©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NARENDRA AWASTHI

STOICHIOMETRY

1. Calculate number of neutrons present in 12×10^{25} atoms of oxygen $\left(8 O^{17}\right)$: (Given : $N_{A}=6 \times 10^{23}$)
A. 1.1800
B. 2. 1600
C. $3.1800 N_{A}$
D. $4.1600 N_{A}$
2. If mass of one atom is $3.32 \times 10^{-23} g$, then calculate number of nucleons (neutrons and protons) present in 2 atoms of the element:
A. 1.40
B. 2.20
C. 3.10
D. 4. $40 N_{A}$

- Watch Video Solution

3. Calculate number of electron present in 9.5 g of PO_{4}^{3-} :
A. 1. $6 N_{A}$
B. 2. 0. $1 N_{A}$
C. 3.4.7 N_{A}
D. $4.5 N_{A}$

- Watch Video Solution

4. What is the number of moles of O -atoms in 126 amu of HNO_{3} ?

- Watch Video Solution

5. What is the charge of 96 amu of s^{2-} ?

- Watch Video Solution

6. A sample of sodium has a mass of $46 g$. What is the mass of the same number of calcium atoms as sodium atoms present in given sample ?
A. 20 gm
B. 40 gm
C. 60 gm
D. 80 gm

Answer: D

- Watch Video Solution

7. The total number of neutrons present in $54 m \mathrm{LH}_{2} \mathrm{O}(\mathrm{l})$ are :

- Watch Video Solution

8. Total number of electrons present in $48 g M g^{2+}$ are :
A. 1. $24 N_{A}$
B. $2.2 N_{A}$
C. 3. $20 N_{A}$
D. 4. none of these
9. The number of neutrons in $5 g$ of $D_{2} O\left(D\right.$ is.$\left._{1}^{2} \mathrm{H}\right)$ are:
A. 1. $0.25 N_{A}$
B. $2.2 .2 N_{A}$
C. 3. 1.1 N_{A}
D. 4 , none of these

- Watch Video Solution

10. Cisplatin, an anticancer drug, has the molecular formula $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. What is the mass (in gram) of one molecule ? (Atomic masses : $P t=195, H=14, C l=35.5)$
A. 1. $4.98 \mathrm{x}(10)^{-21}$
B. $2.4 .98 \mathrm{x}(10)^{-22}$
C. $3.3 .85 \times(10)^{-22}$
D. $4.6 .55 \times(10)^{-21}$

- Watch Video Solution

11. Aspirin has the fromula $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. How many atoms of oxygen are there in a tablet weighing 360 mg ?

- Watch Video Solution

12. $20 g$ of ideal gas contains only atoms of S and O occupies $5.6 L$ at 1 atm and 273 K . what is the molecular mass of gas ?
A. 20AMU
B. 40AMU
C. 80AMU
D. 120AMU

Answer: C

- Watch Video Solution

13. A sample of ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$, contains 6 moles of hydrogen atoms. The number of moles of oxygen atoms in the sample is :
A. 1
B. 2
C. 4
D. 6

Answer: B

- Watch Video Solution

14. Total number of moles of oxygen atoms in 3 litre $O_{3}(g)$ at $27^{\circ} \mathrm{C}$ and 8.21 atm are :
15. 3.011×10^{22} atoms of an element weighs 1.15 g . The atomic mass of the element is
A. 23AMU
B. 230AMU
C. 2.3AMU
D. 1.15AMU

Answer: A

- Watch Video Solution

16. One atom of an element weigs $6.644 \times 10^{-26} \mathrm{~kg}$.How many gram atoms are present in 40 kg of the element ?
A. 4
B. 40
C. 100
D. 500

Answer: D

- Watch Video Solution

17. Mass of one atom of the element A is $3.9854 \times 10^{-23} g$. How many atoms are contained in 1 g of the element A ?

- Watch Video Solution

18. Which of the following contains the largest mass of hydrogen atoms ?
A. i. 0.5 moles $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
B. ii. 1.1 moles $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$
C. iii. 1.5 moles $C_{6} H_{8} O_{6}$
D. iv. 4.0 moles $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$

- Watch Video Solution

19. Which has minnimum number of oxygen atom ?
A. $10 \mathrm{ml}_{2} \mathrm{O}$ [density of water= $1 \mathrm{gml}{ }^{-1}$
B. 0.1 mole $V_{2} O_{5}$
C. $12 \mathrm{gm} O_{3}(\mathrm{~g})$
D. $12.044 * 10^{22}$ molecules of CO_{2}

- Watch Video Solution

20. Arrange the following threads in the order of increasing strength :

Wool, Silk, Cotton, Nylon
21. If the volume of a drop of water is 0.0018 ml then the number of water molecules present in two drop of water at room temperature is:
A. $1.6 .022 \times 10^{23}$
B. $2.6 .022 \times 10^{21}$
C. $3.6 .022 \times 10^{19}$
D. 4. NONE OF THESE

Answer: D

- Watch Video Solution

22. It is known that atom contain protons, neutrons and electrons. If the mass of neutron is assumed to half of its original value whereas that of proton is assumed to be twice of its original value then the atomic mass of 6_{C}^{14} will be :
23. Common salt obtained from sea-water contains $8.775 \% \mathrm{NaCl}$ by mass. The number of formula units of NaCl present in 25 g of this salt is :

- Watch Video Solution

24. The number of hydrogen atoms present in 25.6 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ which has a molar mass of $342.3 g$ is :

- Watch Video Solution

25. Caffiene has a molecular mass of 194 . If it contains 28.9% by mass of nitrogen, number of atoms of nitrogen in one molecule of caffeine is :

- Watch Video Solution

26. The density of water is $1 \mathrm{~g} / \mathrm{mL}$. Assuming that there are no intermolecular spaces between water molecules in liquid water, the volume of a water molecule is

- Watch Video Solution

27. A $25.0 \mathrm{~mm} \times 40.0 \mathrm{~mm}$ piece of gold foil is 0.25 mm thick. The density of gold is $19.32 \frac{g}{c} m^{3}$. How many gold atoms are in the sheet ? (Atomic weight : $A u=197.0$)

- Watch Video Solution

28. If average molecular mass of air is 29 , then assuming N_{2} gas is there, which option are correct regarding composition of air?
(i) 75% "by mass of" Nitrogen" "(ii) 75% "by moles "Nitrogen"
A. only i) is correct
B. only ii) is correct
C. both i) and ii) are correct
D. both i) and ii) are incorrect

Answer: C

- Watch Video Solution

29. Density of dry air containing ony N_{2} and O_{2} is $1.15 \frac{g}{L}$ at 740 mm of Hg and 300 K . What is \% composition of N_{2} by mass in the air ?

- Watch Video Solution

30. A gaseous mixture of H_{2} and CO_{2} gases contains 66 mass $\%$ of CO_{2}. The vapour density of the mixture is :

- Watch Video Solution

31. The vapour density of a mixture containing NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 27.6. The mole fraction of $\mathrm{N}_{2} \mathrm{O}_{4}$ in the mixture is :

- Watch Video Solution

32. Density of ideal gas at 2 atm and 600 K is $2 \mathrm{~g} / \mathrm{L}$. Calculate relative density of this with respect to $\mathrm{Ne}(\mathrm{g})$ under similar conditions : (given :
$\left.R=\frac{1}{12} \operatorname{atm} \frac{L}{m} o l . K\right)$

- Watch Video Solution

33. Average atomic mass of magnesium is 24.31 amu . This magnesium is composed of 79 mole \% of 24 mg and remaining $21 \mathrm{~mole} \%$ of 25 mg and 25 mg . Calculate mole \% of ^ 26 mg .
A. 10
B. 11
C. 15

D. 16

Answer: A

- Watch Video Solution

34. Indium (atomic mass $=114.82$) has two naturally occurring isotopes, the predominant one from has isotopic mass 114.9041 and abundance of 95.72%. Which of the following isotopic mass is the most likely for the other isotope?

- Watch Video Solution

35. Calculate density of a gaseous mixture which consist of 3.01×10^{24} molecules of N_{2} and $32 g$ of O_{2} gas at 3 atm pressure and 860 K temperature (Given : $R=\frac{1}{12}$ atm $\frac{L}{m} o \leq . K$)
36. A mixture of O_{2} and gas Y (mol. $w t$. 80) in the mole ratio $a: b$ has a mean molecular weight 40 . What would be mean molecular weight, if the gases are mixed in the ratio $b: a$ under identical conditions ? (gases are)

- Watch Video Solution

37. If water sample are taken from sea, rivers or lake, they will be found to contain hydrogen and oxygen in the approximate ratio of $1: 8$. This indicates the law of:

- Watch Video Solution

38. Carbon and oxygen combine to form two oxides, carbon monoxide and carbond dioxide in which the ratioi of the weights of carbon and oxygen is respectively 12:16 and 12:32. these figures illustrate the

- Watch Video Solution

39. A sample of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ has the following percentage composition: $\mathrm{Ca}=40 \% \mathrm{C}=12 \%, \mathrm{O}=48 \%$. If the law of constant proportions is true, then the weight of calcium in 4 g of a sample of calcium carbonate from another source will be

- Watch Video Solution

40. When 0.015 ampere current is passed in our body what will happen?

- Watch Video Solution

41. One mole of element X has 0.444 times the mass of one mole of element Y . One atom of element ? X has 2.96 times the mass of one atom of $12 C$. What is the atomic mass of ? X ?

- Watch Video Solution

42. A given sample of pure compound contains $9.81 g$ of $Z n, 1.8 \times 10^{23}$ atoms of chromium, and 0.60 mol of oxygen atoms. What is the simplest formula?

- Watch Video Solution

43. The formula of an acid is HXO_{2}. The mass of 0.0242 g of the acid is
1.657 g . What is the atomic mass of X ?

- Watch Video Solution

44. What is the emprical formula of vanadium oxide, if $2.74 g$ of the metal oxide contains $1.53 g$ of metal ?

- Watch Video Solution

45. Determine the empirical formula of kevlar, used in making bullet proof vests, is $70.6 \% C, 4.2 \% H, 11.8 \% N$ and $13.4 \% O$:
A. 1. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{2}$
B. 2. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
C. 3. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$
D. 4. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}$

- Watch Video Solution

46. The hydrate salt $\mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ undergoes 63% loss in mass on heating and becomes anhydrous. The value of x is :

- Watch Video Solution

47. A 6.85 g sample of the hydrated $\mathrm{Sr}(\mathrm{OH})_{2} . \mathrm{xH}_{2} \mathrm{O}$ is dried in an oven to given $3.13 g$ of anhydrous $\mathrm{sr}(\mathrm{OH})_{2}$. What is the value of x ? (Atomic masses : $S r=87.60 . O=16.0, H=1.0$)

- Watch Video Solution

48. What percentage of oxygen is present in the compound $\mathrm{CaCO}_{3} .3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

- Watch Video Solution

49. Dieldrin, an insecticide, contains ${ }^{`} \mathrm{C}, \mathrm{H}, \mathrm{Cl}$ and O . What is the empirical formula of Dieldrin ?

- Watch Video Solution

50. A gaseous compound is composed of 85.7% by mass carbon and 14.3% by mass hydrogen. Its density is $2.28 \mathrm{~g} /$ litre at 300 K and 1.0 atm pressure. Determine the molecular formula of the compound.

- Watch Video Solution

51. Complete combustion of 0.858 g of compound X given 2.64 g CO 2 and 1.26 g of $\mathrm{H}_{2} \mathrm{O}$. The lowest molecular mass X can have :

- Watch Video Solution

52. The sulphate of a metal M contains 9.87% of M, This sulphate is isomorphous with $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The atomic weight of M is

- Watch Video Solution

53. In an organic compound of molar mass $108 \mathrm{gmmol}^{-1} \mathrm{C}, \mathrm{H}$ and N atoms are presents in $9: 1: 3.5$ by mass. Molecular formula can be
A. $C_{6} H_{8} N_{2}$
B. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}$
C. $C_{5} H_{6} N_{3}$
D. $C_{4} H_{18} N_{3}$

Answer: A

- Watch Video Solution

54. On analysis, a certain compound was found to contain iodine and oxygen in the ratio of 254:80. The formula of the compound is (At mass $I=$ $127, O=16)$
55. An element A is teravalent and another element B is divalent. The formula of the compound formed from these elements will be :

- Watch Video Solution

56. A compound used in making nylon, contains 43.8% oxygen. There are four oxygen atoms per molecule. What is the molecular mass of compound?
A. 36
B. 116
C. 292
D. 146

Answer: D

57. Suppose the elements X and Y combine to form two compounds $X Y_{2}$ and $X_{2} Y_{2}$. When 0.1 mole of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , the atomic weights of X and Y are

- Watch Video Solution

58. $44 g$ of a sample on complete combustion given $88 g \mathrm{CO}_{2}$ and $36 g$ of $\mathrm{H}_{2} \mathrm{O}$. The molecular formula of the compound may be :

- Watch Video Solution

59.40 miligram diatomic volatile substance (X_{2}) is converted to vapour that displaced $4.92 m L$ of air at 1atm and 300 k. Atomic mass of element X is nearly :

- Watch Video Solution

60. Two elements ' A ' and ' B ' (atomic weights 75 and 16 respectively) combine to give a compound having 75.8% of 'A'. The compound has the formula (St. John's)

- Watch Video Solution

61. A sample of phosphorus that weighs $12.4 g$ exerts a pressure 8 atm in a 0.821 litre closed vesel at $527^{\circ} \mathrm{C}$. The molecular formula of the phosphorus vapour is:

- Watch Video Solution

62. Manganese forms non-stoichiometric oxides having the general formula $M n O_{x}$. The value of x for the compound that analyzed $64 \% \mathrm{Mn}$.
(At wt Mn=55)

- Watch Video Solution

63. 1.44 gram if titanium (Ti) reacted with excess of O_{2} and produce x gram of non - stoichiometric compound $T i_{1.44} O$. The value of x is :

- Watch Video Solution

64. Write the Resistivity values of Silver,copper,gold?

- Watch Video Solution

65. Write bond length and bond energy of $\mathrm{H}-\mathrm{H}$ and $\mathrm{F}-\mathrm{F}$?

- Watch Video Solution

66. 2.0 g of a sample contains mixture of SiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$. On very strong heating, it leaves a residue weighing 1.96 g . The reaction responsible for loss of mass is given below.
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$, (unbalance equation) It brgt What is the precentage by mass of SiO_{2} in original sample ?

(D) Watch Video Solution

67. What volume of air at 1 atm and 273 K containing 21% of oxygen by volume is required to completely burn sulphur (S_{8}) present in 200 g of sample, which contains 20% inert material which doses not brume .

Sulphur burns according to the reaction
$\frac{1}{8} S_{8}(s)+O_{2}(g) \rightarrow \mathrm{SO}_{2}(g)$

- Watch Video Solution

68. For the reaction, $2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{NaNO}_{3}$ initially 2.5 mole of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ and 3.6 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are taken. If 6.3 mole of NaNO_{3} is obtained then \% yield of given reaction is :

- Watch Video Solution

69. How many moles of P_{4} can be produced by reaction of 0.1 mole $C a_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}, 0.36$ mole SiO_{2} and 0.90 mole C according to the
following reaction?
$4 \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}+18 \mathrm{SiO}_{2}+30 \mathrm{C} \rightarrow 3 \mathrm{P}_{4}+2 \mathrm{CaF}_{2}+18 \mathrm{CaSiO}_{3}+30 \mathrm{CO}$

- Watch Video Solution

70. Some older emergency oxygen masks contains potassium superoxide KO_{2} which reacts with CO_{2} and water present in exhaled air to produce oxygen according to the given equation. If a person exhales 0.667 g of CO_{2} per minute, how many gram of KO_{2} are consumed in 5.0 minutes? $4 \mathrm{KO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2} \rightarrow 4 \mathrm{KHCO}_{3}+3 \mathrm{O}_{2}$

- Watch Video Solution

71. The mass of $\mathrm{N}_{2} \mathrm{~F}_{2}$ produced by the reaction of 2.0 g of NH_{3} and 8.0 g of F_{2} is 3.56 g . What is the per cent yield ?

- Watch Video Solution

72. Calculate the mass of lime (CaO) obtained by heating 200 kg of 95% pure lime stone $\left(\mathrm{CaCo}_{3}\right)$:

- Watch Video Solution

73. Phospheric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ perpared in two step process .
(1) $P_{4}+5 O_{2} \rightarrow P_{4} O_{10}$
(2) $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$

Well allow 62 g of phosphrous to react with exces oxygen which from $P_{4} O_{10}$ in 85% yield. In the sep (2) reaction 90% yield of $H_{3} P O_{4}$ is obtained. Mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ produced is :

- Watch Video Solution

74.9 mole of " D" and 14 moles of E are allowed to react in aclosed vessel according to given reactions. Calculate number of moles of formed in the end if reaction, if 4 moles of G are present in reaction vessel. (Precentage yield of reaction id mentioned in the reaction)
step $-13 D+4 E \xrightarrow{80 \%} 5 C+A$
setp $-23 D+5 G \xrightarrow{50 \%} 6 B+F$.

- Watch Video Solution

75. The chief ore of Zn is the sulphide, ZnS . The are is concentrated by froth floation process and then heated in air to convert Zns to Zno .
$2 \mathrm{ZnS}+30_{2} \xrightarrow{80 \%} 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
$\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{100 \%} \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
$2 \mathrm{ZnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{80 \%} 2 \mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O}_{2}$
The number of moles of ZnS required for producing 2 moles of Zn will be:

- Watch Video Solution

76. 0.8 mole of a mixture of CO and CO_{2} requires exactly 40 g of NaOH in solution for complete conversion of all the CO_{2} into $\mathrm{Na}_{2} \mathrm{CO}_{3}$. How many more moles of NaOH would it require for conversion into $\mathrm{Na}_{2} \mathrm{CO}_{3}$. If the mixture is completely oxidised to CO_{2} ?
77. Silver oxide $\left(\mathrm{Ag}_{2} \mathrm{O}\right)$ decomposes at temperture 300° yielding mentallic silver and oxgyen gas .What is the pre cent by mass of the silver oxide in the sample?

Watch Video Solution

78.342 g of 20% by mass of $\mathrm{Ba}(\mathrm{OH})_{2}$ solution (sp. Gr. 0.57) is reaction with 1200 mL of $2 \mathrm{MHNO}_{3}$. If the final density of solution is same as pure water then molarity of the ion in resulting solution which decides the nature of the above solution is:

- Watch Video Solution

79. 100 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution having molarity 1 M and density $1.5 \mathrm{~g} / \mathrm{mL}$ is mixed with 400 mL of water. Calculate final molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, if final density is $1.25 \mathrm{~g} / \mathrm{mL}$?
80. What volume of HCl solution of density $1.2 \mathrm{gcm}^{-3}$ and containing 36.5% by mass $H C l$, must be allowed to react wtih zinc $(Z n)$ in order to liberate 4.0 g of hydrogen ?

- Watch Video Solution

81. An ideal gaseous mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene $\left(C_{2} H_{4}\right)$ occupies 28 litre at $1 \mathrm{~atm} 0^{\circ} \mathrm{C}$. The mixture reacts completely with $128 \mathrm{gmO}_{2}$ to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Mole of fraction at $\mathrm{C}_{2} \mathrm{H}_{6}$ in the mixtture is-

- Watch Video Solution

82. Wood's metal contains 50.0% bismuth, 25.0% lead, 12.5% tin and 12.5% cadmium by mass. What is the mole fraction of tin ?(\ (Atomic mass : $B i=209, P b=207, S n=119, C d=112)$

(D) Watch Video Solution

83. The density of a 56.0% by mass aqueous solution of 1 -propanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ is $0.8975 \mathrm{gcm}^{-3}$. What is the mole fraction of the 1 propanol?

- Watch Video Solution

84. What is the molartiy of SO_{4}^{2-} ion in aqueous solution that contain 34.2 ppm of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$? (Assume complete dissociation and density of solution 1gmpermL)
A. 3×10^{-4}
B. 2×10^{-4}
C. 10^{-4}
D. None
85. The correct relationship between molarity (M) and molality (m) is ($d=$ density of the solution, in $\mathrm{KgL}^{-1}, M_{2}=$ molar mass of the solute in kg mol^{-1})

Watch Video Solution

86. Molarity and molality of a solution of a liquid (mol.mass $=50$) in aqueous solution is 9 and 10 respectively. What is the density of solution ? (Round of the answer to nearest whole number)

- Watch Video Solution

87. An aqueous solution of ethanol has density $1.025 \mathrm{~g} / \mathrm{mL}$ and it is 2 M .

What is the molality of this solution?
88. 0.2 mole of $H C I$ and 0.2 mole of barium chloride were dissolved in water to produce a 500 mL solution. The molarity of the CI^{-}ions is :

- Watch Video Solution

89. Calculate the mass of anhydrous HCI in 10 mL of concentrated HCI (density $=1.2$ gpermL) solution having $37 \% H C I$ by mass is :

- Watch Video Solution

90. Calculate the molality of 1 L solution of $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}\left(\frac{w}{V}\right)$ given that the density of the solution is $1.80 \mathrm{gmL} L^{-1}$. (round of the answer to nearest whole number)

- Watch Video Solution

91. Fluoxymesterone, $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{FO}_{3}$, is an anabolic steroid. A 500 mL solution is prepared by dissolving 10.0 mg of the steoid in water. 10.0 mL portion of this solution is diluted to a final volume of 1.00 L . what is the resulting molarity?

