vitrol in water is acidic because:
A. $\mathrm{CuSO} \mathrm{O}_{4}$ reacts with water
B. $C u^{+2}$ reacts with water
C. SO_{4}^{2-} reacts with water
D. CuSO_{4} renives OH^{-}ions from water

Answer:

- Watch Video Solution

61. 1 mL of 0.1 N HCl is added to 999 mL solution of NaCl . The pH of the resulting solution will be :
A. 7
B. 4
C. 2
D. 1

Answer:

- Watch Video Solution

62. If a salt of strong acid and weak base hydrolyses appreciably ($C=0.1$), which of the following formula is to be used to calculate
degree of hydrolsis 'alpha'?
A. $\alpha=\frac{\sqrt{K_{w}}}{K_{a} \cdot a}$
B. $\alpha=\frac{\sqrt{K_{w}}}{K_{b} \cdot a}$
C. $\alpha=\frac{\sqrt{K_{w}}}{K_{a} . K_{b}}$
D. None of these

Answer: b

- Watch Video Solution

63. The correct formula to calculate the hydroxyl ion concentration of an aqeous solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is:
A. $\sqrt{\frac{C \times K_{w}}{K_{b}}}$
B. $\sqrt{\frac{K_{w} \times K_{b}}{C}}$
c. $\sqrt{\frac{C \times K_{w}}{K_{a}}}$
D. $\sqrt{\frac{K_{a} \times K_{w}}{C}}$

Answer: B

D Watch Video Solution

64. $\left[H^{+}\right]=\sqrt{\frac{K_{w} K_{a}}{C}}$ is suitable for
A. $\mathrm{NaCl}, \mathrm{NH}_{4} \mathrm{Cl}$
B. $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{NaCN}$
C. $\mathrm{CH}_{3} \mathrm{COONa},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{COONH}_{4},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Answer: b

- Watch Video Solution

65. What is the hydrolysis constant of the OCl^{-}ion? The ionization constant of HOCl is 3.0×10^{-8}.
A. 3.33×10^{-8}
B. 3.33×10^{-7}
C. 3.0×10^{-7}
D. 3.33×10^{-6}

Answer:

- Watch Video Solution

66. What is the pH of a $0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$solution? The K_{a} of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ is 1.0×10^{-10}
A. 10.51
B. 11.04
C. 11.50
D. 12

Answer:

67. Calculate the $\left[\mathrm{OH}^{-}\right]$in 0.01 M aqueous solution of $\mathrm{NaOCN}\left(\mathrm{K}_{b}\right.$ for $\left.O C N^{-}=10^{-10}\right):$
A. $10^{-6} \mathrm{M}$
B. $10^{-7} \mathrm{M}$
C. $10^{-8} \mathrm{M}$
D. None of these

Answer:

- Watch Video Solution

68. What is the ionization constant of an acid if the hydronium ion concentration of a 0.40 M solution is $1.40 \times 10^{-4} \mathrm{M}$?
A. 1.96×10^{-8}
B. 1.22×10^{-9}
C. 4.90×10^{-8}
D. 1.40×10^{-6}

Answer:

- Watch Video Solution

69. The degree of hydrolysis of 0.1 M RNH 33 Cl solution is 1.0%. If the concentration of $\mathrm{RNH}_{3} \mathrm{Cl}$ is made 0.4 M , what is the new degree of hydrolysis (in percentage)?
A. 0.01
B. 0.001
C. 0.2
D. 0.5

Answer:

70. \% hydrolysis of 0.1m $\mathrm{CH}_{3} \mathrm{COONH}_{4}$, when $K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=K_{b}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1.8 \times 10^{-5}$ is:
A. 0.55
B. 7.63
C. 0.55×10^{-2}
D. 7.63×10^{-3}

Answer:

Watch Video Solution

71. The enthalpy of neutralisation of four acids $\mathrm{HA}, \mathrm{HB}, \mathrm{HC}$ and HD witgh NaOH are $-13,-12,-11,-10 \mathrm{Kcal} / / \mathrm{mol}$. Which salt has maximum degree of hydrolysis?
A. 1 M NaA
B. 1 M NaB
C. 1 M NaC
D. 1 M NaD

Answer:

- Watch Video Solution

72. Calculate $\left[H^{+}\right]$at equivalent point between titration of $0.1 \mathrm{M}, 25 \mathrm{~mL}$ of weak acid HA $\left(K_{a(H A)=10^{-5}}\right.$ with 0.05 M NaOH solution:
A. 3×10^{-9}
B. 1.732×10^{-9}
C. 8
D. 10

Answer:

73. When a salt of weak acid and weak base is dissolved in water, the pH of the resulting solution will be :
A. be 7
B. be greater than 7
C. be less than 7
D. depend upon K_{a} and K_{b} values

Answer:

- Watch Video Solution

74. What will be the pH of an aqueous solution of 1.0 M ammonium formate?

Given $: p K_{a}=3.8$ and $p K_{b}=4.8$
A. 7.5
B. 3.4
C. 6.5
D. 10.2

Answer:

- Watch Video Solution

75. What will be the $p H$ and $\% \alpha$ (degree of hydrolysis) respectively for the salt $B A$ of $0.1 M$ concentration ? Given : K_{a} for $H A=10^{-6}$ and K_{b} for $B O H=10^{-6}$
A. $5,1 \%$
B. $7,10 \%$
C. $9,0.01 \%$
D. 7, 0.01%

Answer:

- Watch Video Solution

76. The percentage degree of hydrolysis of a salt of weak acid (HA) and weak base (BOH) in its 0.1 M solutions is found to be 10% If the molarity of the solution is 0.05 M , the percentage hydrolysis of the salt should be :
A. 5%
B. 10%
C. 20%
D. None of these

Answer:

77. What is the hydronium ion concentration of a 0.02 M solution of Cu^{2+} solution of copper(II) perchlorate? The acidity constant of the following reaction is 5×10^{-9}.
$\mathrm{Cu}^{2+}($ aq. $)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Cu}(\mathrm{OH})^{+}($aq. $)+\mathrm{H}_{3} \mathrm{O}^{+}($aq. $)$
A. 1×10^{-5}
B. 7×10^{-4}
C. 5×10^{-4}
D. 1×10^{-4}

Answer:

- Watch Video Solution

78. What is the acidity constant for the following reaction given that the hydronium ion concentration of a 0.04 M solution of Ni^{2+} solution of nickel(II) perchlorate is 4.5×10^{-6} ?
Ni^{2+} (aq. $)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Ni}(\mathrm{OH})^{+}($aq. $)+\mathrm{H}_{3} \mathrm{O}^{+}($aq. $)$
A. 2×10^{-12}
B. 4×10^{-6}
C. 5×10^{-12}
D. 5×10^{-10}

Answer:

- Watch Video Solution

79. Calculate the pH at $25^{\circ} \mathrm{C}$ of a solution that is 0.10 M in $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$. The acid dissocation constant for the reaction given below is 1.0×10^{-3}.
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+.\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}$
A. 2.00
B. 2.02
C. 2.30
D. 2.50

- Watch Video Solution

80. Approximate pH of 0.01 M NaHA is calculated by :
$\left(K_{a 1}=10^{-6}\right.$ and $K_{a 2}=10^{-8}$ are ionization constants of $\left.H_{2} A\right)$
A. $p H=7+\frac{p K_{a 1}}{2}+\frac{\log C}{2}$
B. $p H=7-\frac{p K_{a 1}}{2}-\frac{\log C}{2}$
C. $p H=\frac{p K_{a 1}+p K_{a 2}}{2}$
D. None of these

Answer:

D Watch Video Solution

81. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a weak triprotic acid, approximate pH $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ (aq.) is calculated by:
A. $\frac{1}{2}\left[p K_{a 1}+p K_{a 2}\right]$
B. $\frac{1}{2}\left[p K_{a 2}+p K_{a 3}\right]$
C. $\frac{1}{2}\left[p K_{a 1}+p K_{a 3}\right]$
D. $p K_{a 1}+p K_{2}$

Answer:

- Watch Video Solution

82. Which of the following is a buffer solution?
A. 500 mL of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}+500 \mathrm{~mL}$ of 0.1 N NaOH
B. 500 mL of 0.1 N CH 3 COOH +500 mL of 0.1 N HCl
C. 500 mL of 0.1 N CH 3 COOH +500 mL of 0.2 N NaOH
D. $500 \mathrm{mLof0.2NCH}(3) \mathrm{COOH}+500 \mathrm{mLof0.1NNaOH}$

Answer:

83. If 20 mL of 0.1 M NaOH is added to 30 mL of $0.2 \mathrm{M} \mathrm{CH} \mathrm{COOH}_{3} \mathrm{COOH}$ (pK_(a)=4.74), the pH of the resulting solution is :
A. 4.44
B. 9.56
C. 8.96
D. 9.26

Answer:

- Watch Video Solution

84. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}$ found in blood helps in maintaining pH of the blood close to 7.4. An excess of acid entering the blood stream is removed by:
A. HCO_{3}^{-}
B. $\mathrm{H}_{2} \mathrm{CO}_{3}$
C. H^{+}ion
D. CO_{3}^{2-} ion

Answer:

- Watch Video Solution

85. 100 mL of $0.02 M$ benzoic acid $\left(p K_{a}=4.2\right)$ is titrated using $0.02 \mathrm{MNaOH} . \mathrm{pH}$ values after 50 mL and 100 mL of NaOH have been added are
A. $3.50,7$
B. 4.2, 7
C. 4.2, 8.1
D. 4.2, 8.25

Answer:

86. What is the pH of a solution of 0.28 M acid and 0.84 M of its conjugate base if the ionization constant of acid is 4×10^{-4} ?
A. 3.88
B. 3.34
C. 7
D. 10.12

Answer:

Watch Video Solution

87. The toxic compound 2,4-dinitrophenol has $K_{a}=10^{-4}$. In an experiment, a buffer solution of 2,4-dinitrophenol was prepared with the pH adjusted to 5 . Calculate the ratio of the concentrations of the dissociated ion to the undissociated acid:
A. 0.01
B. 0.1
C. 10
D. 100

Answer:

- Watch Video Solution

88. Equilibrium constant for the following reaction is 1×10^{-9} :
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}($ aq. $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}($aq. $)+\mathrm{OH}^{-}(\mathrm{aq}$.
Determine the moles of pyridinium chloride $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} . \mathrm{HCl}\right)$ that should be added to 500 mL solution of 0.4 M pyridine (C5H5N) to obtain a buffer solution of $\mathrm{pH}=5$:
A. 0.1 mole
B. 0.2 mole
C. 0.3 mole
D. 0.4 mole

Answer:

- Watch Video Solution

89. Which one of the following mixture does not act as a buffer solution?
A. Boric acid and borax
B. Sodium phosphate \& disodium hydrogen phosphate
C. Sodium propionate and propionic acid
D. Sodium Acetate and sodium propionate

Answer: d

- Watch Video Solution

90. The acid dissociation constant of uric acid is $K_{a}=4.0 \times 10^{-6} \mathrm{M}$. The pH of a sample of urine is 6.0 . What is the ratio of concentration of urate ion to uric acid in the urine?
A. 2.0
B. 4.0
C. 6.0
D. 0.25

Answer:

- Watch Video Solution

91. A solution of 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{b}=5 \times 10^{-4}\right)$ and 0.08 mole of HCl is diluted to one litre, then the pOH of the solution is $(\log 1.25=0.1)$
A. 10.7
B. 3.6
C. 10.4
D. 11.3

Answer:

- Watch Video Solution

92. An aqueous solution at room temperature contains $0.1 \mathrm{M} \mathrm{NH}{ }_{4} \mathrm{Cl}$ and $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}\left(p K_{b}=5\right)$, the pH of the solution is:
A. 7.5
B. 6.8
C. 6.5
D. 8.0

Answer:

93. A 1L solution contains $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ and $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. If 1.0 mL of 0.001 M HCl is added to it what will be the $\left[\mathrm{OH}^{-}\right]$of the resulting solution ($K_{b}=2 \times 10^{-5}$)
A. 2×10^{-5}
B. 5×10^{-10}
C. 2×10^{-3}
D. None of these

Answer:

- Watch Video Solution

94. 0.1 M formic acid solution is titrated against 0.1 M NaOH solution.

