© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Others

1. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has

- Watch Video Solution

2. Solve for $x: 4^{x}-3^{x-1 / 2}=3^{x+1 / 2}-2^{2 x-1}$.
3. Solve for $x: \sqrt{x+1}-\sqrt{x-1}=1$.

- Watch Video Solution

4. If $x, y \in \operatorname{Rand} 2 x^{2}+6 x y+5 y^{2}=1$, then a. $|x| \leq \sqrt{5}$ b. $|x| \geq \sqrt{5}$ c. $y^{2} \leq 2$ d.
$y^{2} \leq 4$

- Watch Video Solution

5. If the roots $x^{5}-40 x^{4}+P x^{3}+Q x^{2}+R x+S=0$ are n G.P. and the sum of their reciprocals is 10 , then $|S|$ is 4 b .6 c .8 d . none of these

- Watch Video Solution

6. Show that for any triangle with sides
a, b, and $c, 3(a b+b c+c a)<(a+b+c)^{2}<4(b c+c a+a b)$ When are the first two expressions equal ?
7. For what values of m, does the system of equations $3 x+m y=m$ and $2 x-$ $5 y=20$ has a solution satisfying the conditions $x>0, y>0$?

- Watch Video Solution

8. Show that the square to $(\sqrt{26-15 \sqrt{3}}) /(5 \sqrt{2}-\sqrt{38+5 \sqrt{3}})$ is a rational number.

- Watch Video Solution

9. If α, β are the roots $x^{2}+p x+q=0$ and γ, δ are the roots of $x^{2}+r x+s=0$, evaluate $(\alpha-\gamma)(\alpha-\delta)(\beta-\gamma)(\beta-\delta)$ in terms of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s . Deduce the condition that the equation may have a common root.

- Watch Video Solution

10. Let $f(x)=x^{2}+b x+c$, where $b, c \in R$. If $f(x)$ is a factor of both $x^{4}+6 x^{2}+25$ and $3 x^{4}+4 x^{2}+28 x+5$, then the least value of $f(x)$ is

D Watch Video Solution

11. If the equation $a x^{2}+b x+c=x$ has no real roots, then the equation $a\left(a x^{2}+b x+c\right)^{2}+b\left(a x^{2}+b x+c\right)+c=x$ will have a. four real roots b. no real root c. at least two least roots d. none of these

- Watch Video Solution

12. The value of expression $x^{4}-8 x^{3}+18 x^{2}-8 x+2$ when $x=2+\sqrt{3}$ a. 2 b.

1 c. 0 d. 3

- Watch Video Solution

13. The exhaustive set of values of a for which inequation $(a-1) x^{2}-(a+1) x+a-1 \geq 0 \quad$ is true $\quad \forall x>2 \quad(a)(-\infty, 1) \quad(b)\left[\frac{7}{3}, \infty\right)$
(c) $\left[\frac{3}{7}, \infty\right)$ (d) none of these

- Watch Video Solution

14. If p, q, r, s are rational numbers and the roots of $f(x)=0$ are eccentricities of a parabola and a rectangular hyperbola, where $f(x)=p x^{3}+q x^{2}+r x+s$, then $p+q+r+s=$ a. p b. $-p$ c. $2 p$ d. 0

- Watch Video Solution

15. If $\left|z-\left(\frac{1}{z}\right)\right|=1$, then a. $(|z|)_{\max }=\frac{1+\sqrt{5}}{2}$
b. $(|z|)_{m} \in=\frac{\sqrt{5}-1}{2}$ c.
$(|z|)_{\max }=\frac{\sqrt{5}-2}{2}$ d. $(|z|)_{m \in}=\frac{\sqrt{5}-1}{\sqrt{2}}$
16. zo is one of the roots of the equation $z^{n} \cos \theta_{0}+z^{n-1} \cos \theta_{1}+\ldots \ldots+z \cos \theta_{n-1}+\cos \theta_{n}=2$, where $\theta \in R$, then
(A) $\left|z_{0}\right|<\frac{1}{2}$
(B) $\left|z_{0}\right|>\frac{1}{2}$
(C) $\left|z_{0}\right|=\frac{1}{2}$
(D)None of these

- Watch Video Solution

17. If $a_{0}, a_{1}, a_{2}, a_{3}$ are all the positive, then $4 a_{0} x^{3}+3 a_{1} x^{2}+2 a_{2} x+a_{3}=0$ has least one root in (-1,0) if (a) $a_{0}+a_{2}=a_{1}+a_{3}$ and $4 a_{0}+2 a_{2}>3 a_{1}+a_{3}$ (b) $4 a_{0}+2 a_{2}<3 a_{1}+a_{3}$ (c) $4 a_{0}+2 a_{2}=3 a_{1}+a_{0}$ and $4 a_{0}+a_{2}<a_{1}+a_{3}(\mathrm{~d})$ none of these

- Watch Video Solution

18. If $1, z_{1}, z_{2}, z_{3}, \ldots \ldots . ., z_{n-1}$ be the n, nth roots of unity and ω be a non-

$$
n-1
$$

real complex cube root of unity, then $\prod_{r=1}\left(\omega-z_{r}\right)$ can be equal to

- Watch Video Solution

19. If $a x^{2}+b x+c=0$ has imaginary roots and $a-b+c>0$ then the set of points (x, y) satisfying the equation
$\left|a\left(x^{2}+\frac{y}{a}\right)+(b+1) x+c\right|=\left|a x^{2}+b x+c\right|+|x+y|$ consists of the region in the $x y$ - plane which is (a)on or above the bisector of I and III quadrant (b)on or above the bisector of II and IV quadrant (c)on or below the bisector of I and III quadrant (d)on or below the bisector of II and IV quadrant

- Watch Video Solution

20. All the values of ' a ' for which the quadratic expression $a x^{2}+(a-2) x-2$ is negative for exactly two integral values of x may lie in
(a) $\left[1, \frac{3}{2}\right]$ (b) $\left[\frac{3}{2}, 2\right)$ (c) $[1,2)$ (d) $[-1,2)$

Watch Video Solution

21. If the equation $z^{3}+(3+i)\left(z^{2}\right)-3 z-(m+i)=0, m \in R$, has at least one real root, then sum of possible values of m, is

- Watch Video Solution

22. If $a+b+c=0, a^{2}+b^{2}+c^{2}=4$, thena $a^{4}+b^{4}+c^{4}$ is \qquad .

- Watch Video Solution

23. Let $P(x)$ and $Q(x)$ be two polynomials. If $f(x)=P\left(x^{4}\right)+x Q\left(x^{4}\right)$ is divisible by $x^{2}+1$, then

- Watch Video Solution

24. Find the solution set of the system $x+2 y+z=12 x-3 y-w=2$ $x \geq 0, y \geq 0, z \geq 0, w \geq 0$

- Watch Video Solution

25. If $\operatorname{amp}\left(z_{1} z_{2}\right)=0$ and $|z|_{1}=|z|_{2}=1$, then

- Watch Video Solution

26. $m n$ squares of equal size are arranged to form a rectangle of dimension m by n , where m and n are natural numbers. Two square will be called neighbors if they have exactly one common side. A number is written in each square such that the number written in any square is the arithmetic mean of the numbers written in its neighboring squares. Show that this is possible only if all the numbers used are equal.

- Watch Video Solution

27. Prove that $\ln (1+x)<x$ for $x>0$.

- Watch Video Solution

28. Form a quadratic equation whose roots are -4 and 6 .

- Watch Video Solution

29. If $\left|\frac{z-z_{1}}{z-z_{2}}\right|=3$, wherez ${ }_{1}$ andz $_{2}$ are fixed complex numbers and z is a variable complex number, then z lies on a (a).circle with z_{1} as its interior point (b).circle with z_{2} as its interior point (c).circle with z_{1} as its exterior point (d).circle with z_{2} as its exterior point
30. If a, b, c are odd integere then about that $a x^{2}+b x+c=0$, does not have rational roots

Watch Video Solution

31. if $\arg (z+a)=\frac{\pi}{6}$ and $\arg (z-a)=\frac{2 \pi}{3}$ then

- Watch Video Solution

32. Values $(s)(-i)^{\frac{1}{3}}$ is/are $\frac{\sqrt{3}-i}{2}$ b. $\frac{\sqrt{3}+i}{2}$ c. $\frac{-\sqrt{3}-i}{2}$ d. $\frac{-\sqrt{3}+i}{2}$

- Watch Video Solution

33. if $\cos \theta, \sin \phi, \sin \theta$ are in g.p then check the nature of roots of $x^{2}+2 \cot \phi \cdot x+1=0$
34. Given $z=(1+i \sqrt{3})^{100}$, then $[\operatorname{Re}(z) / \operatorname{Im}(z)]$ equals
(a) 2^{100}
b. 2^{50}
c. $\frac{1}{\sqrt{3}}$
d. $\sqrt{3}$

- Watch Video Solution

35. If a, b, c are non zero rational no then prove roots of equation $\left(a b c^{2}\right) x^{2}+3 a^{2} c x+b^{2} c x-6 a^{2}-a b+2 b^{2}=0$ are rational.

- Watch Video Solution

36. If $a b+b c+c a=0$, then solve $a(b-2 c) x^{2}+b(c-2 a) x+c(a-2 b)=0$.

- Watch Video Solution

37. If $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots . .(\cos n \theta+i \sin n \theta)=1$ then the value of θ is:

- Watch Video Solution

38. The polynomial $x^{6}+4 x^{5}+3 x^{4}+2 x^{3}+x+1$ is divisible by \qquad where ω is one of the imaginary cube roots of unity. (a) $x+\omega$ (b) $x+\omega^{2}$ (c) $(x+\omega)\left(x+\omega^{2}\right)(\mathrm{d})(x-\omega)\left(x-\omega^{2}\right)$

- Watch Video Solution

39. If roots of equation $3 x^{2}+5 x+1=0$ are $\left(\sec \theta_{1}-\tan \theta_{1}\right)$ and $\left(\operatorname{cosec} \theta_{2}-\cot \theta_{2}\right)$ Then find the equation whose roots are $\left(\sec \theta_{1}+\tan \theta_{1}\right)$
and $\left(\operatorname{cosec} \theta_{2}+\cot \theta_{2}\right)$

- Watch Video Solution

40. If roots of the equation $a x^{2}+b x+c=0$ be a quadratic equation and α, β are its roots then $f(-x)=0$ is an equation whose roots

- Watch Video Solution

41. Find the principal argument of the complex number
$(1+i)^{5}(1+\sqrt{3 i})^{2}$
$-2 i(-\sqrt{3}+i)$

- Watch Video Solution

42. Form a quadratic equation with real coefficients whose one root is 3-2i
43. Number of solutions of the equation $z^{3}+\frac{3(\bar{z})^{2}}{|z|}=0$ where z is a complex number is

- Watch Video Solution

44. If the roots of the quadratic equation $x^{2}+p x+q=0$ are $\tan 30^{0}$ and $\tan 15^{0}$, respectively, then find the value of $2+q-p$

- Watch Video Solution

45. If x and y are complex numbers, then the system of equations $(1+i) x+(1-i) y=1,2 i x+2 y=1+i$ has (a) Unique solution (b) No solution (c) Infinite number of solutions (d) None of these

- Watch Video Solution

46. If a, b, and c are in A.P. and one root of the equation $a x^{2}+b x+c=0 i s 2$, the find the other root

- Watch Video Solution

47. If $z=x+i y\left(x, y \in R, x \neq-\frac{1}{2}\right)$, the number of values of z satisfying $|z|^{n}=z^{2}|z|^{n-2}+z|z|^{n-2}+1 .(n \in N, n>1)$ is

- Watch Video Solution

48. If $K+\left|K+z^{2}\right|=|z|^{2}\left(K \in R^{-}\right)$, then possible argument of z is

- Watch Video Solution

49. If α is the root (having the least absolute value) of the equation $x^{2}-b x-1=0\left(b \in R^{+}\right)$, then prove that $-1<\alpha<0$.
50. If α, β are roots of $x^{2}-3 x+a=0, a \in R$ and $\alpha<1<\beta$ then find the value of a.

- Watch Video Solution

51. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $x^{2}+y^{2}=16$, then the range of $\| x|-|y|$ is

- Watch Video Solution

52. If $a<b<c<d$, then for any real non-zero λ, the quadratic equation $(x-a)(x-c)+\lambda(x-b)(x-d)=0$,has (a) no real roots. (b) one real root between a and c (c) one real root between b and d (d) Irrational roots.

- Watch Video Solution

53. If $k>0,|z|=|w|=k$, and $\alpha=\frac{z-\bar{w}}{k^{2}+z \bar{w}}$, then $\operatorname{Re}(\alpha)(A) 0$ (B) $\frac{k}{2}$ (C) k (D) None of these

- Watch Video Solution

54. The quadratic $x^{2}+a x+b+1=0$ has roots which are positive integers, then $\left(a^{2}+b^{2}\right)$ can be equal to a. 50 b. 37 c. 61 d. 19

- Watch Video Solution

55. if z_{1} and z_{2} are two complex numbers such that $|z|_{1}<1<|z|_{2}$ then prove that $\frac{\left|1-z_{1} \bar{z}_{2}\right|}{|z|}<1$

$$
\left|z_{1}-z_{2}\right|
$$

- Watch Video Solution

56. The sum of values of x satisfying the equation $(31+8 \sqrt{15})^{x^{2}-3}+1=(32+8 \sqrt{15})^{x^{2}-3}$ is (a) 3 (b) 0 (c) 2 (d) none of these

- Watch Video Solution

57. Let a complex number $\alpha, \alpha \neq 1$, be a root of the equation $z^{p+q}-z^{p}-z^{q}+1=0$, wherep, q are distinct primes. Show that either $1+\alpha+\alpha^{2}++\alpha^{p-1}=0$ or $1+\alpha+\alpha^{2}++\alpha^{q-1}=0$, but not both together.

- Watch Video Solution

58. If α, β are real and distinct roots of $a x^{2}+b x-c=0$ and p, q are real and distinct roots of $a x^{2}+b x-|c|=0$, where $(a>0)$, then (a) $\alpha, \beta \in(p, q)$
(b). $\alpha, \beta \in[p, q]$ (c). $p, q \in(\alpha, \beta)$ (d). none of these
59. Let $a \neq 0$ and $p(x)$ be a polynomial of degree greater than 2 . If $p(x)$ leaves remainders a and $-a$ when divided respectively, by $x+a$ and $x-a$, the remainder when $p(x)$ is divided by $x^{2}-a^{2}$ is (a) $2 x$ (b) $-2 x$ (c) $x(\mathrm{~d})-x$

- Watch Video Solution

60. Prove that there exists no complex number z such that
$|z|<\frac{1}{3}$ and $\sum_{n=1}^{n} a_{r} z^{r}=1$, where $\left|a_{r}\right|<2$.

- Watch Video Solution

61. A quadratic equation with integral coefficients has two different prime numbers as its roots. If the sum of the coefficients of the equation is prime, then the sum of the roots is a. 2 b .5 c .7 d .11

- Watch Video Solution

62. find the centre and radius of the circle formed by all the points represented by $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ satisfying the relation $\left|\frac{z-\alpha}{z-\beta}\right|=k(k \neq 1)$ where α and β are constant complex numbers given by $\alpha=\alpha_{1}+I \alpha_{2}, \beta=\beta+i \beta_{2}$

- Watch Video Solution

63. If a, b, c are three distinct positive real numbers, the number of real and distinct roots of $a x^{2}+2 b|x|-c=0$ is 0 b .4 c .2 d . none of these

- Watch Video Solution

64. Find the non-zero complex number z satisfying $z=i z^{2}$

- Watch Video Solution

65. Let a, b and c be real numbers such that $4 a+2 b+c=0$ and $a b>0$

Then the equation $a x^{2}+b x+c=0$ has (A) real roots (B) Imaginary roots
(C) exactly one root (D) roots of same sign
A. only one root
B. null
C. null
D. null

- Watch Video Solution

66. If $|z| \leq 1,|w| \leq 1$, then show that $|z-w|^{2} \leq(|z|-|w|)^{2}+(\arg z-\arg w)^{2}$

- Watch Video Solution

67. If α, β are the roots of the equation $x^{2}-2 x+3=0$ obtain the equation whose roots are $\alpha^{3}-3 \alpha^{2}+5 \alpha-2$ and $\beta^{3}-\beta^{2}+\beta=5$
68. For complex numbers z and w prove that $|z|^{2} w-|w|^{2} z=z-w$ if and only if $z=w$ or $z \bar{w}=1$

(Watch Video Solution

69. If α, β are the roots of the equation $a x^{2}+b x+c=0$, then the value of
$\frac{a \alpha^{2}+c}{a \alpha+b}+\frac{a \beta^{2}+c}{a \beta+b}$ is a. $\frac{b\left(b^{2}-2 a c\right)}{4 a}$ b. $\frac{b^{2}-4 a c}{2 a}$ c. $\frac{b\left(b^{2}-2 a c\right)}{a^{2} c}$ d. none of these

- Watch Video Solution

70. let z_{1} and z_{2} be roots of the equation $z^{2}+p z+q=0$ where the coefficients p and q may be complex numbers let A and B represnts z_{1} and z_{2} in the complex plane if $\leq A O B=\alpha \neq 0$ and $\mathrm{OA}=\mathrm{OB}$ where 0 is the origin prove that $p^{2}=4 q \cos ^{2}\left(\frac{\alpha}{2}\right)$
71. If $a \in(-1,1)$, then roots of the quadratic equation $(a-1) x^{2}+a x+\sqrt{1-a^{2}}=0$ are
A. a. Real
B. b. Imaginary
C. c. both equal
D. d. none of these
72. The maximum value of $\left|\arg \left(\frac{1}{1-z}\right)\right|$ for $|z|=1, Z \neq 1$ is given by.
73. If one root is square of the other root of the equation $x^{2}+p x+q=0$, then the relation between pandq is
$p^{3}-q(3 p-1)+q^{2}=0$
$p^{3}-q(3 p+1)+q^{2}=0$
$p^{3}+q(3 p-1)+q^{2}=0$
$p^{3}+q(3 p+1)+q^{2}=0$

- Watch Video Solution

74. If $z^{4}+1=\sqrt{3} i(A) z^{3}$ is purely real $(B) z$ represents the vertices of a square of side $2^{\frac{1}{4}}$ (C) z^{9} is purely imaginary (D) z represents the vertices of a square of side $2^{\frac{3}{4}}$
75. Let α, β be the roots of the quadratic equation $a x^{2}+b x+c=0$ and $\delta=b^{2}-4 a \cdot I f \alpha+\beta, \alpha^{2}+\beta^{2} \alpha^{3}+\beta^{3}$ are in G.P. Then a. $=0 \mathrm{~b} . \neq 0 \mathrm{c} . \mathrm{b}=0 \mathrm{~d} . \mathrm{c}=0$

- Watch Video Solution

76. If $x=a+b i$ is a complex number such that $x^{2}=3+4 i$ and $x^{3}=2+11 i$, where $i=\sqrt{-1}$, then $(a+b)$ equal to

- Watch Video Solution

77. Let α, β be the roots of $x^{2}-x+p=0$ and γ, δ be the roots of $x^{2}-4 x+q=0$. If α, β, γ are in GP, then the integer values of p and q respectively are:

- Watch Video Solution

78. Let if then one of the possible value of is:

- Watch Video Solution

79. If $f(x)=x^{2}+2 b x=2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ are such that min $f(x)>\max g(x)$, then the relation between b and c is

- Watch Video Solution

80. Let z be a complex number such that the imaginary part of z is non zero and $a=z^{2}+z+1$ is real then a cannot take the value

- Watch Video Solution

81. For the equation $3 x^{2}+p x+3=0, p>0$, if one of the root is square of the other, then p is equal to
(a) $1 / 3$
b. 1
c. 3
d. $2 / 3$

Watch Video Solution

82. Let z, ω be complex numbers such that $\bar{z}+i \bar{\omega}=0$ and $\arg (z \omega)=\pi$, then argz equals

- Watch Video Solution

83. Let $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$ and let $m(b)$ the minimum value of $f(x)$

As b varies, the range of $m(b)$ is $[0,1]$ (b) $\left(0, \frac{1}{2}\right]\left[\frac{1}{2}, 1\right]$ (d) $(0,1]$
84. For any two complex numbers z_{1} and z_{2}, prove that $\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Rez} \mathcal{R e z}_{2}-\operatorname{Imz} z_{1} \operatorname{Imz}$

- Watch Video Solution

85. If α and $\beta(\alpha<\beta)$ are the roots of the equation $x^{2}+b x+c=0$, where ($c<0<b$), then

- Watch Video Solution

86. If $\omega(\neq 1)$ be a cube root of unity and $\left(1+\omega^{2}\right)^{n}=\left(1+\omega^{4}\right)^{n}$ then the least positive value of n is

- Watch Video Solution

87. If $b>a$, then the equation $(x-a)(x-b)-1=0$ has
(a) Both roots in (a, b)
(b) Both roots in $(-\infty, a)$
(c) Both roots in ($b,+\infty$) (d) One root in $(-\infty, a)$ and the other in
(b, $+\infty$)

Watch Video Solution

88. Let z_{1} and z_{2} be complex numbers such that $z_{1} \neq z_{2}$ and $|z|_{1}=|z|_{2}$ if z_{1} has positive real part then $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ may be

- Watch Video Solution

89. The equation $\sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1}$ has

- Watch Video Solution

90. If z_{1}, z_{2} are complex number such that $\frac{2 z_{1}}{3 z_{2}}$ is purely imaginary
number, then find $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|$.

- Watch Video Solution

91. If the roots of the equation $x^{2}-2 a x+a^{2}+a-3=0$ are less than 3 then

- Watch Video Solution

92. If $z(1+a)=b+i c$ and $a^{2}+b^{2}+c^{2}=1$, then $[(1+i z) /(1-i z)=$
A. $\frac{a+i b}{1+c}$
B. $\frac{b-i c}{1+a}$
C. $\frac{a+i c}{1+b}$
D. none of these

- Watch Video Solution

93. A value of b for which the equations $x^{2}+b x-1=0, \mathrm{x}^{\wedge} 2+\mathrm{x}+\mathrm{b}=0$ ' have one root in common is

- Watch Video Solution

94. If z_{1}, z_{2}, z_{3} are three complex numbers and $A=$ $\left|\begin{array}{ccc}\operatorname{argz}_{1} & \operatorname{argz}_{2} & \arg z_{3} \\ \operatorname{argz}_{2} & \arg z_{3} & \arg z_{1} \\ \arg _{3} & \operatorname{argz}_{1} & \operatorname{argz}_{2}\end{array}\right|$ then A is divisible by

- Watch Video Solution

95. Let p and q be real numbers such that $p \neq 0, p^{3} \neq q$, and $p^{3} \neq-q$ If α and β are nonzero complex numbers satisfying $\alpha+\beta=-p$ and $\alpha^{3}+\beta^{3}=q$, then a quadratic equation having α / β and β / α as its roots is A. $\left(p^{3}+q\right) x^{2}-\left(p^{3}+2 q\right) x+\left(p^{3}+q\right)=0$ B. $\left(p^{3}+q\right) x^{2}-\left(p^{3}-2 q\right) x+\left(p^{3}+q\right)=0$
C.

$$
\begin{aligned}
& \left(p^{3}+q\right) x^{2}-\left(5 p^{3}-2 q\right) x+\left(p^{3}-q\right)=0 \\
& \left(p^{3}+q\right) x^{2}-\left(5 p^{3}+2 q\right) x+\left(p^{3}+q\right)=0
\end{aligned}
$$

- Watch Video Solution

96. If $\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma=0$, then the value of $\sin 3 \alpha+8 \sin 3 \beta+27 \sin 3 \gamma \quad$ is $\quad \sin (a+b+g a m m a)$ b. $3 \sin (\alpha+\beta+\gamma)$ C. $18 \sin (\alpha+\beta+\gamma)$ d. $\sin (\alpha+2 \beta+3)$

Watch Video Solution

97. Let α, β be the roots of the equation $x^{2}-p x+r=0$ and $\alpha / 2,2 \beta$ be the roots of the equation $x^{2}-q x+r=0$, then the value of r is (1) $\frac{2}{9}(p-q)(2 q-p)(2) \frac{2}{9}(q-p)(2 p-q)(3) \frac{2}{9}(q-2 p)(2 q-p)(4) \frac{2}{9}(2 p-q)(2 q-p)$

- Watch Video Solution

98. If center of a regular hexagon is at the origin and one of the vertices on the Argand diagram is $1+2 i$, then its perimeter is $2 \sqrt{5}$ b. $6 \sqrt{2}$ c. $4 \sqrt{5}$ d. $6 \sqrt{5}$

- Watch Video Solution

99. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides fo a triangle where $a \neq b \neq c$ and $\lambda \in R$, if roots of the equation $x^{2}+2(a+b+c) x+3 \lambda(a b+b c+c a)=0$ are real, then

- Watch Video Solution

100. about to only mathematics

- Watch Video Solution

101. Let S be the set of all non-zero real numbers α such that the quadratic equation $\alpha x^{2}-x+\alpha=0$ has two distinct real roots x_{1} and x_{2}
satisfying the inequality $\left|x_{1}-x_{2}\right|<1$. Which of the following intervals is (are) a subset(s) of S ?