- Watch Video Solution

92. 100 mL of $10 \% \mathrm{NaOH}\left(\frac{w}{V}\right)$ is added to 100 mL of $10 \% \mathrm{HCI}\left(\frac{w}{V}\right)$. The nature of resultant solution is :

- Watch Video Solution

$$
93 .
$$

How
many
millitries
$0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ must be added to $50 \mathrm{mLof0} 0.1 \mathrm{MNaOH}$ to give a solution that has a concentration of $0.05 \mathrm{M} \in \mathrm{H}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

94. 1 MHCl and 2 MHCl are mixed in volume ratio $4: 1$. What is the final molarity of HCl solution?

- Watch Video Solution

95. Three solutions X, Y, Z of HCl are mixed to produce 100 mL of 0.1 M solution . The milarities of X, Y and Z are $0.7 M, 0.12 M$ and $0.15 M$ respectively. What respective volumes of X, Y and Z should be mixed?
A. $50 \mathrm{ml}, 25 \mathrm{ml}, 25 \mathrm{ml}$
B. $20 \mathrm{ml}, 60 \mathrm{ml}, 20 \mathrm{ml}$
C. $40 \mathrm{ml}, 30 \mathrm{ml}, 30 \mathrm{ml}$
D. $55 \mathrm{ml}, 20 \mathrm{ml}, 25 \mathrm{ml}$

Answer: d

- Watch Video Solution

96. The impure 6 g of NaCl is dissolved in water and then treated with excess of silver nitrate solution. The mass of precipitate of silver chloride is found to be 14 g . The \% purity of NaCl solution would be:
A. 95%
B. 85%
C. 75%
D. 65%

Answer: A

- Watch Video Solution

97. Decreasing order (first having highest and then other following it) of mass of pure NaOH in each of the aqueous solution
(P) 50 gm of $40 \%(w / w) \mathrm{NaOH}$
(Q) 50 gm of $50 \%(w / w) \mathrm{NaOH}\left[d_{\text {soln. }}=1.2 \mathrm{gm} / \mathrm{ml}\right]$
(R) 50 gm of $20 \mathrm{M} \mathrm{NaOH}\left[d_{\text {soln }}\right.$. $\left.=1 \mathrm{gm} / \mathrm{ml}\right]$

- Watch Video Solution

98. 0.607 g of silver salt of tribasic organic acid was quantitatively reduced to 0.37 g of pure Ag . What is the mol. Wt. of the acid?

- Watch Video Solution

99. A sample of peanut oil weighing $1.5763 g$ is added to $25 m L$ of 0.4210 MKOH . After saponification is complete 8.5 mL of $0.28 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is needed to neutralize excess $K O H$. The saponification number of peanut oil is:

- Watch Video Solution

100. 20 Ml of a mixture of CO and H_{2} were mixed with excess of O_{2} and exploded and cooled. There was a volume contraction of 18 mL . All volume measurements corresponds to room temperture $\left(27^{\circ} C\right)$ and one
atmospheric pressuer. Determine the volume ratio V_{1}, V_{2} of CO and H_{2} in the original mixture.

- Watch Video Solution

101. In the reaction $2 \mathrm{Al}(s)+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 6 \mathrm{Cl}^{-}(a q)+3 \mathrm{H}_{2}$
A. $6 \mathrm{~L} \mathrm{HCl}(\mathrm{aq})$ is consumed for every 3 LH produced
B. $33.6 \mathrm{~L} \mathrm{H2} \mathrm{(g)} \mathrm{is} \mathrm{produced} \mathrm{at} \mathrm{STP} \mathrm{for} \mathrm{every} \mathrm{mole} \mathrm{of} \mathrm{Al} \mathrm{that} \mathrm{reacts}$
C. $67.2 \mathrm{LH} 2(\mathrm{~g})$ at $1 \mathrm{~atm}, 273 \mathrm{~K}$ is produced for every mole Al that reacts
D. 11.2 L H2(g) at 1 atm 273 K is produced foe every mole $\mathrm{HCl}(\mathrm{aq})$

consumed

- Watch Video Solution

102. Oxidation numbers of the two chlorine atom in CaOCl_{2} is

(D) Watch Video Solution

103. The oxidation number of sulphur in $S_{8}, S_{2} F_{2}$ and $H_{2} S$ are

- Watch Video Solution

104. Balance the following equations
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

- Watch Video Solution

105. Balance the following equation and choose the quantity which is the sum of the coefficients of reactants and products:
$\ldots . . P t C l_{4}+X e F_{2} \rightarrow P t F_{6}+\ldots . C I F+\ldots X e$

- Watch Video Solution

106. Hydrazine reacts with KIO_{3} in presence of HCl as :
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{IO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{ICl}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
The equivalent masses of $\mathrm{N}_{2} \mathrm{H}_{4}$ and KIO_{3} respectively are :

- Watch Video Solution

107. $\mathrm{H}_{2} \mathrm{O}_{2}$ is used as bleaching reagent because on dissociation it gives oxygen
$\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}\right)$
"Chachi420" used $\mathrm{H}_{2} \mathrm{O}_{2}$ solution to bleach her hair and she required $2.24 L O_{2}$ gas at 1atm and 273 K . She has a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution labelled '5.6V' then what volume of such solution must she required to bleach her hair?

- Watch Video Solution

108. A sample of 1.0 g of solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ of 80% purity is dissolved in a moderately concentrated HCl solution which is reduced by zinc dust. The
resulting solution required 16.7 mL of a 0.1 M solution of the oxidant.

Calculate the number of electrons taken up by the oxidant.

- Watch Video Solution

109. Stannous sulphate (SnSO_{4}) and potassium permanganate are used as oxidising agents in acidic medium for oxidation of ferrrous ammnium sulphate to ferric sulphate. The ration of number of moles of stannous sulphate required per mole of ferrous ammonium sulphate to the number of moles of KMnO_{4} required per mole of ferrous ammonium sulphate, is:

- Watch Video Solution

110. 32 g of a sample of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ were dissolved in dilute sulphuric aid and water and its volue was made up to 1 litre. 25 mL of this solution required 20 mL of $0.02 \mathrm{MKMnO}_{4}$ solution for complete oxidation. Calculate the mass\% of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in the sample.
111. In the mixture of NaHCO_{3} and NaCO_{3}, volume of a given HCl required is x ml with phenolphathalein indicator and further y mL is required with methyl orange indicator. Hence volume of HCl for complete reaction of NaHCO_{3} present in the original mixture is

- Watch Video Solution

112. When 200 mL solution of NaOH and NaCO_{3} was first titrated with $\mathrm{N} / 10 \mathrm{HCl}$ in presence of $\mathrm{HPh}, 17.5 \mathrm{~mL}$ were usedtill end point is obtained. After this end point MeOH was added and 2.5 mL of same HCl were required to attain new end point. The amount NaOH in mixture is:

- Watch Video Solution

113. 1gram of a sample of CaCO_{3} was strongly heated and the CO_{2} liberated was absorbed in 100 mL of 0.5 M NaOH solution. Assuming 90%
purity for the sample, how many mL of 0.5 M HCl would be required to react with the resulting solution to reach the end point inpresence of phenolphthaein?

- Watch Video Solution

114. Calculate the number of millilitre of $\mathrm{NH}_{3}(\mathrm{aq})$ solution ($\mathrm{d}=0.986 \mathrm{~g} / \mathrm{ml}$) contain 2.5% by mass NH_{3}, which will be required to precipitate iron as $\mathrm{Fe}(\mathrm{OH})_{3}$ in a 0.8 g sample that contains $50 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$.

- Watch Video Solution

115. In the preparation of Iron from haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ by the reaction with carbon $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2} 94.5 \mathrm{~kg}$ of $10 \mathrm{x} \%$ pure Iron could be produced from 120 kg of 90% pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$? Find the value of x .

- Watch Video Solution

116. A mineral consists of an equimolar mixture of the carbonates of two bivalent metals. One metal is present to the extent of 12.5% by mass. 2.8 g of the mineral on heating lost 1.32 g of CO_{2}. What is the \% by mass of the other metal ?

- Watch Video Solution

117. A 1.0 g sample of a pure organic compound cotaining chlorine is fused with $\mathrm{Na}_{2} \mathrm{O}_{2}$ to convert chlorine to NaCl . The sample is then dissolved in water, and the chloride precipitated with AgNO_{3}, giving 1.96 g of AgCl . If the molecular mass of organic compound is 147 , how many chlorine does each molecule contain?

- Watch Video Solution

118. A metal M forms the sulphate $\mathrm{M}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. A 0.596 gram sample of the sulphate reacts with excess $B a C l_{2}$ to give $1.220 \mathrm{~g} \mathrm{BaSO}{ }_{4}$. What is the atomic mass of M ?

(D) Watch Video Solution

119. A silver coin weighing 11.34 g was dissolved in nitric acid When sodium chloride was added to the solution all the silver (present as $\left.\mathrm{AgNO}_{3}\right)$ precipitated as silver chloride. The mass of the precipitated silver chloride was 14.35 g . Calculate the percentage of silver in the coin.

- Watch Video Solution

120. $100 \mathrm{~cm}^{3}$ of a solution of an acid (Molar mass $=98$) containing 29.4 g of the acid per litre were completely neutralized by $90.0 \mathrm{~cm}^{3}$ of aq. NaOH cotanining 20 g of NaOH per $500 \mathrm{~cm}^{3}$. The basicity of the acid is

- Watch Video Solution

121. The concentration of oxalic acid is ' X ' mol lit $^{-1} .40 \mathrm{ml}$ of this solution reacts with 16 ml of 0.05 M acidified KMnO_{4}. What is the pH of
'X' M oxalic acid solution ? (Assume that oxalic acid dissociates completely
)

- Watch Video Solution

Level 1 (Q.1 To Q.30)

1. Calculate number of neutrons present in 12×10^{25} atoms of oxygen $\left(8 O^{17}\right)$: (Given : $\left.N_{A}=6 \times 10^{23}\right)$
A. 1800
B. 1600
C. $1800 N_{A}$
D. $3200 N_{A}$
2. If mass of one atom is $3.32 \times 10^{-23} \mathrm{~g}$, then calculate number of nucleons (neutrons and protons) present in 2 atoms of the element:
A. 40
B. 20
C. 10
D. $40 N_{4}$

- Watch Video Solution

3. Calculate number of electrons present in 9.5 g of PO_{4}^{-3} :
A. 6
B. $5 N_{A}$
C. $0.1 N_{A}$
D. $4.7 N_{A}$

- Watch Video Solution

4. What is the number of moles of O -atoms in 126 amu of HNO_{3} ?
A. 2
B. $\frac{2}{N_{A}}$
C. $0.1 N_{A}$
D. $\frac{6}{N_{A}}$

- Watch Video Solution

5. What is the charge of 96 amu of s^{2-} ?
A. 2 C
B. $3.2 \times 10^{-19} C$
C. $9.6 \times 10^{-19} C$
D. 6 C

- Watch Video Solution

6. A sample of sodium has a mass of 46 g . What is the mass of the same number of calcium atoms as sodium atoms present in given sample ?
A. 46 g
B. 20 g
C. 40 g
D. 80 g
7. The total number of neutrons present in $54 m \mathrm{LH}_{2} \mathrm{O}(l)$ are :
A. $3 N_{A}$
B. $30 N_{A}$
C. $24 N_{A}$
D. None of these

- Watch Video Solution

8. Total number of electrons present in $48 g M g^{2+}$ are :
A. $24 N_{A}$
B. $2 N_{A}$
C. $20 N_{A}$
D. None of these
9. The number of neutrons in $5 g$ of $D_{2} O\left(D\right.$ is $\left.{ }_{1}^{2} \mathrm{H}\right)$ are:
A. $0.25 N_{A}$
B. $2.5 N_{A}$
C. $1.1 N_{A}$
D. None of these

- Watch Video Solution

10. Cisplatin, an anticancer drug, has the molecular formula $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. What is the mass (in gram) of one molecule ? (Atomic masses : $P t=195, H=14, C l=35.5)$
A. 4.98×10^{23}
B. 1.08×10^{-22}
C. 6.55×10^{-21}
D. 3.85×10^{-22}

- Watch Video Solution

11. Aspirin has the fromula $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. How many atoms of oxygen are there in a tablet weighing 360 mg ?
A. 1.204×10^{23}
B. 1.08×10^{22}
C. 1.204×10^{24}
D. 4.81×10^{24}
12. $20 g$ of ideal gas contains only atoms of S and O occupies $5.6 L$ at 1 atm and 273 K . what is the molecular mass of gas ?
A. 64
B. 80
C. 96
D. None of these

- Watch Video Solution

13. A sample of ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$, contains 6 moles of hydrogen atoms. The number of moles of oxygen atoms in the sample is :
A. 1
B. 2
C. 4
D. 6

- Watch Video Solution

14. Total number of moles of oxygen atoms in 3 litre $O_{3}(g)$ at $27^{\circ} \mathrm{C}$ and 8.21 atm are :
A. 3
B. 1
C. 1
D. None of these

- Watch Video Solution

15. 3.011×10^{22} atoms of an element weighs 1.15 g . The atomic mass of the element is
A. $10 a \mu$
B. $2.3 a \mu$
C. $35.5 a \mu$
D. $23 a \mu$
16. One atom of an element weigs $6.644 \times 10^{-26} \mathrm{~kg}$.How many gram atoms are present in 40 kg of the element ?
A. 4
B. 40
C. 100
D. 500
17. Mass of one atom of the element A is $3.9854 \times 10^{-23} g$. How many atoms are contained in 1 g of the element A ?
A. 2.509×120^{23}
B. 6.022×10^{23}
C. 12.044×10^{23}
D. None of these

- Watch Video Solution

18. Which of the following contains the largest mass of hydrogen atoms ?
A. $5.0 \mathrm{moles} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
B. 1.1 $\mathrm{moles} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$
C. $1.5 \operatorname{moles} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$
D. $4.0 \mathrm{moles} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

- Watch Video Solution

19. Which has minimum number of oxygen atoms ?
A. $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. 0.1 mole $V_{2} O_{5}(s)$
C. $12 \mathrm{gm} O_{3}(g)$
D. 12.044×10^{22} molecules of CO_{2}

- Watch Video Solution

20. If the volume of a drop of water is 0.0018 ml then the number of water molecules present in two drop of water at room temperature is:
A. 12.046×10^{19}
B. 1.084×10^{18}
C. 4.48×10^{17}
D. 6.023×10^{23}

Answer: A

- Watch Video Solution

21. It is known that atom contain protons, neutrons and electrons. If the mass of neutron is assumed to half of its original value whereas that of proton is assumed to be twice of its original value then the atomic mass of 6_{C}^{14} will be :
A. same
B. 14.28% less
C. 14.28% more
D. 28.56% less

- Watch Video Solution

22. Common salt obtained from sea-water contains $8.775 \% \mathrm{NaCl}$ by mass. The number of formula units of $N a C l$ present in $25 g$ of this salt is :
A. 3.367×10^{23} formula units
B. 2.258×10^{22} formula units
C. 3.176×10^{23} formula units
D. 4.73×10^{25} formula units

- Watch Video Solution

23. The number of hydrogen atoms present in 25.6 g of sucrose $\left(C_{12} H_{22} O_{11}\right)$ which has a molar mass of $342.3 g$ is :

$$
\text { A. } 22 \times 10^{23}
$$

B. 9.91×10^{23}
C. 11×10^{23}
D. 44×10^{23}
24. Caffiene has a molecular mass of 194 . If it contains 28.9% by mass of nitrogen, number of atoms of nitrogen in one molecule of caffeine is :
A. 4
B. 6
C. 2
D. 3
25. A $25.0 \mathrm{~mm} \times 40.0 \mathrm{~mm}$ piece of gold foil is 0.25 mm thick. The density of gold is $19.32 \frac{g}{c} m^{3}$. How many gold atoms are in the sheet? (Atomic weight : $A u=197.0$)
A. 7.7×10^{23}
B. 1.5×10^{23}
C. 4.3×10^{21}
D. 1.47×10^{22}

- Watch Video Solution

26. If average molecular mass of air is 29 , then assuming N_{2} gas is there, which option are correct regarding composition of air?
(i) 75% "by mass of" Nitrogen" "(ii) 75% "by moles "Nitrogen"
A. only (i) is are correct
B. Only (ii) is correct
C. both (ii) and (iii) are correct
D. both (i) and (ii) are correct

- Watch Video Solution

27. Density of dry air containing ony N_{2} and O_{2} is $1.15 \frac{g}{L}$ at 740 mm of
$H g$ and 300 K . What is \% composition of N_{2} by mass in the air ?
A. 78%
B. 85.5%
C. 70.02%
D. 62.75%
28. A gaseous mixture of H_{2} and CO_{2} gases contains 66 mass \% of CO_{2}. The vapour density of the mixture is:
A. 6.1
B. 5.4
C. 2.7
D. 10.8

- Watch Video Solution

Level 1 (Q.31 To Q.60)

1. Density of ideal gas at 2 atm and 600 K is $2 \mathrm{~g} / \mathrm{L}$. Calculate relative density of this with respect to $\mathrm{Ne}(\mathrm{g})$ under similar conditions : (given : $\left.R=\frac{1}{12} \operatorname{atm} \frac{L}{m} o l . K\right)$
A. 2.5
B. 2
C. 3
D. 5

- Watch Video Solution

2. Average atomic mass of magnesium is 24.31amu. This magnesium is composed of 79 mole \% of $24 m g$ and remaining 21 mole \% of 25 mg and 25 mg . Calculate mole \% of ^ 26 mg .
A. 10
B. 11
C. 15
D. 16
3. Indium (atomic mass $=114.82$) has two naturally occurring isotopes, the predominant one from has isotopic mass 114.9041 and abundance of 95.72%. Which of the following isotopic mass is the most likely for the other isotope?
A. 112.94
B. 115.9
C. 113.9
D. 114.9

- Watch Video Solution

4. Calculate density of a gaseous mixture which consist of 3.01×10^{24} molecules of N_{2} and $32 g$ of O_{2} gas at 3 atm pressure and 860 K temperature (Given : $R=\frac{1}{12}$ atm $\frac{L}{m} o \leq . K$)
A. $0.6 g / L$
B. $1.2 g / L$
C. $0.3 g / L$
D. $12 g / L$

- Watch Video Solution

5. A mixture of O_{2} and gas "y" (mol. mass 80) in the mole ratio $a: b$ has a mean molecular mass 40 . what would be molecular mass, if the gases are mixed in the ratio $b: a$ under identical conditions? (Assuming that gases are non-reacting) :
A. 40
B. 48
C. 62
D. 72
6. If water sample are taken from sea, rivers or lake, they will be found to contain hydrogen and oxygen in the approximate ratio of $1: 8$. This indicates the law of:
A. law of conseravtion of mass
B. Definite proporation
C. Reciprocal propoertions
D. None of these

- Watch Video Solution

7. Hydrogen and oxygen combine to form $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ containing 5.93% and 11.2% hydrogen respectively. The data illustrates:
A. law of conseravtion of mass
B. law of constant proportion
C. law of reciparocal proporation
D. law of multiple proporetion

Answer: 4

- Watch Video Solution

8. Carbon and oxygen combine to form two oxides, carbon monoxide and carbond dioxide in which the ratioi of the weights of carbon and oxygen is respectively 12:16 and 12:32. these figures illustrate the
A. law of multiple proportions
B. law of reciprocal proportions
C. law of conservation of mass
D. law of constant proportains
9. A sample of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ has the following percentage composition: $\mathrm{Ca}=40 \% \mathrm{C}=12 \%, \mathrm{O}=48 \%$. If the law of constant proportions is true, then the weight of calcium in 4 g of a sample of calcium carbonate from another source will be
A. $0.016 g$
B. 0.16 g
C. $1.6 g$
D. $16 g$

- Watch Video Solution

10. The law of multiple proportions is ilustrated by the two compounds
A. Sodium chlordie and sodium bromide
B. Ordinary water and heavy water
C. Caustic soda caustic potash
D. Sulphur dioxide and sulphur trixoide

Answer: 4

D Watch Video Solution

11. All the substance listed below are fertilizers that contribute nitrogen to the soil. Which of these is the richest source of nitrogen on a percentage basis ?
A. Urea , $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
B. Ammonium nitrate , $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. Nitric oxide , NO
D. Ammonia , NH_{3}

