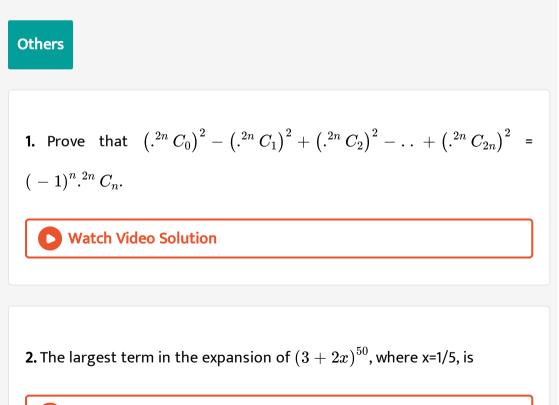


MATHS

BOOKS - CENGAGE PUBLICATION

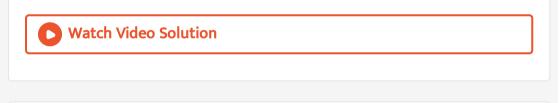
BINOMIAL THEOREM



3.
$$\frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-4)!} + \dots$$
 is equal to

4. Find the sum of the last 30 coefficients in the expansion of $\left(1+x
ight)^{59},$

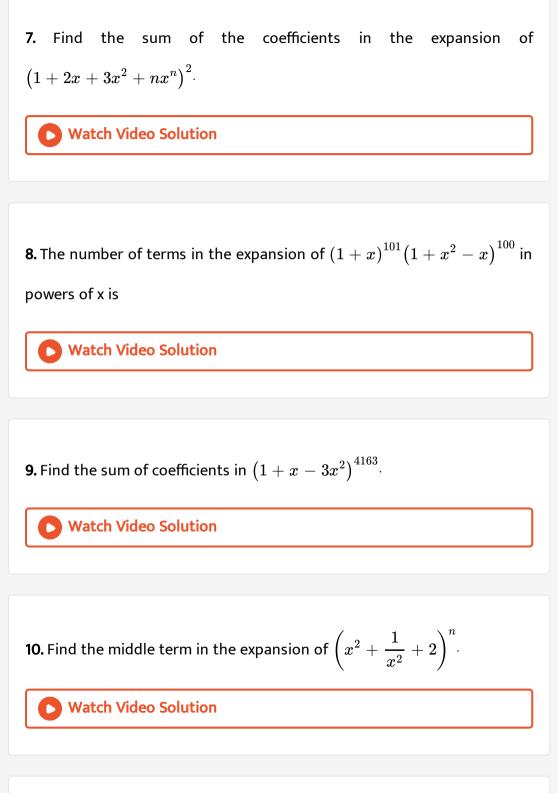
when expanded in ascending powers of x.



5. If x = 1/3, find the greatest tem in the expansion of $(1 + 4x)^8$.

Watch Video Solution

6. If the sum of coefficients in the expansion of $(x - 2y + 3z)^n$ is 128, then find the greatest coefficient in the expansion of $(1 + x)^n$.



11. In the expansion of $\left(1+x
ight)^{50},\,\,$ find the sum of coefficients of odd

powers of x.

12. If
$$\left(1+x-2x^2
ight)^6 = 1+a_1x+a_2x^2+\ldots +a_{12}x^{12}$$
 then

Watch Video Solution

13. If the middle term in the binomial expansion of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is equal to $\frac{63}{8}$, find the value of x.

Watch Video Solution

14. Find the sum $C_0+3C_1+3^2C_2+...+3^nC_n$.

15. If
$$(1+x)^n = \sum_{r=0}^n C_r x^r$$
, then prove that $C_1 + 2C_2 + 3C_3 + \dots + nC_n = n2^{n-1}$.
Watch Video Solution

16. If T_0, T_1, T_2, T_n represent the terms in the expansion of $(x + a)^n$,

then find the value of $\left(T_0-T_2+T_4ight)^2+(T_1-T_3+T_5-)^2n\in N_2$

Watch Video Solution

17. If
$$ig(1+x+x^2ig)^n=a_0+a_1x+a_2x^2+{}+a_{2n}x^{2n},$$
 find the value of $a_0+a_3+a_6+{}+,n\in N$.

Watch Video Solution

18. Find the sum $C_0-C_2+C_4-C_6+\ldots$,where $C_r=^n C_r$.

19. Prove that
$$.^n C_0 + ^n C_3 + ^n C_6 + = rac{1}{3} \Big(2^n + 2 \cos \Big(rac{n \pi}{3} \Big) \Big) \, .$$

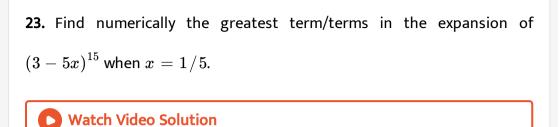
20. Given that the 4^{th} term in the expansion of $\left(2+\frac{3}{8}x\right)^{10}$ has the maximum numerical value. Find the range of the value of x for which this

will be true.

Watch Video Solution

21. Find the greatest coefficient in the expansion of $\left(1+2x\,/\,3
ight)^{15}$.

22. Find the greatest term in the expansion of
$$\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$$
.



24. Let n be an odd natural number greater than 1. Then , find the number

of zeros at the end of the sum $99^n + 1$.

Watch Video Solution

25. Find the remainder when 27^{40} is divided by 12.

26. In the expansion of $(1 + x)^n$, 7th and 8th terms are equal. Find the value of $(7/x+6)^2$.

27. Find the sum
$$\sum_{j=0}^n \left(\ \hat{} \ (4n+1)C_j + ^{4n+1}C_{2n-j}
ight).$$

28. Show that no three consecutive binomial coefficients can be in G.P.

Watch Video Solution

29. Find the sum
$$\sum_{r=1}^{n} r^n \frac{\hat{n}C_r}{\hat{n}C_{r-1}}$$

Watch Video Solution

30. Show that $9^{n+1} - 8n - 9$ is divisible by 64, where n is a positive

integer.

31. If the 3rd, 4th. 5th and sixth term in the expansion of $(x + \alpha)^n$ are a,b,c,d respectively, then prove that $\left(\frac{b^2 - ac}{c^2 - bd}\right) = \frac{5a}{3c}$. Watch Video Solution

32. Find the remainder when 7^{98} is divided by 5.

Watch Video Solution

33. Show that $2^{4n+4} - 15n - 16$, $where \ {\sf n} \ \in N$ is divisible by 225.

34. If $\left(2+\sqrt{3}
ight)^n = I+f,\,\,$ where $\,I\,\,$ and $\,n\,\,$ are positive integers and $0 < f < 1,\,$

show that I is an odd integer and (1-f)(1+f)=1

35. Find the degree of the polynomial
$$\frac{1}{\sqrt{4x+1}} \left\{ \left(\frac{1+\sqrt{4x+1}}{2}\right)^7 - \left(\frac{1+\sqrt{4x+1}}{2}\right)^7 \right\}$$

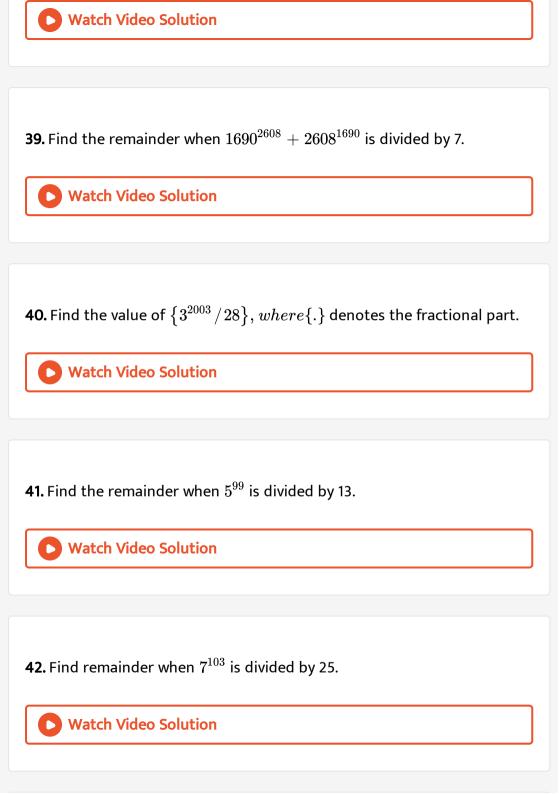
36. If 9^7+7^9 is divisible b $2^n,$ then find the greatest value of $n, wheren \in N$.

Watch Video Solution

37. Prove that $\sqrt{10}\Big[ig(\sqrt{10}+1ig)^{100}-ig(\sqrt{10}-1ig)^{100}\Big]$ is an even integer .

Watch Video Solution

38. Find the remainder when $x = 5^{5^{5^{5^{-...}}}}$ (24 times 5) is divided by 24.



43. Using binomial theorem prove that $6^n - 5n$ always leaves remainder I

when divided by 25.

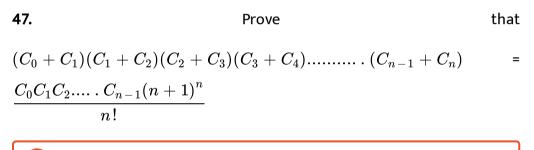
44. If the coefficient of the middle term in the expansion of $(1 + x)^{2n+2}$ is α and the coefficients of middle terms in the expansion of $(1 + x)^{2n+1}$ are β and γ then relate α , β and γ .