What would be the difference in pH between $1 / 5$ and $4 / 5$ stages of neutralization of acid?
A. $2 \log 3 / 4$
B. $2 \log 1 / 5$
C. $\log 1 / 3$
D. $2 \log 4$

Answer:

- Watch Video Solution

95. The total number of different kind of buffers obtained during the titration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with NaOH are:
A. 3
B. 1
C. 2
D. 4

Answer:

96. A buffer solution is made up of acetic acid $\left[p K_{a}=5\right]$ having conc. $=1.5 \mathrm{M}$ and sodium acetate having conc.=0.15 M . What is the number OH^{-}ions present in 1 litre solution?
A. $10^{-10} N_{A}$
B. $10^{-4} N_{A}$
C. $10^{-3} N_{A}$
D. $10^{-6} N_{A}$

Answer:

- Watch Video Solution

97. The pH of a solution of $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ increases when which of the following substances is added?
A. NaHSO_{4}
B. HClO_{4}
C. KNO_{3}
D. $\mathrm{K}_{2} \mathrm{CO}_{3}$

Answer:

- Watch Video Solution

98. H^{+}ion concentration of water does not change by adding:
A. $\mathrm{CH}_{3} \mathrm{COONa}$
B. NaNO_{3}
C. NaCN
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer:

99. $p \mathrm{~K}_{a}$ of NH_{4}^{+}is 9.26. Hence, effective range for $\mathrm{NH}_{4} \mathrm{OH}-\mathrm{NH}_{4} \mathrm{Cl}$ buffer is about pH :
A. 8.26 to 10.26
B. 4.74 to 5.74
C. 3.74 to 5.74
D. 8.26 to 9.26

Answer:

- Watch Video Solution

100. 1.0 L solution is prepared by mixing 61 g benzoic acid ($p K_{a}=4.2$)
with 72 g of sodium benzoate and then 300 mL 1.0 M HBr solution was added. The pH of final solution is :
A. 3.6
B. 3.8
C. 4.2
D. 4.8

Answer:

- Watch Video Solution

101. The pH of a solution containing $0.4 \mathrm{M} \mathrm{HCO}_{3}^{-}$and $0.2 \mathrm{M} \mathrm{CO}_{3}^{2-}$ is :

$$
\left[K_{a 1}\left(H_{2} \mathrm{CO}_{3}\right)=4 \times 10^{-7}, K_{a 2}\left(\mathrm{HCO}_{3}^{-}\right)=4 \times 10^{-11}\right]
$$

A. 10.4
B. 10.1
C. 6.1
D. 10.7

Answer:

102. The pH of the resultant solution of 20 ml of $0.1 \mathrm{MH}_{3} \mathrm{PO}_{4}$ and $20 \mathrm{ml} 0.1 \mathrm{MNa} \mathrm{M}_{3} \mathrm{PO}_{4}$ is
A. $p K_{a 1}+\log 2$
B. $p K_{a 1}$
C. $p K_{a 2}$
D. $\frac{p K_{a 1}+p K_{a 2}}{2}$

Answer:

- Watch Video Solution

103. When 100 mL of 0.1 M NaCN solution is titrated with 0.1 M HCl
solution the variation of pH of solution with volume of HCl added will be :

B.

C.

D.

Answer:

(Watch Video Solution

104. The best indicator for the detection of the end point in the titration of a weak acid and a strong base is
A. Methyl orange (3.1 to 4.4)
B. Methyl red (4.2 to 6.3)
C. Bromothymol blue (6 to 7.6)
D. Phenolphthalein (8.2 to 10)

Answer:

- Watch Video Solution

105. Select the best indicator from the given table for titration of 20 mL of $0.02 \mathrm{M} \quad \mathrm{CH}_{3} \mathrm{COOH}$ with 0.02 MNaOH .GivenpK_(a)
(CH_(3)COOH)=4.74\{:(,"Indicator","pH range"),((I),"Bromothymol blue",6.0-7.6),((II),"Thymolphthalein",9.3-10.5),((III),"Malachite green",11.4-13),((IV),"MCresol purple",7.4-90): ${ }^{\prime}$
A. I
B. II
C. III
D. IV
106. Bromothymol blue is an indicator with a K_{a} value of 6×10^{-5}. What \% of this indicator is in its basic form at a pH of 5 ?
A. 40
B. 85.7
C. 14.3
D. 60

Answer:

- Watch Video Solution

107. An acid-base indicator has a K_{a} of 3.0×10^{-5}. The acid form of the indicator is red and the basic form is blue. (a) By how much must the $p H$ change in order to change the indicator from 75% red to 75% blue?
A. $8 \times 10^{-5} \mathrm{M}$
B. $9 \times 10^{-5} \mathrm{M}$
C. $1 \times 10^{-5} \mathrm{M}$
D. $3 \times 10^{-4} \mathrm{M}$

Answer:

- Watch Video Solution

108. An acid-base indicator which is a weak acid has a pH value $=5.45$. At what concentration ratio of sodium acetate to acctic acid would the indicator show a colour half-way between those of its acid and conjugate base forms ?
[$p K_{a}$ of acetic acid $\left.=4.75, \log 2=0.3\right]$
A. $4: 1$
B. 6: 1
C. 5:1
D. 3:1

Answer:

- Watch Video Solution

109. A 20.0 mL sample of a 0.20 M solution of the weak diprotic acid $\mathrm{H}_{2} \mathrm{~A}$ is titrated with 0.250 M NaOH . The concentration of solution at the second equivalent point is:
A. 0.10 M NaHA
B. $0.153 M N a_{2} A$
C. $0.10 M N a_{2} A$
D. $0.0769 \mathrm{MNa} \mathrm{a}_{2} \mathrm{~A}$

Answer:

- Watch Video Solution

110. During the titration of a weak diprotic acid $\left(H_{2} A\right)$ against a strong base (NaOH), the pH of the solution half-way to the first equivalent point and that at the first equivalent point are given respectively by:
A. $p K_{a 1}$ and $p K_{a 1}+p K_{a 2}$
B. $\sqrt{K_{a 1} C}$ and $\frac{p K_{a 1}+p K_{a 2}}{2}$
C. $p K_{a 1}$ and $\frac{p K_{a 1}+p K_{a 2}}{2}$
D. $p K_{a 1}$ and $p K_{a 2}$

Answer:

- Watch Video Solution

111. In which of the following cases is the solution of AgCl unsaturated?
A. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]<K_{s p}$
B. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]>K_{s p}$
C. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=K_{s p}$
D. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \leq K_{s p}$

Answer:

- Watch Video Solution

112. When equal volumes of following solution are mixed, precipitation of $A g C l$?
($\left.K_{s p}=1.8 \times 10^{-10}\right)$ will occur only with
A. $10^{-4} M\left(\mathrm{Ag}^{+}\right)$and $10^{-4} M\left(\mathrm{Cl}^{-}\right)$
B. $10^{-5} \mathrm{M}\left(A g^{+}\right)$and $10^{-5} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
C. $10^{-5} M\left(A g^{+}\right)$and $10^{-6} M\left(C l^{-}\right)$
D. $10^{-10} M\left(A g^{+}\right)$and $10^{-10} M\left(C l^{-}\right)$

Answer:

- Watch Video Solution

113. Choose the correct set of True/Fasle for following statements:
(i) Silver chloride is more soluble in very concentrated sodium chloride solution than in pure water.
(ii) The pH of a buffer solution does not change on addition of small amount of an acid or a base.
(iii) Addition of $\mathrm{NH}_{4} \mathrm{Cl}$ does not affect the pH of a solution of $\mathrm{NH}_{4} \mathrm{OH}$ (iv) Degree of hydrolysis of ammonium acetate does not depend upon the concentration of ammonium acetate solution.
(v) A mixture of acetic acid and sodium acetate can act as buffer solution.
A. TTFTT
B. FTTTF
C. TFTFT
D. FTTTT

Answer:

114. A 1 litre solution containing $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ has hydroxide ion ion concentration of 10^{-6}) $\mathrm{mol} / / \mathrm{litre}$. Which of the following hydroxides could be precipitated when the solution is added to 1 litre solution of 0.1 M metal ions?
(I) $B a(O H)_{2}\left(K_{s p}=5 \times 10^{-3}\right)$, (II) $N i(O H)_{2}\left(K_{s p}=1.6 \times 10^{-16}\right)$
(III) $\mathrm{Mn}(\mathrm{OH})_{2}\left(K_{s p}=2 \times 10^{-13}\right)$, (IV) $\mathrm{Fe}(\mathrm{OH})_{2}\left(K_{s p}=8 \times 10^{-16}\right)$
A. IIII,IV
B. IV
C. II and IV
D. IIIIII,IV

Answer:

- Watch Video Solution

115. 150 mL of 0.0008 M ammonium sulphate is mixed with 50 mL of 0.04 M calcium nitrate. The ionic product of CaSO_{4} will be :

$\left(K_{s p}=2.4 \times 10^{-5} f\right.$ or $\left.\mathrm{CaSO}_{4}\right)$

A. $<K_{s p}$
B. $>K_{s p}$
C. $\approx K_{s p}$
D. None of these

Answer:

- Watch Video Solution

116. In a saturated solution of $\mathrm{AgCl}, \mathrm{NaCl}$ is added gradually. The concentration of Ag^{+}is plotted against the concentration of Cl^{-}. The graph appears as :

Answer:

- Watch Video Solution

117. $K_{s p}$ of AgCl is 1×10^{-10}. Its solubility in $0.1 \mathrm{M} \mathrm{KNO}_{3}$ will be :
A. 10^{-5} moles/litre
B. $>10^{-5}$ moles/litre
C. $<10^{-5}$ moles/litre
D. None of these

Answer:

- Watch Video Solution

118. 50 mL of a solution containing 10^{-3} mole of Ag^{+}is mixed with 50 mL of a 0.1 MHCl solution. How much Ag^{+}remains in solution ? $\left(K_{s p}\right.$ of $\left.\mathrm{AgCl}=1.0 \times 10^{-10}\right)$
A. 2.5×10^{-9}
B. 2.5×10^{-7}
C. 2.5×10^{-8}
D. 2.5×10^{-10}

Answer:

119. At a certain temperature ,the solubility of the salt $M_{m} A_{n}$ in water is
s. moles per litre. The solubility product of the salt is
A. S^{2}
B. $x^{y} y^{x} \cdot S^{x}+y$
C. $x^{x} y^{y} \cdot S^{x}+y$
D. $S^{x}+y$

Answer:

120. What is the molarity of a saturated solution of CaCO_{3} ? $\left(K_{s p}=2.8 \times 10^{-9}\right)$
A. 2.6×10^{-5}
B. 2.8×10^{-9}
C. 5.2×10^{-5}
D. 5.6×10^{-9}

Answer:

- Watch Video Solution

121. $K_{s p}$ of $Z r_{3}\left(\mathrm{PO}_{4}\right)_{4}$ in terms of solubility (S) is:
A. $108 S^{7}$
B. $4 S^{3}$
C. $6912 S^{7}$
D. None of these

Answer:

122. The solubility of electrolytes $M X_{1}, M X_{2}$ and $M X_{3} i s 1 \times 10^{-3}$ moles per litre. Hence their respective solubility products are :
A. $10 \times^{-6}, 4 \times 10^{-9}, 27 \times 10^{-12}$
B. $10^{-9}, 4 \times 10^{-9}, 32 \times 10^{-12}$
C. $10^{-9}, 8 \times 10^{-8}, 32 \times 10^{-12}$
D. None of these

Answer:

- Watch Video Solution

123.

saturated
solution
of $\quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ has $\left[C a^{+2}\right]=2 \times 10^{-8} M$ and $\left[P O_{4}^{-3}\right]=1.6 \times 10^{-5} M, K_{s p} \quad$ of $C a_{3}\left(P O_{4}\right)$ is
A. 3.2×10^{-13}
B. 3.2×10^{-34}
C. 2.048×10^{-33}
D. None of these

Answer:

- Watch Video Solution

124. Which of the following is not soluble in water?
A. $B a\left(P O_{4}\right)_{2}\left(K_{s p}=6 \times 10^{-39}\right)$
B. $Z n S\left(K_{s p}=7 \times 10^{-16}\right)$
C. $\mathrm{Fe}(\mathrm{OH})_{3}\left(K_{s p}=6 \times 10^{-38}\right)$
D. $A g_{3}\left(P O_{4}\right)\left(K_{s p}=1.8 \times 10^{-18}\right)$

Answer:

- Watch Video Solution

125. Silver ions are added to a solution with $\left[\mathrm{Br}^{-}\right]=\left[\mathrm{Cl}^{-}\right]=\left[\mathrm{CO}_{3}^{2-}\right]=\left[\mathrm{AsO}_{4}^{3-}\right]=0.1 \mathrm{M}$. Which compound will precipitate with lowest $\left[\mathrm{Ag}^{+}\right]$?
A. $\operatorname{AgBr}\left(K_{s p}=5 \times 10^{-13}\right)$
B. $\operatorname{AgCl}\left(K_{s p}=1.8 \times 10^{-10}\right)$
C. $A g 2 C O_{3}\left(K_{s p}=8.1 \times 10^{-12}\right)$
D. $A g_{3} A s O_{4}\left(K_{s p}=1 \times 10^{-22}\right)$

