©゙’ doubtnut

India's Number 1 Education App

PHYSICS
 BOOKS - HC VERMA

WORK AND ENERGY

Example

1. A spring of spring constant $50 \mathrm{~N} / \mathrm{m}$ is
compressed from its natural position through

1 cm . Find the work done by the spring force on the agency compressing the spring.

- Watch Video Solution

2. A ball of mass 0.5 kg thrown upwards reaches a maximum height of 5 m .Calculate the work done by the force of gravity during this vertical displacement considering the value of $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
3. Two charged particle A and B repel each other by a force $\frac{k}{r^{2}}$ where is a constant and r is th separation between them. The particle A is clamped to a fixed point in the lab and the particle B which has a mass m, is released from rest with asn initial separartion r_{0} form A. Find the change in the potential energyof hte wo particle system as the separation increases to
a large value. What will be the speed o the particle b in this situation?

$$
F_{A B}=k / r^{2} \longleftrightarrow \quad A \quad E
$$

External force

$$
\mathrm{B} \longrightarrow F_{B A}=k / r^{2}
$$

4. A block of mass m slides along a frictionless
surface as shown in the figure. If it is releases
from rest from A what is its speed at B ?

Figure 8.10
5. A pendulum bob has a speed $3 \mathrm{~m} / \mathrm{s}$ while passing through its lowest position. What is its speed when it makes an angle of 60° with the vertical? The length of the pendulum is 0.5 m Take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

- Watch Video Solution

6. An ideal spring of spring constant k, is suspended from the ceiling of a room and a blok of mass m is fastened to its lower end. If
the block is released when the spring is unstretched, then then maximum extension in the spring is :

D Watch Video Solution

7. A block of mass m is suspended through a spring of spring constant k and is in equilibrium. A sharp blow gives the block an initial downward velocity v. How far below the equilibrium position, the block comes to an instantaneous rest?

Watch Video Solution

Worked Out Examples

1. A porter lifts a suitcase weighing 20 kg from
the platform and puts it on his head 2.0 m above the platform. Calculate the work done by the porter on the suitcase.
2. An elevator weighing 500 kg is to be lifted up at a constant velocity of $0.20 \mathrm{~m} / \mathrm{s}$. What would be the minimum horse power of the motor to be used? take $1 \mathrm{hp}-750$ watts

- Watch Video Solution

3. A block of mas 2.0 kg is pulled up on a smooth incline of angle 30^{0} with the horizontal. If the block moves with an acceleration of $1.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$, find the power
delivered by the pulling force at a time 4.0 s
after the motion starts. What is the average power delivered during the 4.0 s after the motion starts?

D Watch Video Solution

4. A force $F=(10+0.50 x)$ acts on a particle
in the x direction, where F is in newton and x in meter./find the work done by this force during a displacement form $\mathrm{x}=0$ tox $=2.0 \mathrm{~m}$
5. A body dropped from a height H reaches the ground with a speed of $1.2 \sqrt{g H}$. Calculate the work done by air friction.

D Watch Video Solution

6. A block of mass M is pulled along a horizontal surface by applying a force at angle
θ with the horizontal. The friction coefficient
between the block and the surfasce is μ. If the
block travels at a uniform velocity, find the
work donen by this applied force during a displacement d of the blcok.

D Watch Video Solution

7. Two identical cylindrical vessel with their bases at the same level each contain a liquid of density ρ. The height of the liquid in one vessel is h_{1} and in the other is h_{2} the area of either base is A. What is the work done by gravity is equalising the levels when the two vessels are connected?
8. What minimum horizontal speed should be given to the bob of a simple pendulum of length I so tht it describes a complete circle?

- Watch Video Solution

9. A uniform chain of length I and mass m overhangs a smooth table with its two third part lying on the table. Find the kinetic energy of the chain as it completely slips off the table.

- Watch Video Solution

10. A block of mass m is pushed against a spring of spring constant k fixed at the end to
a wall. The block can side on a frictionless
table as shown in figure. The natural length of
the spring is L_{0} and it is compressed ti half its
natural length when the block is relesed. Find teh velocity of the block aa s function of its
distance x from the wall .