Watch Video Solution

45. If the coefficients of three consecutive terms in the expansion of

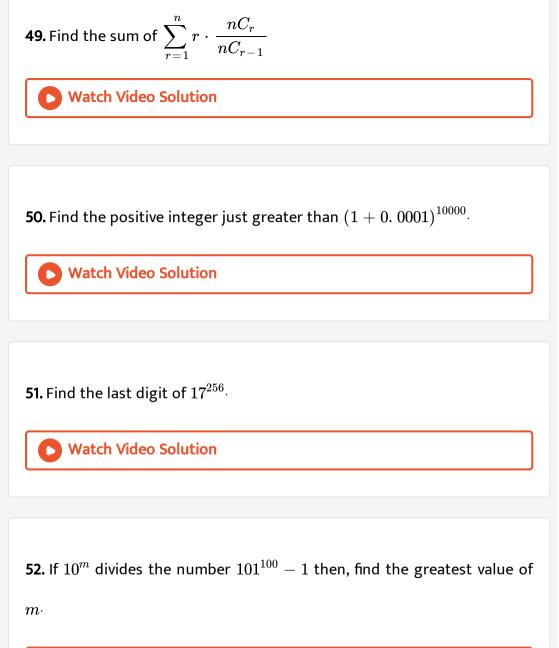
 $(1+x)^n$ are in the ratio 1:7:42, then find the value of n_{\cdot}

46. In the coefficients of rth, (r+1)th, and(r+2)th terms in the binomial expansion of $(1+y)^m$ are in A.P., then prove that $m^2 - m(4r+1) + 4r^2 - 2 = 0.$



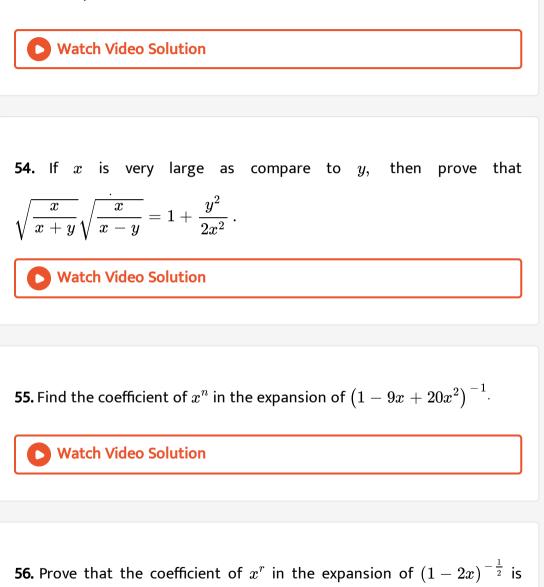
Watch Video Solution

48. If the coefficients of four consecutive terms in the expansion of $(1 + x)^n$ are a_1, a_2, a_3 and a_4 respectively. then prove that `a_1/(a_1+a_2)+a_3/(a_3+a_4)=2a_2/(a_2+a_3).



53. Using the principle of mathematical induction, prove that $\left(2^{3n}-1
ight)$ is

divisible by 7 for all $n \in N$



 $\frac{2r\,!}{\left(2^r\right)(r\,!)^2}$

57. Find the sum:
$$1 - \frac{1}{8} + \frac{1}{8} imes \frac{3}{16} - \frac{1 imes 3 imes 5}{8 imes 16 imes 24} + ...$$

58. Show that
$$\sqrt{3} = 1 + \frac{1}{3} + (\frac{1}{3}) \cdot (\frac{3}{6}) + (\frac{1}{3}) \cdot (\frac{3}{6}) \cdot (\frac{5}{9}) + \dots$$

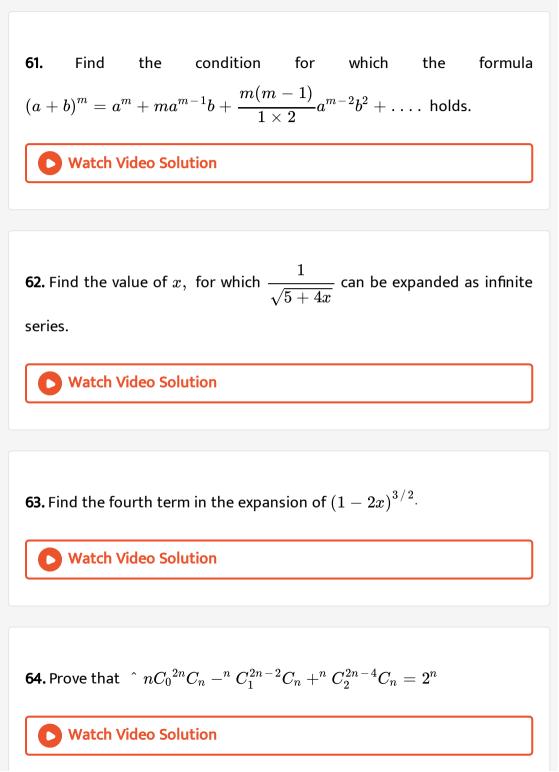
Watch Video Solution

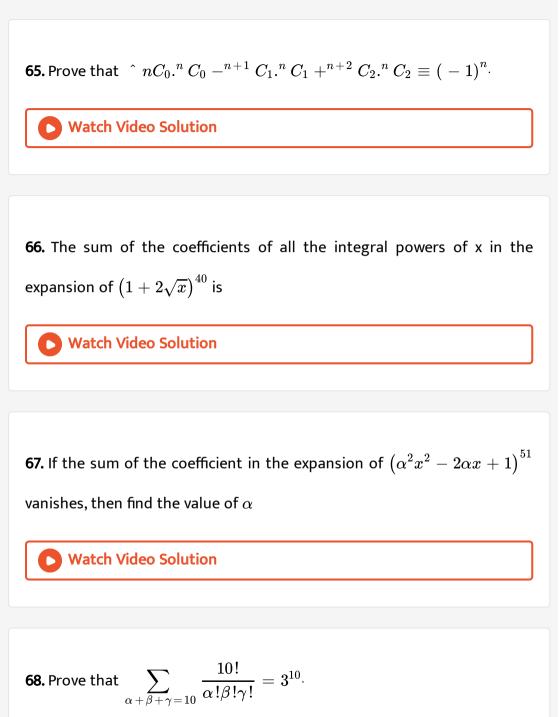
59. Assuming x to be so small that x^2 and higher power of x can be

neglected, prove that
$$rac{\left(1+rac{3x}{4}
ight)^{-4}(16-3x)^{rac{1}{2}}}{\left(8+x
ight)^{rac{2}{3}}}=1-\left(rac{305}{96}
ight)x$$

Watch Video Solution

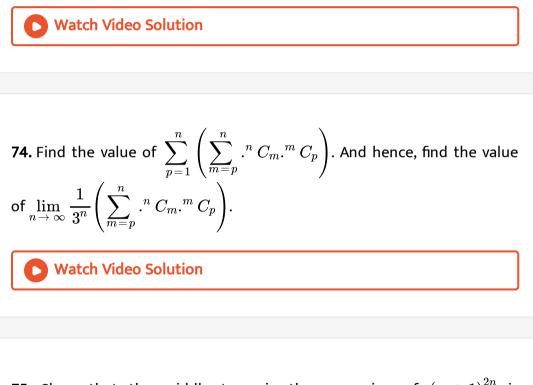
60. Find the sum `sumsum_(Olt=i





73. If the sum of coefficient of first half terms in the expansion of

 $\left(x+y
ight)^n$ is 256 , then find the greatest coefficient in the expansion.



75. Show that the middle term in the expansion of $(x+1)^{2n}$ is $\frac{1.3.5....(2n-1)}{n!}2^n \cdot x^n$.

76. If the middle term in the expansion of $\left(x^2+1/x
ight)^n$ is $924~x^6$, then

find the value of n.

77. The first three terms in the expansion of $(1+ax)^n (n
eq 0)$ are

1, $6x \text{ and } 16x^2$. Then find the value of a and n.

Watch Video Solution

78. If x^4 occurs in the rth term in the expansion of $\left(x^4+rac{1}{x^3}
ight)^{15}$, then

find the value of r.

79. Find the coefficient of x^{-10} in the expansion of $\left(\frac{a}{x} + bx\right)^{12}$.

80. Find the constant term in the expansion of $\left(x - \frac{1}{x}\right)^6$.

81. If the coefficients of (r-5)th and (2r-1)th terms in the expansion

of $\left(1+x
ight)^{34}$ are equal, find r_{\cdot}

Watch Video Solution

82. In
$$\left(2^{\frac{1}{3}}+\frac{1}{3^{\frac{1}{3}}}\right)^n$$
 if the ratio of 7th term from the beginning to the

7th term from the end is 1/6, then find the value of n.

Watch Video Solution

83. If the coefficient of 4th term in the expansion of $(a + b)^n$ is 56, then n

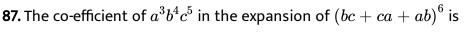
84. If p and q are positive, then prove that the coefficients of x^p and x^q in the expansion of $(1 + x)^{p+q}$ will be equal.

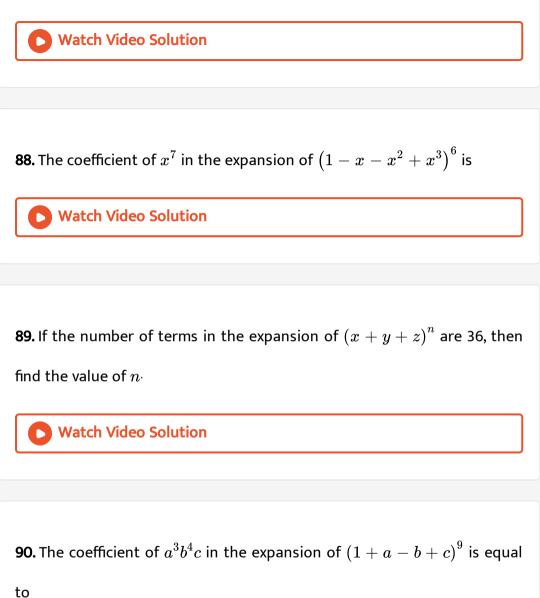
Watch Video Solution

85. Find the number of irrational terms in the expansion of $\left(5^{1/6}+2^{1/8}
ight)^{100}$.

Watch Video Solution

86. If x^p occurs in the expansion of $\left(x^2 + \frac{1}{x}\right)^{2n}$, prove that its coefficient is $\frac{(2n)!}{\left[\frac{1}{3}(4n-p)\right]!\left[\frac{1}{3}(2n+p)\right]!}$.





91. The coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3
ight)^{11}$ is

92. Find the number of terms which are free from radical signs in the

expansion of
$$\left(y^{1/5}+x^{1/10}
ight)^{55}$$
 .

Watch Video Solution

93. Find the coefficient of x^5 in the expression of $(1 + x^2)^5 (1 + x)^4$.

Watch Video Solution

94. Find the coefficient of x^{13} in the expansion of $(1-x)^5 imes ig(1+x+x^2+x^3ig)^4ig\cdot$

95. Find the sum .¹⁰ C_1 +¹⁰ C_3 +¹⁰ C_5 +¹⁰ C_7 +¹⁰ C_9

96. Find the sum of
$$\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + ...,$$

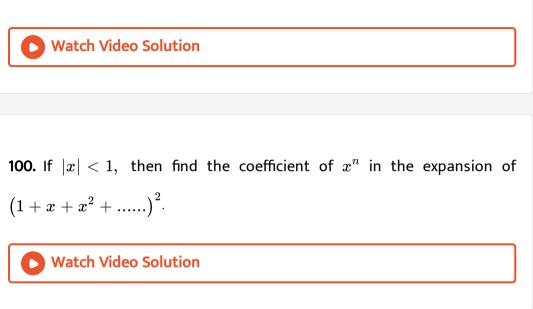
Watch Video Solution

97. If n is an even positive integer, then find the value of x if the greatest term in the expansion of $(1 + x)^n$ may have the greatest coefficient also.