Answer:

- Watch Video Solution

126. The solubility products of three sparingly soluble salts $\mathrm{AB}, A-(2) B$ and $A B$ are respectively $4.0 \times 10^{-20}, 32 \times 10^{-11}$ amd 2.7×10^{-31} The increasing order of their solublity is
A. 1,2,3
B. 2,1,3
C. 1,2,3
D. 3,1,2

Answer:

- Watch Video Solution

127. If $K_{s p}$ for HgSO_{4} is 6.4×10^{-5}, then solubility of this substance in mole per m^{3} is
A. 8×10^{-3}
B. 6.4×10^{-5}
C. 8×10^{-6}
D. None of these

Answer:

128. The solubility of $\mathrm{Ba}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$ (formula weight $=690$) is $6.9 \times 10^{-2} \mathrm{~g} / 100 \mathrm{ml}$. what is the $K_{s p}$?
A. 1.08×10^{-11}
B. 1.08×10^{-13}
C. 1.0×10^{-15}
D. 6.0×10^{-13}

Answer:

- Watch Video Solution

129. The solubility of AgBrO_{3} (formula mass=236) is 0.0072 g in 1000 mL . What is the $K_{s p}$?
A. 2.2×10^{-8}
B. 3.0×10^{-10}
C. 3.0×10^{-5}
D. 9.3×10^{-10}

Answer:

- Watch Video Solution

130. The solubility of PbF_{2} (formula mass $=245$) is $0.46 \mathrm{~g} / \mathrm{L}$. What is the solubility product?
A. 1.1×10^{-10}
B. 2.6×10^{-8}
C. 1.1×10^{-7}
D. 6.8×10^{9}

Answer:

131. How many grams of $\mathrm{MgC}_{2} \mathrm{O}_{4}$ (formula weight $=112$) will dissolve in 1.5 L of water? $\left(K_{s p}=8.1 \times 10^{5}\right)$
A. 1.0
B. 1.29
C. 1.512
D. 4.65

Answer:

- Watch Video Solution

132. What is the molarity of F^{-}ions in a saturated solution of $B a F_{2}$? $\left(K_{s p}=1.0 \times 10^{-6}\right)$
A. 1.0×10^{-2}
B. 1.0×10^{-3}
C. 1.26×10^{-2}
D. 6.3×10^{-3}

Answer:

- Watch Video Solution

133. What is the molarity of F^{-}in a saturated solution of $\ln F_{3}$? $\left(K_{s p}=7.9 \times 10^{-10}\right.$
A. 2.3×10^{-3}
B. 8.3×10^{-3}
C. 1.0×10^{-3}
D. 7.0×10^{-3}

Answer:
134. What is the pH of a saturated solution of $\mathrm{Cu}(\mathrm{OH})_{2}$?

$$
\left(K_{s p}=2.6 \times 10^{-19}\right.
$$

A. 6.1
B. 7.30
C. 8.42
D. 7.90

Answer:

- Watch Video Solution

135. The solubility product of AgCl is $10^{-10} M^{2}$. The minimum volume (in m^{3}) of water required to dissolve 14.35 mg of AgCl is approximately :
A. 0.01
B. 0.1
C. 100
D. 10

Answer:

- Watch Video Solution

136. What is the molar solubility of $\mathrm{Fe}(\mathrm{OH})_{2}\left(K_{s p}=8.0 \times 10^{-16}\right)$ at pH
13.0 ?
A. 8.0×10^{-18}
B. 8.0×10^{-15}
C. ${ }^{8} .0 \times x 10^{\wedge}(-17)$
D. 8.0×10^{-14}

Answer:

137. What is the minimum pH necessary to cause a precipitate of $\mathrm{Pb}(\mathrm{OH})_{2}\left(K_{s p}=1.2 \times 10^{-5}\right)$ to form in a $0.12 \mathrm{M} \mathrm{PbCl} l_{2}$ solution?
A. 12.4
B. 10.8
C. 12.0
D. 11.1

Answer:

- Watch Video Solution

138. Which of the following would increase the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$?
A. Add hydrochloric acid
B. Add a solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
C. Add a solution of NaOH
D. None of the above-the solubility a compound is constant a constant temperature

Answer:

- Watch Video Solution

139. What is the molar solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}\left(K_{s p}=4 \times 10^{-13}\right)$ in $0.1 \mathrm{MNa} \mathrm{N}_{2} \mathrm{CO}_{3}$ solution ?
A. 10^{-6}
B. 10^{-7}
C. 2×10^{-6}
D. 2×10^{-7}

Answer:

140. What is the concentration of Pb^{2+} when PbSO_{4} $\left(K_{s p}=1.8 \times 10^{-8}\right)$ beg $\in s \rightarrow \prec$ intateomasolutiontis $0.0045 M \in$ SO_(4)^(2-)?
A. $4.0 \times 10^{-8} \mathrm{M}$
B. $1.0 \times 10^{-6} \mathrm{M}$
C. $2.0 \times 10^{-8} \mathrm{M}$
D. $4.0 \times 10^{-6} \mathrm{M}$

Answer:

- Watch Video Solution

141. What is the concentration of $B a^{2+}$ when $B a F_{2}\left(K_{s p}=1.0 \times 10^{-6}\right)$ begins to precipitate from a solution that is $0.30 \mathrm{M} \mathrm{F}^{-}$?
A. 9.0×10^{-7}
B. 3.3×10^{-5}
C. 1.1×10^{-5}
D. 3.0×10^{-5}

Answer:

- Watch Video Solution

142. Solubility of AgCl in 0.2 M NaCl is x and that in $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ is y then which of the following is correct ?
A. $x=y$
B. $x>y$
C. $x<y^{\prime}$
D. We cannot predict

Answer:

143. What is the molarity of $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ in a saturated solution of $A g_{4}\left[F e(C N)_{6}\right]$?

$$
\left(K_{s p}=1.6 \times 10^{-41}\right)
$$

A. 1.6×10^{-8}
B. 5.2×10^{-8}
C. 2.0×10^{-8}
D. 2.3×10^{-9}

Answer:

- Watch Video Solution

144. At $25^{\circ} \mathrm{C}, K_{s p}$ for $P b B r_{2}$ is equal to 8×10^{-5}. If the salt is 80% dissociated, What is the solubility of PbBr_{2} in $\mathrm{mol} / / \mathrm{litre}$?
A. $\left[\frac{10^{-4}}{1.6 \times 1.6}\right]^{1 / 3}$
B. $\left[\frac{10^{-5}}{1.6 \times 1.6}\right]^{1 / 3}$
C. $\left[\frac{10^{-4}}{0.8 \times 0.8}\right]^{1 / 3}$
D. $\left[\frac{10^{-5}}{1.6 \times 1.6}\right]^{1 / 2}$

Answer:

D Watch Video Solution

145. What is the molar solubility of $\mathrm{Mn}(\mathrm{OH})_{2}\left(K_{s p}=4.5 \times 10^{-14}\right)$ in a buffer solution containing equal amounts of NH_{4}^{+}and NH_{3} $\left(K_{b}=1.8 \times 10^{-5}\right) ?$
A. 3.0×10^{-4}
B. 1.38×10^{-4}
C. 1.38×10^{-3}
D. 7.3×10^{-4}

Answer:

146. Find moles of $\mathrm{NH}_{4} \mathrm{Cl}$ required to prevent $\mathrm{Mg}(\mathrm{OH})_{2}$ from precipitating in a litre of solution which contains 0.02 mole NH_{3} and 0.001 mole $M g^{2+}$ ions.

Given : $K_{b}\left(N H_{3}\right)=10^{-5}, K_{s p}\left[M g(O H)_{2}\right]=10^{-11}$.
A. 10^{-4}
B. 2×10^{-3}
C. 0.02
D. 0.1

Answer:

- Watch Video Solution

147. What mass of Agl will dissolve in 1.0 L of $1.0 \mathrm{M} \mathrm{NH}_{3}$? Neglect change in conc. NH_{3}
$\left[\right.$ Given $\left., K_{s p}(A g l)=1.5 \times 10^{-16}, K_{f}\left[A g\left(N H_{3}\right)_{2}^{+}\right]=1.6 \times 10^{7}\right]$, (At .Wt $. A g=108,1=127$)
A. $4.9 \times 10^{-5} \mathrm{~g}$
B. 0.0056 g
C. 0.035 g
D. 0.011 g

Answer:

- Watch Video Solution

148. Consider the following statement and select correct option:
(I) $K_{s p}$ of $\mathrm{Fe}(\mathrm{OH})_{3}$ in aqueous solution is 3.8×10^{-38} at 298 K . The concentration of Fe^{+}will increase when $\left[\mathrm{H}^{+}\right]$ion concentration decreases.
(II) In a mixture of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ in water, a further amountof $\mathrm{NH}_{4} \mathrm{Cl}$ is added. The pH of the mixture will decreases.
(III) An aqueous solution of each of the following salt $\left(\mathrm{NH}_{4} \mathrm{I}, \mathrm{HCOOK}\right)$ will be basic, acidic respectively.
A. only I is correct
B. only II is correct
C. only III is correct
D. II and III are correct

Answer:

- Watch Video Solution

149. Equilibrium constants of $T_{2} O\left(T\right.$ or ${ }_{1}^{3} H$ isaniso $T e$ of $\left.{ }_{1}^{1} H\right)$ and $\mathrm{H}_{2} \mathrm{O}$ are different at 298 K . Let at 298 K pure $\mathrm{T}_{2} \mathrm{O}$ has pT (like pH) is 7.62 . The pT of a solution prepared by adding 10 mL . of 0.2 M TCl to 15 mL of 0.25 M NaOT is:
A. $2-\log 7$
B. $14+\log 7$
C. $13.24-\log 7$
D. $13.24+\log 7$

Answer:

- Watch Video Solution

150. Liquid ammonia ionises to a slight extent. Its self ionisation constant is $10^{-30} a t-50^{\circ} C$, then the number of amide iona present per 1 cc of it at $-50^{\circ} \mathrm{C}$ is
A. 10^{-15}
B. 6.022×10^{8}
C. 6.022×10^{7}
D. 6.022×10^{6}

Answer:

151. To what volume of 10 litre of $0.5 \mathrm{M} \mathrm{CH} 3 \mathrm{COOH}\left(K_{a}=1.8 \times 10^{-5}\right)$ be diluted in order to double the hydroxide ion concentration :
A. 20 L
B. 30 L
C. 40 L
D. None of these

Answer:

- Watch Video Solution

152. 20 mL of 0.1 M weak acid $H A\left(K_{a}=10^{-5}\right)$ is mixed with solution of 10 mL of 0.3 M HCl and 10 mL . of 0.1 M NaOH . Find the value of $[A-$] $/([\mathrm{HA}]+[\mathrm{A}-])^{\prime}$ in the resulting solution :
A. 2×10^{-4}
B. 2×10^{-5}
C. 2×10^{-3}
D. 0.05

Answer:

- Watch Video Solution

153. What concentration of $\mathrm{FCH}_{2} \mathrm{COOH}\left(K_{a}=2.6 \times 10^{-3}\right)$ is needed so that $[H+]=2.0 \times 10^{-3}$?
A. $2 \times 10^{-3} \mathrm{M}$
B. $2.6 \times 10^{-3} \mathrm{M}$
C. $5.2 \times 10^{-3} \mathrm{M}$
D. $3.53 \times 10^{-3} \mathrm{M}$

Answer:

154. Calculate the ratio of $\left[\mathrm{HXOO}^{-}\right]$and $\left[\mathrm{F}^{-}\right]$in a mixture of 0.2 M $\mathrm{HCOOH}\left(K_{a}=2 \times 10^{-4}\right)$ and $0.1 \mathrm{M} \mathrm{HF}\left(K_{a}=6.6 \times 10^{-4}\right)$:
A. 1: 6.6
B. 1:3.3
C. $2: 3.3$
D. 3.3: 2

Answer:

- Watch Video Solution

155. If first dissociation of $X(O H)_{3}$ is 100% where as second dissociation is 50% and third dissociation is negligible then the pH $4 \times 10^{-3} \mathrm{MX}(\mathrm{OH})_{3}$ is :
B. 10.78
C. 2.5
D. 2.22

Answer:

- Watch Video Solution

156. $H_{3} A$ is a weak triprotic acid $\left(K_{a_{1}}=10^{-5}, K_{a_{2}}=10^{-13}\right)$. What is the value of pX of $0.1 \mathrm{M} H_{3} A(a q$.) solution ? Where pX $=-\log X$ and $X=\frac{\left[A^{3-}\right]}{\left[H A^{2-}\right]}$
A. 7
B. 8
C. 9
D. 10
157. Calcium lactate is a salt of weak organic acid and strong base represented as $\mathrm{Ca}(\mathrm{LaC})_{2}$. A saturated solution of $\mathrm{Ca}(\mathrm{LaC})_{2}$ contains 0.6 mole in 2 litre solution. pOH of solution is 5.60 . If 90% dissociation of the salt takes place then what is $p K_{a}$ of lactic acid?
A. $2.8-\log (0.54)$
B. $2.8+\log (0.54)$
C. $2.8+\log (0.27)$
D. None the these