Figure 8-W6

D Watch Video Solution

11. A particle is placed at the point A of a frictionless track $A B C$ as shown in figure. It is pushed slightly towards right. Find its speed
when it reches the point B. Take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

Figure 8-W7

- Watch Video Solution

12. Figure shows a smooth curved track terminating in a smooth horizontal part. A spring of sprng constant $400 \mathrm{~N} / \mathrm{m}$ is asttached at one end ot a wedge fixed rigidly with the horizontal part. A 40 g mas is
released from rest at a height of 4.9 m n the curved track. Find the maximumcompression of the spring.

D Watch Video Solution

13. Figure shows a loop the loop track of radius R. A car (without engine) starts from a
platform at a distance h above the top of the loop and goes around the loop without falling off the track. Find the minimum value of h for a successful looping. Neglect friction.

Figure 8-W9

- Watch Video Solution

14. A heavy particle is suspended by a stirng of
length I. The particle is given a horizontal
velocity v_{0}. The stirng becomes slack at some angle and the particle proceeds on a parabola.find the value of v_{0} if the prticle psses through the ponit of suspension

Figure 8-W10

D Watch Video Solution

Question For Short Answer

1. When you lift a box from the floor and put it one an almirah the ptotential energy of the box increases, but thre is no change in its
kinetic energy. Is it a violation of consevation of energy?
2. A particle is released from the top of an incline of height h. Does the kinetic energy of the particle at the bottom of the incline depend on the angle of incline? Do you ned any more information to anwer this question in Yes or No?

- Watch Video Solution

3. The kinetic friction
4. Can static friction do nonzero work on an object? If yes give an example.If no, give reason.

D Watch Video Solution

5. Can normal force do a nonzero work on an
object. If yes, give an example. If no, give reason.
6. Can kinetic energy of a system be increased
without applying any external force on the system?

D Watch Video Solution

7. Is work energy theorem valid in noninertial frames?

D Watch Video Solution
8. A heavy box is kept on a smooth inclined plane and is pushed up by a force F acting parallel to the plane. Does the work done by the force F as the box goes from A to B depend on how fast the box was moving at A and B ? does the work by the force of gravity depend on this?

- Watch Video Solution

9. One person says that the potentil energy of
a particular book kept in an almirah is 20 J and
the other says it is 30 J . Is one of them necessarily wrong?

D Watch Video Solution

10. One person says that the potential energy of a particular book kept in an almirah is 20 J and the other says it is 30 J . Is one of them necessarily wrong?
11. In one of the exercises to strengthen the wrist and fingers, a person squeezes and releaases a soft rubber ball. Is the work done on the ball positive, negative or zero during compression? During expansion?

D Watch Video Solution

12. In a tug of war the team that pushes
harder against the ground wins why

- Watch Video Solution

13. When an apple falls from a tree what happens to its gravitational potential energy just as it reaches the ground ? After it strikes the ground ? $\left(A S_{7}\right)$

- Watch Video Solution

14. When you push your bicycle up on an incline the potential energy of the bicycle and
yourself increses. Where does this energy

come from?

D Watch Video Solution

15. A charged particle is moved along a magnetic field line. The magnetic force on the particle is

- Watch Video Solution

16. A ball is given a speed v on a rough horizontal surface. The ball travels through a distance I on the surface and stops. A. What are the initial and final kinetic energies of the ball? b. What is the work done by the kinetic

friction?

D Watch Video Solution

17. Consider the situation of the previous question from a frame moving with a speed v_{0}
parallel to the initial velocity of the block? b. What is the work done by the kinetic friction?

D Watch Video Solution

Objective 1

1. A heavy stone is thrown from a cliff of height
h with a speed v. The stone will hit the ground
with maximum speed if it is thrown
A. vertically downward

B. vertically upward

C. horizontally
D. the speed does not depend on the initial direction.

Answer: D

D Watch Video Solution
2. Two springs A and $\mathrm{B}\left(k_{A}=2 k_{B}\right)$ are stretched by applying forces of equal
magnitudes at the force ends. If the energy
stored in A is E, that in B is
A. $\frac{E}{2}$
B. $2 E$
C. E
D. $\frac{E}{4}$

Answer: B
(Watch Video Solution
3. Two equal masses are attached to the two
ends of a spring of spring constant k. The masses are pulled out symmetrically to stretch
the spring by a length x over its natural length. The work done by the spring one each mass is
A. $\frac{1}{2} k x^{2}$
B. $-\frac{1}{2} k x^{2}$
C. $\frac{1}{4} k x^{2}$
D. $-\frac{1}{4} k x^{2}$