Watch Video Solution

98. If |x|<1, then find the coefficient of x^n in the expansion of $\left(1+2x+3x^2+4x^3+
ight)^{1/2}.$

99. If (r+1)th term is the first negative term in the expansion of $(1+x)^{7/2}$, then find the value of r.



```
101. If |x|>1, 	ext{ then expand } (1+x)^{-2}.
```

Watch Video Solution

102. Find the cube root of 27

103. Find the coefficient of
$$x^2$$
 in $\left(rac{a}{a+x}
ight)^{1/2}+\left(rac{a}{a-x}
ight)^{1/2}$

104.

Prove

that

 $:^{10}C_1{(x-1)}^2-^{10}C_2{(x-2)}^2+^{10}C_3{(x-3)}^2.....-^{10}C_{10}{(x-10)}^2=x^2$

Watch Video Solution

105. If the third term in the expansion of $(1 + x)^m is - \frac{1}{8}x^2$, then find the value of m.

Watch Video Solution

106. Prove that
$$\sum_{r=0}^n r(n-r) (.^n C_r)^2 = n^2 (.^{2n-2} C_n) \cdot$$

107. Prove that

$$1 - {}^{n}C_{1}\frac{1+x}{1+nx} + {}^{n}C_{2}\frac{1+2x}{(1+nx)^{2}} - {}^{n}C_{3}\frac{1+3x}{(1+nx)^{3}} + \dots (n+1)terms =$$

Watch Video Solution
108. Find the coefficient of x^{20} in $\left(x^{2}+2+\frac{1}{x^{2}}\right)^{-5}(1+x^{2})^{40}$.
Watch Video Solution
109. The number of terms in the expansion of $(a + b + c)^{n}$ where $n \in N$ is
Watch Video Solution

110. Find the coefficient of x^{50} in the expansion of $\left(1+x
ight)^{101} imes\left(1-x+x^2
ight)^{100}$

 111. Find the coefficient of x^4 in the expansion of $(2 - x + 3x^2)^6$.

 Image: Watch Video Solution

 112.
 Find
 the
 coefficient
 of

 $x^k \in 1 + (1 + x) + (1 + x)^2 + + (1 + x)^n (0 \le k \le n)$.

 Image: Watch Video Solution

113. The term independent of x in the expansion of $(1 + x + 2x^3)\left(\frac{3}{2}(x^2) - \frac{1}{3x}\right)^9$

Watch Video Solution

114. If aandb are distinct integers, prove that a-b is a factor of a^n-b^n ,

wherever n is a positive integer.

115. Find a, b and n in the expansion of $(a + b)^n$ if the first three term s of

the expansion are 729, 7290 and 30375, respectively.

116. Find the coefficient of
$$x^{20}$$
 in expansion of expression

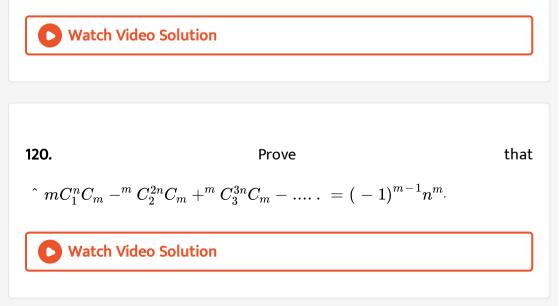
$$\sum_{r=0}^{50} \hat{} (50)C_r(2x-3)^r(2-x)^{50-r}.$$
Watch Video Solution

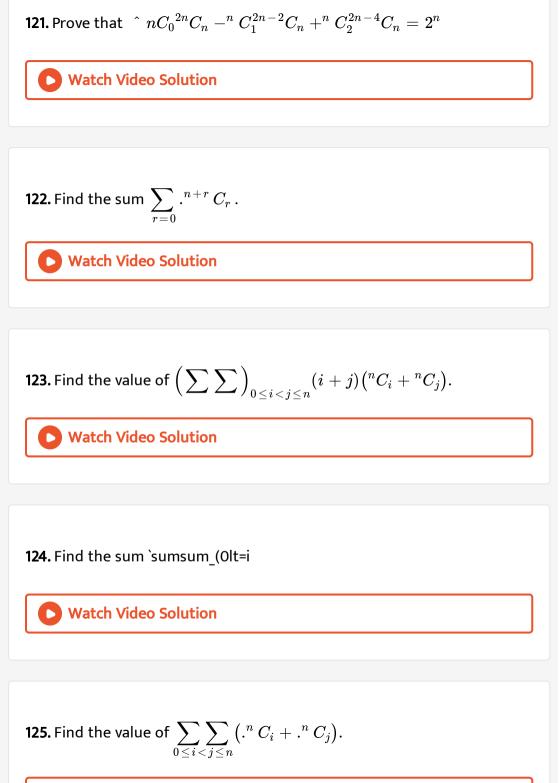
117. If the sum of the coefficients of the first, second, and third terms of the expansion of $\left(x^2 + \frac{1}{x}\right)^m$ is 46, then find the coefficient of the term that does not contain x.

118. If p+q=1, then show that $\sum_{r=0}^n r^2 \, \hat{\,\,}\, n C_r p^r q^{n-r} = npq + n^2 p^2$

Watch Video Solution

119. If every pair from among the equations $x^2 + ax + bc = 0$. $x^2 + bx + ca = 0$, andx62 + cx + ab = 0 has a common root, then the sum of the three common roots is -1/2(a + b + c) the sum of the three common roots is 2(a + b + c) the product of the three common roots is abc the product of the three common roots is $a^2b^2c^2$





126. Find the sum
$$\left(\sum\sum
ight)_{0\leq i< j\leq n}{}^nC_i.{}^nC_j.$$

127. Prove that
$$\sum\limits_{r=0}^s \sum\limits_{s=1}^n \ \hat{}\ nC_s^sC_r = 3^n-1.$$

128. Find the sum
$$\sum \sum_{0 \leq i < j \leq n} {}^n C_i$$

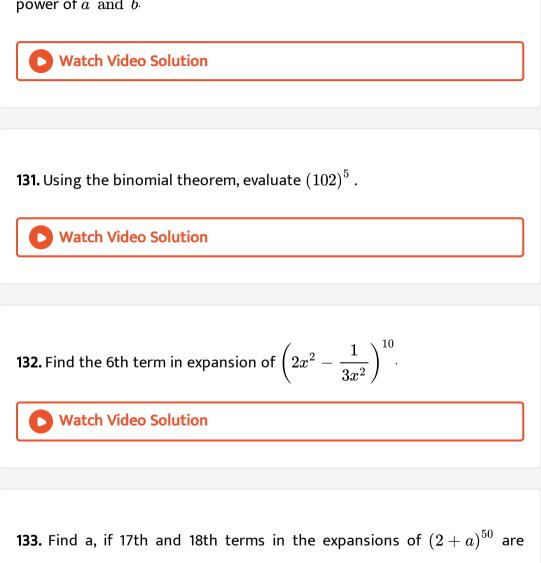
Watch Video Solution

129. Find the coefficient of x^4 in the expansion of $\left(rac{x}{2}-rac{3}{x^2}
ight)^{10}$.

I30. Find the term in
$$\left(3\sqrt{\left(\frac{a}{\sqrt{b}}\right)} + \left(\sqrt{\frac{b}{3\sqrt{a}}}\right)^{21}\right)$$

which has the same

power of a and b.



equal.

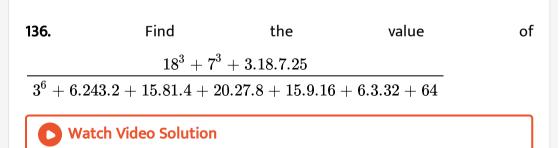
134. Find n, if the ratio of the fifth term from the beginning to the fifth

term from the end in the expansion of
$$\left(\sqrt[4]{2}+rac{1}{\sqrt[4]{3}}
ight)^n$$
 is $\sqrt{6}\!:\!1.$

Watch Video Solution

135. Simplify:
$$x^5 + 10x^4a + 40x^3a^2 + 80x^2a^3 + 80xa^4 + 32a^5$$
.

> Watch Video Solution



137. Find the approximation of $\left(0.~99
ight)^5$ using the first three terms of its

expansion.

138. If for
$$n \in N$$
, $\sum_{k=0}^{2n} (-1)^k (.^{2n} C_k)^2 = A$, then find the value of $\sum_{k=0}^{2n} (-1)^k (k=2n) (.^{2n} C_k)^2.$

Watch Video Solution

139. There are two bags each of which contains n balls. A man has to select an equal number of balls from both the bags. Prove that the number of ways in which a man can choose at least one ball from each bag $is^{2n}C_n - 1$.