Answer:

- Watch Video Solution

158. What is the concentration of $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}$.) in a solution prepared by dissolving 0.01 mole of $\mathrm{NH}_{4}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-}$in $1 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$?
$\left.\left[K_{a\left(C H_{3} \mathrm{COOH}\right)}=1.8 \times 10^{-5}\right), K_{b\left(N H_{4} \mathrm{OH}\right)=1.8 \times 10^{-5}}\right]$
A. 5.55×10^{-5}
B. 0.10
C. 6.4×10^{-4}
D. 5.55×10^{-3}

Answer:

- Watch Video Solution

159. K_{a} for the reaction,
$F e^{3+}(a q)+H_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})^{2+}(a q)+\mathrm{H}_{3} \mathrm{O}^{\oplus}(a q) \quad$ is $\quad 6.5 \times 10^{-3}$,
what is the maximum $p H$ value which could be used so that at least 80% of the total iron (III) in a dilute solution exsists as Fe^{3+} ?
A. 2
B. 2.41
C. 2.79

Answer:

- Watch Video Solution

160. How many gm of solid KOH must be added to 100 mL of a buffer solution to make the pH of solution 6.0 , if it is 0.1 M each w.r.t. acid HA and salt K A.
$\left[\right.$ Given: $\left.p K_{a}(H A)=5\right]$
A. 0.458
B. 0.327
C. 5.19
D. None of these

Answer:

161. Fixed volume of 0.1 M benzoic acid $\left(p K_{a}=4.2\right)$ solution is added into 0.2 M sodium benzoate solution and formed a 300 mL , resultant acidic buffer solution. If pH of this buffer solution is 4.5 then find added volume of benzoic acid :
A. 100 mL
B. 150 mL
C. 200 mL
D. None of these

Answer:

- Watch Video Solution

162. A 1.025 g sample containing a weak acid HX (mol. Mass=82) is dissolved in 60 mL . water and titrated with 0.25 M NaOH . When half of the acid was neutralised the pH was found to be 5.0 and at the equivalence point the pH is 9.0. Calculate mass precentage of HX in sample :
A. 50%
B. 75%
C. 80%
D. None of these

Answer:

- Watch Video Solution

163. Which of the following expression for $\%$ dissociation of a monoacidic base (BOH) in aqueous solution at appreciable concentration is not correct?
A. $100 \times \sqrt{\frac{K_{b}}{c}}$
B. $\frac{1}{1+10^{\left(p K_{b}-p O H\right)}}$
C. $\frac{K_{w}\left[H^{+}\right]}{K_{b}+K_{w}}$
D. $\frac{K_{b}}{K_{b}+\left[O H^{-}\right]}$

Answer:

- Watch Video Solution

164. A solution of weak acid HA was titrated with base NaOH . The equivalent point was reached when 40 mL . Of 0.1 M NaOH has been added. Now 20 mL of 0.1 M HCl were added to titrated solution, the pH was found to be 5.0 What will be the pH of the solution obtained by mixing 20 mL of 0.2 M NaOH and 20 mL of 0.2 M HA ?
A. 7
B. 9
C. 11
D. None of these

Answer:

165. A buffer solution 0.04 M in $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 0.02 M in $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is prepared. The electrolytic oxidation of 1.0 milli -mole of the organic compound RNHOH is carried out in 100 mL of the buffer. The reaction is $\mathrm{RNHOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{RNO}_{2}+4 \mathrm{H}^{+}+4 e^{-}$

The approximate pH of solution after the oxidation is complete is:
[Given : for $\mathrm{H}_{3} \mathrm{OPO}_{4}, p K_{a_{1}}=7.20, p K_{a_{2}}=12$]
A. 6.90
B. 7.20
C. 7.5
D. None of these

Answer:

- Watch Video Solution

166. When a 20 mL of 0.08 M weak base BOH is titrated with 0.08 HCl , the pH of the solution at the end point is 5 . What will be the pOH if 10 mL
0.04 M NaOH is added to the resulting solution?
[Given $: \log 2=0.30$ and $\log 3=0.48$)
A. 5.40
B. 5.88
C. 4.92
D. None of these

Answer:

- Watch Video Solution

167. Calculate approximate pH of the resultant solution formed by titration of 25 mL of $0.04 \mathrm{M} \mathrm{Na} \mathrm{CO}_{3}$ with 50 mL of 0.025 M HCl .
[Given : $p K_{a 1}=6.4$ and $p K_{a 2}=10.3 f$ or $H_{2} C O_{3}$]
A. 5.92
B. 6.88
C. 6.4

- Watch Video Solution

168. In the titration of solution of a weak acid HA and NaOH , the pH is 5.0 after 10 mL of NaOH solution has been added and 5.60 after 20 mL NaOH has been added.

What is the value of $p K_{a}$ for HA?
A. 5.15
B. 5.3
C. 5.6
D. None of these

Answer:

169. $A_{3} B_{2}$ is a sparingly soluble salt with molar mass $M\left(\mathrm{gmol}^{-}\right)$and solubility $x \mathrm{gm}$ litre ${ }^{-1}$, the ratio of the molar concentration of B^{3-} to the solubilty product of the salt is : -
A. $108 \frac{x^{5}}{m^{5}}$
B. $\frac{1}{108} \frac{M^{4}}{x^{4}}$
C. $\frac{1}{54} \frac{M^{4}}{x^{4}}$
D. None of these

Answer:

- Watch Video Solution

170. A solution is $0.10 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and $0.10 \mathrm{M} \operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}$. If solid $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ is added to the solution, what is $\left[\mathrm{Ba}^{2+}\right]$ when $\mathrm{SrCrO} \mathrm{O}_{4}$ begins to precipitate?

$$
\left[K_{s p}\left(\mathrm{BaCrO}_{4}\right)=1.2 \times 10^{-10}, K_{s p}\left(\mathrm{SrCrO}_{4}\right)=3.5 \times 10^{-5}\right]
$$

A. 7.4×10^{-7}
B. 2.0×10^{-7}
C. 6.1×10^{-7}
D. 3.4×10^{-7}

Answer:

- Watch Video Solution

171. A solution is 0.01 MKl and 0.1 MKCl . If solid AgNO_{3} is added to the solution, what is the $\left[1^{-}\right]$when AgCl begins to precipitate

$$
\left[K_{s p}(A g l)=1.5 \times 10^{-16}, K_{s p}(A g C l)=1.8 \times 10^{-10}\right]
$$

A. 3.5×10^{-7}
B. 6.1×10^{-8}
C. 2.2×10^{-7}
D. 8.3×10^{-8}

Answer:

D Watch Video Solution

172. Which of the following is not a conjugate acid base pair?
A. $\mathrm{HCO}_{3}^{-} \mathrm{CO}_{3}^{2-}$
B. $C_{6} H_{5} \stackrel{+}{N} H_{3}, C_{6} H_{5} N H_{2}$
C. $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}, \mathrm{H}_{2} \mathrm{PO}_{3}^{-}, \mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
D. $O H^{-}, H^{+}$

Answer: A,B

Watch Video Solution

173. If $K_{a_{1}}, K_{a_{2}}$ and K_{a-3}) be the first, second and third dissociation constant of $H_{3} \mathrm{PO}_{4}$ and $K_{a_{1}} \gg K_{2_{a}} \gg K_{a_{3}}$ whis is/are correct :
A. $\left[H^{+}\right] \approx \sqrt{K_{a_{1}}\left[H_{3} P O_{4}\right]}$
B. $\left[H^{+}\right] \approx\left[H P O_{4}^{2-}\right]$
C. $K_{a_{2}} \approx\left[H P O_{4}^{2-}\right]$
D. $\left[\mathrm{HPO}_{4}^{-2}\right]=\left[\mathrm{PO}_{4}^{3-}\right]$

Answer:

- Watch Video Solution

174. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a weak triprotic acid, approximate $\mathrm{pH} 0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ (aq.) is calculated by:
A. $\left[H^{+}\right]_{\text {total }} \approx\left[H^{+}\right]$from first step of ionization of acid $H_{2} A$
B. Concentration of OH^{-}in solution is $10^{-3} \mathrm{M}$
C. The value of $K_{a_{1}}$ is nearly 10^{-5}
D. $p K_{a_{2}}-p K_{a_{1}}=9$
175. Statement-1: pH value of acidic buffer solution changes, If buffer solution is diluted upto very large extent.

Statement-2: $\left[H^{+}\right]$decreases due to change in concentration as well as α increases and decreases in concentration is more as compared to increases in α.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

176. Assertion : In a titration of weak monoprotic acid with strong base, the $p H$ at the half equivalent point is $p K_{a}$.

Reason : At half equivalence point, it will form acidic buffer at its maximum capacity where [acid] $=[$ salt $]$.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

177. STATEMENT -1: In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl using methyl orange indicator, the volume of acid required is twice that of the acid required using phenolphthalein as indicaton.

STATEMENT -2: Two moles of HCl are required for the complete neutralisation of one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

178. Assertion : Solubility of AgCl in $\mathrm{NH}_{3}(a q)$ is greater than in pure water.

Reason: When AgCl dissolve in $\mathrm{NH}_{3}(a q)$, complex ion $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$ formation takes place and solubility equilibrium of AgCl shifted in forward direction.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

179. Assertion (A): Solubility of $A g C N$ in acidic solutions is greater than in pure water.

Reason (R) : Solubility equilibrium of $A g C N$ is shifted in forward direction due to the formation of $H C N$.
A. If both the statements are TRUE and STATEMENT- 2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

180. Calculate pOH of 0.1 M aq. Solution of weak base $\mathrm{BOH}\left(K_{b}=10^{-7}\right)$ at $25^{\circ} \mathrm{C}$.

Watch Video Solution

181. pH of 0.01 M aq. Solution of HA is 4 . Find the value of $p K_{a}$ of HA at $25^{\circ} C$.

- Watch Video Solution

182. Calculate approximate pH of $10^{-10} \mathrm{M} \mathrm{NaOH}$ at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

183. Calclate pH of a resultant solution of 25 mL of $0.1 \mathrm{M} \mathrm{HCl}, 50 \mathrm{~mL}$ of 0.02

M HNO_{3} and 25 mL of 0.1 M NaOH
184. Calculate pH of a resultant solution of $0.1 \mathrm{M} \mathrm{HA}\left(K_{a}=10^{-6}\right)$ and 0.5 M HB $\left(K_{a}=2 \times 10^{-6}\right)$ at $25^{\circ} C$.

- Watch Video Solution

185. 0.16 g of $N_{2} H_{4}$ are dissolved in water and the total volume made upto 500 mL . Calculate the percentage of $N_{2} H_{4}$ that has reacted with water in this solution. $\left(K_{b} f\right.$ or $\left.N_{2} H_{4}=4.0 \times 10^{-6}\right)$

- Watch Video Solution

186. Calculate pH of a buffer solution that contains 0.1 M
$\mathrm{NH}_{4} \mathrm{OH}\left(K_{b}=10^{-5}\right)$ and $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$.

- Watch Video Solution

187. Calculate the ratio of sodium formate and cormic acid $\left(K_{a}=2 \times 10^{-4}\right)$ in a buffer solution of $\mathrm{pH}=4.3$.

Watch Video Solution

188. What is the pOH of 0.1 M KB (salt of weak acid and strong base) at $25^{\circ} C$? (Given : $p K_{b} o f B^{-}=7$)

- Watch Video Solution

189. A certain weak acid has $K_{a},=10^{-5}$. If the equilibrium constant for is its reaction with a strong base is repesented as $y \times 10^{y}$ then find the value of y.

- Watch Video Solution

190. If solubility of AgCl in 0.2 M solution of AgNO_{3} is represented as $y \times 10^{-10}$ then find the value of y.
(Given: $K_{s p(A g C l)}=10^{-10}$)

- Watch Video Solution

191. When one litre of a saturated solution of PbCl_{2} (mol. Mass=278) is evaported, the residue is found to weight 2.78g. If $K_{s p}$ of PbCl_{2} is represented as $y \times 10^{-6}$ then find the value of y.