Answer: D

D Watch Video Solution

4. The negative of the work done by the conserative internal forces on a system equals the change iln
A. total energy
B. kinetic energy
C. potential energy
D. none of these

Answer: C

D Watch Video Solution

5. The work done by the external forces on a
system equals the change in
A. total energy
B. kinetic energy
C. potential energy
D. none of these

D Watch Video Solution

6. The work done by all the forces (external and internal) on a system equals the change in
A. total energy
B. kinetic energy
C. potential energy
D. none of these

Answer: B

D Watch Video Solution

7. Conduct an experiment to show the space between the particles of matter and write the report.
A. kinetic energy
B. total mechanical energy
C. potential energy
D. total enerty

Answer: C

D Watch Video Solution

8. A small block of mass m is kept on a rough
inclined surface of inclination θ fixed in an
elevator. The elevator goes up with a uniform
velocity v and the block does not slide on the
wedge. The work done by the force of friction
on the block in time t will be
A. zero
B. $m g v t \cos ^{2} \theta$
C. $m g v t \sin ^{2} \theta$
D. $m g v t s i 2 \theta$

Answer: C

D Watch Video Solution

9. A block of mass m slides down a smooth
vertical circular track. During the motion, the block is in
A. vertical equilibrium
B. horizontl equilibrium
C. radia equilibrium
D. none of these

Answer: D

D Watch Video Solution

10. A particle is rotated in vertical circle by connecting it to string fixed. The minimum speed of the particle when the string is
horizontal for which the particle will complete
the circle is
A. $\sqrt{g l}$
B. $\sqrt{2 g h l}$
C. $\sqrt{3 g l}$
D. $\sqrt{5 g l}$

Answer: C

D Watch Video Solution

Objective 2

1. A heavy stone is thrown from a cliff of height h with a speed v. The stone will hit the ground with maximum speed if it is thrown
A. must depend on the speed of projection
B. must be larger than the speed of projection
C. must be independent of the speed of projection
D. may be smaller than the speed of projection

Answer: A::B

D Watch Video Solution

2. The total work done on a particle is equal to
the change in its kinetic energy
A. always
B. only if the forces acting on ilt are conservative
C. only if gravitational force alone acts on
it
D. only if elastic force alone acts on it

Answer: A

- Watch Video Solution

3. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle, the motion of the particles takes place in a plane. It follows that:
A. it velocity is constant
B. its acceleration is constant
C. its kinetic energy is constant
D. it moves in a circular path

- Watch Video Solution

4. Consider two observers moving with respect to each other at a speed v along a straight line. They observe a block of mass moving a distance 1 on a rough surface. The following quantities will be same as observed by the two observers
A. kinetic energy of the block at time t
B. work doen by friction
C. total work done the block

D. acceleration of the block

Answer: D

D Watch Video Solution

5. You lift a suitcase from the floor and keep it on a table. The work done by you on the suitcae does not depend on
A. the path taken by the suitcae
B. the time taken by you in doing so

C. the weight of the suitcase

D. your weight

Answer: A::B::D

D Watch Video Solution

6. Now work is done by a force on an object if
A. the fore is always perpendicular to its
velocity
B. the force is always perpendicular to its acceleration
C. the object is stationary but the point of applicaton of the force moves on the object

D. the object moves in such a way that the point of aplication of the forces remains fixed.

Answer: A::C::D

7. If the kinetic energy of a particle is increased by 16 times, the percentage change in the deBroglie wavelength of the particle is
A. the resultant force on the particle must
be parallel to the velocity at all instants.
B. the resultant force on the particle must
be at an angle less than 90° all the time
C. Its height above the ground level must

D. the magnitude of its linear momentum

 is increasing continuously.
Answer: B::D

D Watch Video Solution

8. One end of a light spring of spring constant
k is fixed to a wall and the other end is tied to
a block placed on a smooth horizontal surface.
In a displacement, the work by the spring is
$\frac{1}{2} k x^{2}$. The possible cases are
A. the spring was initially compresed bya
distance x and was finaly in its natural
length
B. it was initially in its natural distance x
and finally was in its natural length
C. it was initially in its natural lenth and
finaly in a compressed position.
D. it was initially in its natural length and
finally in a stretched positon.

- Watch Video Solution

9. A block of mass M is hanging over a smooth and light pulley through a light string. The other end of the string is pulled by a constant force F. The kinetic energy of the block increases by 20J in 1 s .
A. the tension in the string is Mg
B. The tension is the string is F
C. The work done by the tension on the block is 20 J in the above 1 s .
D. the work done by the force of gravity is
-20 j in the above 1 s .