- Watch Video Solution

102. A complex number z is rotated in anticlockwise direction by an angle α and we get z^{\prime} and if the same complex number z is rotated by an angle α in clockwise direction and we get $z^{\prime \prime}$ then
A. $z^{\prime}, z, z^{\prime \prime}$ are in G.P
B. $z^{\prime} 2+z^{\prime \prime} 2=2 z 2 \cos 2 \alpha$
C. $z^{\prime}+z^{\prime \prime}=2 z \cos \alpha$
D. $z^{\prime}, z, z^{\prime \prime}$ are in H.P
103. For real x, the function $\frac{(x-a)(x-b)}{x-c}$ will assume all real values provided a) $a>b>c$ b) $a<b<c$ c) $a>c<b$ d) $a \leq c \leq b$

D Watch Video Solution

104. If z_{1}, z_{2} are two complex numbers $\left(z_{1} \neq z_{2}\right)$ satisfying $\left|z_{1}^{2}-z_{2}^{2}\right|=\left|z_{1}^{2}+z_{2}^{2}-2\left(z_{1}\right)\left(z_{2}\right)\right|$, then $a \cdot \frac{z_{1}}{z_{2}}$ is purely imaginary $b \cdot \frac{z_{1}}{z_{2}}$ is purely real c. $\left|\operatorname{argz}_{1}-\operatorname{argz}_{2}\right|=\pi \mathrm{d} .\left|\operatorname{argz}_{1}-\operatorname{argz}_{2}\right|=\frac{\pi}{2}$

- Watch Video Solution

105. The quadratic equation $p(x)=0$ with real coefficients has purely imaginary roots. Then the equation $p(p(x))=0$ has A . only purely imaginary roots B. all real roots C. two real and purely imaginary roots D. neither real nor purely imaginary roots
106. If from a point P representing the complex number z_{1} on the curve $|z|=2$, two tangents are drawn from P to the curve $|z|=1$, meeting at points $Q\left(z_{2}\right)$ and $R\left(z_{3}\right)$, then :

- Watch Video Solution

107. Let α, β be the roots of the equation $x^{2}-6 x-2=0$ with $\alpha>\beta$. If
$a_{n}=\alpha^{n}-\beta^{n}$ for $n \geq 1$, then the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is

- Watch Video Solution

108. If $|z-3|=\min \{|z-1|,|z-5|\}$, then $\operatorname{Re}(z)$ equals to

- Watch Video Solution

109. For the following question, choose the correct answer from the codes (a), (b), (c) and (d) defined as follows: Statement I is true, Statement

II is also true; Statement II is the correct explanation of Statement I.
Statement I is true, Statement II is also true; Statement II is not the correct explanation of Statement I. Statement I is true; Statement II is false Statement I is false; Statement II is true. Let a, b, c, p, q be the real numbers. Suppose α, β are the roots of the equation $x^{2}+2 p x+q=0$ and $\alpha, \frac{1}{\beta}$ are the roots of the equation $a x^{2}+2 b x+c=0$, where $\beta^{2} \notin\{-1,0,1\}$ Statement । $\left(p^{2}-q\right)\left(b^{2}-a c\right) \geq 0$ and Statement II $b \notin p a$ or $c \notin q a$

- Watch Video Solution

110. Find the value of 1^{3}

- Watch Video Solution

111. All the values of m for whilch both the roots of the equation $x^{2}-2 m x+m^{2}-1=0$ are greater than -2 but less than 4 lie in the interval

A-2 B. $m>3$
C. $-1<m<3$
D. $1<m<4$

- Watch Video Solution

112. If $p=a+b \omega+c \omega^{2}, q=b+c \omega+a \omega^{2}$, and $r=c+a \omega+b \omega^{2}$, where $a, b, c \neq 0$ and ω is the complex cube root of unity, then (a)
$p+q+r=a+b+c$
(b) $\quad p^{2}+q^{2}+r^{2}=a^{2}+b^{2}+c^{2}$
$p^{2}+q^{2}+r^{2}=-2(p q+q r+r p)(\mathrm{d})$ none of these

- Watch Video Solution

113. If the roots of the quadratic equation $\left(4 p-p^{2}-5\right) x^{2}-(2 p-1) x+3 p=0$ lie on either side of unit, then the number of integer values of p is
a. 1
b. 2
c. 3
d. 4

Watch Video Solution

114. If $z_{1}=5+12 i$ and $\left|z_{2}\right|=4$, then
A. (a) maximum $\left(\left|z_{1}+i z_{2}\right|\right)=17$
B. (b) minimum $\left(\left|z_{1}+(1+i) z_{2}\right|\right)=13+4 \sqrt{2}$
C. (c) minimum $\left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{4}$
D. (d) maximum $\left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{3}$

D Watch Video Solution

115. If roots of $x^{2}-(a-3) x+a=0$ are such that both of them is greater than 2 , then

D Watch Video Solution

116. If $(z-1) /(z+1)$ is purely imaginary then

- Watch Video Solution

117. Let $f(x)=a x^{2}+b x+c a, b, c \in R$. If $f(x)$ takes real values for real values of x and non-real values for non-real values of x, then (a) $a=0$ (b) $b=0$
(c) $c=0$ (d) nothing can be said about a, b, c.

- Watch Video Solution

118. Write a linear equation representing a line which is parallel to y-axis and is at a distance of 2 units on the positive side of x-axis

- Watch Video Solution

119. If both roots of the equation $a x^{2}+x+c-a=0$ are imaginary and $c>-1$, then a) $3 a>2+4 c$ b) $3 a<2+4 c$ c) $c<a d)$ none of these
A. a) $3 a>2+4 c$
B. b) $3 a<2+4 c$
C. c) $c<a$
D. d) none of these
120. If $|z|=1$ and $w=\frac{z-1}{\frac{z}{2}+1}$ (where $z \neq-1$), then $\operatorname{Re}(w)$ is 0 (b) $\frac{1}{|z+1|^{2}}$ $\left|\frac{1}{z+1}\right|, \frac{1}{|z+1|^{2}}$ (d) $\frac{\sqrt{2}}{\left.|z| 1\right|^{2}}$

- Watch Video Solution

121. The set of all possible real values of a such that the inequality $(x-(a-1))\left(x-\left(a^{2}-1\right)\right)<0$ holds for all $x \in(-1,3)$ is a. $(0,1)$ b. $(\infty,-1]$ c. $(-\infty,-1)$ d. $(1, \infty)$

- Watch Video Solution

122. If z_{1}, z_{2} are complex number such that $\frac{2 z_{1}}{3 z_{2}}$ is purely imaginary number, then find $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|$.

D Watch Video Solution

123. The interval of a for which the equation $\tan ^{2} x-(a-4) \tan x+4-2 a=0$ has at least one solution $\forall x \in[0, \pi / 4] a \in(2,3)$ b. $a \in[2,3]$ c. $a \in(1,4)$ d. $a \in[1,4]$

- Watch Video Solution

124. The range of a for which the equation $x^{2}+a x-4=0$ has its smaller root in the interval $(-1,2)$ is a. $(-\infty,-3)$ b. $(0,3)$ c. $(0, \infty)$ d. $(-\infty,-3) \cup(0, \infty)$

- Watch Video Solution

125. Let z and ω be two complex numbers such that $|z| \leq 1,|\omega| \leq 1$ and $|z-i \omega|=|z-i \bar{\omega}|=2$, then z equals (a)1 or i (b). i or $-i$ (c). 1 or -1 (d). i or - 1

- Watch Video Solution

126. Consider the equation $x^{2}+2 x-n=0$ where $n \in N$ and $n \in[5,100]$ The total number of different values of n so that the given equation has integral roots is a. 8 b .3 c .6 d .4

- Watch Video Solution

127. $(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{1}}+\left(1+i^{5}\right)^{n_{2}}+\left(1+i^{7}\right)^{n_{2}}$ is a real number if

- Watch Video Solution

128. The total number of values a so that $x^{2}-x-a=0$ has integral roots, where $a \in$ Nand $6 \leq a \leq 100$, is equal to a. 2 b. 4 c. 6 d. 8

- Watch Video Solution

129. If $i=\sqrt{-1}$ then $4+5\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{365}$ is equal to
130. Let $P(x)=x^{3}-8 x^{2}+c x-d$ be a polynomial with real coefficients and with all it roots being distinct positive integers. Then number of possible value of c is \qquad .

- Watch Video Solution

131. If $\arg (z)<0$, then $\arg (-z)-\arg (z)$ equals $\pi(b)-\pi(d)-\frac{\pi}{2}(d) \frac{\pi}{2}$

- Watch Video Solution

132. Let $P(x)=\frac{5}{3}-6 x-9 x^{2}$ and $Q(y)=-4 y^{2}+4 y+\frac{13}{2}$ if there exists unique pair of real numbers (x, y) such that $P(x) Q(y)=20$, then the value of $(6 x+10 y)$ is \qquad .

- Watch Video Solution

133. If z_{1}, z_{2}, z_{3} are complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1$ then $\left|z_{1}+z_{2}+z_{3}\right|$ is equal to

- Watch Video Solution

134. if $a<c<b$, then check the nature of roots of the equation
$(a-b)^{2} x^{2}+2(a+b-2 c) x+1=0$

- Watch Video Solution

135. Let z_{1} and z_{2} be the nth roots of unity which subtend a right angle at the origin then n must be the form

- Watch Video Solution

136. If $a+b+c=0$ then check the nature of roots of the equation $4 a x^{2}+3 b x+2 c=0$ wherea, $b, c \in R$
137. The complex numbers z_{1}, z_{2} and z_{3} satisfying $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$ are the verticles of a triangle which is:

- Watch Video Solution

138. The value of a so that the sum of the squares of the roots of the equation $x^{2}-(a-2) x-a+1=0$ assume the least value, is

- Watch Video Solution

139. For all complex niumbers z_{1}, z_{2} satisfying $|z|_{1}=12$ and $\left|z_{2}-3-4 i\right|=5$, the minimum value of $\left|z_{1}-z_{2}\right|$ is

- Watch Video Solution

140. If x_{1}, and x_{2} are the roots of $x^{2}+(\sin \theta-1) x-\frac{1}{2}\left(\cos ^{2} \theta\right)=0$, then find the maximum value of $x_{1}^{2}+x_{2}^{2}$

- Watch Video Solution

141. If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{d y}{d x}$ atx $=1$ is
(a) $\cos \left(\frac{\pi}{4}\right)$
(b) $\sin \left(\frac{\pi}{2}\right)$
(c) $\sin \left(\frac{\pi}{6}\right)$
(d) $\cos \left(\frac{\pi}{3}\right)$
142. If $p, q \in\{1,2,3,4$,$\} , then find the number of equations of form$ $p x^{2}+q x+1=0$ having real roots.

- Watch Video Solution

143. If $a^{2}+b^{2}=1$ then $\frac{1+b+i a}{1+b-i a}=1 \mathrm{~b} .2 \mathrm{c} . b+i a \mathrm{~d} . a+i b$

- Watch Video Solution

144. Find the domain and the range of $f(x)=\sqrt{x^{2}-3 x}$.

- Watch Video Solution

145. Show that the equation $Z^{4}+2 Z^{3}+3 Z^{2}+4 Z+5=0$ has no root which is either purely real or purely imaginary.
146. Find the domain and range of $f(x)=\sqrt{3-2 x-x^{2}}$

- Watch Video Solution

147. If $x \in(0, \pi / 2) \operatorname{and} \cos x=1 / 3$, then prove that
$\sum_{n=0}^{\infty} \frac{\cos n x}{3^{n}}=\frac{3(3-\cos x)}{10-6 \cos x+\cos ^{2} x}$

- Watch Video Solution

148. Prove that if the equation $x^{2}+9 y^{2}-4 x+3=0$ is satisfied for real values of x and y,then x must lie between 1 and 3 and y must lie between
$-\frac{1}{3}$ and $\frac{1}{3}$.

- Watch Video Solution

149. Let $Z_{p}=r_{p}\left(\cos \theta_{p}+i \sin \theta_{p}\right), p=1,2$, 3and $\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}=0$.

inside triangle $A B C$

- Watch Video Solution

150. $\quad\left(6 x^{2}-22 x+21\right)$
151. Find the least value of \quad for real x

$$
\left(5 x^{2}-18 x+17\right)
$$

- Watch Video Solution

151. Let a, b and c be any three nonzero complex number. If $|z|=1$ and ' z ' satisfies the equation $a z^{2}+b z+c=0$, prove that $a \cdot \bar{a}=c \cdot \bar{c}$ and $|a||b|=$ $\sqrt{a c}(\bar{b})^{2}$

- Watch Video Solution

152. Find the range of the function $f(x)=x^{2}-2 x-4$.
153. if $x=9^{\frac{1}{3}} 9^{\frac{1}{9}} 9^{\frac{1}{27}} \ldots . . \infty, y=4^{\frac{1}{3}} 4^{\frac{1}{9}} 4^{\frac{1}{27}} \ldots . \infty$ andz $=\sum_{r=1}^{\infty}(1+i)^{-r}$ then $\arg (x+y z)$ is equal to

D Watch Video Solution

154. Find the linear factors of $2 x^{2}-y^{2}-x+x y+2 y-1$.

(Watch Video Solution

155. If $a<0, b>0$, then $\sqrt{a} \sqrt{b}$ is equal to (a) $-\sqrt{|a| b}$ (b) $\sqrt{|a| b} i$ (c) $\sqrt{|a| b}$ (d) none of these

(Watch Video Solution

156. The value(s) of m for which the expression $2 x^{2}+m x y+3 y^{2}-5 y-2$ can be factorized in to two linear factors are:

Watch Video Solution

157. Find the number of solutions of $z^{2}+\bar{z}=0$

- Watch Video Solution

158. If $a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}=0$ and $a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}=0$ have a pair of repeated common roots, then prove that $\left|\begin{array}{ccc}3 a_{1} & 2 b_{1} & c_{1} \\ 3 a_{2} & 2 b_{2} & c_{2} \\ a_{2} b_{1}-a_{1} b_{2} & c_{1} a_{2}-c_{2} a_{1} & d_{1} a_{2}-d_{2} a_{1}\end{array}\right|=0$

- Watch Video Solution

159. Consider the equation $10 z^{2}-3 i z-k=0$, wherez is a following complex variable and $i^{2}=-1$. Which of the following statements ils true? (a)For real complex numbers k, both roots are purely imaginary. (b)For all complex numbers k, neither both roots is real. (c)For all purely imaginary numbers k, both roots are real and irrational. (d)For real negative numbers k, both roots are purely imaginary.

- Watch Video Solution

160. If $x-c$ is a factor of order m of the polynomial $f(x)$ of degree $n(1<m$
$<\mathrm{n})$, then find the polynomials for which $x=c$ is a root.

D Watch Video Solution

161. If $z_{1} a n d z_{2}$ are two complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right| \operatorname{andarg}\left(z_{1}\right)+\arg \left(z_{2}\right)=\pi$, then show that z_{1}, $=-\bar{z}_{2}$
162. Solve the equation $x^{3}-13 x^{2}+15 x+189=0$ if one root exceeds the other by 2.

- Watch Video Solution

163. If $\tan \theta$ and $\sec \theta$ are the roots of $a x^{2}+b x+c=0$, then prove that $a^{4}=b^{2}\left(b^{2}-4 a c\right)$

- Watch Video Solution

164. Given that the complex numbers which satisfy the equation $\left|z \bar{z}^{3}\right|+\left|\bar{z} z^{3}\right|=350$ form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then area of rectangle is 48 sq. units if $z_{1}, z_{2}, z_{3}, z_{4}$ are vertices of rectangle, then $z_{1}+z_{2}+z_{3}+z_{4}=0$ rectangle is symmetrical about the real axis $\arg \left(z_{1}-z_{3}\right)=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$
165. If the roots of the equation $x^{2}-b x+c=0$ are two consecutive integers, then find the value of $b^{2}-4 c$

- Watch Video Solution

166. Let if then one of the possible value of is:

- Watch Video Solution

167. For what real value of 'a' do the roots of $x^{2}-2 x-\left(a^{2}-1\right)=0$ lie between the-root $x^{2}-2(a+1) x+a(a-1)=0$

- Watch Video Solution

168. If P and Q are represented by the complex numbers z_{1} and z_{2} such
that $\left|\frac{1}{z_{2}}+\frac{1}{z_{1}}\right|=\left|\frac{1}{z_{2}}-\frac{1}{z_{1}}\right|$, then a) $O P Q$ (whereO) is the origin of equilateral $O P Q$ is right angled. b) the circumcenter of $O P Q i s \frac{1}{2}\left(z_{1}+z_{2}\right)$
c) the circumcenter of $O P Q i \frac{1}{3}\left(z_{1}+z_{2}\right)$

- Watch Video Solution

169. Find the value of a for which the equation a $\sin \left(x+\frac{\pi}{4}\right)=\sin 2 x+9$ will have real solution.

- Watch Video Solution

170. Given $z=f(x)+i g(x)$ where $f, g:(0,1) \rightarrow(0,1)$ are real valued functions. Then which of the following does not hold good?
a. $z=\frac{1}{1-i x}+i \frac{1}{1+i x}$
b. $z=\frac{1}{1+i X}+i \frac{1}{1-i X}$
c. $z=\frac{1}{1+i x}+i \frac{1}{1+i x}$
d. $z=\frac{1}{1-i x}+i \frac{1}{1-i x}$

- Watch Video Solution

171. Let a, b and c be real numbers such that $a+2 b+c=4$. Find the maximum value of $(a b+b c+c a)$

- Watch Video Solution

172. If $z=x+i y$, then the equation $\left|\frac{2 z-i}{z+1}\right|=m$ does not represents a circle, when m is (a) $\frac{1}{2}$ (b). 1 (c). 2 (d). 3

- Watch Video Solution

173. Prove that for real values of $x,\left(a x^{2}+3 x-4\right) /\left(3 x-4 x^{2}+a\right)$ may have any value provided a lies between 1 and 7 .

Watch Video Solution

174. Given that the two curves $\arg (z)=\frac{\pi}{6}$ and $|z-2 \sqrt{3} i|=r$ intersect in two distinct points, then a. $[r] \neq 2$ b. $0<r<3$ c. $r=6$ d. $3<r<2 \sqrt{3}$ (Note : [r] represents integral part of r)

- Watch Video Solution

175. Let $x^{2}-(m-3) x+m=0(m \varepsilon R)$ be a quadratic equation. Find the values of m for which exactly one root lies in the interval $(1,2)$

- Watch Video Solution

176. A particle P starts from the point $z_{0}=1+2 i$, where $i=\sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_{1} From z_{1} the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i}+\hat{j}$ and then it moves
through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_{2} The point z_{2} is given by (a) $6+7 i(b)-7+6 i$ (c) $7+6 i(d)-6+7 i$

- Watch Video Solution

177.

Prove
that for
all
real
values
of
x and $y, x^{2}+2 x y+3 y^{2}-6 x-2 y \geq-11$.

- Watch Video Solution

178. Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ be a complex number where x and y are integers then the area of the rectangle whose vertices are the roots of the equation $z \bar{z} \overline{3}^{3}+\bar{z} z^{3}=350$ is

- Watch Video Solution

179. The values of 'a' for which the equation

$$
\left(x^{2}+x+2\right)^{2}-(a-3)\left(x^{2}+x+2\right)\left(x^{2}+x+1\right)+(a-4)\left(x^{2}+x+1\right)^{2}=0
$$

has atlesast one real root is:

Watch Video Solution

180. A man walks a distance of 3 units from the origin towards the north east $\left(N 45^{\circ} \mathrm{E}\right)$ direction.from there he walks a distance of 4 units towards the north west $\left(N 45^{\circ} \mathrm{W}\right)$ direction of reach a point P then the position of P in the Argand plane is :

- Watch Video Solution

181. Find the values of a for whilch the equation $\sin ^{4} x+a \sin ^{2} x+1=0$ will have a solution.
182. If $|z|=1$ and $z \neq \pm 1$ then all the values of $\frac{z}{1-z^{2}}$ lie on

D Watch Video Solution

183. Find all the value of m for which the equation $\sin ^{2} x-(m-3) \sin x+m=0$ has real roots.

- Watch Video Solution

184. Let $A\left(z_{1}\right)$ and $\left(z_{2}\right)$ represent two complex numbers on the complex plane. Suppose the complex slope of the line joining A and B is defined as $z_{1}-z_{2}$ $\overline{\bar{z}_{1}-\bar{z}_{2}}$.If the line l_{1}, with complex slope ω_{1}, and l_{2}, with complex slope omeg $_{2}$, on the complex plane are perpendicular then prove that $\omega_{1}+\omega_{2}=0$.
185. Let if then one of the possible value of is:

- Watch Video Solution

186. Let z_{1} and z_{2} be complex numbers such that $z_{1} \neq z_{2}$ and $|z|_{1}=|z|_{2}$ if z_{1}
has positive real part then $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ may be

- Watch Video Solution

187. Find the condition if the roots of $a x^{2}+2 b x+c=0$ and $b x^{2}-2 \sqrt{a c x}+b=0$ are simultaneously real.

- Watch Video Solution

188. Locus of complex number satisfying a $\mathrm{rg}\left[\frac{z-5+4 i}{z+3-2 i}\right]=\frac{\pi}{4}$ is the arc of a circle whose radius is $5 \sqrt{2}$ whose radius is 5 whose length (of arc) is
15π
$\frac{15 \pi}{\sqrt{2}}$ whose centre is $-2-5 i$

- Watch Video Solution

189. Solve $\left(x^{2}-5 x+7\right)^{2}-(x-2)(x-3)=1$.

- Watch Video Solution

190. If α is a complex constant such that $\alpha z^{2}+z+\bar{\alpha}=0$ has areal root then

- Watch Video Solution

191. Solve the equation $x^{4}-5 x^{2}+4=0$.

- Watch Video Solution

192. The complex number z satisfies $z+|z|=2+8$ i. find the value of $|z|-8$

- Watch Video Solution

193. Solve $\frac{x^{2}-2 x-3}{x+1}=0$.

- Watch Video Solution

194. If ω is a complex cube root of unity and $(1+\omega)^{7}=A+B \omega$ then A and B are respectively.

Watch Video Solution

195. Solve $\left(x^{3}-4 x\right) \sqrt{x^{2}-1}=0$.

- Watch Video Solution

196. For what value of x, The complex number $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other.

- Watch Video Solution

197. Solve $\frac{2 x-3}{x-1}+1=\frac{9 x-x^{2}-6}{x-1}$.

- Watch Video Solution

198. The points, $z_{1}, z_{2}, z_{3}, z_{4}$, in the complex plane are the vertices of a parallelogram taken in order, if and only if (a) $z_{1}+z_{4}=z_{2}+z_{3}$
$z_{1}+z_{3}=z_{2}+z_{4}(\mathrm{c}) z_{1}+z_{2}=z_{3}+z_{4}$ (d) None of these

- Watch Video Solution

199. Using differentiation method check how many roots of the equation $x^{3}-x^{2}+x-2=0$ are real?
200. $z=x+i y$ and $w=\frac{1-i z}{1+i z}$ and $|w|=1$,prove that z is purely real

Watch Video Solution

201. Let if then one of the possible value of is:

- Watch Video Solution

202. $|z-4|<|z-2|$ represents the region given by:
(a) $\operatorname{Re}(z)>0$
(b) $\operatorname{Re}(z)<0$
(c) $\operatorname{Re}(z)>3$
(d) None of these

- Watch Video Solution

203. Draw the graph of $y=x^{4}+2 x^{2}-8 x+3$

Find the number of real roots of the equation $x^{4}+2 x^{2}-8 x+3=0$.
Also find the sum of the integral parts of all real roots.

Watch Video Solution

204. If $z=\left[\left(\frac{\sqrt{3}}{2}\right)+\frac{i}{2}\right]^{5}+\left[\left(\frac{\sqrt{3}}{2}\right)-\frac{i}{2}\right]^{5}$, then
a. $\operatorname{Re}(z)=0$
b. $\operatorname{Im}(z)=0$
c. $\operatorname{Re}(z)>0$
d. $\operatorname{Re}(z)>0, \operatorname{Im}(z)<0$

- Watch Video Solution

205. How many real solutions does the equation
$x^{7}+14 x^{5}+16 x^{3}+30 x-560=0$ have ?

- Watch Video Solution

206. The complex numbers $z=x+i y$ which satisfy the equation $\left|\frac{z-5 i}{z+5 i}\right|=1$ lie on (a) The x-axis (b) The straight line $y=5$ (c) A circle passing through the origin (d) Non of these

- Watch Video Solution

207. Solve $\sqrt{3 x^{2}-7 x-30}-\sqrt{2 x^{2}-7 x-5}=x-5$.
208. The smallest positive integer n for which $\left(\frac{1+i}{1-i}\right)^{n}=1$ is
(a) 8
(b) 16
(c)12`
(d) None of these

Watch Video Solution
209. Solve $\sqrt{3 x^{2}-7 x-30}-\sqrt{2 x^{2}-7 x-5}=x-5$.