Answer: D

12. One mole of element X has 0.444 times the mass of one mole of element Y . One atom of element X has $2.96 \times$ the mass of one atom of C^{12}. What is the atomic mass of Y ?
A. 80
B. 15.77
C. 46.67
D. 40

Watch Video Solution

13. A given sample of pure compound contains $9.81 g$ of $Z n, 1.8 \times 10^{23}$ atoms of chromium, and 0.60 mol of oxygen atoms. What is the simplest formula?
A. $\mathrm{ZnCr} r_{2} \mathrm{O}_{7}$
B. $\mathrm{ZnCr}_{2} \mathrm{O}_{4}$
C. ZnCrO_{4}
D. $\mathrm{ZnCrO} \mathrm{O}_{6}$
14. The formula of an acid is HXO_{2}. The mass of 0.0242 g of the acid is
1.657 g . What is the atomic mass of X ?
A. 35.5
B. 28.1
C. 128
D. 19

Answer: A

15. What is the empirical formula of vanadium oxide if $2.74 g$ of the metal oxide contains $1.53 g$ of metal ?
A. $V_{2} O_{3}$
B. Vo
C. $V_{2} O_{5}$
D. $V_{2} O_{7}$

- Watch Video Solution

16. Determine the empirical formula of kevlar, used in making bullet proof vests, is $70.6 \% C, 4.2 \% H, 11.8 \% N$ and $13.4 \% O$:
A. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{2}$
B. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
C. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$
D. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}$

Answer: D

- Watch Video Solution

17. The hydrate salt $\mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ undergoes 63% loss in mass on heating and becomes anhydrous. The value of x is :
A. 10
B. 12
C. 8
D. 18
18. A $6.85 g$ sample of the hydrated $\mathrm{Sr}(\mathrm{OH})_{2} . \mathrm{xH}_{2} \mathrm{O}$ is dried in an oven to given $3.13 g$ of anhydrous $\operatorname{sr}(\mathrm{OH})_{2}$. What is the value of x ? (Atomic masses : $S r=87.60 . O=16.0, H=1.0$)
A. 8
B. 12
C. 10
D. 6

- Watch Video Solution

19. What percentage of oxygen is present in the compound $\mathrm{CACO}_{3.3} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
A. 23.3%
B. 45.36%
C. 41.94%
D. 17.08%

- Watch Video Solution

20. Dieldrin, an insecticide, contains ${ }^{`} \mathrm{C}, \mathrm{H}, \mathrm{Cl}$ and O . What is the empirical formula of Dieldrin?
A. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{O}$
B. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClO}$
C. $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{6} \mathrm{O}$
D. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{O}_{2}$

Answer: C

21. A gaseous compound is composed of 85.7% by mass carbon and 14.3% by mass hydrogen. Its density is $2.25 \mathrm{~g} /$ litre at 300 K and 1.0 atm pressure. Determine the molecular formula of the compound.
A. $\mathrm{C}_{2} \mathrm{H}_{2}$
B. $C_{2} H_{4}$
C. $C_{4} H_{6}$
D. $C_{4} H_{10}$

- Watch Video Solution

22. Complete combustion of 0.858 g of compound X gives 2.63 g of CO_{2} and 1.28 g of $\mathrm{H}_{2} \mathrm{O}$. The lowest molecular mass X can have
A. 47 g
B. 86 g
C. 129 g
D. 172 g

- Watch Video Solution

23. The sulphate of a metal M contains 9.87% of M. This sulphate is isomorphous with $\mathrm{ZnSO}_{4.7} \mathrm{H}_{2} \mathrm{O}$. The atomic mass of M is :
A. 40.3
B. 36.3
C. 24.3
D. 11.3
24. In an organic compound of molar mass $108 \mathrm{gmmol}^{-1} \mathrm{C}, \mathrm{H}$ and N atoms are presents in $9: 1: 3.5$ by mass. Molecular formula can be
A. $C_{6} H_{8} N_{2}$
B. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}$
C. $C_{5} H_{6} N_{3}$
D. $\mathrm{C}_{4} \mathrm{H}_{18} \mathrm{~N}_{3}$

- Watch Video Solution

25. On analysis, a certain compound was found to contain iodine and oxygen in the ratio of 254:80. The formula of the compound is (At mass $\mathrm{I}=$ $127, O=16)$
A. IO
B. $\mathrm{I}_{2} \mathrm{O}$
C. $I_{5} O_{3}$
D. I_(2)O_(5)'

- Watch Video Solution

26. An element A is teravalent and another element B is divalent. The formula of the compound formed from these elements will be :
A. $A_{2} B$
B. $A B$
C. $A B_{2}$
D. $A_{2} B_{3}$
27. A compound used in making nylon, contains 43.8 \% oxygen. There are four oxygen atoms per molecule. What is the molecular mass of compound ?
A. 36
B. 116
C. 292
D. 146

- Watch Video Solution

28. Suppose the elements X and Y combine to form two compounds $X Y_{2}$ and $X_{2} Y_{2}$. When 0.1 mole of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , the atomic weights of X and Y are
A. 23,30
B. 30,40
C. 40,30
D. 80,60

- Watch Video Solution

Level 1 (0.61 To Q.90)

1. $44 g$ of a sample on complete combustion given $88 g \mathrm{CO}_{2}$ and $36 g$ of $\mathrm{H}_{2} \mathrm{O}$. The molecular formula of the compound may be :
A. $C_{4} H_{9}$
B. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
D. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
2. 40 miligram diatomic volatile substance $\left(X_{2}\right)$ is converted to vapour that displaced $4.92 m L$ of air at 1atm and 300k. Atomic mass of element X is nearly:
A. 400
B. 240
C. 200
D. 100

- Watch Video Solution

3. Two elements 'A' and ' B ' (atomic weights 75 and 16 respectively) combine to give a compound having 75.8% of 'A'. The compound has the formula (St. John's)
A. $X Y$
B. $X_{2} Y$
C. $X_{2} Y_{2}$
D. $X_{2} Y_{3}$

- Watch Video Solution

4. A sample of phosphorus that weighs $12.4 g$ exerts a pressure 8 atm in a 0.821 litre closed vesel at $527^{\circ} \mathrm{C}$. The molecular formula of the phosphorus vapour is:
A. P_{2}
B. P_{4}
C. P_{6}
D. P_{8}
5. Manganese forms non-stoichiometric oxides having the general formula $M n O_{x}$. The value of x for the compound that analyzed $64 \% \mathrm{Mn}$.
(At wt Mn=55)
A. 1.16
B. 1.83
C. 2
D. 1.93

- Watch Video Solution

6. 1.44 gram if titanium (Ti) reacted with excess of O_{2} and produce x gram of non - stoichiometric compound $T i_{1.44} O$. The value of x is :
A. 2
B. 1.77
C. 1.44
D. None of these

- Watch Video Solution

7. How many moles of OH^{-}are present in the balanced equation?
$\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{OH}^{-}} \mathrm{H}_{2} \mathrm{O}+\mathrm{CrO}_{4}^{-2}$
A. One mole of $C S_{2}$ will produce one mole of CO_{2}
B. The reaction of 16 g of oxygen produces $7.33 \mathrm{gof} \mathrm{CO}_{2}$
C. The raction of one mole of O_{2} will produce $2 / 3$ "mole of" SO_{2}
D. Six molecules of oxygen requires theree molecular of CS_{2}

- Watch Video Solution

8. Which of the following statements is correct
A.
0.150 moles $\mathrm{Cl}_{2} \times 1$ mole $\mathrm{KClO}_{3} / 3$ moles $\mathrm{Cl}_{2} \times 122.5 \mathrm{~g} / 1$
B.
0.150 moles $\mathrm{Cl}_{2} \times 1$ mole $\mathrm{KClO}_{3} / 3$ moles $\mathrm{Cl}_{2} \times 1 \mathrm{~mole}$
C.
0.150 moles $\mathrm{Cl}_{2} \times 3$ moles $\mathrm{Cl}_{2} / 1$ mole $\mathrm{KCLO}_{3} \times 122.5 \mathrm{~g} / 1 \mathrm{~m}$
D.
0.150 moles $\mathrm{Cl}_{2} \times 3$ moles $\quad C l_{2} / 1$ mole $\mathrm{KCLO}_{3} \times 1$ mole K

- Watch Video Solution

9. 2.0 g of a sample contains mixture of SiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$. On very strong heating, it leaves a residue weighing 1.96 g . The reaction responsible for loss of mass is given below .
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$, (unbalance equation) It brgt What is the precentage by mass of SiO_{2} in original sample ?
A. 10%
B. 20%
C. 40%
D. 60%

- Watch Video Solution

10. What volume of air at 1 atm and 273 K containing 21% of oxygen by volume is required to completely burn sulphur $\left(S_{8}\right)$ present in 200 g of sample, which contains 20% inert material which does not burn. Sulphur burns according to the reaction $\frac{1}{8} S_{8}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$
A. 23.52 litre
B. 320 litre
C. 112 litre
D. 533.33 litre

- Watch Video Solution

11. What is the hybridization of phophorus in phosphorus tri chloride?

- Watch Video Solution

12. How many moles of P_{4} can be produced by reaction of 0.1 mole $C a_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}, 0.36$ mole SiO_{2} and 0.90 mole C according to the following reaction?
$4 \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}+18 \mathrm{SiO}_{2}+30 \mathrm{C} \rightarrow 3 \mathrm{P}_{4}+2 \mathrm{CaF}_{2}+18 \mathrm{CaSiO}_{3}+30 \mathrm{CO}$
A. 0.060
B. 0.030
C. 0.045
D. 0.075
13. Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to escape ?
A. 10.7
B. 0.0757
C. 1.07
D. 5.38

- Watch Video Solution

14. The mass of $\mathrm{N}_{2} \mathrm{~F}_{2}$ produced by the reaction of 2.0 g of NH_{3} and 8.0 g of F_{2} is 3.56 g . What is the per cent yield ?
A. 79
B. 71.2
C. 84.6
D. None of these
15. Calculate the mass of lime (CaO) obtained by heating 200 kg of 95% pure lime stone $\left(\mathrm{CaCo}_{3}\right)$:
A. 104.4 kg
B. 105.4 kg
C. 212.8 kg
D. 106.4 kg
16. Phospheric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ perpared in two step process .
(1) $P_{4}+5 O_{2} \rightarrow P_{4} O_{10}$
(2) $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$

Well allow 62 g of phosphrous to react with exces oxygen which from $P_{4} O_{10}$ in 85% yield. In the sep (2) reaction 90% yield of $H_{3} P O_{4}$ is obtained. Mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ produced is :
A. $37.485 g$
B. $149.949 g$
C. 125.47 g
D. 564.48 g

- Watch Video Solution

17.9 moles of " D " and 14 moles of E are allowed to react in a closed vessel according to given reactions. Calculate number of moles of B formed in the end of reaction, if 4 moles of G are present in reaction vessel.
(percentage yield of reaction is mentioned in the reaction) Step -1 $3 D+4 E 80 \% \rightarrow 5 C+A$ Step-2 $3 C+5 G 50 \% \rightarrow 6 B+F$
A. 2.4
B. 30
C. 4.8
D. 1

- Watch Video Solution

18. The chief ore of Zn is the sulphide, ZnS . The are is concentrated by froth floation process and then heated in air to convert Zns to Zno .
$2 \mathrm{ZnS}+30_{2} \xrightarrow{80 \%} 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
$\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{100 \%} \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
$2 \mathrm{ZnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{80 \%} 2 \mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O}_{2}$
The number of moles of ZnS required for producing 2 moles of Zn will be:
B. 2
C. 2.125
D. 4

- Watch Video Solution

19. 0.8 mole of a mixture of CO and CO_{2} requires exactly 40 g of NaOH in solution for complete conversion of all the CO_{2} into $\mathrm{Na}_{2} \mathrm{CO}_{3}$. How many more moles of NaOH would it require for conversion into $\mathrm{Na}_{2} \mathrm{CO}_{3}$. If the mixture is completely oxidised to CO_{2} ?
A. 0.2
B. 0.6
C. 1
D. 1.5
20. Silver oxide $\left(\mathrm{Ag}_{2} \mathrm{O}\right)$ decomposes at temperature $300^{\circ} \mathrm{C}$ yielding matellic silver and oxygen gas. A 1.60 g sample of impure silver oxide yields $0.104 g$ of oxygen gas. What is the per cent by mass of the silver oxide in the sample?
A. 5.9
B. 47.125
C. 94.25
D. 88.2

- Watch Video Solution

21.342 g of 20% by mass of $\mathrm{ba}(\mathrm{OH})_{2}$ solution (sq.gr.0.57) is reacted with 1200 mL of $2 \mathrm{MHNO}_{3}$. If the final density of solution is same as pure
water then molarity of the iron in resulting solution which decides the nature of the above solution is:
A. 0.25
B. $0.5 M$
C. 0.888 M
D. None of these

- Watch Video Solution

22. 100 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution having molarity 1 M and density $1.5 \mathrm{~g} / \mathrm{mL}$ is mixed with 400 mL of water. Calculate final molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, if final density is $1.25 g / m L$?
A. $4.4 M$
B. 0.145 M
C. $0.52 M$
D. $0.227 M$

- Watch Video Solution

23. What volume of HCl solution of density $1.2 \mathrm{gcm}^{-3}$ and containing 36.5% by mass HCl , must be allowed to react wtih zinc $(Z n)$ in order to liberate 4.0 g of hydrogen ?
A. $333.33 m L$
B. 500 mL
C. $614.66 m L$
D. None of these
24. An ideal gaseous mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene $\left(C_{2} H_{4}\right)$ occupies 28 litre at 1 atm and 273 K . The mixture reacts completely with $128 \mathrm{gO}_{2}$ to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Mole fraction at $\mathrm{C}_{2} \mathrm{H}_{6}$ in the mixture is :
A. 0.6
B. 0.4
C. 0.5
D. 0.8

- Watch Video Solution

25. Wood's metal contains 50.0% bismuth, 25.0% lead, 12.5% tin and 12.5% cadmium by mass. What is the mole fraction of tin ?(\ (Atomic mass : $B i=209, P b=207, S n=119, C d=112)$
B. 0.158
C. 0.176
D. 0.221

- Watch Video Solution

26. The density of a 56.0% by mass aqueous solution of 1 -propanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ is $0.8975 \mathrm{gcm}^{-3}$. What is the mole fraction of the $1-$ propanol?
A. 0.292
B. 0227
C. 0.241
D. 0.276
27. What is the molartiy of SO_{4}^{2-} ion in aqueous solution that contain 34.2 ppm of $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$? (Assume complete dissociation and density of solution 1gmpermL)
A. $3 \times 10^{-4} M$
B. 2×10^{-4}
C. $10^{-4} M$
D. None of these

- Watch Video Solution

28. The correct relationship between molarity (M) and molality (m) is ($d=$ density of the solution, in $\mathrm{KgL}^{-1}, M_{2}=$ molar mass of the solute in kg mol^{-1})
A. $m=\frac{1000 M}{1000 \rho-M_{1}}$
B. $m=\frac{1000 \rho M}{1000 \rho-M M_{1}}$
C. $m=\frac{1000 M M}{1000 \rho-M M_{1}}$
D. $m=\frac{1000 M}{1000 \rho-M M_{1}}$

- Watch Video Solution

29. Molarity and molality of a solution of a liquid (mol.mass $=50$) in aqueous solution is 9 and 10 respectively. What is the density of solution ? (Round of the answer to nearest whole number)
A. $1 g / \mathrm{cc}$
B. $0.95 \mathrm{~g} / \mathrm{cc}$
C. $1.05 \mathrm{~g} / \mathrm{cc}$
D. $1.35 \mathrm{~g} / \mathrm{cc}$
30. An aqueous solution of ethanol has density $1.025 \mathrm{~g} / \mathrm{mL}$ and it is 2 M . What is the molality of this solution?
А. 1.79
B. 2.143
C. 1.951
D. None of these

- Watch Video Solution

Level 1 (Q.91 To Q.120)

1. 0.2 mole of $H C I$ and 0.2 mole of barium chloride were dissolved in water to produce a 500 mL solution. The molarity of the CI^{-}ions is :
A. $0.06 M$
B. 0.09 M
C. $1.2 M$
D. 0.80 M

- Watch Video Solution

2. Calculate the mass of anhydrous $H C I$ in $10 m L$ of concentrated $H C I$ (density $=1.2$ gpermL) solution having $37 \% H C I$ by mass is :
A. $4.44 g$
B. 4.44 mg
C. 4.44×10^{-3}
D. $0.444 \mu g$
3. Calculate the molality of 1 L solution of $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}\left(\frac{w}{V}\right)$ given that the density of the solution is $1.80 \mathrm{gmL}^{-1}$. (round of the answer to nearest whole number)
A. 8.16
B. 8.6
C. 1.02
D. 10.8

- Watch Video Solution

4. Fluoxymesterone, $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{FO}_{3}$, is an anabolic steroid. A 500 mL solution is prepared by dissolving 10.0 mg of the steoid in water. 10.0 mL portion of this solution is diluted to a final volume of 1.00 L . what is the resulting molarity ?
A. 1.19×10^{-10}
B. 1.19×10^{-7}
C. 5.95×10^{-8}
D. 2.38×10^{-11}
5. 17.1 gms of $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is present in 500 ml of aqueous solution. It.s concentration can be
A. $6.25 \times 10^{-2} M$
B. $2.421 \times 10^{-2} M$
C. $0.1875 M$
D. None of these
6. Concentrated HNO_{3} is $63 \% \mathrm{HNO}_{3}$ by mass and has a density of $1.4 \mathrm{~g} / \mathrm{mL}$. How many millilitres of this solution are required to prepare 250 mL of a $1.20 \mathrm{MHNO}_{3}$ solution ?
A. 18.0
B. 21.42
C. 20.0
D. 14.21

- Watch Video Solution

7. 100 ml of $1 \mathrm{M} \mathrm{HCl}, 200 \mathrm{ml} 2 \mathrm{M} \mathrm{HCl}$ and 300 ml 3 M HCl are mixed. The Molarity of the resulting solution is
A. 0.333 M
B. 0.666 M
C. 0.1 M

D. 1.33 M

Answer: B

- Watch Video Solution

8. 100 mL of $10 \% \mathrm{NaOH}\left(\frac{w}{V}\right)$ is added to 100 mL of $10 \% \mathrm{HCI}\left(\frac{w}{V}\right)$. The nature of resultant solution is :
A. alkaline
B. strongly alkaline
C. acidic
D. neurtal

Answer: C

9. What volume of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ must be added to 50 mL of a 0.10 NaOH solution to make a solution in which molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.050 M ?
A. 400 mL
B. 200 mL
C. 100 mL
D. none of these

Answer: C

- Watch Video Solution

10. $1 M H C I$ and $2 M H C I$ are mixed are mixed in volume ratio of $4: 1$.