Answer: B

D Watch Video Solution

Exercises

1. The mass of a cyclist together with the bicycle is 90 kg . Calculate the work done by cyclist if the speed increases from $6 \mathrm{~km} / \mathrm{h}$ to 12 km / h.

D Watch Video Solution

2. A block of mass 2.00 kg moving at a speed of
$10.0 \mathrm{~m} / \mathrm{s}$ accelerates at $3.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ for 5.00 s .
Compute its final kinetic enegy.
3. A box is pushed through a distance of 4 m across a floor offering 100 N resistance. How much work is done by the resisting force?

D Watch Video Solution

4. A block of mass 5.0 kg slides down an incline
of inclination 30° and length 10 m . find the work done by the force of gravity.
5. A constant force of 2.50 N accelerates a stationary particle of mass 15 g through a displacement of 2.50 m . Find the work done and the average power delivered.

- Watch Video Solution

6. The amount of work done by centripetal
force on the object moving in a circular path is

- Watch Video Solution

7. A man moves on a straight horizontal road with a block of mass 2 kg in his hand. If he covers a distance of 40 m with an acceleration of $0.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ find the work done by the man on the block during the motion.

- Watch Video Solution

8. A force $\mathrm{F}=\mathrm{a}+\mathrm{bx}$ acts on a particle in the x directioin, where a and b are constants. Find
the work done by this force during a displacement form $x=0 \rightarrow x=d$.
9. A block of mass 250 g slides down an incline of inclination 37^{0} with a uniform speed. Find the work done against the friction as the block slides through 1.0 m .

- Watch Video Solution

10. In the adjacent figure $B E \perp \mathrm{DA}$ and CD
\perp DA then prove that $\mathrm{m} \angle 1 \cong m \angle 3$.

- Watch Video Solution

11. A box weighing 2000 N is to be slowly slid through 20 m on a straigh track having friction coefficient 0.2 with the box. A find the work done by the person pulling the box wilth a chain at angle θ with the horizontal. B. find
the work when the person has chosen a value of θ which ensures him the minimum magnitude of the force.

D Watch Video Solution

12. A block of weight 100 N is slowly slide up on a smooth incline of inclination 37^{0} by as
person. Calculate the work done by the person in moving the block through a distance of 2.0 m , if the driving force is a. parallel to the incline and b. in the horizontal direction.

Watch Video Solution

13. Find the average frictional force needed to stop a a car weighing 500 kg in a distance of 25 m (the initial speed is $72 \mathrm{~km} / \mathrm{h}$.)

- Watch Video Solution

14. Find the averasge force needed to accelerate a car weighing 500 kg form rest to
$72 \mathrm{~km} / \mathrm{h}$ in a distance of 25 m .
15. A particle of mass moves on a straight line with its velocity varying with the distance travelled according to the equation $v=a \sqrt{x}$, where a is a constant. Find the total work done by all the forces during a displacement from $x=0 \rightarrow x=d$.

D Watch Video Solution

16. A block of mass 2.0 kg kept at rest on an inclined plane of inclination 37^{0} is pulled up the plane by applying a constant force of 20 N parallel to the incline. The force acts for one second. A. show that the work done by the applied force does not exceed 40 J .

- Watch Video Solution

17. A block of mass 2.0 kg is pushed down an inclined plane of inclination 37^{0} with a force of

20 N acting parallel to the incline. It is found that the block moves on the incline with an acceleration of $10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. If the block started from rest, find the work done by the applied force in the first second .

D Watch Video Solution

18. A 250 g block slides on aeroug horizontal
table. Find the work donen by the frictinal
force in bringing the block to rest if it is initially moving at a speed of $40 \mathrm{~cm} / \mathrm{s}$. If the
friction coefficient between te table and the block is 0.1 how far does the block move before coming to rest?

D Watch Video Solution

19. Water falling from a 50 m high fall is to be
used for generating electric enegy. If
$1.8 \times 10^{5} \mathrm{~kg}$ of water falls per hour and half
the gravitational potential energyh can be converted into electric energy, how many 100 W lamps can be it?

Watch Video Solution

20. A person is climbing a ladder with a suitcase on his head. Then the work done by that person on that suitcase is

D Watch Video Solution

21. A projectile is fired form the top of a 40 m
high cliff with an initial speed of $50 \mathrm{~m} / \mathrm{s}$ at an
unknown angle. Find its speed when it hits the ground.