Watch Video Solution
210. If the cube roots of unity are $1, \omega, \omega^{2}$, then the roots of the equation $(x-1)^{3}+8=0$ are
a. $-1,1+2 \omega, 1+2 \omega^{2}$
b. $-1,1-2 \omega, 1-2 \omega^{2}$
c. $-1,-1,-1$
d. none of these

- Watch Video Solution

211. If $x=(7+4 \sqrt{3})$, prove that $x+1 / x=14$
212. Prove that the locus of midpoint of line segment intercepted between real and imaginary axes by the line $a z+a z+b=0$, whereb is a real parameterand a is a fixed complex number with nondzero real and imaginary parts, is $a z+a z=0$.

Watch Video Solution

213. Solve $\sqrt{5 x^{2}-6 x+8}+\sqrt{5 x^{2}-6 x-7}=1$.

- Watch Video Solution

214.

Show
that:
$n-1$
$\sum_{r=0}\left|z_{1}+\alpha^{r} z_{2}\right|^{2}=n\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$, where, $\alpha ; r=0,1,2, \ldots,(n-1)$, are the nth roots of unity and z_{1}, z_{2} are any two complex numbers.

- Watch Video Solution

215. Solve $\sqrt{x^{2}+4 x-21}+\sqrt{x^{2}-x-6}=\sqrt{6 x^{2}-5 x-39 .}$

- Watch Video Solution

216. If $\alpha=\frac{z-i}{z+i}$, show that, when z lies above the real axis, α will lie within the unit circle which has center at the origin. Find the locus of $\alpha a s z$ travels on the real axis from $-\infty \rightarrow+\infty$

- Watch Video Solution

217. Solve $4^{x}+6^{x}=9^{x}$

- Watch Video Solution

218. Let x_{1}, x_{2} are the roots of the quadratic equation $x^{2}+a x+b=0$, wherea, b are complex numbers and y_{1}, y_{2} are the roots of
the quadratic equation $y^{2}+|a| y+|b|=0$. If $\left|x_{1}\right|=\left|x_{2}\right|=1$, then prove that $\left|y_{1}\right|=\left|y_{2}\right|=1$

- Watch Video Solution

219. Solve $3^{2 x^{2}-7 x+7}=9$.

- Watch Video Solution

220. Plot the region represented by $\frac{\pi}{3} \leq \arg \left(\frac{z+1}{z-1}\right) \leq \frac{2 \pi}{3}$ in the Argand plane.

- Watch Video Solution

221. How many solutions does the equation $\frac{8^{x}+27^{x}}{12^{x}+18^{x}}=\frac{7}{6}$ have? (A) Exactly one (B) Exactly two (C) Finitely many (D) Infinitely many

- Watch Video Solution

222. Is the following computation correct? If not give the correct computation : $\sqrt{(-2)} \sqrt{(-3)}=\sqrt{(-2)(-3)}=\sqrt{(-6)}$

- Watch Video Solution

223. Consider an equilateral triangle having verticals at point $A\left(\frac{2}{\sqrt{3}} e^{\frac{l \pi}{2}}\right), B\left(\frac{2}{\sqrt{3}} e^{\frac{-i \pi}{6}}\right)$ and $C\left(\frac{2}{\sqrt{3}} e^{\frac{-5 \pi}{6}}\right)$. If $P(z)$ is any point an its incircle, then $A P^{2}+B P^{2}+C P^{2}$

- Watch Video Solution

224. Find the number of real roots of the equation $(x-1)^{2}+(x-2)^{2}+(x-3)^{2}=0$.

- Watch Video Solution

225. Find the value of $\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}$

- Watch Video Solution

226. Let z, z_{0} be two complex numbers. It is given that $|z|=1$ and the numbers $z, z_{0}, z_{-}^{-}(0), 1$ and 0 are represented in an Argand diagram by the points $\mathrm{P}, P_{0}, \mathrm{Q}, \mathrm{A}$ and the origin, respectively. Show that $\triangle P O P_{0}$ and $\triangle A O Q$ are congruent. Hence, or otherwise, prove that
$\left|z-z_{0}\right|=\left|z z_{0}-1\right|=\left|z z_{0}^{-}-1\right|$.

- Watch Video Solution

227. Show that the equation $a z^{3}+b z^{2}+\bar{b} z+\bar{a}=0$ has a root α such that $|\alpha|=1, a, b, z$ and α belong to the set of complex numbers.

- Watch Video Solution

228. If $n \geq 3$ and $1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-1}$ are
the n ,nth roots of unity, then find value of $\sum \sum 1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}-1 \alpha_{\mathrm{i}} \alpha_{\mathrm{j}}$

- Watch Video Solution

229. Find the maximum and minimum values of the function $y=(\log)_{e}\left(3 x^{4}-2 x^{3}-6 x^{2}+6 x+1\right) \forall x \in(0,2) \quad$ Given that $\left(3 x^{4}-2 x^{3}-6 x^{2}+6 x^{2}+6 x+1\right)>0 A x \in(0,2)$

- Watch Video Solution

230. If $z^{4}=(z-1)^{4}$, then the roots are represented in the Argand plane by the points that are:

- Watch Video Solution

231. Find the value of k if $x^{3}-12 x+k=0$ has three real distinct roots.

- Watch Video Solution

232. Let $z=t^{2}-1+\sqrt{t^{4}-t^{2}}$, wheret $\in R$ is a parameter. Find the locus of z depending upon t, and draw the locus of z in the Argand plane.

- Watch Video Solution

233. $|f| z \mid=1$, then prove that points represented by $\sqrt{(1+z) /(1-z)}$ lie on one or other of two fixed perpendicular straight lines.

- Watch Video Solution

234. If ω is an imaginary fifth root of unity, then find the value of $\log _{2}\left|1+\omega+\omega^{2}+\omega^{3}-1 / \omega\right|$

- Watch Video Solution

235. a, b, and c are all different and non-zero real numbers on arithmetic progression. If the roots of quadratic equation $a x^{2}+b x+c=0$ are α and β such that $\frac{1}{\alpha}+\frac{1}{\beta}, \alpha+\beta$, and $\alpha^{2}+\beta^{2}$ are in geometric progression the value of a / c will be \qquad .

- Watch Video Solution

236. Let $x^{2}+y^{2}+x y+1 \geq a(x+y) \forall x, y \in R$, then the number of possible integer (s) in the range of a is \qquad .

- Watch Video Solution

20
237. If $\alpha=e^{i 2 \pi / 7} \operatorname{andf}(x)=a_{0}+\sum_{k=0} a_{k} x^{k}$, then prove that the value of $f(x)+f(\alpha x)+\ldots .+f\left(\alpha^{6} x\right)$ is independent of α

- Watch Video Solution

238. If $w=\alpha+i \beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w-\bar{w} z}{1-z}\right)$ is a purely real, then the set of values of z is $|z|=1, z \neq 2$
$|z|=1 a n d z \neq 1$ (c) $z=\bar{z}$ (d) None of these

- Watch Video Solution

239. If z is a non real root of $\sqrt[7]{-1}$, then find the value of $z^{86}+z^{175}+z^{289}$

- Watch Video Solution

240. The quadratic equation $x^{2}+m x+n=0$ has roots which are twice those of $x^{2}+p x+m=0 a d m$, nand $p \neq 0$. The n the value of n / p is \qquad .

- Watch Video Solution

241. Let $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Then the value of the determinant $\left|1111-1-\omega^{2} \omega^{2} 1 \omega^{2} \omega^{4}\right|$ is 3ω b. $3 \omega(\omega-1)$ c. $3 \omega^{2}$ d. $3 \omega(1-\omega)$

- Watch Video Solution

242. All the value of k for which the quadratic polynomial $f(x)=2 x^{2}+k x+2=0$ has equal roots is \qquad .
(a) 4
(B) $+4,-4$
(c) $+3,-3$
(d) 2
243. if $a=\cos (2 \pi / 7)+i \sin (2 \pi / 7)$, then find the quadratic equation whose roots are $\alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+a^{5}+a^{6}$.

- Watch Video Solution

244. Let complex numbers α and $\frac{1}{\alpha^{-}}$lie on circles $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ and $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=4 r^{2}$ respectively if $z_{0}=x_{0}+i y_{0}$ satisfies the equation $2|z|_{0}^{2}=r^{2}+2$ then $|\alpha|=$
A. (a) $\frac{1}{\sqrt{2}}$
B. (b) $\frac{1}{2}$
C. (c) $\frac{1}{\sqrt{7}}$
D. (d) $\frac{1}{3}$

D Watch Video Solution

245. If $\left|\frac{z}{|\bar{z}|}-\bar{Z}\right|=1+|z|$, then prove that z is a purely imaginary number.

- Watch Video Solution

246. If $x=-5+2 \sqrt{-4}$, find the value of $x^{4}+9 x^{3}+35 x^{2}-x+4$.

(Watch Video Solution

247. Let a, b, andc be rel numbers which satisfy the equation $a+\frac{1}{b c}=\frac{1}{5}, b+\frac{1}{a c}=\frac{-1}{15}, a n d c+\frac{1}{a b}=\frac{1}{3}$. The value of $\frac{c-b}{c-a}$ is equal to
\qquad .

- Watch Video Solution

248. The value of $i^{1+3+5+\ldots} \ldots+(2 n+1)$ is \qquad .
249. a, b, c are integers, not all simultaneously equal, and ω is cube root of unity $(\omega \neq 1)$, then minimum value of $\left|a+b \omega+c \omega^{2}\right|$ is 0 b. 1 c. $\frac{\sqrt{3}}{2}$ d. $\frac{1}{2}$

- Watch Video Solution

250. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are reals such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=3$ and $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{10}{3}$. The value of $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$ is \qquad .

- Watch Video Solution

251. If $z+1 / z=2 \cos \theta$, prove that $\left|\left(z^{2 n}-1\right) /\left(z^{2 n}+1\right)\right|=|\tan n \theta|$

- Watch Video Solution

252. If α, β are the roots of the quadratic equation $a x^{2}+b x+c=0$, then which of the following expression will be the symmetric function of roots
a. $\left|\log \left(\frac{\alpha}{\beta}\right)\right|$ b. $\alpha^{2} \beta^{5}+\beta^{2} \alpha^{5}$ c. $\tan (\alpha-\beta)$ d. $\left(\log \left(\frac{1}{\alpha}\right)\right)^{2}+(\log \beta)^{2}$

- Watch Video Solution

253. The locus represented by the equation $|z-1|=|z-i|$ is

- Watch Video Solution

254. Prove that the roots of the equation $x^{4}-2 x^{2}+4=0$ forms a rectangle.

- Watch Video Solution

255. If a, b, c are non-zero real numbers, then find the minimum value of
the expression $\left(\frac{\left(a^{4}+3 a^{2}+1\right)\left(b^{4}+5 b^{2}+1\right)\left(c^{4}+7 c^{2}+1\right)}{a^{2} b^{2} c^{2}}\right)$ which is
not divisible by prime number.
256. If $z_{1} a n d z_{2}$ are two nonzero complex numbers such that $=$ $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then $\arg _{1}-\arg z_{2}$ is equal to $-\pi$ b. $\frac{\pi}{2}$ c. 0 d. $\frac{\pi}{2}$ e. π

- Watch Video Solution

257. If diagonals of a parallelogram bisect each other, prove that its a rhombus.

- Watch Video Solution

258. If a, b, c and u, v, w are the complex numbers representing the vertices of two triangles such that $(c=(1-r) a+r b$ and $w=(1-r) u+r v$, where r is a complex number, then the two triangles (a)have the same area (b) are similar (c)are congruent (d) None of these

- Watch Video Solution

259. If $z=\cos \theta+i \sin \theta$ is a root of the equation
$a_{0} z^{n}+a_{2} z^{n-2}++a_{n-1^{2}} z^{+} a_{n}=0$, then prove that $a_{0}+a_{1} \cos \theta+a_{2}^{\cos 2} \theta++a_{n} \cos n \theta=0 a_{1} \sin \theta+a_{2}^{\sin 2} \theta++a_{n} \sin n \theta=0$

- Watch Video Solution

260. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ is equal to
(a) 128ω
(b) -128ω
(c) $128 \omega^{2}$
(d) $-128 \omega^{2}$
261. If $z=x+i y$ is a complex number with $x, y \in Q$ and $|z|=1$, then show that $\left|z^{2 n}-1\right|$ is a rational numberfor every $n \in N$.

- Watch Video Solution

262. Referred to the principal axes as the axes of co ordinates find the equation of hyperbola whose focii are at $(0, \pm \sqrt{10})$ and which passes through the point $(2,3)$

D Watch Video Solution

263. Find the area bounded by $|\arg z| \leq \pi / 4$ and $|z-1|<|z-3|$

- Watch Video Solution

264. Find $\sum_{k=1}^{6}\left(\sin , \frac{2 \pi k}{7}-i \cos , \frac{2 \pi k}{7}\right)=$?
265. If the equation $a x^{2}+b x+c=0(a>0)$ has two real roots $\alpha a n d \beta$ such that $\alpha<-2$ and $\beta>2$, then which of the following statements is/are
true?
(a) $a-|b|+c<0$
(b) $c<0, b^{2}-4 a c>0$
(c) $4 a-2|b|+c<0$
$9 a-3|b|+c<0$

- Watch Video Solution

266. If fig shows the graph of $f(x)=a x^{2}+b x+c$, then

Fig

a. $c<0$
b. $b c>0$
c. $a b>0$
d. $a b c<0$

- Watch Video Solution

267. If $\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$, then $\mathrm{a} \cdot x=3, y=1 \quad$ b. $x=1, y=3$ C.
$x=0, y=3 \mathrm{~d} . x=0, y=0$

- Watch Video Solution

268. Let $z=x+$ iy be a complex number, where xandy are real numbers.
Let AandB be the sets defined by
$A=\{z:|z| \leq 2\}$ and $B=\{z:(1-i) z+(1+i) \bar{z} \geq 4\}$. Find the area of region
$A \cap B$
269. If $z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$, then prove that $\operatorname{Im}(z)=0$.

- Watch Video Solution

13
270. The value of $\sum_{n=1}\left(i^{n}+i^{n+1}\right)$, where $i=\sqrt{-1}$ equals
(A) i
(B) $i-1$
(C) $-i$
(D) 0

- Watch Video Solution

271. If $c \neq 0$ and the equation $p /(2 x)=a /(x+c)+b /(x-c)$ has two equal roots, then p can be $a .(\sqrt{a}-\sqrt{b})^{2}$ b. $(\sqrt{a}+\sqrt{b})^{2}$ c. $a+b$ d. $a-b$

D Watch Video Solution

272. If the equation $4 x^{2}-x-1=0$ and $3 x^{2}+(\lambda+\mu) x+\lambda-\mu=0$ have a root common, then the irrational values of λ and μ are $a \lambda=\frac{-3}{4} b \cdot \lambda=0 c$. $\mu=\frac{3}{4}$ b. $\mu=0$

- Watch Video Solution

273. Express the following in $a+i b$ form:
$\frac{(\cos 2 \theta-i \sin 2 \theta)^{4}(\cos 4 \theta+i \sin 4 \theta)^{-5}}{(\cos 3 \theta+i \sin 3 \theta)^{-2}(\cos 3 \theta-i \sin 3 \theta)^{-9}}$

- Watch Video Solution

274. The roots of the equation $t^{3}+3 a t^{2}+3 b t+c=0 \operatorname{arez}_{1}, z_{2}, z_{3}$ which represent the vertices of an equilateral triangle. Then $a^{2}=3 b b . b^{2}=a \mathrm{c}$. $a^{2}=b$ d. $b^{2}=3 a$

- Watch Video Solution

275. Solve the equation $(x-1)^{3}+8=0$ in the set C of all complex numbers.

- Watch Video Solution

276. If ' z, lies on the circle $|z-2 i|=2 \sqrt{2}$, then the value of $\arg \left(\frac{z-2}{z+2}\right)$ is the equal to

- Watch Video Solution

277. If the equation whose roots are the squares of the roots of the cubic $x^{3}-a x^{2}+b x-1=0$ is identical with the given cubic equation, then (A) $a=0, b=3$ (B) $a=b=0$ (C) $a=b=3$ (D) a, b, are roots of $x^{2}+x+2=0$

- Watch Video Solution

278. If $\sqrt{3}+i=(a+i b)(c+i d)$, then find the value of $\tan ^{-1}(b / a)+\tan ^{-1}(d / c)$

- Watch Video Solution

279. $\mathrm{P}(\mathrm{z})$ be a variable point in the Argand plane such that $|z|=$ minimum $\{|z-1|,|z+1|\}$, then $z+\bar{z}$ will be equal to a. -1 or 1 b. 1 but not equal to-1 c. -1 but not equal to 1 d. none of these

- Watch Video Solution

280. If the equation $a x^{2}+b x+c=0, a, b, c, \in R$ have none-real roots, then $c(a-b+c)>0$ b. $c(a+b+c)>0$ c. $c(4 a-2 b+c)>0$ d. none of these

- Watch Video Solution

281. Prove that the equation $Z^{3}+i Z-1=0$ has no real roots.

- Watch Video Solution

282. The locus of point z satisfying $\operatorname{Re}\left(\frac{1}{z}\right)=k$, where k is a non-zero real number is

- Watch Video Solution

283. If $p(q-r) x^{2}+q(r-p) x+r(p-q)=0$ has equal roots, then prove that $\frac{2}{q}=\frac{1}{p}+\frac{1}{r}$.

(D) Watch Video Solution

284. Find the square root $9+40 i$

- Watch Video Solution

285. Let $\alpha, \beta \in R$ If α, β^{2} are the roots of quadratic equation $x^{2}-p x+1=0$. and α^{2}, β are the roots of quadratic equation $x^{2}-q x+8=0$, then find p, q, α, β

- Watch Video Solution

286. Let a be a complex number such that $|a|<1 a n d z_{1}, z_{2}, z_{3}, \ldots$ be the vertices of a polygon such that $z_{k}=1+a+a^{2}+\ldots+a^{k-1}$ for all $k=1,2,3$, Then $_{1}, z_{2}$ lie within the circle (a) $\left|z-\frac{1}{1-a}\right|=\frac{1}{|a-1|}$
$\left|z+\frac{1}{a+1}\right|=\frac{1}{|a+1|}$ (c) $\left|z-\frac{1}{1-a}\right|=|a-1|$ (d) $\left|z+\frac{1}{a+1}\right|=|a+1|$
287. Let $\lambda \in R$. If the origin and the non-real roots of $2 z^{2}+2 z+\lambda=0$ form the three vertices of an equilateral triangle in the Argand plane, then λ is (a.)1 (b) $\frac{2}{3}$ (c.) 2 (d.) -1

- Watch Video Solution

288. If the ratio of the roots of the equation $x^{2}+p x+q=0$ are equal to ratio of the roots of the equation $x^{2}+b x+c=0$, then prove that $p^{2} c=b^{2} q$

- Watch Video Solution

289. Let $z=1-t+i \sqrt{t^{2}+t+2}$, where t is real parameter. The locus of z in the argand plane is
290. If $\sin \theta, \cos \theta$ be the roots of $a x^{2}+b x+c=0$, then prove that
$b^{2}=a^{2}+2 a c$

D Watch Video Solution

291. Express the following complex numbers in $a+i b$ form: $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ $2-\sqrt{-25}$
(ii) $\overline{1-\sqrt{-16}}$

- Watch Video Solution

292. If a, b, c are nonzero real numbers and $a z^{2}+b z+c+i=0$ has purely imaginary roots, then prove that $a=b^{2} c$

- Watch Video Solution

293. $z^{2}+z|z|+|z|^{2}=0$ then the locus of z is

Watch Video Solution

294. If the sum of the roots of the equation $\frac{1}{x+a}+\frac{1}{x+b}=1 / c$ is zero, the prove that the product of the root is $\left(-\frac{1}{2}\right)\left(a^{2}+b^{2}\right)$

- Watch Video Solution

295. Solve the equation $x^{2}+p x+45=0$. it is given that the squared difference of its roots is equal to 144

- Watch Video Solution

296. Find the least positive integer n such that $\left(\frac{2 i}{1+i}\right)^{n}$ is a positive integer.

- Watch Video Solution

297. $z_{1} a_{n d z_{2}}$ lie on a circle with center at the origin. The point of intersection z_{3} of he tangents at z_{1} andz z_{2} is given by $\frac{1}{2}\left(z_{1}+(z)_{2}\right)$ b. $\frac{2 z_{1} z_{2}}{z_{1}+z_{2}}$ c. $\frac{1}{2}\left(\frac{1}{z_{1}}+\frac{1}{z_{2}}\right)$ d. $\frac{z_{1}+z_{2}}{(z)_{1}(z)_{2}}$

- Watch Video Solution

298. If α, β are the roots of the equation $2 x^{2}-35 x+2=0$, the find the value of $(2 \alpha-35)^{3}(2 \beta-35)^{3}$

- Watch Video Solution

299. If one root of the equation $z^{2}-a z+a-1=0$ is ($1+\mathrm{i}$), where a is a complex number then find the root.

- Watch Video Solution

300. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ and $z_{1}+z_{2}+z_{3}=0$ then the area of the triangle whose vertices are z_{1}, z_{2}, z_{3} is $3 \sqrt{3} / 4 \mathrm{~b} . \sqrt{3} / 4 \mathrm{c} .1 \mathrm{~d} .2$

- Watch Video Solution

301. $\sqrt{5+12 i}+\sqrt{5-12 i}$
302. Simplify: $\frac{\sqrt{5+12 i}-\sqrt{5-12 i}}{\sqrt{5}}$

- Watch Video Solution

302. Find a quadratic equation whose product of roots x_{1} and x_{2} is equal
to 4 and satisfying the relation $\frac{x_{1}}{x_{1}-1}+\frac{x_{2}}{x_{2}-1}=2$.

- Watch Video Solution

303. If $\sqrt{5-12 i}+\sqrt{-5-12 i}=z$, then principal value of argz can be

$$
\text { A. a. } \frac{\pi}{4}
$$

B. b. $-\frac{\pi}{4}$
C. c. $\frac{3 \pi}{4}$
D. d. $-\frac{3 \pi}{4}$

- Watch Video Solution

304. If $(x+i y)(p+i q)=\left(x^{2}+y^{2}\right) i$, prove that $x=q, y=p$

(Watch Video Solution

305. If a and $b(\neq 0)$ are the roots of the equation $x^{2}+a x+b=0$, then find the least value of $x^{2}+a x+b(x \in R)$

- Watch Video Solution

306. Let A, B, C, D be four concyclic points in order in which $A D: A B=C D: C B$ If A, B, C are repreented by complex numbers a, b, c representively, find the complex number associated with point D

- Watch Video Solution

307. Convert $\frac{1+3 i}{1-2 i}$ into the polar form.

- Watch Video Solution

308. If the sum of the roots of the equation $(a+1) x^{2}+(2 a+3) x+(3 a+4)=0$ is -1 , then find the product of the roots.

- Watch Video Solution

309. Let the altitudes from the vertices A, B and C of the triangle $A B C$ meet its circumcircle at D, E and F respectively and z_{1}, z_{2} and z_{3} represent the points D, E and F respectively. If $\frac{z_{3}-z_{1}}{z_{2}-z_{1}}$ is purely real then the triangle $A B C$ is

- Watch Video Solution

310. For $|z-1|=1$, show that $\tan \left\{\frac{\arg (z-1)}{2}\right\}-\left(\frac{2 i}{z}\right)=-i$

- Watch Video Solution

311. The quadratic polynomial $p(x)$ has the following properties: $p(x) \geq 0$ for all real numbers, $p(1)=0$ and $p(2)=2$. Find the value of $p(3)$ is \qquad .

- Watch Video Solution

312. If $z_{1}=9 y^{2}-4-10 i x, z_{2}=8 y^{2}-20 i$ where $z_{1}=\bar{z}_{2}$ then $z=x+i y$ is equal to
313. If $\arg \left(z_{1}\right)=170^{\circ}$ and $\arg \left(z_{2}\right)=70^{\circ}$, then find the principal argument of $z_{1} z_{2}$

- Watch Video Solution

314. z_{1}, z_{2} and z_{3} are the vertices of an isosceles triangle in anticlockwise direction with origin as in center, then prove that z_{2}, z_{1} and $k z_{3}$ are in G.P. where $k \in R^{+}$

- Watch Video Solution

315. function $\mathrm{f}, \mathrm{x} \rightarrow \mathrm{R}, f(x)=\frac{3 x^{2}+m x+n}{x^{2}+1}$, if the range of function is $[-4,3)$, find the value of $|m+n|$ is \qquad
316. If z_{1} and z_{2} are conjugate to each other, find the principal argument of $\left(-z_{1} z_{2}\right)$.

- Watch Video Solution

317. If a is a complex number such that $|a|=1$, then find the value of a , so that equation $a z^{2}+z+1=0$ has one purely imaginary root.