What is the final molarity of $H C I$ solutions ?
A. 1.5
B. 1
C. 1.2
D. 1.8

Answer: C

- Watch Video Solution

11. Three solutions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ of HCl are mixed to produce 100 mL of 0.1 M solution . The milarities of X, Y and Z are $0.7 \mathrm{M}, 0.12 \mathrm{M}$ and 0.15 M respectively. What respective volumes of X, Y and Z should be mixed?
A. $50 m L, 25 m L, 25 m L$
B. $20 m L, 60 m L, 20 m L$
C. $40 \mathrm{~mL}, 30 \mathrm{~mL}, 30 \mathrm{~mL}$
D. $55 m L, 20 m L, 25 m L$

Answer: D

- Watch Video Solution

12. A bottle of an aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is labelled as '28V' $\mathrm{H}_{2} \mathrm{O}_{2}$ and the density of the solution (ing $/ m L$) is 1.25 . Choose the correct
A. Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is 2
B. Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is 5
C. Molality of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is 2.15
D. none of these

Answer: C

- Watch Video Solution

13. The impure 6 g of NaCl is dissolved in water and then treated with excess of silver nitrate solution. The mass of precipitate of silver chloride is found to be 14 g . The \% purity of NaCl solution would be:
A. 0.95
B. 0.85
C. 0.75
D. 0.65

Answer: A

- Watch Video Solution

14. $\left.\mathrm{Al}(\mathrm{SO})_{4}\right)_{3}$ solution of 1 molal concentration is present in 1 litre solution of density $2.684 \mathrm{~g} / \mathrm{cc}$. How many moles BaSO_{4} would be precipated on adding excess BaCl_{2} in it?
A. 2 moles
B. 3 moles
C. 6 moles
D. 12 moles

Answer: C

15. A certain public water supply contains $0.10 p p b$ (part per billion) of chloroform $\left(\mathrm{CHCl}_{3}\right)$. How many molecules of CHCl_{3} would be obtained in $0.478 m L$ drop of this water ?(assumed $d=1$ gperm L)
A. $4 \times 10^{-13} \times N_{A}$
B. $10^{-3} \times N_{A}$
C. $4 \times 10^{-10} \times N_{A}$
D. None of these

Answer: A

- Watch Video Solution

16. Decreasing order (first having highest and then others following it) of mass of pure NaOH in each of the aqueous solution :
A. I,ii,iii
B. iii,ii,i
C. ii,iii,i
D. ii,l, iii

Answer: B

- Watch Video Solution

17. What is the molar mass of diacidic organic Lewis base (B), if $12 g$ of its chloroplatinate salt $\left(\mathrm{BH}_{2} \mathrm{PtCI}_{6}\right)$ on ignition produced 5 g residue of Pt ?
A. 52
B. 58
C. 88
D. none of these

Answer: B

18. On strong heating, one gram of the silver salt of an organic dibasic acid yields 0.5934 g of silver. If the mass percentage of carbon in it 8 times the mass percentage of hydrogen and one-half the mass percentage of oxygen, determine the molecular formula of the acid.
A. $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$
B. $C_{4} H_{6} O_{6}$
C. $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$
D. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$

Answer: B

- Watch Video Solution

19. 0.607 g of a silver salt of tribasic organic acid was quantitatively reduced to 0.37 g of pure Ag . What is the molecular mass of the acid ?
A. 207
B. 210
C. 531
D. 324

Answer: B

- Watch Video Solution

20. A sample of peanut oil weighing $1.5763 g$ is added to $25 m L$ of 0.4210 MKOH . After saponification is complete 8.5 mL of $0.28 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is needed to neutralize excess $K O H$. The saponification number of peanut oil is:
A. 146.72
B. 223.44
C. 98.44
D. 98.9

D Watch Video Solution

21. 20 mL of a mixture of CO and H_{2} were mixed excess of O_{2} and exploded \& cooled. There was a volume contraction of 23 mL . All volume measurements corresponds to room temperature $\left(27^{\circ} C\right)$ and one atmospheric pressure. Determine the volume ratio $\left(V_{1}: V_{2}\right.$ of $C o$ anf H_{2} in the original mixture.
A. $6.5: 13.5$
B. $5: 15$
C. 9: 11
D. 7: 13

Answer: D

- Watch Video Solution

22. Write the atomic number and electronic configaration of Cesium?

- Watch Video Solution

23. The percentage by volume of $C_{3} H_{8}$ in a gaseous mixture of $C_{3} H_{8}, C H_{4}$ and $C O$ is 20 . When 10 ml of the mixture is burnt in excess of O_{2}, the volume of CO_{2} produced is $2 x \mathrm{ml}$. Find the value of .x..
A. 90 mL
B. 160 mL
C. 140 mL
D. none of these

Answer: C

- Watch Video Solution

24.40 ml gaseous mixture of $\mathrm{CO}, \mathrm{CH}_{4}$ and Ne was exploded with 10 ml of oxygen. On cooling, the gases occupied 36.5 ml . After treatment with KOH the volume reduced by 9 ml and again on treatment with alkaline pyrogallol, the volume further reduced, percentage of CH_{4} in the original mixture is
A. 22.5
B. 77.5
C. 7.5
D. 15

Answer: D

- Watch Video Solution

25. A gaseous mixture of propane and butane of volume 3 litre on complete combustion produces 11 lit CO_{2} under standard condition of temp. and pressure. Find the ratio of volume of butane to propane.
A. $1: 2$
B. 2:1
C. $3: 2$
D. $3: 1$

Answer: B

- Watch Video Solution

26. The oxy acid of phosphorus in which phosphorus has the lowest oxidation state is
A. Orthophosphoric acid
B. Phosphorous acid
C. Hypophosphoric acid
D. Metaphosphiric acid

Answer: C

27. Oxidation numbers of the two chlorine atom in CaOCl_{2} is
A. +1 only
B. $-1 o n l y$
C. +1 and -1
D. none of these

Answer: C

- Watch Video Solution

28. The oxidation number of sulphur in $S_{8}, S_{2} F_{2}$ and $H_{2} S$ are
A. $0,+1,-2$ and 6
B. $+2,0,+2$ and 6
C. $0,+1,+2$ and 6
D. $-2,0,+2$ and 6

Answer: A

- Watch Video Solution

29. Give example of one coordinate compound in which Fe show oxidation state of +1 ?

- Watch Video Solution

30. When $S O_{2}$ is passed into an acidified potassium dichromate solution, the oxidation numbers of sulphur and chromium in the final products respectively are :
A. $+6,+6$
B. $+6,+3$
C. $+0,+3$
D. $+2,+3$

Answer: B

- Watch Video Solution

Level 1 (Q.121 To Q.150)

1. What are the oxidation number of nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
A. $+3,+3$
B. $+3,-3$
C. $-3,-5$
D. $-5,+3$

Answer: C
2. The oxidation state of sulphur in Caro.s and Marshel.s acids are:
A. $+6,+6$
B. $+6,+4$
C. $+6,-6$
D. $+4,+6$

Answer: A

- Watch Video Solution

3. In which fo the following has the oxidation number of oxygen been arragned in increasing order ?
A. $O F_{2}<\mathrm{KO}_{2}<\mathrm{BaO}_{2}<\mathrm{O}_{3}$
B. $\mathrm{BaO}_{2}<\mathrm{KO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}$
C. $\mathrm{BaO}_{2}<\mathrm{KO}_{2}<\mathrm{OF}_{2}<\mathrm{KO}_{2}$
D. $\mathrm{KO}_{2}<\mathrm{OF}_{2}<\mathrm{O}_{3}<\mathrm{BaO}_{2}$

Answer: B

- Watch Video Solution

4. The oxidation numbers of oxygen in $\mathrm{KO}_{3}, \mathrm{Na}_{2} \mathrm{O}_{2}$ respectively are :
A. 3,2
B. 1,0
C. 0,1
D. $-0.33,-1$

Answer: D

5. The oxidation state of Barium in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. -1
B. +1
C. +2
D. +3

Answer: B

- Watch Video Solution

6. If it is known that $\mathrm{Fe}_{0.96} \mathrm{O}, \mathrm{Fe}$ is present in +2 and +3 oxidation state, What is the mole fraction of Fe^{2+} in the compound?
A. $\frac{12}{25}$
B. $\frac{25}{12}$
C. $\frac{1}{12}$
D. $\frac{11}{12}$

Answer: D

7. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?
A. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
B. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
D. $\mathrm{NO}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$

Answer: B

- Watch Video Solution

8. 2 moles of $N_{2} H_{4}$ loses 16 moles of electrons is being converted to a new compound x . Assuming that all of the N appears in the new compound, what is the oxidation state of N in x ?
A. -1
B. -2
C. +2
D. +4

Answer: C

- Watch Video Solution

9. When $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is converted to $\mathrm{K}_{2} \mathrm{CrO}_{4}$ then change in the oxidation state of chromium is :
A. 0
B. 6
C. 4
D. 3

Answer: A

10. When a manganous salt is fused with a mixture of KNO_{3} and solid NaOH , the oxidation number of Mn change from +2 to :
A. +4
B. +3
C. +6
D. +7

Answer: C

- Watch Video Solution

11. In Fe(II) $-\mathrm{MnO}_{4}^{-}$tirtration HNO_{3} is not used beacause:
A. it oxidises $M n^{2+}$
B. it reduces MnO_{4}^{-}
C. it oxidise Fe^{2+}
D. it reduces $F e^{3+}$ formed

Answer: C

- Watch Video Solution

12. Which species are oxidised and reduced in the reaction?
$\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{Mn}^{2+}$
A. Oxidised:Fe,C,Reduced:Mn
B. Oxidised:Fe,Reduced:Mn
C. Reduced:Fe,Mn,Oxidised:C
D. Reduced:C,Oxidised:Mn,Fe

Answer: A

- Watch Video Solution

13. In which of the following reaction, $\mathrm{H}_{2} \mathrm{O}_{2}$ is acting as a reducing ageni
A. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
B. $2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}$
C. $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Answer: D

- Watch Video Solution

14. Following reaction describes the rusting of iron $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}^{3+}+6 \mathrm{O}^{2-}$.

Which one of the following statement is incorrect
A. This is an example of a redox reaction
B. Metallic iron is reduced to $F e^{2+}$
C. $F e^{3+}$ is an oxidising agent
D. Metallic iron is a redoxing agent

Answer: B

- Watch Video Solution

15. Which of the following reactions does not represent the aldol condensation reaction ?
A. $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$
C. $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

16. Which of the following is redox reaction
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ reach with NaOH
B. In atmoshere, O_{3} is formed from O_{2} by lightning
C. Evaporation of $\mathrm{H}_{2} \mathrm{O}$
D. Oxides of nitrogen are formed form nitrogen \& oxygen by lightning

Answer: D

- Watch Video Solution

17. Which of the following is redox reaction
A. $2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \rightarrow \mathrm{Na} a_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+2 \mathrm{Ag}$
B. $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$
D. $\mathrm{AgNO}_{3}+\mathrm{KI} \rightarrow \mathrm{AgI}+\mathrm{KNO}_{3}$

- Watch Video Solution

18. Balance the following chemcial reaction.
$\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$. The coefficient of $\mathrm{MnO}_{4}^{-}, \mathrm{SO}_{3}^{-}$and H^{+}in balanced reaction are, and respectively.
A. 2,5,16
B. $16,3,12$
C. $15,16,12$
D. 2,16,5

Answer: A

19. In the chemical reaction,
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+x \mathrm{H}_{2} \mathrm{SO}_{4}+y \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+z \mathrm{H}_{2} \mathrm{O}$
x, y, and z are
A. $x=1, y=3, z=1$
B. $x=4, y=1, z=4$
C. $x=3 . y=2 . z=1$
D. $x=2 . y=2, z=1$

Answer: A

- Watch Video Solution

20. In SOCl_{2} and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
A. 5
B. 3
C. 6

D. 2

Answer: D

- Watch Video Solution

21. Balance the followings equations and choose the quantity which is the sum of the coefficients of reactants and products :
$\ldots \ldots . . \mathrm{PtCI}_{4}+\ldots . \mathrm{XeF}_{2}->P t F_{6}+\ldots . . C I F+\ldots . \mathrm{Xe}$
A. 16
B. 13
C. 18
D. 12

Answer: A

- Watch Video Solution

22. If 0.1 mole $H_{3} P O_{x}$ is completely neutralised by 5.6 g KOH then select the true statement.
A. $x=3$ and given acid is diabasic
B. $x=4$ and given acid has no $P=H$ linkage
C. $x=2$ and given acid does not form acid salt
D. all of these

Answer: C

- Watch Video Solution

23. When potassium permanganate is titrated against ferrous ammonium sulphate, the equivalent weight of potassium permanganent is
A. $\frac{\text { molecular mass }}{3}$
B. $\frac{\text { molecular mass }}{5}$
C. $\frac{\text { molecular mass }}{2}$
D. $\frac{\text { molecular mass }}{10}$

Answer: B

- Watch Video Solution

24. Equivalent mass of $F e S_{2}$ in the half reaction, $\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$ is:
A. $\frac{M}{10}$
B. $\frac{M}{11}$
C. $\frac{M}{6}$
D. $\frac{M}{1}$

Answer: B

- Watch Video Solution

25. The equaivalent mass of HCl in the given reaction is: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl}_{3}+3 \mathrm{Cl}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
A. 16.25
B. 36.5
C. 73
D. 85.1

Answer: D

- Watch Video Solution

26. Equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{2}$ when it disproportionates into PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{3}$ is (mol.wt. of $\mathrm{H}_{3} \mathrm{PO}_{2}=\mathrm{M}$)
A. M
B. $\frac{M}{2}$
C. $\frac{M}{4}$
D. $\frac{3 M}{4}$

Answer: D

- Watch Video Solution

27. The equivalent weights of oxidising and reducing agents can be calculated by the number of electrons gained or lost. The equivalent weight of an oxidising agent is the number of parts by weight of the substance which gains one electron. Thus, it is equal to the molecular weight of the substance divided by the number of electrons gained in the balanced chemical equation. Similarly, equivalent weight of a reducing agent is equal to the molecular weight divided by the number of electrons lost as represented in the balanced chemical equation The equivalent weght of $A s_{2}, S_{3}$ in the following reaction $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}^{2-}$ is related to its molecular weight as
A. $\frac{M}{2}$
B. $\frac{M}{4}$
C. $\frac{M}{24}$
D. $\frac{M}{28}$

Answer: D

- Watch Video Solution

28. Sulphur forms the chlorides $S_{2} \mathrm{Cl}_{2}$ and $S \mathrm{Sl}_{2}$. The equivalent mass of sulphur in $S \mathrm{Sl}_{2}$ is :
A. $8 \mathrm{~g} / \mathrm{mol}$
B. $16 \mathrm{~g} / \mathrm{mol}$
C. $64.8 \mathrm{~g} / \mathrm{mol}$
D. $3 \mathrm{~g} / \mathrm{mol}$

Answer: B

29. The equivalent mass of an element is 4 . Its chloride has vapour density 59.25. Then the valency of the element is \qquad .
A. 4
B. 3
C. 2
D. 1

Answer: B

- Watch Video Solution

30.6×10^{-3} mole $K_{2} \mathrm{Cr}_{2} O_{7}$ reacts completely with 9×10^{-3} mole X^{n+} to given XO_{3}^{-}and Cr^{3+}. The value of n is :
A. 1
B. 2
C. 3
D. none of these

Answer: A

- Watch Video Solution

Level 1 (Q.151 To Q.180)

1. What mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (mol.mass $=126$) should be dissolved in water to prepare 250 mL of centinormal solution which act as a reducing agent?
A. 0.63 g
B. 0.1575 g
C. 0.126 g
D. 0.875 g

Answer: B

- Watch Video Solution

2. The equivalent weight of salt
$\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ when used as reducing agent : -
A. $\frac{\text { Mol.mass }}{1}$
B. $\frac{\text { Mol.mass }}{2}$
C. $\frac{\text { Mol.mass }}{3}$
D. $\frac{\text { Mol.mass }}{4}$

Answer: D

- Watch Video Solution

3. A bivalent metal has 37.2 equivalent weight. The molecular weight of its chloride is
A. $W+35.6$
B. $W+72$
C. $2 W+72$
D. $2 \mathrm{~W}+35.6$

Answer: C

- Watch Video Solution

4. When BrO_{3}^{-}ion reacts with Br^{-}in acid medium, Br_{2} is liberated.

The equivalent mass of $B r_{2}$ in this reaction is:
А. $\frac{5 M}{8}$
B. $\frac{5 M}{3}$
C. $\frac{3 M}{5}$
D. $\frac{4 M}{6}$

Answer: C

5. If M_{A} gram of metal A displaces m_{B} gram of another metal B from its salt solution and if the equivalent mass are E_{A} and E_{B} respectively then equivalent mass of A can be expressed as :
A. $E_{A}=\frac{m_{A}}{m_{B}} \times E_{B}$
B. $E_{A}=\frac{m_{A} \times m_{B}}{E_{B}}$
C. $E_{A}=\frac{m_{B}}{E_{A}} \times E_{B}$
D. $E_{A}=\sqrt{\frac{m_{A}}{m_{B}} \times E_{B}}$

Answer: A

- Watch Video Solution

6. Hydrazine reacts with KIO_{3} in presence of HCl as :
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{IO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{ICl}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
The equivalent masses of $\mathrm{N}_{2} \mathrm{H}_{4}$ and KIO_{3} respectively are :
A. 8 and 53.5
B. 16 and 53.5
C. 8 and 35.6
D. 8 and 87

Answer: A

- Watch Video Solution

7. What will be the normality of solution obtained by mixing 0.45 N and 0.60 NNaOH in the ratio $2: 1$ by volume?
A. 0.4 N
B. 0.5 N
C. 1.05 N
D. 0.15 N

Answer: B

8. A solution containing $2.68 \times 10^{-3} \mathrm{~mol}$ of A^{n+} ions requires $1.61 \times 10^{-3} \mathrm{~mol}$ of MnO_{4}^{-}for the complete oxidation of A^{n+} to AO_{3}^{-}in acidic medium. What is the value of n ?
A. neutral
B. acidic
C. strong basic
D. none of these

Answer: B

- Watch Video Solution

9. $\mathrm{H}_{2} \mathrm{O}_{2}$ is used as bleaching reagent because on dissociation it gives
oxygen

$$
\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}\right)
$$

"Chachi420" used $\mathrm{H}_{2} \mathrm{O}_{2}$ solution to bleach her hair and she required $2.24 \mathrm{LO}_{2}$ gas at 1atm and 273 K . She has a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution labelled '5.6V' then what volume of such solution must she required to bleach her hair?
A. 200 mL
B. 300 mL
C. 400 mL
D. 500 mL

Answer: C

- Watch Video Solution

10. 1.25 g of a solid dibasic acid is completely neutralised by 25 mL of 0.25 molar $\mathrm{Ba}(\mathrm{OH})_{2}$ solution. Molecular mass of the acid is:
A. 100
B. 150
C. 120
D. 200

Answer: D

- Watch Video Solution

11.5 ml of $1 \mathrm{~N} \mathrm{HCl}, 20 \mathrm{ml}$ of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30 ml of $\mathrm{N} / 3 \mathrm{HNO}_{3}$ are mixed together and the volume made to one litre. The normality of the resulting solution is
A. $3 \mathrm{~N} / 100$
B. $\mathrm{N} / 10$
C. $\mathrm{N} / 20$
D. $\mathrm{N} / 4 \mathrm{O}$

Answer: A

- Watch Video Solution

12. 0.45 g of an acid of mol. Mass 90 was neutralised by 20 mL of 0.54 N caustic potash (KOH). The basicity of acid is :
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

13. . 4 sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution containing $\mathrm{H}_{2} \mathrm{O}_{2}$ by weight requires x ml of KMnO_{4} solution for completed oxidation under acidic condition. The formality of KMnO_{4} solution is
A. 1
B. 0.5
C. 0.4
D. 0.2

Answer: C

- Watch Video Solution

14. Balance the equation :
$\mathrm{SO}_{2}+\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
A. 0.12litre
B. 0.028 litre
C. 0.56 litre
D. 1.12 litre

Answer: C

- Watch Video Solution

15. A sample of 1.0 g of solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ of 80% purity is dissolved in a moderately concentrated HCl solution which is reduced by zinc dust. The resulting solution required 16.7 mL of a 0.1 M solution of the oxidant.

Calculate the number of electrons taken up by the oxidant.
A. 2
B. 4
C. 6
D. 5

Answer: C

- Watch Video Solution

16. Coefficients of $\mathrm{MnO}_{4}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and H^{+}in the balanced reaction, $\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
A. 120 mL of $0.25 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
B. 150 mL of $0.10 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $25 m \mathrm{~L}$ of $0.20 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. 50 mL of $0.20 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Answer: C

- Watch Video Solution

17. Ratio of moles of $F e$ (II) oxidised by equal volumes of equimolar KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solutions in aidic medium will be :
A. $5: 3$
B. 1:1
C. 1: 2
D. 5: 6

Answer: D

18. The mass of a mixture containing HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.1 g On treatment with an excess of an AgNO_{3} solution, this acid mixture gives 0.1435 g of AgCl . Mass $\%$ of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ mixture is :
A. 36.5
B. 63.5
C. 50
D. none of these

Answer: B

- Watch Video Solution

19. A solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is standardized iodometrically against 0.1262 g of KBrO_{3}. This process required 45 mL of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. What is the strength of the $N a_{2} S_{2} O_{3} ?(\mathrm{~K}=39, \mathrm{Br}=80)$
A. 0.2 N
B. 0.12 N
C. 0.72 N
D. 0.02 N

Answer: B

- Watch Video Solution

20. 0.80 g of impure $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ was boiled with 100 mL of a 0.2 N NaOH solution was neutralized using 5 mL of a $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. The percentage purity of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sample is:
A. 82.5
B. 72.5
C. 62.5
D. 17.5

D Watch Video Solution

21. The NH_{3} evolved due to complete conversion of N from $1.12 g$ sample of protien was absorbed in $45 m L$ of $0.4 \mathrm{NHNO}_{3}$. The excess acid required 20 mL of 0.1 NaOH . The $\% \mathrm{~N}$ in the sample is :
A. 8
B. 16
C. 20
D. 25

Answer: A::C

22. Find out \% of oxalate ion ina given sample of an alkali metal oxalate salt, 0.30 g of it is dissolve in 100 mL water and its required 90 mL OF $\mathrm{N} / 20$ KMnO_{4} solution
A. 66
B. 0.55
C. 0.44
D. 0.066

Answer: A

- Watch Video Solution

23. 320 mg of a sample of magnessium having a coating of its oxide required 20 mL of 0.1 M hydrochloric acid for the complete neutralisation of the latter. The composition of the sample is:
A. $87 \% \mathrm{Mg}$ and $12.5 \% \mathrm{MgO}$
B. $12.5 \% \mathrm{Mg}$ and $87.5 \% \mathrm{MgO}$
C. $80 \% \mathrm{Mg}$ and $20 \% \mathrm{MgO}$
D. $20 \% \mathrm{Mg}$ and $80 \% \mathrm{MgO}$

Answer: C

- Watch Video Solution

24. The concentration of bivalent lead ions in a sample of polluted of polluted water that aslo contains nitrate ions is determined by adding solid sodium sulphate ($M=142$) to exactly 500 mL water. Calculate the molarity of lead ions if 0.355 g is sodium sulphate was nedded for complete precipitation of lead ions as sulphate.