- Watch Video Solution

192. A solution is saturated in SrCO_{3}, and SrF_{2}. The CO_{3}^{2-} was found to be $10^{-3} \mathrm{~mol} / \mathrm{L}$. If the concentration of Fin solution is represented as $y \times 10^{-2} \mathrm{M}$ then what is the value of ' y '?
[Given : $\left.K_{s p}\left(S r C O_{3}\right)=2.5 \times 10^{-10}, K_{s p}\left(S r F_{2}\right)=10^{-10}\right]$
193. 10 mL of $\mathrm{H}_{2} A$ (weak diprtic acid) solutio is titrated against 0.1 M $\mathrm{NaOH} . \mathrm{pH}$ of the solution is plotted against volume of strong base added and following obserbation is made

If pH of the solution at first equivalence point is pH 1 and at second equivalence point is pH 2 . Calculate the value of $\mathrm{pH} 2-\mathrm{pH} 1$ at 25 C . Given for $\mathrm{H} 2 \mathrm{~A}, \mathrm{pKa} 1=4.6$ and $\mathrm{pKa2}=8, \log 25=251.4$

- Watch Video Solution

194. Amongst the following, the total number of compounds whose equesous solution turns red litmus paper blue is:

NaCN	KCl	$\mathrm{CH}_{3} \mathrm{COONH}_{4}$	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	ZnCl_{2}	$\mathrm{Na}_{3} \mathrm{PO}_{4}$
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$	$\mathrm{Na} \mathrm{CO}_{2} \mathrm{CO}_{3}$	$\mathrm{NH}_{4} \mathrm{Cl}$	NaHCO_{3}	$\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	Na 2 HPC

Given:
Acid $\quad k a_{1} \quad k a_{2} \quad k a_{3}$
$\begin{array}{lllll}H_{3} P O_{4} & 10^{-3} & 10^{-8} & 10^{-12}\end{array}$
$\begin{array}{llll}\mathrm{H}_{2} \mathrm{CO}_{3} & 10^{-6} & 10^{-11} & -\end{array}$
$\begin{array}{llll}\mathrm{H}_{2} \mathrm{CO}_{3} & 10^{-2} & 10^{-5} & -\end{array}$

- Watch Video Solution

Level 1

1. Which of the following will decrease with dilution at a given temperature?
A. pH of $10^{-3} \mathrm{M}$ acetic acid solution
B. pH of $10^{-3} \mathrm{M}$ aniline solution
C. degree of dissociation of 10^{-3} acetic acid
D. degree of dissociation of $10^{-3} \mathrm{M}$ aniline solution

Answer:

- Watch Video Solution

Level 2

1.50 mL of 0.5 M Na 2 CO 3 is titrated against 0.1 M HCl . On adding 40 mL of $\mathrm{HCl}, \mathrm{pH}$ of the solution will be:[Given for H 2 CO 3 , pK a $1=6.35$; pK a $2=10.33$;
$\log 3=0.477, \log 2=0.30]$
A. 6.35
B. 6.526
C. 8.34
D. 6.173

Answer:

2. 10 mL of 0.1 M tribasic acid $H_{3} A$ is titrated with 0.1 M NaOH solution. What is the ratio of $\frac{\left[H_{3} A\right]}{\left[A^{3-}\right]}$ at $2^{n d}$ equivalence points? $\left[\right.$ Given: $\left.K_{a 1}=10^{-3}, K_{a 2}=10^{-8}, K_{a 3}=10^{-12}\right]$
A. $\cong 10^{-4}$
B. $\cong 10^{+4}$
$C . \cong 10^{-7}$
D. $\cong 10^{+6}$

Answer:

- Watch Video Solution

3. A solution contains 0.05 M of each of NaCl and $\mathrm{Na}, \mathrm{CrO} \mathrm{O}_{4}$, Solid AgNO_{3}, is gradually added to it. Whichof the following facts true
(Given:
$K_{s p}\left(\mathrm{Ag}_{2}, \mathrm{CrO}_{4},\right)=1.9 \times 10^{-12} \mathrm{M}^{3}:$
A. $10^{-6} \mathrm{M}$
B. $10^{-4} \mathrm{M}$
C. $10^{-5} \mathrm{M}$
D. $10^{-9} \mathrm{M}$

Answer:

- Watch Video Solution

4. if 500 mL of $0.4 \mathrm{M} \mathrm{AgNO}_{3}$ is mixed with 500 mL of $2 \mathrm{MNH}_{3}$ solution the what is the concentration of $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+}$in solution?
[Given : $\left.K_{f_{1}}\left[\operatorname{Ag}\left(N H_{3}\right)^{+}\right]=10^{3}, K_{f_{2}}\left[\operatorname{Ag}\left(N H_{3}\right)_{2}^{+}\right]=10^{4}\right]$
A. $3.33 \times 10^{-7} \mathrm{M}$
B. $3.33 \times 10^{-5} \mathrm{M}$
C. $3 \times 10^{-4} \mathrm{M}$
D. $10^{-7} \mathrm{M}$

Answer:

- Watch Video Solution

5. The simultaneous solubility of Ag CN $\left(K_{f}=2.5 \times 10^{-16}\right)$ and $\mathrm{AgCl}\left(\mathrm{Ksp}=1.6 \times 10^{-10}\right)$ in $1 . \mathrm{OM} \mathrm{NH}_{3}(\mathrm{aq})$ are respectively : $\left[\right.$ Given, $\left.K_{f}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]=10^{7}\right]$
A. $0.037,5.78 \times 10^{-8}$
B. $5.78 \times 10^{-8}, 0.037$
C. $0.04,6.25 \times 10^{-8}$
D. $1.58 \times 10^{-3}, 1.26 \times 10^{-5}$

Answer:

- Watch Video Solution

6. There exist an equilibrium between solid SrSO_{4} and Sr^{2+} and SO_{4}^{2-} ion in aqueous medium. The possible equilibrium states are shown in figure as thick line. Now, if equlibrium is disturbed by addition of (a) $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ and (b) $\mathrm{K}_{2} \mathrm{SO}_{4}$ and dotted line represent approch of system towards equilibrium. Match the column given below :

(iv)

(v)

(vi)

(I) addition of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
(II) addition of $\mathrm{K}_{2} \mathrm{SO}_{4}$
A. (I) (iii), (II) (iv)
B. (I) (iv), (II) (v)
C. (I) (vi),(II) (v)
D. (I) (iv), (II) (vi)

Answer:

7. Solubility of Ag CN is maximum in:
A. acidic buffer solution
B. basic buffer solution
C. in pure water
D. equal in all solution

Answer:

- Watch Video Solution

8. $\mathrm{AgBr}_{s}+2 \mathrm{~S}_{2} \mathrm{O}_{3(a q)}^{2-} \Leftrightarrow \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2(a q)}^{3-}+\mathrm{Br}_{a q}^{-}$
[Using : $\left.K_{s p}(A g B r)=5 \times 10^{-13} K_{f}\left(A g\left(S_{2} O_{3}\right)_{2}^{3-}\right)=5 \times 10^{13}\right]$
What is the molar solubility of AgBr in $0.1 \mathrm{M} \mathrm{Na}_{2} S_{2} \mathrm{O}_{3}$
A. 0.5 M
B. 0.45 M
C. 0.045 M
D. None of these

Answer:

D Watch Video Solution

9. What is $\left[A g^{+}\right]$in a solution made by dissolving both $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ until saturation is reached with respect to both salts ? $\left.\left[K_{\text {sp }}\left(A g_{2} C_{2} O_{4}\right)=2 \times 10^{-11}, K_{s p}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)-2 \times 10^{-12}\right)\right]$
A. 2.80×10^{-4}
B. 7.6×10^{-5}
C. 6.63×10^{-6}
D. 3.52×10^{-4}

Answer:

- Watch Video Solution

10. What is the minimum pH required to prevent the precipitation of $Z n^{+2}$ in a solution that is $0.01 \mathrm{M} Z n C l_{2}$ and saturated with $0.1 \mathrm{M} H_{2} \mathrm{~S}$ (Given : $K_{s p} \mathrm{ZnS}=10^{-21}$ and $K a_{1} \times K a_{2}$ of $H_{2} S=10^{-20}$)
A. 0
B. 1
C. 2
D. 4

Answer:

D Watch Video Solution

11. The $\mathrm{Al}(\mathrm{OH})_{3}$ is involved in the following two equilibria,

$$
A l(O H)_{3}(s) \Leftrightarrow A l^{3+}(a q)+3 O H^{-}(a q), K_{s p}
$$

$A l(O H)_{3}(s)+O H^{-}(a q.) \Leftrightarrow A l(O H)_{4}^{-}(a q), K_{c}$
Which of the following relationship is correct at which solubility is minimum?
A. $\left[O H^{-}\right]=\left(\frac{K_{s p}}{K_{c}}\right)^{1 / 3}$
B. $\left[O H^{-}\right]=\left(\frac{K_{c}}{K_{s p}}\right)^{1 / 4}$
c. $\left[O H^{-}\right]=\sqrt{\left(\frac{K_{s p}}{K_{c}}\right)^{1 / 4}}$
D. None of these

Answer:

- Watch Video Solution

Level 3

1. Solution of a weak acid and its anion (that is,its conjugate base) or of a base and its common cation are buffered. When we add a small amount of acid or base to any one of the, the pH of solution change very little. pH of buffer solution can be computed as for acidic buffer : $p H=p K_{a}+$ log. $\frac{[\text { Conjugate base }]}{[\mathrm{Acid}]}$
for basic buffer : $p O H=p K_{b}+\log$. $\frac{[\text { Conjugate acid }]}{[\text { Base }]}$

It is generly accepted that a has useful buffer cpacity (pH change resisting power) provided that the value of [salt or conjugate base] /[acid] for acidic buffer lies within the range of $1: 10$ to 1 . Buffer capacity is maximum when [conjugate base] = [acid]
one litre of an aqueous solution contains 0.15 mole of $\mathrm{CH}_{3} \mathrm{COOH}\left(p K_{a=4.8}\right)$ and 0.15 mole of $\mathrm{CH}_{3} \mathrm{COONa}$. After the addition of 0.05 mole of solid NaOH to this solution, the pH will be :
A. 4.5
B. 4.8
C. 5.1
D. 5.4

Answer:

- Watch Video Solution

2. Solution of a weak acid and its anion (that is,its conjugate base) or of a base and its common cation are buffered. When we add a small amount
of acid or base to any one of the, the pH of solution change very little. pH of buffer solution can be computed as for acidic buffer : $p H=p K_{a}+$ log. $\frac{\text { [Conjugate base] }}{[\text { Acid }]}$
for basic buffer : $p O H=p K_{b}+\log . \frac{[\text { Conjugate acid }]}{[\text { Base }]}$
It is generly accepted that a has useful buffer cpacity (pH change resisting power) provided that the value of [salt or conjugate base] /[acid] for acidic buffer lies within the range of $1: 10$ to 1 . Buffer capacity is maximum when [conjugate base] = [acid]

Calculater the pH of a solution made by adding 0.01 mole of HCl in 100 mL of a solution which is 0.2 M in $\mathrm{NH}_{3}\left(p K_{b}=4.74\right)$ and 0.3 M in NH_{4}^{+}: (Assuming no change in volume)
A. 5.34
B. 8.66
C. 7.46
D. None of these

Answer:

3. Solution of a weak acid and its anion (that is,its conjugate base) or of a base and its common cation are buffered. When we add a small amount of acid or base to any one of the, the pH of solution change very little. pH of buffer solution can be computed as for acidic buffer : $p H=p K_{a}+$ log. $\frac{\text { [Conjugate base }]}{[\text { Acid }]}$
for basic buffer : $p O H=p K_{b}+\log$. $\frac{[\text { Conjugate acid }]}{[\text { Base }]}$
It is generly accepted that a has useful buffer cpacity (pH change resisting power) provided that the value of [salt or conjugate base] /[acid] for acidic buffer lies within the range of $1: 10$ to 1 . Buffer capacity is maximum when [conjugate base] = [acid]

Useful buffer range of weak acid $H A\left(K_{a}=10^{-5}\right)$ is:
A. 5 to 7
B. 4 to 6
C. 3 to 6
D. None of these

Answer:

- Watch Video Solution

4. Solution of a weak acid and its anion (that is,its conjugate base) or of a base and its common cation are buffered. When we add a small amount of acid or base to any one of the, the pH of solution change very little. pH of buffer solution can be computed as for acidic buffer : $p H=p K_{a}+\log . \frac{[\text { Conjugate base }]}{[\mathrm{Acid}]}$
for basic buffer : $p O H=p K_{b}+\log$. $\frac{[\text { Conjugate acid }]}{[\text { Base }]}$ It is generly accepted that a has useful buffer cpacity (pH change resisting power) provided that the value of [salt or conjugate base] /[acid] for acidic buffer lies within the range of $1: 10$ to 1 . Buffer capacity is maximum when [conjugate base] = [acid]