Watch Video Solution

140. Find the sum
$$\sum_{i=0}^r .^{n_1} C_{r-i} .^{n_2} C_i$$
 .

141. Prove that
$$\sum_{r=0}^{2n} \left(r.^{2n}\,C_r
ight)^2 = n^{4n}C_{2n}\,.$$

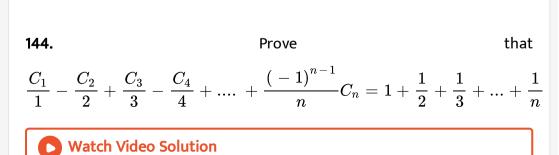
Watch Video Solution

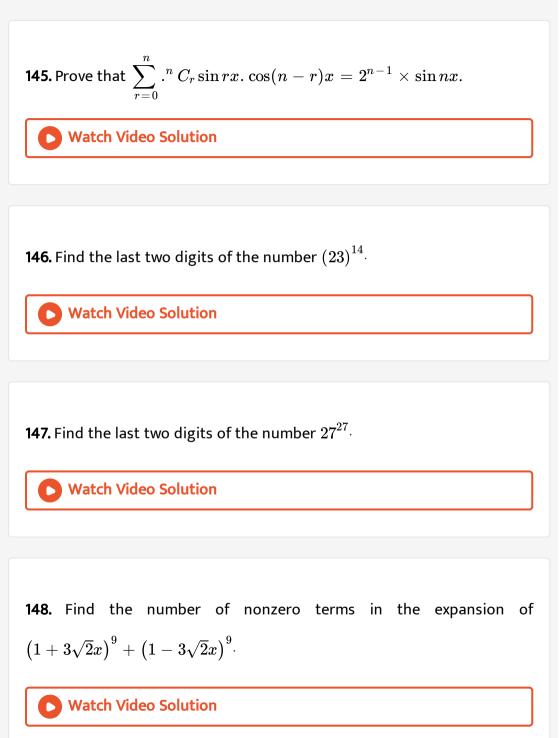
142. If k and n are positive integers and $S_k = 1^k + 2^k + 3^k + \ldots + n^k$,

then prove that
$$\sum\limits_{r=1}^m .^{m+1} C_r s_r = \left(n+1
ight)^{m+1} - \left(n+1
ight)$$

Watch Video Solution

143. Prove that
$$\sum_{r=1}^n {(-1)^{r-1} \left(1 + rac{1}{2} + rac{1}{3} + \ + rac{1}{r}
ight)} (.^n \, C_r) = rac{1}{n} \, .$$





149. Find the value of $\left(\sqrt{2}+1
ight)^6-\left(\sqrt{2}-1
ight)^6\cdot$

Watch Video Solution

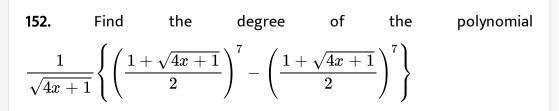
150. Using the binomial theorem (without using the formula for $.^{n} C_{r}$),

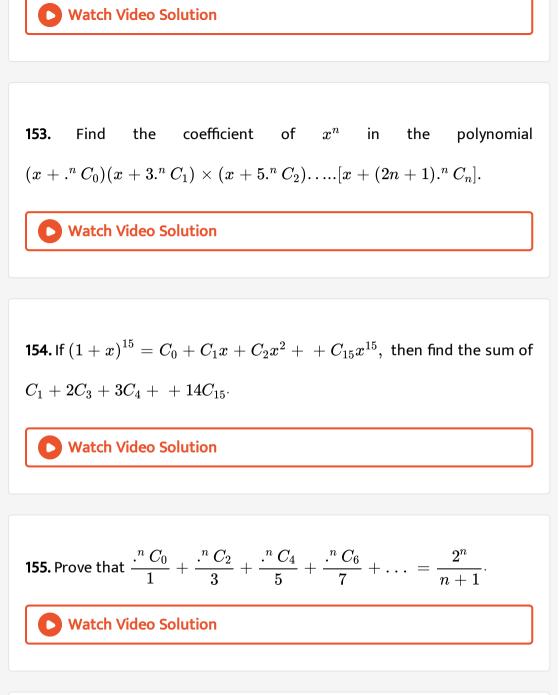
prove that

 $.^{n}C_{4} + .^{m}C_{2} - .^{m}C_{1}.^{n}C_{2} = .^{m}C_{4} - .^{m+n}C_{1}.^{m}C_{3} + .^{m+n}C_{2}.^{m}C_{2} - .^{m}C_{2}$

Watch Video Solution

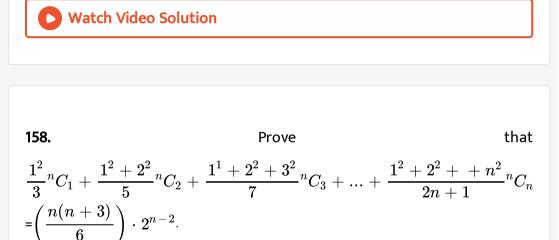
151. Find the value of $.^{4n} C_0 + ^{4n} C_4 + ^{4n} C_8 + ... + {}^{4n} C_{4n}$.





156. Find the sum `sumsum_(Olt=i

157. Show that the integer next above $\left(\sqrt{3}+1\right)^{2m}$ contains 2^{m+1} , as a factor.



159. Prove that

$$\frac{1}{n+1} = \frac{\cdot^n C_1}{2} - \frac{2(\cdot^n C_2)}{3} + \frac{3(\cdot^n C_3)}{4} - \dots + (-1)^{n+1} \frac{n(\cdot^n C_n)}{n+1}.$$
Watch Video Solution

160. Find the sum

$$2. \, .^{10} \, C_0 + \frac{2^2}{2}.^{10} \, C_1 + \frac{2^3}{3}.^{10} \, C_2 + \frac{2^4}{4}.^{10} \, C_3 + + \frac{2^{11}}{11}.^{10} \, C_{10}.$$

Watch Video Solution

161. If in the expansion of $\left(2x+5
ight)^{10}$, the numerically greatest term in equal to the middle term, then find the values of x

Watch Video Solution

162. Find the value of

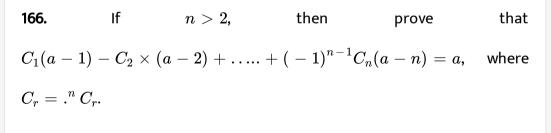
$$\frac{1}{81^n} - \frac{10}{81^n} \cdot {}^{2n}C_1 + \frac{10^2}{81^n} \cdot {}^{2n}C_2 - \frac{10^3}{81^n} \cdot {}^{2n}C_3 + \dots + \frac{10^{2n}}{81^n}.$$
Watch Video Solution

163. Find the value of $5C_3 + 4C_2$

164. Find the sum
$$^{1}C_{0} + ^{2}C_{1} + ^{3}C_{2} + ... + ^{n+1}C_{n}$$
, where $C_{r} = ^{n}C_{r}$.

165. If
$$(1+x+x^2+\ldots +x^n)^n=a_0+a_1x+a_2x^2+\ldots a_{np}x^{np}$$
,

then find the value of $a_1 + 2a_2 + 3a_3 + \ldots + npa_{np}$.



167. Find the sum $C_0-C_2+C_4-C_6+\ldots$,where $C_r=^n C_r$.

A. $n(n+1)2^n - 1$

 $\mathsf{B.}\,n(n+3)2^n-2$

 $\mathsf{C.}\,2n.^{2n}\,C_n$

D. none of these

Answer: null

Watch Video Solution

168. If
$$x+y=1, ext{ prove that } \sum_{r=0}^n .^n C_r x^r y^{n-r}=1.$$

Watch Video Solution

169. Find the sum $3C_1 + 5C_2$

170. Prove that
$$rac{\cdot^n C_1}{2} + rac{\cdot^n C_3}{4} + rac{\cdot^n C_5}{6} + \ldots = rac{2^n - 1}{n+1}.$$

D Watch Video Solution

171. If
$$(1+x)^n = \sum_{r=0}^n nC_r$$
 , show that $C_0 + \frac{C_1}{2} + + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$.

Watch Video Solution

172. If
$$\sum_{r=0}^{2n}a_r(x-2)^r=\sum_{r=0}^{2n}b_r, \left(x-3
ight)^r$$
 and $a_k=1$ for all $k\geq n$, then

 b_n is equal to

173.
$$3^{2n+2}-8n-9$$
 is divisible by

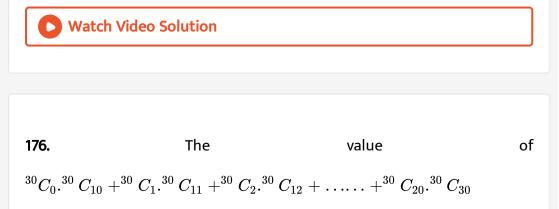
174. Statement 1: The number of distinct terms in $(1 + x + x^2 + x^3 + x^4)^{1000} is4001.$ Statement 2: The number of distinct terms in expansion $(a_1 + a_2 + + a_m)^n is^{n+m-1}C_{m-1}^{\cdot}$ Only conclusion I follows Only conclusion II follows Either I or II follows

Neither I nor II follows

Watch Video Solution

175. The product of 3rd and 8th term of a GP is 243. If its 4th term is 3. find

its 7th term.



177. If
$$f(x) = x^n, f(1) + rac{f^1(1)}{1} + rac{f^2(1)}{2!} + \dots rac{f^n(1)}{n!}, where f^r(x)$$

denotes the rth order derivative of f(x) with respect to x, is a. n b. 2^n c.

 2^{n-1} d. none of these

Watch Video Solution

178. The fractional part of
$$=\frac{2^{4n}}{15}$$
 is

179. The value of .¹⁵
$$C_0^2 - .^{15} C_1^2 + .^{15} C_2^2 - \dots - .^{15} C_{15}^2$$
 is
a. 15
b. -15
c. 0
d. 51

180. If the sum of the coefficients in the expansion of $(1-3x+10x^2)^n isa$ and if the sum of the coefficients in the expansion of $(1+x^2)^n isb$, then a. a=3b b. $a=b^3$ c. $b=a^3$ d. none of these

Watch Video Solution

181. If
$$\left(1+x-2x^2
ight)^6 = 1+a_1x+a_2x^2+\ldots +a_{12}x^{12}$$
 then

Watch Video Solution

182. Maximum sum of coefficient in the expansion of $\left(1-x\sin heta+x^2
ight)^n$

is

183. If the sum of the coefficients in the expansion of $(a + b)^n$ is 4096,

then the greatest coefficient in the expansion is

184. The number of distinct terms in the expansion of $\left(x + \frac{1}{x} + x^2 + \frac{1}{x^2}\right)^{15}$ is/are (with respect to different power of x is a)

 $255 \ \mathrm{b}. \, 61 \ \mathrm{c}. \, 127 \ \mathrm{d}.$ none of these

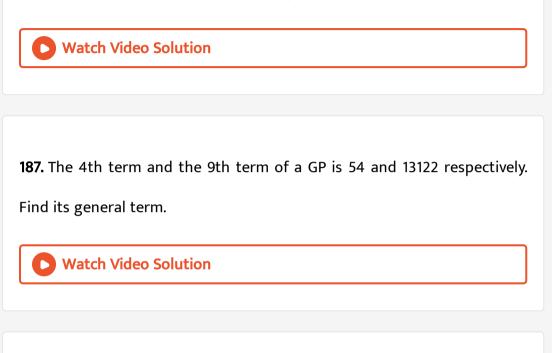
Watch Video Solution

185. The sum of the coefficients of even power of x in the expansion of

$$\left(1+x+x^2+x^3
ight)^5$$
i $s~256$ b. 128 c. 512 d. 64

186. Second term of a GP is 6 and its 5th term is 9th time of its 3rd term.

Find the GP. Consider each of the GP is positive.