- Watch Video Solution

318. If $x^{2}+p x+1$ is a factor of the expression $a x^{3}+b x+c$, then $a^{2}-c^{2}=a b$ b. $a^{2}+c^{2}=-a b c \cdot a^{2}-c^{2}=-a b$ d. none of these

- Watch Video Solution

319. Find the value of expression

$$
\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)\left(\cos \left(\frac{\pi}{2^{2}}\right)+i \sin \left(\frac{\pi}{2^{2}}\right)\right) \ldots \ldots
$$

(Watch Video Solution

320. If α, β are the roots of $x^{2}-p x+q=0$ and $\alpha^{\prime}, \beta^{\prime}$ are the roots of $x^{2}-p^{\prime} x+q^{\prime}=0$, then the value of $\left(\alpha-\alpha^{\prime}\right)^{2}+\left(\beta-\alpha^{\prime}\right)^{2}+\left(\alpha-\beta^{\prime}\right)^{2}+\left(\beta-\beta^{\prime}\right)^{2}$ is

- Watch Video Solution

321. If a, b are complex numbers and one of the roots of the equation $x^{2}+a x+b=0$ is purely real, whereas the other is purely imaginary, prove that $a^{2}-(\bar{a})^{2}=4 b$.

- Watch Video Solution

322. If $\left|z_{1}\right|=\left|z_{2}\right|=1$, then prove that $\left|z_{1}+z_{2}\right|=\left\lvert\, \frac{1}{z_{1}}+\frac{1}{z_{2}}\right.$
323. For $x \in(0,1)$, prove that $i^{2 i+3} \ln \left(\frac{i^{3} x^{2}+2 x+i}{i x^{2}+2 x+i^{3}}\right)=\frac{1}{e^{\pi}}\left(\pi-4 \tan ^{-1} x\right)$

- Watch Video Solution

324. The sum of the non-real root of $\left(x^{2}+x-2\right)\left(x^{2}+x-3\right)=12$ is
a. -1
b. 1
c. -6
d. 6

- Watch Video Solution

325. If n is a positive integer, prove that $\left|\operatorname{Im}\left(z^{n}\right)\right| \leq n|\operatorname{Im}(z)||z|^{n-1}$.
326. The number of roots of the equation $\sqrt{x-2}\left(x^{2}-4 x+3\right)=0$ is
(A) Three
(B) Four
(C) One
(D) Two

- Watch Video Solution

327. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex numbers, then
$\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)$ equals
328. If $x=1+i$ is a root of the equation $x^{3}-i x+1-i=0$, then the other real root is $0 \mathrm{~b} .1 \mathrm{c} .-1 \mathrm{~d}$. none of these

- Watch Video Solution

329. Find the modulus, argument, and the principal argument of the complex numbers. $\frac{i-1}{i\left(1-\cos \left(\frac{2 \pi}{5}\right)\right)+\sin \left(\frac{2 \pi}{5}\right)}$

- Watch Video Solution

330. Find the principal argument of the complex number $(1+i)^{5}(1+\sqrt{3 i})^{2}$
$-1 i(-\sqrt{3}+i)$

- Watch Video Solution

331. If the expression $x^{2}+2(a+b+c) x+3(b c+c a+a b)$ is a perfect square, then
a. $a=b=c$
b. $a= \pm b= \pm c$
c. $a=b \neq c$
d. none of these

- Watch Video Solution

332. Find the point of intersection of the curves $\arg (z-3 i)=\frac{3 \pi}{4}$ and $\arg (2 z+1-2 i)=\pi / 4$.

- Watch Video Solution

333. The curve $y=(\lambda+1) x^{2}+2$ intersects the curve $y=\lambda x+3$ in exactly one point, if λ equals
a. $\{-2,2\}$
b. $\{1\}$
c. $\{-2\}$
d. $\{2\}$

- Watch Video Solution

334. if z and w are two non-zero complex numbers such that $|z|=|w|$ and $\operatorname{argz}+\operatorname{argw}=\pi$, then $\mathrm{z}=$
335. The number of irrational roots of the equation
$\frac{4 x}{x^{2}+x+3}+\frac{5 x}{x^{2}-5 x+3}=-\frac{3}{2}$ is

Watch Video Solution

336. If $|z+\bar{z}|+|z-\bar{z}|=2$ then z lies on
(a) a straight line
(b) a set of four lines
(c) a circle
(d) None of these
337. If one vertex of the triangle having maximum area that can be inscribed in the circle $|z-i|=5$ is $3-3 i$, then find the other vertices of the triangle.

- Watch Video Solution

338. The number of complex numbers z satisfying $|z-3-i|=|z-9-i| a n d|z-3+3 i|=3$ are a. one b. two c. four d. none of these

- Watch Video Solution

339. If the equation $x^{2}-3 p x+2 q=0 a n d x^{2}-3 a x+2 b=0$ have a common roots and the other roots of the second equation is the reciprocal of the other roots of the first, then $(2 q-2 b)^{2}$. a.36pa $(q-b)^{2}$ b. $18 p a(q-b)^{2}$ c. $36 b q(p-a)^{2}$ d. $18 b q(p-a)^{2}$
340. Solve the equation $3^{x^{2}-x}+4^{x^{2}-x}=25$.

- Watch Video Solution

341. If t and c are two complex numbers such that $|t| \neq|c|,|t|=1$ and $z=\frac{a t+b}{t-c}, z=x+$ iy Locus of z is (where a, b are complex numbers) a. line segment b. straight line c. circle d. none of these

- Watch Video Solution

342. Consider the circle $|z|=r$ in the Argand plane, which is in fact the incircle of triangle $A B C$ If contact points opposite to the vertices A, B, C are $A_{1}\left(z_{1}\right), B\left(z_{2}\right) a n d C_{1}\left(z_{3}\right)$, obtain the complex numbers associated with the vertices A, B, C in terms of $z_{1}, z_{2} a n d z_{3}$
343. Solve the equation $12 x^{4}-56 x^{3}+89 x^{2}-56 x+12=0$.

- Watch Video Solution

344. If z is a complex number such that $-\pi / 2 \leq \operatorname{argz} \leq \pi / 2$, then which of the following inequality is true?
a. $|z-z| \leq|z|(\operatorname{argz}-\arg z)$
b. $|z-z| \geq|z|(\operatorname{argz}-\operatorname{argz})$
c. $|z-z|<(\operatorname{argz}-\operatorname{argz})$
d. none of these

- Watch Video Solution

345. P is a point on the argand diagram on the circle with OP as diameter two points Q and R are taken such that $\angle P O Q=\angle Q O R=\theta$. If O is the origin and P, Q, R are are represented by complex z_{1}, z_{2}, z_{3} respectively then show that $z_{2}^{2} \cos 2 \theta=z_{1} z_{3} \cos ^{2} \theta$
346. Solve the equation $(x+2)(x+3)(x+8)(x+12)=4 x^{2}$

- Watch Video Solution

347. Given α, β, respectively, the fifth and the fourth non-real roots of units, then find the value of $(1+\alpha)(1+\beta)\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\alpha^{4}\right)\left(1+\beta^{4}\right)$

- Watch Video Solution

348. Solve the equation $(x-1)^{4}+(x-5)^{4}=82$.

- Watch Video Solution

349. If the six roots of $x^{6}=-64$ are written in the form $a+i b$, where a and b are real, then the product of those roots for which $a>0$ is

- Watch Video Solution

350. The maximum area of the triangle formed by the complex coordinates z, z_{1}, z_{2} which satisfy the relations $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ and $\left|z-\frac{z_{1}+z_{2}}{2}\right| \leq r$,where $r>\left|z_{1}-z_{2}\right|$ is

- Watch Video Solution

351. Solve $\sqrt{x+5}+\sqrt{x+21}=\sqrt{6 x+40 .}$

(Watch Video Solution

352. If $z_{r}: r=1,2,3,50$ are the roots of the equation $\sum_{r=0} z^{r}=0$, then find 50
the value of $\sum_{r=0} \frac{1}{z_{r}-1}$
353. Evaluate the value of $\sqrt{6+\sqrt{6+\sqrt{6+\ldots . \rightarrow \text { Infinity }}}}$

D Watch Video Solution

354. If a complex number z satisfies $|2 z+10+10 i| \leq 5 \sqrt{3}-5$, then the least principal argument of z is
A. a. $-\frac{5 \pi}{6}$
B. b. $-\frac{11 \pi}{12}$
C. c. $-\frac{3 \pi}{4}$
D. d. $-\frac{2 \pi}{3}$

(Watch Video Solution

355. If $1, \alpha_{1}, \alpha_{2}, \alpha_{n-1}$ are the nth roots of unity, prove that $\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left(1-\alpha_{n-1}\right)=n$ Deduce
$\sin \left(\frac{\pi}{n}\right) \sin \left(2 \frac{\pi}{n}\right) \sin \left((n-1) \frac{\pi}{n}\right)=\frac{n}{2^{n-1}}$

- Watch Video Solution

356. If $n>1$, show that the roots of the equation $z^{n}=(z+1)^{n}$ are collinear.

- Watch Video Solution

357. If the expression $a x^{4}+b x^{3}-x^{2}+2 x+3$ has remainder $4 x+3$ when divided by $x^{2}+x-2$, find the value of a, b

- Watch Video Solution

358. If $\left|z_{2}+i z_{1}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ and $\left|z_{1}\right|=3$ and $\left|z_{2}\right|=4$, then the area of $\triangle A B C$, if affixes of A, B, andCarez $_{1}, z_{2}$, and $\left[\frac{z_{2}-i z_{1}}{1-i}\right]$ respectively, is $\frac{5}{2} \mathrm{~b}$. 0 c. $\frac{25}{2}$ d. $\frac{25}{4}$

Watch Video Solution

359. What is the locus of w if $w=\frac{3}{z} \operatorname{and}|z-1|=1$?

- Watch Video Solution

360. If z is complex number, then the locus of z satisfying the condition $|2 z-1|=|z-1|$ is (a)perpendicular bisector of line segment joining $1 / 2$ and

1 (b)circle (c)parabola (d)none of the above curves

(Watch Video Solution

361. Find the remainder when $x^{3}+4 x^{2}-7 x+6$ is divided by $x-1$.

- Watch Video Solution

362. What is the locus of Z
$\left|\left|z-\cos ^{-1} \cos 12\right|-\left|z-\sin ^{-1} s \in 12\right|\right|=8(\pi-3) ?$

- Watch Video Solution

363. Use the factor theorem to find the value of k for which $(a+2 b)$, wherea, $b \neq 0$ is a factor of $a^{4}+32 b^{4}+a^{3} b(k+3)$

- Watch Video Solution

364. If z is a complex number lying in the fourth quadrant of Argand plane and $\left|\left[\frac{k z}{k+1}\right]+2 i\right|>\sqrt{2}$ for all real value of $k(k \neq-1)$, then range of $\arg (z)$ is $\left(\frac{\pi}{8}, 0\right)$ b. $\left(\frac{\pi}{6}, 0\right)$ c. $\left(-\frac{\pi}{4}, 0\right)$ d. none of these

- Watch Video Solution

365. If $z=(\lambda+3)+i \sqrt{5-\lambda^{2}}$ then the locus of Z is

- Watch Video Solution

366. Let z be a complex number having the argument $\theta, 0<\theta<\frac{\pi}{2}$, and satisfying the equation $|z-3 i|=3$. Then find the value of $\cot \theta-\frac{6}{z}$

- Watch Video Solution

367. Given that $x^{2}+x-6$ is a factor of $2 x^{4}+x^{3}-a x^{2}+b x+a+b-1$, find the value of a and b

- Watch Video Solution

368. If z be any complex number such that $|3 z-2|+|3 z+2|=4$ then locus of z is
369. If p, q, r are three positive real number are in $A P$, then the roots of the quadratic equation $p x^{2}+q x+r=0$ are all real for

- Watch Video Solution

370. $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are the vertices of the triangle $A B C$ (in anticlockwise). If $\angle A B C=\pi / 4$ and $A B=\sqrt{2}(B C)$, then prove that $z_{2}=z_{3}+i\left(z_{1}-z_{3}\right)$

- Watch Video Solution

371. If $\left|z^{2}-1\right|=|z|^{2}+1$, then z lies on

- Watch Video Solution

372. $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are the vertices of the triangle $A B C$ (in anticlockwise). If $\angle A B C=\pi / 4$ and $A B=\sqrt{2}(B C)$, then prove that $z_{2}=z_{3}+i\left(z_{1}-z_{3}\right)$

- Watch Video Solution

373. The number of points of intersection of two curves $y=2$ sinxand $y=5 x^{2}+2 x+3$ is a. 0 b. 1 c. 2 d. ∞

- Watch Video Solution

374. If $|z|=1$, then the point representing the complex number $-1+3 z$ will lie on a. a circle b. a parabola c. a straight line d. a hyperbola

- Watch Video Solution

375. If one vertex of a square whose diagonals intersect at the origin is $3(\cos \theta+i \sin \theta)$, then find the two adjacent vertices.

- Watch Video Solution

376. If $\alpha a n d \beta$ are the roots of $x^{2}+p x+q=0$ and α^{4}, β^{4} are the roots of $x^{2}-r x+s=0$, then the equation $x^{2}-4 q x+2 q^{2}-r=0$ has always. A. one positive and one negative root B. two positive roots C. two negative roots D. cannot say anything

- Watch Video Solution

377. Find the center of the are represented by $\arg [(z-3 i) /(z-2 i+4)]=\pi / 4$.

- Watch Video Solution

378. Let $\left|z_{r}-r\right| \leq r, \forall r=1,2,3, \ldots, n$ Then $\left|\sum_{r=1}^{n} Z_{r}\right|$ is less than $n \mathrm{~b} .2 n \mathrm{c}$.
$n(n+1)$ d. $\frac{n(n+1)}{2}$

- Watch Video Solution

379. If $a^{2}+b^{2}+c^{2}=1$, thena $b+b c+c a$ lie in the interval
a. $\left[\frac{1}{3}, 2\right]$
b. $[-1,2]$
c. $\left[-\frac{1}{2}, 1\right]$
d. $\left[-1, \frac{1}{2}\right]$
380. $z_{1} a n d z_{2}$ are the roots of $3 z^{2}+3 z+b=0$. if $O(0),\left(z_{1}\right),\left(z_{2}\right)$ form an equilateral triangle, then find the value of b

- Watch Video Solution

381. Consider the given equation $11 z^{10}+10 i z^{9}+10 i z-11=0$, then $|z|$ is

- Watch Video Solution

382. Let α, β be the roots of the equation $(x-a)(x-b)=c, c \neq 0$. Then the roots of the equation $(x-\alpha)(x-\beta)+c=0$ are a, c b. b, c c. $a, b \mathrm{~d}$. $a+c, b+c$

- Watch Video Solution

383. If $8 i z^{3}+12 z^{2}-18 z+27 i=0$, then (a). $|z|=\frac{3}{2}$ (b). $|z|=\frac{2}{3}$ (c). $|z|=1$ (d). $|z|=\frac{3}{4}$

(D) Watch Video Solution

384. Let $z_{1}, z_{2} a n d z_{3}$ represent the vertices A, B, and C of the triangle $A B C$, respectively, in the Argand plane, such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=5$. Prove that $z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C=0$.

- Watch Video Solution

385. Let a, b, c be real numbers, $a \neq 0$. If α is a zero of $a^{2} x^{2}+b x+c=0, \beta$ is the zero of $a^{2} x^{2}-b x-c=0$ and $0<\alpha<\beta$ then prove that the equation $a^{2} x^{2}+2 b x+2 c=0$ has a root γ that always satisfies $\alpha<\gamma<\beta$.

- Watch Video Solution

386. If $x^{2}+p x+1$ is a factor of the expression $a x^{3}+b x+c$, then $a^{2}-c^{2}=a b b \cdot a^{2}+c^{2}=-a b c \cdot a^{2}-c^{2}=-a b$ d. none of these
387. If $|z|<\sqrt{2}-1$, then $\left|z^{2}+2 z \cos \alpha\right|$ is a. less than 1 b. $\sqrt{2}+1$ c. $\sqrt{2}-1 \mathrm{~d}$. none of these

- Watch Video Solution

388. On the Argand plane $z_{1}, z_{2} a n d z_{3}$ are respectively, the vertices of an isosceles triangle $A B C$ with $A C=B C$ and equal angles are θ If z_{4} is the incenter of the triangle, then prove that
$\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right)=(1+\sec \theta)\left(z_{4}-z_{1}\right)^{2}$

- Watch Video Solution

389. If $z(\operatorname{Rez} \neq 2)$ be a complex number such that $z^{2}-4 z=|z|^{2}+\frac{16}{|z|^{3}}$ then the value of $|z|^{4}$ is

- Watch Video Solution

$(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0$ are always
a. positive
b. real
c. negative
d. none of these

- Watch Video Solution

391. Find the locus of the points representing the complex number z for which $|z+5|^{2}-|z-5|^{2}=10$.
392. The equation $x-\frac{2}{x-1}=1-\frac{2}{x-1}$ has
a. no root
b. one root
c. two equals roots
d. Infinitely many roots
393. Identify the locus of z if $\bar{z}=\bar{a}+\frac{r^{2}}{z-a}$.
394. If the expression $(1+i r)^{3}$ is of the form of $s(1+i)$ for some real ' s ' where ' r ' is also real and $i=\sqrt{-1}$

- Watch Video Solution

395. Two towns AandB are 60 km apart. A school is to be built to serve 150
students in town Aand50 students in town B If the total distance to be travelled by 200 students is to be as small as possible, then the school should be built at town B town A 45 km from town A 45 km from town B

- Watch Video Solution

396. Find the amplitude of $\sin \alpha+i(1-\cos \alpha)$

- Watch Video Solution

397. Modulus of non zero complex number z satisfying $\bar{z}+z=0$ and $|z|^{2}-4 z i=z^{2}$ is \qquad .

- Watch Video Solution

398. Find the condition on a, b, c, d such that equations
$2 a x^{3}+b x^{2}+c x+d=0$ and $2 a x^{2}+3 b x+4 c=0$ have a common root.

- Watch Video Solution

399. Let $z=9+b i$, and b is nonzero real and $i^{2}=-1$. If the imaginary part of $z^{2} a n d z^{3}$ are equal, then $\frac{b}{3}$ is \qquad .

- Watch Video Solution

400. Prove that ifz_{1}, z_{2} are two complex numbers and $c>0$ then

$$
\left|\left(z_{1}+z_{2}\right)^{2}\right| \leq(1+c)\left|\left(z_{1}\right)^{2}\right|+\left(1+\left(\frac{1}{c}\right)\right)\left|z_{2}\right|^{2}
$$

- Watch Video Solution

401. Let $f(x), g(x)$, and $h(x)$ be the quadratic polynomials having positive leading coefficients and real and distinct roots. If each pair of them has a common root, then find the roots of $f(x)+g(x)+h(x)=0$.

- Watch Video Solution

402. Find the minimum value of $|z-1|$ if $||z-3|-|z+1||=2$.

(Watch Video Solution

403. If $x=\omega-\omega^{2}-2$ then, the value of $x^{4}+3 x^{3}+2 x^{2}-11 x-6$ is (where ω is a imaginary cube root of unity)

- Watch Video Solution

404. If a, b, c be the sides of $A B C$ and equations $a x^{2}+b x+c=0$ and $5 x^{2}+12 x+13=0$ have a common root, then find $\angle C$

- Watch Video Solution

405. Find the greatest and the least value of $\left|z_{1}+z_{2}\right|$ if $z_{1}=24+7 i$ and $\left|z_{2}\right|=6$.

- Watch Video Solution

406. If the complex numbers x and y satisfy
$x^{3}-y^{3}=$ 98iand $x-y=7$, thenxy $=a+i b$, where, $b, \in R$ The value of $(a+b) / 3$ equals \qquad .

- Watch Video Solution

407. If $b^{2}<2 a c$, then prove that $a x^{3}+b x^{2}+c x+d=0$ has exactly one real root.

D Watch Video Solution

408. If z is any complex number such that $|z+4| \leq 3$, then find the greatest value of $|z+1|$

- Watch Video Solution

409. If z_{1}, z_{2} and z_{3}, are the vertices of an equilateral triangle $A B C$ such that $\left|z_{1}-i\right|=\left|z_{2}-i\right|=\left|z_{3}-i\right|$.then $\left|z_{1}+z_{2}+z_{3}\right|$ equals:

- Watch Video Solution

410. If two roots of $x^{3}-a x^{2}+b x-c=0$ are equal in magnitude but opposite in signs, then prove that $a b=c$
411. For any complex number z find the minimum value of $|z|+|z-2 i|$

- Watch Video Solution

412. The greatest positive argument of complex number satisfying $|z-4|=\operatorname{Re}(z)$ is
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

- Watch Video Solution

413. If $\alpha, \beta a n d y$ are the roots of $x^{3}+8=0$ then find the equation whose roots are $\alpha^{2}, \beta^{2} a n d y^{2}$.
414. Prove that the distance of the roots of the equation $\left|\sin \theta_{1}\right| z^{3}+\left|\sin \theta_{2}\right| z^{2}+\left|\sin \theta_{3}\right| z+\left|\sin \theta_{4}\right|=|3|$ from $z=0$ is greater than $2 / 3$.

- Watch Video Solution

415. Let $z_{1} a n d z_{2}$ be two distinct complex numbers and let $z=(1-t) z_{1}+t z_{2}$ for some real number t with $0<t<1$. If arg(w) denotes the principal argument of a nonzero complex number w, then

$$
\begin{aligned}
& \left|z-z_{1}\right|+\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right|\left(z-z_{1}\right)=\left(z-z_{2}\right) \\
& \left|z-z_{1} z-(z)_{1} z_{2}-z_{1}(z)_{2}-(z)_{1}\right|=0 \\
& \arg \left(z-z_{1}\right)=\arg \left(z_{2}-z_{1}\right)
\end{aligned}
$$

- Watch Video Solution

416. If α, β, γ are the roots of the equation $x^{3}-p x+q=0$, then find the cubic equation whose roots are $\frac{\alpha}{1+\alpha}, \frac{\beta}{1+\beta}, \frac{\gamma}{1+\gamma}$.

- Watch Video Solution

417. If $\left|z_{1}-1\right| \leq 1,\left|z_{2}-2\right| \leq 2,\left|z_{3}-3\right| \leq 3$, then find the greatest value of $\left|z_{1}+z_{2}+z_{3}\right|$

- Watch Video Solution

418. If the roots of equation $x^{3}+a x^{2}+b=0 \operatorname{are} \alpha_{1}, \alpha_{2}$ and $\alpha_{3}(a, b \neq 0)$, then find the equation whose roots are $\frac{\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}}{\alpha_{1} \alpha_{2} \alpha_{3}}, \frac{\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}}{\alpha_{1} \alpha_{2} \alpha_{3}}, \frac{\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{2}}{\alpha_{1} \alpha_{2} \alpha_{3}}$

- Watch Video Solution

419. If z is a complex number, then find the minimum value of $|z|+|z-1|+|2 z-3|$
420. Let $|z|=2$ and $w=\frac{z+1}{z-1}$, wherez, $w, \in C$ (where C is the set of complex numbers). Then product of least and greatest value of modulus of w is \qquad .

- Watch Video Solution

421. If α, β and y are roots of $7 x^{3}-x-2=0$, then find the value of
$\sum\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)$.

- Watch Video Solution

422. if z is complex no satisfies the condition $|Z|>3$. Then find the least value of $\left|Z+\frac{1}{Z}\right|$
423. If α is the nth root of unity then $1+2 \alpha+3 \alpha^{2}+\ldots$. to n terms equal to

- Watch Video Solution

424. Let r, s, andt be the roots of equation $8 x^{3}+1001 x+2008=0$. Then find the value of $(r+s)^{3}+(s+t)^{3}+(t+r)^{3}$.

- Watch Video Solution

425. Given z is a complex number with modulus 1 . Then the equation

$$
\left[\frac{1+i a}{1-i a}\right]^{4}=z \text { has all roots real and distinct two real and two imaginary }
$$ three roots two imaginary one root real and three imaginary

- Watch Video Solution

426. The number of value of k for which $\left[x^{2}-(k-2) x+k^{2}\right] \times\left[x^{2}+k x+(2 k-1)\right]$ is a perfect square is a.2 b. 1 c. 0 d. none of these

Watch Video Solution

427. For any complex number z prove that $|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \leq \sqrt{2}|z|$

- Watch Video Solution

428. The point $z_{1}=3+\sqrt{3} i$ and $z_{2}=2 \sqrt{3}+6 i$ are given on a complex plane. The complex number lying on the bisector of the angle formed by the vectors $z_{1} a n d z_{2}$ is
a. $z=\frac{(3+2 \sqrt{3})}{2}+\frac{\sqrt{3}+2}{2} i$
b. $z=5+5 i$
c. $z=-1-i$
d.none of these

Watch Video Solution

429. The total number of integral values of a so that $x^{2}+a x+a+1=0$ has integral roots is equal to a. 1 b .2 c .4 d . none of these

- Watch Video Solution

430. If $w=\frac{z}{z-\frac{1}{3 i}}$ and $|w|=1$, then find the locus of z

- Watch Video Solution

431. Let C_{1} and C_{2} be two circles with C_{2} lying inside $C_{1} \mathrm{~A}$ circle C lying inside C_{1} touches C_{1} internally and C_{2} externally. Identify the locus of the centre of C

- Watch Video Solution

432. The number of positive integral solutions of $x^{4}-y^{4}=3789108$ is a. 0 b. 1 c. 2 d. 4

D Watch Video Solution

433. The region of argand diagram defined by $|z-1|+|z+1| \leq 4$ interior of an ellipse (2) exterior of a circle (3) interior and boundary of an ellipse (4) none of these

- Watch Video Solution

434. $z_{1}, z_{2}, z_{3}, z_{4}$ are distinct complex numbers representing the vertices of a quadrilateral $A B C D$ taken in order. If $z_{1}-z_{4}=z_{2}-z_{3}$ andarg$\left[\left(z_{4}-z_{1}\right) /\left(z_{2}-z_{1}\right)\right]=\pi / 2$, the quadrilateral is a. rectangle b. rhombus c. square d. trapezium

- Watch Video Solution

$x^{2}+p x+q=0 \operatorname{andx}^{2 n}+p^{n} x^{n}+q^{n}=0 \operatorname{andif}(\alpha / \beta),(\beta / \alpha)$ are the roots of $x^{n}+1+(x+1)^{n}=0$, the $\cap(\in N)$ a. must be an odd integer b. may be any integer c. must be an even integer d. cannot say anything

- Watch Video Solution

436. If $(\log) \sqrt{3}\left(\frac{|z|^{2}-|z|+1}{2+|z|}\right)>2$, then locate the region in the Argand plane which represents Z

D Watch Video Solution

437. If $z=\frac{(1+i \sqrt{3})^{2}}{4 i(1-i \sqrt{3})}$ is a complex number then a. $\arg (z)=\frac{\pi}{4}$

$$
\arg (z)=\frac{\pi}{2} c \cdot|z|=\frac{1}{2} \mathrm{~d} .|z|=2
$$

- Watch Video Solution

438.