- Watch Video Solution

25. What volume of
HNO_{3} (sp. gravity1.05mL ${ }^{-1}$ containing $\left.12.6(w / W) o f \mathrm{HNO}_{3}\right)$ that
reduce into NO is required to oxidise iron $1 \mathrm{~g} 1 \mathrm{~g} \cdot \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in acid medium is:
A. 70 mL
B. 0.57 mL
C. 80 mL
D. 0.65 mL

Answer: C

- Watch Video Solution

26. What volume of $0.01 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ would be required to oxidize $\mathrm{Fe}(I I)$ in 50 ml of 0.03 M solution of ferrous ammonium sulphate in acidic medium?
A. 1.096 mL
B. 1.32 mL
C. 5.48 mL
D. none of these

Answer: A

- Watch Video Solution

27. When 2.5 g of a sample of Mohr's salt reacts completely with 50 mL of $\frac{N}{10} \mathrm{KMnO}_{4}$ solution. The \% purity of the sample of Mohr's salt is:
A. 78.4
B. 70
C. 37
D. 40

Answer: A

28.4 mole of a mixture of Mohr's salt and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ requires 500 mL of $1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for complete oxidation in acidic medium. The mole $\%$ of the Mohr's salt in the mixture is:
A. 25
B. 50
C. 60
D. 75

Answer: D

- Watch Video Solution

29. The equivalent mass of a metal is twice to that of oxygen. How many times is the equivalent mass of it's oxide than the equivalent mass of the metal ?
A. 1:5
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

30. A metal oxide has the formula $X_{2} \mathrm{O}_{3}$. It can be reduced by hydrogen to give free metal and water. 0.159 g of metal oxide requires 6 mg of hydrogen for complete reduction. The atomic mass of metal is amu is
A. 15.58
B. 155.8
C. 5.58
D. 55.8

Answer: D

Level 1 (Q.181 To Q.200)

1. Calculate the mass of anhydrous oxalic acid, which can be oxidised to $\mathrm{CO}_{2}(\mathrm{~g})$ by 100 mL of an $\mathrm{MnO4}^{-}$solution, 10 mL of which is capable of oxiding 50 mL of $1 \mathrm{NI}^{-}$to I_{2}.
A. 45 g
B. 22.5 g
C. 30 g
D. 12.25 g

Answer: B

- Watch Video Solution

2. A mixture of $K_{2} C_{2} O_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4}$ required equal volumes of $0.1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for oxidation and 0.1 M NOH for neutralisation is separate titratiosn. The molar ratio of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4}$ in the mixture is
A. 6: 1
B. 1: 6
C. 1:3
D. 3:1

Answer: D

- Watch Video Solution

3. Stannous sulphate $\left(\mathrm{SnSO}_{4}\right)$ and potassium permanganate are used as oxidising agents in acidic medium for oxidation of ferrrous ammnium sulphate to ferric sulphate. The ration of number of moles of stannous sulphate required per mole of ferrous ammonium sulphate to the
number of moles of KMnO_{4} required per mole of ferrous ammonium sulphate, is:
A. 2.5
B. 0.2
C. 0.4
D. 2

Answer: A

- Watch Video Solution

4. If x g is the mass of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ required to neutralize 100 ml of 0.2 M NaOH and y g that required to reduce 100 ml of $0.02 \mathrm{M}_{\mathrm{KMnO}}^{4}$ in acidic medium then
A. $a=b$
B. $2 \mathrm{a}=\mathrm{b}$
C. $a=2 b$
D. none of these

Answer: D

- Watch Video Solution

5. An equimolar mixture of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required $V_{1} L$ of $0.1 \mathrm{MKMnO}_{4}$ in acidic medium for complete oxidation. The same amount of the mixture required $V_{2} L$ of 0.1 M NaOH for neutralization. The ratio of V_{1} to V_{2} is
A. 1: 2
B. 2: 1
C. $4: 5$
D. 5: 4

Answer: C

6. A mixture containing 0.05 mol of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 0.02 mol of KMnO_{4} was treated with excess of KI in acidic medium. The liberated iodine required 2.0 L of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution of titration. Concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was
A. $0.4 \mathrm{~mol}^{-1}$
B. $0.20 \mathrm{~mol}^{-1}$
C. $0.25 \mathrm{molL}^{-1}$
D. $0.30 \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

7.5 ml of $1 \mathrm{~N} \mathrm{HCl}, 20 \mathrm{ml}$ of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30 ml of $\mathrm{N} / 3 \mathrm{HNO}_{3}$ are mixed together and the volume made to one litre. The normality of the resulting solution is
A. 250 mL
B. 62.5 mL
C. 100 mL
D. none of these

Answer: B

- Watch Video Solution

8. There are two types of iodine titrations (a) lodometric \& (b) Iodimetric, lodometric method is indirect method of I_{2} estimation. Any oxidant which liberates I_{2} from KI solution, the liberated iodine is estimated by titrating it with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution as : $\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

100 mL of .x. M $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is added to excess of KI solution in acidic medium. The liberated iodine required 50 mL of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The value of x is
A. 2
B. 0.2
C. 0.1
D. 1

Answer: D

D Watch Video Solution

9. 1 g mixture of equal number of mole of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and other metal carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ required 21.6 mL of 0.5 N HCl for complete neutralisation reaction. What is the apoproximate atomic mass of the other metal?
A. 25
B. 23
C. 51
D. 118

Answer: D

- Watch Video Solution

10. 32 g of a sample of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ were dissolvedin dilute sulphuric acid and water and its volume was made up to 1 litre. $25 m L$ of this solution required 20 mL of $0.02 \mathrm{MKMnO}_{4}$ solution for complete oxidation. Calculate the mass \% of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in the sample.
A. 34.75
B. 69.5
C. 89.5
D. none of these

Answer: A

- Watch Video Solution

11. In the mixture of NaHCO_{3} and NaCO_{3}, volume of a given HCl required is x ml with phenolphathalein indicator and further y mL is required with methyl orange indicator. Hence volume of HCl for complete reaction of NaHCO_{3} present in the original mixture is
A. 2 x
B. y
C. $x / 2$
D. $(y-x)$

Answer: D

- Watch Video Solution

12. 0.1 g of a solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} requires 10 mL of $0.01 \mathrm{~N} \mathrm{HCI} \mathrm{for} \mathrm{neutralization} \mathrm{using} \mathrm{phenolphthalein} \mathrm{as} \mathrm{an} \mathrm{indicator}$. mass \% of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution is :
A. 25
B. 32
C. 50
D. none of these

Answer: C

- Watch Video Solution

13. In the mixture of NaHCO_{3} and NaCO_{3}, volume of a given HCl required is x ml with phenolphathalein indicator and further y mL is required with methyl orange indicator. Hence volume of HCl for complete reaction of NaHCO_{3} present in the original mixture is
A. 2:1
B. 1: 2
C. $4: 1$
D. $1: 4$

Answer: A

- Watch Video Solution

14. When 200 mL solution of NaOH and NaCO_{3} was first titrated with $\mathrm{N} / 10 \mathrm{HCl}$ in presence of $\mathrm{HPh}, 17.5 \mathrm{~mL}$ were usedtill end point is obtained.

After this end point MeOH was added and 2.5 mL of same HCl were required to attain new end point. The amount NaOH in mixture is:
A. 0.06 g per 100 mL
B. 0.06 g per 200 mL
C. 0.05 g per 100 mL
D. 0.012 g per 200 mL

Answer: A

15. 1gram of a sample of CaCO_{3} was strongly heated and the CO_{2} liberated was absorbed in 100 mL of 0.5 M NaOH solution. Assuming 90% purity for the sample, how many mL of 0.5 M HCl would be required to react with the resulting solution to reach the end point inpresence of phenolphthaein?
A. 73 mL
B. 41 mL
C. 82 mL
D. 100 mL

Answer: C

- Watch Video Solution

16. A sample of pure sodium carbonate $0.318 g$ is dissolved in water and litrated with HCl solution. A volume of 60 mL is required to reach the methly orange end point. Calculate the molarity of the acid.
A. 0.1 M
B. 0.2 M
C. 0.4 M
D. none of these

Answer: A

- Watch Video Solution

17. 10 L of hard water required 5.6 g of lime for removing haardness. Hence temporary hardness in ppm of CaCO_{3} is :
A. 1000
B. 2000
C. 100
D. 1
18. 1 L of pond water contains 20 mg of Ca^{2+} and 12 mg of mg^{2+} ions. What is the volume of a $2 \mathrm{NNa}_{2} \mathrm{CO}_{3}$ solution required to soften 5000 L of pond water?
A. 500 L
B. 50 L
C. 5 L
D. none of these

Answer: C

- Watch Video Solution

19. One litre of a sample of hard water contain $4.44 \mathrm{mgCaCl} 2_{2}$ and $1.9 \mathrm{mgof} \mathrm{MgCl}_{2}$. What is the total hardness in terms of ppm of CaCO_{3} ?
A. 2 ppm
B. 3 ppm
C. 4 ppm
D. 6 ppm

Answer: D

- Watch Video Solution

20. If hardness of water sample is 200ppm, then select the incorrect statement:
A. Mass ratio of CaCO_{3} to $\mathrm{H}_{2} \mathrm{Ois} \frac{0.02}{100}$
B. Mole ratio of CaCO_{3} to $\mathrm{H}_{2} \mathrm{Ois} 3.6 \times 10^{-5}$
C. Mass of CaCO_{3} present in hard water $i s 0.2 g / L$
D. 1 miliequivalent of CaCO_{3} present in 1 kg of hard water

Level 2 (Q.1 To Q.30)

1. A mixture of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ coitain 30.40% mass per cent of nitrogen. What is the mass ratio of the two components in the mixture?
A. $2: 1$
B. 1: 2
C. 3:4
D. 4:1

Answer: A

2. What volume of 75% alcohol by weight $\left(d-0.80 \mathrm{~g} / \mathrm{cm}^{3}\right)$ must be used to prepare $150 \mathrm{~cm}^{3}$ of 30% alcohal by mass $\left(d=0.90 \mathrm{~g} / \mathrm{cm}^{3}\right)$?
A. 67.5 mL
B. 56.25 mL
C. 44.44 mL
D. None of these

Answer: A

- Watch Video Solution

3. Calculate the number of millilitre of $\mathrm{NH}_{3}(\mathrm{aq})$ solution ($\mathrm{d}=0.986 \mathrm{~g} / \mathrm{ml}$) contain 2.5% by mass NH_{3}, which will be required to precipitate iron as $\mathrm{Fe}(\mathrm{OH})_{3}$ in a 0.8 g sample that contains $50 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$.
A. 0.344 mL
B. 3.44 mL
C. 17.24 mL
D. 10.34 mL

Answer: D

- Watch Video Solution

4. In the preparation of Iron from haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ by the reaction with carbon $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2} 94.5 \mathrm{~kg}$ of $10 \mathrm{x} \%$ pure Iron could be produced from 120 kg of 90% pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$? Find the value of x .
A. 94.5 kg
B. 60.48 kg
C. 116.66 kg
D. 120 kg

Answer: A

5. A mineral consists of an equimolar mixture of the carbonates of two bivalent metals. One metal is present to the extent of 12.5% by mass. 2.8 g of the mineral on heating lost 1.32 g of CO_{2}. What is the $\%$ by mass of the other metal ?
A. 87.5
B. 35.71
C. 65.11
D. 23.21

Answer: D

(D) Watch Video Solution

6. 6.2 g of a sample containing $\mathrm{NaHCO}_{3}, \mathrm{NaHCO}_{3}$ and non -volatiale inert impurity on gentle heating loses 5% of its mass due to reaction $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$. Residue is dissolved in water
and formed 100 mL solution and its 10 mL portion requires 7.5 mL of 0.2 M aqueous solution of BaCl_{2} for complete precipitation of carbonates. Determine mass (in gram) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the original sample .
A. 1.59
B. 1.06
C. 0.53
D. None of these

Answer: B

- Watch Video Solution

7. Nitric acid can be produced from NH_{3} in three step process
I)

$$
4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

$2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$
III) $3 \mathrm{NO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{HNO}_{3(a q)}+\mathrm{NO}_{(g)}$
\% yield of I, II, III reaction are respectively $50 \%, 60 \%$ and 80%. Then how much volume of $\mathrm{NH}_{3(\mathrm{~g})}$ at STP is required to produce 2.25 gm of HNO_{3}.
A. 156.25
B. 350 L
C. 3500 L
D. None of these

Answer: C

- Watch Video Solution

8. 1 M NaOH solution was slowly added in to 1000 mL of 183.75 g impure $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution and the following plot was obtained. The percentage
purity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ sample and slope of the curve respectively are:

A. $75 \%,-\frac{1}{3}$
B. $80 \%,-\frac{1}{2}$
C. $80 \%,-1$
D. None of these

Answer: C

9. Inniting MnO_{2} in air converts it quantitctively to $\mathrm{Mn}_{3} \mathrm{O}_{4}$. A sample of pyrolusite is of the following composition. $\mathrm{MnO}_{2}=80 \%$ and othe inert constituents $=15 \%$ and rest bearing $\mathrm{H}_{2} \mathrm{O}$. The sample is ignited to constant weight. What is the $\%$ of Mn is the igrited sample.
A. 0.246
B. 0.37
C. 0.5524
D. 0.7405

Answer: C

- Watch Video Solution

10. A 1.0 g sample of a pure organic compound cotaining chlorine is fused with $\mathrm{Na}_{2} \mathrm{O}_{2}$ to convert chlorine to NaCl . The sample is then dissolved in water, and the chloride precipitated with AgNO_{3}, giving 1.96 g of AgCl . If
the molecular mass of organic compound is 147 , how many chlorine does each molecule contain ?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

11. A 0.6 gm sample consisting of only $\mathrm{CaC}_{2} \mathrm{O}_{4}$ and $\mathrm{MgC}_{2} \mathrm{O}_{4}$ is heated at $500^{\circ} \mathrm{Cg}$ gets converted into CaCO_{3} and MgCO_{3}. The sample then weighed 0.465 gm . If the sample had been heated to $900^{\circ} \mathrm{C}$ where the products are CaO and MgO , then what would the mixture of oxides weigh?
A. 0.12 g
B. 0.21 g
C. 0.252 g
D. 0.3 g

Answer: C

- Watch Video Solution

12. A metal M forms the sulphate $M_{2}\left(\mathrm{SO}_{4}\right)_{3}$. A 0.596 gram sample of the sulphate reacts with excess BaCl_{2} to give $1.220 \mathrm{~g} \mathrm{BaSO}_{4}$. What is the atomic mass of M ?
A. 26.9
B. 69.7
C. 55.8
D. 23
13. Urea $\left(\mathrm{H}_{2} \mathrm{NCONH}_{2}\right)$ is manufactured by passing $\mathrm{CO}_{2}(\mathrm{~g})$ through ammonia solution followed by crystallization. For the above reaction is prepared by combustion of hydrocarbons. If combustion of 236 kg of a saturated hydrocarbon $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ produces as much CO_{2} as required for production of 999.6 kg urea then molecular formula of hydrocarbon is:
A. $C_{10} H_{22}$
B. $\mathrm{C}_{12} \mathrm{H}_{26}$
C. $\mathrm{C}_{13} \mathrm{H}_{28}$
D. $C_{8} H_{18}$

Answer: B

- Watch Video Solution

14. 11.6 g of an organic compound having formula $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ is burnt in excess of $O_{2}(g)$ initially taken in a 22.41 litre steel vessel. Reaction the gaseous mixture was at 273 K with pressure reading 2 atm. After complete complete combustion and loss of considerable amount of heat, the mixture of product and excess of O_{2} had a temperature of 546 K and 4.6 atm pressure. The formula of organic compound is :
A. $C_{6} H_{6}$
B. $C_{3} H_{8}$
C. $C_{5} H_{12}$
D. $C_{4} H_{10}$

Answer: D

- Watch Video Solution

15. $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \xrightarrow{40 \% \text { yield }} \mathrm{I}_{2}+2 \mathrm{KOH}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{50 \% \text { yield }} \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

150 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample was divided into two parts. First part was treated with KI and Formed KOH required 200 ml . of $\mathrm{M} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ for neutralisation.Other part was trated with KMnO_{4} yielding 6.74 litre of O_{2} at STP.Using \% yield indicated find volume stregth of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample used.
A. 5.04
B. 10.08
C. 3.36
D. 33.6

Answer: D

- Watch Video Solution

16. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (sulphuryl chloride) reacts with water to given a mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCL . What volume of $0.2 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is needed to completely neutralize 25 mL of $0.2 \mathrm{MSO}_{2} \mathrm{Cl}_{2}$ solution:
A. 25 mL
B. 50 mL
C. 100 mL
D. 200 mL

Answer: B

- Watch Video Solution

17. 5 g sample contain only $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$. This sample is dissolved and the volume made up to 250 mL .25 mL of this solution neutralizes 20 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Calcalute the \% of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample .
A. 42.4
B. 57.6
C. 36.2
D. None of these

Answer: B

- Watch Video Solution

18. 20 mL of $0.2 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ solution is mixed with 35 mL of this 0.1 ML $\mathrm{NaOH}(\mathrm{aq})$ solution and the resultant solution is diluted to 100 mL .40 mL of this diluted solution reacted with 10% impure sample of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ The mass of impure is:
A. 0.15 gram
B. 0.135 gram
C. 0.59 gram
D. None of these

Answer: A

D Watch Video Solution

19. A silver coin weighing 11.34 g was dissolved in nitric acid When sodium chloride was added to the solution all the silver (present as AgNO_{3}) precipitated as silver chloride. The mass of the precipitated silver chloride was 14.35 g . Calculate the percentage of silver in the coin.
A. 0.048
B. 95.2
C. 0.9
D. 0.8

Answer: B

- Watch Video Solution

20. Two elements X (at.mass 16) ard Y (at. mass 14) combine to form compounds A, which combine with a fixed mass of X in A, B and C is 1:3:5. If 32 parts by mas of X combines with 84 parts by mass of Y in B, then in C 16 parts by mass of X will combine with
A. 14 parts by mass of Y
B. 42 parts by mass of Y
C. 70 parts by mass of Y
D. 84 parts by mass of Y

Answer: C

- Watch Video Solution

21. The conversion of oxygen to ozone occurs to the extent of 15% only. The mass of ozone that can be prepared from 67.2 L of oxygen at 1 atm and 273 K will be :
A. 14.4 g
B. 96 g
C. 640 g
D. 64 g

- Watch Video Solution

22. $R H_{2}$ (ion exchange resin) can replace $C a^{2+}$ ions in hard water as $R \mathrm{H}_{2}+\mathrm{Ca}^{2+} \rightarrow \mathrm{RCa}+2 \mathrm{H}^{+}$. If 1L of hard water after passing through $R \mathrm{H}_{2}$ has $\mathrm{pH}=3$ then hardness in parts per million of Ca^{2+} is:
A. 20
B. 10
C. 40
D. 100

Answer: A

23. $100 \mathrm{~cm}^{3}$ of a solution of an acid (Molar mass $=98$) containing 29.4 g of the acid per litre were completely neutralized by $90.0 \mathrm{~cm}^{3}$ of aq. NaOH cotanining 20 g of NaOH per $500 \mathrm{~cm}^{3}$. The basicity of the acid is
A. 3
B. 2
C. 1
D. data insufficient

Answer: A

- Watch Video Solution

24. 20 mL of 0.1 M solution of compound $\mathrm{NaCO}_{3} . \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is titrated against $0.05 \mathrm{M} \mathrm{HCL} . \mathrm{X} \mathrm{mL}$ of HCL is used when phenolphthalein is used as an indicator and y mL of HCL is used when methly orange is the indicator in two separate titrations. Hence $(y-x)$ is:
A. 40 mL
B. 80 mL
C. 120 mL
D. None of these

Answer: B

- Watch Video Solution

25. A sample containing HAsO_{2} (mol. Mass=108) and weighing 3.78 g is dissolved and diluted to 250 mL in a volumetric flask. A 50 mL sample (aliquot) is withdrawn with a pipet and titrated with 35 mL of 0.05 M solution of I_{2}. Calculate the percentage HAsO_{2} in the sample :
A. 25
B. 20
C. 0.1
D. None of these