- Watch Video Solution

22. The 200 m free style women's swimming gold medal at Seol Olympic 1988 went to Heike

Friendrich of East Germany when she set a new Olympic record of 1 minute and 57.56 seconds. Assume that she covered most of the distance with a uniform speed and had to exert 460 W to maintain her speed. Calculate the average force of resistance offered by the water during the swim.
23. The US athlete Florence Griffith oyner won the 100 m spring gold medal at Seal Olympic 1988 setting a new Olympic record of 10.54 s .

Assume that she achieved her maximum speed
in a very short time and then ran the race with
that speed till she crossed the line. Take her mas ot be 50 kg . a. Calculate the kinetic energy
of Griffith Joyner at her full speed. b. Assuming
the the track the wind etc. offered an average
resistance of one tenth of her weight,
cfalculate the work done by the resistance
durng the run. c. What power Griffith Joyner had to exet ot maintain uniform speed?

D Watch Video Solution

24. A water pump lifts water from a level 10 m below the ground. Water is pumped at a rate of $30 \mathrm{~kg} /$ minute with negligible
velocity.Caculate the minimum horsepower the engine should have to do this.
25. An unruly demonstrator lifts a stone of mass 200 g from the ground and throws it at his opponent. At the time of projection, the stone is 150 cm above the ground and has a speed of $3.00 \mathrm{~m} / \mathrm{s}$. Calculate the work doe by the demonstrator during the process.

- Watch Video Solution

26. In a factory it is desired to lift 2000 kg of metal through a distance of 12 m in 1 minute.

Find the minimum horsepower of the engine to be used.

- Watch Video Solution

27. Express each of the following numbers as a product of its prime factors.

140

- Watch Video Solution

28. A block of mass 30.0 kg is being brought down by a chain. If the block acquires as speed of $40.0 \frac{\mathrm{~cm}}{\mathrm{~s}}$ in dropping down 2.00 m ,find the work done by the chain during the process.

- Watch Video Solution

29. The heavier block in an atwood machine
has a mass twice that of the lighter one. The tension in the string is 16.0 N when the system
is set into motion. Find the decrease in the
gravitational potential energy during the first second after the system is released from rest.

D Watch Video Solution

30. The two blocks in an Atwood machine have masses 2.0 kg and 3.0 kg . Find the work done by gravity during the fourth second after the system is released from rest.

D Watch Video Solution

31. Consider the situatioin shown in figure. The system is released from rest and the block of mass 1.0 kg is found to have a speed $0.3 \mathrm{~m} / \mathrm{s}$ ater it has descended thrugh a distance of 1 m .
find the coefficient of kinetic friction between the block and the table.

Figure 8-E2
32. A block of mass 100 g is moved with a speed of $5.0 \mathrm{~m} / \mathrm{s}$ at the highest point in a closed circular tube of radius 10 cm kept in a vertical
plane. The cross section of the tube is such that the block just fits in it. The block makes several oscillations inside the tube and finally stops at the lowest point. find the work done by the tube on the block during the process
33. A car weighing 1400 kg is moving at speed of $54 \mathrm{~km} / \mathrm{h}$ up a hill when the motor stops. If it
is just able to read the destination which is at
a height of 10 m above the point calculte the work done against friction (negative of the work done by the friction).

D Watch Video Solution

34. small block of mass 200 g is kept at the top of a frictionless incline which is 10 m long and
3.2 m high. How much work was required to lift
the block from the ground nd put it at the top

D Watch Video Solution

35. In a children's park, there si a slide which has a total length of 10 and a height of 8.0 m figure. Vertical ladder are provided to reach the top. A boy weighting 200 N climbs up the ladder to the top of the slide and slides down to the ground. The averages friction offered by the slide is three tenth of his weight. Find a.
the work done by the ladder on the boy as he goes up. b. the work done by the slide on the boy as he comes down. Neglect any work done by forces inside the body of the boy.

D View Text Solution

36. Figure shows a particle slideing on a
frictionles track which terminates in straight
horizontal section. If the particle starts
slipping from the point. A, how far way from
the track will the particle hit the ground ?

Figure 8-E3

D Watch Video Solution

37. A block weighing 10 N tavels down a smooth curved track $A B$ joined to a rough
horizontal surface. The rough surface has a friction coeficient of 0.20 with the block. If the block starts slipping on the track from a point
1.0 m above the horizontal surace, how far will it move on the rough surface?