188. If a,b,c are in GP Then prove that, $\log a$, $\log b$, $\log c$ are in AP.

Watch Video Solution

189. If the coefficient of x^7 in $\left[ax^2 + \left(\frac{1}{b}x\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[ax - \left(\frac{1}{bx^2}\right)\right]^{11}$ then a and b satisfy the relation

190. If the binomial coefficient of the $(2r+4)^{th}$ term and $(r-2)^{th}$ term in the expansion of $(1+x)^{18}$ are equal find the value of r.

191. If the coefficients of the rth, (r + 1)th, (r + 2)th terms is the expansion of $(1 + x)^{14}$ are in A.P, then the largest value of r is.

Watch Video Solution

192. If the three consecutive coefficients in the expansion of $(1 + x)^n$ are

28, 56, and 70, then the value of n is.

193. The expression
$$\left(\sqrt{2x^2+1}+\sqrt{2x^2-1}
ight)^6 + \left(rac{2}{\sqrt{2x^2+1}+\sqrt{2x^2-1}}
ight)^6$$
 is

polynomial of degree

Watch Video Solution

 194. Least positive integer just greater than
$$(1 + 0.00002)^{50000}$$
 is _____.

 Watch Video Solution

195. If
$$U_n=\left(\sqrt{3}+1
ight)^{2n}+\left(\sqrt{3}-1
ight)^{2n}$$
 , then prove that

 $U_{n+1}=8U_n-4U_{n-1}$

Watch Video Solution

196. Prove that the coefficient of x^n in the expansion of $rac{1}{(1-x)(1-2x)(1-3x)}$ is $rac{1}{2} \left(3^{n+2}-2^{n+3}+1
ight)$

197.	The	value	of
(30, 0)(30, 10) - (30,	1)(30, 11) + (30, 2)(30)	$(0, 12) - \dots + (30, 20)$	0)(30, 3
, where $(n,r)=nC_r$ i	S		
a. $(30,10)$			
b. (30, 15)			
c. (60, 30)			
d. (31, 10)			
Watch Video Sol	ution		

198. If a, b, c are in AP, a, x, b are in GP , where as b, y and c also in GP. Then prove that x^2 , b^2 , y^2 are in AP.

199.
 Prove
 that

$$\frac{1}{m!} \cdot {}^n C_0 + \frac{n}{(m+1)!} \cdot {}^n C_1 + \frac{n(n-1)}{(m+2)!} \cdot {}^n C_2 + \dots + \frac{n(n-1)\dots \cdot 2 \times 1}{(m+n)!}$$

 Solution

200. If $n=12m(m\in N),\,$ prove that

$$egin{aligned} &\cdot^n C_0 - rac{\cdot^n C_2}{\left(2 + \sqrt{3}
ight)^2} + rac{\cdot^n C_4}{\left(2 + \sqrt{3}
ight)^4} - rac{\cdot^n C_6}{\left(2 + \sqrt{3}
ight)^6} + &= \ &(-1)^m igg(rac{2\sqrt{2}}{1 + \sqrt{3}}igg)^n. \end{aligned}$$

Watch Video Solution

201. Prove that in the expansion of $(1+x)^n(1+y)^n(1+z)^n$, the sum of

the coefficient of the terms of degree r is $.^{3n} C_r$.

$$.^{100} C_0^{100} C_2 + ^{100} C_2^{100} C_4 + ^{100} C_4^{100} C_6 + \ + ^{100} C_{98}^{100} C_{100} = rac{1}{2} ig[.^{200} C_{98} - ^{100}ig]$$

203. Prove that
$$\sum_{r=1}^{m-1} rac{2r^2 - r(m-2) + 1}{\left(m-r
ight)^m C_r} = m - rac{1}{m}.$$

Watch Video Solution

204. Find the coefficients of x^{50} in the expression $(1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + ... + 1001x^{1000}$.

Watch Video Solution

205. If a, b, c are in GP and a, x, b, y are in AP Then prove that, $\frac{a}{x} + \frac{c}{y} = 2$

206. If $.^{n+1} C_{r+1} : {}^{n} C_{r} : {}^{n-1} C_{r-1} = 11:6:3$, then nr = 20 b. 30 c. 40 d. 50

207. If the last tem in the binomial expansion of
$$\left(2^{\frac{1}{3}} - \frac{1}{\sqrt{2}}\right)^n is\left(\frac{1}{3^{\frac{5}{3}}}\right)^{\log_3 8}$$
, then 5th term from the beginning is 210 b.

 $420 \mbox{ c. } 105 \mbox{ d. none of these}$

Watch Video Solution

208. Find the last two digits of the number $(23)^{14}$.

209. The value of x for which the sixth term in the expansion of

$$\left[2^{\log_2\sqrt{9^{x-1}+7}}+rac{1}{2^{rac{1}{5}\log_2\left(3^{x-1}+1
ight)}}
ight]^7$$
 is 84 is

Watch Video Solution

210. If the 6th term in the expansion of
$$\left(rac{1}{x^{8/3}}+x^2\log_{10}x
ight)^8$$
 is 5600,

then x equals

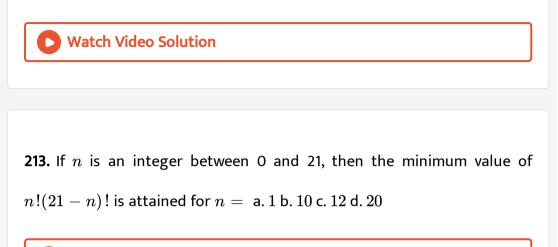
Watch Video Solution

211. The total number of terms which are dependent on the value of x in

the expansion of $\left(x^2-2+rac{1}{x^2}
ight)^n$ is equal to 2n+1 b. 2n c. n d. n+1

Watch Video Solution

212. In the expansion of $(3^{-x/4} + 3^{5x/4})^n$ the sum of binomial coefficient is 64 and term with the greatest binomial coefficient exceeds



Watch Video Solution

214. If R is remainder when $6^{83}+8^{83}$ is divided by 49, then find the value of $\frac{R}{5}.$

Watch Video Solution

215. Let a and b be the coefficient of x^3 in $(1+x+2x^2+3x^3)^4$ and $(1+x+2x^2+3x^3+4x^4)^4$, respectively. Then the value of 4a/b is _____

216. Let
$$1+\sum_{r=1}^{10}\left(3^r.\,.^{10}\,C_r+r.\,.^{10}\,C_r
ight)=2^{10}ig(lpha.\,4^5+etaig)$$
 where

 $lpha,eta\in N$ and $f(x)=x^2-k^2+1.$ If lpha,eta lies between the roots of

f(x) = , the smalles positive integral value of k is _____.

Watch Video Solution

217. Let
$$a = 3^{1/224} + 1$$
 and for all $n \geq 3$,

let

$$f(n) = {^nC_0a^{n-1}} - {^nC_1a^{n-2}} + {^nC_2a^{n-3}} + ... + (\,-1)^{n-1} \cdot {^nC_{n-1}} \cdot a^0.$$

If the value of $f(2016)+f(2017)=3^k$, the value of K is

Watch Video Solution

218. If the constant term in the binomial expansion of $\left(x^2-rac{1}{x}
ight)^n, n\in N$ is 15, then find the value of n.

219. The largest value of x for which the fourth tem in the expansion

$$\left(5^{\left(rac{2}{5}
ight)(\log)_5\sqrt{4^x+44}}+rac{1}{5^{\log_5}\left(2^{(x-1)+7}
ight)^{rac{1}{3}}}
ight)^8$$
 is 336 is.

Watch Video Solution

220. The number of values in set of values of r for which

$${}^{23}C_r+2{}^{23}C_{r+1}+{}^{23}C_{r+2}\geq {}^{25}C_{15}$$
 is

Watch Video Solution

221. If the second term of the expansion $\left[a^{rac{1}{13}}+\left(rac{a}{\sqrt{a^{-1}}}
ight]is$ 14a^(5/2)

and $thevalue of(\nC_3)/(\nC_2) = \lambda$ then λ is

222. Given $(1-2x+5x^2-10x^3)(1+x)^n=1+a_1x+a_2x^2+...$

and that $a_1^2 = 2a_2$, then the value of n is

223. If
$$A + B = 90^o$$
 and tanA= $rac{4}{3}$,find cosecB.

Watch Video Solution

224. If X-k divides $x^3 - 6x^2 + 11x - 6$ =0, then k can't be equal to, (a) 1.

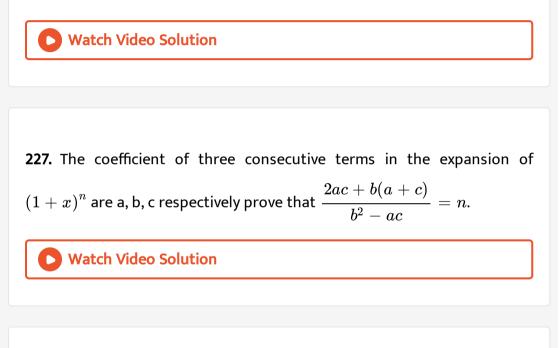
(b) 2.(c) 3.(d) 4

Watch Video Solution

225. Prove that $\sum_{r=1}^k {(-3)^{r-1} (3n)^C}_- {(2r-1)} = 0$, where k = 3n/2

and n is an even integer.