- Watch Video Solution

26. A mixture of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is completely reacted with 100 mL of 0.25 M acidified KMnO_{4} solution. The resultant solution was then treated with Zn dust which converted Fe^{3+} of the solution to Fe^{2+}. The Fe^{2+} required 1000 mL of $0.10 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution. Find out the weight \% $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the mixture.
A. 80.85
B. 19.15
C. 50
D. 89.41

Answer: A

27. To a $10 \mathrm{~mL}, 1 \mathrm{M}$ aqueous solution of Br_{2}, excess of NaOH is added so that all Br_{2} is disproportionated to Br^{-}and BrO_{3}^{-}. The resulting solution is free from Br^{-}, by extraction and excess of OH^{-}neutralised by acidifying the solution. The resulting solution is suffcient to react with 2 g of impure $\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{M}=128 \mathrm{~g} / \mathrm{mol})$ sample. The \% purity of oxalate sample is :
A. 0.853
B. 0.125
C. 0.9
D. 0.64

Answer: B

- Watch Video Solution

28. 0.10 g of a sample containing CuCo_{3} and some inert impurity was dissolved in dilute sulphuric acid and volume made up to 50 mL . This
solution was added into 50 mL of $0.04 M K I$ solution where copper precipitates as CuI and I^{-}is oxidized into I_{3}^{-}. A $10 m L$ portion of this solution is taken for analysis, filtered and made up free I_{3}^{-}and then treated with excess of acidic permanganate solution. Liberated iodine required 20 mL of 2.5 mM sodium thiosulphate solution to reach the end point . Determine mass percentage of CuCO_{3} in the original sample.
A. 7.41
B. 74.1
C. 61.75
D. None of these

Answer: B

- Watch Video Solution

29. 1 mol of equimolar mixture of ferric oxalate and ferrous oxalate will require x mol of KMnO_{4} in acidic medium for complete oxidation. X is
A. 0.5 mole
B. 0.9 mole
C. 1.2 mole
D. 4.5 mole

Answer: B

- Watch Video Solution

30. An impure sample of sodium oxalate $\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right.$ weighing 0.20 g is dissolved in aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$) and solution is titrated at $70^{\circ} \mathrm{C}$,requiring 45 mL of 0.02 M KMnO 4 solution. The end point is overrun, and back titration in carried out with 10 mL of 0.1 M oxalic acid solution.Find the purity of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in sample:
A. 75
B. 83.75
C. 90.25
D. None of these

Answer: B

- Watch Video Solution

Level 2 (Q.31 To Q.35)

1. A mixture containing 0.05 mol of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 0.02 mol of KMnO_{4} was treated with excess of KI in acidic medium. The liberated iodine required 2.0 L of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution of titration. Concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was
A. 14.64
B. 34.2
C. 65.69
D. 50

- Watch Video Solution

2. A 150 mL of solution of I_{2} is divided into two unequal parts. I part reacts with hypo solution solution in acidic medium. 15 mL of 0.4 M hypo was consumed. II part was added with 100 mL of 0.3 MNaOH solution. What was the initial concentration of I_{2} ?
A. 0.08 M
B. 0.1 M
C. 0.2 M
D. None of these

Answer: B

- Watch Video Solution

3. A mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid) and some inert impurity weighing 3.185 g was dissolved in water and the solution made up to

1litre. 10 mL of this solution required 3 mL of 0.1 N NaOH for complete neutralization. In another experiment 100 mL of the same solution in hot condition required 4 mL of $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ solution for complete reaction. The mass \% of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the mixture was:
A. 40
B. 50
C. 60
D. 80

Answer: A

- Watch Video Solution

4. During developing of an exposed camera film, one step involves in the following reaction

(Quinol)
A. It acts as an acid
B. It acts as reducing agent
C. It acts as oxidant
D. It acts as a base

Answer: B

- Watch Video Solution

5. The concentration of oxalic acid is ' X ' $\mathrm{mol} \mathrm{lit}^{-1} .40 \mathrm{ml}$ of this solution reacts with 16 ml of 0.05 M acidified KMnO_{4}. What is the pH of ' X ' M oxalic acid solution ? (Assume that oxalic acid dissociates completely)
A. 1.3
B. 1.699
C. 1
D. 2

Answer: C

D Watch Video Solution

Level 3 - Passage

1. Oleum is considered as a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is obtained by passing SO_{3} in solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ When 100 g sample of oleum is diluted with desired mass of $\mathrm{H}_{2} \mathrm{O}$ then the total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known is known as \% labelling in oleum.

For example, a oleum bottle labelled as ' $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ ' means the 109 g total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be formed when 100 g of oleum is diluted by 9 g of $\mathrm{H}_{2} \mathrm{O}$ which combines with all the free SO_{3} present in oleum to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

What is the \% of free $S O_{3}$ in an oleum that is labelled as '104.5 \% $\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{\prime}$?
A. 10
B. 20
C. 40
D. None of these

Answer: B

- Watch Video Solution

2. Oleum is considered as a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is obtained by passing SO_{3} in solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ When 100 g sample of oleum is diluted with desired mass of $\mathrm{H}_{2} \mathrm{O}$ then the total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known is known as \% labelling in oleum. For example, a oleum bottle labelled as ' $019 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ ' means the 109 g total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be formed when 100 g of oleum is diluted by 9 g of $\mathrm{H}_{2} \mathrm{O}$ which combines with all the free SO_{3} present in oleum to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
9.0 g water is added into oleum sample lablled as " 112% " $\mathrm{H}_{2} \mathrm{SO}_{4}$ then the amount of free SO_{3} remaining in the solution is : (STP=1 atm and 273 K)
A. 14.93 Lat STP
B. 7.46 L at STP
C. 3.73 L at STP
D. 11.2 L at STP

Answer: C

- Watch Video Solution

3. Oleum is considered as a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is obtained by passing SO_{3} in solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ When 100 g sample of oleum is diluted with desired mass of $\mathrm{H}_{2} \mathrm{O}$ then the total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known is known as \% labelling in oleum.

For example, a oleum bottle labelled as '109 $\% H_{2} \mathrm{SO}_{4}$ ' means the 109 g total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be formed when 100 g of oleum is diluted by 9 g of $\mathrm{H}_{2} \mathrm{O}$ which combines with all the free SO_{3} present in oleum to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

If excess water is added into a bottle sample labelled as " $112 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ "
and is reacted with 5.3 g NaCO then find the volume of CO_{2} evolved at 1 atm pressure and 300 K temperature after the completion of the reaction :
A. 2.46 L
B. 24.6 L
C. 1.23 L
D. 12.3 L

Answer: C

- Watch Video Solution

4. Oleum is considered as a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is obtained by passing SO_{3} in solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ When 100 g sample of oleum is diluted with desired mass of $\mathrm{H}_{2} \mathrm{O}$ then the total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known is known as \% labelling in oleum.

For example, a oleum bottle labelled as ' $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ ' means the 109 g total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be formed when 100 g of oleum is diluted
by 9 g of $\mathrm{H}_{2} \mathrm{O}$ which combines with all the free SO_{3} present in oleum to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

1 g of oleum sample is diluted with water. The solution required 54 mL of 0.4 N NaOH for complete neutralization. The \% free SO_{3} in the sample is :
A. 74
B. 26
C. 20
D. None of these

Answer: B

- Watch Video Solution

5. The strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in several ways like molarity, normality,\% (w/V), volume strength, etc. The strength of "10 V" means 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 10 volumes of oxygen at 1 atm and 273 K or 1 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 litre of O_{2} at 1 atm and 273 K The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is shown as under :
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{H}_{2} \mathrm{O}_{2}$ can acts as oxidising as well as reducing agent. As oxidizing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into $\mathrm{H}_{2} \mathrm{O}$ and as reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into O_{2}. For both cases its n-factor is $2 . \therefore$ Normality of $\mathrm{H}_{2} \mathrm{O}_{2}$ " solution " $=2 \times$ molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution

What is the molarity of "11.2 V " $\mathrm{H}_{2} \mathrm{O}_{2}$?
A. 1 M
B. 2 M
C. 5.6 M
D. 11.2 M

Answer: A

- Watch Video Solution

6. The strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in several ways like molarity, normality, $\%(\mathrm{w} / \mathrm{V})$, volume strength, etc. The strength of "10 V" means 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 10 volumes of oxygen at 1 atm
and 273 K or 1 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 litre of O_{2} at 1 atm and 273 K The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is shown as under :
$\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(g)$
$\mathrm{H}_{2} \mathrm{O}_{2}$ can acts as oxidising as well as reducing agent. As oxidizing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into $\mathrm{H}_{2} \mathrm{O}$ and as reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into O_{2}. For both cases its n-factor is 2. \therefore Normality of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution $=2 \times$ molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution

What is thepercentage strength (\%w/V) of "11.2 V" $\mathrm{H}_{2} \mathrm{O}_{2}$
A. 1.7
B. 3.4
C. 34
D. None of these

Answer: B

- Watch Video Solution

7. The strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in several ways like molarity, normality,\% (w/V), volume strength, etc. The strength of "10 V" means 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 10 volumes of oxygen at 1 atm and 273 K or 1 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 litre of O_{2} at 1 atm and 273 K The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is shown as under :
$\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{H}_{2} \mathrm{O}_{2}$ can acts as oxidising as well as reducing agent. As oxidizing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into $\mathrm{H}_{2} \mathrm{O}$ and as reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into O_{2}. For both cases its n-factor is $2 . \therefore$ Normality of $\mathrm{H}_{2} \mathrm{O}_{2}$ "solution" $=2 \times$ molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution

20 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is reacted with 80 mL of $0.05 \mathrm{MKMnO}_{4}$ "in acidic medium then what is the volume strength of" $\mathrm{H}_{2} \mathrm{O}_{2}$?
A. 2.8
B. 5.6
C. 11.2
D. None of these

Answer: B

D Watch Video Solution

8. The strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in several ways like molarity, normality, \% (w/V), volume strength, etc. The strength of "10 V" means 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 10 volumes of oxygen at 1 atm and 273 K or 1 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 litre of O_{2} at 1 atm and 273 K The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is shown as under :

$$
\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(g)
$$

$\mathrm{H}_{2} \mathrm{O}_{2}$ can acts as oxidising as well as reducing agent. As oxidizing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into $\mathrm{H}_{2} \mathrm{O}$ and as reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into O_{2}. For both cases its n-factor is 2. \therefore Normality of $\mathrm{H}_{2} \mathrm{O}_{2}$ " solution " $=2 \times$ molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution
$40 \mathrm{~g} \mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ (mol.mass=375) sample containing some inert impurities in acidic medium completely reacts with 125 mL of " 33.6 V " of $\mathrm{H}_{2} \mathrm{O}_{2}$. What is the percentage purity of the sample?
B. 0.7031
C. 0.85
D. None of these

Answer: B

- Watch Video Solution

9. A water is said to be soft water if it produces sufficient foam with the soap and water that does not produce foam with soap is known as hard water. Hardness has been classified into two types (i)Temporary hardness
(ii) Permanent hardness.

Temporary hardness is due to presence of calcium and magnesium bicarbonate. It is simply removed by boiling as

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{MgCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

temporary hardness can also be removed by addition of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
permanent hardsness is due to presencce of sulphates and chlorides of
Ca, Mg,etc. It is removed by washing soda as
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+2 \mathrm{NaCl}$
$\mathrm{CaSO}(4)+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Permanent hardness also removed by ion exchange resin process as
$2 \mathrm{RH}+\mathrm{Ca}^{2+} \rightarrow \mathrm{R}_{2} \mathrm{Ca}+2 \mathrm{H}^{+}$
$2 \mathrm{ROH}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{R}_{2} \mathrm{SO}_{4}+2 \mathrm{OH}^{-}$
The degree of hardness of water is measured in terms of PPm of CaCO_{3} 100 PPm means 100 g of CaCO_{3} is present in $10^{6} \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$. If any other water sample which contain 120 PPm of MgSO_{4}, hardness in terms of CaCO_{3} is equal to $=100 \mathrm{PPm}$.

What is the mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ required for 10 litre of water remove temporary hardness of 100 PPm due to $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$?
A. 100 ppm
B. 200 ppm
C. 300 ppm
D. None of these

Answer: C

- Watch Video Solution

10. (A) : Temporary hardness can be removed by boiling hard water
(R) : On boiling hard water bicarbonates of calcium and magnesium are converted to insoluble carbonates
A. 1.62 g
B. 0.74 g
C. 7.4 g
D. None of these

Answer: B

11. A water is said to be soft water if it produces sufficient foam with the soap and water that does not produce foam with soap is known as hard water. Hardness has been classified into two types (i)Temporary hardness
(ii) Permanent hardness.

Temporary hardness is due to presence of calcium and magnesium bicarbonate. It is simply removed by boiling as
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{MgCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
temporary hardness can also be removed by addition of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
permanent hardsness is due to presencce of sulphates and chlorides of
Ca, Mg,etc. It is removed by washing soda as
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+2 \mathrm{NaCl}$
$\mathrm{CaSO}(4)+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Permanent hardness also removed by ion exchange resin process as
$2 \mathrm{RH}+\mathrm{Ca}^{2+} \rightarrow \mathrm{R}_{2} \mathrm{Ca}+2 \mathrm{H}^{+}$
$2 \mathrm{ROH}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{R}_{2} \mathrm{SO}_{4}+2 \mathrm{OH}^{-}$

The degree of hardness of water is measured in terms of PPm of CaCO_{3} 100 PPm means 100 g of CaCO_{3} is present in $10^{6} \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$. If any other water sample which contain 120 PPm of MgSO_{4}, hardness in terms of CaCO_{3} is equal to $=100 \mathrm{PPm}$.

What is the mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ required for 10 litre of water remove temporary hardness of 100 PPm due to $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$?
A. 250 ppm
B. 500 ppm
C. 750 ppm
D. 1000 ppm

Answer: B

- Watch Video Solution

12. "Equivalent mass" =("Molecular mass/Atomic mass")/("n-factor")
n -factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predict the molar ratio of the reactant species
taking part in reactions. The reciprocal of n-factor's ratio of the reactions is the molar ratio of the reactants.

In general n -factor of acid/base is number of moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$ furnished per mole of acid/base n-factor of a reactant is number of moles electrons lost or gained per mole of reactant.

Example 1:

(1)In acidic medium : $\mathrm{KMnO}_{4}(n=5) \rightarrow \mathrm{Mn}^{2+}$
(2) In neutral medium : $\mathrm{KMnO}_{4}(n=3) \rightarrow \mathrm{Mn}^{2+}$
(3) In basic medium : $\mathrm{KMnO}_{4}(n=1) \rightarrow M n^{6+}$

Example $2: \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$
Total number of moles e^{-}lost by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
=1+1 \times 2 \Rightarrow 3
$$

n -factor of $\mathrm{Ba}\left(\mathrm{MNO}_{4}\right)_{2}$ in acidic medium is:
A. 2
B. 6
C. 10
D. None of these

Answer: C

D Watch Video Solution

13. "Equivalent mass" =("Molecular mass/Atomic mass")/("n-factor")
n-factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predict the molar ratio of the reactant species specis taking part in reactions. The reciprocal of n-factor's ratio of the reactions is the molar ratio of the reactants.

In general n -factor of acid/base is number of moles of H^{+} / OH^{-} furnished per mole of acid/base n-factor of a reactant is number of moles electrons lost or gained per mole of reactant.

Example 1:

(1)In acidic medium : $\mathrm{KMnO}_{4}(n=5) \rightarrow \mathrm{Mn}^{2+}$
(2) In neutral medium : $\mathrm{KMnO}_{4}(n=3) \rightarrow \mathrm{Mn}^{2+}$
(3) In basic medium : $\mathrm{KMnO}_{4}(n=1) \rightarrow M n^{6+}$

Example $2: \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$
Total number of moles e^{-}lost by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
=1+1 \times 2 \Rightarrow 3
$$

Consider the following reaction.
$\mathrm{H}_{3} \mathrm{PO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}$
What is the equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{2}$?(mol.Wt.is M)
A. M
B. $\mathrm{M} / 2$
C. $M / 3$
D. None of these

Answer: A

- Watch Video Solution

14. "Equivalent mass" =("Molecular mass/Atomic mass")/("n-factor")
n -factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predict the molar ratio of the reactant species taking part in reactions. The reciprocal of n-factor's ratio of the reactions is the molar ratio of the reactants.

In general n-factor of acid/base is number of moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$
furnished per mole of acid/base n-factor of a reactant is number of moles electrons lost or gained per mole of reactant.

Example 1:
(1)In acidic medium : $\mathrm{KMnO}_{4}(n=5) \rightarrow \mathrm{Mn}^{2+}$
(2) In neutral medium : $\mathrm{KMnO}_{4}(n=3) \rightarrow \mathrm{Mn}^{2+}$
(3) In basic medium : $\mathrm{KMnO}_{4}(n=1) \rightarrow M n^{6+}$

Example 2 : $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$
Total number of moles e^{-}lost by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
=1+1 \times 2 \Rightarrow 3
$$

For the reaction, $O($ molar mass $=\mathrm{M}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$ what is the eq. mass of $f e_{0.95} \mathrm{O} ?$
A. $\frac{M}{0.85}$
B. $\frac{M}{0.95}$
C. $\frac{M}{0.8075}$
D. None of these

Answer: A

15. "Equivalent mass" =("Molecular mass/Atomic mass")/("n-factor")
n -factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predict the molar ratio of the reactant species specis taking part in reactions. The reciprocal of n-factor's ratio of the reactions is the molar ratio of the reactants.

In general n-factor of acid/base is number of moles of H^{+} / OH^{-} furnished per mole of acid/base n-factor of a reactant is number of moles electrons lost or gained per mole of reactant.