Figure 8-E4

D Watch Video Solution

38. A uniform chain of mass m and length I
overhangs a table with its two third part on
the table. Fine the work to be done by a
person to put the hanging part back on the table.

D Watch Video Solution

39. A uniform chain of length L and mass M overhangs a horizontal table with its two third part n the table. The friction coefficient between the table and the chain is μ. Find the work done by the friction during the period the chain slips off the table.
40. A block f mas 1 kg is placed at the point A of a rough track shown in figure. If slightly pushed towards right, it stos at the point B of the track. Calculate the work done by the frictional force on the block during its transit from A to B.

- Watch Video Solution

41. A block of mass 5.0 kg is suspended from
the end of a vertical spring which is stretched
by 10 cm under the load of te block. The block is givena sharp impulse from below so that it acquires an upward speed of $2.0 \mathrm{~m} / \mathrm{s}$. How high will it rise? Take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

- Watch Video Solution

42. A block of mass 250 g is kept on a vertical spring of spring constant $100 \mathrm{~N} / \mathrm{m}$ fixed from
below. The spring is now compressed to have a
length 10 cm shorter than its natural length
and the system is released from this position.
How high does the block rise? take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

D Watch Video Solution

43. Figure shows a spring fixed at the bottom
end of an incline of inclination 37^{0}. A small block of mass 2 kg starts slipping down the incline from a point 4.8 m away from the spring. The block compresses the spring by 20
cm, stops momentarily and then rebounds
through a distance of 1 m up the incline. Find
a. the frictioin coefficient between the plane and the block and b. the spring constant of
the spring. Take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

Figure 8-E7

- Watch Video Solution

44. A block of mass m moving at a speed ' v ' compresses a spring through a distance ' x ' before its speed is halved. Find the spring constant of the spring.

- Watch Video Solution

45. Consider the situation shown in figure.

Initially the spring is unstretched when the
system is released from rest. Assuming no
friction in the puley, find the maximum
eleongation of the spring.

Figure 8-E8

- Watch Video Solution

46. A block of mass m is attached to two unstretched springs of spring constants k_{1} and k_{2} as shown in figure. The block is displaced towards right through a distance x and is released. Find the speed of the block as
it passes through the mean position shown.

Figure 8-E9
47. A block of mass m sliding n a smooth horizontal surface with velocity \vec{v} meets a long horizontal spring fixed ast one end and having spring constant k as shown n figure.

Find the maximum compression of the spring.

Figure 8-E10

D Watch Video Solution

48. A small block of mass 100 g is pressed against a horizontal spring fixed at one end to compress the spring through 5.0 cm . The spring constant is $100 \mathrm{~N} / \mathrm{m}$. When released, the block moves horizontally till it leaves the spring. Where will it hit the ground 2 m below the spring?

Figure 8-E11
49. A small hevy block is attached to the lower4 end of a light rod of lenth I which fan be rotated about its clamped upper end. What minimum horizontal velocity should the block be given so that it moves in a complete vertical circle?

D Watch Video Solution

50. Figure shows two block A and B, each
having a mass of 320 g connected by a light
string passing over a smooth light pulley. The horizontal surface on which the block A can
slide is smooth. The block A is attached to
spring constant $40 \mathrm{~N} / \mathrm{m}$ whose other end is
fixed to a support 40 cm above the horizontal
surface. Initially, the spring is vertical and
unstretched when the system is released to
move. Find the velocity of the block A at the instant it breaks off the surface below it. Take
$g=10 \mathrm{~m} / \mathrm{s}^{2}$.

- Watch Video Solution

51. one end of a spring of natural length h and spring constant k is fixed at the ground and
the other is fitted with a smooth ring of mass
m which is allowed to slide on a horizontal rod
fixed at a height h figure. Initially, the spring makes an angle of 37^{0} with the vertical when the system is released from rest. find the speed of the ring when the spring becomes
vertical.

Figure 8-E13

D Watch Video Solution

52. Figure shows a light rod of length I rigidly
attached to a small heavy block at one end
and a hook at the other end. The system is
released from rest with the rod in a horizontal
position. There is a fixed smooth ring at a depth h below the initial position of the hook and the hook gets into the ring as it reaches
there. What should be the minimum value of h
so that the block moves in a complete circle
about the ring?