226. The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same, if lpha equals



228. The sum of G. P 3, 6, 12, ...1536.

229. Prove that $\left(25
ight)^{n+1}-24n+5735$ is divisible by $\left(24
ight)^2$ for all

 $n=1,2,\ldots$

230. The coefficient of 1/x in the expansion of $(1+x)^n(1+1/x)^n$ is (a).

 $\frac{n!}{(n-1)!(n+1)!} \text{ (b). } \frac{(2n)!}{(n-1)!(n+1)!} \text{ (c). } \frac{(2n)!}{(2n-1)!(2n+1)!} \text{ (d).}$

none of these

Watch Video Solution

231. Find the coefficient of x^5 in the expansion of $(1+x)^{21} + (1+x)^{22} + ... + (1+x)^{30}$.

Watch Video Solution

232. If
$$x^m$$
 occurs in the expansion of $\left(x+\left(rac{1}{x^2}
ight)
ight)^{2n}$ then the

coefficient of x^m is

233. If the coefficients of $5^{th}, 6^{th}$ and 7^{th} terms in the expansion of

 $\left(1+x
ight)^n$ are in A.P. then n=

234. If
$$ig(1+2x+x^2ig)^n=\sum_{r=0}^{2n}a_rx^r$$
 , then $a_r=$

Watch Video Solution

235. In the expansion of $\left(x^3-rac{1}{x^2}
ight)^n, n\in N$, if the sum of the coefficients of x^5andx^{10} is zero , then n is a. 25 b. 20 c. 15 d. none of these

Watch Video Solution

236. If the coefficients of rth and (r + 1)th terms in the expansion of $(3 + 7x)^{29}$ are equal, then r is equals to a. 15 b. 21 c. 14 d. none of these

237. In the expansion of $\left(1+3x+2x^2
ight)^6$, find the coefficient of x^{11} .

238. If
$$.^{n-1} C_r = \left(k^2-3
ight)^n C_{r+1}, ext{ then } ext{k belongs to}$$

- (a) $(-\infty, -2]$
- (b) $[2,\infty)$
- (c) $\left[-\sqrt{3},\sqrt{3}
 ight]$
- (d) $\left[\sqrt{3},2\right]$

Watch Video Solution

239. Prove that
$$rac{3!}{2(n+3)} = \sum_{r=0}^n {(-1)^r igg(rac{nC_r}{(r+3)C_3}igg)}$$

240. Find the 5th term of the GP. $\frac{5}{2}$, 1,

Watch Video Solution

241. The expression
$$\left(x+rac{(x^3-1)^{rac{1}{2}}}{2}
ight)^5+\left(x-rac{(x^3-1)^{rac{1}{2}}}{2}
ight)^5$$
 is a

polynomial of degree

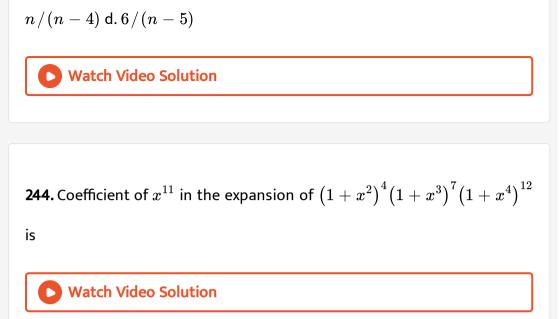
a. 5 b. 6 c. 7 d. 8

Watch Video Solution

242. Find
$$\left(rac{dy}{dx}
ight)$$
 of $\sin(\cos x)$ is

Watch Video Solution

243. In the binomial expansion of $(a-b)^n, n \ge 5$, the sum of the 5th and 6th term is zero. Then a/b equals (n-5)/6 b. (n-4)/5 c.



245. Give the integers r>1, n>2 and c0-efficients of $(3r)^th$ and

 $\left(r+2
ight)^{th}$ term in the binomial expansion of $\left(1+x
ight)^{2n}$ are equal then

Watch Video Solution

246. Find the coefficient of x^4 in the expansion of $\left(x/2 - 3/x^2
ight)^{10}$.

247. If C_r stands for nC_r , then the sum of the series $\frac{2\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}{n!}\left[C_0^2 - 2C_1^2 + 3C_2^2 - \dots + (-1)^n(n+1)C_n^2\right]$, where

n is an even positive integer, is

Watch Video Solution

248. If the sum
$$1 + 2 + 2^2 + \dots + 2^{n-1}$$
 is 255, then find the number of

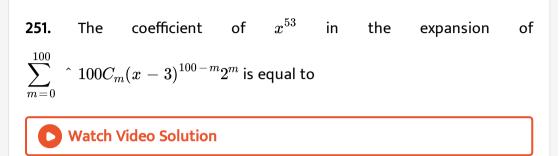
terms.

Watch Video Solution

Watch Video Solution

249. The coefficient of
$$X^{24}$$
in the expansion of $(1+X^2)^{12}(1+X^{12})(1+X^{24})$

250. Find the sum of the GP $1 + 3 + 9 + 27 + \dots 12terms$



252. The coefficient of the term independent of x in the expansion of

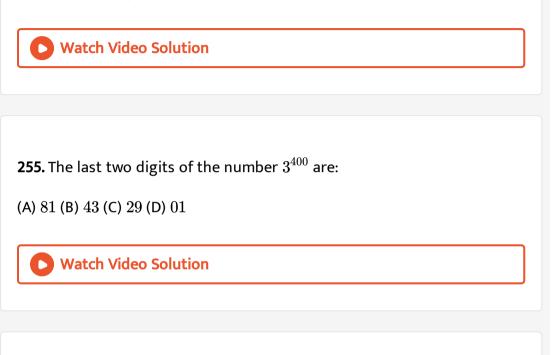
$$\left[rac{(x+1)}{x^{2/3}-x^{1/3}+1}-rac{(x-1)}{x-x^{1/2}}
ight]^{10}$$
 is

Watch Video Solution

253. In the expansion of $\left(1+x+x^3+x^4
ight)^{10}$, the coefficient of x^4 is a.. 40 C_4 b. $.^{10}$ C_4 c. 210 d. 310

254. If coefficient of $a^2b^3c^4$ in $(a+b+c)^m$ (where $m\in N$) is L (L
eq 0).

Then in same expansion coefficient of $a^4b^4c^1$ will be



256. The expression
$$\left(\sqrt{2x^2+1}+\sqrt{2x^2-1}
ight)^6+\left(rac{2}{\sqrt{2x^2+1}+\sqrt{2x^2-1}}
ight)^6$$
 is

polynomial of degree

257. A GP has common ratio 3, last term 486, if the sum of its terms is 728,

find its first term.

258. If $(1+2x+3x^2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20}$, then a_1

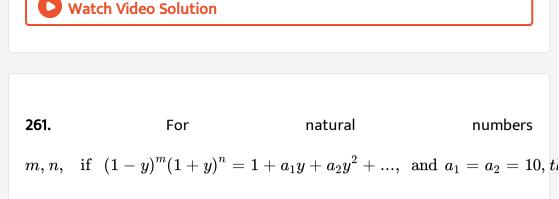
equals a.10 b. 20 c. 210 d. none of these

Watch Video Solution

259. Find the number of integral terms in the expansion of $\left(5^{\frac{1}{2}}+7^{\frac{1}{8}}\right)^{1024}$.

Watch Video Solution

260. For which of the following values of x, 5th term is the numerically greatest term in the expansion of $\left(1+x/3\right)^{10}$



262. If the middle term in the expansion of $\left(\frac{x}{2}+2\right)^8$ is 1120, then find the sum of possible real values of x.

Watch Video Solution

263. If
$$(1 + x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$$
,
then $C_0 - (C_0 + C_1) + (C_0 + C_1 + C_2) - (C_0 + C_1 + C_2 + C_3) + ... + (-1)^{n-1}(C_0 + C_1 + C_{n-1})$, where n a) is even integer b) is a positive value c) a negative value d) divisible by 2^{n-1}

264. In the expansion of
$$\left(x^2+1+rac{1}{x^2}
ight)^n, n\in N$$
,

265. The value of
$$.^{n}C_{1} + .^{n+1}C_{2} + .^{n+2}C_{3} + \ldots + .^{n+m-1}C_{m}$$
 is

equal to

Watch Video Solution

266. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$$
 , $n \in N$,then $C_0 - C_1 + C_2 - + (-1)^{n-1} C_{m-1}$, is equal to $(m < n)$

Watch Video Solution

267. The 10th term of
$$\left(3-\sqrt{rac{17}{4}+3\sqrt{2}}
ight)^{20}$$
 is (a) a irrational number (b)

a rational number (c) a positive integer (d) a negative integer

268. Find the geometric mean between 2a and $8a^3$

269. Let
$$\left(1+x^2
ight)^2(1+x)^n=\sum_{k=0}^{n+4}a_kx^k$$
.. If a_1,a_2 and a_3 aer in

arithmetic progression, then the possible value/values of n is/are

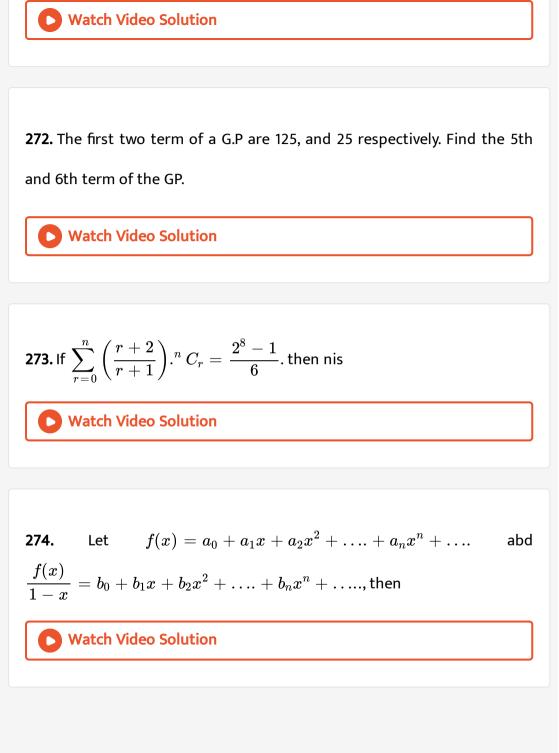
Watch Video Solution

270. The middle term in the expansion of $\left(rac{x}{2}+2
ight)^8$ is 1120, then $x\in R$

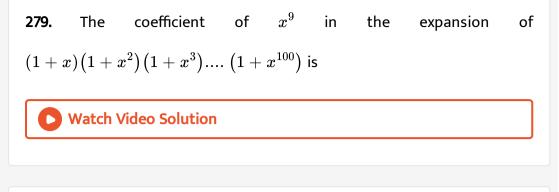
is equal to a. -2 b. 3 c. -3 d. 2

271. The sum of three numbers of GP is $\frac{39}{10}$ and their product is 1. Find

the numbers.