Choose correct statement :
A. When we add small amount of NaOH in acidic buffer solution, pOH of solution is increases
B. When we add small amount of NaOH in vasic buffer solution, pH of
solution is increases
C. When we add small amount of water in acidic buffer solution, pH of
solution is decreases
D. When 100 mL of 0.2 M CH 3 COOH react with 200 mL of 0.1 M NaOH buffer solution is formed

Answer:

- Watch Video Solution

5. Hydrolysis is an acid-basedreaction of a cation or anion or both ions of a salt with water, Resultan solution of hydrolysis may be acidic, basic or netural. The anion A^{-}which is a weakeer base than OH^{-}and which his its conjugate acid HA stronger then water but weaker than $\mathrm{H}_{3} \mathrm{O}$ shown the phenomenon of hydrolysis $\mathrm{Ex}: \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{CN}^{-}, \mathrm{NO}_{2}^{-}$etc. The contion B^{+}which is a weaker acid than H_{3}^{+}which is a weaker acid then H_{3}^{+}and which has its conjugate base BOH stronger than water but
weak than OH^{-}shown the phenmenon of hydrolysis Ex :
$\mathrm{NH}_{4}^{+} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{+}, \mathrm{N}_{2} \mathrm{H}_{5}^{+}$etc.
The hydrolysis constant of anion and cation are given by

$$
\begin{aligned}
& A^{-}(a q .)+H_{2} O(l) \Leftrightarrow H A(a q .)+O H^{-}(a q) \\
& K_{h}=\frac{K_{w}}{K_{a}} \Rightarrow \frac{[H A(a q .)]\left[O H^{-}(a q .)\right]}{\left[A^{-}(a q .)\right]} \\
& B^{+}(a q .)+H_{2} O(l) \Leftrightarrow B O H(a q .)+H^{+}(a q .) \\
& K_{h}=\frac{K_{w}}{K_{b}} \Rightarrow \frac{[B O H(a q .)]\left[H^{+}(a q .)\right]}{\left[B^{-}(a q .)\right]}
\end{aligned}
$$

Which of the following statement is true
A. Weaker the acid, greater will be hydrolysis of its anion
B. Weaker the base, greater will be hydrolysis of its cation
C. Both (a) and (b)
D. None of these

Answer:

- Watch Video Solution

6. Hydrolysis is an acid-basedreaction of a cation or anion or both ions of a salt with water, Resultan solution of hydrolysis may be acidic, basic or netural. The anion A^{-}which is a weakeer base than OH^{-}and which his its conjugate acid HA stronger then water but weaker than $\mathrm{H}_{3} \mathrm{O}$ shown the phenomenon of hydrolysis Ex: $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{CN}^{-}, \mathrm{NO}_{2}^{-}$etc.

The contion B^{+}which is a weaker acid than $H_{3}{ }^{+}$which is a weaker acid then H_{3}^{+}and which has its conjugate base BOH stronger than water but weak than $O H^{-}$shown the phenmenon of hydrolysis Ex :

$$
\mathrm{NH}_{4}^{+} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{+}, \mathrm{N}_{2} \mathrm{H}_{5}^{+} \text {etc. }
$$

The hydrolysis constant of anion and cation are given by

$$
\begin{aligned}
& A^{-}(a q .)+H_{2} O(l) \Leftrightarrow H A(a q .)+O H^{-}(a q) \\
& K_{h}=\frac{K_{w}}{K_{a}} \Rightarrow \frac{[H A(a q .)]\left[O H^{-}(a q .)\right]}{\left[A^{-}(a q .)\right]} \\
& B^{+}(a q .)+H_{2} O(l) \Leftrightarrow B O H(a q .)+H^{+}(a q .) \\
& K_{h}=\frac{K_{w}}{K_{b}} \Rightarrow \frac{[B O H(a q .)]\left[H^{+}(a q .)\right]}{\left[B^{-}(a q .)\right]}
\end{aligned}
$$

select the correct statement :
A. KCl undrgoes hydrolysis
B. $K_{h}=K_{b}\left(A^{-}\right)$and $K_{h}=K_{a}\left(B^{+}\right)$
C. O.1 M solution of NACN is acidic
D. resultant solution of equal volume of 0.1 M NH 3 and 0.1 M HCl is basic

Answer:

- Watch Video Solution

7. Hydrolysis is an acid-basedreaction of a cation or anion or both ions of a salt with water, Resultan solution of hydrolysis may be acidic, basic or netural. The anion A^{-}which is a weakeer base than $O H^{-}$and which his its conjugate acid HA stronger then water but weaker than $\mathrm{H}_{3} \mathrm{O}$ shown the phenomenon of hydrolysis Ex: $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{CN}^{-}, \mathrm{NO}_{2}^{-}$etc. The contion B^{+}which is a weaker acid than H_{3}^{+}which is a weaker acid then H_{3}^{+}and which has its conjugate base BOH stronger than water but weak than $O H^{-}$shown the phenmenon of hydrolysis Ex :

$$
\mathrm{NH}_{4}^{+} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{+}, \mathrm{N}_{2} \mathrm{H}_{5}^{+} \text {etc. }
$$

The hydrolysis constant of anion and cation are given by

$$
\begin{aligned}
& A^{-}(\text {aq. })+H_{2} O(l) \Leftrightarrow H A(\text { aq. })+O H^{-}(a q) \\
& K_{h}=\frac{K_{w}}{K_{a}} \Rightarrow \frac{[H A(a q .)]\left[O H^{-}(a q .)\right]}{\left[A^{-}(a q .)\right]} \\
& B^{+}(a q .)+H_{2} O(l) \Leftrightarrow B O H(a q .)+H^{+}(a q .) \\
& K_{h}=\frac{K_{w}}{K_{b}} \Rightarrow \frac{[B O H(a q .)]\left[H^{+}(a q .)\right]}{\left[B^{-}(a q .)\right]}
\end{aligned}
$$

When pure ammonium chloride is dissolved in pure water, the pH of the resulting not 7. This is because :
A. Ammonium ions accept protons from water molecules leaving fee
OH^{-}ions in solution
B. ammonium ions donate protons to water molecules froming H_{3}^{+} ions in solution
C. Ammonium ions combine with water molecule to give the weak base, ammonium hydroxide
D. chloride ion made the solution acidic

Answer:

8. Hydrolysis is an acid-basedreaction of a cation or anion or both ions of a salt with water, Resultan solution of hydrolysis may be acidic, basic or netural. The anion A^{-}which is a weakeer base than OH^{-}and which his its conjugate acid HA stronger then water but weaker than $\mathrm{H}_{3} \mathrm{O}$ shown the phenomenon of hydrolysis Ex: $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{CN}^{-}, \mathrm{NO}_{2}^{-}$etc.

The contion B^{+}which is a weaker acid than H_{3}^{+}which is a weaker acid then H_{3}^{+}and which has its conjugate base BOH stronger than water but weak than OH^{-}shown the phenmenon of hydrolysis Ex : $\mathrm{NH}_{4}^{+} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{+}, \mathrm{N}_{2} \mathrm{H}_{5}^{+}$etc.

The hydrolysis constant of anion and cation are given by

$$
\begin{aligned}
& A^{-}(a q .)+H_{2} O(l) \Leftrightarrow H A(a q .)+O H^{-}(a q) \\
& K_{h}=\frac{K_{w}}{K_{a}} \Rightarrow \frac{[H A(a q .)]\left[O H^{-}(a q .)\right]}{\left[A^{-}(a q .)\right]} \\
& B^{+}(a q .)+H_{2} O(l) \Leftrightarrow B O H(a q .)+H^{+}(a q .) \\
& K_{h}=\frac{K_{w}}{K_{b}} \Rightarrow \frac{[B O H(a q .)]\left[H^{+}(a q .)\right]}{\left[B^{-}(a q .)\right]}
\end{aligned}
$$

Calculate percentage degreeof hydrolysis in a 0.1 M solution of $\mathrm{CH}_{3} \mathrm{COONa} .\left(\mathrm{K}_{a} \mathrm{ofCH} \mathrm{H}_{3} \mathrm{COOH}=10^{-5}\right)$
B. 0.01
C. 10^{-4}
D. None of these

Answer:

- Watch Video Solution

9. Acid-base indicators are either weak organic acids or weak organic bases. Indicator change colour in dilute solution when the hydonium ion concentration reaches a particular calur For example. Phenolphthalein is a coloureless stbstance in any aqueous solution with a pH less than 8.3 In between the pH range 8.3 to 10 , transition of colour (colourless to pink) takes place and if pH of solution is greater than 10 solution is dark pink. Considering an acid indicator HIn, the equilibrium involving it and its conjgate base In^{-}can be represented as :

$$
\underset{\text { acidic from }}{H I n} \Leftrightarrow H^{+} \underset{\text { basic from }}{I n^{-}}
$$

pH of solution can be computed as:

$$
p H=p K_{I n}+\log \cdot \frac{\left[I N^{-}\right]}{[H I n]}
$$

In general, transition of colour takes place in between the pH range $p K_{I n \pm 1}$.

An indicator is a weak acid and pH range is 4.0 to 6.0 . If indicator in 50% ionized in a given solution then what is the ionization constant of the acid ?
A. 10^{-4}
B. 10^{-5}
C. 10^{-6}
D. None of these

Answer:

- Watch Video Solution

10. Acid-base indicators are either weak organic acids or weak organic bases. Indicator change colour in dilute solution when the hydonium ion concentration reaches a particular calur For example. Phenolphthalein is
a coloureless stbstance in any aqueous solution with a pH less than 8.3 In between the pH range 8.3 to 10 , transition of colour (colourless to pink) takes place and if pH of solution is greater than 10 solution is dark pink. Considering an acid indicator HIn, the equilibrium involving it and its conjgate base In^{-}can be represented as :

$$
\underset{\text { acidic from }}{H I n} \Leftrightarrow H^{+} \underset{\text { basic from }}{I n^{-}}
$$

pH of solution can be computed as :

$$
p H=p K_{I n}+\log \cdot \frac{\left[I N^{-}\right]}{[H I n]}
$$

In general, transition of colour takes place in between the pH range $p K_{\text {In }} 1$.

Select the correct statement (s) :
A. At midway in the transition of an acidic indicator, $p H=p K_{\text {in }}$
B. Methyl orange (3.1 to 4.4) is a suitable indicator for titration of weak acid and strong base
C. Bromothymol blue (6.0 to 7.6) is a good indicator for tatration of HCl and NaOH
D. Thymol blue (1.2 "to" 2.8) is a very good indicator for titration of 100 ML of $0.1 \mathrm{M} \mathrm{NH} \mathrm{N}_{4} \mathrm{OH}\left(p K_{b}=4.74\right)$ and 0.1 M HCl

Answer:

- Watch Video Solution

11. Acid-base indicators are either weak organic acids or weak organic bases. Indicator change colour in dilute solution when the hydonium ion concentration reaches a particular calur For example. Phenolphthalein is a coloureless stbstance in any aqueous solution with a pH less than 8.3 In between the pH range 8.3 to 10 , transition of colour (colourless to pink) takes place and if pH of solution is greater than 10 solution is dark pink. Considering an acid indicator HIn, the equilibrium involving it and its conjgate base In^{-}can be represented as :

$$
\underset{\text { acidic from }}{H I n} \Leftrightarrow H^{+} \underset{\text { basic from }}{I n^{-}}
$$

pH of solution can be computed as :

$$
p H=p K_{I n}+\log \cdot \frac{\left[I N^{-}\right]}{[H I n]}
$$

In general, transition of colour takes place in between the pH range
$p K_{I n \pm 1}$.
Following is the titration curce of two acid HA and HB (5 milli-moles each) titrated against strong base $\mathrm{NaOH}(0.1 \mathrm{M})$

What is $p K_{a}$ for HB acid ?
A. 3
B. 4
C. 5
D. 6

Answer:

- Watch Video Solution

12. Acid-base indicators are either weak organic acids or weak organic bases. Indicator change colour in dilute solution when the hydonium ion concentration reaches a particular calur For example. Phenolphthalein is a coloureless stbstance in any aqueous solution with a pH less than 8.3 In between the pH range 8.3 to 10 , transition of colour (colourless to pink) takes place and if pH of solution is greater than 10 solution is dark pink.

Considering an acid indicator HIn, the equilibrium involving it and its conjgate base In^{-}can be represented as :

$$
\underset{\text { acidic from }}{H I n} \Leftrightarrow H^{+} \underset{\text { basic from }}{I n^{-}}
$$

pH of solution can be computed as :

$$
p H=p K_{I n}+\log \cdot \frac{\left[I N^{-}\right]}{[H I n]}
$$

In general, transition of colour takes place in between the pH range $p K_{\text {In } \pm 1}$.