Example 1:
(1)In acidic medium : $\mathrm{KMnO}_{4}(n=5) \rightarrow \mathrm{Mn}^{2+}$
(2) In neutral medium : $\mathrm{KMnO}_{4}(n=3) \rightarrow \mathrm{Mn}^{2+}$
(3) In basic medium : $\mathrm{KMnO}_{4}(n=1) \rightarrow M n^{6+}$

Example $2: \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$
Total number of moles e^{-}lost by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
=1+1 \times 2 \Rightarrow 3
$$

In the reaction, $x \mathrm{VO}+y \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{FeO}+\mathrm{V}_{2} \mathrm{O}_{5}$ what is the value of x and y respectively?
A. 1,1
B. 2,3
C. 3,2
D. None of these

Answer: B

- Watch Video Solution

16. Consider the following series of reactions :
$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{NaClO} \rightarrow 2 \mathrm{NaCl}+\mathrm{NaClO}_{3}$
$4 \mathrm{NaClO}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$
How much Cl_{2} is reqired to prepare 122.5 g of NaClO_{4} by above sequencial reactions?
A. 284 g
B. 213 g
C. 142 g
D. 71 g

Answer: A

- Watch Video Solution

17. Consider the following series of reactions :
$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{NaClO} \rightarrow 2 \mathrm{NaCl}+\mathrm{NaClO}_{3}$
$4 \mathrm{NaClO}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$
How many moles of NaCl will be formed by using 1 mole Cl_{2} and other reagents in excess ?
A. $\frac{1}{12}$ mole
B. 1.67 mole
C. 1.75 mole
D. 0.75 mole

Answer: C

- Watch Video Solution

18. Consider the following series of reactions :
$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{NaClO} \rightarrow 2 \mathrm{NaCl}+\mathrm{NaClO}_{3}$
$4 \mathrm{NaClO} \mathrm{O}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$

How many moles of NaClO_{3} obtained after the completion of reaction by taking 1 mole of $C l_{2}$ and other reagents in excess ?
A. $\frac{1}{3}$ mole
B. Zero
C. $\frac{1}{4}$ mole
D. 1 mole

Answer: B

1.1 g of nitrogen represents :
A. $6.02 \times 10^{23} N_{2}$ molecules
B. 22.4 litre of N_{2} at 1 atm and 273 K
C. 11.2 litre of N_{2} at 1 atm and 273 K
D. 14 g of nitrogen

Answer: C::D

- Watch Video Solution

2.1 g molecule of $V_{2} O_{5}$ contains :
A. 5 mole of oxygen atom
B. 2 mole of V atom
C. 1 mole of oxygen atom
D. 2.5 mole of oxygen atom

Answer: A: B

- Watch Video Solution

3. Select the dimensionless quantity (ies) :
A. vapour density
B. molality
C. specific gravity
D. mass fraction

Answer: A::C::D

- Watch Video Solution

4. Which of the following concentration terms is/are affected by a change in temperature?
A. Molarity
B. Molality
C. Normality
D. Specific gravity

Answer: A::C::D

- Watch Video Solution

5. Which of the following statements regarding the compound $A_{x} B_{y}$ is /are correct?
A. 1 mole of $A_{x} B_{y}$ contains 1 mole of A and 1 mole B
B. 1 equivalent of $A_{x} B_{y}$ contains 1 equivalent of A and 1 equivalent of
C. 1 mole of $A_{x} B_{y}$ contains x moles of A and y moles of B
D. equivalent mass of $A_{x} B_{y}=$ equivalent mass of $\mathrm{A}+$ equivalent mass of B

Answer: B::C::D

- Watch Video Solution

6.1 mole $\mathrm{Ba}(\mathrm{OH})_{2}$ will exactly neutralize
A. 0.5 mole HCL
B. 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. 1 mole of $\mathrm{H}_{3} \mathrm{PO}_{3}$
D. 2 mole of $\mathrm{H}_{3} \mathrm{PO}_{2}$

Answer: B::C::D

7. The pair of species having different percentage (mass) of carbon is :
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. HCOOCH_{3} and HCOOH
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

Answer: B::D

- Watch Video Solution

8. 30 mL of $\mathrm{CH}_{3} \mathrm{OH}\left(d=0.8 \mathrm{~g} / \mathrm{cm}^{3}\right)$ is mixed with 60 mL of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\left(d=0.92 \mathrm{~g} / \mathrm{cm}^{2}\right)$ at $25^{\circ} \mathrm{C}$ to form a solution of density $0.88 \mathrm{~g} / \mathrm{cm}^{3}$. Select the correct option(s) :
A. Molarity and molality of resulting solution are 6.33 and 13.59 respectively
B. The mole fraction of solute and molality are 0.385 and 13.59 respectively
C. Molarity and \% change in volume are 0.615 and zero respectively
D. Mole fraction of solvent and molality are 0.615 and 13.59 respectively

Answer: B::C

- Watch Video Solution

9. Which of the following is/are incorrect for $17 \mathrm{~g} / \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ?
A. Volume strengths is 5.6 at 273 K and 1 atm
B. Molarity of solution is 0.5 M
C. 1 mL of this solution gives $2.8 \mathrm{~mL} O_{2}$ at 273 K and 2 atm
D. The normality of solution is 2 N

Watch Video Solution

10. Solutions containing 23 g HCOOH is/are :
A. 46 g of $70 \%\left(\frac{w}{V}\right) \mathrm{HCOOH}\left(d_{\text {solution }}=1.40 \mathrm{~g} / \mathrm{mL}\right)$
B. 50 g of $10 \mathrm{M} \mathrm{HCOOH}\left(d_{\text {solution }}=1 \mathrm{~g} / \mathrm{mL}\right)$
C. 50 g of $25 \%\left(\frac{w}{w}\right) \mathrm{HCOOH}$
D. 46 g " of 5 M " $\mathrm{HCOOH}\left(d_{\text {solution }}=1 \mathrm{~g} / \mathrm{mL}\right)$

Answer: A: B

- Watch Video Solution

11. A sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution labelled as " 28 volume" has density of 265 g / L. Mark the correct option(s) representing concentration of same solution in other units :

$$
\text { A. } M_{\mathrm{H}_{2} \mathrm{O}_{2}}=2.5
$$

B. $\% \frac{w}{V}=17$
C. Mole fraction of $\mathrm{H}_{2} \mathrm{O}_{2}=0.2$
D. $m_{H_{2} O_{2}}=13.88$

Answer: A::C::D

- Watch Video Solution

12. A mixture of 100 ml of $\mathrm{CO}, \mathrm{CO}_{2}$ and O_{2} was sparked. When the resulting gaseous mixture was passed through $K O H$ solution, contraction in volume was found to be 80 ml , the composition of initial mixture may be (in the same order)
A. $30 \mathrm{~mL}, 60 \mathrm{~mL}, 10 \mathrm{~mL}$
B. $30 \mathrm{~mL}, 50 \mathrm{~mL}, 20 \mathrm{~mL}$
C. $50 \mathrm{~mL}, 30 \mathrm{~mL}, 20 \mathrm{~mL}$
D. $20 \mathrm{~mL}, 70 \mathrm{~mL}, 10 \mathrm{~mL}$

D Watch Video Solution

13. If 1 mole of $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacts with 1 mole of $\mathrm{X}(\mathrm{OH})_{2}$ as shown below :
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{X}(\mathrm{OH})_{2} \rightarrow \mathrm{XHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ then
A. the equivalent mass of base is $\frac{\text { mol. } \text { mass }}{2}$
B. the eq. mass of $H_{3} P_{4}$ is $\frac{98}{3}$
C. the resulting solution requires 1 mole NaOH for complete neutralization
D. minimum 1 mole of $\mathrm{X}(\mathrm{OH})_{2}$ is required for complete neutralization of XHPO_{4}

Answer: A::C

- Watch Video Solution

14. In acidic medium dichromate ion oxidizes stannous ion as:
$x \mathrm{Sn}^{2+}+y \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+z \mathrm{H}^{+} \rightarrow a \mathrm{Sn}^{4+}+b \mathrm{Cr}^{3+} \mathrm{cH}_{2} \mathrm{O}$
A. "the value of $x: y$ is $1: 3$
B. the value of $x+y+z$ is 18
C. a:b " is $3: 2$
D. the value of $\mathrm{z}: \mathrm{c}$ is 7

Answer: B::C::D

- Watch Video Solution

15. When a equimolar mixture of $C u_{2} \mathrm{~S}$ and CuS is tirated with $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in acidic medium, the final products cintain $\mathrm{Cu}^{2+}, \mathrm{SO}_{2}$ and Mn^{2+}. If the mol. Mass of $\mathrm{Cu}_{2} \mathrm{~S}$, and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ are M_{1}, M_{2} and M_{3} respectively then :
A. eq. mass of $C u_{2} S$ is $\frac{M_{1}}{8}$
B. eq. mass of CuS is $\frac{M_{2}}{6}$
C. eq. mass of $B a\left(\mathrm{MnO}_{4}\right)_{2}$ is $\frac{M_{3}}{5}$
D. $C u_{2}$ and CuS both have same equivalents in mixture

Answer: A: B

- Watch Video Solution

16. Which is the incorrect statement?
A. Equivalent mass of $\mathrm{H}_{2} \mathrm{PO}_{3}^{-}$is 40.5 .
B. Eq. mass of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$may be equal to molar mass or less than molar mass because it depends on the reaction.
C. KMnO_{4} has maximum eq. mass in acidic medium.
D. Oxidation state of H in MgH_{2} is greater than in $\mathrm{H}_{2} \mathrm{O}_{2}$.

Answer: A::C::D

Level 3 - Match The Column

Column-I

(A) 0.5 mole of $\mathrm{SO}_{2}(\mathrm{~g})$
(B) 1 g of $\mathrm{H}_{2}(\mathrm{~g})$
(C) 0.5 mole of $\mathrm{O}_{3}(g)$
(D) 1 g molecule of $\mathrm{O}_{2}(\mathrm{~g})$
1.

Column-II

(P) Occupy 11.21 at 1 itm and 273 .
(Q) Weighs 24 g
(R) Total no. of atoms $15 . \mathrm{N}$,
(S) Weighs 32 g

Watch Video Solution

Column-I

Column-II

(P) 1 g molecule
(Q) N_{A} molecule
(R) $22 N_{A}$ electrons
(S) 49.28 L at 1 atm and 273 K
(T) N_{A} atoms of oxygen
2.

Column-II

(P) When CrI_{3} oxidises into $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2}$ and IO_{4}^{-}
(Q) When $\mathrm{Fe}(\mathrm{SCN})_{2}$ oxidises into Fe . $\mathrm{SO}_{4}^{2-}, \mathrm{CO}_{3}^{2-}$ and NO_{3}
(R) When $\mathrm{NH}_{4} \mathrm{SCN}$ oxidizes into SO_{4}^{2},
CO_{3}^{2-} and NO_{3}^{-}
(S) When $\mathrm{As}_{2} \mathrm{~S}_{3}$ oxidises into AsO_{3}^{-}a SO_{4}^{2-}
3.

- Watch Video Solution

4. A sample of raw material contain NaNO_{3}. It contains some NaIO_{3} also. The NaIO_{3} can be used as a source of iodine, produced in the following reactions:
$\mathrm{IO}_{3}^{-}+\mathrm{HSO}_{3}^{-} \rightarrow \mathrm{I}^{-}+\mathrm{SO}_{4}^{-}$
$\mathrm{I}^{-}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$.
One litre of sample solution containing $396 \mathrm{~g} \mathrm{NaIO}_{3}$ is treated with stoichiometric quantity of NaHSO_{3}. Now a substantial amount of
solution is added to reaction mixture to bring about the reaction (2).

Column-I

(土) n-factor of IO_{3}^{--}in reaction (2)

Column-II

(B) Number of moles of HSO_{3}^{-}used in
reaction (1)
(P) 6
(C) Moles of I_{2} produced
(R) 2
(D) Equivalents of IO_{3}^{-}used in reaction (2)
(S) 5

- Watch Video Solution

Column-I

(D) $\mathrm{NH}_{4} \mathrm{NO}_{3} \longrightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
5.

Column-II (Type of Redox Reaction)
(P) Intermolecular
(Q) Intramolecular
(R) Disproportion
(S) Comproportion

- Watch Video Solution

Match the Colum-II

Column-I

[Atomic masses (M)]
Isotope-II Isotope-II Average
(A) $(z-1)$
$(z+3)$
z
(P) 25% by moles
(B) $(z+1)$
$(z+3)$
$(z+2)$
$2 z$
(D) $(z-1)$
$3 z$
$(z+1)$
z

Column-11
(\% composition of heavier iscн....
1.

- Watch Video Solution

Column-I

(A) When $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ converted into Bi^{5+} and S
(B) When $\mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$ reduced into Cr^{3+} (Q) 11 in acidic medium
(C) When FeS_{2} converted into $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and
(R) 2 SO_{2}
(D) When $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}$ converted into
(S) 10
2. MnO_{4}^{2-} and NO

Watch Video Solution

Column-II

Column-I
(1) $\mathrm{P}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{PH}_{3}+\mathrm{P}_{4} \mathrm{H}_{2}$
(P) $E=\frac{3 M}{4}$
(B) $\underline{I}_{2} \longrightarrow I^{-}+\mathrm{IO}_{3}^{-}$
(Q) $E=\frac{3 M}{5}$
(C) $\mathrm{MnO}_{4}^{-}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}$
$\longrightarrow \underline{\mathrm{Mn}_{3} \mathrm{O}_{4}}+\mathrm{H}^{+}$
(R) $E=\frac{15 M}{26}$
(D) $\underline{\mathrm{H}_{3} \mathrm{PO}_{2}} \longrightarrow \mathrm{PH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{3}$
(S) $E=\frac{5 M}{6}$

3.

D Watch Video Solution

Level 3 - Assertion - Reason Type Questions

1. STATEMENTS-1 : Specific gravity is dimensionless.

STATEMENTS-2 : Specific gravity is density of a substance measured w.r.t. density of water at $4^{\circ} C$.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

2. STATEMENT-1: Molarity of pure water is 55.55 M at 298 K .

STATEMENT-2 : Molarity is temperature dependent.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE
3. STATEMENT-1: Gram molecular mass of O_{2} is 32 .

STATEMENT-2: Relative atomic mass of oxygen is 32 a.m.u.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

4. STATEMENT-1: The oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is 6 .

STATEMENT-2: Maximum oxidation state of A is 6 because the maximum oxidation state of an element is equal to number of its valence electrons in it.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

5. STATEMENT-1: $0.1 \mathrm{MH}_{3} \mathrm{PO}_{3}(\mathrm{aq})$ solution has normality equal to 0.3 N when completely reacted with NaOH .

STATEMENT-2 : $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

6. STATEMENT-1 : MnO_{2} can act as an oxidizing agent as well as reducing agent.

STATEMENT-2 : Oxidation state of MnO_{2} lies between highest and lowest oxidation state.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

7. STATEMENT-1 : Equivalent volume of H_{2} is 11.2 L at 1 atm and 273 K .

STATEMENT-2 : $1 / 2$ mole H_{2} has produced when 1 mole of H^{+}(aq) accepted 1 mole of e^{-}.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

8. During the titration of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} against HCl
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

9. STATEMENT-1 $: \quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{-}$, the equivalent mass of reactant is 3.74 .

STATEMENT-2 : "Equivalent mass of reactant" = (Mol.mass)/(61)'.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE

Answer: D

- Watch Video Solution

10. STATEMENT-1 : In the balanced redox reaction,
$x \mathrm{As}_{2} \mathrm{~S}_{3}+y \mathrm{NO}_{3}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow a \mathrm{AsO}_{4}^{3-}+b \mathrm{NO}+c \mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+}$the n-factor of $\mathrm{As}_{2} \mathrm{~S}_{3}$ and NO_{3}^{-}is 28 and 3 respectively.

Statement-2 : Molar ratio is reciprocal of n-factor's ratio so $x: t$ is $3: 28$.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

- Watch Video Solution

11. STATEMENT-1 : In the given reaction,
$\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$ equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is
$M / 3$

STATEMENT-2 : $\mathrm{H}_{3} \mathrm{PO}_{4}$ is tribasic acid.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

12. STATEMENT-1: $\ln \mathrm{Cr} \mathrm{O}_{5}$ oxidation number of Cr is +6 .

STATEMENT-2 : $\mathrm{Cr}_{5} \mathrm{O}_{5}$ has butterfly structure in which peroxide peroxide bonds are present.

A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

D Watch Video Solution

13. STATEMENT-1 : $I_{2} \rightarrow \mathrm{IO}_{3}^{-}+I^{-}$, is example of a disproportionation reaction.

STATEMENT-2 : Oxidation number of I can vary from -1 to +7 .
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

D Watch Video Solution

14. Fluorine exhibits only-1 oxidation state in its compounds. Why?
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

15. STATEMENT-1 : $\mathrm{H}_{2} \mathrm{SO}_{4}$ can not act as reducing agent.

STATEMENT-2 : Sulphur can not increase its oxidation number beyond +6 .
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

Level 3 - Subjective Problems

1. What volume of a liquid (in L) will contain 10 mole ? If molar mass of liquid is 280 and its density is $1.4 \mathrm{~g} / \mathrm{mL}$.

- Watch Video Solution

2. 16 g of $S O_{x}$ gas occupies 5.6 L at 1 atm and 273 K . What will be the value of x ?

- Watch Video Solution

3. 200 mL of 1 M HCl , is mixed with 300 mL of 6 M and the final solution is diluted to 1000 mL. calculate molar concentration of $\left[\mathrm{H}^{+}\right]$ion .

- Watch Video Solution

4. $N_{2}(\mathrm{~g})$ reacts with $H_{2}(\mathrm{~g})$ in either of the following ways depending upon supply of $H_{2}(\mathrm{~g})$:
$N_{2}(g)+H_{2}(g) \rightarrow N_{2} H_{2}(l)$
$N_{2}(g)+2 H_{2}(g) \rightarrow N_{2} H_{4}(\mathrm{~g})$
If $5 \mathrm{~L} N_{2}(\mathrm{~g})$ and $3 \mathrm{~L} H_{2}(\mathrm{~g})$ are taken initially (at same temperature and pressure), calculate the contraction in volume after the reaction (in L).

- Watch Video Solution

5. One commercial system removes $S O_{2}$ emission from smoke at $95(\circ) C$ by the following set of reaction :
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
How many grams of CaSO_{4} may be produced from 3.78 g of SO_{2} ?

- Watch Video Solution

6. W is the mass of iron (in g) which will be converted into $\mathrm{Fe}_{3} \mathrm{O}_{4}$ by the action of 18 g of steam on it . What is the value of W ?
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
7. Calculate the total moles of atoms of each element present in 122.5 g of KClO_{3}

Watch Video Solution

8. On dissolving 2.0 g of metal in sulphuric acid , 4.51 g of the metal sulphate was formed . The specific heat of the metal is 0.057 cal $g^{-1} .{ }^{\circ} C^{-1}$. What is the valency of metal ?

- Watch Video Solution

9. One gram of a metallic chloride was found to contain 0.835 g of chlorine. Its vapour density is 85.5 .If its moleculars formula is $M_{x} C l_{y}$,then what is value of $(x+y)$?
10. 0.7875 g of crystalline barium hydroxide is dissolved in water .For the neutralization of this solution 20 mL of $\mathrm{N} / 4 \mathrm{HNO}_{3}$ is required. How many moles of water of crystallization are present in one mole of this base ? (Given : Atomic mass $\mathrm{Ba}=137, \mathrm{O}=16, \mathrm{~N}=14, \mathrm{H}=1$)

- Watch Video Solution

11. 2.0 g of polybasic organic acid (Molecular mass $=600$) required 100 mL of a $\frac{M}{6} \mathrm{NaOH}$ solution for complete neutralisation. Find the basicity of acid.

- Watch Video Solution

12. A mixture contains 1.0 mole each of $\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}.

When half of mixture is titrated with HCl , it required x mole of HCl in presence of phenolphthalein. In another experiment ,half of mixture
required y mole of same HCl in presence of methyl orange. Find the value of $(x+y)$.

- Watch Video Solution

13. When BrO_{3}^{-}ion reacts with Br^{-}ion in acidic medium, Br_{2} is liberated. Calculate the ratio of molecular mass and equivalent mass of KBrO_{3}

Watch Video Solution

14. A volume of 12.5 mL of 0.05 M SeO 2 reacts with 25 mL of 0.1 M CrSO which is oxidised to Cr^{3+}. To what oxidation state was the selenium converted by the reaction ?

- Watch Video Solution

15. A 0.276 g impure sample of copper ore is dissolved and Cu^{2+} is titrated with KI solution. I_{2} liberated required 40 mL of $0.1 \mathrm{M} N a_{2} S_{2} O_{3}$ solution for titration. What is the \% of impurities in the ore ?

- Watch Video Solution

16. A sample of 28 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq) solution required 10 mL of 0.1 M KMnO_{4} (aq) solution for complete reaction in acidic medium. What is the volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$? X

- Watch Video Solution

17. For the redox reaction given, what is the value of $\frac{x}{z}$? $x \mathrm{NO}_{3}^{-}+y \mathrm{As}_{2} \mathrm{~S}_{3}+z \mathrm{H}_{2} \mathrm{O} \rightarrow-----\mathrm{AsO}_{4}^{3-} \pm----\mathrm{NO} \pm$

- Watch Video Solution

18. On heating 0.220 g of a metallic oxide in presence of hydrogen, 0.045 g of water is formed. If the equivalent mass of the metal is E,then what is the value of $\mathrm{E} / 9$

- Watch Video Solution

19. 10 g mixture of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and KMnO_{4} was treated with excess of KI in acidic medium. lodine liberated $100 \mathrm{~cm}^{3}$ of 2.2 N sodium thiosulphate solution for titration. If the mass percent of KMnO_{4} in the mixture Z, then what is the value of $2 Z / 5$?

- Watch Video Solution

20. In an ore, the only oxidizable material is Sn^{2+}. This ore is titrated with a dichromate solution containing 2.5 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in 0.5 litre. A 0.40 g sample of the ore required $10.0 \mathrm{~cm}^{3}$ of titrant to reach equivalence point. Calculate the percentage of tin in ore.

Others

1. Hydrogen and oxygen combine to form $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ containing 5.93% and 11.2% hydrogen respectively. The data illustrates :

- Watch Video Solution

2. Write the structure for 1,2 dibromo cyclo butane?

- Watch Video Solution

3. The law of multiple proportions is ilustrated by the two compounds
4. A bottle of an aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is labelled as ' 28 V ' $\mathrm{H}_{2} \mathrm{O}_{2}$ and the density of the solution (ing/mL) is 1.25 . Choose the correct

- Watch Video Solution

5. $\left.\mathrm{Al}(\mathrm{SO})_{4}\right)_{3}$ solution of 1 molal concentration is present in 1 litre solution of density $2.684 \mathrm{~g} / \mathrm{cc}$. How many moles BaSO_{4} would be precipated on adding excess BaCl_{2} in it?

- Watch Video Solution

6. A certain public water supply contains 0.10 ppb (part per billion) of chloroform $\left(\mathrm{CHCl}_{3}\right)$. How many molecules of CHCl_{3} would be obtained in $0.478 m L$ drop of this water ?(assumed $d=1$ gperm L)

- Watch Video Solution

7. What is the molar mass of diacidic organic Lewis base (B), if $12 g$ of its chloroplatinate salt $\left(\mathrm{BH}_{2} \mathrm{PtCI}_{6}\right)$ on ignition produced 5 g residue of Pt ?

- Watch Video Solution

8. On strong heating, one gram of the silver salt of an organic dibasic acid yields 0.5934 g of silver. If the mass percentage of carbon in it 8 times the mass percentage of hydrogen and one-half the mass percentage of oxygen, determine the molecular formula of the acid.