275. If
$$(1 + x^2)^n = \sum_{r=0}^n a_r x^r = (1 + x + x^2 + x^3)^{100}$$
. If $a = \sum_{r=0}^{300} a_r$,
then $\sum_{r=0}^{300} ra_r$ is
Watch Video Solution
276. The value of $\sum_{r=1}^{n+1} \left(\sum_{k=1}^n kC_r(r-1))(wherer, k, n in N')$ is equal to
Watch Video Solution
277. If $\frac{x^2 + x + 1}{1 - x} = a_0 + a_1 x + a_2 x^2 + \dots$, then $\sum_{r=1}^{50} a_r$ equal to
Watch Video Solution
278. Find $\frac{dy}{dt}$, if $y = \frac{1 - \cos t}{1 + \cos t}$ is



280. The coefficients of three consecutive terms of $\left(1+x
ight)^{n+5}$ are in the

ratio 5 : 10 : 14. Then n= _____

Watch Video Solution

281.

$$(1-x)^{-n} = a_0 + a_1 x + a_2 x^2 + \ + a_r x^r + , then a_0 + a_1 + a_2 + \ + a_r$$

If

is equal to

a.
$$\frac{n(n+1)(n+2)(n+r)}{r!}$$
b.
$$\frac{(n+1)(n+2)(n+r)}{r!}$$
c.
$$\frac{n(n+1)(n+2)(n+r-1)}{r!}$$

d. none of these

282. The value of
$$\sum_{r=0}^{20} r(20-r)((20)C_r)^2$$
 is equal to ?

283. The coefficient of x^{10} in the expansion of $\left(1+x^2-x^3
ight)^8$ is

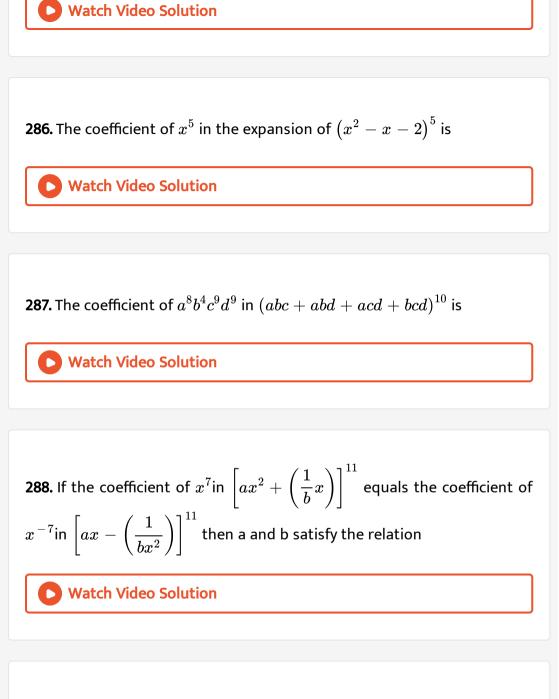
Watch Video Solution

284. If the term independent of x in the $\left(\sqrt{x}-rac{k}{x^2}
ight)^{10}$ is 405, then k

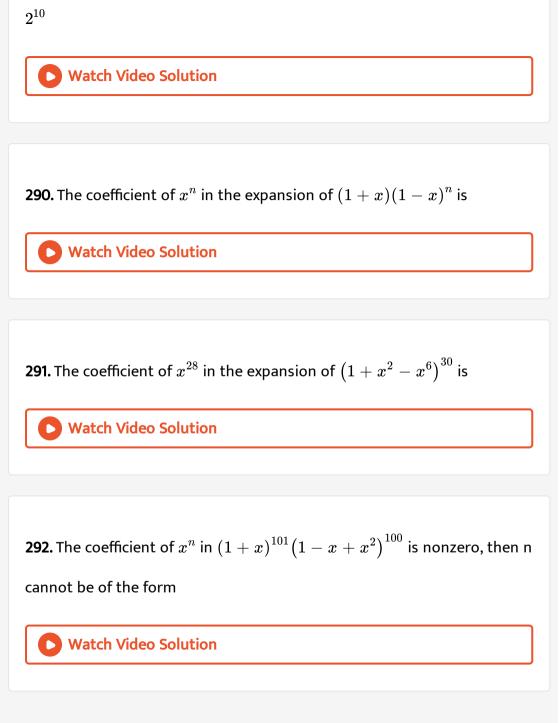
equals $2,\ -2$ b. $3,\ -3$ c. $4,\ -4$ d. $1,\ -1$

Watch Video Solution

285. The coefficient of x^2y^3 in the expansion of $(1 - x + y)^{20}$ is (a) $\frac{20!}{213!}$ b. $-\frac{20!}{213!}$ c. $\frac{20!}{5!2!3!}$ d. none of these



289. If
$$(1+x)^5 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$$
, then the value of $(a_0 - a_2 + a_4)^2 + (a_1 - a_3 + a_5)^2$ is equal to 243 b. 32 c. 1 d.



293. prove that
$$\sum_{r=0}^{n} (-1)^r \cap nC_r$$
. $[\frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2^{3r}} + \frac{15^r}{2^{4r}} + \dots$ up to m terms]= $\frac{2^{mn} - 1}{2^{mn}(2^n - 1)}$

,

Watch Video Solution

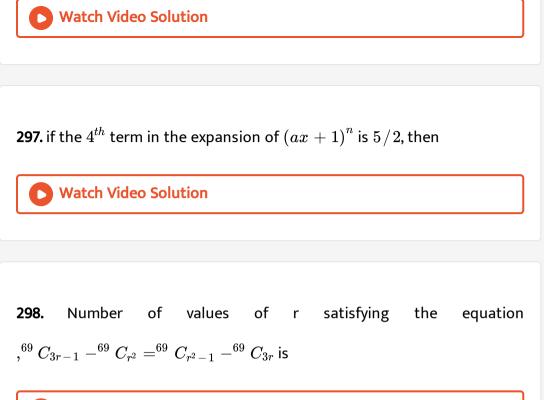
294. In the expansion of
$$\left(7^{1/3} + 11^{1/9}
ight)^{6561}$$

Watch Video Solution

Watch Video Solution

295. If for
$$z$$
 as real or complex,
 $(1+z^2+z^4)^8=C_0+C_1z^2+C_2z^4+...+C_{16}z^{32}then$ prove that
 $C_0-C_1+C_2-C_3+....+C_{16}=1$ and
 $C_0+C_3+C_6+C_{12}+C_{15}=3^7$

296. The sum of the coefficient in the expansion of $\left(1+ax-2x^2
ight)^n$ is



299. If $\left(4 + \sqrt{15}
ight)^n = I + f$, where n is an odd natural number, I is an

integer and ,then

300. In the expansion of $(x + a)^n$ if the sum of odd terms is P and the sum of even terms is Q, then

301. If the coefficients of the rth, (r + 1)th, (r - 2)th terms is the expansion of $(1 + x)^{14}$ are in A.P, then the largest value of r is.

Watch Video Solution

302. The value/value of x in the expression $\left(x+x^{\log_{10}x}
ight)^5$ if the third term

in the expansion is 10, 00, 000is/are

303. Let $R = \left(5\sqrt{5} + 11
ight)^{2n+1}$ and f=R-[R] where [] is the greatest integer

function. Prove that Rf= 4^{2n+1}

304. If |x| < 1, then the coefficient of x^n in expansion of $\left(1+x+x^2+x^3+\ldots
ight)^2$ is

Watch Video Solution

305. The coefficient of
$$x^5 \in \left(1+2x+3x^2+
ight)^{-3/2} is(|x|<1)$$

Watch Video Solution

306. If x is so small that x^3 and higher powers of x may be neglected,

then
$$\frac{(1+x)^{\frac{3}{2}} - \left(1 + \frac{1}{2x}\right)^3}{(1-x)^{\frac{1}{2}}}$$
 may be approximated as
A. $3x + \frac{3}{8}x^2$
B. $1 - \frac{3}{8}x^2$
C. $\frac{x}{2} - \frac{3}{x^2}$
D. $-\frac{3}{8}x^2$

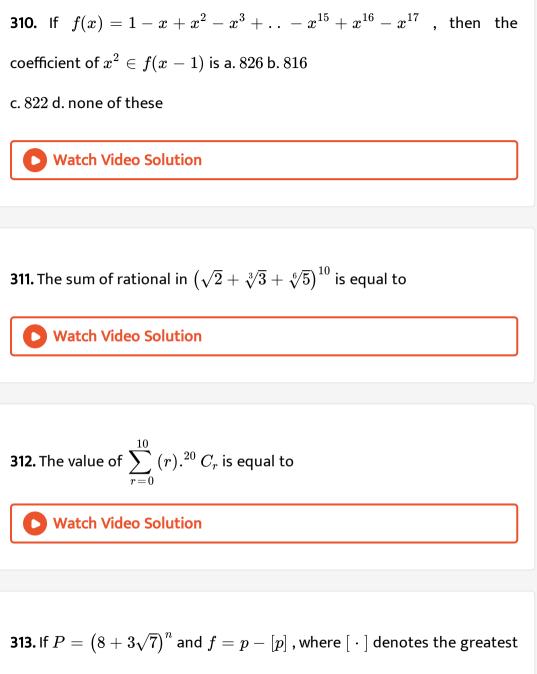
307. If x is positive, the first negative term in the expansion of $(1+x)^{27/5}is(|x|<1)$

Watch Video Solution

308. Value of
$$\sum_{k=1}^\infty \sum_{r=0}^k rac{1}{3^k} (kC_r)$$
 is $rac{2}{3}$ b. $rac{4}{3}$ c. 2 d. 1

Watch Video Solution

309. If the expansion in powers of
$$x$$
 of the function $\frac{1}{(1-ax)(1-bx)}$ is
 $aa_0 + a_1x + a_2x^2 + a_3x^3 + thena_n is$ $a.\frac{b^n - a^n}{b-a}$ $b.$ $\frac{a^n - b^n}{b-a}$ c.
 $\frac{b^{n+1} - a^{n+1}}{b-a}$ $d.$ $\frac{a^{n+1} - b^{n+1}}{b-a}$



integers function, then the value of p(1-f) is equal to

314. Find the GP whose first term is 64 and next term is 32.

Watch Video Solution		

315. The fifth term of GP is 81 and second term is 24. Find the GP

316. The value of x for which the sixth term in the expansion of

$$\left[2^{\log_2\sqrt{9^{x-1}+7}}+rac{1}{2^{rac{1}{5}\log_2\left(3^{x-1}+1
ight)}}
ight]^7$$
 is 84 is

Watch Video Solution

317. Find the 7th term of the GP,
$$\sqrt{3}+1$$
, 1 , $rac{\sqrt{3}-1}{2}$,....

318. The number $51^{49} + 51^{48} + 51^{47} + \dots + 51 + 1$ is divisible by a.

10 b. 20 c. 25 d. 50

319. If
$$\sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}} = \sum_{r=0}^{n} \frac{n^{2} - 3n + 3}{2 \cdot {}^{n}C_{r}}$$
, then find n

Watch Video Solution

320. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
, then show that
the sum of the products of the coefficients taken two at a time,
represented by $\sum_{0 \le i < j \le n} {}^n c_i \, {}^n c_j$ is equal to $2^{2n-1} - \frac{(2n)!}{2(n!)^2}$

321. If
$$\sum_{r=0}^n \left\{a_r(x-lpha+2)^r-b_r(lpha-x-1)^r
ight\}=0$$
, then

322. Let
$$a=\left(2^{1\,/\,401}-1
ight)$$
 and for each

 $n\geq 2,\, letb_n=^n C_1+^n C_2\dot{a}+^n C_3a^2+.....+^n C_n\cdot a^{n-1}$. Find the

value of $(b_{2006} - b_{2005})$.