What is equilibrium constant for the reaction :

$$
H B(a q .)+N a A(a q .) \Leftrightarrow H A(a q .)+N a B(a q .) ?
$$

A. 10
B. 0.1
C. 10^{-7}
D. None of these

Answer:

- Watch Video Solution

13. Acid-base indicators are either weak organic acids or weak organic bases. Indicator change colour in dilute solution when the hydonium ion concentration reaches a particular calur For example. Phenolphthalein is a coloureless stbstance in any aqueous solution with a pH less than 8.3 In between the pH range 8.3 to 10 , transition of colour (colourless to pink) takes place and if pH of solution is greater than 10 solution is dark pink.

Considering an acid indicator HIn, the equilibrium involving it and its
conjgate base In^{-}can be represented as :

$$
\underset{\text { acidic from }}{H I n} \Leftrightarrow H^{+} \underset{\text { basic from }}{I n^{-}}
$$

pH of solution can be computed as :

$$
p H=p K_{I n}+\log \cdot \frac{\left[I N^{-}\right]}{[H I n]}
$$

In general, transition of colour takes place in between the pH range $p K_{I n \pm 1}$.

Calculate the pH at equivalent point when HB is titrated with NaOH .
A. 8.75
B. 8.85
C. 9.0
D. None of these

Answer:

- Watch Video Solution

14. Acid-base indicators are either weak organic acids or weak organic bases. Indicator change colour in dilute solution when the hydonium ion
concentration reaches a particular calur For example. Phenolphthalein is a coloureless stbstance in any aqueous solution with a pH less than 8.3 In between the pH range 8.3 to 10 , transition of colour (colourless to pink) takes place and if pH of solution is greater than 10 solution is dark pink. Considering an acid indicator HIn, the equilibrium involving it and its conjgate base In^{-}can be represented as :

$$
\underset{\text { acidic from }}{H I n} \Leftrightarrow H^{+} \underset{\text { basic from }}{\mathrm{In}^{-}}
$$

pH of solution can be computed as :

$$
p H=p K_{I n}+\log \cdot \frac{\left[I N^{-}\right]}{[H I n]}
$$

In general, transition of colour takes place in between the pH range $p K_{\text {In } \pm 1}$

Which of the following indicator is most suitable for titration of HB with strong base :
A. Phenolphthalein (8.3-10)
B. Bromothhmol blue (6-7.6)
C. Methyl red (4.2-6.3)
D. Malachite green (11.4-13)

Answer:

- Watch Video Solution

15. Consider a sturated solution of silver chloride that is in contact with solid silver chloride. The solubility equilibrium can be represented as

$$
A g C l(s) \Leftrightarrow A g^{+}(a q .)+C l^{-}(a q .), \quad K_{s p}=\left[A g^{+}(a q .)\right]\left[C l^{-}(a q .)\right]
$$

Where $K_{s p}$ is clled the solubility product constant or simply the solubility product. In general, the solubility product of a compound is the product of the molar concentrations of the constituent ions, each raised to the power of its stoichiometric coefficient in the equilibrium equation.

For concentrations of ions that do not necessarliy correpond to equilibrium conditions we use the reaction quotient (Q) which is clled the ion or ionic prodect (Q) to predict whether a precipitate will from. Note that (Q) has the same for as $K_{s p}$ are
$Q<K_{s p}$ Unsaturated solution
$Q=K_{s p}$ Saturated solution
$Q>_{s p}$ Supersaturated solution, precipitate will form
Will a precipitate from if $50 \mathrm{~cm}^{3}$ of $0.01 \mathrm{M}^{\mathrm{AgNO}}{ }_{3}$ and $50 \mathrm{~cm}^{3}$ of
$2 \times 10^{-5} \mathrm{M} \mathrm{NaCl}$ are mixed?
$\left[\right.$ Given: $\left.K_{s p}(A g C l)=10^{-10} M^{2}\right]$
A. Yes
B. No
C. Ionic product is less than solubility product, hence precipitate will from
D. Data insufficient

Answer:

- Watch Video Solution

16. Consider a sturated solution of silver chloride that is in contact with solid silver chloride. The solubility equilibrium can be represented as

$$
A g C l(s) \Leftrightarrow A g^{+}(a q .)+C l^{-}(a q .), \quad K_{s p}=\left[A g^{+}(a q .)\right]\left[C l^{-}(a q .)\right]
$$

Where $K_{s p}$ is clled the solubility product constant or simply the solubility product. In general, the solubility product of a compound is the product of the molar concentrations of the constituent ions, each raised to the
power of its stoichiometric coefficient in the equilibrium equation.

For concentrations of ions that do not necessarliy correpond to equilibrium conditions we use the reaction quotient (Q) which is clled the ion or ionic prodect (Q) to predict whether a precipitate will from. Note that (Q) has the same for as $K_{s p}$ are
$Q<K_{s p}$ Unsaturated solution
$Q=K_{s p}$ Saturated solution
$Q>_{s p}$ Supersaturated solution, precipitate will from
Will a precipitate from if 1 volume of 0.1 volume of $0.1 \mathrm{MPb}^{2+}$ ion solution in mixed with 3 volume of $0.3 \mathrm{M} \mathrm{Cl}^{-}$ion solution ? $\left[\right.$ Givem : $\left.K_{s p}\left(P b C l_{2}\right)=1.7 \times 10^{-5} M^{3}\right]$
A. Yes
B. No
C. Ionic product is less than solubility product, hence precipitate will from
D. Data insufficient

Answer:

17. Consider a sturated solution of silver chloride that is in contact with solid silver chloride. The solubility equilibrium can be represented as

$$
A g C l(s) \Leftrightarrow A g^{+}(a q .)+C l^{-}(a q .), \quad K_{s p}=\left[A g^{+}(a q .)\right]\left[C l^{-}(a q .)\right]
$$

Where $K_{s p}$ is clled the solubility product constant or simply the solubility product. In general, the solubility product of a compound is the product of the molar concentrations of the constituent ions, each raised to the power of its stoichiometric coefficient in the equilibrium equation.

For concentrations of ions that do not necessarliy correpond to equilibrium conditions we use the reaction quotient (Q) which is clled the ion or ionic prodect (Q) to predict whether a precipitate will from. Note that (Q) has the same for as $K_{s p}$ are
$Q<K_{s p}$ Unsaturated solution
$Q=K_{\text {sp }}$ Saturated solution
$Q>_{s p}$ Supersaturated solution, precipitate will from
At $25^{\circ} \mathrm{C}$, will a precipitate of $\mathrm{Mg}(\mathrm{OH})_{2}$ from when a 0.0001 M solution of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is adjusted to a pH of 9.0 ? At what minimum value of pH
will precipition start?
$\left[\right.$ Given: $\left.K_{s p}\left(M g(O H)_{2}\right)=10^{-11} M^{3}\right]$
A. $\mathrm{No}, \mathrm{pH}=3.5$
B. NopH 10.5
C. $\mathrm{No}, \mathrm{pH}=6.0$
D. Yes, $\mathrm{pH}=8.5$

Answer:

- Watch Video Solution

18. Consider a sturated solution of silver chloride that is in contact with solid silver chloride. The solubility equilibrium can be represented as $A g C l(s) \Leftrightarrow A g^{+}(a q)+.C l^{-}(a q),. \quad K_{s p}=\left[A g^{+}(a q).\right]\left[C l^{-}(a q).\right]$

Where $K_{s p}$ is clled the solubility product constant or simply the solubility product. In general, the solubility product of a compound is the product of the molar concentrations of the constituent ions, each raised to the power of its stoichiometric coefficient in the equilibrium equation.

For concentrations of ions that do not necessarliy correpond to equilibrium conditions we use the reaction quotient (Q) which is clled the ion or ionic prodect (Q) to predict whether a precipitate will from. Note that (Q) has the same for as $K_{s p}$ are
$Q<K_{s p}$ Unsaturated solution
$Q=K_{s p}$ Saturated solution
$Q>_{s p}$ Supersaturated solution, precipitate will from Determine the molar solubility of $M g F_{2}$ from its solubility product $K_{s p}=4 \times 10^{-9}:$
A. 10^{-3}
B. 6.32×10^{-5}
C. 2×10^{-5}
D. None of these

Answer:

19. Consider a sturated solution of silver chloride that is in contact with solid silver chloride. The solubility equilibrium can be represented as

$$
A g C l(s) \Leftrightarrow A g^{+}(a q .)+C l^{-}(a q .), \quad K_{s p}=\left[A g^{+}(a q .)\right]\left[C l^{-}(a q .)\right]
$$

Where $K_{s p}$ is clled the solubility product constant or simply the solubility product. In general, the solubility product of a compound is the product of the molar concentrations of the constituent ions, each raised to the power of its stoichiometric coefficient in the equilibrium equation.

For concentrations of ions that do not necessarliy correpond to equilibrium conditions we use the reaction quotient (Q) which is clled the ion or ionic prodect (Q) to predict whether a precipitate will from. Note that (Q) has the same for as $K_{s p}$ are
$Q<K_{s p}$ Unsaturated solution
$Q=K_{\text {sp }}$ Saturated solution
$Q>_{s p}$ Supersaturated solution, precipitate will from
The soluvility molar solubility of ferric hydroxide in aqueous solution is 6×10^{-38} at 298 K . the solubility of Fe^{3+} ion will increase when the :
A. pH is increased
B. pH is 7.0
C. pH is decreased
D. strurated solution is exposed to the atomosphere

Answer:

- Watch Video Solution

One Or More Answer Is Are Correct

1. Which is/are wrong statement (s) ?
A. Arrhenius acids are also Bronsted acids but all Arrhenius bases are not Bronsted base
B. All Lewis bases are Bronstaed bases
C. AllBronsted acids are Lewis acids
D. Conjugate base of a steong acid is weak

Answer:

Match The Column

1. Column-I and Column-II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of

Column-II

Column-I

Column-II

(A) HCl
(B) NH_{3}
(C) $\mathrm{H}_{2} \mathrm{O}$
(P) Bronsted base
(Q) Bronsted acid
(R) Arrhenius acid
(S) Lewis base in adduct displacement reaction

- Watch Video Solution

Assertin Reason Type Questions

1. STATEMENT-1: All strong monoprotic acid with same concentration in dilute solution show same pH .

STATEMENT-2: Water shows levelling effect.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

Others

1. The aromatic species is/are
A. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{-}$
B. $\mathrm{HPO}_{4}^{2-}, \mathrm{HCO}_{3}^{-}$
C. $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}, \mathrm{H}_{2} \mathrm{PO}_{3}^{-}, \mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
D. $\mathrm{HPO}_{3}^{2-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{3}^{2-}$

Answer:

- Watch Video Solution

2. Which of the following statements is/are not correct ?
A. A substance which can provide OH^{-}in aqueous medium is a base
B. A substance which can accept a pair of electronis a base
C. A sumstance which can accept a proton in aqueous medium is a base
D. A substance which can donate a pair of electron is a base

Answer:

- Watch Video Solution

3. For weak acid (α is very small)
A. Directly proportional to the square root of volume of solution
B. inversel proportainal to the dilution
C. inversely proportional to the square root of concentration
D. directly proportional to concentrartion

Answer:

- Watch Video Solution

4. Factor influencing the degree of inization of a weak electrolyte is :
A. dilution
B. temperature
C. persence of other ions
D. nature of solvent

Answer:

- Watch Video Solution

5. Which of the following statement (s) is/are correct about the ionic prodict of water?
A. K_{i} (ionization constant of water) $<K_{w}$ (ionic product of water)
B. $p K_{i}>p K_{w}$
C. $A t 20^{\circ} C, K_{i}=1.8 \times 10^{-14}$
D. Ionic product of water at $10^{\circ} \mathrm{C}$ is 10^{-14}

Answer:

6. Which among the following statement is/are correct ?
A. $p H=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for dilute solution
B. pH of $\mathrm{H}_{2} \mathrm{O}$ decreases with increase of temperature
C. pH can not more than 14
D. If a solution is diluted ten times, its pH always increases by 1

Answer:

- Watch Video Solution

7. If concentration of two weak acids are different and D.O.D (α) are very less then their relative strength can be compared by :
A. $\frac{\left[H^{+}\right]_{1}}{\left[H^{+}\right]_{2}}$
B. $\frac{\alpha 1}{\alpha 2}$
C. $\frac{C_{1} \alpha_{1}}{C_{2} \alpha_{2}}$
D. $\frac{K_{a 1} C_{1}}{K_{a 2} C_{2}}$

Answer:

- Watch Video Solution

8. If concentration of two weak acids are different and D.O.D (α) are very less then their relative strength can be compared by :
A. $\frac{\left[\mathrm{OH}^{-}\right]_{1}}{\left[\mathrm{OH}^{-}\right]_{2}}$
B. $\frac{K b_{1}}{K b_{2}}$
C. $\frac{\alpha 1}{\alpha 2}$
D. $\frac{\sqrt{K b_{1}}}{\sqrt{K b_{2}}}$