- Watch Video Solution

9. A gaseous mixture of propane and butane of volume 3 litre on complete combustion produces 11 lit CO_{2} under standard condition of temp. and pressure. Find the ratio of volume of butane to propane.
10.40 ml gaseous mixture of $\mathrm{CO}, \mathrm{CH}_{4}$ and Ne was exploded with 10 ml of oxygen. On cooling, the gases occupied 36.5 ml . After treatment with KOH the volume reduced by 9 ml and again on treatment with alkaline pyrogallol, the volume further reduced, percentage of CH_{4} in the original mixture is

- Watch Video Solution

11. When SO_{2} is passed into an acidified potassium dichromate solution, the oxidation numbers of sulphur and chromium in the final products respectively are :

- Watch Video Solution

12. The oxidation state of sulphur in Caro.s and Marshel.s acids are:

- Watch Video Solution

13. In which of the following the oxidation number of oxygen has been arranged in increasing order:

- Watch Video Solution

14. The oxidation numbers of oxygen in $\mathrm{KO}_{3}, \mathrm{Na}_{2} \mathrm{O}_{2}$ respectively are :

- Watch Video Solution

15. The oxidation state of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is

- Watch Video Solution

16. If it is known that $\mathrm{Fe}_{0.96} \mathrm{O}, \mathrm{Fe}$ is present in +2 and +3 oxidation state, What is the mole fraction of Fe^{2+} in the compound?

- Watch Video Solution

17. Which of the following sequence of compounds is according to the decreasing order of the oxidation state of nitrogen?

- Watch Video Solution

18. 2 moles of $N_{2} H_{4}$ loses 16 moles of electrons is being converted to a new compound x . Assuming that all of the N appears in the new compound, what is the oxidation state of N in x ?

- Watch Video Solution

19. When $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is converted to $\mathrm{K}_{2} \mathrm{CrO}_{4}$ then change in the oxidation state of chromium is :

- Watch Video Solution

20. When a manganous salt is fused with a mixture of KNO_{3} and solid

NaOH , the oxidation number of Mn change from +2 to :
21. What are the oxidation number of nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$?

- Watch Video Solution

22. In Fe(II) $-\mathrm{MnO}_{4}^{-}$tirtration HNO_{3} is not used beacause:

- Watch Video Solution

23. Which species are oxidised and reduced in the reaction?
$\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{Mn}^{2+}$

- Watch Video Solution

24. In which of the following reaction, $\mathrm{H}_{2} \mathrm{O}_{2}$ is acting as a reducing ageni
25. Which one of the following statement is incorrect?

- Watch Video Solution

26. Which of the following reactions does not represent the aldol condensation reaction ?

- Watch Video Solution

27. Which of the following is redox reaction

- Watch Video Solution

28. Which of the following is a redox reaction?
$\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2}+\mathrm{MnO}_{4}^{-+} \mathrm{H}^{+}\right) \rightarrow\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{Mn}^{2}+\right)+\mathrm{Co}_{2}$, the reductant is

- Watch Video Solution

30. If 0.1 mole $H_{3} P O_{x}$ is completely neutralised by 5.6 g KOH then select the true statement.

- Watch Video Solution

31. When potassium permanganate is titrated against ferrous ammonium sulphate, the equivalent weight of potassium permanganent is

- Watch Video Solution

32. Equivalent mass of Fe_{2} in the half reaction, $\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$ is :
33. The equaivalent mass of HCl in the given reaction is : $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl} l_{3}+3 \mathrm{Cl}_{2}+7 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

34. n-factor of $\mathrm{H}_{3} \mathrm{PO}_{2}$ during its diproportionation is $3 \mathrm{H}_{3} \mathrm{PO}_{2} \rightarrow \mathrm{PH}_{3}+2 \mathrm{H}_{3} \mathrm{PO}_{3}$

- Watch Video Solution

35. The equivalent weights of oxidising and reducing agents can be calculated by the number of electrons gained or lost. The equivalent weight of an oxidising agent is the number of parts by weight of the substance which gains one electron. Thus, it is equal to the molecular weight of the substance divided by the number of electrons gained in the balanced chemical equation. Similarly, equivalent weight of a reducing
agent is equal to the molecular weight divided by the number of electrons lost as represented in the balanced chemical equation

The equivalent weght of $A s_{2}, S_{3}$ in the following reaction $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}^{2-}$ is related to its molecular weight as

- Watch Video Solution

36. Sulphur forms the chlorides $\mathrm{S}_{2} \mathrm{Cl}_{2}$ and SCl_{2}. The equivalent mass of sulphur in $S C l_{2}$ is :

(D) Watch Video Solution

37. The equivalent mass of an element is 4 . Its chloride has vapour density
59.25. Then the valency of the element is \qquad .

- Watch Video Solution

38.6×10^{-3} mole $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reacts completely with 9×10^{-3} mole X^{n+} to given XO_{3}^{-}and Cr^{3+}. The value of n is :

Watch Video Solution

39. What mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (mol.mass $=126$) should be dissolved in water to prepare 250 mL of centinormal solution which act as a reducing agent ?

- Watch Video Solution

40. The equivalent mass of salt, $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ when it act as reducing agent is:

- Watch Video Solution

41. A bivalent metal has 37.2 equivalent weight. The molecular weight of its chloride is

- Watch Video Solution

42. When BrO_{3}^{-}ion reacts with Br^{-}in acid medium, Br_{2} is liberated.

The equivalent mass of $B r_{2}$ in this reaction is :

- Watch Video Solution

43. If M_{A} gram of metal A displaces m_{B} gram of another metal B from its salt solution and if the equivalent mass are E_{A} and E_{B} respectively then equivalent mass of A can be expressed as :

- Watch Video Solution

44. What will be the normality of solution obtained by mixing 0.45 N and 0.60 NNaOH in the ratio $2: 1$ by volume?

Watch Video Solution

45. A solution containing $2.68 \times 10^{-3} \mathrm{~mol}$ of A^{n+} ions requires $1.61 \times 10^{-3} \mathrm{~mol}$ of MnO_{4}^{-}for the complete oxidation of A^{n+} to AO_{3}^{-}in acidic medium. What is the value of n ?

- Watch Video Solution

46. 1.25 g of a solid dibasic acid is completely neutralised by 25 mL of 0.25 molar $\mathrm{Ba}(\mathrm{OH})_{2}$ solution. Molecular mass of the acid is :

- Watch Video Solution

47. 5 ml of $1 \mathrm{~N} \mathrm{HCl}, 20 \mathrm{ml}$ of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30 ml of $\mathrm{N} / 3 \mathrm{HNO}_{3}$ are mixed together and the volume made to one litre. The normality of the resulting solution is

- Watch Video Solution

48. 0.45 g of an acid of mol. Mass 90 was neutralised by 20 mL of 0.54 N caustic potash (KOH). The basicity of acid is :

- Watch Video Solution

49. . 4 sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution containing $\mathrm{H}_{2} \mathrm{O}_{2}$ by weight requires x ml of KMnO_{4} solution for completed oxidation under acidic condition. The formality of KMnO_{4} solution is

- Watch Video Solution

50. Ratio of moles of $F e$ (II) oxidised by equal volumes of equimolar KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solutions in aidic medium will be :

Watch Video Solution

51. The mass of a mixture containing HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.1 g On treatment with an excess of an AgNO_{3} solution, this acid mixture gives 0.1435 g of AgCl . Mass \% of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ mixture is :

- Watch Video Solution

52. A solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is standardized iodometrically against 0.1262 g of KBrO_{3}. This process required 45 mL of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. What is the strength of the $N a_{2} S_{2} O_{3} ?(\mathrm{~K}=39, \mathrm{Br}=80)$

- Watch Video Solution

53. 0.80 g of impure $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ was boiled with 100 mL of a 0.2 N NaOH solution was neutralized using 5 mL of a $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. The percentage purity of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sample is:

- Watch Video Solution

54. The NH_{3} evolved due to complete conversion of N from $1.12 g$ sample of protien was absorbed in 45 mL of $0.4 \mathrm{NHNO}_{3}$. The excess acid required 20 mL of 0.1 NaOH . The $\% \mathrm{~N}$ in the sample is :

- Watch Video Solution

55. Find out $\%$ of oxalate ion ina given sample of an alkali metal oxalate salt, 0.30 g of it is dissolve in 100 mL water and its required 90 mL OF N/20 KMnO_{4} solution

- Watch Video Solution

56. 320 mg of a sample of magnessium having a coating of its oxide required 20 mL of 0.1 M hydrochloric acid for the complete neutralisation of the latter. The composition of the sample is:

- Watch Video Solution

57. The concentration of bivalent lead ions in a sample of polluted of polluted water that aslo contains nitrate ions is determined by adding solid sodium sulphate ($M=142$) to exactly 500 mL water. Calculate the molarity of lead ions if 0.355 g is sodium sulphate was nedded for complete precipitation of lead ions as sulphate.

- Watch Video Solution

58.

HNO_{3} (sp. gravity1.05mL L^{-1} containing $\left.12.6(w / W) o f \mathrm{HNO}_{3}\right)$ that reduce into NO is required to oxidise iron $1 \mathrm{~g} 1 \mathrm{~g} . \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in acid medium is:
59. When 2.5 g of a sample of Mohr's salt reacts completely with 50 mL of $\frac{N}{10} \mathrm{KMnO}_{4}$ solution. The \% purity of the sample of Mohr's salt is:

- Watch Video Solution

60.4 mole of a mixture of Mohr's salt and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ requires 500 mL of $1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for complete oxidation in acidic medium. The mole $\%$ of the Mohr's salt in the mixture is:

- Watch Video Solution

61. The equivalent mass of a metal is twice to that of oxygen. How many
times is the equivalent mass of it's oxide than the equivalent mass of the metal ?
62. A metal oxide has the formula $\mathrm{X}_{2} \mathrm{O}_{3}$. It can be reduced by hydrogen to give free metal and water. 0.159 g of metal oxide requires 6 mg of hydrogen for complete reduction. The atomic mass of metal is amu is

- Watch Video Solution

63. Calculate the mass of anhydrous oxalic acid, which can be oxidised to $\mathrm{CO}_{2}(\mathrm{~g})$ by 100 mL of an $\mathrm{MnO4}^{-}$solution, 10 mL of which is capable of oxiding 50 mL of $1 \mathrm{NI}^{-}$to I_{2}.

- Watch Video Solution

64. If xg is the mass of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ required to neutralize 100 ml of 0.2 M NaOH and y g that required to reduce 100 ml of $0.02 \mathrm{M}_{\mathrm{KMnO}}^{4}$ in acidic medium then

- Watch Video Solution

65. 2 mole, equimolar mixture of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required $V_{1} \mathrm{~L}$ of
$0.1 \mathrm{M} \mathrm{KMnO}_{4}$ in acidic medium for complete oxidation. The same amount of the mixture required $V_{2} L$ of 0.1 M NaOH for neutralization. The ratio of V_{1} to V_{2} is $\mathrm{x}: \mathrm{y}$, then the value of $\mathrm{x}+\mathrm{y}$ is (x and y are integers)

- Watch Video Solution

66. A mixture containing 0.05 mol of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 0.02 mol of KMnO_{4} was treated with excess of KI in acidic medium. The liberated iodine required 2.0 L of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution of titration. Concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was

- Watch Video Solution

67. 1 g mixture of equal number of mole of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and other metal carbonate $\left(M_{2} \mathrm{CO}_{3}\right)$ required 21.6 mL of 0.5 N HCl for complete neutralisation reaction. What is the apoproximate atomic mass of the other metal?
68. In the mixture of NaHCO_{3} and NaCO_{3}, volume of a given HCl required is x ml with phenolphathalein indicator and further y mL is required with methyl orange indicator. Hence volume of HCl for complete reaction of NaHCO_{3} present in the original mixture is

- Watch Video Solution

69. 0.1 g of a solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} requires 10 mL of $0.01 \mathrm{~N} H C I$ for neutralization using phenolphthalein as an indicator. mass \% of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution is :

- Watch Video Solution

70. A sample of pure sodium carbonate $0.318 g$ is dissolved in water and litrated with HCl solution. A volume of 60 mL is required to reach the methly orange end point. Calculate the molarity of the acid.

(D) Watch Video Solution

71. 10 L of hard water required 5.6 g of lime for removing haardness. Hence temporary hardness in ppm of CaCO_{3} is :

- Watch Video Solution

72. $1 L$ of pond water contains 20 mg of Ca^{2+} and 12 mg of $m g^{2+}$ ions.

What is the volume of a $2 \mathrm{NNa}_{2} \mathrm{CO}_{3}$ solution required to soften 5000 L of pond water ?

- Watch Video Solution

73. One litre of a sample of hard water contain $4.44 \mathrm{mgCaCl} l_{2}$ and $1.9 \mathrm{mgof} \mathrm{MgCl}_{2}$. What is the total hardness in terms of ppm of CaCO_{3} ?
74. If hardness of water sample is 200ppm, then select the incorrect statement:

- Watch Video Solution

75. A mixture of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ coitain 30.40% mass per cent of nitrogen. What is the mass ratio of the two components in the mixture?

Watch Video Solution

76. What volume of 75% alcohol by weight $\left(d-0.80 \mathrm{~g} / \mathrm{cm}^{3}\right)$ must be used to prepare $150 \mathrm{~cm}^{3}$ of 30% alcohal by mass $\left(d=0.90 \mathrm{~g} / \mathrm{cm}^{3}\right)$?

- Watch Video Solution

77. 6.2 g of a sample containing $\mathrm{NaHCO}_{3}, \mathrm{NaHCO}_{3}$ and non -volatiale inert impurity on gentle heating loses 5% of its mass due to reaction $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$. Residue is dissolved in water and formed 100 mL solution and its 10 mL portion requires 7.5 mL of 0.2 M aqueous solution of BaCl_{2} for complete precipitation of carbonates. Determine mass (in gram) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the original sample .

- Watch Video Solution

78.1 M NaOH solution was slowly added in to 1000 mL of 183.75 g impure $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution and the following plot was obtained. The percentage
purity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ sample and slope of the curve respectively are:

- Watch Video Solution

79. A 0.60 g sample consisting of only $\mathrm{CaC}_{2} \mathrm{O}_{4}$ and $\mathrm{MgC}_{2} \mathrm{O}_{4}$ is heated at $500^{\circ} \mathrm{C}$, converting the two salts of CaCO_{3} and MgCO_{3}. The then weighs 0.465 g . If the sample had been heated to $900^{\circ} \mathrm{C}$, where the products are CaO and MgO . What would the mixtures of oxides have weighed ?
80. Urea $\left(\mathrm{H}_{2} \mathrm{NCONH}_{2}\right)$ is manufactured by passing $\mathrm{CO}_{2}(\mathrm{~g})$ through ammonia solution followed by crystallization. For the above reaction is prepared by combustion of hydrocarbons. If combustion of 236 kg of a saturated hydrocarbon $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ produces as much CO_{2} as required for production of 999.6 kg urea then molecular formula of hydrocarbon is:

- Watch Video Solution

81. 11.6 g of an organic compound having formula $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ is burnt in excess of $O_{2}(g)$ initially taken in a 22.41 litre steel vessel. Reaction the gaseous mixture was at 273 K with pressure reading 2 atm. After complete complete combustion and loss of considerable amount of heat, the mixture of product and excess of O_{2} had a temperature of 546 K and 4.6 atm pressure. The formula of organic compound is :

- Watch Video Solution

82. $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \xrightarrow{40 \% \text { yield }} I_{2}+2 \mathrm{KOH}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{50 \% \text { yield }} \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
150 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample was divided into two parts. First part was treated with KI and Formed KOH required 200 ml . of $\mathrm{M} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ for neutralisation.Other part was trated with KMnO_{4} yielding 6.74 litre of O_{2} at STP.Using \% yield indicated find volume stregth of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample used.

- Watch Video Solution

83. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (sulphuryl chloride) reacts with water to given a mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCL. What volume of $0.2 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is needed to completely neutralize 25 mL of $0.2 \mathrm{MSO}_{2} \mathrm{Cl}_{2}$ solution:

D Watch Video Solution

84. 5 g sample contain only $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$. This sample is dissolved and the volume made up to 250 mL .25 mL of this solution
neutralizes 20 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Calcalute the \% of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample .

- Watch Video Solution

85. 20 mL of $0.2 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ solution is mixed with 35 mL of this 0.1 ML $\mathrm{NaOH}(\mathrm{aq})$ solution and the resultant solution is diluted to 100 mL .40 mL of this diluted solution reacted with 10% impure sample of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ The mass of impure is:

(Watch Video Solution

86. Two elements X (at.mass 16) ard Y (at. mass 14) combine to form compounds A, which combine with a fixed mass of X in A, B and C is 1:3:5. If 32 parts by mas of X combines with 84 parts by mass of Y in B, then in C 16 parts by mass of X will combine with

- Watch Video Solution

87. The conversion of oxygen to ozone occurs to the extent of 15% only. The mass of ozone that can be prepared from 67.2 L of oxygen at 1 atm and 273 K will be :

- Watch Video Solution

88. RH_{2} (ion exchange resin) can replace Ca^{2+} ions in hard water as $\mathrm{RH}_{2}+\mathrm{Ca}^{2+} \rightarrow \mathrm{RCa}+2 \mathrm{H}^{+}$. If 1L of hard water after passing through RH_{2} has $\mathrm{pH}=3$ then hardness in parts per million of Ca^{2+} is :

- Watch Video Solution

89. 20 mL of 0.1 M solution of compound $\mathrm{NaCO}_{3} . \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is titrated against $0.05 \mathrm{M} \mathrm{HCL} . \mathrm{X} \mathrm{mL}$ of HCL is used when phenolphthalein is used as an indicator and y mL of HCL is used when methly orange is the indicator in two separate titrations. Hence $(y-x)$ is:
90. A sample containing HAsO_{2} (mol. Mass=108) and weighing 3.78 g is dissolved and diluted to 250 mL in a volumetric flask. A 50 mL sample (aliquot) is withdrawn with a pipet and titrated with 35 mL of 0.05 M solution of I_{2}. Calculate the percentage HAsO_{2} in the sample :

- Watch Video Solution

91. A mixture of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is completely reacted with 100 mL of 0.25

M acidified KMnO_{4} solution. The resultant solution was then treated with Zn dust which converted Fe^{3+} of the solution to Fe^{2+}. The Fe^{2+} required 1000 mL of $0.10 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution. Find out the weight \% $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the mixture.

- Watch Video Solution

92. To a $10 \mathrm{~mL}, 1 \mathrm{M}$ aqueous solution of $B r_{2}$, excess of NaOH is added so that all Br_{2} is disproportionated to Br^{-}and BrO_{3}^{-}. The resulting solution is free from Br^{-}, by extraction and excess of OH^{-}neutralised
by acidifying the solution. The resulting solution is suffcient to react with 2 g of impure $\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{M}=128 \mathrm{~g} / \mathrm{mol})$ sample. The \% purity of oxalate sample is :

- Watch Video Solution

93. 0.10 g of a sample containing CuCo_{3} and some inert impurity was dissolved in dilute sulphuric acid and volume made up to 50 mL . This solution was added into 50 mL of $0.04 M K I$ solution where copper precipitates as $C u I$ and I^{-}is oxidized into I_{3}^{-}. A $10 m L$ portion of this solution is taken for analysis, filtered and made up free I_{3}^{-}and then treated with excess of acidic permanganate solution. Liberated iodine required 20 mL of 2.5 mM sodium thiosulphate solution to reach the end point . Determine mass percentage of CuCO_{3} in the original sample.

- Watch Video Solution

94.1 mol of equimolar mixture of ferric oxalate and ferrous oxalate will require x mol of KMnO_{4} in acidic medium for complete oxidation. X is

- Watch Video Solution

95. An impure sample of sodium oxalate $\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right.$ weighing 0.20 g is dissolved in aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$) and solution is titrated at 70° C,requiring 45 mL of $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ solution. The end point is overrun, and back titration in carried out with 10 mL of 0.1 M oxalic acid solution.Find the purity of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in sample:

- Watch Video Solution

96. A 150 mL of solution of I_{2} is divided into two unequal parts. I part reacts with hypo solution solution in acidic medium. 15 mL of 0.4 M hypo was consumed. II part was added with 100 mL of 0.3 MNaOH solution. What was the initial concentration of I_{2} ?

- Watch Video Solution

97. A mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid) and some inert impurity weighing 3.185 g was dissolved in water and the solution made up to 1 litre. 10 mL of this solution required 3 mL of 0.1 N NaOH for complete neutralization. In another experiment 100 mL of the same solution in hot condition required 4 mL of $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ solution for complete reaction. The mass $\%$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the mixture was:

- Watch Video Solution