Figure 8-E14

D Watch Video Solution

53. The bob of a pendulum at rest is given a sharp hit to impart a horizontal velocity
$\sqrt{10 g l}$ where I is the length of the pendulum.
Find the tension in the string when a. the
string is horizontal. B. The bob is at its highest
point and c. the string makes an angle of 60° with the upward vertical.

D Watch Video Solution

54. A simple pendulum consists of a 50 cm
long string connected to a 100 g ball. The ball is pulled aside so that the string makes an angel of 37^{0} with the vertical and is then released. Find the tension in the string when
the bob is at its lowest position.

D Watch Video Solution

55. Figure shows a smooth track, a part of which is a circle of radius R. As block of mass m
is pushed against a spring of spring constant
k fixed at the left end and is then released.

Find the initial compression of the spring so
that the block presses the track with a force
mg when it reaches the point P, where the radius of the track is horizontal.

D Watch Video Solution

56. The bob of a stationary pendulum is given
a sharp hit to impart it a horizontal speed of
$\sqrt{3 g l}$. Find the angle rotated by the string before it becomes slack.
57. A heavy particle is usspended by a 1.5 m
long string . It is given a horizontal velocityof
$\sqrt{57} \frac{\mathrm{~m}}{\mathrm{~s}}$. a. Find the angle made by the string with the upward vertical, when it becomes slack. B. Find the speed of the particle at this instant. c.Find the maximum height reached by the particle over the point of suspension. Take $g=10 \frac{m}{s^{2}}$

- Watch Video Solution

58. A simple pendulum of length L having a bob of mass m is deflected from its rest
position by an angle θ and released figure. The
string hits a peg which is fixed at distance x
below the point of suspension and the bob
starts going in a circle centred at the peg. a.
Assuming that initially the bob has a height
less thasn the peg, show that the maximum
height reached by the bob equals its initialheight. b. If the pendulum is released with $\theta=90^{\circ}$ and $m=\frac{L}{2}$ find the maximum height reached by the bob above its lowest
positon before the string becomes slack. c.

Find the minimum value of x / L for which the bob goes in a complete circle about the pet when the pendulum is released from $\theta=90^{\circ}$.

m

D Watch Video Solution

59. A particle slides on the surface of a fixed smooth sphere starting from the topmost pont. Find the angle rotated by the radius through the particle, when it leaves contact with the sphere.

- Watch Video Solution

60. A particle of mass m is kept on a fixed, smooth sphere of radius R at a position, where
the radius through the particle makes an angle of $30 \circ$ with the vertical. The particle is
released from this position. (a) What is the force exerted by the sphere on the particle just after the release? (b) Find the distance traveled by the particle before it leaves contact with the sphere.

D Watch Video Solution

61. A particle of mass m is kept on the top of a smooth sphere of radius R. It is given a sharp impulse which imparts it a horizontal speed v.
a. find the normal force between the sphere
and the particle just after the impulse. B. What
should be the minimum value of v for which
the particle does not slip on the sphere? c.
Assuming the velocity v to be half the minimum calculated in part, d. find the angle made by the radius through the particle with the vertical when it leaves the sphere.

D Watch Video Solution

62. Figure shows a smooth track which
consists of a straight inclined part of length I
joining smoothly with the circular part. A
particle of mass m is projected up the incline
from its bottom. a.Find the minimum
projected speed v_{0} for which the particle reaches the top of the track. b. Assuming that
the projection speed is $2 v_{0}$ and that the block does not lose contact with the track before reading its top, find teh force acting on it whenit reaches the top. c. Assuming that teh projection speed is only slightly greater than
v_{0} where will the block lose contact with the track?

- Watch Video Solution

63. AS chain of length I and mass m lies o the
surface of a smooth sphere of radius $R>l$
with one end tied to the top of the sphere.
a.Find the gravitational potential energy of the chain with reference level at the centre of the sphere. B. suppose the chin is released and slides down the sphere. Find the kinetic eneergy of the chain, when it has slid through an angle $\theta \mathrm{c}$. find the tangential acceleration $d v$ $\frac{d v}{d t}$ of the chain when the chain starts sliding down.

D Watch Video Solution

64. A smooth sphere of radius R is made to translate line with a constant acceleration $a=g$.

A particle kept on the top of the sphere is released from there at zero velocity with respect to the sphere. Find the speed of the particle with respect to the sphere as a function of angle θ as it slides down.