$\alpha+\beta+\gamma=2, \alpha^{2}+\beta^{2}+\gamma^{2}=6, \alpha^{3}+\beta^{3}+\gamma^{3}=8$, then $\alpha^{4}+\beta^{4}+\gamma^{4}$ is a. 18 b.

10 c. 15 d. 36

D Watch Video Solution

439. If $z=\frac{3}{2+\cos \theta+i \sin \theta}$ then show that z lies on a circle in the complex plane

- Watch Video Solution

440. If $z=x+$ iy such that $|z+1|=|z-1|$ and $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$, then find z.

- Watch Video Solution

441. If $x y=2(x+y), x \leq y$ and $x, y \in N$, then the number of solutions of the equation are a. two b. three c. no solution d. infinitely many solutions
442. If $\operatorname{Im}\left(\frac{z-1}{e^{\theta i}}+\frac{e^{\theta i}}{z-1}\right)=0$, then find the locus of z

- Watch Video Solution

443. If pandq are distinct prime numbers, then the number of distinct imaginary numbers which are pth as well as qth roots of unity are. a. $\min (p, q)$ b. min (p, q) c. 1 d. zero

- Watch Video Solution

444. The number of real solutions of the equation $(9 / 10)^{x}=-3+x-x^{2}$ is a. 2 b. 0 c. 1 d. none of these

- Watch Video Solution

445. What is locus of z if $\left|z-1-\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right|+\left|z+\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)-\frac{\pi}{2}\right|=1$?

- Watch Video Solution

446. If $|z-2-i|=|z|\left|\sin \left(\frac{\pi}{4}-\arg z\right)\right|$ then locus of z is

(Watch Video Solution

447. The number of integral values of a for which the quadratic equation $(x+a)(x+1991)+1=0$ has integral roots are a. 3 b. 0 c. 1 d. 2

- Watch Video Solution

448. If ω is the imaginary cube root of unity and $a+b+c=0$ then show that $\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}=27 a b c$
449. If z is a complex number having least absolute value and $|z-2+2 i|=1$,then $\quad z=(2-1 / \sqrt{2})(1-i) \quad$ b. $\quad(2-1 / \sqrt{2})(1+i) \quad$ c. $(2+1 / \sqrt{2})(1-i)$ d. $(2+1 / \sqrt{2})(1+i)$

- Watch Video Solution

450. If the equation $\cot ^{4} x-2 \operatorname{cosec}^{2} x+a^{2}=0$ has at least one solution, then the sum of all possible integral values of a is equal to 4 (b) 3 (c) 2 (d) 0

- Watch Video Solution

451. Which of the following is equal to $\sqrt[3]{-1}$ a. $\frac{\sqrt{3}+\sqrt{-1}}{2}$ b. $\frac{-\sqrt{3}+\sqrt{-1}}{\sqrt{-4}}$ c. $\frac{\sqrt{3}-\sqrt{-1}}{\sqrt{-4}}$ d. $-\sqrt{-1}$

- Watch Video Solution

452. If ω is the imaginary cube root of 1 then prove that $\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}=(2 a-b-c)(2 b-a-c)(2 c-a-b)$

- Watch Video Solution

453. The number of the real solutions of the equation $x^{2}-3|x|+2=0$ is

- Watch Video Solution

454. If $|z-1|+|z+3| \leq 8$, then prove that z lies on the circle.

- Watch Video Solution

455. If $z_{1} a n d z_{2}$ are the complex roots of the equation $(x-3)^{3}+1=0$, thenz $z_{1}+z_{2}$ equal to
b. 3
c. 5
d. 7

- Watch Video Solution

456. If the quadratic equation $a x^{2}+b x+6=0$ does not have real roots
and $b \in R^{+}$, then prove that $a>\max \left\{\frac{b^{2}}{24}, b-6\right\}$

- Watch Video Solution

457. If the equation $|z-a|+|z-b|=3$ represents an ellipse and $a, b \in C$, wherea is fixed, then find the locus of b
458. If $\left|z^{2}-3\right|=3|z|$, then the maximum value of $|z|$ is
a. 1
$3+\sqrt{21}$
b. $\frac{}{2}$
$\sqrt{21}-3$
c. 2
d. none of these

- Watch Video Solution

459. What is the minimum height of any point on the curve $y=x^{2}-4 x+6$ above the x-axis?

- Watch Video Solution

460. Find the locus of point z if z, i, and iz , are collinear.

- Watch Video Solution

461. If $|z-1| \leq 2$ and $\left|\omega z-1-\omega^{2}\right|=a$ where ω is cube root of unity, then complete set of values of a is $a .0 \leq a \leq 2$ b. $\frac{1}{2} \leq a \leq \frac{\sqrt{3}}{2}$ C. $\frac{\sqrt{3}}{2}-\frac{1}{2} \leq a \leq \frac{1}{2}+\frac{\sqrt{3}}{2}$ d. $0 \leq a \leq 4$

- Watch Video Solution

462. What is the maximum height of any point on the curve $y=-x^{2}+6 x-5$ above the x-axis?

- Watch Video Solution

463. Consider an ellipse having its foci at $A\left(z_{1}\right) \operatorname{andB}\left(z_{2}\right)$ in the Argand plane. If the eccentricity of the ellipse be e and it is known that origin is
an interior point of the ellipse, then prove that $e \in\left(0, \frac{\left|z_{1}-z_{2}\right|}{\left|z_{1}\right|+\left|z_{2}\right|}\right)$

- Watch Video Solution

464. The roots of the cubic equation $(z+a b)^{3}=a^{3}$, such that $a \neq 0$, respresent the vertices of a trinagle of sides of length

- Watch Video Solution

465. Find the largest natural number a for which the maximum value of $f(x)=a-1+2 x-x^{2} \quad$ is smaller than the minimum value of $g(x)=x^{2}-2 a x+10-2 a$

(Watch Video Solution

466. In the Argands plane what is the locus of $z(\neq 1)$ such that
$\arg \left\{\frac{3}{2}\left(\frac{2 z^{2}-5 z+3}{3 z^{2}-z-2}\right)\right\}=\frac{2 \pi}{3}$.

Watch Video Solution

- Watch Video Solution

468. Let $f(x)=a x^{2}+b x+c$ be a quadratic expression having its vertex at $(3,-2)$ and value of $f(0)=10$. Find $f(x)$.

- Watch Video Solution

469. If $|z|=2 a n d \frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{z-2}{z+2}$, then prove that z_{1}, z_{2}, z_{3} are vertices of a right angled triangle.

(D) Watch Video Solution

470. If $\left|\frac{z_{1}}{z_{2}}\right|=1$ and $\arg \left(z_{1} z_{2}\right)=0$, then a. $z_{1}=z_{2}$ b. $\left|z_{2}\right|^{2}=z_{1} \cdot z_{2}$
c. $z_{1} \cdot z_{2}=1 \mathrm{~d}$. none of these

- Watch Video Solution

471. Find the least value of n such that
$(n-2) x^{2}+8 x+n+4>0, \forall x \in R$, wheren $\in N$

- Watch Video Solution

472. The common roots of the equations $z^{3}+2 z^{2}+2 z+1=0$ and $z^{1985}+z^{100}+1=0$ are
473. If $z_{1}+z_{2}+z_{3}+z_{4}=0$ where $b_{i} \in R$ such that the sum of no two values being zero and $b_{1} z_{1}+b_{2} z_{2}+b_{3} z_{3}+b_{4} z_{4}=0$ where $z_{1}, z_{2}, z_{3}, z_{4}$ are arbitrary complex numbers such that no three of them are collinear, prove that the four complex numbers would be concyclic if $\left|b_{1} b_{2}\right|\left|z_{1}-z_{2}\right|^{2}=\left|b_{3} b_{4}\right|\left|z_{3}-z_{4}\right|^{2}$.

- Watch Video Solution

474. If the inequality $\left(m x^{2}+3 x+4\right) /\left(x^{2}+2 x+2\right)<5$ is satisfied for all $x \in R$, then find the value of m

(Watch Video Solution

475. If $|(z-2) /(z-3)|=2$ represents a circle, then find its radius.

- Watch Video Solution

476. If z_{1} is a root of the equation $a_{0} z^{n}+a_{1} z^{n-1}+\ldots \ldots .+\left(a_{n-1}\right) z+a_{n}=3$, where $\quad\left|a_{i}\right|<2$ for $i=0,1, \ldots . . n$, then (a). $|z|=\frac{3}{2}$ (b). $|z|<\frac{1}{4}$ (c). $|z|>\frac{1}{4}$ (d). $|z|>\frac{1}{3}$

- Watch Video Solution

477. If $f(x)=\left(a_{1} x+b_{1}\right)^{2}+\left(a_{2} x+b_{2}\right)^{2}+\ldots+\left(a_{n} x+b_{n}\right)^{2}$, then prove that $\left(a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}\right)$

- Watch Video Solution

478. If the imaginary part of $(2 z+1) /(i z+1)$ is -2 , then find the locus of the point representing in the complex plane.

- Watch Video Solution

479. If $|2 z-1|=|z-2| a n d z_{1}, z_{2}, z_{3}$ are complex numbers such that
$\left|z_{1}-\alpha\right|<\alpha,\left|z_{2}-\beta\right|<\beta$, then= $\left|\frac{z_{1}+z_{2}}{\alpha+\beta}\right|$ a $<|z|$ b. $<2|z| c .>|z|$ d. $>2|z|$

- Watch Video Solution

480. If $(c>0)$ and $2 a x^{2}+3 b x+5 c=0$ does not have any real roots, then prove that $2 a-3 b+5 c>0$.

- Watch Video Solution

481. Find the number of complex numbers which satisfies both the equations $|z-1-i|=\sqrt{2} a n d|z+1+i|=2$.

- Watch Video Solution

482. Let ω be the complex number $\cos \left(2 \frac{\pi}{3}\right)+i \sin \left(2 \frac{\pi}{3}\right)$ Then the number of distinct complex numbers z satisfying $\left|\begin{array}{ccc}z+1 & \omega & \omega^{2} \\ \omega & \left(z+\omega^{2}\right) & 1 \\ \omega^{2} & 1 & z+\omega\end{array}\right|=0$ is equals to

- Watch Video Solution

483. If $a x^{2}+b x+6=0$ does not have distinct real roots, then find the least value of $3 a+b$

- Watch Video Solution

484. $|z-2-3 i|^{2}+|z-4-3 i|^{2}=\lambda$ represents the equation of the circle with least radius. find the value of λ
485. Match the statements/expressions given in column I with the values given in Column II. Column I, Column II In R^{2}, if the magnitude of the projection vector of the vector $\alpha \hat{i}+\beta \hat{j}$ on $\sqrt{3} \hat{i}+\hat{j} i s \sqrt{3}$ and if $|\alpha|$ is/are, (p) 1 Let aandb be real numbers such that the function $f(x)=\left\{-3 a x^{2}-2, x<1 b x+a^{2}, x \geq 1\right.$ Differentiable for all $x \in R$ Then possible value (s) of a is/are, (q) 2 Let $\omega \neq 1$ be a complex cube root of unity.

$$
\left(3-3 \omega+2 \omega^{2}\right)^{4 n+3}+\left(2+3 \omega-3 \omega^{2}\right)^{4 n+3}+\left(-3-2 \omega+3 \omega^{2}\right)^{4 n+3}=0
$$

then possible values (s) of n is /are, (r) 3 Let the harmonic mean of two positive real numbers aandb be 4 . If q is a positive real number such that $a, 5, q, b$ is an arithmetic progressin, then the values (s)of $|q-a|$ is /are, (s) 4 ,(t) 5

Watch Video Solution

486. A quadratic trinomial $P(x)=a x^{2}+b x+c$ is such that the equation $P(x)=x$ has no real roots. Prove that in this case equation $P(P(x))=x$ has no real roots either.
487. If $(\sqrt{8}+i)^{50}=3^{49}(a+i b)$, then find the value of $a^{2}+b^{2}$

- Watch Video Solution

488. Let $a, b, c \in Q^{+}$satisfying $a>b>c$. Which of the following statement(s) hold true of the quadratic polynomial $f(x)=(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)$? a. The mouth of the parabola $y=f(x)$ opens upwards b. Both roots of the equation $f(x)=0$ are rational c. The x-coordinate of vertex of the graph is positive d. The product of the roots is always negative

- Watch Video Solution

489. Find the complex number satisfying system of equation $z^{3}=-((\omega))^{7}$ and $z^{5} \cdot \omega^{11}=1$
490. If $x, y \in R$ satify the equation $x^{2}+y^{2}-4 x-2 y+5=0$, then the value of the expression $\left[(\sqrt{x}-\sqrt{y})^{2}+4 \sqrt{x y}\right] /(x+\sqrt{x y})$ is
a. $\sqrt{2}+1$
b. $\frac{\sqrt{2}+1}{2}$
$\sqrt{2}-1$
c. $\frac{2}{2}$
d. $\frac{\sqrt{2}+1}{\sqrt{2}}$

- Watch Video Solution

491. If $|z-i \operatorname{Re}(z)|=|z-\operatorname{Im}(z)|$, then prove that z, lies on the bisectors of the quadrants.
492. For any integer k let $\alpha_{k}=\cos \left(\frac{k \pi}{7}\right)+i \sin \left(\frac{k \pi}{7}\right)$ where $i=\sqrt{-1}$ the value of expression $\frac{\sum_{k=1}^{12}\left|\alpha_{k+1}-\alpha_{k}\right|}{\sum_{k=1}^{3}\left|\left(\alpha_{4 k-1}-\alpha_{4 k-2}\right)\right|}$

- Watch Video Solution

493. If $x=1+\frac{1}{3+\frac{1}{2+\frac{1}{3+\frac{1}{2}}}}$
a $\frac{52}{2}$
b. $\frac{55}{71}$

60
c. $\overline{52}$
d. $\frac{71}{55}$

- Watch Video Solution

494. Show that $\left(x^{2}+y^{2}\right)^{4}=\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)^{2}+\left(4 x^{3} y-4 x y^{3}\right)^{2}$

- Watch Video Solution

495. Let $\omega=e^{i \frac{\pi}{3}}$,and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ be non zero complex numbers such that $a+b+c=x$
$a+b \omega+c \omega^{2}=y$
$a+b \omega^{2}+c \omega=z$ then the value of $\frac{|x|^{2}+|y|^{2}+|z|^{2}}{|a|^{2}+|b|^{2}+|c|^{2}}$ is

- Watch Video Solution

496. Find the values of a for which all the roots of the euation
$x^{4}-4 x^{3}-8 x^{2}+a=0$ are real.

(D) Watch Video Solution

497. if z is any complex number satisfying $|z-3-2 i| \leq 2$ then the minimum value of $|2 z-6+5 i|$ is

- Watch Video Solution

498. Let $\left|\left(\left(\bar{z}_{1}\right)-2\left(\bar{z}_{2}\right)\right) /\left(2-z_{1}\left(\bar{z}_{2}\right)\right)\right|=1$ and $\left|z_{2}\right| \neq 1$,where z_{1} and z_{2} are complex numbers. Show that $\left|z_{1}\right|=2$.

- Watch Video Solution

499. If $x=2+2^{2 / 3}+2^{1 / 3}$, then the value of $x^{3}-6 x^{2}+6 x$ is
(a)3
b. 2
c. 1
d. - 2

D Watch Video Solution

500. Let $1, w, w^{2}$ be the cube root of unity. The least possible degree of a polynomial with real coefficients having roots
$2 w,(2+3 w),\left(2+3 w^{2}\right),\left(2-w-w^{2}\right)$ is \qquad .

- Watch Video Solution

501. If $z_{1} a n d z_{2}$ are complex numbers and $u=\sqrt{z_{1} z_{2}}$, then prove that
$\left|z_{1}\right|+\left|z_{2}\right|=\left|\frac{z_{1}+z_{2}}{2}+u\right|+\left|\frac{z_{1}+z_{2}}{2}-u\right|$
502. The least value of the expression $x^{2}+4 y^{2}+3 z^{2}-2 x-12 y-6 z+14$ is
a. 1
b. no least value
c. 0
d. none of these

- Watch Video Solution

503. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ is equal to
(a) 128ω
(b) -128ω
(c) $128 \omega^{2}$
(d) $-128 \omega^{2}$

D Watch Video Solution

504. If $|z|=1$ and let $\omega=\frac{(1-z)^{2}}{1-z^{2}}$, then prove that the locus of ω is equivalent to $|z-2|=|z+2|$

- Watch Video Solution

505. If $x=2+2^{2 / 3}+2^{1 / 3}$, then the value of $x^{3}-6 x^{2}+6 x$ is
(a) 3
b. 2
c. 1
d. - 2
A. a. 3
B. b. 2
C. c. 1
D. d. -2

D Watch Video Solution

506. Let $z=x+i y$ Then find the locus of $P(z)$ such that $\frac{1+\bar{z}}{z} \in R$.

- Watch Video Solution

507. $\frac{(\cos \theta+i \sin \theta)^{4}}{(\sin \theta+i \cos \theta)^{5}}$ is equal to.
508. Find the values of k for which $\left|\frac{x^{2}+k x+1}{x^{2}+x+1}\right|<2, \forall x \in R$

- Watch Video Solution

509. Identify locus z if $\operatorname{Re}(z+1)=|z-1|$

- Watch Video Solution

510. If z is a complex number satisfying $z^{4}+z^{3}+2 z^{2}+z+1=0$ then the set of possible values of z is

- Watch Video Solution

511. Solve the equation $\sqrt{a\left(2^{x}-2\right)+1}=1-2^{x}$ for every value of the parameter a.
512. If $\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$, and $\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=12$, then find the value of $\left|z_{1}+z_{2}+z_{3}\right|$

- Watch Video Solution

513. Let $Z_{1}=(8+i) \sin \theta+(7+4 i) \cos \theta$ and $Z_{2}=(1+8 i) \sin \theta+(4+7 i) \cos \theta$ are two complex numbers. If $Z_{1} \cdot Z_{2}=a+i b$ where $a, b \in R$ then the largest value of $(a+b) \forall \theta \in R$, is

- Watch Video Solution

514. For $a \leq 0$, determine all real roots of the equation $x^{2}-2 a|x-a|-3 a^{2}=0$

- Watch Video Solution

515.

$(1+2 i) x^{3}-2(3+i) x^{2}+(5-4 i) x+a^{2}=0$ has at least one real root. Then the value of $\frac{\sum a^{2}}{2}$ is \qquad .

- Watch Video Solution

516. Express the following in $a+i b$ form: $\frac{(\cos \alpha+i \sin \alpha)^{4}}{(\sin \beta+i \cos \beta)^{5}}$

- Watch Video Solution

517. Find the root of equation $2 x^{2}+10 x+20=0$.

- Watch Video Solution

518. Suppose that z is a complex number the satisfies $|z-2-2 i| \leq 1$. The maximum value of $|2 z-4 i|$ is equal to \qquad .
519. If $1 / x+x=2 \cos \theta$, then prove that $x^{n}+1 / x^{n}=2 \cos n \theta$

- Watch Video Solution

520. If $a x^{2}+b x+c=0$ and $b x^{2}+c x+a=0$ have a common root and a, b, and c are nonzero real numbers, then find the value of $\left(a^{3}+b^{3}+c^{3}\right) / a b c$

- Watch Video Solution

521. Find the roots of the equation $2 x^{2}-x+\frac{1}{8}=0$

- Watch Video Solution

522. If $|z+2-i|=5$ then the maximum value of $|3 z+9-7 i|$ is K, then find k
523. If $x^{2}+3 x+5=0 a n d a x^{2}+b x+c=0$ have common root/roots and $a, b, c \in N$, then find the minimum value of $a+b+c$

- Watch Video Solution

524. Find the minimum value of the expression $E=|z|^{2}+|z-3|^{2}+|z-6 i|^{2}$ (where $z=x+i y, x, y \in R$)

- Watch Video Solution

525.

The
area
bounded
by the
curves
$\arg z=\frac{\pi}{3}$ and $\arg z=2 \frac{\pi}{3}$ and $\arg (z-2-2 i \sqrt{3})=\pi$ in the argand plane is (in sq. units)

- Watch Video Solution

526. If $\alpha \neq \beta$ and $\alpha^{2}=5 \alpha-3 a n d \beta^{2}=5 \beta-3$. find the equation whose roots are α / β and β / α

Watch Video Solution

527. Express $\frac{1}{1-\cos \theta+2 i \sin \theta}$ in the form $x+i y$.

- Watch Video Solution

528. a, b, c are three complex numbers on the unit circle $|z|=1$, such that $a b c=a+b+c$ Then find the value of $|a b+b c+c a|$

- Watch Video Solution

529. If α, β are the roots of Ithe equation $2 x^{2}-3 x-6=0$, find the equation whose roots are $\alpha^{2}+2$ and $\beta^{2}+2$.
530. If z_{1}, z_{2}, z_{3} are distinct nonzero complex numbers and $a, b, c \in R^{+}$ such that $\frac{a}{\left|z_{1}-z_{2}\right|}=\frac{b}{\left|z_{2}-z_{3}\right|}=\frac{c}{\left|z_{3}-z_{1}\right|}$ Then find the value of $\frac{a^{2}}{z_{1}-z_{2}}+\frac{b^{2}}{z_{2}-z_{3}}+\frac{c^{2}}{z_{3}-z_{1}}$

- Watch Video Solution

531. If $\left|z_{1}\right|=15$ and $\left|z_{2}-3-4 i\right|=5$, then
A. a. $\left(\left|z_{1}-z_{2}\right|\right)_{\text {min }}=5$
B. b. $\left(\left|z_{1}-z_{2}\right|\right)_{\text {min }}=10$
C. c. $\left(\left|z_{1}-z_{2}\right|\right)_{\text {max }}=20$
D. d. $\left(\left|z_{1}-z_{2}\right|\right)_{\text {max }}=25$
532. Determine the values $\circ m$ for which equations $3 x^{2}+4 m x+2=0$ and $2 x^{2}+3 x-2=0$ may have a common root.

- Watch Video Solution

533. If $z=\frac{(\sqrt{3}+i)^{17}}{(1-i)^{50}}$, then find $\operatorname{amp}(z)$

(Watch Video Solution

534. A rectangle of maximum area is inscribed in the circle $|z-3-4 i|=1$. If one vertex of the rectangle is $4+4 i$, then another adjacent vertex of this rectangle can be a. $2+4 i$ b. $3+5 i c .3+3 i d .3-3 i$

- Watch Video Solution

535. If α, β are the roots of the equation $a x^{2}+b x+c=0$, then find the roots of the equation $a x^{2}-b x(x-1)+c(x-1)^{2}=0$ in term of α and β

- Watch Video Solution

536. If $\frac{\pi}{2}<\alpha<\frac{3 \pi}{2}$ then the modulus argument of $(1+\cos 2 \alpha)+i \sin 2 \alpha$

- Watch Video Solution

537. The value of z satisfying the equation $\log z+\log z^{2}++\log z^{n}=0$ is
(a) $\frac{\cos (4 m \pi)}{n(n+1)}+i \frac{\sin (4 m \pi)}{n(n+1)}, m=0,1,2 \ldots$
(b) $\frac{\cos (4 m \pi)}{n(n+1)}-i \frac{\sin (4 m \pi)}{n(n+1)}, m=0,1,2 \ldots$
(c) $\frac{\sin (4 m \pi)}{n(n+1)}+i \frac{\sin (4 m \pi)}{n(n+1)}, m=0,1,2, \ldots$ (d) 0

- Watch Video Solution

538. If the difference between the roots of the equation $x^{2}+a x+1=0$ is less then $\sqrt{5}$, then find the set of possible value of a

- Watch Video Solution

539. find the differtiation of $\sin (\tan x)$

- Watch Video Solution

540. Roots of the equation are $(z+1)^{5}=(z-1)^{5}$ are
(a) $\pm i \tan \left(\frac{\pi}{5}\right), \pm i \tan \left(\frac{2 \pi}{5}\right)$
(b) $\pm i \cot \left(\frac{\pi}{5}\right), \pm i \cot \left(\frac{2 \pi}{5}\right)$
(c) $\pm \operatorname{icot}\left(\frac{\pi}{5}\right), \pm i \tan \left(\frac{2 \pi}{5}\right)$
(d)none of these

Watch Video Solution

541. Find the value of a for which one root of the quadratic equation $\left(a^{2}-5 a+3\right) x^{2}+(3 a-1) x+2=0$ is twice as large as the other.

- Watch Video Solution

542. If $\left|z_{1}-z_{0}\right|=\left|z_{2}-z_{0}\right|=a$ and $a m p\left(\frac{z_{2}-z_{0}}{z_{0}-z_{1}}\right)=\frac{\pi}{2}$, then find z_{0}

(Watch Video Solution

543. Which of the following represents a points in an Argand pane, equidistant from the roots of the equation $(z+1)^{4}=16 z^{4}$? a. $(0,0)$ b.
$\left(-\frac{1}{3}, 0\right)$ c. $\left(\frac{1}{3}, 0\right)$ d. $\left(0, \frac{2}{\sqrt{5}}\right)$

- Watch Video Solution

544. If the harmonic mean between roots of $(5+\sqrt{2}) x^{2}-b x+8+2 \sqrt{5}=0 i s 4$, then find the value of b

- Watch Video Solution

545. If $n \in N>1$, then the sum of real part of roots of $z^{n}=(z+1)^{n}$ is equal to
A. a. $\frac{n}{2}$
B. b. $\frac{(n-1)}{2}$
C. с. $\frac{n}{2}$
D. d. $\frac{(1-n)}{2}$

- Watch Video Solution

546. If $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of four point in the Argand plane, z is the affix of a point such that $\left|z-z_{1}\right|=\left|z-z_{2}\right|=\left|z-z_{3}\right|=\left|z-z_{4}\right|$, then $z_{1}, z_{2}, z_{3}, z_{4}$ are
547. Find the values of the parameter a such that the rots α, β of the equation $2 x^{2}+6 x+a=0$ satisfy the inequality $\alpha / \beta+\beta / \alpha<2$.

- Watch Video Solution

548. Solve the equation $z^{3}=z(z \neq 0)$

- Watch Video Solution

549. If $z=\omega, \omega^{2}$ where ω is a non-real complex cube root of unity, are two vertices of an equilateral triangle in the Argand plane, then the third vertex may be represented by $\mathrm{a}, \mathrm{z}=1 \mathrm{~b} . \mathrm{z}=0 \mathrm{c} . \mathrm{z}=-2 \mathrm{~d} . \mathrm{z}=-1$

- Watch Video Solution

550. Let $\alpha a n d \beta$ be the solutions of the quadratic equation $x^{2}-1154 x+1=0$, then the value of $\alpha^{\frac{1}{4}}+\beta^{\frac{1}{4}}$ is equal to \qquad .
551. If $\left(\frac{1+i}{1-i}\right)^{m}=1$, then find the least positive integral value of m

- Watch Video Solution

552. If $1, Z_{1}, Z_{2}, Z_{3}, \ldots \ldots . . Z_{n-1}$ are $n^{\text {th }}$ roots of unity then the value of
$\frac{1}{3-Z_{1}}+\frac{1}{3-Z_{2}}+\ldots \ldots \ldots . .+\frac{1}{3-Z_{n-1}}$ is equal to

- Watch Video Solution

553. If $a, b, c \in R^{+}$and $2 b=a+c$, then check the nature of roots of equation $a x^{2}+2 b x+c=0$.

- Watch Video Solution

554. If z is a complex number such taht $z^{2}=(\bar{z})^{2}$, then find the location of z on the Argand plane.

Watch Video Solution

555. If $z^{3}+(3+2 i) z+(-1+i a)=0$ has one real root, then the value of a lies in the interval $(a \in R) a .(-2,1)$ b. $(-1,0)$ c. $(0,1)$ d. $(-2,3)$

- Watch Video Solution

556. Determine the value of k for which $x+2$ is a factor of $(x+1)^{7}+(2 x+k)^{3}$

- Watch Video Solution

557. Find the complex number z satisfying $\operatorname{Re}\left(z^{2}\right)=0,|z|=\sqrt{3}$.
558. $P\left(z_{1}\right), Q\left(z_{2}\right), R\left(z_{3}\right) \operatorname{andS}\left(z_{4}\right)$ are four complex numbers representing the vertices of a rhombus taken in order on the complex lane, then which one of the following is/ are correct? $\frac{z_{1}-z_{4}}{z_{2}-z_{3}}$ is purely real $\operatorname{amp} \frac{z_{1}-z_{4}}{z_{2}-z_{3}}=\operatorname{amp} \frac{z_{2}-z_{4}}{z_{3}-z_{4}} \frac{z_{1}-z_{3}}{z_{2}-z_{4}}$ is purely imaginary it is not necessary that $\left|z_{1}-z_{3}\right| \neq\left|z_{2}-z_{4}\right|$

- Watch Video Solution

559. Given that the expression $2 x^{3}+3 p x^{2}-4 x+p$ has a remainder of 5 when divided by $x+2$, find the value of p

- Watch Video Solution

560. $z_{1} a n d z_{2}$ are two distinct points in an Argand plane. If $a\left|z_{1}\right|=b\left|z_{2}\right|($ wherea, $b \in R)$, then the point $\left(a z_{1} / b z_{2}\right)+\left(b z_{2} / a z_{1}\right)$ is a
point on the line segment $[-2,2]$ of the real axis line segment $[-2,2]$ of the imaginary axis unit circle $|z|=1$ the line with $\operatorname{argz}=\tan ^{-1} 2$

- Watch Video Solution

561. Consider two complex numbers α and β as $\alpha=[(a+b i) /(a-b i)]^{2}+[(a-b i) /(a+b i)]^{2}$, where a b in R and $\beta=(z-1) /(z+1)$, where $|z|=1$, then find the correct statement:
A. both α and β are purely real
B. both α and β are purely imaginary
C. α is purely real and β is purely imaginary
D. β is purely real and α is purely imaginary

- Watch Video Solution

562. In how many points the graph of $f(x)=x^{3}+2 x^{2}+3 x+4$ meets the $x-$ axis ?

- Watch Video Solution

563. If $x^{2}+x+1=0$ then the value of
$\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\ldots+\left(x^{27}+\frac{1}{x^{27}}\right)^{2}$ is

- Watch Video Solution

564. If $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$, then show that

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}
$$

- Watch Video Solution

565. Find the roots of the equation $x+\frac{1}{x}=3$
566. Solve the equation $|z|=z+1+2 i$

Watch Video Solution

567. If $z=i^{i}$ where $i=\sqrt{-1}$ then find the value of $|z|$

- Watch Video Solution

568. Find the values of a for which the roots of the equation $x^{2}+a^{2}=8 x+6 a$ are real.

- Watch Video Solution

569. If α and β are different complex numbers with $|\beta|=1$. then find
570. If $z=i \log (2-\sqrt{3})$, then $\cos z=$
a. -1
b. $\frac{-1}{2}$
c. 1
d. 2

Watch Video Solution
571. If $f(x)=x^{3}-x^{2}+a x+b$ is divisible by $x^{2}-x$, then find the value of $f(2)$
572. $z=x+i y$ and $w=\frac{1-i z}{1+i z}$ and $|w|=1$, prove that z is purely real

Watch Video Solution

573. If the equation $z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=0$ where $a_{1}, a_{2}, a_{3}, a_{4}$ are real coefficients different from zero has a pure imaginary root then the expression $\frac{a_{3}}{a_{1} a_{2}}+\frac{a_{1} a_{4}}{a_{2} a_{3}}$ has the value equal to

- Watch Video Solution

574. If $f(x)=x^{3}-3 x^{2}+2 x+a$ is divisible by $x-1$, then find the remainder when $f(x)$ is divided by $x-2$.

- Watch Video Solution

575. If $z_{1} a n d z_{2}$ are two complex numbers and $c>0$, then prove that $\left|z_{1}+z_{2}\right|^{2} \leq(1+c)\left|z_{1}\right|^{2}+\left(1+c^{-1}\right)\left|z_{2}\right|^{2}$
576. Suppose A is a complex number and $n \in N$, such that $A^{n}=(A+1)^{n}=1$, then the least value of n is 3 b .6 c .9 d .12

- Watch Video Solution

577. Find the value of p for which $x+1$ is a factor of $x^{4}+(p-3) x^{3}-(3 p-5) x^{2}+(2 p-9) x+6$. Find the remaining factor for this value of p

- Watch Video Solution

578. If z_{1}, z_{2}, z_{3} be the affixes of the vertices A, B and C of a triangle having centroid at G such that $z=0$ is the mid point of AG then $4 z_{1}+z_{2}+z_{3}=$
579. The number of complex numbers z such that $|z|=1$ and $\left|\frac{\bar{z}}{\bar{z}}+\frac{\bar{z}}{z}\right|=1$ is $\arg (z) \in[0,2 \pi))$ then a. 4 b. 6 c. 8 d . more than 8

- Watch Video Solution

580. Given that $x^{2}-3 x+1=0$, then the value of the expression $y=x^{9}+x^{7}+x^{-9}+x^{-7}$ is divisible by prime number?

- Watch Video Solution

581. If $i z^{4}+1=0$, then prove that z can take the value $\cos \pi / 8+i \sin \pi / 8$.

- Watch Video Solution

582. Find the value of x such that $\frac{(x+\alpha)^{n}-(x+\beta)^{n}}{\alpha-\beta}=\frac{\sin (n \theta)}{\sin ^{n} \theta}$, where α and β are the roots of the equation $t^{2}-2 t+2=0$.
583. Suppose $a, b, c \in I$ such that the greatest common divisor for $x^{2}+a x+b$ and $x^{2}+b x+c$ is $(x+1)$ and the least common multiple of $x^{2}+a x+b$ and $x^{2}+b x+c$ is $\left(x^{3}-4 x^{2}+x+6\right)$. Then the value of $|a+b+c|$ is equal to \qquad .

Watch Video Solution

584. Find the value of following expression: $\left[\frac{1-\frac{\cos \pi}{10}+i \frac{\sin \pi}{10}}{1-\frac{\cos \pi}{10}-i \frac{\sin \pi}{10}}\right]^{10}$

- Watch Video Solution

585. Dividing $f(z)$ by $z-i$, we obtain the remainder i and dividing it by $z+i$, we get the remainder $1+\mathrm{i}$, then remainder upon the division of $f(z)$ by $z^{2}+1$ is
586. If the roots of the cubic equation, $x^{3}+a x^{2}+b x+c=0$ are three consecutive positive integers, then the value of $\left(a^{2} /(b+1)\right)$ is equal to?

- Watch Video Solution

587. If $z_{1}, z_{2} \in C, z_{1}^{2}+z_{2}^{2} \in R, z_{1}\left(z_{1}^{2}-3 z_{2}^{2}\right)=2$ and $z_{2}\left(3 z_{1}^{2}-z_{2}^{2}\right)=11$, then the value of $z_{1}^{2}+z_{2}^{2}$ is 10 b .12 c .5 d .8

- Watch Video Solution

588. If $\cos \alpha+\cos \beta+\cos \gamma=0$ andalsosin $\alpha+\sin \beta+\sin \gamma=0$, then prove that $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=0$

- Watch Video Solution

589. If $x+y+z=12$ and $x^{2}+y^{2}+z^{2}=96$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=36$, then find the value of $x^{3}+y^{3}+z^{3}$

- Watch Video Solution

590. Prove that $(1+i)^{n}+(1-i)^{n}=2^{\frac{n+2}{2}} \cdot \cos \left(\frac{n \pi}{4}\right)$, where n is a positive integer.

- Watch Video Solution

591. The set $\left\{\operatorname{Re}\left(\frac{2 i z}{1-z^{2}}\right): \mathrm{z}\right.$ is a complex number $\left.,|z|=1, z= \pm 1\right\}$ is \qquad .

- Watch Video Solution

592. If the equation $x^{2}+a x+b c=0$ and $x^{2}+b x+c a=0$ have a common root, then $a+b+c=$

- Watch Video Solution

593. If $\arg \left[\mathrm{z}_{1}\left(\mathrm{z}_{3}-\mathrm{z}_{2}\right)\right]=\arg \left[\mathrm{z}_{3}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)\right]$, then prove that $O, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ are concyclic, where O is the origin.

Watch Video Solution

594. If x - iy $=\sqrt{\frac{a-i b}{c-i d}}$ prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

- Watch Video Solution

595. If $x^{3}+3 x^{2}-9 x+c$ is of the form $(x-\alpha)^{2}(x-\beta)$, then c is equal to a. 27
b. -27 c. 5 d. -5
596. If $x=a+b, y=a \alpha+b \beta$ and $z=a \beta+b \alpha$, where α and β are the imaginary cube roots ofunity, then $x y z=$

- Watch Video Solution

597. If $z=(a+i b)^{5}+(b+i a)^{5}$ then prove that $\operatorname{Re}(z)=\operatorname{Im}(z)$, where $a, b \in R$.

- Watch Video Solution

598. If a and b are positive numbers and eah of the equations $x^{2}+a x+2 b=0$ and $x^{2}+2 b x+a=0$ has real roots, then the smallest possible value of $(a+b)$ is \qquad .

- Watch Video Solution

599. Find the real values of x and y for which the following equation is satisfied: $\frac{(1+i) x-2 i}{3+i}+\frac{(2-3 i) y+i}{3-i}=i$

- Watch Video Solution

600. The three angular points of a triangle are given by $Z=\alpha, Z=\beta, Z=\gamma$, where α, β, γ are complex numbers, then prove that the perpendicular from the angular point $Z=\alpha$ to the opposite side is given by the equation $\operatorname{Re}\left(\frac{Z-\alpha}{\beta-\gamma}\right)=0$

- Watch Video Solution

601. Suppose a, b, c are the roots of the cubic $x^{3}-x^{2}-2=0$. Then the value of $a^{3}+b^{3}+c^{3}$ is \qquad .

- Watch Video Solution

602. It is given that n is an odd integer greater than 3 but n is not a multiple of 3 prove that $x^{3}+x^{2}+x$ is a factor of $(x+1)^{n}-x^{n}-1$:

Watch Video Solution

603. If $\alpha, \beta, \gamma, \delta$ are four complex numbers such that $\frac{\gamma}{\delta}$ is real and $\alpha \delta-\beta \gamma \neq 0$ then $\mathrm{z}=\frac{\alpha+\beta t}{\gamma+\delta t}$ where t is a rational number, then it represents:
A. A. Circle
B. B. Parabola
C. C. Ellipse
D. D, Straight line
604. If $a x^{2}+(b-c) x+a-b-c=0$ has unequal real roots for all $c \varepsilon R$, then
(i) $b<0<a($ ii) $a<0<b($ iii $) b<a<0$ (iv) $b>a>0$

- Watch Video Solution

605. If $z_{1}^{2}+z_{2}^{2}+2 z_{1} \cdot z_{2} \cdot \cos \theta=0$ prove that the points represented by z_{1}, z_{2}, and the origin form an isosceles triangle.

- Watch Video Solution

606.

Prove
that
the
circles
$z \bar{z}+z\left(\bar{a}_{1}\right)+\bar{z}\left(a_{1}\right)+b_{1}=0, b_{1} \in R$ and $z \bar{z}+z\left(\bar{a}_{2}\right)+\bar{z} a_{2}+b_{2}=0$,
$b_{2} \in R$ will intersect orthogonally if $2 \operatorname{Re}\left(a_{1} \bar{a}_{2}\right)=b_{1}+b_{2}$

- Watch Video Solution

607. If a, b, c real in G.P., then the roots of the equation $a x^{2}+b x+c=0$ are in the ratio
a. $\frac{1}{2}(-1+i \sqrt{3})$
b. $\frac{1}{2}(1-i \sqrt{3})$
$c \frac{1}{2}(-1-i \sqrt{3})$
d. $\frac{1}{2}(1+i \sqrt{3})$

- Watch Video Solution

608. If z_{0} is the circumcenter of an equilateral triangle with vertices z_{1}, z_{2}, z_{3} then $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}$ is equal to

- Watch Video Solution

609. Two different non-parallel lines cut the circle $|z|=r$ at points a, b, c and d, respectively. Prove that these lines meet at the point z given
by $\frac{a^{-1}+b^{-1}-c^{-1}-d^{-1}}{a^{-1} b^{-1}-c^{-1} d^{-1}}$

- Watch Video Solution

610. If the equations $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root, then it must be equal to
a. $\frac{p^{\prime}-p^{\prime} q}{q-q^{\prime}}$
b. $\frac{q-q^{\prime}}{p^{\prime}-p}$
c. $\frac{p^{\prime}-p}{q-q^{\prime}}$
d. $\frac{p q^{\prime}-p^{\prime} q}{p-p^{\prime}}$
611. Prove that $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=k$ will represent a real circle with center $\left(\frac{z_{1}+z_{2}}{2}\right)$ on the Argand plane if $2 k \geq\left|z_{1}-z_{2}\right|^{2}$

- Watch Video Solution

612. Complex numbers z_{1}, z_{2}, z_{3} are the vertices A, B, C respectively of an isosceles right angled triangle with right angle at C and $\left(z_{1}-z_{2}\right)^{2}=k\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$, then find k.

- Watch Video Solution

613. Given that α, γ are roots of the equation $A x^{2}-4 x+1=0$, and β, δ the roots of the equation of $B x^{2}-6 x+1=0$, such that α, β, γ, and δ are in H.P., then $\mathrm{a} \cdot A=3 \mathrm{~b} . A=4 B=2 \mathrm{~d} . B=8$

- Watch Video Solution

614. The area of the triangle in the complex plane formed by the points z , iz and $\mathrm{z}+\mathrm{iz}$ is

- Watch Video Solution

615. Intercept made by the circle $z \bar{z}+\bar{a} z+a \bar{z}+r=0$ on the real axis on complex plane is a. $\sqrt{(a+\bar{a})-r}$ b. $\sqrt{(a+\bar{a})^{2}-r}$ c. $\sqrt{(a+\bar{a})^{2}-4 r}$ d. $\sqrt{(a+\bar{a})^{2}-4 r}$

- Watch Video Solution

616. The graph of the quadratic trinomial $y=a x^{2}+b x+c$ has its vertex at $(4,-5)$ and two x-intercepts, one positive and one negative. Which of the following holds good? a. $a>0$ b. $b<0$ c. $c<0$ d. $8 a=b$

- Watch Video Solution

617. if $i z^{3}+z^{2}-z+i=0$ then show that $|z|=1$
618. Show that the equation of a circle passing through the origin and having intercepts a and b on real and imaginary axes, respectively, on the argand plane is given by $z \bar{z}=a(R e z)+b(I m z)$

- Watch Video Solution

619. The function $f(x)=a x^{3}+b x^{2}+c x+d$ has three positive roots. If the sum of the roots of $f(x)$ is 4 , the larget possible inegal values of c / a is
\qquad -

- Watch Video Solution

620. let $z_{1}=10+6 i$ and $z_{2}=4+6 i$ if z is nay complex number such that
argument of $\frac{z-z_{1}}{z-z_{2}}$ is $\frac{\pi}{4}$ the prove that $|z-7-9 i|=3 \sqrt{2}$
621. Let vertices of an acute-angled triangle are $A\left(z_{1}\right), B\left(z_{2}\right)$, and $C\left(z_{3}\right)$ If the origin O is the orthocentre of the triangle, then prove that $z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}=z_{2} \bar{z}_{3}+\bar{z}_{2} z_{3}=z_{3} \bar{z}_{1}+\bar{z}_{3} z_{1}$

- Watch Video Solution

622. If $\left(18 x^{2}+12 x+4\right)^{n}=a_{0}+a_{1 x}+a_{2 x}^{2}+\ldots \ldots+a_{2 n} x^{2 n}$, prove that $a_{r}=2^{n} 3^{r}\left({ }^{2 n} C_{r}+{ }^{n} C_{1}{ }^{2 n-2} C_{r}+{ }^{n} C_{2}{ }^{2 n-4} C_{r}+\ldots\right.$.

- Watch Video Solution

623. If $z=z_{0}+A\left(\bar{z}-\left(\bar{z}_{0}\right)\right)$, whereA is a constant, then prove that locus of z is a straight line.

- Watch Video Solution

624. If $(\sin \alpha) x^{2}-2 x+b \geq 2$ for all real values of $x \leq 1$ and $\alpha \in\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right)$, then the possible real values of b is/are 2 (b) 3 (c) 4 (d) 5

- Watch Video Solution

625. If z_{1}, z_{2}, z_{3} are three complex numbers such that $5 z_{1}-13 z_{2}+8 z_{3}=0$,
then prove that $\left[\begin{array}{lll}z_{1} & (\bar{z})_{1} & 1 \\ z_{2} & (\bar{z})_{2} & 1 \\ z_{3} & (\bar{z})_{3} & 1\end{array}\right]=0$

- Watch Video Solution

626. If one root $x^{2}-x-k=0$ is square of the other, then $k=\mathrm{a} .2 \pm \sqrt{5} \mathrm{~b}$. $2 \pm \sqrt{3}$ c. $3 \pm \sqrt{2}$ d. $5 \pm \sqrt{2}$
627. If z_{1}, z_{2} are complex number such that $\frac{2 z_{1}}{3 z_{2}}$ is purely imaginary number, then find $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|$.

D Watch Video Solution

628. If α, and β be the roots of the equation $x^{2}+p x-1 / 2 p^{2}=0$, wherep $\in R$ Then the minimum value of $\alpha^{4}+\beta^{4}$ is $2 \sqrt{2}$ b. $2-\sqrt{2}$ c. 2 d. $2+\sqrt{2}$

- Watch Video Solution

629. If z_{1}, z_{2}, z_{3} are complex numbers such that $\frac{2}{z_{1}}=\frac{1}{z_{2}}+\frac{1}{z_{3}}$, show that the points represented by z_{1}, z_{2}, z_{3} lie on a circle passing through the origin.
630. Find the range of $f(x) \frac{x^{2}-x+1}{x^{2}+x+1}$

- Watch Video Solution

631. If $\left(\frac{3-z_{1}}{2-z_{1}}\right)\left(\frac{2-z_{2}}{3-z_{2}}\right)=k(k>0)$, then prove that points
$A\left(z_{1}\right), B\left(z_{2}\right), C(3)$, andD(2) (taken in clockwise sense) are concyclic.

- Watch Video Solution

632. $x^{2}-x y+y^{2}-4 x-4 y+16=0$ represents
a. a point
b. a circle
c. a pair of straight line
d. none of these

(Watch Video Solution

633. If $(x+i y)^{5}=p+i q$, then prove that $(y+i x)^{5}=q+i p$

- Watch Video Solution

634. If α, β are the nonzero roots of $a x^{2}+b x+c=0$ and α^{2}, β^{2} are the roots of $a^{2} x^{2}+b^{2} x+c^{2}=0$, then a, b, c are in
(A) G.P.
(B) H.P.
(C) A.P.
(D) none of these

- Watch Video Solution

635. Find real θ such that $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ is purely real.

- Watch Video Solution

636. If the roots of the equation $a x^{2}+b x+c=0$ are of the form $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, then $(a+b+c)^{2}$ is equal to $2 b^{2}-a c b . a 62$ c. $b^{2}-4 a c$ d. $b^{2}-2 a c$

- Watch Video Solution

637. Prove that $\tan \left(i \log _{e}\left(\frac{a-i b}{a+i b}\right)\right)=\frac{2 a b}{a^{2}-b^{2}}$ (where $a, b \in R^{+}$)

- Watch Video Solution

638. If α, β are the roots of $a x^{2}+b x+c=0 a n d \alpha+h, \beta+h$ are the roots of $p x^{2}+q x+r=0$ thenh $=$ a. $-\frac{1}{2}\left(\frac{a}{b}-\frac{p}{q}\right)$ b. $\left(\frac{b}{a}-\frac{q}{p}\right)$ c. $\frac{1}{2}\left(\frac{b}{a}-\frac{q}{p}\right)$ d. none of these

(Watch Video Solution

639. Find the real part of $(1-i)^{-i}$

- Watch Video Solution

640. The equation $\left(x^{2}+x+1\right)^{2}+1=\left(x^{2}+x+1\right)\left(x^{2}-x-5\right)$ for $x \in(-2,3)$ will have number of solutions. 1 b. 2 c. 3 d. 0

- Watch Video Solution

641. Convert of the complex number in the polar form: 1 - i
642. If α, β are the roots of $a x^{2}+c=b x$, then the equation $(a+c y)^{2}=b^{2} y$ in y has the roots a. $\alpha \beta^{-1}, \alpha^{-1} \beta$ b. α^{-2}, β^{-2} c. α^{-1}, β^{-1} d. α^{2}, β^{2}

- Watch Video Solution

643. If $Z=r e^{i \theta}$, then prove that $\left|e^{i z}\right|=e^{-r \sin \theta}$

- Watch Video Solution

644. If the roots of the equation $x^{2}+2 a x+b=0$ are real and distinct and they differ by at most $2 m$, then b lies in the interval $\mathrm{a} .\left(a^{2}, a^{2},+m^{2}\right) \mathrm{b}$. $\left(a^{2}-m^{2}, a\right)$ c. $\left[a^{2}-m^{2}, a^{2}\right)$ d. none of these

- Watch Video Solution

645. $Z_{1} \neq Z_{2}$ are two points in an Argand plane. If $a\left|Z_{1}\right|=b\left|Z_{2}\right|$, then prove that $\frac{a Z_{1}-b Z_{2}}{a Z_{1}+b Z_{2}}$ is purely imaginary.

- Watch Video Solution

646. If the ratio of the roots of $a x^{2}+2 b x+c=0$ is same as the ratio of roots of $p x^{2}+2 q x+r=0$, then a. $\frac{2 b}{a c}=\frac{q^{2}}{p r}$ b. $\frac{b}{a c}=\frac{q^{2}}{p r} c . \frac{b^{2}}{a c}=\frac{q^{2}}{p r}$ d. none of these

- Watch Video Solution

647. Find real value of x and y for which the complex numbers $-3+i x^{2} y$ and $x^{2}+y+4 i$ are conjugate of each other.

- Watch Video Solution

648. Show that $\frac{(x+b)(x+c)}{(b-a)(c-a)}+\frac{(x+c)(x+a)}{(c-b)(a-b)}+\frac{(x+a)(x+b)}{(a-c)(b-c)}=1$ is an identity.

- Watch Video Solution

649. Show that $e^{2 m i \theta}\left(\frac{i \cot \theta+1}{i \cot \theta-1}\right)^{m}=1$.

(Watch Video Solution

650. A certain polynomial $P(x) x \in R$ when divided by $\mathrm{kx}-a, x$ - bandx $-c$ leaves remainders a, b, andc, resepectively. Then find remainder when $P(x)$ is divided by $(x-a)(x-b)(x-c)$ whereab, c are distinct.

- Watch Video Solution

651. It is given that complex numbers z_{1} and z_{2} satisfy $\left|z_{1}\right|=$ 2and $\left|z_{2}\right|=3$. If the included angled of their corresponding vectors is 60°,
then find the value of $19\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|^{2}$.

- Watch Video Solution

652. If c, d are the roots of the equation $(x-a)(x-b)-k=0$, prove that a, b are roots of the equation $(x-c)(x-d)+k=0$.

D Watch Video Solution

653. If $z_{1}^{2}+z_{2}^{2}+2 z_{1} \cdot z_{2} \cdot \cos \theta=0$ prove that the points represented by z_{1}, z_{2}, and the origin form an isosceles triangle.

- Watch Video Solution

654. If $\left(a^{2}-1\right) x^{2}+(a-1) x+a^{2}-4 a+3=0$ is identity in x, then find the value of a.
655. Show that a real value of x will satisfy the equation $(1-i x) /(1+i x)=a-i b$ if $a^{2}+b^{2}=1$, where a, b real.

- Watch Video Solution

656. Prove that the roots of the equation $\left(a^{4}+b^{4}\right) x^{2}+4 a b c d x+\left(c^{4}+d^{4}\right)=0$ cannot be different, if real.

- Watch Video Solution

657. If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$

- Watch Video Solution

658. If the roots of the equation $x^{2}-8 x+a^{2}-6 a=0$ are real distinct, then find all possible value of a

Watch Video Solution

659. Solve : $z^{2}+|z|=0$.

- Watch Video Solution

660. If roots of equation $x^{2}-2 c x+a b=0$ are real and unequal, then prove that the roots of $x^{2}-2(a+b) x+a^{2}+b^{2}+2 c^{2}=0$ will be imaginary.

- Watch Video Solution

661. Find the range of real number α for which the equation $z+\alpha|z-1|+2 i=0$ has a solution.
662. If the roots of the equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal, show that $2 / b=1 / a+1 / c$

- Watch Video Solution

663. If $\frac{(1+i)^{2}}{3-i}=Z$, then $\operatorname{Re}(z)=$

- Watch Video Solution

664. Find the quadratic equation with rational coefficients whose one root is $1 /(2+\sqrt{5})$

- Watch Video Solution

665. Let z be a complex number satisfying the equation $\left(z^{3}+3\right)^{2}=-16$, then find the value of $|z|$

(D) Watch Video Solution

666. If $P(x)=a x^{2}+b x+c$, and $Q(x)=-a x^{2}+d x+c, a c \neq 0$, then prove that $P(x) \cdot Q(x)=0$ has at least two real roots.

- Watch Video Solution

667. Find the real numbers x and y if $(x-i y)(3+5 i)$ is the conjugate of $-6-$ $24 i$.

- Watch Video Solution

668. If x is real, then $x /\left(x^{2}-5 x+9\right)$ lies between
a.- 1and - $1 / 11$
b. 1and - 1/11
c. 1and1/11
d. none of these

D Watch Video Solution

669. Find the least positive integer n such that $\left(\frac{2 i}{1+i}\right)^{n}$ is a positive integer.

- Watch Video Solution

670. Set of all real value of a such that
$f(x)=\frac{(2 a-1) x^{2}+2(a+1) x+(2 a-1)}{x^{2}-2 x+40}$ is always negative is a. $(-\infty, 0) \mathrm{b}$.
$(0, \infty)$ c. $\left(-\infty, \frac{1}{2}\right)$ d. none
671. Find the real part of $e^{e i \theta}$

(Watch Video Solution

672. If α, β and γ are the roots of $x^{3}-x^{2}-1=0$, then value of $\frac{1+\alpha}{1-\alpha}+\frac{1+\beta}{1-\beta}+\frac{1+\gamma}{1-\gamma}$ is

(Watch Video Solution

673. Prove that $z=i^{i}$, where $i=\sqrt{-1}$, is purely real.

(Watch Video Solution

674. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}-K x^{3}+K x^{2}+L x+m=0$, where K, L, andM are real numbers, then the minimum value of $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ is a. 0 b. -1 c. 1 d .2
675. In $A B C, A\left(z_{1}\right), B\left(z_{2}\right)$, andC $\left(z_{3}\right)$ are inscribed in the circle $|z|=5$. If $H\left(z_{H}\right)$ be the orthocenrter of triangle $A B C$, then find z_{H}

- Watch Video Solution

676. Suppose that $f(x)$ isa quadratic expresson positive for all real x If $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$, then for any real x

- Watch Video Solution

677. Multiply: $(2+5 i)(4-3 i)$

- Watch Video Solution

678. Let $f(x)=a x^{2}-b x+c^{2}, b \neq 0$ and $f(x) \neq 0$ for all $x \in R$. Then (a) $a+c^{2}<b$ (b) $4 a+c^{2}>2 b$ (c) $a-3 b+c^{2}<0$ (d) none of these
679. It is given that n is an odd integer greater than 3 but n is not a multiple of 3 prove that $x^{3}+x^{2}+x$ is a factor of $(x+1)^{n}-x^{n}-1$:

- Watch Video Solution

680. If $a, b \in R, a \neq 0$ and the quadratic equation $a x^{2}-b x+1=0$ has imaginary roots, then $(a+b+1)$ is a. positive b. negative c. zero d. Dependent on the sign of b

- Watch Video Solution

681. Find the complex number ω satisfying the equation $z^{3}=8 i$ and lying in the second quadrant on the complex plane.

- Watch Video Solution

682. If the expression $[m x-1+(1 / x)]$ is non-negative for all positive real x, then the minimum value of m must be $-1 / 2 \mathrm{~b} .0 \mathrm{c} .1 / 4 \mathrm{~d} .1 / 2$

Watch Video Solution

683. When the polynomial $5 x^{3}+M x+N$ is divided by $x^{2}+x+1$, the remainder is 0 . Then find the value of $M+N$

- Watch Video Solution

684. x_{1} and x_{2} are the roots of $a x^{2}+b x+c=0$ and $x_{1} x_{2}<0$. Roots of $x_{1}\left(x-x_{2}\right)^{2}+x_{2}\left(x-x_{1}\right)^{2}=0$ are: (a) real and of opposite sign b. negative c. positive d. non real

- Watch Video Solution

685. if $\omega a n d \omega^{2}$ are the nonreal cube roots of unity and $[1 /(a+\omega)]+[1 /(b+\omega)]+[1 /(c+\omega)]=2 \omega^{2}$ and $\left[1 /(a+\omega)^{2}\right]+\left[1 /(b+\omega)^{2}\right]+\left[1 /(c+\omega)^{2}\right]=2 \omega$, then find the value of $[1 /(a+1)]+[1 /(b+1)]+[1 /(c+1)]$

- Watch Video Solution

686. If a, b, c, d are four consecutive terms of an increasing A.P., then the roots of the equation $(x-a)(x-c)+2(x-b)(x-d)=0$ are a. non-real complex b. real and equal c. integers d. real and distinct

- Watch Video Solution

687. Find the relation if $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of the vertices of a parallelogram taken in order.

- Watch Video Solution

688. If roots of the equation $x^{2}-10 c x-11 d=0$ are a, b and those of $x^{2}-10 a x-11 b=0$ are c, d, then the sum of the digits of $a+b+c+d$ must be equal to (a, b, c and d are distinct numbers)

(Watch Video Solution

689. If z_{1}, z_{2}, z_{3} are three nonzero complex numbers such that $z_{3}=(1-\lambda) z_{1}+\lambda z_{2}$ where $\lambda \in R-\{0\}$, then prove that points corresponding to z_{1}, z_{2} and z_{3} are collinear.

- Watch Video Solution

690. Coefficient of x^{99} in the polynomial $(x-1)(x-2) \ldots .(x-100)$ is

- Watch Video Solution

691. Let z_{1}, z_{2}, z_{3} be three complex numbers and a, b, c be real numbers not all zero, such that $a+b+c=0$ and $a z_{1}+b z_{2}+c z_{3}=0$. Show that
z_{1}, z_{2}, z_{3} are collinear.

- Watch Video Solution

692. Fill in the blanks If $2+i \sqrt{3}$ is a root of the equation $x^{2}+p x+q=0$, wherepand q are real, then $(p, q)=\left({ }_{-}{ }_{-},{ }_{-}{ }_{-}\right)$.

- Watch Video Solution

693. Prove that the triangle formed by the points $1, \frac{1+i}{\sqrt{2}}$, andi as vertices in the Argand diagram is isosceles.

- Watch Video Solution

694. Fill in the blanks. If the product of the roots of the equation $x^{2}-3 k x+2 e^{2 \log k}-1=0$ is 7 , then the roots are real for \qquad .
695. Solve for $z: z^{2}-(3-2 i) z=(5 i-5)$

- Watch Video Solution

696. If the equations $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$ have one common root. Then find the numerical value of $a+b$.

- Watch Video Solution

697. Find all possible values of $\sqrt{i}+\sqrt{-i}$.

- Watch Video Solution

698.

Fill
in
the
blanksIf
$x<0, y<0, x+y+(x / y)=(1 / 2) \operatorname{and}(x+y)(x / y)=-(1 / 2)$, thenx $=_{-}$and $y=$
699. Find the square roots of the following: (i) $7-24 i$

- Watch Video Solution

700. True or false The equation $2 x^{2}+3 x+1=0$ has an irrational root.

- Watch Video Solution

701. If $z \neq 0$ is a complex number, then prove that $\operatorname{Re}(z)=0 \Rightarrow \operatorname{Im}\left(z^{2}\right)=0$.

- Watch Video Solution

702. If l, m, n are real and $l \neq m$, then the roots of the equation $(l-m) x^{2}-5(l+m) x-2(l-m)=0$ are
a) real and equal
b) Complex
c) real and unequal
d) none of these

- Watch Video Solution

703. Let z be a complex number satisfying the equation $z^{2}-(3+i) z+m+2 i=0$, where $m \in R$. Suppose the equation has a real root. Then find the value of m

- Watch Video Solution

704. If x, y and z are real and different and $u=x^{2}+4 y^{2}+9 z^{2}-6 y z-3 z x-2 x y$,then u is always (a). non-negative b . zero c. non-positive d. none of these
705. If $(x+i y)^{3}=u+i v$, then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$

- Watch Video Solution

706. Let $a>0, b>0$ and $c>0$. Then, both the roots of the equation $a x^{2}+b x+c=0:$ a. are real and negative b. have negative real parts c. have positive real parts d. None of the above

- Watch Video Solution

707. If the sum of square of roots of the equation $x^{2}+(p+i q) x+3 i=0$ is 8 , then find the value of p and q, where p and q are real.

- Watch Video Solution

708. Column I
$y=\frac{x^{2}-2 x+4}{x^{2}+2 x+4}, x \in R$, then y can't be, p. 1
$y=\frac{x^{2}-3 x-2}{2 x-3}, x \in R$, then y can't be , q. 4
$y=\frac{2 x^{2}-2 x+4}{x^{2}-4 x+3}, x \in R$, then y can't be , r. -3
$x^{2}-(a-3) x+2<0, \forall, x \in(-2,3)$, then y can't be , s. -10

- Watch Video Solution

709. If $\sqrt{x+i y}= \pm(a+i b)$, then find $\sqrt{-x-i y}$.

- Watch Video Solution

710. Match the following for the equation $x^{2}+a|x|+1=0$, wherea is a parameter. Column I, Column II No real roots, p. $a<-2$ Two real roots, q . φ Three real roots, r. $a=-2$ Four distinct real roots, s. $a \geq 0$
711. Find the ordered pair (x, y) for which $x^{2}-y^{2}-i(2 x+y)=2 i$

- Watch Video Solution

712. If a, b, c are non zero complex numbers of equal modlus and satisfy $a z^{2}+b z+c=0$, hen prove that $(\sqrt{5}-1) / 2 \leq|z| \leq(\sqrt{5}+1) / 2$.

- Watch Video Solution

713. Let z be not a real number such that $\left(1+z+z^{2}\right) /\left(1-z+z^{2}\right) \in R$, then prove that $|z|=1$.

- Watch Video Solution

714. Let a is a real number satisfying $a^{3}+\frac{1}{a^{3}}=18$. Then the value of $a^{4}+\frac{1}{a^{4}}-39$ is \qquad .
715. Find non zero integral solutions of $|1-i|^{x}=2^{x}$

- Watch Video Solution

716. Column I, Column II If $x^{2}+a x+b=0$ has roots $\alpha, \beta a n d x^{2}+p x+q=0$ has roots α, γ, then, $\mathrm{p} .(1-b q)^{2}=(a-p b)(p-a q)$ If $x^{2}+a x+b=0$ has roots $\alpha, \beta \operatorname{andx}^{2}+p x+q=0$ has roots $1 / \alpha, \gamma$, then, q . $(4-b q)^{2}=(4 a+2 p b)(-2 p-a q) \quad$ If $x^{2}+a x+b=0$ has roots $\alpha, \beta a n d x^{2}+p x+q=0$ has roots $2 / \alpha, \gamma$, then, r. $(1-4 b q)^{2}=(a+2 p b)(-2 p-4 a q) \quad$ If $\quad x^{2}+a x+b=0 \quad$ has roots $\alpha, \beta a n d x^{2}+p x+q=0$ has roots $1 /(2 \alpha), \gamma \quad$, then, s.
$(q-b)^{2}=(a q+b p)(p-a)$

- Watch Video Solution

717. If $(1+i)(1+2 i)(1+3 i)(1+n i)=(x+i y)$, show that
718. 5. $10 \ldots \ldots . .\left(1+n^{2}\right)=x^{2}+y^{2}$

Watch Video Solution

718. If $a x^{2}+b x+c=0, a, b, c \in R$ has no real zeros, and if $c<0$, then which of the following is true? (a) $a<0$ (b) $a+b+c>0$ (c) $a>0$

- Watch Video Solution

719. If ω is a cube root of unity, then find the value of the following:
$\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}$

- Watch Video Solution

720. If $f(x)=\sqrt{x^{2}+a x+4}$ is defined for all x, then find the value of a
721. If ω is a cube root of unity, then find the value of the following:
$(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{8}\right)$

- Watch Video Solution

722. Find the domain and range of $f(x)=\sqrt{x^{2}-4 x+6}$

- Watch Video Solution

723. Prove that $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}, \quad$ if $\quad z_{1} / z_{2}$ is purely imaginary.

- Watch Video Solution

724. Find the range of the function $f(x)=6^{x}+3^{x}+6^{-x}+e^{-x}+2$.
725. If ω is a cube root of unity, then find the value of the following: $\left(1+\omega-\omega^{2}\right)\left(1-\omega+\omega^{2}\right)$

- Watch Video Solution

726. If α, β are the roots of the equation $2 x^{2}+2(a+b) x+a^{2}+b^{2}=0$ then find the equation whose roots are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$

- Watch Video Solution

727. Let $z_{1}, z_{2}, z_{3}, \ldots \ldots, z_{n}$ be complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$. If $z=\left(\sum_{k=1}^{n} z_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{z_{k}}\right)$ then prove that z is a real number

- Watch Video Solution

728. If $a, b, \in R$ such that $a+b=1 \operatorname{and}(1-2 a b)\left(a^{3}+b^{3}\right)=12$. The value of $\left(a^{2}+b^{2}\right)$ is equal to \qquad .

Watch Video Solution

729. If $|z| \leq 4$, then find the maximum value of $|i z+3-4 i|$

- Watch Video Solution

730. Find the range of $f(x)=x^{2}-x-3$.

- Watch Video Solution

731. If the fraction $\frac{x^{3}+(a-10) x^{2}-x+a-6}{x^{3}+(a-6) x^{2}-x+a-10}$ reduces to a quotient of two functions then a equals
732. The polynomial $f(x)=x^{4}+a x^{3}+b x^{3}+c x+d$ has real coefficients and $f(2 i)=f(2+i)=0$. Find the value of $(a+b+c+d)$

Watch Video Solution

733. Find the value of $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$ for all $n \in N$

- Watch Video Solution

734. If the quadratic equation $a x^{2}+b x+c=0(a>0)$ has $\sec ^{2} \theta a n d \operatorname{cosec}^{2} \theta$ as its roots, then which of the following must hold good?
(a.) $b+c=0$
(b.) $b^{2}-4 a c \geq 0$
(c.) $\mathrm{c} \geq 4 a$
(d.) $4 a+b \geq 0$

Watch Video Solution

735. Find the value of $1+i^{2}+i^{4}+i^{6}++i^{2 n}$

Watch Video Solution

736. Let $x, y, z \in R$ such that $x+y+z=5$ and $x y+y z+z x=3$. Thenwhat is the largest value x can have?

Watch Video Solution

737. Show that the polynomial $x^{4 p}+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}$ is divisible by $x^{3}+x^{2}+x+1$, wherep, $q, r, s \in n$
738. if $a x^{2}+b x+c=0$ has imaginary roots and $a+c<b$ then prove that $4 a+c<2 b$

- Watch Video Solution

739. Solve: $i x^{2}-3 x-2 i=0$,

- Watch Video Solution

740. Let $a, b, a n d c$ be distinct nonzero real numbers such that $\frac{1-a^{3}}{a}=\frac{1-b^{3}}{b}=\frac{1-c^{3}}{c}$. The value of $\left(a^{3}+b^{3}+c^{3}\right)$ is \qquad .

- Watch Video Solution

741. Express each one of the following in the standard form $a+i b \frac{5+4 i}{4+5 i}$

- Watch Video Solution

742. If the cubic $2 x^{3}-9 x^{2}+12 x+k=0$ has two equal roots then minimum value of $|k|$ is \qquad .

Watch Video Solution

743. If $z=4+i \sqrt{7}$, then find the value of $z^{2}-4 z^{2}-9 z+91$.

- Watch Video Solution

744. If the quadratic equation $4 x^{2}-2(a+c-1) x+a c-b=0(a>b>c)$
(a)Both roots se greater than a (b)Both roots are less than c (c)Both roots lie between $\frac{c}{2}$ and $\frac{a}{2}$ (d)Exactly one of the roots lies between $\frac{c}{2}$ and $\frac{a}{2}$
745. If $(a+b)-i(3 a+2 b)=5+2 i$, then find $a a n d b$

(D) Watch Video Solution

746. If the equation $x^{2}=a x+b=0$ has distinct real roots and $x^{2}+a|x|+b=0$ has only one real root, then which of the following is true? $b=0, a>0$ b. $b=0, a<0 c . b>0, a<0$ d. $b 0, a 0$

- Watch Video Solution

747. Given that $\mathrm{x}, \mathrm{y} \in R$. Solve: $\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{8 i-1}$

- Watch Video Solution

748. If the equation $\left|x^{2}+b x+c\right|=k$ has four real roots, then a. $b^{2}-4 c>0$ and $0<k<\frac{4 c-b^{2}}{4}$ b. $b^{2}-4 c<0$ and $0<k<\frac{4 c-b^{2}}{4}$ c. $b^{2}-4 c>0$ and $k>\frac{4 c-b^{2}}{4} d$. none of these
749. If $\mathrm{P}(\mathrm{x})$ is a polynomial with integer coefficients such that for 4 distinct integers $a, b, c, d, P(a)=P(b)=P(c)=P(d)=3$, if $P(e)=5$, (e is an integer) then 1. $e=1,2 . e=3,3 . e=4,4$. No integer value of e

- Watch Video Solution

750. Let x, y, z, t be real numbers $x^{2}+y^{2}=9, z^{2}+t^{2}=4$, and $x t-y z=6$ Then the greatest value of $P=x z$ is a. 2 b .3 c. 4 d. 6

- Watch Video Solution

751. If a, b, c are distinct positive numbers, then the nature of roots of the equation $\frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c}=\frac{1}{x}$ is a) all real and is distinct b) all real and at least two are distinct c) at least two real d) all non-real

- Watch Video Solution

752. If $\left(b^{2}-4 a c\right)^{2}\left(1+4 a^{2}\right)<64 a^{2}, a<0$, then maximum value of quadratic expression $a x^{2}+b x+c$ is always less than a. 0 b. $2 \mathrm{c} .-1 \mathrm{~d} .-2$

- Watch Video Solution

753. For $x^{2}-(a+3)|x|+4=0$ to have real solutions, the range of a is a. $(-\infty,-7] \cup[1, \infty)$ b. $(-3, \infty)$ c. $(-\infty,-7)$ d. $[1, \infty)$

- Watch Video Solution

754. Find the number of integal values of x satisfying
$\sqrt{-x^{2}+10 x-16}<x-2$

- Watch Video Solution

755. If $x^{2}+a x-3 x-(a+2)=0$ has real and distinct roots, then minimum value of $\frac{a^{2}+1}{a^{2}+2}$ is
756. Let $\alpha+i \beta ; \alpha, \beta \in R$, be a root of the equation $x^{3}+q x+r=0 ; q, r \in R$ A real cubic equation, independent of $\alpha \& \beta$, whose one root is 2α is (a) $x^{3}+q x-r=0$ (b) $x^{3}-q x+4=0$
$x^{3}+2 q x+r=0$ (d) None of these

- Watch Video Solution

757. In equation $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$ if two its roots are equal in magnitude but opposite in sign, find all the roots.

- Watch Video Solution

758. If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, then find
he value of $\left(\alpha-\frac{1}{\beta \gamma}\right)\left(\beta-\frac{1}{\gamma \alpha}\right)\left(\gamma-\frac{1}{\alpha \beta}\right)$.
759. The equation $x^{3}+5 x^{2}+p x+q=0$ and $x^{3}+7 x^{2}+p x+r=0$ have two roots in common. If their third roots be γ_{1} and γ_{2} respectively, then the ordered pair $\left(\gamma_{1}, \gamma_{2}\right)$ is

- Watch Video Solution

760. If α, β, y are the roots of he euation $x^{3}+4 x+1=0$, then find the value of $(\alpha+\beta)^{-1}+(\beta+\gamma)^{-1}+(\gamma+\alpha)^{-1}$.

- Watch Video Solution

761. If the roots of the equation $x^{3}+P x^{2}+Q x-19=0$ are each one more that the roots of the equation $x^{3}-A x^{2}+B x-C=0$, where A, B, C, P, and Q are constants, then find the value of $A+B+C$

- Watch Video Solution

762. If a, b, p, q are non zero real numbers, then how many common roots would two equations: $2 a^{2} x^{2}-2 a b x+b^{2}=0$ and $p^{2} x^{2}+2 p q x+q^{2}=0$ have?

- Watch Video Solution

763. If $x^{2}+p x+q=0$ and $x^{2}+q x+p=0,(p \neq q)$ have a common roots, show that $1+p+q=0$.

- Watch Video Solution

764. a,b,c are positive real numbers forming a G.P. If $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, then prove that $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.

- Watch Video Solution

765.

common positive root, then find the values of aandb

- Watch Video Solution

766. If x is real and the roots of the equation $a x^{2}+b x+c=0$ are imaginary, then prove tat $a^{2} x^{2}+a b x+a c$ is always positive.

- Watch Video Solution

767. Solve $\left(x^{2}+2\right)^{2}+8 x^{2}=6 x\left(x^{2}+2\right)$

- Watch Video Solution

768. Find the value of $2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\infty}}}$

- Watch Video Solution

769. If both the roots of $a x^{2}+a x+1=0$ are less than 1 , then find the exhaustive range of values of a

Watch Video Solution

770. If both the roots of $x^{2}+a x+2=0$ lies in the interval $(0,3)$, then find the exhaustive range of value of a

- Watch Video Solution

771. Solve $\frac{x^{2}+3 x+2}{x^{2}-6 x-7}=0$.

- Watch Video Solution

772. Solve $\sqrt{x-2}+\sqrt{4-x}=2$.
773. Solve $\sqrt{x-2}\left(x^{2}-4 x-5\right)=0$.

- Watch Video Solution

774. Solve the equation $x(x+2)\left(x^{2}-1\right)=-1$.

- Watch Video Solution

775. The number of disitinct real roots of $x^{4}-4 x^{3}+12 x^{2}+x-1=0$ is

- Watch Video Solution

776. Prove that graphs of $y=x^{2}+2 a n d y=3 x-4$ never intersect.

- Watch Video Solution

777. In how many points the line $y+14=0$ cuts the curve whose equation is $x\left(x^{2}+x+1\right)+y=0$?

- Watch Video Solution

778. Consider the graph of $y=f(x)$ as shown in the following figure.

(i) Find the sum of the roots of the equation $f(x)=0$.
(ii) Find the product of the roots of the equation $f(x)=4$.
(iii) Find the absolute value of the difference of the roots of the equation $f(x)=x+2$.
779. If $x^{2}+p x-444 p=0$ has integral roots where p is prime number, then find the value of p.

- Watch Video Solution

780. The equation $a x^{2}+b x+c=0$ has real and positive roots. Prove that the roots of the equation $a^{2} x^{2}+a(3 b-2 c) x+(2 b-c)(b-c)+a c=0$ re real and positive.

- Watch Video Solution

781. If the roots of the equation $x^{2}-a x+b=0 y$ are real and differ $\mathrm{b} a$ quantity which is less than $c(c>0)$, then show that b lies between $\frac{a^{2}-c^{2}}{4}$ and $\frac{a^{2}}{4}$.
782. If $\left(a x^{2}+b x+c\right) y+\left(a^{\prime} x^{2}+b^{\prime} x+c^{\prime}\right)=0$ and x is a rational function of y, then prove that $\left(a c^{\prime}-a^{\prime} c\right)^{2}=\left(a b^{\prime}-a^{\prime} b\right) \times\left(b c^{\prime}-b^{\prime} c\right)$

- Watch Video Solution

783. Prove that the minimum value of $\frac{(a+x)(b+x)}{(c+x)} a, b>c, x>-c$ is $(\sqrt{a-c}+\sqrt{b-c})^{2}$

- Watch Video Solution

784. Let $a, b \in N$ and $a>1$. Also p is a prime number. If $a x^{2}+b x+c=p$ for any intergral values of x, then prove that $a x^{2}+b x+c \neq 2 p$ for any integral value of x

- Watch Video Solution

785. If $2 x^{2}-3 x y-2 y^{2}=7$, then prove that there will be only two integral pairs (x, y) satisfying the above relation.

- Watch Video Solution

786. If a and c are odd prime numbers and $a x^{2}+b x+c=0$ has rational roots, where $b \in I$, prove that one root of the equation will be independent of a, b, c.

- Watch Video Solution

787. If $f(x)=x^{3}+b x^{2}+c x+d$ and $f(0), f(-1)$ are odd integers, prove that $f(x)=0$ cannot have all integral roots.

- Watch Video Solution

788. If x is real, then the maximum value of $y=2(a-x)\left(x+\sqrt{x^{2}+b^{2}}\right)$
789. If equation $x^{4}-(3 m+2) x^{2}+m^{2}=0(m>0)$ has four real solutions which are in A.P., then the value of m is \qquad .

- Watch Video Solution

790. Number of positive integers x for which $f(x)=x^{3}-8 x^{2}+20 x-13$ is a prime number is \qquad .

- Watch Video Solution

791. If set of values a for which $f(x)=a x^{2}-(3+2 a) x+6, a \neq 0$ is positive for exactly three distinct negative integral values of x is ($c, d]$, then the value of $\left(c^{2}+4|d|\right)$ is equal to \qquad .

- Watch Video Solution

792. Polynomial $P(x)$ contains only terms of odd degree. when $P(x)$ is divided by $(x-3)$, the ramainder is 6 . If $P(x)$ is divided by $\left(x^{2}-9\right)$ then remainder is $g(x)$. Then find the value of $g(2)$.

- Watch Video Solution

793. If the equation $2 x^{2}+4 x y+7 y^{2}-12 x-2 y+t=0$, where t is a parameter has exactly one real solution of the form (x, y), then the sum of $(x+y)$ is equal to \qquad .

- Watch Video Solution

794. Let α_{1}, β_{1} be the roots $x^{2}-6 x+p=0$ and α_{2}, β_{2} be the roots $x^{2}-54 x+q=0$ If $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$ form an increasing G.P., then sum of the digits of the value of $(q-p)$ is \qquad .

- Watch Video Solution

795. If $\sqrt{\sqrt{\sqrt{x}}}=\left(3 x^{4}+4\right)^{\frac{1}{64}}$, then the value of x^{4} is \qquad .

- Watch Video Solution

796. Let $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ be a polynomial such that $P(1)=1, P(2)=8, P(3)=27, P(4)=64$ then find the remainder when $P(5)$ is divided by 5 .

- Watch Video Solution

797. If the equation $x^{2}+2(\lambda+1) x+\lambda^{2}+\lambda+7=0$ has only negative roots, then the least value of λ equals \qquad .

- Watch Video Solution

798. Given $\alpha a n d \beta$ are the roots of the quadratic equation $x^{2}-4 x+k=0(k \neq 0) \quad$ If $\alpha \beta, \alpha \beta^{2}+\alpha^{2} \beta, \alpha^{3}+\beta^{3} \quad$ are in geometric
progression, then the value of $7 k / 2$ equals \qquad .

- Watch Video Solution

799. If $\frac{x^{2}+a x+3}{x^{2}+x+a}$ takes all real values for possible real values of x, then a.
$a^{3}-9 a+12 \leq 0$ b. $4 a^{3}+39<0$ c. $a \geq \frac{1}{4}$ d. $a<\frac{1}{4}$

- Watch Video Solution

800. If $\cos ^{4} \theta+\alpha$ and $\sin ^{4} \theta+\alpha$ are the roots of the equation $x^{2}+2 b x+b=0$ and $\cos ^{2} \theta+\beta, \sin ^{2} \theta+\beta$ are the roots of the equation $x^{2}+4 x+2=0$, then values of b are a) 2 b) -1 c) -2 d) 1

- Watch Video Solution

801. If the roots of the equation $x^{2}+a x+b=0 a r e c$ and d, then roots of the equation $x^{2}+(2 c+a) x+c^{2}+a c+b=0$ are a $c b . d-c c .2 c$ d. 0
802. If $a, b, c \in R$ and $a b c<0$, then equation $b c x^{2}+(2 b+c-a) x+a=0$ has (a). both positive roots (b). both negative roots (c). real roots (d) one positive and one negative root

- Watch Video Solution

803. For the quadratic equation $x^{2}+2(a+1) x+9 a-5=0$, which of the following is/are true? (a) If $2<a<5$, then roots are opposite sign (b)If $a<0$, then roots are opposite in sign (c) if $a>7$ then both roots are negative (d) if $2 \leq a \leq 5$ then roots are unreal

- Watch Video Solution

804. Let $P(x)=x^{2}+b x+c w h e r e b a n d c$ are integer. If $P(x)$ is a factor of both $x^{4}+6 x^{2}+25$ and $3 x^{4}+4 x^{2}+28 x+5$, then a. $P(x)=0$ has imaginary roots $b \cdot P(x)=0$ has roots of opposite $c \cdot P(1)=4 \mathrm{~d} \cdot P(1)=6$
805. If $\left|a x^{2}+b x+c\right| \leq 1$ for all x in $[0,1]$, then
a. $|a| \leq 8$
b. $|b|>8$
c. $|c| \leq 1$
d. $|a|+|b|+|c|=17$

- Watch Video Solution

806. Let $f(x)=a x^{2}+b x+\cdot$ Consider the following diagram. Then Fig $c<0 b>0 a+b-c>0 a b c<0$

- Watch Video Solution

807.

If roots
of
$a x^{2}+b x+c=0$
are
बandßand $4 a+2 b+c>0,4 a-2 b+c>0$, andc <0, then possible values
$/$ values of $[\alpha]+[\beta]$ is/are (where [.] represents greatest integer function) a. -2 b.-1c. 0d. 1

- Watch Video Solution

808. The equation $\left(\frac{x}{x+1}\right)^{2}+\left(\frac{x}{x-1}\right)^{2}=\mathrm{a}(\mathrm{a}-1)$ has

- Watch Video Solution

809. Find the complete set of values of a such that $\frac{x^{2}-x}{1-a x}$ attains all real values.

- Watch Video Solution

810. If α, β are roots of $x^{2}+p x+1=0 a n d y, \delta$ are the roots of $x^{2}+q x+1=0$, then prove that $q^{2}-p^{2}=(\alpha-\gamma)(\beta-\gamma)(\alpha+\delta)(\beta+\delta)$.
811. If he roots of the equation $12 x^{2}-m x+5=0$ are in the ratio $2: 3$ then find the value of m

- Watch Video Solution

812. If α, β be the roots of $x^{2}-a(x-1)+b=0$, then the value of
$\frac{1}{\alpha^{2}-a \alpha}+\frac{1}{\beta^{2}-a \beta}+\frac{2}{a+b}$ is

- Watch Video Solution

813. The equation formed by decreasing each root of $a x^{2}+b x+c=0$ by 1 is $2 x^{2}+8 x+2=0$ then

- Watch Video Solution

814. If the sum of the roots of an equation is 2 and the sum of their cubes is 98 , then find the equation.

Watch Video Solution

815. If x is real and $\frac{x^{2}+2 x+c}{x^{2}+4 x+3 c}$ can take all real values, of then show that $0 \leq c \leq 1$.

- Watch Video Solution

816. Find the range of $f(x)=\sqrt{x-1}+\sqrt{5-x}$.

- Watch Video Solution

817. If $x^{2}+a x+b c=0$ and $x^{2}+b x+a c=0$ have a common root, show their other root satisfies the equation $x^{2}+c x+a b=0$
818. Let α, β are the roots of $x^{2}+b x+1=0$. Then find the equation whose roots are $(\alpha+1 / \beta)$ and $(\beta+1 / \alpha)$.

- Watch Video Solution

819. Find the greatest value of a non-negative real number λ for which both the equations $2 x^{2}+(\lambda-1) x+8=0$ and $x^{2}-8 x+\lambda+4=0$ have real roots.

D Watch Video Solution

820. If $a, b, c \in R$ such that $a+b+c=0 a n d a \neq c$, then prove that the roots of $(b+c-a) x^{2}+(c+a-b) x+(a+b-c)=0$ are real and distinct.

- Watch Video Solution

821. Evaluate: $i^{135}(-\sqrt{-1})^{4 n+3}, n \in N \sqrt{-25}+3 \sqrt{-4}+2 \sqrt{-9}$

- Watch Video Solution

822. If the equation $(a-5) x^{2}+2(a-10) x+a+10=0$ has roots of opposite sign, then find the value of a

- Watch Video Solution

823. If $\alpha a n d \beta$ are the roots of $a x^{2}+b x+c=0 a n d S_{n}=\alpha^{n}+\beta^{n}$, then
$a S_{n+1}+b S_{n}+c S_{n-1}=0$ and hence find S_{5}

- Watch Video Solution

824. If α is a root of the equation $4 x^{2}+2 x-1=0$, then prove that $4 \alpha^{3}-3 \alpha$ is the other root.
825. If both the roots of $x^{2}-a x+a=0$ are greater than 2 , then find the value of a

- Watch Video Solution

826. If $\left(y^{2}-5 y+3\right)\left(x^{2}+x+1\right)<2 x$ for all $x \in R$, then find the interval in which y lies.

- Watch Video Solution

827. Find the values of 'a' which $4^{t}-(a-4) 2^{t}+\frac{9}{4} a<0, \forall t \in(1,2)$

- Watch Video Solution

828. Find the number of positive integral values of k for which $k x^{2}+(k-3) x+1<0$ for atleast one positive x .
829. If $x^{2}+2 a x+a<0 \forall x \in[1,2]$ then find set of all possible values of a

- Watch Video Solution

830. Given that a, b, c are distinct real numbers such that expressions $a x^{2}+b x+c, b x^{2}+c x+a$ and,$c x^{2}+a x+b$ are always non-negative. Prove that the quantity $\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}$ can never lie in $(-\infty, 1) \cup[4, \infty)$.

- Watch Video Solution

831. Find the number of quadratic equations, which are unchanged by squaring their roots.

- Watch Video Solution

832. Solve the following: $\left(\sqrt{x^{2}-5 x+6}+\sqrt{x^{2}-5 x+4}\right)^{\frac{x}{2}}+\left(\sqrt{x^{2}-5 x+6}-\right.$ $\sqrt{\left.x^{2}-5 x+4\right)^{x / 2}}=2^{\frac{x+4}{4}}$

- Watch Video Solution

833. Show that the equation
$\frac{A^{2}}{x-a}+\frac{B^{2}}{x-b}+\frac{C^{2}}{x-c}+\ldots .+\frac{H^{2}}{x-h}=k$ has no imaginary root, where $\mathrm{A}, \mathrm{B}, \mathrm{C} . . . \mathrm{H}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c} . . .$, , and $K \in R$.

- Watch Video Solution

834. Find the values of a if $x^{2}-2(a-1) x+(2 a+1)=0$ has positive roots.

(Watch Video Solution

835. If $\alpha a n d \beta, \alpha a n d \gamma, \alpha a n d \delta$ are the roots of the equations
$a x^{2}+2 b x+c=0,2 b x^{2}+c x+a=0 a d n c x^{2}+a x+2 b=0, \quad$ respectively,
where a, b, and c are positive real numbers, then $\alpha+\alpha^{2}=\mathrm{a} \cdot a b \mathrm{c} \mathrm{b}$. $a+2 b+c \mathrm{c} .-1$ d. 0

- Watch Video Solution

836. If $\alpha \beta$ the roots of the equation $x^{2}-x-1=0$, then the quadratic equation whose roots are $\frac{1+\alpha}{2-\alpha}, \frac{1+\beta}{2-\beta}$

- Watch Video Solution

837. If $a(p+q)^{2}+2 b p q+c=0$ and $a(p+r)^{2}+2 b p r+c=0(a \neq 0)$, then which one is correct? a) $q r=p^{2}$ b) $q r=p^{2}+\frac{c}{a}$ c) none of these d) either a) or b)

- Watch Video Solution

838. If α_{1}, α_{2} are the roots of equation $x^{2}-p x+1=0 a n d \beta_{1}, \beta_{2}$ are those of equation $x^{2}-q x+1=0$ and vector $\alpha_{1} \hat{i}+\beta_{1} \hat{j}$ is parallel to $\alpha_{2} \hat{i}+\beta_{2} \hat{j}$,
then $p=a . \pm q$ b. $p= \pm 2 q$ c. $p=2 q$ d. none of these

- Watch Video Solution

839.

Suppose
A,
B,
C are defined
as
$A=a^{2} b+a b^{2}-a^{2} c-a c^{2}, B=b^{2} c+b c^{2}-a^{2} b-a b^{2}-b c^{2}$, and $C=a^{2} c+{ }^{\prime} a c^{2}-$
and the equation $A x^{2}+B x+C=0$ has equal roots, then a, b, c are in $A P$
b. $G P$ c. $H P$ d. $A G P$

- Watch Video Solution

840. The integral value of m for which the root of the equation $m x^{2}+(2 m-1) x+(m-2)=0$ are rational are given by the expression [where n is integer]
(A) n^{2}
(B) $n(n+2)$
(C) $n(n+1)$
(D) none of these
841. If $b_{1} \cdot b_{2}=2\left(c_{1}+c_{2}\right)$ then at least one of the equation $x^{2}+b_{1} x+c_{1}=0$ and $x^{2}+b_{2} x+c_{2}=0$ has a) imaginary roots b) real roots c) purely imaginary roots d) none of these

- Watch Video Solution

842. If the root of the equation $(a-1)\left(x^{2}-x+1\right)^{2}=(a+1)\left(x^{4}+x^{2}+1\right)$ are real and distinct, then the value of $a \in$ a) $(-\infty, 3]$ b) $(-\infty,-2) \cup(2, \infty)$ c) $[-2,2]$ d) $[-3, \infty)$

- Watch Video Solution

843. If α and β are roots of the equation $a x^{2}+b x+c=0$, then the roots of the equation $a(2 x+1)^{2}-b(2 x+1)(x-3)+c(x-3)^{2}=0 \quad$ are \quad a. $\frac{2 \alpha+1}{\alpha-3}, \frac{2 \beta+1}{\beta-3}$ b. $\frac{3 \alpha+1}{\alpha-2}, \frac{3 \beta+1}{\beta-2}$ c. $\frac{2 \alpha-1}{\alpha-2}, \frac{2 \beta+1}{\beta-2}$ d. none of these
844. If $a, b, c, d \in R$, then the equation
$\left(x^{2}+a x-3 b\right)\left(x^{2}-c x+b\right)\left(x^{2}-d x+2 b\right)=0$ has a) 6 real roots b) at least
2 real roots c) 4 real roots d) none of these
845. Graph of $y=f(x)$ is as shown in the following figure.

Find the roots of the following equations
$f(x)=0$
$f(x)=4$
$f(x)=x+2$
846. In how many points graph of $y=x^{3}-3 x^{2}+5 x-3$ intersect the x-axis?

- Watch Video Solution

847. The quadratic polynomial $p(x)$ has the following properties: $p(x) \geq 0$ for all real numbers, $p(1)=0$ and $p(2)=2$. Find the value of $p(3)$ is \qquad .

- Watch Video Solution

848. If $(1-p)$ is a root of quadratic equation $x^{2}+p x+(1-p)=0$, then find its roots.

- Watch Video Solution

849. A polynomial in x of degree 3 vanishes when $x=1$ and $x=-2$, ad has the values 4 and 28 when $x=-1$ and $x=2$, respectively. Then find the value of polynomial when $x=0$.

- Watch Video Solution

850. Let $f(x)=a^{2}+b x+c$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in R and $a \neq 0$. It is known that $f(5)=-3 f(2)$ and that 3 is a root of $f(x)=0$. Then find the other root of $f(x)=0$.

- Watch Video Solution

851. If $x=1$ and $x=2$ are solutions of equations
$x^{3}+a x^{2}+b x+c=0$ and $a+b=1$, then find the value of b

- Watch Video Solution

852. If $x \in R$, anda, b, c are in ascending or descending order of magnitude, show that $(x-a)(x-c) /(x-b)($ wherex $\neq b)$ can assume any real value.

- Watch Video Solution

853. Prove that graphs $y=2 x-3$ and $y=x^{2}-x$ never intersect.

- Watch Video Solution

854. Which of the following pair of graphs intersect ?
(i) $y=x^{2}-x$ and $y=1$
(ii) $y=x^{2}-2 x+3$ and $y=\sin x$
(iii) $y=x^{2}-x+1$ and $y=x-4$

- Watch Video Solution

855. If α and β are the rootsof he equations $x^{2}-a x+b=0 a n d A_{n}=\alpha^{n}+\beta^{n}$, then which of the following is true? a)
$A_{n+1}=a A_{n}+b A_{n-1}$
b) $A_{n+1}=b A_{n-1}+a A_{n}$
c) $A_{n+1}=a A_{n}-b A_{n-1}$
$A_{n+1}=b A_{n-1}-a A_{n}$

- Watch Video Solution

856. If α, β be the roots $x^{2}+p x-q=0$ and γ, δ be the roots of $x^{2}+p x+r=0, p+r \phi 0$,then $\frac{(\alpha-\gamma)(\alpha-\delta)}{(\beta-\gamma)(\beta-\delta)}$ is equal to

- Watch Video Solution

857. If the equations $a x^{2}+b x+c=0$ and $x^{3}+3 x^{2}+3 x+2=0$ have two common roots, then a) $a=b=c \mathrm{~b}) a=b \neq c \mathrm{c}) a=-b=c \mathrm{~d}) \mathrm{a}+\mathrm{b}+\mathrm{c}=3$

- Watch Video Solution

858. The value m for which one of the roots of $x^{2}-3 x+2 m=0$ is double of one of the roots of $x^{2}-x+m=0$ is a. -2 b .1 c .2 d . none of these

- Watch Video Solution

859. $\operatorname{LetP}(\mathrm{x})=0$ be the polynomial equation of least possible degree with rational coefficients having $3 \sqrt{7}+3 \sqrt{49}$ as a root. Then the product of all the roots of $\mathrm{P}(\mathrm{x})=0$ is

- Watch Video Solution

860. The value of 'a' for which the equation $x^{3}+a x+1=0$ and $x^{4}+a x^{2}+1$ $=0$, we have a common root is

- Watch Video Solution

861. If ($m_{r}, \frac{1}{m_{r}}$) where $r=1,2,3,4$, are four pairs of values of x and y that satisfy the equation $x^{2}+y^{2}+2 g x+2 f y+c=0$, then the value of $m_{1} \cdot m_{2} \cdot m_{3} \cdot m_{4}$ is a. $0 \mathrm{~b} .1 \mathrm{c} .-1 \mathrm{~d}$. none of these

- Watch Video Solution

862. If $\alpha, \beta, \gamma, \sigma$ are the roots of the equation $x^{4}+4 x^{3}-6 x^{2}+7 x-9=0$, then the value of $\left(1+\alpha^{2}\right)\left(1-\beta^{2}\right)\left(1-\gamma^{2}\right)\left(1-\sigma^{2}\right)$ is a. -75 b. 25 c. 0 d. 75

- Watch Video Solution

863. If $\tan \theta_{1}, \tan \theta_{2}, \tan \theta_{3}$ are the real roots of the $x^{3}-(a+1) x^{2}+(b-a) x-b=0$, where $\theta_{1}+\theta_{2}+\theta_{3} \in(0, \pi) \quad, \quad$ then $\theta_{1}+\theta_{2}+\theta_{3}$, is equal to $\pi / 2 \mathrm{~b} . \pi / 4 \mathrm{c} .3 \pi / 4 \mathrm{~d} . \pi$

- Watch Video Solution

864. If roots of an equation $x^{n}-1=0 \operatorname{are} 1, a_{1}, a_{2}, \ldots . . a_{n-1}$, then the value of $\left(1-a_{1}\right)\left(1-a_{2}\right)\left(1-a_{3}\right)\left(1-a_{n-1}\right)$ will be n b. n^{2} c. n^{n} d. 0

- Watch Video Solution

865. If α, β are the roots of $a x^{2}+b x+c=0,(a \neq 0)$ and $\alpha+\delta, \beta+\delta$ are the roots of $A x^{2}+B x+C=0,(A \neq 0)$ for some constant δ then prove that $\frac{b^{2}-4 a c}{a^{2}}=\frac{B^{2}-4 A C}{A^{2}}$

- Watch Video Solution

866. Let $f(x)=A x^{2}+B x+c$, whereA, B, C are real numbers. Prove that if $f(x)$ is an integer whenever x is an integer, then the numbers $2 A, A+B$, and C are all integer. Conversely, prove that if the number $2 A, A+B$, and C are all integers, then $f(x)$ is an integer whenever x is integer.
867. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the lengths of sides of the quadrilateral, prove that $2 \leq a_{2}+b_{2}+c_{2}+d_{2} \leq 4$

(Watch Video Solution

868. The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+b x+\gamma=0$ are in A.P. Find the intervals in which β and γ lie.

D Watch Video Solution

869. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be real. If $a x^{2}+b x+c=0$ has two real roots α, β where
$\alpha<-1$ and $\beta>1$, then show that $1+\frac{c}{a}+\left|\frac{b}{a}\right|<0$.

- Watch Video Solution

870. For $a \leq 0$, determine all real roots of the equation $x^{2}-2 a|x-a|-3 a^{2}=0$

- Watch Video Solution

871. Solve for $x:(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{6})^{x^{2}-3}=10$.

- Watch Video Solution

872. If one root of the quadratic equation $a x^{2}+b x+c=0$ is equal to the $n^{t} h$ power of the other root then show that, $\left(a c^{n}\right)^{\frac{1}{n+1}}+\left(a^{n} c\right)^{\frac{1}{n+1}}+b=0$

- Watch Video Solution

873. If $a, b, c \in R$ and equations $a x^{2}+b x+c=0$ and $x^{2}+2 x+3=0$ have a common root, then find $a: b: c$
874. Find the condition that the expressions $a x^{2}-b x y+c y^{2} a n d a_{1} x^{2}+b_{1} x y+c_{1} y^{2}$ may have factors $y-m x a n d m y-x$, respectively.

- Watch Video Solution

875. If $x^{2}+(a-b) x+(1-a-b)=0$. wherea, $b \in R$, then find the values of a for which equation has unequal real roots for all values of b

- Watch Video Solution

876. Let a, b, c be real numbers with $a \neq 0$ and α, β be the roots of the equation $a x^{2}+b x+c=0$. Express the roots of $a^{3} x^{2}+a b c x+c^{3}=0$ in terms of α, β
877. If the product of the roots of the equation $(a+1) x^{2}+(2 a+3) x+(3 a+4)=0 i s 2$, then find the sum roots.

- Watch Video Solution