Watch Video Solution

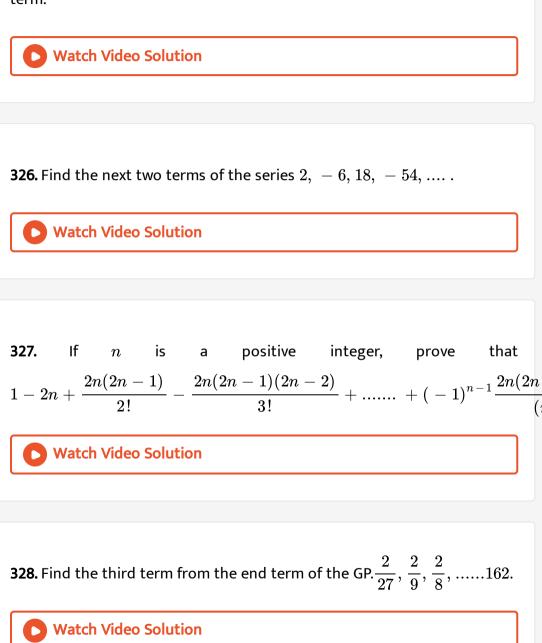
323. Prove that
$$\sum_{r=0}^n .^n C_r (\,-1)^r ig[i^r + i^{2r} + i^{3r} + i^{4r} ig] = 2^n + 2^{n+1} \cos(n\pi/4)$$
 , where $i=\sqrt{-1}$

Watch Video Solution

324. The coefficients of
$$x^n$$
 in $\left(1+rac{x}{1!}+rac{x^2}{2!}+\ldots+rac{x^n}{n!}
ight)^2$ is

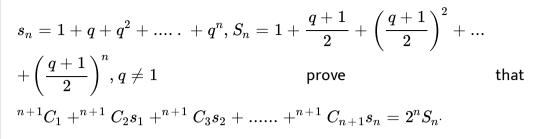
325. If the first and third term is $2 \ {\rm and} \ 8$ respectively. Find its second

term.



329.

Given,



Watch Video Solution

330. The sum of
$$1+nigg(1-rac{1}{x}igg)+rac{n(n+1)}{2!}igg(1-rac{1}{x}igg)^2+....\infty$$

Watch Video Solution

331.
$$\sum_{k=1}^{\infty} k \left(1 - \frac{1}{n} \right)^{k-1}$$
 =?

Watch Video Solution

332. The coefficient of x in the expansion of $\left\{\sqrt{1+x^2}-x\right\}^{-1}$ in ascending powers of x, when |x| < 1, is a. 1 b. $\frac{1}{2}$ c. $-\frac{1}{2}$ d. $-\frac{1}{8}$

333.
$$1+rac{1 imes 4}{3 imes 6}x^2+rac{1 imes 4 imes 7}{3 imes 6 imes 9}x^3+$$
 ----- is equal to

334. The value of
$$\sum_{r=1}^{15} \frac{r2^r}{(r+2)!}$$
 is (a). $\frac{(17)! - 2^{16}}{(17)!}$ (b). $\frac{(18)! - 2^{17}}{(18)!}$ (c). $\frac{(16)! - 2^{15}}{(16)!}$ (d). $\frac{(15)! - 2^{14}}{(15)!}$

335.
$$(n+2)$$
.ⁿ $C_0 2^{n+1}$.ⁿ $C_1 2^n + n$.ⁿ $C_2 2^{n-1} - \dots$ is equal to

336. The value of
$$\sum_{r=0}^{20}{(-1)^rrac{.^{50}C_r}{r+2}}$$
 is equal to

337. In the expansion of $[(1+x)(1-x)]^2$, the coefficient of x^n will be

338. If a, b, c are in GP and a, x, b, y, c ar in AP. then prove that, $\frac{1}{x} + \frac{1}{y} = \frac{2}{b}$

Watch Video Solution

339. Statement 1: ${}^{m}C_{r} + {}^{m}C_{r-1}({}^{n}C_{1}) + {}^{m}C_{r-2}({}^{n}C_{2}) + + {}^{n}C_{r} = 0$,

if m + n < r

Statement 2: ${}^{n}C_{r} = 0$, if n < r

(a) Statement 1 and Statement 2, both are correct. Statement 2 is the correct explanation for Statement 1.

(b) Statement 1 and Statement 2, both are correct. Statement 2 is not the correct explanation for Statement 1.

(c) Statement 1 is true but Statement 2 is false.

(d) Statement 2 is true but Statement 1 is false.

Watch Video Solution

$$\textbf{340.} 1 + \left(\frac{1}{4}\right) + \left(\frac{1 \cdot 3}{4 \cdot 8}\right) + \left(\frac{1 \cdot 4 \cdot 7}{4 \cdot 8 \cdot 12}\right) + =$$

Watch Video Solution

341. If
$$|x| < 1, then 1 + n \left(\frac{2x}{1+x} \right) + \frac{n(n+1)}{2!} \left(\frac{2x}{1+x} \right)^2 +$$
 is

equal to

Watch Video Solution

342. If a, b, c are in AP also in GP Then show that, a=b=c

343. The sum of the GP $rac{x+y}{x-y}, 1, rac{x-y}{x+y}, ...$.

Watch Video Solution

344. Statement 1: In the expansion of $(1+x)^{41}(1-x+x^2)^{40}$, the coefficient of x^{85} is zero.

Statement 2: In the expansion of $(1+x)^{41} and ig(1-x+x^2ig)^{40}, x^{85}$ term does not occur.

(a) Statement 1 and Statement 2, both are correct. Statement 2 is the correct explanation for Statement 1

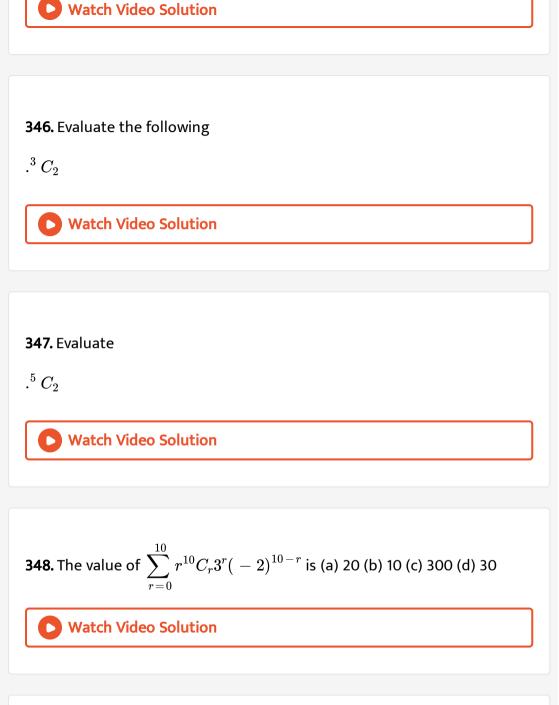
(b) Statement 1 and Statement 2, both are correct. Statement 2 is not the

correct explanation for Statement 1

(c) Statement 1 is correct but Statement 2 is not correct.

(d) Both Statement 1 and Statement 2 are not correct.

345. The coefficient of
$$x^n$$
 in $\left(1+x+rac{x^2}{2!}+rac{x^3}{3!}+\ldots+rac{x^n}{n!}
ight)^3$ is



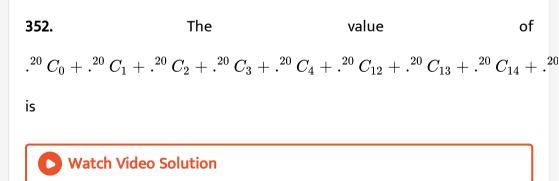
349. Find n if $nP_1=2$

350. Evaluate

 $.^5 P_2$

Watch Video Solution

351. The value of
$$\frac{\cdot^n C_0}{n} + \frac{\cdot^n C_1}{n+1} + \frac{\cdot^n C_2}{n+2} + \ldots + \frac{\cdot^n C_n}{2n}$$



353.

$$ig(3+x^{2008}+x^{2009}ig)^{2010}=a_0+a_1x^2+....\,+a_nx^n,a_0-rac{1}{2}a_1-rac{1}{2}a_2+a_3$$

.... is

354. Find the seventh term of the G.P: $1, \sqrt{3}, 3, 3\sqrt{3}, \ldots$.

Watch Video Solution

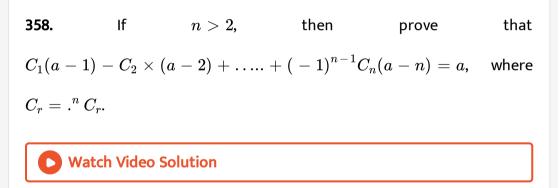
355. Find the 10th term of the G.P. : 12, 4,
$$1\frac{1}{3}$$
,....

Watch Video Solution

356. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n$$
, then

$$C_0C_2 + C_1C_3 + C_2C_4 + \ldots + C_{n-2}C_n =$$

357. The value of
$$(\lim_{n\to\infty})_{n\to\infty}\sum_{r=1}^n \left(\sum_{t=0}^{r-1} \frac{1}{5^n} \cdot C_r \cdot C_t \cdot 3^t\right)$$
 is equal to



359. Find the nth term of the series: 1, 2, 4, 8,

360. The remainder, if $1 + 2 + 2^2 + 2^3 + \ldots + 2^{1999}$ in divided by 5 is

361. Largest real value for x such that
$$\sum_{k=0}^{4} \left(\frac{3^{4-k}}{(4-k)!} \right) \left(\frac{x^k}{k!} \right) = \frac{32}{3}$$

362. If in the expansion of $(a - 2b)^n$, the sum of 5^{th} and 6^{th} terms is 0, then the values of $\frac{a}{b}$ is **Watch Video Solution**

363. The number of real negative terms in the binomial expansion of

 $\left(1+ix
ight)^{4n-2}, n\in N, x>0$ is