Answer:

9. Which of the following statement is/are true?
A. $\left[H^{+}\right]=\left[O H^{-}\right]=\sqrt{K_{w}}$ for a netural solution
B. $\left[O H^{-}\right]<\sqrt{K_{w}}$
C. $\mathrm{pH}+\mathrm{pOH}=14$ at all temperature
D. $\left[\mathrm{H}^{-}\right]=10^{-7} \mathrm{M}$ for a netural solution at $25^{\circ} \mathrm{C}$

Answer:

Watch Video Solution

10. Which of the following mixture constitute a buffer?
A. $\mathrm{HCOOH}+\mathrm{HCOONa}$
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}$
C. $\mathrm{NaCl}+\mathrm{HCl}$
D. $\mathrm{NH}_{4} \mathrm{Cl}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Answer:

- Watch Video Solution

11. Which of the following mixtures can act as buffer?
A. $\mathrm{NaOH}+\mathrm{HCOONa}$ (1:1 molar ratio)
B. $\mathrm{HCOOH}+\mathrm{NaOH}$ (2:1 molar ratio)
C. $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}$ (2:1 molar ratio)
D. $\mathrm{HCOOH}+\mathrm{NaOH}$ (1:1 molar ratio

Answer:

Watch Video Solution

12. Which of the following will function as buffer ?
A. $\mathrm{NaCl}+\mathrm{NaOH}$
B. Borax + boric acid
C. $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
D. $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$

Answer:

- Watch Video Solution

13. Which of the following statements is/are correct
A. The conjugate acid of NH_{2}^{-}of $\mathrm{NH}_{-}(3)^{`}$
B. Solubility product constant increases with increase in concentration of ions
C. On diluting a buffer solution pH change is negligible
D. In alkaline buffer solution, if some HCl is added, its $\left[\mathrm{OH}^{-}\right.$] will increase

Answer:

14. Degree of hydrolysis (α) for a salt of strong acid and weak base is :
A. independent of dilution
B. increases with dilution
C. increases with decreases in K_{b}
D. increases with increase n temperature

Answer:

D Watch Video Solution

15. The compound whose 0.1 M solution is acidic:

$$
\left[p K_{a} \mathrm{of} H C O O H=0.75, p K_{b} \mathrm{of} N H_{4} \mathrm{OH}=4.74\right]
$$

A. Ammonium formate
B. Ammonium sulphate
C. Ammonium chloride
D. Sodium formate

Answer:

- Watch Video Solution

16. Formic acid is obtained when
A. $\left[\mathrm{OH}^{-}\right]$of 0.01 M HCl (aq.) will be less than that of 0.01 M HCOOH (aq.)
B. aolution containing 0.1 M NaOH (aq.) and 0.1 M MCOONa (aq.) is a buffer solution
C. pH of $10^{-9} \mathrm{M} \mathrm{HCl}$ (aq.) will be approximately 7 at $25^{\circ} \mathrm{C}$
D. ph of a solution formed by mixing equimolar quantities of HCOOH and HCl will be less than that of a similar solution formed HCOOH and HCOOONa

- Watch Video Solution

17. If you have saturated solution of $C a F_{2}$ then :
A. $\left[C a^{2+}\right]=\left(K_{s p} / 4\right)^{1 / 3}$
B. $2 \times\left[C a^{2+}\right]=\left[F^{-}\right]$
C. $\left[C a^{2+}\right]=2\left[F^{-}\right]$
D. $\left[C a^{2+}\right]=\sqrt{K_{s p}}$

Answer:

Watch Video Solution

18. What is/are correct statement (s)?
A. Solubiolity of AgCl in pure water is $10^{-5} \mathrm{gm} /$ litre
B. Solubility of AgCl in 2 M KBr is $10^{-5} \mathrm{~mol} / \mathrm{litre}$
C. Solubility of AgCl in $2 \mathrm{M} \mathrm{AgNO}_{3}$ is $5 \times 10^{-11} \mathrm{M}$
D. Solubility of AgCl in $2 \mathrm{M} \mathrm{NH}_{3}$ is 0.166 M

Answer:

- Watch Video Solution

19. What is/are correct statement (s)?
A. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ have greater degree of hydrolysis in 0.2 M solution in comparision os 0.4 M solution.
B. Ahnions which are weaker base than OH^{-}, do not hydrolyse
C. The $\mathrm{CH}_{3} \mathrm{COO}^{-}$, have greater of hydrolysis in comparision of HCOO^{-}when their salt solution have equal conc.
D. SO_{4}^{2-} hydrolyses but HSO_{4}^{-}does not undergo hydrolysis

Answer:

- Watch Video Solution

20. In an acidic indicator HIn has inizationaconstant is 10^{-8}. The acid form of indicator is yellow and alkaline form is red. Which is correct statement?
(Given : $\log 2=0.3, \log 3=0.48$)
A. The pH range of ndicator is 7 to 9
B. Change in pH is 0.96 when 75% yellow colour change to 75% red colour
C. This inkdicator is suitable for the titrationof strong acid vs. strong base
D. pH of indicator is 8.3 when ration of acid from to alkaline from is 2 .

Answer:

- Watch Video Solution

Column-I

A. Coniugate acid-base pair

B: Acid-base adduct
C. An acid-base reaction
(D) Proton donation

Column-II

(P) Bronsted-Lowry concept
(Q) Lewis concept
(R) Arrhenius concept
(S) $K_{a} \cdot K_{b}=K_{w}$

- Watch Video Solution

22.

Match
the
following
columns

Column-I

Column-II

(A) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ (aq.)
(P) Only cationic hydrolysis
(B) KClO_{4} (aq.)
(Q) Only anionic hydrolysis
(C) HCOONa (aq.)
(R) Both cationic as well as anionic hydrolysis
(D) $\mathrm{NH}_{4} \mathrm{CN}($ aq. $)$
(S) No hydrolysis

- Watch Video Solution

23. Match
the
following
columns

Column-II

(A) Salt of weak acid and weak base
(B) Salt of weak acid and strong base
(C) Salt of strong acid and strong base
(D) Salt of strong acid and weak base
(P) $\mathrm{pH}=1 / 2\left[\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log C\right]$
(Q) $\mathrm{pH}=1 / 2\left[\mathrm{p} K_{w}+\mathrm{p} K_{a}-\mathrm{p} K_{b}\right]$
(R) $\mathrm{pH}=1 / 2\left[\mathrm{p} K_{w}-\mathrm{p} K_{b}-\log C\right]$
(S) $\mathrm{pH}=1 / 2\left[\mathrm{p} K_{w}\right]$

Column-I

Column-II

(A) Salt of weak acid and weak base $\left(\mathrm{pK} \mathrm{a}_{\mathrm{a}}=\mathrm{pK} \mathrm{K}_{\mathrm{b}}\right)$
(B) Salt of weak acid and strong base
(Q) pH of solution at $25^{\circ} \mathrm{C}$ greater that
(C) Salt of strong acid and strong base
(D) Salt of strong acid and weak base
(R) pH of solution at $25^{\circ} \mathrm{C}$ equal to 7
(S) pH cannot be find until the valu: K_{a} / K_{b} is given

Watch Video Solution

25. Match the
following
columns

Column-I

(A) pH of $0.1 \mathrm{MHA}\left(\mathrm{pK}_{a}=5\right)$ and 0.01 MNaA
(B) pH of $0.1 \mathrm{MBOH}\left(\mathrm{p} K_{b}=6\right)$ and 0.1 MBCl
(C) pH of 0.1 M salt of weak acid $\left(\mathrm{p} K_{a}=5\right)$ and weak base $\left(\mathrm{p} K_{b}=7\right)$
(D) pH of 500 litre of $0.02 \mathrm{MHNO}_{3}$ and 500 litre $0.01 \mathrm{MSr}(\mathrm{OH})_{2}$
(P) 4
(Q) 7

Column-II

(R) 6
(S) 8

Column-I

(A) $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{pK}_{a}=4.74,0.1 \mathrm{M}\right)$
$+\mathrm{CH}_{3} \mathrm{COONa}(0.1 \mathrm{M})$
(B) $\mathrm{CH}_{3} \mathrm{COOH}(0.1 \mathrm{M})+\mathrm{HCl}(0.1 \mathrm{M})$
(C) $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{pK}_{a}=4.74,0.1 \mathrm{M}\right)+\mathrm{NH}_{4} \mathrm{OH}$ $\left(\mathrm{p} K_{b}=4.74,0.1 \mathrm{M}\right)$
(D) $\mathrm{CH}_{3} \mathrm{COONa}(300 \mathrm{~mL}$ of 0.1 M$)+\mathrm{HCl}$ (100 mL of 0.1 M)

Column-II

(P) Acidic buffer at its maximum capacity
(Q) Buffer solution
(R) $\mathrm{pH}<7$ at $25^{\circ} \mathrm{C}$
(S) $\mathrm{pH}=7$ at $25^{\circ} \mathrm{C}$

- Watch Video Solution

27. Match the
following

Column-I

Column-II

(A) Titration of a strong acid with strong base
(P) Methyl orange (3.1-4.4)
(B) Titration of weak acid with strong base
(Q) Methyl red (4.2-6.3)
(C) Titration of strong acid with weak base
(D) Titration of weak acid with weak base
(S) No general indicator is suitable

Column-I

($($) At the start of titration
(B) Befor the first equivalent point
(C) At the first equivalent point
(I) Between the first and second equivalent points

Column-II

(P) Buffer solution of HCO_{3} and CO_{3}^{2}
(Q) Buffer solution of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and HCO_{3}
(R) Amphiprotic anion, $\mathrm{pH}=1 / 2\left(\mathrm{p} K_{a_{1}}+\mathrm{p} K_{a_{2}}\right)$
(S) Hydrolysis of CO_{3}^{2-}

- Watch Video Solution

29.

Match

the
following
columns

Column-I

Column-I

(A) Mercurous iodide
(B) Aluminium phosphate
(P)
(C) Calcium phosphate
(D) Zirconium phosphate
$108 S^{5}$
$4 S^{3}$
S^{2}
$6912 S^{7}$

- Watch Video Solution

30. statement-1: If water is heated of $50^{\circ} \mathrm{C}$ then pH will increase.

STATEMENT-2: K_{w} increases with increase in temperature.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

31. STATEMENT-1: Addition of HCl (aq.) to HCOOH (aq.) decrease the dissociation of HCOOH (aq.)

STATEMENT-2: Due to common ion effect of H^{+}, dissociation of HCOOH decrease.
A. If both the statements are TRUE and STATEMENT-2 is the correct
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

32. STATEMENT-1: Ph of $10^{-7} \mathrm{M} \mathrm{HCl}$ is less than 7 at $25^{\circ} \mathrm{C}$.

STATEMENT-2: At very low concentration of HCl , contribution of H^{+}from water is considerable.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE

Answer:

- Watch Video Solution

33. STATEMENT-1: The dissociation constants of weak diprotic acid are in the order of $K_{a_{1}}>K_{a_{2}}$

STATEMENT-2: Removal of H^{+}from anion is difficult as compared to neutral molecule.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

34. STATEMENT-1: When 0.1 M weak diprotic acid $H_{2} A$ dissociated with its dissociation constants $K_{a_{1}}=10^{-3}$ and $K_{a_{2}}=10^{-8}$, then $\left[A^{2-}\right]$ is almost equal to $10^{-3} \mathrm{M}$

STATEMENT-2: Since $K_{a_{2}} \ll K_{a_{1}}$ for $0.1 \mathrm{M} H_{2} A$, so $\left[A^{2-}\right]$ is negligible w.r.t. $\left[H A^{-}\right]$
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is FALSE

Answer:

- Watch Video Solution

35. STATEMENT-1: In the acid-base titration involving strong base and weak acid, methyl red can be usedd as an indicator.

STATEMENT-2: Methyl red changes its colour in the pH range 4.2 to 6.3.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

36. STATEMENT-1: Sparingly soluble salts AB and $X Y_{2}$ with the same solubility product, will have different solubility.

STATEMENT-2: Solubiluty of sparingly soluble salt depend upon solubility product.
A. If both the statements are TRUE and STATEMENT- 2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

37. STATEMENT-1: Solubility product of $B a F_{2}$ will increase on dilution.

STATEMENT-2: Solubility of BaF_{2} will change on changing temperature.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

- Watch Video Solution

38. STATEMENT-1: Solubility of sparingly soluble salt decreases due to common ion effect.

STATEMENT-2: Solubility product constant does not depend on common ion effect.
A. If both the statements are TRUE and STATEMENT-2 is the correct explation of STATEMENT-1
B. If both the statements are TRUE AND STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMETN-2 is FLASE
D. If STATEMENT-1 is FLASE and STATEMENT-2 is TRUE

Answer:

