

MATHS

BOOKS - CENGAGE PUBLICATION

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Others

1. The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has

Watch Video Solution

2. Solve for
$$x: 4^x - 3^{x-1/2} = 3^{x+1/2} - 2^{2x-1}$$
.

3. Solve for $x: \sqrt{x+1} - \sqrt{x-1} = 1$.

4. If
$$x, y \in Rand_{2x^{2}} + 6xy + 5y^{2} = 1$$
, then a. $|x| \le \sqrt{5}$ b. $|x| \ge \sqrt{5}$ c. $y^{2} \le 2$ d.
 $y^{2} \le 4$

Watch Video Solution

5. If the roots $x^5 - 40x^4 + Px^3 + Qx^2 + Rx + S = 0$ are n G.P. and the sum of

their reciprocals is 10, then |S| is 4 b. 6 c. 8 d. none of these

7. For what values of m, does the system of equations 3x+my=m and 2x-

5y=20 has a solution satisfying the conditions x > 0, y > 0 ?

Watch Video Solution

8. Show that the square to
$$\left(\sqrt{26-15\sqrt{3}}\right)/\left(5\sqrt{2}-\sqrt{38+5\sqrt{3}}\right)$$
 is a

rational number.

Watch Video Solution

9. If α , β are the roots $x^2 + px + q=0$ and γ , δ are the roots of $x^2 + rx + s=0$, evaluate $(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)$ in terms of p,q,r and s. Deduce the condition that the equation may have a common root.

10. Let $f(x) = x^2 + bx + c$, where b,c $\in \mathbb{R}$. If f(x) is a factor of both $x^4 + 6x^2 + 25$ and $3x^4 + 4x^2 + 28x + 5$, then the least value of f(x) is

Watch Video Solution

11. If the equation $ax^2 + bx + c = x$ has no real roots, then the equation

 $a(ax^{2} + bx + c)^{2} + b(ax^{2} + bx + c) + c = x$ will have a. four real roots b. no

real root c. at least two least roots d. none of these

Watch Video Solution

12. The value of expression $x^4 - 8x^3 + 18x^2 - 8x + 2$ when $x = 2 + \sqrt{3}$ a. 2 b.

1 c. 0 d. 3

13. The exhaustive set of values of a for which inequation

$$(a - 1)x^2 - (a + 1)x + a - 1 \ge 0$$
 is true $\forall x > 2$ $(a)(-\infty, 1)$ $(b)\left[\frac{7}{3}, \infty\right)$
 $(c)\left[\frac{3}{7}, \infty\right)$ (d) none of these
Watch Video Solution

14. If p, q, r, s are rational numbers and the roots of f(x) = 0 are eccentricities of a parabola and a rectangular hyperbola, where $f(x) = px^3 + qx^2 + rx + s$, then p + q + r + s = a. p b. -p c. 2p d. 0

Watch Video Solution

15. If
$$\left|z - \left(\frac{1}{z}\right)\right| = 1$$
, then a. $(|z|)_{max} = \frac{1 + \sqrt{5}}{2}$ b. $(|z|)_{m \in} = \frac{\sqrt{5} - 1}{2}$ c.
 $(|z|)_{max} = \frac{\sqrt{5} - 2}{2}$ d. $(|z|)_{m \in} = \frac{\sqrt{5} - 1}{\sqrt{2}}$

16. zo is one of the roots of the equation $z^{n}\cos\theta_{0} + z^{n-1}\cos\theta_{1} + \dots + z\cos\theta_{n-1} + \cos\theta_{n} = 2$, where $\theta \in R$, then (A) $|z_{0}| < \frac{1}{2}$ (B) $|z_{0}| > \frac{1}{2}$ (C) $|z_{0}| = \frac{1}{2}$

(D)None of these

Watch Video Solution

17. If a_0, a_1, a_2, a_3 are all the positive, then $4a_0x^3 + 3a_1x^2 + 2a_2x + a_3 = 0$ has least one root in (-1,0) if (a) $a_0 + a_2 = a_1 + a_3$ and $4a_0 + 2a_2 > 3a_1 + a_3$ (b) $4a_0 + 2a_2 < 3a_1 + a_3$ (c) $4a_0 + 2a_2 = 3a_1 + a_0$ and $4a_0 + a_2 < a_1 + a_3$ (d) none of these

18. If 1, $z_1, z_2, z_3, \dots, z_{n-1}$ be the n, nth roots of unity and ω be a non-

real complex cube root of unity, then $\prod_{r=1}^{n-1} (\omega - z_r)$ can be equal to

Watch Video Solution

19. If $ax^2 + bx + c = 0$ has imaginary roots and a - b + c > 0 then the set of points (x, y) satisfying the equation $\left|a\left(x^2 + \frac{y}{a}\right) + (b + 1)x + c\right| = \left|ax^2 + bx + c\right| + |x + y|$ consists of the region in the xy - plane which is (a)on or above the bisector of I and III quadrant (b)on or above the bisector of II and IV quadrant (c)on or below the bisector of I and III quadrant (d)on or below the bisector of II and IV quadrant

Watch Video Solution

20. All the values of 'a' for which the quadratic expression $ax^2 + (a - 2)x - 2$ is negative for exactly two integral values of x may lie in

(a)
$$\left[1, \frac{3}{2}\right]$$
 (b) $\left[\frac{3}{2}, 2\right)$ (c) $[1, 2)$ (d) $[-1, 2)$

Watch Video Solution

21. If the equation $z^3 + (3 + i)(z^2) - 3z - (m + i) = 0$, $m \in R$, has at least

one real root, then sum of possible values of m, is

Watch Video Solution

22. If a + b + c = 0, $a^2 + b^2 + c^2 = 4$, then $a^4 + b^4 + c^4$ is _____.

Watch Video Solution

23. Let P(x) and Q(x) be two polynomials. If $f(x) = P(x^4) + xQ(x^4)$ is divisible by $x^2 + 1$, then

24. Find the solution set of the system x + 2y + z = 1 2x - 3y - w = 2

 $x \ge 0, y \ge 0, z \ge 0, w \ge 0$

25. If
$$\operatorname{amp}(z_1 z_2) = 0$$
 and $|z|_1 = |z|_2 = 1$, then

Watch Video Solution

26. mn squares of equal size are arranged to form a rectangle of dimension m by n, where m and n are natural numbers. Two square will be called neighbors if they have exactly one common side. A number is written in each square such that the number written in any square is the arithmetic mean of the numbers written in its neighboring squares. Show that this is possible only if all the numbers used are equal.

27. Prove that $\ln(1 + x) < x$ for x > 0.

Watch Video Solution

28. Form a quadratic equation whose roots are -4 and 6.

29. If
$$\left| \frac{z - z_1}{z - z_2} \right| = 3$$
, where z_1 and z_2 are fixed complex numbers and z is a

variable complex number, then z lies on a (a).circle with z_1 as its interior point (b).circle with z_2 as its interior point (c).circle with z_1 as its exterior point (d).circle with z_2 as its exterior point

30. If *a*, *b*, *c* are odd integere then about that $ax^2 + bx + c = 0$, does not

have rational roots

31. if
$$arg(z + a) = \frac{\pi}{6}$$
 and $arg(z - a) = \frac{2\pi}{3}$ then

Watch Video Solution

32. Values (s)(-i)¹/₃ is/are
$$\frac{\sqrt{3} - i}{2}$$
 b. $\frac{\sqrt{3} + i}{2}$ c. $\frac{-\sqrt{3} - i}{2}$ d. $\frac{-\sqrt{3} + i}{2}$

Watch Video Solution

33. if $\cos\theta$, $\sin\phi$, $\sin\theta$ are in g.p then check the nature of roots of $x^2 + 2\cot\phi$. x + 1 = 0

34. Given
$$z = (1 + i\sqrt{3})^{100}$$
, then $[Re(z)/Im(z)]$ equals

(a)2¹⁰⁰

b. 2⁵⁰

c.
$$\frac{1}{\sqrt{3}}$$

d. $\sqrt{3}$

35. If a ,b ,c are non zero rational no then prove roots of equation $(abc^{2})x^{2} + 3a^{2}cx + b^{2}cx - 6a^{2} - ab + 2b^{2} = 0 \text{ are rational.}$

36. If ab + bc + ca = 0, then solve $a(b - 2c)x^2 + b(c - 2a)x + c(a - 2b) = 0$.

Watch Video Solution

37. $If(\cos\theta + i\sin\theta)(\cos 2\theta + i\sin 2\theta)...$. $(\cos n\theta + i\sin n\theta) = 1$ then the value of

 θ is:

38. The polynomial $x^6 + 4x^5 + 3x^4 + 2x^3 + x + 1$ is divisible by_____ where ω is one of the imaginary cube roots of unity. (a) $x + \omega$ (b) $x + \omega^2$ (c) $(x + \omega)(x + \omega^2)$ (d) $(x - \omega)(x - \omega^2)$

Watch Video Solution

39. If roots of equation $3x^2 + 5x + 1 = 0$ are $(\sec\theta_1 - \tan\theta_1)$ and $(\csc\theta_2 - \cot\theta_2)$. Then find the equation whose roots are $(\sec\theta_1 + \tan\theta_1)$

and
$$\left(\cos e c \theta_2 + \cot \theta_2\right)^2$$

Watch Video Solution

40. If roots of the equation $ax^2 + bx + c = 0$ be a quadratic equation and

 α,β are its roots then f(-x)=0 is an equation whose roots

Watch Video Solution

42. Form a quadratic equation with real coefficients whose one root is .

3 **-** 2i

43. Number of solutions of the equation $z^3 + \frac{3(\bar{z})^2}{|z|} = 0$ where z is a

complex number is

Watch Video Solution

44. If the roots of the quadratic equation $x^2 + px + q = 0$ are $\tan 30^0$ and $\tan 15^0$, respectively, then find the value of 2 + q - p

Watch Video Solution

45. If x and y are complex numbers, then the system of equations (1 + i)x + (1 - i)y = 1, 2ix + 2y = 1 + i has (a) Unique solution (b) No solution (c) Infinite number of solutions (d) None of these

46. If *a*, *b*, and *c* are in A.P. and one root of the equation $ax^2 + bx + c = 0is2$, the find the other root

Watch Video Solution

47. If
$$z = x + iy\left(x, y \in R, x \neq -\frac{1}{2}\right)$$
, the number of values of z satisfying $|z|^n = z^2 |z|^{n-2} + z|z|^{n-2} + 1$. $(n \in N, n > 1)$ is

Watch Video Solution

48. If $K + |K + z^2| = |z|^2 (K \in \mathbb{R}^-)$, then possible argument of z is

Watch Video Solution

49. If α is the root (having the least absolute value) of the equation $x^2 - bx - 1 = 0 (b \in R^+)$, then prove that $-1 < \alpha < 0$.

50. If α , β are roots of $x^2 - 3x + a = 0$, $a \in R$ and $\alpha < 1 < \beta$ then find the value of a.

Watch Video Solution

51. If z=x+iy and $x^2 + y^2 = 16$, then the range of ||x| - |y|| is

Watch Video Solution

52. If a < b < c < d, then for any real non-zero λ , the quadratic equation

 $(x - a)(x - c) + \lambda(x - b)(x - d) = 0$, has (a) no real roots. (b) one real root

between a and c (c) one real root between b and d (d) Irrational roots.

53. If
$$k > 0$$
, $|z| = |w| = k$, and $\alpha = \frac{z - \bar{w}}{k^2 + z\bar{w}}$, then $Re(\alpha)$ (A) 0 (B) $\frac{k}{2}$ (C) k (D)

None of these

54. The quadratic $x^2 + ax + b + 1 = 0$ has roots which are positive integers, then $(a^2 + b^2)$ can be equal to a.50 b. 37 c. 61 d. 19

Watch Video Solution

55. if z_1 and z_2 are two complex numbers such that $|z|_1 \le 1 \le |z|_2$ then

prove that
$$\frac{\left|1 - z_1 \overline{z}_2\right|}{\left|z_1 - z_2\right|} < 1$$

56. The sum of values of x satisfying the equation $(31 + 8\sqrt{15})^{x^2 - 3} + 1 = (32 + 8\sqrt{15})^{x^2 - 3}$ is (a) 3 (b) 0 (c) 2 (d) none of

these

Watch Video Solution

57. Let a complex number $\alpha, \alpha \neq 1$, be a root of the equation $z^{p+q} - z^p - z^q + 1 = 0$, where p, q are distinct primes. Show that either $1 + \alpha + \alpha^2 + \alpha^{p-1} = 0$ or $1 + \alpha + \alpha^2 + \alpha^{q-1} = 0$, but not both together.

Watch Video Solution

58. If α , β are real and distinct roots of $ax^2 + bx - c = 0$ and p, q are real and distinct roots of $ax^2 + bx - |c| = 0$, where (a > 0), then $(a)\alpha, \beta \in (p, q)$ (b). $\alpha, \beta \in [p, q]$ (c). $p, q \in (\alpha, \beta)$ (d). none of these

59. Let $a \neq 0$ and p(x) be a polynomial of degree greater than 2. If p(x) leaves remainders a and -a when divided respectively, by x + a and x - a, the remainder when p(x) is divided by $x^2 - a^2$ is (a) 2x (b) -2x (c) x (d) -x

60. Prove that there exists no complex number z such that
$$|z| < \frac{1}{3}$$
 and $\sum_{n=1}^{n} a_r z^r = 1$, where $|a_r| < 2$.

Watch Video Solution

61. A quadratic equation with integral coefficients has two different prime numbers as its roots. If the sum of the coefficients of the equation is prime, then the sum of the roots is a. 2 b. 5 c. 7 d. 11

62. find the centre and radius of the circle formed by all the points

represented by z=x+iy satisfying the relation $\left|\frac{z-\alpha}{z-\beta}\right| = k(k \neq 1)$ where α

and β are constant complex numbers given by $\alpha = \alpha_1 + I\alpha_2$, $\beta = \beta + i\beta_2$

Watch Video Solution

63. If *a*, *b*, *c* are three distinct positive real numbers, the number of real

and distinct roots of $ax^2 + 2b|x| - c = 0$ is 0 b. 4 c. 2 d. none of these

Watch Video Solution

64. Find the non-zero complex number z satisfying $z = iz^2$

65. Let a, b and c be real numbers such that 4a + 2b + c = 0 and ab > 0

.Then the equation $ax^2 + bx + c = 0$ has (A) real roots (B) Imaginary roots

(C) exactly one root (D) roots of same sign

A. only one root

B. null

C. null

D. null

Watch Video Solution

66. If $|z| \le 1$, $|w| \le 1$, then show that $|z - w|^2 \le (|z| - |w|)^2 + (argz - argw)^2$

Watch Video Solution

67. If α , β are the roots of the equation $x^2 - 2x + 3 = 0$ obtain the equation

whose roots are α^3 - $3\alpha^2$ + 5α - 2 and β^3 - β^2 + β = 5

68. For complex numbers z and w prove that $|z|^2w - |w|^2z = z - w$ if and

only if z=w or $z\bar{w} = 1$

69. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then the value of

$$\frac{a\alpha^2 + c}{a\alpha + b} + \frac{a\beta^2 + c}{a\beta + b} \text{ is a.} \frac{b(b^2 - 2ac)}{4a} \text{ b.} \frac{b^2 - 4ac}{2a} \text{ c.} \frac{b(b^2 - 2ac)}{a^2c} \text{ d. none of these}$$

Watch Video Solution

70. let z_1 and z_2 be roots of the equation $z^2 + pz + q = 0$ where the coefficients p and q may be complex numbers let A and B represents z_1 and z_2 in the complex plane if $\leq AOB = \alpha \neq 0$ and OA=OB where 0 is the

origin prove that
$$p^2 = 4q\cos^2\left(\frac{\alpha}{2}\right)$$

71. If $a \in (-1, 1)$, then roots of the quadratic equation $(a - 1)x^2 + ax + \sqrt{1 - a^2} = 0$ are

A. a. Real

B. b. Imaginary

C. c. both equal

D. d. none of these

Watch Video Solution

72. The maximum value of
$$\left| arg\left(\frac{1}{1-z}\right) \right|$$
 for $|z|=1, z \neq 1$ is given by.

73. If one root is square of the other root of the equation $x^2 + px + q = 0$,

then the relation between pandq is

$$p^3 - q(3p - 1) + q^2 = 0$$

$$p^3 - q(3p+1) + q^2 = 0$$

$$p^3 + q(3p - 1) + q^2 = 0$$

$$p^3 + q(3p+1) + q^2 = 0$$

Watch Video Solution

74. If $z^4 + 1 = \sqrt{3}i$ (A) z^3 is purely real (B) z represents the vertices of a square of side $2^{\frac{1}{4}}$ (C) z^9 is purely imaginary (D) z represents the vertices of a square of side $2^{\frac{3}{4}}$

75. Let α, β be the roots of the quadratic equation $ax^2 + bx + c = 0$ and $\delta = b^2 - 4a \cdot If\alpha + \beta, \alpha^2 + \beta^2 \alpha^3 + \beta^3$ are in G.P. Then a. = 0 b. $\neq 0$ c. b = 0 d. c = 0

Watch Video Solution

76. If x = a + bi is a complex number such that $x^2 = 3 + 4i$ and $x^3 = 2 + 11i$

, where $i = \sqrt{-1}$, then (a + b) equal to

Watch Video Solution

77. Let α , β be the roots of $x^2 - x + p = 0$ and γ , δ be the roots of $x^2 - 4x + q = 0$. If α , β , γ are in GP, then the integer values of p and q respectively are:

78. Let if then one of the possible value of is:

79. If
$$f(x) = x^2 + 2bx = 2c^2$$
 and $g(x) = -x^2 - 2cx + b^2$ are such that min

 $f(x) > \max g(x)$, then the relation between b and c is

80. Let z be a complex number such that the imaginary part of z is non zero and $a = z^2 + z + 1$ is real then a cannot take the value

Watch Video Solution

81. For the equation $3x^2 + px + 3 = 0$, p > 0, if one of the root is square of

the other, then p is equal to

(a)1/3	
b. 1	
c. 3	
d. 2/3	
Watch Video Solution	

82. Let z, ω be complex numbers such that $\bar{z} + i\bar{\omega} = 0$ and $arg(z\omega) = \pi$,

then argz equals

Watch Video Solution

83. Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let m(b) the minimum value of f(x).

As *b* varies, the range of *m*(*b*) is [0, 1] (b) $\left(0, \frac{1}{2}\right] \left[\frac{1}{2}, 1\right]$ (d) (0, 1]

84. For any two complex numbers z_1 and z_2 , prove that $Re(z_1z_2) = Rez_1Rez_2 - Imz_1Imz_2$

Watch Video Solution

85. If α and $\beta(\alpha < \beta)$ are the roots of the equation $x^2 + bx + c$ =0,where (c < 0 < b), then

Watch Video Solution

86. If $\omega \neq 1$ be a cube root of unity and $(1 + \omega^2)^n = (1 + \omega^4)^n$ then the

least positive value of n is

87. If b > a, then the equation (x - a)(x - b) - 1 = 0 has

(a) Both roots in (a, b) (b) Both roots in $(-\infty, a)$

(c) Both roots in $(b, +\infty)$ (d) One root in $(-\infty, a)$ and the other in

 $(b, +\infty)$

Watch Video Solution

88. Let z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $|z|_1 = |z|_2$ if z_1

has positive real part then $\frac{z_1 + z_2}{z_1 - z_2}$ may be

Watch Video Solution

89. The equation
$$\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$$
 has

90. If z_1, z_2 are complex number such that $\frac{2z_1}{3z_2}$ is purely imaginary

number, then find
$$\left| \frac{z_1 - z_2}{z_1 + z_2} \right|$$

Watch Video Solution

91. If the roots of the equation $x^2 - 2ax + a^2 + a - 3=0$ are less than 3 then

Watch Video Solution

92. If
$$z(1 + a) = b + ic$$
 and $a^2 + b^2 + c^2 = 1$, then $[(1 + iz)/(1 - iz) = a^2/(1 - iz)]$

A.
$$\frac{a + ib}{1 + c}$$

B.
$$\frac{b - ic}{1 + a}$$

C.
$$\frac{a + ic}{1 + b}$$

D. none of these

93. A value of b for which the equations $x^2 + bx - 1=0$, $x^2+x+b =0$ have

one root in common is

94. If z_1, z_2, z_3 are three complex numbers and A= $\begin{vmatrix} argz_1 & argz_2 & argz_3 \\ argz_2 & argz_3 & argz_1 \\ argz_3 & argz_1 & argz_2 \end{vmatrix}$

then A is divisible by`

Watch Video Solution

95. Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$, and $p^3 \neq -q$ If α and β are nonzero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having α/β and β/α as its roots is A. $(p^3 + q)x^2 - (p^3 + 2q)x + (p^3 + q) = 0$ B. $(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$ C.

$$(p^{3} + q)x^{2} - (5p^{3} - 2q)x + (p^{3} - q) = 0$$

$$(p^{3} + q)x^{2} - (5p^{3} + 2q)x + (p^{3} + q) = 0$$
D.

Watch Video Solution

96. If $\cos \alpha + 2\cos \beta + 3\cos \gamma = \sin \alpha + 2\sin \beta + 3\sin \gamma = 0$, then the value of $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\gamma$ is $\sin(a+b+gamma)$ b. $3\sin(\alpha + \beta + \gamma)$ c. $18\sin(\alpha + \beta + \gamma)$ d. $\sin(\alpha + 2\beta + 3)$

Watch Video Solution

97. Let α , β be the roots of the equation $x^2 - px + r = 0$ and $\alpha/2$, 2β be the roots of the equation $x^2 - qx + r = 0$, then the value of r is (1) $\frac{2}{9}(p - q)(2q - p)(2)\frac{2}{9}(q - p)(2p - q)(3)\frac{2}{9}(q - 2p)(2q - p)(4)\frac{2}{9}(2p - q)(2q - p)$

98. If center of a regular hexagon is at the origin and one of the vertices on the Argand diagram is 1 + 2i, then its perimeter is $2\sqrt{5}$ b. $6\sqrt{2}$ c. $4\sqrt{5}$ d. $6\sqrt{5}$

99. Let a,b,c be the sides fo a triangle where $a \neq b \neq c$ and $\lambda \in R$, if roots

of the equation $x^2 + 2(a + b + c)x + 3\lambda(ab + bc + ca) = 0$ are real, then

Watch Video Solution

100. about to only mathematics

101. Let S be the set of all non-zero real numbers α such that the quadratic equation $\alpha x^2 - x + \alpha = 0$ has two distinct real roots x_1 and x_2

satisfying the inequality $|x_1 - x_2| < 1$. Which of the following intervals is

(are) a subset(s) of S?

Watch Video Solution

102. A complex number z is rotated in anticlockwise direction by an angle α and we get z' and if the same complex number z is rotated by an angle α in clockwise direction and we get z' then

A. z',z,z" are in G.P

B. z'2+z"2=2z 2cos2α

C. z'+z"= $2z\cos\alpha$

D. z',z,z" are in H.P

103. For real x, the function $\frac{(x-a)(x-b)}{x-c}$ will assume all real values provided a)a > b > c b)a < b < c c) a > c < b d) $a \le c \le b$

Watch Video Solution

104. If z_1, z_2 are two complex numbers $(z_1 \neq z_2)$ satisfying $|z_1^2 - z_2^2| = |z_1^2 + z_2^2 - 2(z_1)(z_2)|$, then $a.\frac{z_1}{z_2}$ is purely imaginary b. $\frac{z_1}{z_2}$ is purely real c. $|argz_1 - argz_2| = \pi d. |argz_1 - argz_2| = \frac{\pi}{2}$

Watch Video Solution

105. The quadratic equation p(x) = 0 with real coefficients has purely imaginary roots. Then the equation p(p(x)) = 0 has A. only purely imaginary roots B. all real roots C. two real and purely imaginary roots D. neither real nor purely imaginary roots
106. If from a point P representing the complex number z_1 on the curve |z| = 2, two tangents are drawn from P to the curve |z| = 1, meeting at points $Q(z_2)$ and $R(z_3)$, then :

Watch Video Solution

107. Let α , β be the roots of the equation $x^2 - 6x - 2 = 0$ with $\alpha > \beta$. If

$$a_n = \alpha^n - \beta^n$$
 for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{2a_9}$ is

Watch Video Solution

108. If $|z - 3| = \min \{|z - 1|, |z - 5|\}$, then Re(z) equals to

Watch Video Solution

109. For the following question, choose the correct answer from the codes (a), (b), (c) and (d) defined as follows: Statement I is true, Statement

II is also true; Statement II is the correct explanation of Statement I. Statement I is true, Statement II is also true; Statement II is not the correct explanation of Statement I. Statement I is true; Statement II is false Statement I is false; Statement II is true. Let a, b, c, p, q be the real numbers. Suppose α, β are the roots of the equation $x^2 + 2px + q = 0$ and $\alpha, \frac{1}{\beta}$ are the roots of the equation $ax^2 + 2bx + c = 0$, where $\beta^2 \notin \{-1, 0, 1\}$ Statement I $(p^2 - q)(b^2 - ac) \ge 0$ and Statement II $b \notin pa$ or $c \notin qa$

Watch Video Solution

110. Find the value of 1^3

111. All the values of *m* for whilch both the roots of the equation $x^2 - 2mx + m^2 - 1 = 0$ are greater than -2 but less than 4 lie in the interval A -2 B. m > 3 **C**. -1 < *m* < 3

D. 1 < *m* < 4

Watch Video Solution

112. If $p = a + b\omega + c\omega^2$, $q = b + c\omega + a\omega^2$, and $r = c + a\omega + b\omega^2$, where $a, b, c \neq 0$ and ω is the complex cube root of unity, then (a) p + q + r = a + b + c (b) $p^2 + q^2 + r^2 = a^2 + b^2 + c^2$ (c) $p^2 + q^2 + r^2 = -2(pq + qr + rp)$ (d) none of these

Watch Video Solution

113. If the roots of the quadratic equation $(4p - p^2 - 5)x^2 - (2p - 1)x + 3p = 0$ lie on either side of unit, then the number of integer values of p is

a.1

c. 3

d. 4

114. If
$$z_1 = 5 + 12i$$
 and $|z_2| = 4$, then

A. (a) maximum
$$(|z_1 + iz_2|) = 17$$

B. (b) minimum $(|z_1 + (1 + i)z_2|) = 13 + 4\sqrt{2}$

C. (c) minimum
$$\left| \frac{z_1}{z_2 + \frac{4}{z_2}} \right| = \frac{13}{4}$$

D. (d) maximum
$$\left| \frac{z_1}{z_2 + \frac{4}{z_2}} \right| = \frac{13}{3}$$

115. If roots of $x^2 - (a - 3)x + a = 0$ are such that both of them is greater

than 2, then

Watch Video Solution

116. If (z-1)/(z+1) is purely imaginary then

Watch Video Solution

117. Let $f(x) = ax^2 + bx + ca$, b, $c \in R$. If f(x) takes real values for real values

of x and non-real values for non-real values of x , then (a)a = 0 (b) b = 0

(c) c = 0 (d) nothing can be said about a, b, c.

118. Write a linear equation representing a line which is parallel to y-axis

and is at a distance of 2 units on the positive side of x-axis

Watch Video Solution

119. If both roots of the equation $ax^2 + x + c - a = 0$ are imaginary and c > -1, then a) 3a >2+4c b) 3a<2+4c c) c < a d) none of these A. a) 3a >2+4c

B. b) 3a<2+4c

C. c) c < a

D. d) none of these

120. If
$$|z| = 1$$
 and $w = \frac{z-1}{z+1}$ (where $z \neq -1$), then $Re(w)$ is 0 (b) $\frac{1}{|z+1|^2}$
 $\left|\frac{1}{|z+1|}\right|, \frac{1}{|z+1|^2}$ (d) $\frac{\sqrt{2}}{|z|1|^2}$

Watch Video Solution

121. The set of all possible real values of a such that the inequality $(x - (a - 1))(x - (a^2 - 1)) < 0$ holds for all $x \in (-1, 3)$ is a. (0, 1) b. $(\infty, -1]$ c. $(-\infty, -1)$ d. $(1, \infty)$

Watch Video Solution

122. If z_1, z_2 are complex number such that $\frac{2z_1}{3z_2}$ is purely imaginary

number, then find $\left| \frac{z_1 - z_2}{z_1 + z_2} \right|$.

123. The interval of *a* for which the equation $tan^2x - (a - 4)tanx + 4 - 2a = 0$ has at least one solution $\forall x \in [0, \pi/4] \ a \in (2, 3)$ b. $a \in [2, 3]$ c. $a \in (1, 4)$ d. $a \in [1, 4]$

124. The range of *a* for which the equation $x^2 + ax - 4 = 0$ has its smaller root in the interval (-1, 2)is a. $(-\infty, -3)$ b. (0, 3) c. $(0, \infty)$ d. $(-\infty, -3) \cup (0, \infty)$

Watch Video Solution

125. Let z and ω be two complex numbers such that $|z| \le 1$, $|\omega| \le 1$ and $|z - i\omega| = |z - i\overline{\omega}| = 2$, then z equals (a)1 or i (b). i or -i (c). 1 or -1 (d). i or -1

126. Consider the equation $x^2 + 2x - n = 0$ where $n \in N$ and $n \in [5, 100]$ The total number of different values of n so that the given equation has integral roots is a.8 b. 3 c. 6 d. 4

Watch Video Solution

127.
$$(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$$
 is a real number if

Watch Video Solution

128. The total number of values a so that $x^2 - x - a = 0$ has integral roots,

where $a \in Nand6 \le a \le 100$, is equal to a.2 b. 4 c. 6 d. 8

129. If
$$i = \sqrt{-1}$$
 then $4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$ is equal to

130. Let $P(x) = x^3 - 8x^2 + cx - d$ be a polynomial with real coefficients and with all it roots being distinct positive integers. Then number of possible value of *c* is _____.

Watch Video Solution

131. If
$$arg(z) < 0$$
, then $arg(-z) - arg(z)$ equals π (b) $-\pi$ (d) $-\frac{\pi}{2}$ (d) $\frac{\pi}{2}$

Watch Video Solution

132. Let
$$P(x) = \frac{5}{3} - 6x - 9x^2 and Q(y) = -4y^2 + 4y + \frac{13}{2}$$
 if there exists unique pair of real numbers (x, y) such that $P(x)Q(y) = 20$, then the value of $(6x + 10y)$ is ____.

133. If
$$z_1, z_2, z_3$$
 are complex numbers such that $|z_1| = |z_2| = |z_3| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right| = 1$ then $|z_1 + z_2 + z_3|$ is equal to Watch Video Solution

134. if a < c < b, then check the nature of roots of the equation

$$(a - b)^2 x^2 + 2(a + b - 2c)x + 1 = 0$$

Watch Video Solution

135. Let z_1 and z_2 be the nth roots of unity which subtend a right angle at

the origin then n must be the form

136. If a + b + c = 0 then check the nature of roots of the equation

$$4ax^2 + 3bx + 2c = 0$$
 where $a, b, c \in \mathbb{R}$

verticles of a triangle which is:

Watch Video Solution

138. The value of a so that the sum of the squares of the roots of the equation $x^2 - (a - 2)x - a + 1 = 0$ assume the least value, is

Watch Video Solution

139. For all complex numbers z_1, z_2 satisfying $|z|_1 = 12$ and $|z_2 - 3 - 4i| = 5$

, the minimum value of
$$|z_1 - z_2|$$
 is

140. If x_1 , and x_2 are the roots of $x^2 + (\sin\theta - 1)x - \frac{1}{2}(\cos^2\theta) = 0$, then find the maximum value of $x_1^2 + x_2^2$

141. If
$$y = \sec(\tan^{-1}x)$$
, then $\frac{dy}{dx}atx = 1$ is
(a) $\cos\left(\frac{\pi}{4}\right)$
(b) $\sin\left(\frac{\pi}{2}\right)$
(c) $\sin\left(\frac{\pi}{6}\right)$
(d) $\cos\left(\frac{\pi}{3}\right)$
Watch Video Solution

142. If $p, q \in \{1, 2, 3, 4, \}$, then find the number of equations of form $px^2 + qx + 1 = 0$ having real roots.

143. If
$$a^2 + b^2 = 1$$
 t h e n $\frac{1 + b + ia}{1 + b - ia} = 1$ b. 2 c. $b + ia$ d. $a + ib$

Watch Video Solution

144. Find the domain and the range of $f(x) = \sqrt{x^2 - 3x}$.

Watch Video Solution

145. Show that the equation $Z^4 + 2Z^3 + 3Z^2 + 4Z + 5 = 0$ has no root which is either purely real or purely imaginary.

146. Find the domain and range of $f(x) = \sqrt{3 - 2x - x^2}$

148. Prove that if the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real

values of x and y, then x must lie between 1 and 3 and y must lie between

$$-\frac{1}{3}$$
 and $\frac{1}{3}$.

149. Let
$$Z_p = r_p \left(\cos\theta_p + i\sin\theta_p\right), p = 1, 2, 3and \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} = 0.$$

Consider the ABC formed formed by

by

$$\frac{\cos 2\theta_1 + i\sin 2\theta_1}{Z_1}, \frac{\cos 2\theta_2 + i\sin 2\theta_2}{Z_2}, \frac{\cos 2\theta_3 + i\sin 2\theta_3}{Z_3} \text{ Prove that origin lies}$$

inside triangle *ABC*
Watch Video Solution
150. Find the least value of $\frac{\left(6x^2 - 22x + 21\right)}{\left(5x^2 - 18x + 17\right)}$ for real *x*
Watch Video Solution

151. Let *a*, *b* and *c* be any three nonzero complex number. If |z| = 1 and '*z*'

satisfies the equation $az^2 + bz + c = 0$, prove that $a. \bar{a} = c. \bar{c}$ and |a||b|=

 $\sqrt{ac(\bar{b})^2}$

Watch Video Solution

152. Find the range of the function $f(x) = x^2 - 2x - 4$.

153. if $x = 9^{\frac{1}{3}}9^{\frac{1}{9}}9^{\frac{1}{27}}\dots \infty$, $y = 4^{\frac{1}{3}}4^{\frac{1}{9}}4^{\frac{1}{27}}\dots \infty$ and $z = \sum_{r=1}^{\infty} r = 1(1+i)^{-r}$ then

arg(x+yz) is equal to

Watch Video Solution

154. Find the linear factors of $2x^2 - y^2 - x + xy + 2y - 1$.

Watch Video Solution

155. If a < 0, b > 0, then $\sqrt{a}\sqrt{b}$ is equal to (a)- $\sqrt{|a|b}$ (b) $\sqrt{|a|b}i$ (c) $\sqrt{|a|b}$ (d)

none of these

156. The value(s) of m for which the expression $2x^2 + mxy + 3y^2 - 5y - 2$ can

be factorized in to two linear factors are:

157. Find the number of solutions of $z^2 + \bar{z} = 0$

Watch Video Solution

158. If
$$a_1x^3 + b_1x^2 + c_1x + d_1 = 0$$
 and $a_2x^3 + b_2x^2 + c_2x + d_2 = 0$ have a pair
of repeated common roots, then prove that
$$\begin{vmatrix} 3a_1 & 2b_1 & c_1 \\ 3a_2 & 2b_2 & c_2 \\ a_2b_1 - a_1b_2 & c_1a_2 - c_2a_1 & d_1a_2 - d_2a_1 \end{vmatrix} = 0$$

159. Consider the equation $10z^2 - 3iz - k = 0$, where *z* is a following complex variable and $i^2 = -1$. Which of the following statements ils true? (a)For real complex numbers *k* , both roots are purely imaginary. (b)For all complex numbers *k* , neither both roots is real. (c)For all purely imaginary numbers *k* , both roots are real and irrational. (d)For real negative numbers *k* , both roots are purely imaginary.

160. If x - c is a factor of order m of the polynomial f(x) of degree n (1 < m < n) , then find the polynomials for which x = c is a root.

> Watch Video Solution

161. If
$$z_1 and z_2$$
 are two complex numbers such that $|z_1| = |z_2| and arg(z_1) + arg(z_2) = \pi$, then show that z_1 , $z_1 = -\overline{z_2}$.

162. Solve the equation $x^3 - 13x^2 + 15x + 189 = 0$ if one root exceeds the other by 2.

163. If $\tan\theta$ and $\sec\theta$ are the roots of $ax^2 + bx + c = 0$, then prove that

$$a^4 = b^2 \left(b^2 - 4ac \right)$$

Watch Video Solution

164. Given that the complex numbers which satisfy the equation $|z\bar{z}^3| + |\bar{z}z^3| = 350$ form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then area of rectangle is 48 sq. units if z_1, z_2, z_3, z_4 are vertices of rectangle, then $z_1 + z_2 + z_3 + z_4 = 0$ rectangle is symmetrical about the real axis $arg(z_1 - z_3) = \frac{\pi}{4}$ or $\frac{3\pi}{4}$

168. If P and Q are represented by the complex numbers z_1 and z_2 such

that
$$\left|\frac{1}{z_2} + \frac{1}{z_1}\right| = \left|\frac{1}{z_2} - \frac{1}{z_1}\right|$$
, then a) *OPQ(whereO)* is the origin of

equilateral *OPQ* is right angled. b) the circumcenter of *OPQis* $\frac{1}{2}(z_1 + z_2)$ c) the circumcenter of *OPQis* $\frac{1}{3}(z_1 + z_2)$

Watch Video Solution

169. Find the value of *a* for which the equation a $\sin\left(x + \frac{\pi}{4}\right) = \sin 2x + 9$

will have real solution.

170. Given z = f(x) + ig(x) where $f, g: (0, 1) \rightarrow (0, 1)$ are real valued

functions. Then which of the following does not hold good?

a.z =
$$\frac{1}{1 - ix} + i\frac{1}{1 + ix}$$

b. z = $\frac{1}{1 + ix} + i\frac{1}{1 - ix}$

c.
$$z = \frac{1}{1 + ix} + i\frac{1}{1 + ix}$$

d. $z = \frac{1}{1 - ix} + i\frac{1}{1 - ix}$

Watch Video Solution

171. Let a, b and c be real numbers such that a + 2b + c = 4. Find the

maximum value of (ab + bc + ca)

Watch Video Solution

172. If z = x + iy, then the equation $\left|\frac{2z - i}{z + 1}\right| = m$ does not represents a circle, when *m* is (a) $\frac{1}{2}$ (b). 1 (c). 2 (d). '3

Watch Video Solution

173. Prove that for real values of x, $(ax^2 + 3x - 4)/(3x - 4x^2 + a)$ may have

any value provided a lies between 1 and 7.

174. Given that the two curves $arg(z) = \frac{\pi}{6}$ and $|z - 2\sqrt{3}i| = r$ intersect in two distinct points, then a. $[r] \neq 2$ b. 0 < r < 3 c. r = 6 d. $3 < r < 2\sqrt{3}$ (Note : [r] represents integral part of r)

Watch Video Solution

175. Let $x^2 - (m - 3)x + m = 0(m\epsilon R)$ be a quadratic equation . Find the

values of m for which exactly one root lies in the interval (1, 2)

Watch Video Solution

176. A particle *P* starts from the point $z_0 = 1 + 2i$, where $i = \sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i} + \hat{j}$ and then it moves

through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by (a)6 + 7*i* (b) -7 + 6*i* (c) 7 + 6*i* (d) -6 + 7*i*

178. Let z=x+iy be a complex number where x and y are integers then the area of the rectangle whose vertices are the roots of the equation $z\bar{z}^3 + \bar{z}z^3 = 350$ is

179. The values of 'a' for which the equation $(x^2 + x + 2)^2 - (a - 3)(x^2 + x + 2)(x^2 + x + 1) + (a - 4)(x^2 + x + 1)^2 = 0$

has atlesast one real root is:

180. A man walks a distance of 3 units from the origin towards the north east $(N45 \degree E)$ direction.from there he walks a distance of 4 units towards the north west $(N45 \degree W)$ direction of reach a point P then the position of P in the Argand plane is :

Watch Video Solution

181. Find the values of *a* for whilch the equation $\sin^4 x + a \sin^2 x + 1 = 0$ will have a solution.

182. If |z| = 1 and $z \neq \pm 1$ then all the values of $\frac{z}{1 - z^2}$ lie on

183. Find all the value of *m* for which the equation $\sin^2 x - (m - 3)\sin x + m = 0$ has real roots.

Watch Video Solution

184. Let $A(z_1)$ and (z_2) represent two complex numbers on the complex plane. Suppose the complex slope of the line joining A and B is defined as $\frac{z_1 - z_2}{\overline{z}_1 - \overline{z}_2}$. If the line l_1 , with complex slope ω_1 , and l_2 , with complex slope $omeg_2$, on the complex plane are perpendicular then prove that $\omega_1 + \omega_2 = 0$.

185. Let if then one of the possible value of is:

188. Locus of complex number satisfying a r g $\left[\frac{z-5+4i}{z+3-2i}\right] = \frac{\pi}{4}$ is the arc of a circle whose radius is $5\sqrt{2}$ whose radius is 5 whose length (of arc) is

189. Solve
$$(x^2 - 5x + 7)^2 - (x - 2)(x - 3) = 1.$$

Watch Video Solution

190. If α is a complex constant such that $\alpha z^2 + z + \overline{\alpha} = 0$ has a real root

then

Watch Video Solution

191. Solve the equation $x^4 - 5x^2 + 4 = 0$.

192. The complex number z satisfies z + |z| = 2 + 8i. find the value of |z| - 8

193. Solve
$$\frac{x^2 - 2x - 3}{x + 1} = 0.$$

Watch Video Solution

194. If ω is a complex cube root of unity and $(1 + \omega)^7 = A + B\omega$ then A and

B are respectively.

Watch Video Solution

195. Solve
$$(x^3 - 4x)\sqrt{x^2 - 1} = 0.$$

196. For what value of x, The complex number $\sin x + i\cos 2x$ and $\cos x - i\sin 2x$ are conjugate to each other.

197. Solve
$$\frac{2x-3}{x-1} + 1 = \frac{9x-x^2-6}{x-1}$$

Watch Video Solution

198. The points, z_1 , z_2 , z_3 , z_4 , in the complex plane are the vertices of a parallelogram taken in order, if and only if $(a)z_1 + z_4 = z_2 + z_3$ (b) $z_1 + z_3 = z_2 + z_4$ (c) $z_1 + z_2 = z_3 + z_4$ (d) None of these

Watch Video Solution

199. Using differentiation method check how many roots of the equation

 $x^3 - x^2 + x - 2 = 0$ are real?

200.
$$z = x + iy$$
 and $w = \frac{1 - iz}{1 + iz}$ and $|w| = 1$,prove that z is purely real

Watch Video Solution

201. Let if then one of the possible value of is:

Watch Video Solution

202. |z - 4| < |z - 2| represents the region given by:

(a) Re(z) > 0

(b) Re(z) < 0

(c) Re(z) > 3

(d) None of these

203. Draw the graph of $y = x^4 + 2x^2 - 8x + 3$

Find the number of real roots of the equation $x^4 + 2x^2 - 8x + 3 = 0$.

Also find the sum of the integral parts of all real roots.

Watch Video Solution

204. If
$$z = \left[\left(\frac{\sqrt{3}}{2}\right) + \frac{i}{2}\right]^5 + \left[\left(\frac{\sqrt{3}}{2}\right) - \frac{i}{2}\right]^5$$
, then

a. Re(z) = 0

b. Im(z) = 0

c. Re(z) > 0

206. The complex numbers z = x + iy which satisfy the equation

$$\left|\frac{z-5i}{z+5i}\right| = 1$$
 lie on (a) The x-axis (b) The straight line $y = 5$ (c) A circle

passing through the origin (d) Non of these

207. Solve
$$\sqrt{3x^2 - 7x - 30} - \sqrt{2x^2 - 7x - 5} = x - 5$$
.

208. The smallest positive integer *n* for which $\left(\frac{1+i}{1-i}\right)^n = 1$ is

(a)8

(b) 16

(c)12`

(d) None of these

Watch Video Solution

209. Solve
$$\sqrt{3x^2 - 7x - 30} - \sqrt{2x^2 - 7x - 5} = x - 5$$
.

210. If the cube roots of unity are 1, ω , ω^2 , then the roots of the equation $(x - 1)^3 + 8 = 0$ are

a. - 1, 1 + 2 ω , 1 + 2 ω^2

b. - 1, 1 - 2 ω , 1 - 2 ω^2

c. - 1, - 1, - 1

d. none of these

Watch Video Solution

211. If
$$x = (7 + 4\sqrt{3})$$
, prove that $x + 1/x = 14$
212. Prove that the locus of midpoint of line segment intercepted between real and imaginary axes by the line az + az + b = 0, where *b* is a real parameterand *a* is a fixed complex number with nondzero real and imaginary parts, is az + az = 0.

214. Show that:

$$\sum_{r=0}^{n-1} |z_1 + \alpha^r z_2|^2 = n(|z_1|^2 + |z_2|^2), \text{ where, } \alpha; r = 0, 1, 2, ..., (n-1) \text{ , are the}$$

nth roots of unity and z_1, z_2 are any two complex numbers.

215. Solve
$$\sqrt{x^2 + 4x - 21} + \sqrt{x^2 - x - 6} = \sqrt{6x^2 - 5x - 39}$$
.

Watch Video Solution

216. If $\alpha = \frac{z - i}{z + i}$, show that, when z lies above the real axis, α will lie within the unit circle which has center at the origin. Find the locus of αasz

travels on the real axis from - $\infty \rightarrow + \infty$

Watch Video Solution

217. Solve $4^x + 6^x = 9^x$

218. Let x_1, x_2 are the roots of the quadratic equation $x^2 + ax + b = 0$, wherea, b are complex numbers and y_1, y_2 are the roots of the quadratic equation $y^2 + |a|y + |b| = 0$. If $|x_1| = |x_2| = 1$, then prove

that
$$\left| y_1 \right| = \left| y_2 \right| = 1$$

Watch Video Solution

219. Solve
$$3^{2x^2 - 7x + 7} = 9$$
.

Watch Video Solution

220. Plot the region represented by $\frac{\pi}{3} \le arg\left(\frac{z+1}{z-1}\right) \le \frac{2\pi}{3}$ in the Argand

plane.

Watch Video Solution

221. How many solutions does the equation $\frac{8^x + 27^x}{12^x + 18^x} = \frac{7}{6}$ have? (A) Exactly

one (B) Exactly two (C) Finitely many (D) Infinitely many

222. Is the following computation correct? If not give the correct computation : $\sqrt{(-2)}\sqrt{(-3)} = \sqrt{(-2)(-3)} = \sqrt{(-6)}$

223. Consider an equilateral triangle having verticals at point $A\left(\frac{2}{\sqrt{3}}e^{\frac{l\pi}{2}}\right), B\left(\frac{2}{\sqrt{3}}e^{\frac{-i\pi}{6}}\right)$ and $C\left(\frac{2}{\sqrt{3}}e^{\frac{-5\pi}{6}}\right)$. If P(z) is any point an its incircle, then $AP^2 + BP^2 + CP^2$

Watch Video Solution

224. Find the number of real roots of the equation $(x - 1)^2 + (x - 2)^2 + (x - 3)^2 = 0.$

Watch Video Solution

226. Let z, z_0 be two complex numbers. It is given that |z| = 1 and the numbers $z, z_0, z_-(0), 1$ and 0 are represented in an Argand diagram by the points P,P₀,Q,A and the origin, respectively. Show that $\triangle POP_0$ and $\triangle AOQ$ are congruent. Hence, or otherwise, prove that

$$\left|z-z_{0}\right| = \left|zz_{0}-1\right| = \left|zz_{0}-1\right|.$$

Watch Video Solution

227. Show that the equation $az^3 + bz^2 + \overline{b}z + \overline{a} = 0$ has a root α such that

 $|\alpha| = 1$, *a*, *b*, *z* and α belong to the set of complex numbers.

228. If $n \ge 3$ and $1, \alpha_1, \alpha_2, \alpha_3, ..., \alpha_{n-1}$ are

the n,nth roots of unity, then find value of $\sum \, \sum_{1 \leq i < j \leq n-1} \! \alpha_i \alpha_j$

229. Find the maximum and minimum values of the function $y = (\log)_e (3x^4 - 2x^3 - 6x^2 + 6x + 1) \forall x \in (0, 2)$ Given that $(3x^4 - 2x^3 - 6x^2 + 6x^2 + 6x + 1) > 0Ax \in (0, 2)$

Watch Video Solution

230. If $z^4 = (z - 1)^4$, then the roots are represented in the Argand plane by

the points that are:

231. Find the value of k if $x^3 - 12x + k = 0$ has three real distinct roots.

depending upon t, and draw the locus of z in the Argand plane.

Watch Video Solution

234. If ω is an imaginary fifth root of unity, then find the value of

$$\log_2 \left| 1 + \omega + \omega^2 + \omega^3 - 1/\omega \right|$$

235. *a*, *b*, and *c* are all different and non-zero real numbers on arithmetic progression. If the roots of quadratic equation $ax^2 + bx + c = 0$ are α and β such that $\frac{1}{\alpha} + \frac{1}{\beta}$, $\alpha + \beta$, and $\alpha^2 + \beta^2$ are in geometric progression the value of a/c will be____.

236. Let
$$x^2 + y^2 + xy + 1 \ge a(x + y) \forall x, y \in R$$
, then the number of possible integer (s) in the range of *a* is_____.

Watch Video Solution

237. If
$$\alpha = e^{i2\pi/7} and f(x) = a_0 + \sum_{k=0}^{20} a_k x^k$$
, then prove that the value of $f(x) + f(\alpha x) + \dots + f(\alpha^6 x)$ is independent of α .

238. If $w = \alpha + i\beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that

 $\left(\frac{w-\bar{w}z}{1-z}\right)$ is a purely real, then the set of values of z is $|z| = 1, z \neq 2$ (b)

|z| = 1*and* $z \neq 1$ (c) $z = \overline{z}$ (d) None of these

Watch Video Solution

239. If z is a non real root of $\sqrt[7]{-1}$, then find the value of $z^{86} + z^{175} + z^{289}$.

Watch Video Solution

240. The quadratic equation $x^2 + mx + n = 0$ has roots which are twice

those of $x^2 + px + m = 0$ adm, nand $p \neq 0$. The n the value of n/p is _____.

241. Let $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Then the value of the determinant $|1111 - 1 - \omega^2 \omega^2 1 \omega^2 \omega^4|$ is 3ω b. $3\omega(\omega - 1)$ c. $3\omega^2$ d. $3\omega(1 - \omega)$

Watch Video Solution

242. All the value of k for which the quadratic polynomial $f(x) = 2x^2 + kx + 2 = 0$ has equal roots is _____.

(a) 4

(B) +4,-4

(c) +3,-3

(d) 2

243. if $a = \cos(2\pi/7) + i\sin(2\pi/7)$, then find the quadratic equation whose

roots are $\alpha = a + a^2 + a^4$ and $\beta = a^3 + a^5 + a^6$.

Watch Video Solution

244. Let complex numbers α and $\frac{1}{\alpha}$ lie on circles $(x - x_0)^2 + (y - y_0)^2 = r^2$ and $(x - x_0)^2 + (y - y_0)^2 = 4r^2$ respectively if $z_0 = x_0 + iy_0$ satisfies the equation $2|z|_0^2 = r^2 + 2$ then $|\alpha| =$

A. (a)
$$\frac{1}{\sqrt{2}}$$

B. (b) $\frac{1}{2}$
C. (c) $\frac{1}{\sqrt{7}}$
D. (d) $\frac{1}{3}$

245. If $\left|\frac{z}{|\bar{z}|} - \bar{z}\right| = 1 + |z|$, then prove that z is a purely imaginary number.

246. If $x = -5 + 2\sqrt{-4}$, find the value of $x^4 + 9x^3 + 35x^2 - x + 4$.

Watch Video Solution

247. Let a, b, andc be rel numbers which satisfy the equation $a + \frac{1}{bc} = \frac{1}{5}, b + \frac{1}{ac} = \frac{-1}{15}, andc + \frac{1}{ab} = \frac{1}{3}$. The value of $\frac{c-b}{c-a}$ is equal to

Watch Video Solution

248. The value of
$$i^{1+3+5+\dots+(2n+1)}$$
 is_____.

249. *a*, *b*, *c* are integers, not all simultaneously equal, and ω is cube root of unity ($\omega \neq 1$), then minimum value of $\left| a + b\omega + c\omega^2 \right|$ is 0 b. 1 c. $\frac{\sqrt{3}}{2}$ d. $\frac{1}{2}$ Watch Video Solution

250. a, b, c are reals such that a+b+c=3 and
$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} = \frac{10}{3}$$
.
The value of $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$ is_____.
Watch Video Solution

251. If
$$z + 1/z = 2\cos\theta$$
, prove that $\left| \left(z^{2n} - 1 \right) / \left(z^{2n} + 1 \right) \right| = |\tan n\theta|$

Watch Video Solution

252. If α , β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then which of the following expression will be the symmetric function of roots

a.
$$\left|\log\left(\frac{\alpha}{\beta}\right)\right|$$
 b. $\alpha^2\beta^5 + \beta^2\alpha^5$ c. $tan(\alpha - \beta)$ d. $\left(\log\left(\frac{1}{\alpha}\right)\right)^2 + (\log\beta)^2$

Watch Video Solution

253. The locus represented by the equation |z - 1| = |z - i| is

Watch Video Solution

254. Prove that the roots of the equation $x^4 - 2x^2 + 4 = 0$ forms a rectangle.

Watch Video Solution

255. If a, b, c are non-zero real numbers, then find the minimum value of

the expression
$$\left(\frac{\left(a^4+3a^2+1\right)\left(b^4+5b^2+1\right)\left(c^4+7c^2+1\right)}{a^2b^2c^2}\right)$$
 which is

not divisible by prime number.

256. If $z_1 and z_2$ are two nonzero complex numbers such that = $|z_1 + z_2| = |z_1| + |z_2|$, then $arg z_1 - arg z_2$ is equal to $-\pi$ b. $\frac{\pi}{2}$ c. 0 d. $\frac{\pi}{2}$ e. π

Watch Video Solution

257. If diagonals of a parallelogram bisect each other, prove that its a rhombus.

Watch Video Solution

258. If *a*, *b*, *c* and *u*, *v*, *w* are the complex numbers representing the vertices of two triangles such that (c = (1 - r)a + rb and w = (1 - r)u + rv, where *r* is a complex number, then the two triangles (a)have the same area (b) are similar (c)are congruent (d) None of these

Watch Video Solution

260. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to

(a)128ω

(b) -128ω

(c)128 ω^2

(d) - $128\omega^2$

261. If z = x + iy is a complex number with $x, y \in Q$ and |z| = 1, then show

that $|z^{2n} - 1|$ is a rational number for every $n \in N$.

262. Referred to the principal axes as the axes of co ordinates find the equation of hyperbola whose focii are at $(0, \pm \sqrt{10})$ and which passes through the point (2, 3)

Watch Video Solution

263. Find the area bounded by $|argz| \le \pi/4$ and $|z - 1| \le |z - 3|$

264. Find
$$\sum_{k=1}^{6} \left(\sin, \frac{2\pi k}{7} - i\cos, \frac{2\pi k}{7} \right) = ?$$

265. If the equation $ax^2 + bx + c = 0(a > 0)$ has two real roots $\alpha and\beta$ such that $\alpha < -2$ and $\beta > 2$, then which of the following statements is/are true? (a)a - |b| + c < 0 (b) $c < 0, b^2 - 4ac > 0$ (c) 4a - 2|b| + c < 0 (d) 9a - 3|b| + c < 0

Watch Video Solution

266. If fig shows the graph of $f(x) = ax^2 + bx + c$, then

Fig

b. bc > 0

c. *ab* > 0

d. *abc* < 0

Watch Video Solution

267. If
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$$
, then $a \cdot x = 3, y = 1$ b. $x = 1, y = 3$ c.

$$x = 0, y = 3$$
 d. $x = 0, y = 0$

Watch Video Solution

268. Let z = x + iy be a complex number, where *xandy* are real numbers.

Let AandB be the sets defined by $A = \{z : |z| \le 2\} andB = \{z : (1 - i)z + (1 + i)\overline{z} \ge 4\}$. Find the area of region $A \cap B$

269. If
$$z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5$$
, then prove that $Im(z) = 0$.

. .

270. The value of
$$\sum_{n=1}^{13} (i^n + i^{n+1})$$
, where $i = \sqrt{-1}$ equals

(A) i

(B) *i* - 1

(C) - i

(D) 0

271. If $c \neq 0$ and the equation p/(2x) = a/(x+c) + b/(x-c) has two equal roots, then p can be a. $(\sqrt{a} - \sqrt{b})^2$ b. $(\sqrt{a} + \sqrt{b})^2$ c. a + b d. a - b

Watch Video Solution

272. If the equation $4x^2 - x - 1 = 0$ and $3x^2 + (\lambda + \mu)x + \lambda - \mu = 0$ have a root common, then the irrational values of λ and μ are a $\lambda = \frac{-3}{4}$ b. $\lambda = 0$ c.

$$\mu = \frac{3}{4} b.\mu = 0$$

274. The roots of the equation $t^3 + 3at^2 + 3bt + c = 0 arez_1, z_2, z_3$ which represent the vertices of an equilateral triangle. Then $a^2 = 3b$ b. $b^2 = a$ c. $a^2 = b$ d. $b^2 = 3a$

Watch Video Solution

275. Solve the equation $(x - 1)^3 + 8 = 0$ in the set C of all complex

numbers.

Watch Video Solution

276. If 'z, lies on the circle $|z - 2i| = 2\sqrt{2}$, then the value of $arg\left(\frac{z-2}{z+2}\right)$ is

the equal to

277. If the equation whose roots are the squares of the roots of the cubic $x^3 - ax^2 + bx - 1 = 0$ is identical with the given cubic equation, then (A) a = 0, b = 3 (B) a = b = 0 (C) a = b = 3 (D) a, b, are roots of $x^2 + x + 2 = 0$

278. If
$$\sqrt{3} + i = (a + ib)(c + id)$$
, then find the value of $\tan^{-1}(b/a) + \tan^{-1}(d/c)$

Watch Video Solution

279. P(z) be a variable point in the Argand plane such that |z|=minimum

 $\{|z - 1|, |z + 1|\}$, then $z + \overline{z}$ will be equal to a. -1 or 1 b.

1 but not equal to-1 c. -1 but not equal to 1 d. none of these

280. If the equation $ax^2 + bx + c = 0$, $a, b, c, \in R$ have none-real roots, then c(a - b + c) > 0 b. c(a + b + c) > 0 c. c(4a - 2b + c) > 0 d. none of these

281. Prove that the equation $Z^3 + iZ - 1 = 0$ has no real roots.

Watch Video Solution

282. The locus of point z satisfying $Re\left(\frac{1}{z}\right) = k$, where k is a non-zero real

number is

283. If $p(q - r)x^2 + q(r - p)x + r(p - q) = 0$ has equal roots, then prove that $\frac{2}{q} = \frac{1}{p} + \frac{1}{r}$

285. Let $\alpha, \beta \in R$ If α, β^2 are the roots of quadratic equation $x^2 - px + 1 = 0$. $and\alpha^2, \beta$ are the roots of quadratic equation $x^2 - qx + 8 = 0$, then find p, q, α, β

Watch Video Solution

286. Let *a* be a complex number such that |a| < 1 and $z_1, z_2, z_3, ...$ be the vertices of a polygon such that $z_k = 1 + a + a^2 + ... + a^{k-1}$ for all

$$k = 1, 2, 3, Thenz_1, z_2$$
 lie within the circle (a) $\left| z - \frac{1}{1-a} \right| = \frac{1}{|a-1|}$ (b)
 $\left| z + \frac{1}{a+1} \right| = \frac{1}{|a+1|}$ (c) $\left| z - \frac{1}{1-a} \right| = |a-1|$ (d) $\left| z + \frac{1}{a+1} \right| = |a+1|$

287. Let $\lambda \in R$. If the origin and the non-real roots of $2z^2 + 2z + \lambda = 0$ form the three vertices of an equilateral triangle in the Argand plane, then λ is (a.)1 (b) $\frac{2}{3}$ (c.) 2 (d.) -1

Watch Video Solution

288. If the ratio of the roots of the equation $x^2 + px + q = 0$ are equal to ratio of the roots of the equation $x^2 + bx + c = 0$, then prove that $p^2c = b^2q$

Watch Video Solution

289. Let $z = 1 - t + i\sqrt{t^2 + t + 2}$, where t is real parameter. The locus of z in the argand plane is

290. If $\sin\theta$, $\cos\theta$ be the roots of $ax^2 + bx + c = 0$, then prove that $b^2 = a^2 + 2ac$

Watch Video Solution
291. Express the following complex numbers in
$$a + ib$$
 form: $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$
 $2 - \sqrt{-25}$

(ii)
$$\frac{1}{1 - \sqrt{-16}}$$

Watch Video Solution

292. If *a*, *b*, *c* are nonzero real numbers and $az^2 + bz + c + i = 0$ has purely

imaginary roots, then prove that $a = b^2 c$

Watch Video Solution

293. $z^2 + z|z| + |z|^2 = 0$ then the locus of z is

295. Solve the equation $x^2 + px + 45 = 0$. it is given that the squared

difference of its roots is equal to 144

Watch Video Solution

296. Find the least positive integer *n* such that $\left(\frac{2i}{1+i}\right)^n$ is a positive

integer.

297. $z_1 and z_2$ lie on a circle with center at the origin. The point of intersection z_3 of he tangents at $z_1 and z_2$ is given by $\frac{1}{2}(z_1 + (z)_2)$ b.

$$\frac{2z_1z_2}{z_1+z_2} \operatorname{c.} \frac{1}{2} \left(\frac{1}{z_1} + \frac{1}{z_2} \right) \operatorname{d.} \frac{z_1+z_2}{(z)_1(z)_2}$$

Watch Video Solution

298. If α , β are the roots of the equation $2x^2 - 35x + 2 = 0$, the find the

value of $(2\alpha - 35)^3 (2\beta - 35)^3$

Watch Video Solution

299. If one root of the equation $z^2 - az + a - 1 = 0$ is (1+i), where a is a

complex number then find the root.

300. If $|z_1| = |z_2| = |z_3| = 1$ and $z_1 + z_2 + z_3 = 0$ then the area of the triangle whose vertices are z_1, z_2, z_3 is $3\sqrt{3}/4$ b. $\sqrt{3}/4$ c. 1 d. 2

Watch Video Solution

301. Simplify:
$$\frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}}$$

Watch Video Solution

302. Find a quadratic equation whose product of roots x_1 and x_2 is equal

to 4 and satisfying the relation
$$\frac{x_1}{x_1 - 1} + \frac{x_2}{x_2 - 1} = 2.$$

Watch Video Solution

303. If $\sqrt{5 - 12i} + \sqrt{-5 - 12i} = z$, then principal value of *argz* can be

A. a.
$$\frac{\pi}{4}$$

B. b.
$$-\frac{\pi}{4}$$

C. c. $\frac{3\pi}{4}$
D. d. $-\frac{3\pi}{4}$

Watch Video Solution

304. If
$$(x + iy)(p + iq) = (x^2 + y^2)i$$
, prove that $x = q, y = p$

Watch Video Solution

305. If a and $b \neq 0$ are the roots of the equation $x^2 + ax + b = 0$, then

find the least value of $x^2 + ax + b(x \in R)$

306. Let A, B, C, D be four concyclic points in order in which AD:AB = CD:CB If A, B, C are represented by complex numbers a, b, c representively, find the complex number associated with point DWatch Video Solution **307.** Convert $\frac{1+3i}{1-2i}$ into the polar form. Watch Video Solution sum of the roots of the equation 308. If the $(a + 1)x^{2} + (2a + 3)x + (3a + 4) = 0$ is -1, then find the product of the roots. Watch Video Solution

309. Let the altitudes from the vertices A, B and C of the triangle ABC meet its circumcircle at D, E and F respectively and z_1 , z_2 and z_3 represent

the points D, E and F respectively. If $\frac{z_3 - z_1}{z_2 - z_1}$ is purely real then the triangle

ABC is

Watch Video Solution

310. For
$$|z - 1| = 1$$
, show that $\tan\left\{\frac{\arg(z - 1)}{2}\right\} - \left(\frac{2i}{z}\right) = -i$

Watch Video Solution

311. The quadratic polynomial p(x) has the following properties: $p(x) \ge 0$ for all real numbers, p(1) = 0 and p(2) = 2. Find the value of p(3) is_____.

Watch Video Solution

312. If $z_1 = 9y^2 - 4 - 10ix$, $z_2 = 8y^2 - 20i$ where $z_1 = \bar{z}_2$ then z=x+iy is equal

to

313. If
$$arg(z_1) = 170^0$$
 and $arg(z_2) = 70^0$, then find the principal

argument of $z_1 z_2$

Watch Video Solution

314. z_1 , z_2 and z_3 are the vertices of an isosceles triangle in anticlockwise direction with origin as in center , then prove that z_2 , z_1 and kz_3 are in G.P. where $k \in R^+$

Watch Video Solution

315. function f, $x \rightarrow R$, $f(x) = \frac{3x^2 + mx + n}{x^2 + 1}$, if the range of function is

[-4,3), find the value of |m+n| is

316. If z_1 and z_2 are conjugate to each other , find the principal argument

of
$$\left(-z_1 z_2\right)$$
.

Watch Video Solution

317. If a is a complex number such that |a| = 1, then find the value of a, so that equation $az^2 + z + 1 = 0$ has one purely imaginary root.

Watch Video Solution

318. If $x^2 + px + 1$ is a factor of the expression $ax^3 + bx + c$, then $a^2 - c^2 = ab b$. $a^2 + c^2 = -ab c$. $a^2 - c^2 = -ab d$. none of these

320. If α , β are the roots of $x^2 - px + q = 0$ and α' , β' are the roots of $x^2 - p'x + q' = 0$, then the value of $(\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2$

is

Watch Video Solution

321. If a, b are complex numbers and one of the roots of the equation $x^2 + ax + b = 0$ is purely real, whereas the other is purely imaginary, prove that $a^2 - (\bar{a})^2 = 4b$.

Watch Video Solution

322. If
$$|z_1| = |z_2| = 1$$
, then prove that $|z_1 + z_2| = |\frac{1}{z_1} + \frac{1}{z_2}$
323. For
$$x \in (0, 1)$$
, prove that $i^{2i+3} \ln\left(\frac{i^3x^2 + 2x + i}{ix^2 + 2x + i^3}\right) = \frac{1}{e^{\pi}} \left(\pi - 4\tan^{-1}x\right)$

Watch Video Solution

324. The sum of the non-real root of
$$(x^2 + x - 2)(x^2 + x - 3) = 12$$
 is

a.-1

b. 1

c. - 6

d. 6

Watch Video Solution

325. If *n* is a positive integer, prove that $|Im(z^n)| \le n|Im(z)||z|^{n-1}$.

(A) Three

(B) Four

(C) One

(D) Two

Watch Video Solution

327. If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers, then

$$arg\left(\frac{z_1}{z_4}\right) + arg\left(\frac{z_2}{z_3}\right)$$
 equals

328. If x = 1 + i is a root of the equation $x^3 - ix + 1 - i = 0$, then the other

real root is 0 b. 1 c. -1 d. none of these

Watch Video Solution
329. Find the modulus, argument, and the principal argument of the complex numbers.
$$\frac{i-1}{i\left(1-\cos\left(\frac{2\pi}{5}\right)\right)+\sin\left(\frac{2\pi}{5}\right)}$$

330. Find the principal argument of the complex number $\frac{(1+i)^5 (1+\sqrt{3i})^2}{-1i(-\sqrt{3}+i)}$

331. If the expression $x^2 + 2(a + b + c)x + 3(bc + ca + ab)$ is a perfect square, then

a.a = b = c

 $b.a = \pm b = \pm c$

 $c.a = b \neq c$

d. none of these

Watch Video Solution

332. Find the point of intersection of the curves $arg(z - 3i) = \frac{3\pi}{4}$ and $arg(2z + 1 - 2i) = \pi/4$.

333. The curve $y = (\lambda + 1)x^2 + 2$ intersects the curve $y = \lambda x + 3$ in exactly one point, if λ equals a.{ - 2, 2} b. {1} c. { - 2} d. {2} Watch Video Solution

334. if z and w are two non-zero complex numbers such that |z| = |w| and

 $argz + argw = \pi$, then z=

335. The number of irrational roots of the equation $\frac{4x}{x^2 + x + 3} + \frac{5x}{x^2 - 5x + 3} = -\frac{3}{2}$ is **Watch Video Solution**

336. If $|z + \bar{z}| + |z - \bar{z}| = 2$ then z lies on

(a) a straight line

(b) a set of four lines

(c) a circle

(d) None of these

337. If one vertex of the triangle having maximum area that can be inscribed in the circle |z - i| = 5 is 3 - 3i, then find the other vertices of the triangle.

338. The number of complex numbers
$$z$$
 satisfying $|z - 3 - i| = |z - 9 - i|and|z - 3 + 3i| = 3$ are a. one b. two c. four d. none of these

Watch Video Solution

Watch Video Solution

339. If the equation $x^2 - 3px + 2q = 0$ and $x^2 - 3ax + 2b = 0$ have a common roots and the other roots of the second equation is the reciprocal of the other roots of the first, then $(2q - 2b)^2$. a. $36pa(q - b)^2$ b. $18pa(q - b)^2$ c. $36bq(p - a)^2$ d. $18bq(p - a)^2$

340. Solve the equation $3^{x^2-x} + 4^{x^2-x} = 25$.

341. If t and c are two complex numbers such that $|t| \neq |c|, |t| = 1$ and $z = \frac{at+b}{t-c}, z = x+iy$ Locus of z is (where a, b are complex numbers) a. line segment b. straight line c. circle d. none of these

Watch Video Solution

342. Consider the circle |z| = r in the Argand plane, which is in fact the

incircle of triangle ABC If contact points opposite to the vertices A, B, C are $A_1(z_1), B(z_2) and C_1(z_3)$, obtain the complex numbers associated with the vertices A, B, C in terms of $z_1, z_2 and z_3$

343. Solve the equation $12x^4 - 56x^3 + 89x^2 - 56x + 12 = 0$.

344. If z is a complex number such that $-\pi/2 \le argz \le \pi/2$,

then which of the following inequality is true?

 $\mathbf{a}.|z - z| \le |z|(argz - argz)$

b. $|z - z| \ge |z|(argz - argz)$

c.|z - z| < (argz - argz)

d. none of these

Watch Video Solution

345. P is a point on the argand diagram on the circle with OP as diameter two points Q and R are taken such that $\angle POQ = \angle QOR = \theta$. If O is the origin and P, Q, R are are represented by complex z_1, z_2, z_3 respectively then show that $z_2^2 \cos 2\theta = z_1 z_3 \cos^2 \theta$

348. Solve the equation $(x - 1)^4 + (x - 5)^4 = 82$.

349. If the six roots of $x^6 = -64$ are written in the form a + ib, where a and b are real, then the product of those roots for which a > 0 is

350. The maximum area of the triangle formed by the complex coordinates z, z_1, z_2 which satisfy the relations $|z - z_1| = |z - z_2|$ and

$$\left|z - \frac{z_1 + z_2}{2}\right| \le r, \text{where } r > \left|z_1 - z_2\right| \text{ is }$$

Watch Video Solution

351. Solve
$$\sqrt{x+5} + \sqrt{x+21} = \sqrt{6x+40}$$
.

352. If
$$z_r$$
: $r = 1, 2, 3, 50$ are the roots of the equation $\sum_{r=0}^{50} z^r = 0$, then find the value of $\sum_{r=0}^{50} \frac{1}{z_r - 1}$
Watch Video Solution

353. Evaluate the value of $\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}} \rightarrow Infinity$

Watch Video Solution

354. If a complex number z satisfies $|2z + 10 + 10i| \le 5\sqrt{3} - 5$, then the

least principal argument of z is

A. a.
$$-\frac{5\pi}{6}$$

B. b. $-\frac{11\pi}{12}$
C. c. $-\frac{3\pi}{4}$
D. d. $-\frac{2\pi}{3}$

Watch Video Solution

355. If $1, \alpha_1, \alpha_2, \alpha_{n-1}$ are the *nth* roots of unity, prove that $(1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_{n-1}) = n$. Deduce that

$$\sin\left(\frac{\pi}{n}\right)\sin\left(2\frac{\pi}{n}\right)\sin\left((n-1)\frac{\pi}{n}\right) = \frac{n}{2^{n-1}}$$

Watch Video Solution

356. If n > 1, show that the roots of the equation $z^n = (z + 1)^n$ are collinear.

Watch Video Solution

357. If the expression $ax^4 + bx^3 - x^2 + 2x + 3$ has remainder 4x + 3 when

divided by $x^2 + x - 2$, find the value of *a*, *b*

Watch Video Solution

358. If $|z_2 + iz_1| = |z_1| + |z_2| and |z_1| = 3and |z_2| = 4$, then the area of

 $\triangle ABC$, if affixes of A, B, and Carez₁, z_2 , and $\left[\frac{z_2 - iz_1}{1 - i}\right]$ respectively, is $\frac{5}{2}$ b.

0 c.
$$\frac{25}{2}$$
 d. $\frac{2}{4}$

359. What is the locus of *w* if
$$w = \frac{3}{z}and|z - 1| = 1$$
?

Watch Video Solution

360. If z is complex number, then the locus of z satisfying the condition

|2z - 1| = |z - 1| is (a)perpendicular bisector of line segment joining 1/2 and

1 (b)circle (c)parabola (d)none of the above curves

361. Find the remainder when $x^3 + 4x^2 - 7x + 6$ is divided by x - 1.

362. What is the locus of z if
$$||z - \cos^{-1}\cos 12|| - |z - \sin^{-1}s \in 12|| = 8(\pi - 3)?$$

363. Use the factor theorem to find the value of k for which

(a + 2b), where $a, b \neq 0$ is a factor of $a^4 + 32b^4 + a^3b(k + 3)$

Watch Video Solution

364. If z is a complex number lying in the fourth quadrant of Argand

plane and $\left| \left[\frac{kz}{k+1} \right] + 2i \right| > \sqrt{2}$ for all real value of $k(k \neq -1)$, then range of $\arg(z)$ is $\left(\frac{\pi}{8}, 0 \right)$ b. $\left(\frac{\pi}{6}, 0 \right)$ c. $\left(-\frac{\pi}{4}, 0 \right)$ d. none of these

365. If $z = (\lambda + 3) + i\sqrt{5 - \lambda^2}$ then the locus of Z is

367. Given that
$$x^2 + x - 6$$
 is a factor of $2x^4 + x^3 - ax^2 + bx + a + b - 1$, find

the value of a and b

368. If z be any complex number such that |3z - 2| + |3z + 2| = 4 then locus

of z is

369. If p,q,r are three positive real number are in AP , then the roots of the

quadratic equation $px^2 + qx + r = 0$ are all real for

370. $A(z_1), B(z_2), C(z_3)$ are the vertices of the triangle *ABC* (in anticlockwise). If $\angle ABC = \pi/4$ and $AB = \sqrt{2}(BC)$, then prove that

$$z_2 = z_3 + i \left(z_1 - z_3 \right)$$

Watch Video Solution

371. If
$$|z^2 - 1| = |z|^2 + 1$$
, then z lies on

372. $A(z_1), B(z_2), C(z_3)$ are the vertices of the triangle *ABC* (in anticlockwise). If $\angle ABC = \pi/4$ and $AB = \sqrt{2}(BC)$, then prove that $z_2 = z_3 + i(z_1 - z_3)^{\cdot}$

Watch Video Solution

373. The number of points of intersection of two curves $y = 2\sin x$ and $y = 5x^2 + 2x + 3is$ a. 0 b. 1 c. 2 d. ∞

Watch Video Solution

374. If |z| = 1, then the point representing the complex number -1 + 3z will lie on a. a circle b. a parabola c. a straight line d. a hyperbola

375. If one vertex of a square whose diagonals intersect at the origin is $3(\cos\theta + i\sin\theta)$, then find the two adjacent vertices.

376. If $\alpha and\beta$ are the roots of $x^2 + px + q = 0and\alpha^4$, β^4 are the roots of $x^2 - rx + s = 0$, then the equation $x^2 - 4qx + 2q^2 - r = 0$ has always. A. one positive and one negative root B. two positive roots C. two negative roots D. cannot say anything

377. Find the center of the are represented by $arg[(z - 3i)/(z - 2i + 4)] = \pi/4$.

378. Let
$$|z_r - r| \le r$$
, $\forall r = 1, 2, 3, ..., n$ Then $\left|\sum_{r=1}^n Z_r\right|$ is less than n b. $2n$ c.
 $n(n+1)$ d. $\frac{n(n+1)}{2}$

Watch Video Solution

379. If $a^2 + b^2 + c^2 = 1$, *thenab* + *bc* + *ca* lie in the interval

 $\mathsf{a}.\left[\frac{1}{3},2\right]$

b.[-1,2]

c.
$$\left[-\frac{1}{2}, 1 \right]$$

d.
$$\left[-1, \frac{1}{2} \right]$$

380. $z_1 and z_2$ are the roots of $3z^2 + 3z + b = 0$. if O(0), (z_1) , (z_2) form an

equilateral triangle, then find the value of b

382. Let α , β be the roots of the equation $(x - a)(x - b) = c, c \neq 0$. Then the roots of the equation $(x - \alpha)(x - \beta) + c = 0$ are a, c b. b, c c. a, b d. a + c, b + c

Watch Video Solution

383. If $8iz^3 + 12z^2 - 18z + 27i = 0$, then (a). $|z| = \frac{3}{2}$ (b). $|z| = \frac{2}{3}$ (c). |z| = 1 (d). $|z| = \frac{3}{4}$

384. Let z_1 , z_2 and z_3 represent the vertices A, B, and C of the triangle ABC, respectively, in the Argand plane, such that $|z_1| = |z_2| = |z_3| = 5$. Prove that $z_1 \sin 2A + z_2 \sin 2B + z_3 \sin 2C = 0$.

Watch Video Solution

385. Let *a*, *b*, *c* be real numbers, $a \neq 0$. If α is a zero of $a^2x^2 + bx + c = 0$, β is the zero of $a^2x^2 - bx - c = 0$ and $0 < \alpha < \beta$ then prove that the equation $a^2x^2 + 2bx + 2c = 0$ has a root *y* that always satisfies $\alpha < y < \beta$.

Watch Video Solution

386. If $x^2 + px + 1$ is a factor of the expression $ax^3 + bx + c$, then $a^2 - c^2 = ab b$. $a^2 + c^2 = -ab c$. $a^2 - c^2 = -ab d$. none of these

387. If $|z| < \sqrt{2} - 1$, then $|z^2 + 2z\cos\alpha|$ is a. less than 1 b. $\sqrt{2} + 1 \text{ c.}\sqrt{2} - 1 \text{ d.}$ none of these

388. On the Argand plane z_1 , z_2 and z_3 are respectively, the vertices of an isosceles triangle *ABC* with *AC* = *BC* and equal angles are θ If z_4 is the incenter of the triangle, then prove that $(z_2 - z_1)(z_3 - z_1) = (1 + \sec\theta)(z_4 - z_1)^2$

Watch Video Solution

389. If $z(Rez \neq 2)$ be a complex number such that $z^2 - 4z = |z|^2 + \frac{16}{|z|^3}$ then the value of $|z|^4$ is

390.	Both	the	roots	of	the	equation
(x - b)(x	-c) + (x - a)	(x - c) + (x - c)	(x - a)(x - b) =	0 are alw	ays	
a. positi	ve					

b. real

c. negative

d. none of these

Watch Video Solution

391. Find the locus of the points representing the complex number z for which $|z + 5|^2 - |z - 5|^2 = 10$.

392. The equation $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$ has

a. no root

b. one root

c. two equals roots

d. Infinitely many roots

Watch Video Solution

393. Identify the locus of z if
$$\bar{z} = \bar{a} + \frac{r^2}{z - a}$$
.

394. If the expression $(1 + ir)^3$ is of the form of s(1 + i) for some real 's' where 'r' is also real and $i = \sqrt{-1}$

395. Two towns *AandB* are 60 km apart. A school is to be built to serve 150 students in town *Aand*50 students in town B If the total distance to be travelled by 200 students is to be as small as possible, then the school should be built at town B town A 45 km from town A 45 km from town B

396. Find the amplitude of $\sin \alpha + i(1 - \cos \alpha)$

397. Modulus of non zero complex number z satisfying $\overline{z} + z = 0$ and $|z|^2 - 4zi = z^2$ is _____.

Watch Video Solution

398. Find the condition on *a*, *b*, *c*, *d* such that equations $2ax^3 + bx^2 + cx + d = 0$ and $2ax^2 + 3bx + 4c = 0$ have a common root.

Watch Video Solution

399. Let z = 9 + bi, and b is nonzero real and $i^2 = -1$. If the imaginary

part of $z^2 and z^3$ are equal, then $\frac{b}{3}$ is _____.

Watch Video Solution

400. Prove that if z_1, z_2 are two complex numbers and c > 0 then

$$\left| \left(z_1 + z_2 \right)^2 \right| \le (1+c) \left| \left(z_1 \right)^2 \right| + \left(1 + \left(\frac{1}{c} \right) \right) \left| z_2 \right|^2$$

401. Let f(x), g(x), and h(x) be the quadratic polynomials having positive leading coefficients and real and distinct roots. If each pair of them has a common root, then find the roots of f(x) + g(x) + h(x) = 0.

Watch Video Solution

402. Find the minimum value of |z - 1| if ||z - 3| - |z + 1| = 2.

Watch Video Solution

403. If $x = \omega - \omega^2 - 2$ then , the value of $x^4 + 3x^3 + 2x^2 - 11x - 6$ is (where ω

is a imaginary cube root of unity)

404. If a, b, c be the sides of ABC and equations $ax^2 + bx + c = 0$ and

 $5x^2 + 12x + 13 = 0$ have a common root, then find $\angle C$

407. If $b^2 < 2ac$, then prove that $ax^3 + bx^2 + cx + d = 0$ has exactly one

real root.

408. If z is any complex number such that $|z + 4| \le 3$, then find the greatest value of |z + 1|

Watch Video Solution

409. If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that $|z_1 - i| = |z_2 - i| = |z_3 - i|$ then $|z_1 + z_2 + z_3|$ equals:

Watch Video Solution

410. If two roots of $x^3 - ax^2 + bx - c = 0$ are equal in magnitude but opposite in signs, then prove that ab = c

411. For any complex number z find the minimum value of |z| + |z - 2i|

D	Watch	Video	Solution
---	-------	-------	----------

412. The greatest positive argument of complex number satisfying |z - 4| = Re(z) is A. $\frac{\pi}{3}$ B. $\frac{2\pi}{3}$ C. $\frac{\pi}{2}$ D. $\frac{\pi}{4}$ Watch Video Solution

413. If α , β and γ are the roots of $x^3 + 8 = 0$ then find the equation whose roots are α^2 , β^2 and γ^2 .

414. Prove that the distance of the roots of the equation $\left|\sin\theta_1\right|z^3 + \left|\sin\theta_2\right|z^2 + \left|\sin\theta_3\right|z + \left|\sin\theta_4\right| = |3|$ from z=0 is greater than 2/3.

Watch Video Solution

415. Let $z_1 and z_2$ be two distinct complex numbers and let $z = (1 - t)z_1 + tz_2$ for some real number t with 0 < t < 1. If a r g(w) denotes the principal argument of a nonzero complex number w, then

$$\begin{vmatrix} z - z_1 \\ + \\ z - z_2 \end{vmatrix} = \begin{vmatrix} z_1 - z_2 \\ z - z_1 \end{vmatrix} \begin{pmatrix} z - z_1 \\ - z_2 \end{vmatrix} = \begin{pmatrix} z - z_2 \\ - z_2 \end{pmatrix}$$
$$\begin{vmatrix} z - z_1 \\ - z_1 \\ - z_1 \end{vmatrix} = 0$$
$$arg(z - z_1) = arg(z_2 - z_1)$$

Watch Video Solution

416. If α , β , γ are the roots of the equation $x^3 - px + q = 0$, then find the

cubic equation whose roots are
$$\frac{\alpha}{1+\alpha}, \frac{\beta}{1+\beta}, \frac{\gamma}{1+\gamma}$$

417. If
$$|z_1 - 1| \le 1$$
, $|z_2 - 2| \le 2$, $|z_3 - 3| \le 3$, then find the greatest value of $|z_1 + z_2 + z_3|$.

Watch Video Solution

418. If the roots of equation $x^3 + ax^2 + b = 0are\alpha_1, \alpha_2$ and $\alpha_3(a, b \neq 0)$,

then find the equation whose roots are $\frac{\alpha_1 \alpha_2 + \alpha_2 \alpha_3}{\alpha_1 \alpha_2 \alpha_3}, \frac{\alpha_2 \alpha_3 + \alpha_3 \alpha_1}{\alpha_1 \alpha_2 \alpha_3}, \frac{\alpha_1 \alpha_3 + \alpha_1 \alpha_2}{\alpha_1 \alpha_2 \alpha_3}$

Watch Video Solution

419. If z is a complex number, then find the minimum value of |z| + |z - 1| + |2z - 3|

420. Let |z| = 2 and $w = \frac{z+1}{z-1}$, where z, w, $\in C$ (where C is the set of complex numbers). Then product of least and greatest value of modulus of w is_____.

421. If α , β and γ are roots of $7x^3 - x - 2 = 0$, then find the value of

$$\sum \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right).$$

Watch Video Solution

422. if z is complex no satisfies the condition |Z|>3. Then find the least

value of $|Z + \frac{1}{Z}|$

423. If α is the nth root of unity then $1 + 2\alpha + 3\alpha^2 + \dots$ to n terms equal

to

424. Let *r*, *s*, and*t* be the roots of equation $8x^3 + 1001x + 2008 = 0$. Then find the value of $(r + s)^3 + (s + t)^3 + (t + r)^3$.

Watch Video Solution

425. Given z is a complex number with modulus 1. Then the equation

 $\left[\frac{1+ia}{1-ia}\right]^4 = z$ has all roots real and distinct two real and two imaginary

three roots two imaginary one root real and three imaginary

426. The number of value of k for which $\left[x^2 - (k-2)x + k^2\right] \times \left[x^2 + kx + (2k-1)\right]$ is a perfect square is a.2 b. 1 c. 0 d. none of these

Watch Video Solution

427. For any complex number z prove that $|Re(z)| + |Im(z)| \le \sqrt{2}|z|$

Watch Video Solution

428. The point $z_1 = 3 + \sqrt{3}i$ and $z_2 = 2\sqrt{3} + 6i$ are given on a complex plane. The complex number lying on the bisector of the angle formed by the vectors $z_1 and z_2$ is

a. $z = \frac{\left(3 + 2\sqrt{3}\right)}{2} + \frac{\sqrt{3} + 2}{2}i$ b. z = 5 + 5ic. z = -1 - i

d.none of these
429. The total number of integral values of a so that $x^2 + ax + a + 1 = 0$

has integral roots is equal to a. 1 b. 2 c. 4 d. none of these

430. If
$$w = \frac{z}{z - \frac{1}{3i}}$$
 and $|w| = 1$, then find the locus of z

Watch Video Solution

431. Let C_1 and C_2 be two circles with C_2 lying inside C_1 A circle C lying inside C_1 touches C_1 internally and C_2 externally. Identify the locus of the centre of C

432. The number of positive integral solutions of $x^4 - y^4 = 3789108$ is a.0

433. The region of argand diagram defined by $|z - 1| + |z + 1| \le 4$ (1) interior of an ellipse (2) exterior of a circle (3) interior and boundary of an ellipse (4) none of these

Watch Video Solution

434. z_1, z_2, z_3, z_4 are distinct complex numbers representing the vertices of a quadrilateral *ABCD* taken in order. If $z_1 - z_4 = z_2 - z_3$ and arg $[(z_4 - z_1)/(z_2 - z_1)] = \pi/2$, the quadrilateral is a. rectangle b. rhombus c. square d. trapezium

435. If α, β are the roots of $x^2 + px + q = 0$ and $x^{2n} + p^n x^n + q^n = 0$ and if (α/β) , (β/α) are the roots of $x^n + 1 + (x + 1)^n = 0$, the $\cap (\subseteq N)$ a. must be an odd integer b. may be any integer c. must be an even integer d. cannot say anything

Watch Video Solution

436. If
$$(\log)_{\sqrt{3}}\left(\frac{|z|^2 - |z| + 1}{2 + |z|}\right) > 2$$
, then locate the region in the Argand

plane which represents z

Watch Video Solution

437. If
$$z = \frac{(1 + i\sqrt{3})^2}{4i(1 - i\sqrt{3})}$$
 is a complex number then a. $arg(z) = \frac{\pi}{4}$ b.
 $arg(z) = \frac{\pi}{2} c. |z| = \frac{1}{2} d. |z| = 2$

438. If
$$\alpha, \beta, \gamma$$
 are such that $\alpha + \beta + \gamma = 2, \alpha^2 + \beta^2 + \gamma^2 = 6, \alpha^3 + \beta^3 + \gamma^3 = 8$, then $\alpha^4 + \beta^4 + \gamma^4$ is a. 18 b.
10 c. 15 d. 36

439. If $z = \frac{3}{2 + \cos\theta + i\sin\theta}$ then show that z lies on a circle in the complex plane

Watch Video Solution

440. If
$$z = x + iy$$
 such that $|z + 1| = |z - 1|$ and $arg\left(\frac{z - 1}{z + 1}\right) = \frac{\pi}{4}$, then find z .

Watch Video Solution

441. If xy = 2(x + y), $x \le y$ and $x, y \in N$, then the number of solutions of

the equation are a. two b. three c. no solution d. infinitely many solutions

442. If
$$Im\left(\frac{z-1}{e^{\theta i}} + \frac{e^{\theta i}}{z-1}\right) = 0$$
, then find the locus of z

443. If *pandq* are distinct prime numbers, then the number of distinct imaginary numbers which are pth as well as qth roots of unity are. a. min (p, q) b. min (p, q) c. 1 d. *zero*

Watch Video Solution

444. The number of real solutions of the equation $(9/10)^x = -3 + x - x^2$ is

a. 2 b. 0 c. 1 d. none of these

445. What is locus of z if
$$\left|z - 1 - \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)\right| + \left|z + \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) - \frac{\pi}{2}\right| = 1$$
?

446. If
$$|z - 2 - i| = |z| \left| \sin\left(\frac{\pi}{4} - argz\right) \right|$$
 then locus of z is

447. The number of integral values of a for which the quadratic equation

(x + a)(x + 1991) + 1 = 0 has integral roots are a. 3 b.0 c.1 d. 2

Watch Video Solution

448. If ω is the imaginary cube root of unity and a+b+c=0 then show that

$$\left(a+b\omega+c\omega^{2}\right)^{3}+\left(a+b\omega^{2}+c\omega\right)^{3}=27abc$$

449. If z is a complex number having least absolute value and |z - 2 + 2i| = 1, then $z = (2 - 1/\sqrt{2})(1 - i)$ b. $(2 - 1/\sqrt{2})(1 + i)$ c. $(2 + 1/\sqrt{2})(1 - i)$ d. $(2 + 1/\sqrt{2})(1 + i)$

Watch Video Solution

450. If the equation $\cot^4 x - 2 \csc^2 x + a^2 = 0$ has at least one solution, then the sum of all possible integral values of *a* is equal to 4 (b) 3 (c) 2 (d) 0

Watch Video Solution

451. Which of the following is equal to $\sqrt[3]{-1}$ a. $\frac{\sqrt{3} + \sqrt{-1}}{2}$ b. $\frac{-\sqrt{3} + \sqrt{-1}}{\sqrt{-4}}$ c.

$$\frac{\sqrt{3} - \sqrt{-1}}{\sqrt{-4}} d. - \sqrt{-1}$$

452. If ω is the imaginary cube root of 1 then prove that $(a + b\omega + c\omega^2)^3 + (a + b\omega^2 + c\omega)^3 = (2a - b - c)(2b - a - c)(2c - a - b)$ Watch Video Solution

453. The number of the real solutions of the equation $x^2 - 3|x| + 2 = 0$ is

454. If $|z - 1| + |z + 3| \le 8$, then prove that z lies on the circle.

455. If $z_1 and z_2$ are the complex roots of the equation $(x - 3)^3 + 1 = 0$, then $z_1 + z_2$ equal to

b. 3

c. 5

d. 7

Watch Video Solution

456. If the quadratic equation $ax^2 + bx + 6 = 0$ does not have real roots

and $b \in R^+$, then prove that $a > max\left\{\frac{b^2}{24}, b - 6\right\}$

Watch Video Solution

457. If the equation |z - a| + |z - b| = 3 represents an ellipse and

 $a, b \in C$, where *a* is fixed, then find the locus of *b*

458. If $|z^2 - 3| = 3|z|$, then the maximum value of |z| is

a.1

b.
$$\frac{3 + \sqrt{21}}{2}$$

c. $\frac{\sqrt{21} - 3}{2}$

d. none of these

459. What is the minimum height of any point on the curve $y = x^2 - 4x + 6$

above the x-axis?

460. Find the locus of point *z* if *z* , *i* ,and *iz* , are collinear.

461. If
$$|z - 1| \le 2and |\omega z - 1 - \omega^2| = a$$
 where ω is cube root of unity, then

complete set of values of *a* is $a.0 \le a \le 2$ b. $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ c. $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ d. $0 \le a \le 4$

Watch Video Solution

462. What is the maximum height of any point on the curve $y = -x^2 + 6x - 5$ above the x-axis?

Watch Video Solution

463. Consider an ellipse having its foci at $A(z_1)andB(z_2)$ in the Argand plane. If the eccentricity of the ellipse be e and it is known that origin is

465. Find the largest natural number a for which the maximum value of $f(x) = a - 1 + 2x - x^2$ is smaller than the minimum value of $g(x) = x^2 - 2ax + 10 - 2a$

466. In the Argands plane what is the locus of $z \neq 1$ such that

$$\arg\left\{\frac{3}{2}\left(\frac{2z^2-5z+3}{3z^2-z-2}\right)\right\} = \frac{2\pi}{3}$$

Watch Video Solution

467. If ω is an imaginary x^n root of unit then $\sum_{r=1}^n r = 1(ar + b)\omega^{r-1}$ is

Watch Video Solution

468. Let $f(x) = ax^2 + bx + c$ be a quadratic expression having its vertex at

(3, -2) and value of f(0) = 10. Find f(x).

Watch Video Solution

469. If $|z| = 2and \frac{z_1 - z_3}{z_2 - z_3} = \frac{z - 2}{z + 2}$, then prove that z_1, z_2, z_3 are vertices of a

right angled triangle.

470. If
$$\left|\frac{z_1}{z_2}\right| = 1$$
 and $arg(z_1z_2) = 0$, then a. $z_1 = z_2$ b. $|z_2|^2 = z_1 \cdot z_2$

 $c. z_1 \cdot z_2 = 1$ d. none of these

Watch Video Solution

472. The common roots of the equations $z^{3} + 2z^{2} + 2z + 1 = 0$ and $z^{1985} + z^{100} + 1 = 0$ are

473. If $z_1 + z_2 + z_3 + z_4 = 0$ where $b_i \in R$ such that the sum of no two values being zero and $b_1z_1 + b_2z_2 + b_3z_3 + b_4z_4 = 0$ where z_1, z_2, z_3, z_4 are arbitrary complex numbers such that no three of them are collinear, prove that the four complex numbers would be concyclic if $|b_1b_2||z_1 - z_2|^2 = |b_3b_4||z_3 - z_4|^2$.

Watch Video Solution

474. If the inequality $(mx^2 + 3x + 4)/(x^2 + 2x + 2) < 5$ is satisfied for all

 $x \in R$, then find the value of m

Watch Video Solution

475. If |(z - 2)/(z - 3)| = 2 represents a circle, then find its radius.

476. If
$$z_1$$
 is a root of the equation
 $a_0 z^n + a_1 z^{n-1} + \dots + (a_{n-1}) z + a_n = 3$, where $|a_i| < 2$ for
 $i = 0, 1, \dots, n$, then (a). $|z| = \frac{3}{2}$ (b). $|z| < \frac{1}{4}$ (c). $|z| > \frac{1}{4}$ (d). $|z| > \frac{1}{3}$

477. If
$$f(x) = (a_1x + b_1)^2 + (a_2x + b_2)^2 + \dots + (a_nx + b_n)^2$$
, then prove
that $(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2)^{\cdot}$

Watch Video Solution

478. If the imaginary part of (2z + 1)/(iz + 1) is -2, then find the locus of

the point representing in the complex plane.

479. If $|2z - 1| = |z - 2|andz_1, z_2, z_3$ are complex numbers such that

$$|z_1 - \alpha| < \alpha, |z_2 - \beta| < \beta, \text{ then=} \left| \frac{z_1 + z_2}{\alpha + \beta} \right|$$
a) < $|z|b. < 2|z|c. > |z| d. > 2|z|$

480. If (c > 0) and $2ax^2 + 3bx + 5c=0$ does not have any real roots, then prove that 2a - 3b + 5c > 0.

Watch Video Solution

481. Find the number of complex numbers which satisfies both the equations $|z - 1 - i| = \sqrt{2}and|z + 1 + i| = 2$.

482. Let ω be the complex number $\cos\left(2\frac{\pi}{3}\right) + i\sin\left(2\frac{\pi}{3}\right)$ Then the number

of distinct complex numbers z satisfying $\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & (z+\omega^2) & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0$ is

equals to

Watch Video Solution

483. If $ax^2 + bx + 6 = 0$ does not have distinct real roots, then find the

least value of 3a + b

Watch Video Solution

484. $|z - 2 - 3i|^2 + |z - 4 - 3i|^2 = \lambda$ represents the equation of the circle with

least radius. find the value of λ

485. Match the statements/expressions given in column I with the values given in Column II. Column I, Column II In \mathbb{R}^2 , if the magnitude of the projection vector of the vector $\alpha \hat{i} + \beta \hat{j}$ on $\sqrt{3}\hat{i} + \hat{j}is\sqrt{3}$ and if $|\alpha|$ is /are, (p) 1 real numbers such Let aandb be that the function $f(x) = \begin{cases} -3ax^2 - 2, x < 1bx + a^2, x \ge 1 & \text{Differentiable for all } x \in R & \text{Then} \end{cases}$ possible value (s) of a is/are, (q) 2 Let $\omega \neq 1$ be a complex cube root of unity. If

$$\left(3 - 3\omega + 2\omega^2\right)^{4n+3} + \left(2 + 3\omega - 3\omega^2\right)^{4n+3} + \left(-3 - 2\omega + 3\omega^2\right)^{4n+3} = 0 ,$$

then possible values (s) of *n* is /are, (r) 3 Let the harmonic mean of two positive real numbers *aandb* be 4. If *q* is a positive real number such that *a*, 5, *q*, *b* is an arithmetic progressin, then the values (*s*)*of*|*q* - *a*| is /are, (s) 4, (t) 5

Watch Video Solution

486. A quadratic trinomial $P(x) = ax^2 + bx + c$ is such that the equation P(x) = x has no real roots. Prove that in this case equation P(P(x)) = x has no real roots either.

487. If
$$(\sqrt{8} + i)^{50} = 3^{49}(a + ib)$$
, then find the value of $a^2 + b^2$.

488. Let $a, b, c \in Q^+$ satisfying a > b > c. Which of the following statement(s) hold true of the quadratic polynomial $f(x) = (a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b)?$ a. The mouth of the parabola y = f(x) opens upwards b. Both roots of the equation f(x) = 0 are rational c. The x-coordinate of vertex of the graph is positive d. The product of the roots is always negative

Watch Video Solution

489. Find the complex number satisfying system of equation $z^3 = -((\omega))^7$

and z^5 . $\omega^{11} = 1$

490. If $x, y \in R$ satify the equation $x^2 + y^2 - 4x - 2y + 5 = 0$, then the value of the expression $\left[\left(\sqrt{x} - \sqrt{y}\right)^2 + 4\sqrt{xy}\right]/\left(x + \sqrt{xy}\right)$ is

 $a.\sqrt{2} + 1$

b.
$$\frac{\sqrt{2} + 1}{2}$$

c.
$$\frac{\sqrt{2} - 1}{2}$$

d.
$$\frac{\sqrt{2}+1}{\sqrt{2}}$$

Watch Video Solution

491. If |z - iRe(z)| = |z - Im(z)|, then prove that z, lies on the bisectors of

the quadrants.

492. For any integer k let $\alpha_k = \cos\left(\frac{k\pi}{7}\right) + i\sin\left(\frac{k\pi}{7}\right)$ where $i = \sqrt{-1}$ the value of expression $\frac{\sum_{k=1}^{12} |\alpha_{k+1} - \alpha_k|}{\sum_{k=1}^{3} |(\alpha_{4k-1} - \alpha_{4k-2})|}$

493. If
$$x = 1 + \frac{1}{3 + \frac{1}{2 + \frac{1}{3 + \frac{1}{2}}}}$$

a $\frac{52}{2}$
b. $\frac{55}{71}$
c. $\frac{60}{52}$

d.
$$\frac{71}{55}$$

Watch Video Solution
494. Show that $(x^2 + y^2)^4 = (x^4 - 6x^2y^2 + y^4)^2 + (4x^3y - 4xy^3)^2$

495. Let
$$\omega = e^{i\frac{\pi}{3}}$$
, and a,b,c,x,y,z be non zero complex numbers such that
 $a + b + c = x$
 $a + b\omega + c\omega^2 = y$
 $a + b\omega^2 + c\omega = z$ then the value of $\frac{|x|^2 + |y|^2 + |z|^2}{|a|^2 + |b|^2 + |c|^2}$ is
Vatch Video Solution

496. Find the values of *a* for which all the roots of the euation $x^4 - 4x^3 - 8x^2 + a = 0$ are real.

497. if z is any complex number satisfying $|z - 3 - 2i| \le 2$ then the minimum

value of |2z - 6 + 5i| is

Watch Video Solution

498. Let
$$\left|\left(\left(\bar{z}_1\right) - 2\left(\bar{z}_2\right)\right) / \left(2 - z_1\left(\bar{z}_2\right)\right)\right| = 1$$
 and $\left|z_2\right| \neq 1$, where z_1 and z_2

are complex numbers. Show that $|z_1| = 2$.

Watch Video Solution

499. If $x = 2 + 2^{2/3} + 2^{1/3}$, then the value of $x^3 - 6x^2 + 6x$ is

(a)3

d. - 2

501. If $z_1 and z_2$ are complex numbers and $u = \sqrt{z_1 z_2}$, then prove that

$$|z_1| + |z_2| = \left|\frac{z_1 + z_2}{2} + u\right| + \left|\frac{z_1 + z_2}{2} - u\right|$$

502. The least value of the expression $x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14$ is

 $\mathsf{a.}1$

b. no least value

c. 0

d. none of these

Watch Video Solution

503. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to

(a) 128ω

(b) -128ω

(c)128ω²

504. If |z| = 1 and let $\omega = \frac{(1-z)^2}{1-z^2}$, then prove that the locus of ω is

equivalent to |z - 2| = |z + 2|

Watch Video Solution

505. If $x = 2 + 2^{2/3} + 2^{1/3}$, then the value of $x^3 - 6x^2 + 6x$ is

(a)3

b. 2

d. - 2

A. a. 3

B.b.2

C. c. 1

D. d. -2

Watch Video Solution

506. Let
$$z = x + iy$$
 Then find the locus of $P(z)$ such that $\frac{1 + \overline{z}}{z} \in R^{-1}$

507.
$$\frac{(\cos\theta + i\sin\theta)^4}{(\sin\theta + i\cos\theta)^5}$$
 is equal to.

512. If
$$|z_1| = 1$$
, $|z_2| = 2$, $|z_3| = 3$, and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$, then find the value of $|z_1 + z_2 + z_3|$.

513. Let $Z_1 = (8 + i)\sin\theta + (7 + 4i)\cos\theta$ and $Z_2 = (1 + 8i)\sin\theta + (4 + 7i)\cos\theta$ are two complex numbers. If $Z_1 \cdot Z_2 = a + ib$ where $a, b \in R$ then the largest value of $(a + b) \forall \theta \in R$, is

Watch Video Solution

514. For $a \le 0$, determine all real roots of the equation $x^2 - 2a|x - a| - 3a^2 = 0$

519. If $1/x + x = 2\cos\theta$, then prove that $x^n + 1/x^n = 2\cos\theta$

520. If $ax^2 + bx + c = 0$ and $bx^2 + cx + a = 0$ have a common root and a, b,

and c are nonzero real numbers, then find the value of $(a^3 + b^3 + c^3)/abc$

Watch Video Solution

521. Find the roots of the equation $2x^2 - x + \frac{1}{8} = 0$

Watch Video Solution

522. If |z + 2 - i| = 5 then the maximum value of |3z + 9 - 7i| is K, then find k

523. If $x^2 + 3x + 5 = 0$ and $ax^2 + bx + c = 0$ have common root/roots and

 $a, b, c \in N$, then find the minimum value of a + b + c

526. If $\alpha \neq \beta and\alpha^2 = 5\alpha - 3and\beta^2 = 5\beta - 3$. find the equation whose roots

are $\alpha/\beta and\beta/\alpha$

528. *a*, *b*, *c* are three complex numbers on the unit circle |z| = 1, such that

abc = a + b + c Then find the value of |ab + bc + ca|

529. If α , β are the roots of Ithe equation $2x^2 - 3x - 6 = 0$, find the equation whose roots are $\alpha^2 + 2$ and $\beta^2 + 2$.

530. If z_1, z_2, z_3 are distinct nonzero complex numbers and $a, b, c \in \mathbb{R}^+$

such that
$$\frac{a}{|z_1 - z_2|} = \frac{b}{|z_2 - z_3|} = \frac{c}{|z_3 - z_1|}$$
 Then find the value of $\frac{a^2}{|z_1 - z_2|} + \frac{b^2}{|z_2 - z_3|} + \frac{c^2}{|z_3 - z_1|}$

531. If
$$|z_1| = 15$$
 and $|z_2 - 3 - 4i| = 5$, then

$$B. b. (|z_1 - z_2|)_{min} = 3$$
$$B. b. (|z_1 - z_2|)_{min} = 10$$
$$C. c. (|z_1 - z_2|) = 20$$

D. d.
$$(|z_1 - z_2|)_{max} = 25$$

532. Determine the values o *m* for which equations $3x^2 + 4mx + 2 = 0$ and $2x^2 + 3x - 2 = 0$ may have a common root.

Watch Video Solution

533. If
$$z = \frac{\left(\sqrt{3} + i\right)^{17}}{\left(1 - i\right)^{50}}$$
, then find $amp(z)$

Watch Video Solution

534. A rectangle of maximum area is inscribed in the circle |z - 3 - 4i| = 1.

If one vertex of the rectangle is 4 + 4i, then another adjacent vertex of

this rectangle can be a. 2 + 4i b. 3 + 5i c. 3 + 3i d. 3 - 3i

Watch Video Solution

535. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then find the

roots of the equation $ax^2 - bx(x - 1) + c(x - 1)^2 = 0$ in term of α and β
536. If
$$\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$$
 then the modulus argument of $(1 + \cos 2\alpha) + i\sin 2\alpha$

537. The value of z satisfying the equation $\log z + \log z^2 + dz^2 + \log z^n = 0$ is

$$(a)\frac{\cos(4m\pi)}{n(n+1)} + i\frac{\sin(4m\pi)}{n(n+1)}, m = 0, 1, 2...$$
$$(b)\frac{\cos(4m\pi)}{n(n+1)} - i\frac{\sin(4m\pi)}{n(n+1)}, m = 0, 1, 2...$$
$$(c)\frac{\sin(4m\pi)}{n(n+1)} + i\frac{\sin(4m\pi)}{n(n+1)}, m = 0, 1, 2, ... (d) 0$$

Watch Video Solution

538. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is

less then $\sqrt{5}$, then find the set of possible value of a

539. find the differtiation of sin(tanx)

540. Roots of the equation are $(z + 1)^5 = (z - 1)^5$ are

(a)
$$\pm i \tan\left(\frac{\pi}{5}\right)$$
, $\pm i \tan\left(\frac{2\pi}{5}\right)$
(b) $\pm i \cot\left(\frac{\pi}{5}\right)$, $\pm i \cot\left(\frac{2\pi}{5}\right)$
(c) $\pm i \cot\left(\frac{\pi}{5}\right)$, $\pm i \tan\left(\frac{2\pi}{5}\right)$

(d)none of these

Watch Video Solution

541. Find the value of *a* for which one root of the quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$ is twice as large as the other.

542. If
$$|z_1 - z_0| = |z_2 - z_0| = a$$
 and $amp\left(\frac{z_2 - z_0}{z_0 - z_1}\right) = \frac{\pi}{2}$, then find z_0

543. Which of the following represents a points in an Argand pane, equidistant from the roots of the equation $(z + 1)^4 = 16z^4$? a. (0, 0) b.

$$\left(-\frac{1}{3},0\right)$$
 c. $\left(\frac{1}{3},0\right)$ d. $\left(0,\frac{2}{\sqrt{5}}\right)$

545. If $n \in N > 1$, then the sum of real part of roots of $z^n = (z + 1)^n$ is equal to

A. a.
$$\frac{n}{2}$$

B. b. $\frac{(n-1)}{2}$
C. c. $\frac{n}{2}$
D. d. $\frac{(1-n)}{2}$

546. If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that $|z - z_1| = |z - z_2| = |z - z_3| = |z - z_4|$, then z_1, z_2, z_3, z_4 are

547. Find the values of the parameter *a* such that the rots α , β of the equation $2x^2 + 6x + a = 0$ satisfy the inequality $\alpha/\beta + \beta/\alpha < 2$.

548. Solve the equation $z^3 = z(z \neq 0)$

Watch Video Solution

549. If $z = \omega$, ω^2 where ω is a non-real complex cube root of unity, are two vertices of an equilateral triangle in the Argand plane, then the third vertex may be represented by $a_z = 1$ b. z = 0 c. z = -2 d. z = -1

Watch Video Solution

550. Let $\alpha and\beta$ be the solutions of the quadratic equation $x^2 - 1154x + 1 = 0$, then the value of $\alpha^{\frac{1}{4}} + \beta^{\frac{1}{4}}$ is equal to _____.

551. If $\left(\frac{1+i}{1-i}\right)^m = 1$, then find the least positive integral value of m

Watch Video Solution

552. If $1, Z_1, Z_2, Z_3, \dots, Z_{n-1}$ are n^{th} roots of unity then the value of $\frac{1}{3 - Z_1} + \frac{1}{3 - Z_2} + \dots + \frac{1}{3 - Z_{n-1}}$ is equal to

Watch Video Solution

553. If $a, b, c \in \mathbb{R}^+$ and 2b = a + c, then check the nature of roots of equation $ax^2 + 2bx + c = 0$.

554. If z is a complex number such taht $z^2 = (\bar{z})^2$, then find the location

of z on the Argand plane.

555. If $z^3 + (3 + 2i)z + (-1 + ia) = 0$ has one real root, then the value of *a*

lies in the interval ($a \in R$) a. (-2, 1) b. (-1, 0) c. (0, 1) d. (-2, 3)

Watch Video Solution

556. Determine the value of k for which x + 2 is a factor of $(x + 1)^7 + (2x + k)^3$.

Watch Video Solution

557. Find the complex number z satisfying $Re(z^2) = 0$, $|z| = \sqrt{3}$.

558.
$$P(z_1), Q(z_2), R(z_3) and S(z_4)$$
 are four complex numbers
representing the vertices of a rhombus taken in order on the complex
lane, then which one of the following is/ are correct? $\frac{z_1 - z_4}{z_2 - z_3}$ is purely real
 $amp \frac{z_1 - z_4}{z_2 - z_3} = amp \frac{z_2 - z_4}{z_3 - z_4} \frac{z_1 - z_3}{z_2 - z_4}$ is purely imaginary It is not necessary
that $|z_1 - z_3| \neq |z_2 - z_4|$

Watch Video Solution

559. Given that the expression $2x^3 + 3px^2 - 4x + p$ has a remainder of 5

when divided by x + 2, find the value of p

Watch Video Solution

560. $z_1 and z_2$ are two distinct points in an Argand plane. If $a |z_1| = b |z_2|$ (wherea, $b \in R$), then the point $(az_1/bz_2) + (bz_2/az_1)$ is a point on the line segment [-2, 2] of the real axis line segment [-2, 2] of the imaginary axis unit circle |z| = 1 the line with $argz = \tan^{-1}2$

Watch Video Solution

561. Consider two complex numbers α and β as $\alpha = [(a + bi)/(a - bi)]^2 + [(a - bi)/(a + bi)]^2$, where a ,b in R and $\beta = (z - 1)/(z + 1)$, where |z| = 1, then find the correct statement:

A. both α and β are purely real

B. both α and β are purely imaginary

C. α is purely real and β is purely imaginary

D. β is purely real and α is purely imaginary

562. In how many points the graph of $f(x) = x^3 + 2x^2 + 3x + 4$ meets the x-

axis ?

565. Find the roots of the equation
$$x + \frac{1}{x} = 3$$

Watch Video Solution

567. If $z = i^{i^i}$ where $i = \sqrt{-1}$ then find the value of |z|

Watch Video Solution

568. Find the values of *a* for which the roots of the equation $x^2 + a^2 = 8x + 6a$ are real.

Watch Video Solution

569. If α and β are different complex numbers with $|\beta| = 1$. then find

$$\frac{\beta - \alpha}{1 - \bar{\alpha}\beta}$$

570. If
$$z = i \log(2 - \sqrt{3})$$
, then $\cos z =$

a.-1

b.
$$\frac{-1}{2}$$

c. 1

d. 2

Watch Video Solution

571. If $f(x) = x^3 - x^2 + ax + b$ is divisible by $x^2 - x$, then find the value of f(2)

572.
$$z = x + iy$$
 and $w = \frac{1 - iz}{1 + iz}$ and $|w| = 1$,prove that z is purely real

Watch Video Solution

573. If the equation
$$z^4 + a_1 z^3 + a_2 z^2 + a_3 z + a_4 = 0$$
 where a_1, a_2, a_3, a_4 are

real coefficients different from zero has a pure imaginary root then the

expression $\frac{a_3}{a_1a_2} + \frac{a_1a_4}{a_2a_3}$ has the value equal to

Watch Video Solution

574. If $f(x) = x^3 - 3x^2 + 2x + a$ is divisible by x - 1, then find the remainder

when f(x) is divided by x - 2.

575. If $z_1 and z_2$ are two complex numbers and c > 0, then prove that

$$|z_1 + z_2|^2 \le (1 + c)|z_1|^2 + (1 + c^{-1})|z_2|^2$$

576. Suppose A is a complex number and $n \in N$, such that $A^n = (A + 1)^n = 1$, then the least value of n is 3 b. 6 c. 9 d. 12

Watch Video Solution

577. Find the value of p for which x + 1 is a factor of $x^4 + (p-3)x^3 - (3p-5)x^2 + (2p-9)x + 6$. Find the remaining factor for this value of p

Watch Video Solution

578. If z_1, z_2, z_3 be the affixes of the vertices *A*, *B* and *C* of a triangle having centroid at G such that z = 0 is the mid point of AG then $4z_1 + z_2 + z_3 =$

579. The number of complex numbers z such that |z| = 1 and $\left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1$

is $arg(z) \in [0, 2\pi)$) then a. 4 b. 6 c. 8 d. more than 8

580. Given that $x^2 - 3x + 1 = 0$, then the value of the expression $y = x^9 + x^7 + x^{-9} + x^{-7}$ is divisible by prime number?

Watch Video Solution

581. If $iz^4 + 1 = 0$, then prove that z can take the value $\cos \pi/8 + i\sin \pi/8$.

582. Find the value of x such that $\frac{(x + \alpha)^n - (x + \beta)^n}{\alpha - \beta} = \frac{\sin(n\theta)}{\sin^n \theta}$, where α and β are the roots of the equation $t^2 - 2t + 2 = 0$.

583. Suppose $a, b, c \in I$ such that the greatest common divisor for $x^2 + ax + b$ and $x^2 + bx + c$ is (x + 1) and the least common multiple of $x^2 + ax + b$ and $x^2 + bx + c$ is $(x^3 - 4x^2 + x + 6)$. Then the value of |a + b + c| is equal to _____.

Watch Video Solution

584. Find the value of following expression: $\left[\frac{1 - \frac{\cos\pi}{10} + i\frac{\sin\pi}{10}}{1 - \frac{\cos\pi}{10} - i\frac{\sin\pi}{10}}\right]^{10}$

Watch Video Solution

585. Dividing f(z) by z - i, we obtain the remainder i and dividing it by z + i, we get the remainder 1 + i, then remainder upon the division of f(z) by $z^2 + 1$ is **586.** If the roots of the cubic equation, $x^3 + ax^2 + bx + c = 0$ are three consecutive positive integers, then the value of $(a^2/(b+1))$ is equal to?

Watch Video Solution

587. If
$$z_1, z_2 \in C$$
, $z_1^2 + z_2^2 \in R$, $z_1(z_1^2 - 3z_2^2) = 2$ and $z_2(3z_1^2 - z_2^2) = 11$, then the value of $z_1^2 + z_2^2$ is 10 b. 12 c. 5 d. 8

Watch Video Solution

588. If $\cos\alpha + \cos\beta + \cos\gamma = 0$ and $also \sin\alpha + \sin\beta + \sin\gamma = 0$, then prove that

$$\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$$

589. If x + y + z = 12 and $x^2 + y^2 + z^2 = 96$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 36$, then find the value of $x^3 + y^3 + z^3$

Watch Video Solution

590. Prove that
$$(1 + i)^n + (1 - i)^n = 2^{\frac{n+2}{2}} . \cos\left(\frac{n\pi}{4}\right)$$
, where n is a positive

integer.

Watch Video Solution

591. The set
$$\left\{ Re\left(\frac{2iz}{1-z^2}\right): z \text{ is a complex number } , |z| = 1, z = \pm 1 \right\}$$

is_____.

592. If the equation $x^2 + ax + bc = 0$ and $x^2 + bx + ca = 0$ have a common

root, then a + b + c =

593. If $arg[z_1(z_3 - z_2)] = arg[z_3(z_2 - z_1)]$, then prove that O, z_1, z_2, z_3

are concyclic, where O is the origin.

Watch Video Solution

594. If
$$x - iy = \sqrt{\frac{a - ib}{c - id}}$$
 prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$

Watch Video Solution

595. If $x^3 + 3x^2 - 9x + c$ is of the form $(x - \alpha)^2(x - \beta)$, then *c* is equal to a.27

b. - 27 c. 5 d. - 5

596. If x = a + b, $y = a\alpha + b\beta$ and $z = a\beta + b\alpha$, where α and β are the imaginary cube roots of unity, then xyz =

Watch Video Solution

597. If
$$z = (a + ib)^5 + (b + ia)^5$$
 then prove that $Re(z) = Im(z)$, where $a, b \in R$.

Watch Video Solution

598. If *a* and *b* are positive numbers and eah of the equations $x^2 + ax + 2b = 0$ and $x^2 + 2bx + a = 0$ has real roots, then the smallest possible value of (a + b) is_____.

599. Find the real values of x and y for which the following equation is

satisfied:
$$\frac{(1+i)x - 2i}{3+i} + \frac{(2-3i)y + i}{3-i} = i$$

Watch Video Solution

600. The three angular points of a triangle are given by $Z = \alpha$, $Z = \beta$, $Z = \gamma$, where α , β , γ are complex numbers, then prove that the perpendicular from the angular point $Z = \alpha$ to the opposite side is given

by the equation
$$Re\left(\frac{Z-\alpha}{\beta-\gamma}\right)=0$$

Watch Video Solution

601. Suppose *a*, *b*, *c* are the roots of the cubic $x^3 - x^2 - 2 = 0$. Then the value of $a^3 + b^3 + c^3$ is _____.

602. It is given that n is an odd integer greater than 3 but n is not a multiple of 3 prove that $x^3 + x^2 + x$ is a factor of $(x + 1)^n - x^n - 1$:

Watch Video Solution

603. If α , β , γ , δ are four complex numbers such that $\frac{\gamma}{\delta}$ is real and $\alpha\delta - \beta\gamma \neq 0$ then $z = \frac{\alpha + \beta t}{\gamma + \delta t}$ where t is a rational number, then it represents:

A. A. Circle

B. B. Parabola

C. C. Ellipse

D. D, Straight line

604. If $ax^2 + (b - c)x + a - b - c = 0$ has unequal real roots for all $c \in R$, then (*i*)b < 0 < a (*ii*)a < 0 < b (*iii*)b < a < 0 (*iv*)b > a > 0

605. If $z_1^2 + z_2^2 + 2z_1 \cdot z_2 \cdot \cos\theta = 0$ prove that the points represented by z_1, z_2 , and the origin form an isosceles triangle.

606. Prove that the circles

$$z\bar{z} + z(\bar{a}_1) + \bar{z}(a_1) + b_1 = 0, b_1 \in R \text{ and } z\bar{z} + z(\bar{a}_2) + \bar{z}a_2 + b_2 = 0,$$

 $b_2 \in R$ will intersect orthogonally if $2Re(a_1\bar{a}_2) = b_1 + b_2$.
Watch Video Solution

607. If *a*, *b*, *c* real in G.P., then the roots of the equation $ax^2 + bx + c = 0$ are in the ratio

a.
$$\frac{1}{2} \left(-1 + i\sqrt{3} \right)$$

b. $\frac{1}{2} \left(1 - i\sqrt{3} \right)$
c $\frac{1}{2} \left(-1 - i\sqrt{3} \right)$
d. $\frac{1}{2} \left(1 + i\sqrt{3} \right)$
Watch Video Solution

608. If z_0 is the circumcenter of an equilateral triangle with vertices z_1, z_2, z_3 then $z_1^2 + z_2^2 + z_3^2$ is equal to

609. Two different non-parallel lines cut the circle |z| = r at points a, b, c and d, respectively. Prove that these lines meet at the point z given by $\frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$ **Watch Video Solution**

610. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, then it must be equal to

a.
$$\frac{p' - p' q}{q - q'}$$

b.
$$\frac{q - q'}{p' - p}$$

c.
$$\frac{p' - p}{q - q'}$$

d.
$$\frac{pq' - p' q}{p - p'}$$

611. Prove that $|z - z_1|^2 + |z - z_2|^2 = k$ will represent a real circle with center $\left(\frac{z_1 + z_2}{2}\right)$ on the Argand plane if $2k \ge |z_1 - z_2|^2$ Watch Video Solution

612. Complex numbers z_1, z_2, z_3 are the vertices *A*, *B*, *C* respectively of an isosceles right angled triangle with right angle at C and $(z_1 - z_2)^2 = k(z_1 - z_3)(z_3 - z_2)$, then find k.

Watch Video Solution

613. Given that α , γ are roots of the equation $Ax^2 - 4x + 1 = 0$, $and\beta$, δ the roots of the equation of $Bx^2 - 6x + 1 = 0$, such that α , β , γ , $and\delta$ are in H.P., then aA = 3 b. A = 4 B = 2 d. B = 8

614. The area of the triangle in the complex plane formed by the points z,

iz and z+iz is

615. Intercept made by the circle $z\bar{z} + \bar{a}z + a\bar{z} + r = 0$ on the real axis on complex plane is $a.\sqrt{(a+\bar{a})-r}$ b. $\sqrt{(a+\bar{a})^2 - r}$ c. $\sqrt{(a+\bar{a})^2 - 4r}$ d. $\sqrt{(a+\bar{a})^2 - 4r}$

Watch Video Solution

616. The graph of the quadratic trinomial $y = ax^2 + bx + c$ has its vertex at

(4, -5) and two x-intercepts, one positive and one negative. Which of the

following holds good? a. a > 0 b. b < 0 c. c < 0 d. 8a = b

Watch Video Solution

617. if $iz^3 + z^2 - z + i = 0$ then show that |z| = 1

618. Show that the equation of a circle passing through the origin and having intercepts a and b on real and imaginary axes, respectively, on the

argand plane is given by $z\overline{z} = a(Rez) + b(Imz)$

Watch Video Solution

619. The function $f(x) = ax^3 + bx^2 + cx + d$ has three positive roots. If the sum of the roots of f(x) is 4, the larget possible inegal values of c/a is

Watch Video Solution

620. let $z_1 = 10 + 6i$ and $z_2 = 4 + 6i$ if z is nay complex number such that

argument of $\frac{z-z_1}{z-z_2}$ is $\frac{\pi}{4}$ the prove that $|z-7-9i| = 3\sqrt{2}$

621. Let vertices of an acute-angled triangle are $A(z_1)$, $B(z_2)$, $andC(z_3)$ If the origin O is the orthocentre of the triangle, then prove that $z_1\bar{z}_2 + \bar{z}_1z_2 = z_2\bar{z}_3 + \bar{z}_2z_3 = z_3\bar{z}_1 + \bar{z}_3z_1$

Watch Video Solution

622. If
$$(18x^2 + 12x + 4)^n = a_0 + a_{1x} + a_{2x}^2 + \dots + a_{2n}x^{2n}$$
, prove that $a_r = 2^n 3^r ({}^{2n}C_r + {}^{n}C_1 {}^{2n-2}C_r + {}^{n}C_2 {}^{2n-4}C_r + \dots$

Watch Video Solution

623. If $z = z_0 + A(\bar{z} - (\bar{z}_0))$, where *A* is a constant, then prove that locus of

z is a straight line.

624. If
$$(\sin\alpha)x^2 - 2x + b \ge 2$$
 for all real values of $x \le 1$ and $\alpha \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$, then the possible real values of *b* is/are 2 (b) 3 (c) 4 (d) 5

Watch Video Solution

625. If z_1, z_2, z_3 are three complex numbers such that $5z_1 - 13z_2 + 8z_3 = 0$,

then prove that
$$\begin{bmatrix} z_1 & (\bar{z})_1 & 1 \\ z_2 & (\bar{z})_2 & 1 \\ z_3 & (\bar{z})_3 & 1 \end{bmatrix} = 0$$

Watch Video Solution

626. If one root $x^2 - x - k = 0$ is square of the other, then $k = a.2 \pm \sqrt{5}$ b.

$$2 \pm \sqrt{3}$$
 c. $3 \pm \sqrt{2}$ d. $5 \pm \sqrt{2}$

627. If z_1, z_2 are complex number such that $\frac{2z_1}{3z_2}$ is purely imaginary

number, then find
$$\left| \frac{z_1 - z_2}{z_1 + z_2} \right|$$
.

Watch Video Solution

628. If
$$\alpha$$
, and β be the roots of the equation
 $x^2 + px - 1/2p^2 = 0$, where $p \in \mathbb{R}^2$ Then the minimum value of $\alpha^4 + \beta^4$ is
 $2\sqrt{2}$ b. $2 - \sqrt{2}$ c. 2 d. $2 + \sqrt{2}$

Watch Video Solution

629. If z_1, z_2, z_3 are complex numbers such that $\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$, show that the points represented by z_1, z_2, z_3 lie on a circle passing through the origin.

630. Find the range of
$$f(x)\frac{x^2 - x + 1}{x^2 + x + 1}$$

Watch Video Solution

631. If
$$\left(\frac{3-z_1}{2-z_1}\right)\left(\frac{2-z_2}{3-z_2}\right) = k(k > 0)$$
, then prove that points

 $A(z_1), B(z_2), C(3), and D(2)$ (taken in clockwise sense) are concyclic.

Watch Video Solution

632. $x^2 - xy + y^2 - 4x - 4y + 16 = 0$ represents

a. a point

b. a circle

c. a pair of straight line

d. none of these

633. If $(x + iy)^5 = p + iq$, then prove that $(y + ix)^5 = q + ip^3$

Watch Video Solution

634. If α , β are the nonzero roots of $ax^2 + bx + c = 0$ and α^2 , β^2 are the roots of $a^2x^2 + b^2x + c^2 = 0$, then a, b, c are in

(A) G.P.

(B) H.P.

(C) A.P.

(D) none of these

636. If the roots of the equation $ax^2 + bx + c = 0$ are of the form $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, then $(a+b+c)^2$ is equal to $2b^2 - ac$ b. a62 c. $b^2 - 4ac$ d. $b^2 - 2ac$

Watch Video Solution

637. Prove that
$$\tan\left(i\log_e\left(\frac{a-ib}{a+ib}\right)\right) = \frac{2ab}{a^2-b^2}$$
 (where $a, b \in \mathbb{R}^+$)

638. If α , β are the roots of $ax^2 + bx + c = 0$ and $\alpha + h$, $\beta + h$ are the roots of

$$px^{2} + qx + r = 0$$
 then $h = a - \frac{1}{2} \left(\frac{a}{b} - \frac{p}{q} \right) b \cdot \left(\frac{b}{a} - \frac{q}{p} \right) c \cdot \frac{1}{2} \left(\frac{b}{a} - \frac{q}{p} \right) d$. none of

these

639. Find the real part of
$$(1 - i)^{-i}$$

Watch Video Solution

640. The equation
$$(x^2 + x + 1)^2 + 1 = (x^2 + x + 1)(x^2 - x - 5)$$
 for

 $x \in$ (- 2, 3) will have number of solutions. 1 b. 2 c. 3 d. 0

641. Convert of the complex number in the polar form: 1 - i

642. If α , β are the roots of $ax^2 + c = bx$, then the equation $(a + cy)^2 = b^2y$ in y has the roots $a.\alpha\beta^{-1}$, $\alpha^{-1}\beta$ b. α^{-2} , β^{-2} c. α^{-1} , β^{-1} d. α^2 , β^2

643. If
$$z = re^{i\theta}$$
, then prove that $\left|e^{iz}\right| = e^{-r\sin\theta}$

Watch Video Solution

644. If the roots of the equation $x^2 + 2ax + b = 0$ are real and distinct and

they differ by at most 2m, then *b* lies in the interval $a(a^2, a^2, +m^2)$ b.

$$\left(a^2 - m^2, a\right)$$
 c. $\left[a^2 - m^2, a^2\right)$ d. none of these
645. $Z_1 \neq Z_2$ are two points in an Argand plane. If $a |Z_1| = b |Z_2|$, then prove that $\frac{aZ_1 - bZ_2}{aZ_1 + bZ_2}$ is purely imaginary.

Watch Video Solution

646. If the ratio of the roots of $ax^2 + 2bx + c = 0$ is same as the ratio of roots of $px^2 + 2qx + r = 0$, then a. $\frac{2b}{ac} = \frac{q^2}{pr}$ b. $\frac{b}{ac} = \frac{q^2}{pr}$ c. $\frac{b^2}{ac} = \frac{q^2}{pr}$ d. none of these

Watch Video Solution

647. Find real value of x and y for which the complex numbers $-3 + ix^2y$

and $x^2 + y + 4i$ are conjugate of each other.

648. Show that
$$\frac{(x+b)(x+c)}{(b-a)(c-a)} + \frac{(x+c)(x+a)}{(c-b)(a-b)} + \frac{(x+a)(x+b)}{(a-c)(b-c)} = 1$$
 is an

identity.

649. Show that
$$e^{2mi\theta} \left(\frac{i\cot\theta + 1}{i\cot\theta - 1} \right)^m = 1.$$

Watch Video Solution

650. A certain polynomial $P(x)x \in R$ when divided by kx - a, x - bandx - cleaves remainders a, b, and c, resepectively. Then find remainder when P(x)is divided by (x - a)(x - b)(x - c) where ab, c are distinct.

651. It is given that complex numbers z_1 and z_2 satisfy $|z_1| = 2$ and $|z_2| = 3$. If the included angled of their corresponding vectors is 60^0 ,

then find the value of 19 $\left| \frac{z_1 - z_2}{z_1 + z_2} \right|^2$.

Watch Video Solution

652. If c, d are the roots of the equation (x - a)(x - b) - k = 0, prove that a,

b are roots of the equation (x - c)(x - d) + k = 0.

Watch Video Solution

653. If $z_1^2 + z_2^2 + 2z_1 \cdot z_2 \cdot \cos\theta = 0$ prove that the points represented by

 z_1, z_2 , and the origin form an isosceles triangle.

Watch Video Solution

654. If $(a^2 - 1)x^2 + (a - 1)x + a^2 - 4a + 3 = 0$ is identity in x, then find the value of a.

655. Show that a real value of x will satisfy the equation (1 - ix)/(1 + ix) = a - ib if $a^2 + b^2 = 1$, where a, b real.

658. If the roots of the equation $x^2 - 8x + a^2 - 6a = 0$ are real distinct, then

find all possible value of a

659. Solve $: z^2 + |z| = 0$.

Watch Video Solution

660. If roots of equation $x^2 - 2cx + ab = 0$ are real and unequal, then prove that the roots of $x^2 - 2(a + b)x + a^2 + b^2 + 2c^2 = 0$ will be imaginary.

Watch Video Solution

661. Find the range of real number α for which the equation $z + \alpha |z - 1| + 2i = 0$ has a solution.

662. If the roots of the equation $a(b - c)x^2 + b(c - a)x + c(a - b) = 0$ are

equal, show that 2/b = 1/a + 1/c

663. If
$$\frac{(1+i)^2}{3-i}$$
 =Z , then $Re(z)$ =

Watch Video Solution

664. Find the quadratic equation with rational coefficients whose one

root is $1/(2 + \sqrt{5})^2$

665. Let z be a complex number satisfying the equation $(z^3 + 3)^2 = -16$,

then find the value of |z|

666. If $P(x) = ax^2 + bx + c$, and $Q(x) = -ax^2 + dx + c$, $ac \neq 0$, then prove

that P(x).Q(x) = 0 has at least two real roots.

Watch Video Solution

667. Find the real numbers x and y if (x - iy)(3 + 5i) is the conjugate of -6-

24i.

Watch Video Solution

668. If x is real, then $x/(x^2 - 5x + 9)$ lies between

a.-1*and* - 1/11

b. 1and - 1/11

c. 1*and*1/11

d. none of these

669. Find the least positive integer *n* such that
$$\left(\frac{2i}{1+i}\right)^n$$
 is a positive

integer.

Watch Video Solution

670. Set of all real value of a such that

$$f(x) = \frac{(2a-1)x^2 + 2(a+1)x + (2a-1)}{x^2 - 2x + 40}$$
 is always negative is a. $(-\infty, 0)$ b.
 $(0, \infty)$ c. $\left(-\infty, \frac{1}{2}\right)$ d. none

671. Find the real part of $e^{ei\theta}$

672. If α , β and γ are the roots of $x^3 - x^2 - 1 = 0$, then value of $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$ is

Watch Video Solution

673. Prove that $z = i^i$, where $i = \sqrt{-1}$, is purely real.

Watch Video Solution

674. If α , β , γ , δ are the roots of the equation $x^4 - Kx^3 + Kx^2 + Lx + m = 0$, where K, L, and M are real numbers, then the minimum value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ is a. 0 b. -1 c. 1 d. 2

675. In *ABC*, $A(z_1)$, $B(z_2)$, $andC(z_3)$ are inscribed in the circle |z| = 5. If $H(z_H)$ be the orthocenter of triangle *ABC*, then find z_H

676. Suppose that f(x) is a quadratic expresson positive for all real x. If g(x) = f(x) + f'(x) + f''(x), then for any real `x

Watch Video Solution

677. Multiply: (2 + 5*i*)(4 - 3*i*)

Watch Video Solution

678. Let $f(x) = ax^2 - bx + c^2$, $b \neq 0$ and $f(x) \neq 0$ for all $x \in R$. Then (a) $a + c^2 < b$ (b) $4a + c^2 > 2b$ (c) $a - 3b + c^2 < 0$ (d) none of these **679.** It is given that n is an odd integer greater than 3 but n is not a multiple of 3 prove that $x^3 + x^2 + x$ is a factor of $(x + 1)^n - x^n - 1$:

Watch Video Solution

680. If $a, b \in R, a \neq 0$ and the quadratic equation $ax^2 - bx + 1 = 0$ has imaginary roots, then (a + b + 1) is a positive b. negative c. zero d. Dependent on the sign of b

Watch Video Solution

681. Find the complex number ω satisfying the equation $z^3 = 8i$ and lying in the second quadrant on the complex plane.

682. If the expression [mx - 1 + (1/x)] is non-negative for all positive real

x, then the minimum value of m must be -1/2 b. 0 c. 1/4 d. 1/2

683. When the polynomial $5x^3 + Mx + N$ is divided by $x^2 + x + 1$, the

remainder is 0. Then find the value of M + N

Watch Video Solution

684. x_1 and x_2 are the roots of $ax^2 + bx + c = 0$ and $x_1x_2 < 0$. Roots of

 $x_1(x - x_2)^2 + x_2(x - x_1)^2 = 0$ are: (a) real and of opposite sign b. negative

c. positive d. non real

685. if
$$\omega and \omega^2$$
 are the nonreal cube roots of unity and $[1/(a + \omega)] + [1/(b + \omega)] + [1/(c + \omega)] = 2\omega^2$ and $[1/(a + \omega)^2] + [1/(b + \omega)^2] + [1/(c + \omega)^2] = 2\omega$, then find the value of $[1/(a + 1)] + [1/(b + 1)] + [1/(c + 1)]$

Watch Video Solution

686. If *a*, *b*, *c*, *d* are four consecutive terms of an increasing A.P., then the roots of the equation (x - a)(x - c) + 2(x - b)(x - d) = 0 are a. non-real complex b. real and equal c. integers d. real and distinct

Watch Video Solution

687. Find the relation if z_1, z_2, z_3, z_4 are the affixes of the vertices of a parallelogram taken in order.

688. If roots of the equation $x^2 - 10cx - 11d=0$ are a,b and those of $x^2 - 10ax - 11b=0$ are c,d,then the sum of the digits of a+b+c+d must be equal to (a,b,c and d are distinct numbers)

689. If z_1, z_2, z_3 are three nonzero complex numbers such that $z_3 = (1 - \lambda)z_1 + \lambda z_2$ where $\lambda \in R - \{0\}$, then prove that points corresponding to z_1, z_2 and z_3 are collinear.

Watch Video Solution

690. Coefficient of x^{99} in the polynomial (x-1) (x-2)....(x-100) is

691. Let z_1, z_2, z_3 be three complex numbers and a, b, c be real numbers not all zero, such that a + b + c = 0 and $az_1 + bz_2 + cz_3 = 0$. Show that

z_1, z_2, z_3 are collinear.

692. Fill in the blanks If $2 + i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, where pand q are real, then $(p, q) = \begin{pmatrix} - & - & - & - \\ - & - & - & - & - \end{pmatrix}$.

Watch Video Solution

693. Prove that the triangle formed by the points 1, $\frac{1+i}{\sqrt{2}}$, and *i* as vertices

in the Argand diagram is isosceles.

694. Fill in the blanks. If the product of the roots of the equation $x^2 - 3kx + 2e^{2\log k} - 1 = 0$ is 7, then the roots are real for_____.

696. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have one common root. Then find the numerical value of a+b.

699. Find the square roots of the following: (i) 7 - 24i

702. If l, m, n are real and $l \neq m$, then the roots of the equation $(l - m)x^2 - 5(l + m)x - 2(l - m) = 0$ are

a) real and equal

zero c. non-positive d. none of these

705. If
$$(x + iy)^3 = u + iv$$
, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$

706. Let a > 0, b > 0 and c > 0. Then, both the roots of the equation $ax^2 + bx + c = 0$: a. are real and negative b. have negative real parts c. have positive real parts d. None of the above

Watch Video Solution

707. If the sum of square of roots of the equation $x^2 + (p + iq)x + 3i = 0$ is

8, then find the value of p and q, where p and q are real.

708. Column I Column II

$$y = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}, x \in R, \text{ then } y \text{ can't be , p. 1}$$

$$y = \frac{x^2 - 3x - 2}{2x - 3}, x \in R, \text{ then } y \text{ can't be , q. 4}$$

$$y = \frac{2x^2 - 2x + 4}{x^2 - 4x + 3}, x \in R, \text{ then } y \text{ can't be , r. - 3}$$

$$x^2 - (a - 3)x + 2 < 0, \forall, x \in (-2, 3), \text{ then } y \text{ can't be , s. - 10}$$

709. If
$$\sqrt{x + iy} = \pm (a + ib)$$
, then find $\sqrt{-x - iy}$.

710. Match the following for the equation $x^2 + a|x| + 1 = 0$, where *a* is a parameter. Column I, Column II No real roots, p. a < -2 Two real roots, q. φ Three real roots, r. a = -2 Four distinct real roots, s. $a \ge 0$

711. Find the ordered pair (x, y) for which $x^2 - y^2 - i(2x + y) = 2i$

712. If a, b, c are non zero complex numbers of equal modlus and satisfy

$$az^{2} + bz + c = 0$$
, hen prove that $(\sqrt{5} - 1)/2 \le |z| \le (\sqrt{5} + 1)/2$.

Watch Video Solution

713. Let z be not a real number such that $(1 + z + z^2)/(1 - z + z^2) \in R$,

then prove that |z| = 1.

714. Let *a* is a real number satisfying $a^3 + \frac{1}{a^3} = 18$. Then the value of $a^4 + \frac{1}{a^4} - 39$ is ____.

715. Find non zero integral solutions of $|1 - i|^x = 2^x$

Watch Video Solution

716. Column I, Column II If $x^2 + ax + b = 0$ has roots α , $\beta andx^2 + px + q = 0$ has roots α , γ , then, p. $(1 - bq)^2 = (a - pb)(p - aq)$ If $x^2 + ax + b = 0$ has roots α , $\beta andx^2 + px + q = 0$ has roots $1/\alpha$, γ , then, q. $(4 - bq)^2 = (4a + 2pb)(-2p - aq)$ If $x^2 + ax + b = 0$ has roots α , $\beta andx^2 + px + q = 0$ has roots $2/\alpha$, γ , then, r. $(1 - 4bq)^2 = (a + 2pb)(-2p - 4aq)$ If $x^2 + ax + b = 0$ has roots α , $\beta andx^2 + px + q = 0$ has roots $1/(2\alpha)$, γ , then, s. $(q - b)^2 = (aq + bp)(p - a)$

717. If
$$(1+i)(1+2i)(1+3i)....(1+ni) = (x+iy)$$
, show that

2. 5. 10.....
$$(1 + n^2) = x^2 + y^2$$

Watch Video Solution

718. If $ax^2 + bx + c = 0$, $a, b, c \in R$ has no real zeros, and if c < 0, then

which of the following is true? (a) a < 0 (b) a + b + c > 0 (c)a > 0

Watch Video Solution

719. If ω is a cube root of unity, then find the value of the following:

 $\frac{a+b\omega+c\omega^{2}}{c+a\omega+b\omega^{2}}+\frac{a+b\omega+c\omega^{2}}{b+c\omega+a\omega^{2}}$

Watch Video Solution

720. If $f(x) = \sqrt{x^2 + ax + 4}$ is defined for all x, then find the value of a

721. If ω is a cube root of unity, then find the value of the following:

$$(1 - \omega) \left(1 - \omega^2\right) \left(1 - \omega^4\right) \left(1 - \omega^8\right)$$

Watch Video Solution

722. Find the domain and range of $f(x) = \sqrt{x^2 - 4x + 6}$

Watch Video Solution

723. Prove that
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$
, if z_1/z_2 is purely imaginary.

Watch Video Solution

724. Find the range of the function $f(x) = 6^x + 3^x + 6^{-x} + e^{-x} + 2$.

725. If ω is a cube root of unity, then find the value of the following:

$$(1 + \omega - \omega^2)(1 - \omega + \omega^2)$$

Watch Video Solution

726. If α , β are the roots of the equation $2x^2 + 2(a + b)x + a^2 + b^2 = 0$ then find the equation whose roots $are(\alpha + \beta)^2$ and $(\alpha - \beta)^2$

Watch Video Solution

727. Let
$$z_1, z_2, z_3, \dots, z_n$$
 be complex numbers such that

$$|z_1| = |z_2| = \dots = |z_n| = 1$$
. If $z = \left(\sum_{k=1}^{n} z_k\right) \left(\sum_{k=1}^{n} \frac{1}{z_k}\right)$ then prove that z is a

real number

732. The polynomial $f(x) = x^4 + ax^3 + bx^3 + cx + d$ has real coefficients and

f(2i) = f(2 + i) = 0. Find the value of (a + b + c + d)

733. Find the value of $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ for all $n \in N$

Watch Video Solution

734. If the quadratic equation $ax^2 + bx + c = 0 (a > 0)$ has $\sec^2\theta and \csc^2\theta$

as its roots, then which of the following must hold good?

(a.) b + c = 0

(b.) $b^2 - 4ac \ge 0$

(c.) c ≥ 4*a*

735. Find the value of $1 + i^2 + i^4 + i^6 + i^{2n}$

Watch Video Solution

736. Let $x, y, z \in R$ such that x + y + z = 5 and xy + yz + zx = 3. Then what

is the largest value x can have?

Watch Video Solution

737. Show that the polynomial $x^{4p} + x^{4q+1} + x^{4r+2} + x^{4s+3}$ is divisible by

 $x^{3} + x^{2} + x + 1$, where p, q, r, s $\in n$

738. if $ax^2 + bx + c = 0$ has imaginary roots and a + c < b then prove that

4a + c < 2b

739. Solve:
$$ix^2 - 3x - 2i = 0$$
,

Watch Video Solution

740. Let
$$a, b, andc$$
 be distinct nonzero real numbers such that

$$\frac{1-a^3}{a} = \frac{1-b^3}{b} = \frac{1-c^3}{c}$$
The value of $\left(a^3 + b^3 + c^3\right)$ is _____.
Watch Video Solution

741. Express each one of the following in the standard form $a + ib \frac{5+4i}{4+5i}$

742. If the cubic $2x^3 - 9x^2 + 12x + k = 0$ has two equal roots then minimum value of |k| is_____.

743. If $z = 4 + i\sqrt{7}$, then find the value of $z^2 - 4z^2 - 9z + 91$.

744. If the quadratic equation $4x^2 - 2(a + c - 1)x + ac - b = 0 (a > b > c)$ (a)Both roots se greater than a (b)Both roots are less than c (c)Both roots lie between $\frac{c}{2}$ and $\frac{a}{2}$ (d)Exactly one of the roots lies between $\frac{c}{2}$ and $\frac{a}{2}$

Watch Video Solution

745. If (a + b) - i(3a + 2b) = 5 + 2i, then find *aandb*

746. If the equation $x^2 = ax + b = 0$ has distinct real roots and $x^2 + a|x| + b = 0$ has only one real root, then which of the following is true? b = 0, a > 0 b. b = 0, a < 0 c. b > 0, a < 0 d. b = 0, a = 0

Watch Video Solution

747. Given that
$$x, y \in R$$
. Solve: $\frac{x}{1+2i} + \frac{y}{3+2i} = \frac{5+6i}{8i-1}$

748. If the equation
$$|x^2 + bx + c| = k$$
 has four real roots, then a.
 $b^2 - 4c > 0$ and $0 < k < \frac{4c - b^2}{4}$ b. $b^2 - 4c < 0$ and $0 < k < \frac{4c - b^2}{4}$ c.
 $b^2 - 4c > 0$ and $k > \frac{4c - b^2}{4}$ d. none of these

749. If P(x) is a polynomial with integer coefficients such that for 4 distinct integers a, b, c, d, P(a) = P(b) = P(c) = P(d) = 3, if P(e) = 5, (e is an integer) then 1. e=1, 2. e=3, 3. e=4, 4. No integer value of e

750. Let *x*, *y*, *z*, *t* be real numbers $x^2 + y^2 = 9$, $z^2 + t^2 = 4$, and xt - yz = 6

Then the greatest value of P = xz is a. 2 b. 3 c. 4 d. 6

Watch Video Solution

751. If *a*, *b*, *c* are distinct positive numbers, then the nature of roots of the

equation $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = \frac{1}{x}$ is a) all real and is distinct b) all real and at

least two are distinct c) at least two real d) all non-real

752. If $(b^2 - 4ac)^2(1 + 4a^2) < 64a^2$, a < 0, then maximum value of

quadratic expression $ax^2 + bx + c$ is always less than a. 0 b. 2 c. -1 d. -2

Watch Video Solution

753. For $x^2 - (a+3)|x| + 4 = 0$ to have real solutions, the range of a is a.

 $(-\infty, -7] \cup [1, \infty) b. (-3, \infty) c. (-\infty, -7) d. [1, \infty)$

Watch Video Solution

754. Find the number of integal values of x satisfying

$$\sqrt{-x^2 + 10x - 16} < x - 2$$

Watch Video Solution

755. If $x^2 + ax - 3x - (a + 2) = 0$ has real and distinct roots, then minimum value of $\frac{a^2 + 1}{a^2 + 2}$ is

756. Let $\alpha + i\beta$; $\alpha, \beta \in R$, be a root of the equation $x^3 + qx + r = 0$; $q, r \in R$ A real cubic equation, independent of $\alpha \& \beta$, whose one root is 2α is $(a)x^3 + qx - r = 0$ (b) $x^3 - qx + 4 = 0$ (c) $x^3 + 2qx + r = 0$ (d) None of these

Watch Video Solution

757. In equation $x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$ if two its roots are equal in magnitude but opposite in sign, find all the roots.

Watch Video Solution

758. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, then find

he value of
$$\left(\alpha - \frac{1}{\beta \gamma}\right) \left(\beta - \frac{1}{\gamma \alpha}\right) \left(\gamma - \frac{1}{\alpha \beta}\right)$$
.

759. The equation $x^3 + 5x^2 + px + q=0$ and $x^3 + 7x^2 + px + r=0$ have two roots in common. If their third roots be γ_1 and γ_2 respectively, then the ordered pair (γ_1, γ_2) is

Watch Video Solution

760. If α , β , γ are the roots of he euation $x^3 + 4x + 1 = 0$, then find the value of $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1}$.

Watch Video Solution

761. If the roots of the equation $x^3 + Px^2 + Qx - 19 = 0$ are each one more that the roots of the equation $x^3 - Ax^2 + Bx - C = 0$, where *A*, *B*, *C*, *P*, and *Q* are constants, then find the value of A + B + C

762. If *a*, *b*, *p*, *q* are non zero real numbers, then how many comman roots would two equations: $2a^2x^2 - 2abx + b^2 = 0$ and $p^2x^2 + 2pqx + q^2 = 0$ have?

763. If $x^2 + px + q = 0$ and $x^2 + qx + p = 0$, $(p \neq q)$ have a common roots, show that 1 + p + q = 0.

Watch Video Solution

764. a,b,c are positive real numbers forming a G.P. If $ax^2 + 2bx + c = 0$ and

 $dx^2 + 2ex + f = 0$ have a common root, then prove that $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.

Watch Video Solution

765.

equations

$$x^{2} + ax + 12 = 0$$
. $x^{2} + bx + 15 = 0$ and $x^{2} + (a + b)x + 36 = 0$, have a

766. If x is real and the roots of the equation $ax^2 + bx + c = 0$ are imaginary, then prove tat $a^2x^2 + abx + ac$ is always positive.

Watch Video Solution

767. Solve
$$(x^2 + 2)^2 + 8x^2 = 6x(x^2 + 2)$$

Watch Video Solution

768. Find the value of 2 +
$$\frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}}$$

769. If both the roots of $ax^2 + ax + 1 = 0$ are less than 1, then find the

exhaustive range of values of a

770. If both the roots of $x^2 + ax + 2 = 0$ lies in the interval (0, 3), then find

the exhaustive range of value of a

Watch Video Solution

771. Solve
$$\frac{x^2 + 3x + 2}{x^2 - 6x - 7} = 0.$$

772. Solve
$$\sqrt{x - 2} + \sqrt{4 - x} = 2$$
.

773. Solve
$$\sqrt{x-2}(x^2 - 4x - 5) = 0.$$

Watch Video Solution

774. Solve the equation $x(x + 2)(x^2 - 1) = -1$.

Watch Video Solution

775. The number of disitinct real roots of $x^4 - 4x^3 + 12x^2 + x - 1 = 0$ is

776. Prove that graphs of $y = x^2 + 2andy = 3x - 4$ never intersect.

777. In how many points the line y + 14 = 0 cuts the curve whose equation is $x(x^2 + x + 1) + y = 0$?

778. Consider the graph of y = f(x) as shown in the following figure.

(i) Find the sum of the roots of the equation f(x) = 0.

(ii) Find the product of the roots of the equation f(x) = 4.

(iii) Find the absolute value of the difference of the roots of the equation

f(x) = x+2.

779. If $x^2 + px - 444p = 0$ has integral roots where p is prime number, then

find the value of p.

Watch Video Solution

780. The equation $ax^2 + bx + c = 0$ has real and positive roots. Prove that the roots of the equation $a^2x^2 + a(3b - 2c)x + (2b - c)(b - c) + ac = 0$ re real and positive.

Watch Video Solution

781. If the roots of the equation $x^2 - ax + b = 0y$ are real and differ b a quantity which is less than c(c > 0), then show that b lies between $\frac{a^2 - c^2}{4}$ and $\frac{a^2}{4}$.

782. If $(ax^2 + bx + c)y + (a'x^2 + b'x + c') = 0$ and x is a rational function of y, then prove that $(ac' - a'c)^2 = (ab' - a'b) \times (bc' - b'c)^2$

Watch Video Solution

783. Prove that the minimum value of $\frac{(a+x)(b+x)}{(c+x)}a, b > c, x > -c$ is $(\sqrt{a-c} + \sqrt{b-c})^2$

Watch Video Solution

784. Let $a, b \in N$ and a > 1. Also p is a prime number. If $ax^2 + bx + c = p$

for any intergral values of x, then prove that $ax^2 + bx + c \neq 2p$ for any

integral value of x

785. If $2x^2 - 3xy - 2y^2 = 7$, then prove that there will be only two integral pairs (x, y) satisfying the above relation.

786. If *a* and *c* are odd prime numbers and $ax^2 + bx + c = 0$ has rational roots , where $b \in I$, prove that one root of the equation will be independent of *a*, *b*, *c*.

Watch Video Solution

787. If $f(x) = x^3 + bx^2 + cx + d$ and f(0), f(-1) are odd integers, prove that

f(x) = 0 cannot have all integral roots.

Watch Video Solution

788. If x is real, then the maximum value of $y = 2(a - x)\left(x + \sqrt{x^2 + b^2}\right)$

789. If equation $x^4 - (3m + 2)x^2 + m^2 = 0 (m > 0)$ has four real solutions

which are in A.P., then the value of *m* is_____.

Watch Video Solution

790. Number of positive integers x for which $f(x) = x^3 - 8x^2 + 20x - 13$ is a

prime number is_____.

Watch Video Solution

791. If set of values *a* for which $f(x) = ax^2 - (3 + 2a)x + 6$, $a \neq 0$ is positive for exactly three distinct negative integral values of *x* is (c, d], then the value of $(c^2 + 4|d|)$ is equal to _____.

792. Polynomial P(x) contains only terms of odd degree. when P(x) is divided by (x - 3), the ramainder is 6. If P(x) is divided by $(x^2 - 9)$ then remainder is g(x). Then find the value of g(2).

Watch Video Solution

794. Let α_1, β_1 be the roots $x^2 - 6x + p = 0$ and α_2, β_2 be the roots $x^2 - 54x + q = 0$ If $\alpha_1, \beta_1, \alpha_2, \beta_2$ form an increasing G.P., then sum of the digits of the value of (q - p) is _____.

795. If
$$\sqrt{\sqrt{\sqrt{x}}} = (3x^4 + 4)^{\frac{1}{64}}$$
, then the value of x^4 is____.

Watch Video Solution

796. Let $P(x) = x^4 + ax^3 + bx^2 + cx + d$ be a polynomial such that P(1) = 1, P(2) = 8, P(3) = 27, P(4) = 64 then find the remainder when P(5) is divided by 5.

Watch Video Solution

797. If the equation $x^2 + 2(\lambda + 1)x + \lambda^2 + \lambda + 7 = 0$ has only negative roots,

then the least value of λ equals_____.

Watch Video Solution

798. Given $\alpha and\beta$ are the roots of the quadratic equation $x^2 - 4x + k = 0 (k \neq 0)$ If $\alpha\beta$, $\alpha\beta^2 + \alpha^2\beta$, $\alpha^3 + \beta^3$ are in geometric

799. If
$$\frac{x^2 + ax + 3}{x^2 + x + a}$$
 takes all real values for possible real values of *x*, then a.
 $a^3 - 9a + 12 \le 0$ b. $4a^3 + 39 < 0$ c. $a \ge \frac{1}{4}$ d. $a < \frac{1}{4}$

Watch Video Solution

800. If $\cos^4\theta + \alpha$ and $\sin^4\theta + \alpha$ are the roots of the equation $x^2 + 2bx + b = 0$ and $\cos^2\theta + \beta$, $\sin^2\theta + \beta$ are the roots of the equation $x^2 + 4x + 2 = 0$, then values of *b* are a) 2 b) -1 c) -2 d) 1

Watch Video Solution

801. If the roots of the equation $x^2 + ax + b = 0$ are *c* and *d*, then roots of the equation $x^2 + (2c + a)x + c^2 + ac + b = 0$ are a *c* b. *d* - *c* c. 2*c* d. 0

802. If $a, b, c \in R$ and abc < 0, then equation $bcx^2 + (2b + c - a)x + a = 0$ has (a). both positive roots (b). both negative roots (c). real roots (d) one positive and one negative root

Watch Video Solution

803. For the quadratic equation $x^2 + 2(a + 1)x + 9a - 5 = 0$, which of the following is/are true? (a) If 2 < a < 5, then roots are opposite sign (b)If a < 0, then roots are opposite in sign (c) if a > 7 then both roots are negative (d) if $2 \le a \le 5$ then roots are unreal

Watch Video Solution

804. Let $P(x) = x^2 + bx + cwherebandc$ are integer. If P(x) is a factor of both $x^4 + 6x^2 + 25and3x^4 + 4x^2 + 28x + 5$, then a.P(x) = 0 has imaginary roots b.P(x) = 0 has roots of opposite c.P(1) = 4 d .P(1) = 6

805. If
$$|ax^2 + bx + c| \le 1$$
 for all *x* in [0, 1], then
a. $|a| \le 8$
b. $|b| > 8$
c. $|c| \le 1$

d. |a| + |b| + |c| = 17

Watch Video Solution

806. Let $f(x) = ax^2 + bx + \cdot$ Consider the following diagram. Then Fig $c < 0 \ b > 0 \ a + b - c > 0 \ abc < 0$

Watch Video Solution

807. If roots of $ax^2 + bx + c = 0$ are α and β and 4a + 2b + c > 0, 4a - 2b + c > 0, and c < 0, then possible values

/values of $[\alpha] + [\beta]$ is/are (where [.] represents greatest integer function)

a.-2 b.-1c. 0d. 1

808. The equation
$$\left(\frac{x}{x+1}\right)^2 + \left(\frac{x}{x-1}\right)^2 = a(a-1)$$
 has

Watch Video Solution

809. Find the complete set of values of *a* such that $\frac{x^2 - x}{1 - ax}$ attains all real

values.

810. If α , β are roots of $x^2 + px + 1 = 0$ and γ , δ are the roots of $x^2 + qx + 1 = 0$, then prove that $q^2 - p^2 = (\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$.

811. If he roots of the equation $12x^2 - mx + 5 = 0$ are in the ratio 2:3 then

find the value of m

813. The equation formed by decreasing each root of $ax^2 + bx + c = 0$ by 1

 $is2x^2 + 8x + 2 = 0$ then

814. If the sum of the roots of an equation is 2 and the sum of their cubes

is 98, then find the equation.

815. If x is real and $\frac{x^2 + 2x + c}{x^2 + 4x + 3c}$ can take all real values, of then show that

 $0 \leq c \leq 1$.

Watch Video Solution

816. Find the range of $f(x) = \sqrt{x - 1} + \sqrt{5 - x}$.

817. If $x^2 + ax + bc=0$ and $x^2 + bx + ac=0$ have a common root, show their other root satisfies the equation $x^2 + cx + ab=0$

818. Let α , β are the roots of $x^2 + bx + 1 = 0$. Then find the equation whose roots are $(\alpha + 1/\beta)and(\beta + 1/\alpha)$.

819. Find the greatest value of a non-negative real number λ for which both the equations $2x^2 + (\lambda - 1)x + 8 = 0$ and $x^2 - 8x + \lambda + 4 = 0$ have real roots.

Watch Video Solution

820. If $a, b, c \in R$ such that a + b + c = 0 and $a \neq c$, then prove that the

roots of $(b + c - a)x^2 + (c + a - b)x + (a + b - c) = 0$ are real and distinct.

821. Evaluate:
$$i^{135} \left(-\sqrt{-1} \right)^{4n+3}$$
, $n \in N\sqrt{-25} + 3\sqrt{-4} + 2\sqrt{-9}$

Watch Video Solution

822. If the equation $(a - 5)x^2 + 2(a - 10)x + a + 10 = 0$ has roots of

opposite sign, then find the value of a

Watch Video Solution

823. If $\alpha and\beta$ are the roots of $ax^2 + bx + c = 0andS_n = \alpha^n + \beta^n$, then

 $aS_{n+1} + bS_n + cS_{n-1} = 0$ and hence find S_5

Watch Video Solution

824. If α is a root of the equation $4x^2 + 2x - 1 = 0$, then prove that $4\alpha^3 - 3\alpha$ is the other root.

825. If both the roots of $x^2 - ax + a = 0$ are greater than 2, then find the value of a

Watch Video Solution

826. If
$$(y^2 - 5y + 3)(x^2 + x + 1) < 2x$$
 for all $x \in R$, then find the interval

in which *y* lies.

Watch Video Solution

827. Find the values of 'a' which $4^t - (a - 4)2^t + \frac{9}{4}a < 0, \forall t \in (1, 2)$

Watch Video Solution

828. Find the number of positive integral values of k for which $kx^2 + (k-3)x + 1 < 0$ for atleast one positive x.

829. If $x^2 + 2ax + a < 0 \forall x \in [1, 2]$ then find set of all possible values of a

Watch Video Solution

830. Given that a, b, c are distinct real numbers such that expressions $ax^2 + bx + c, bx^2 + cx + a$ and $cx^2 + ax + b$ are always non-negative. Prove that the quantity $\frac{a^2 + b^2 + c^2}{ab + bc + ca}$ can never lie in $(-\infty, 1) \cup [4, \infty)$. Watch Video Solution

831. Find the number of quadratic equations, which are unchanged by squaring their roots.

832. Solve the following:
$$\left(\sqrt{x^2 - 5x + 6} + \sqrt{x^2 - 5x + 4}\right)^{\frac{x}{2}} + \left(\sqrt{x^2 - 5x + 6} - \sqrt{x^2 - 5x + 4}\right)^{\frac{x}{2}} + \left(\sqrt{x^2 - 5x + 6} - \sqrt{x^2 - 5x + 4}\right)^{\frac{x}{2}}$$

Watch Video Solution

833. Show that the equation

$$\frac{A^2}{x - a} + \frac{B^2}{x - b} + \frac{C^2}{x - c} + \dots + \frac{H^2}{x - h} = k \text{ has no imaginary root, where}$$
A,B,C....H and a,b,c....,and $K \in R$.
Watch Video Solution

834. Find the values of a if $x^2 - 2(a - 1)x + (2a + 1) = 0$ has positive roots.

835. If $\alpha and\beta$, $\alpha and\gamma$, $\alpha and\delta$ are the roots of the equations $ax^2 + 2bx + c = 0$, $2bx^2 + cx + a = 0adncx^2 + ax + 2b = 0$, respectively, where a, b, and c are positive real numbers, then $\alpha + \alpha^2 = a.abc$ b. a + 2b + c c. -1 d. 0

836. If $\alpha\beta$ the roots of the equation $x^2 - x - 1 = 0$, then the quadratic

equation whose roots are $\frac{1+\alpha}{2-\alpha}$, $\frac{1+\beta}{2-\beta}$

Watch Video Solution

837. If $a(p+q)^2 + 2bpq + c = 0$ and $a(p+r)^2 + 2bpr + c = 0 (a \neq 0)$, then which one is correct? a) $qr = p^2$ b) $qr = p^2 + \frac{c}{a}$ c) none of these d) either a) or b)

Watch Video Solution

838. If α_1, α_2 are the roots of equation $x^2 - px + 1 = 0$ and β_1, β_2 are those of equation $x^2 - qx + 1 = 0$ and vector $\alpha_1\hat{i} + \beta_1\hat{j}$ is parallel to $\alpha_2\hat{i} + \beta_2\hat{j}$, then p = a. $\pm q$ b. $p = \pm 2q$ c. p = 2q d. none of these

839. Suppose A, B, C are defined as $A = a^{2}b + ab^{2} - a^{2}c - ac^{2}$, $B = b^{2}c + bc^{2} - a^{2}b - ab^{2} - bc^{2}$, and $C = a^{2}c + 'ac^{2} - ac^{2}c^{2}$ and the equation $Ax^{2} + Bx + C = 0$ has equal roots, then a, b, c are in AP \therefore \therefore \therefore b. GP c. HP d. AGP

Watch Video Solution

840. The integral value of *m* for which the root of the equation $mx^2 + (2m - 1)x + (m - 2) = 0$ are rational are given by the expression [where *n* is integer] (A) n^2 (B) n(n + 2)(C) n(n + 1)

(D) none of these

841. If $b_1 \cdot b_2 = 2(c_1 + c_2)$ then at least one of the equation $x^2 + b_1 x + c_1 = 0$ and $x^2 + b_2 x + c_2 = 0$ has a) imaginary roots b) real roots c) purely imaginary roots d) none of these

Watch Video Solution

842. If the root of the equation $(a - 1)(x^2 - x + 1)^2 = (a + 1)(x^4 + x^2 + 1)$ are real and distinct, then the value of $a \in a$ ($-\infty$, 3] b) $(-\infty, -2) \cup (2, \infty)$ c) [-2, 2] d) $[-3, \infty)$

Watch Video Solution

843. If α and β are roots of the equation $ax^2 + bx + c = 0$, then the roots of the equation $a(2x + 1)^2 - b(2x + 1)(x - 3) + c(x - 3)^2 = 0$ are a. $\frac{2\alpha + 1}{\alpha - 3}, \frac{2\beta + 1}{\beta - 3}$ b. $\frac{3\alpha + 1}{\alpha - 2}, \frac{3\beta + 1}{\beta - 2}$ c. $\frac{2\alpha - 1}{\alpha - 2}, \frac{2\beta + 1}{\beta - 2}$ d. none of these

844. If
$$a, b, c, d \in R$$
, then the equation
 $(x^2 + ax - 3b)(x^2 - cx + b)(x^2 - dx + 2b) = 0$ has a) 6 real roots b) at least

2 real roots c) 4 real roots d) none of these

845. Graph of y = f(x) is as shown in the following figure.

Find the roots of the following equations

f(x)=0

f(x) = 4

f(x) = x + 2

846. In how many points graph of $y = x^3 - 3x^2 + 5x - 3$ intersect the x-axis?

847. The quadratic polynomial p(x) has the following properties: $p(x) \ge 0$ for all real numbers, p(1) = 0 and p(2) = 2. Find the value of p(3) is_____.

Watch Video Solution

848. If (1 - p) is a root of quadratic equation $x^2 + px + (1 - p) = 0$, then find its roots.

849. A polynomial in x of degree 3 vanishes when x = 1 and x = -2, ad has the values 4 and 28 when x = -1 and x = 2, respectively. Then find the value of polynomial when x = 0.

Watch Video Solution

850. Let $f(x) = a^2 + bx + c$ where a ,b , c in R and $a \neq 0$. It is known that f(5) = -3f(2) and that 3 is a root of f(x) = 0. Then find the other root of f(x) = 0.

Watch Video Solution

851. If x = 1 and x = 2 are solutions of equations $x^{3} + ax^{2} + bx + c = 0$ and a + b = 1, then find the value of b

852. If $x \in R$, and a, b, c are in ascending or descending order of magnitude, show that $(x - a)(x - c)/(x - b)(where x \neq b)$ can assume any real value.

853. Prove that graphs y = 2x - 3 and $y = x^2 - x$ never intersect.

Watch Video Solution

854. Which of the following pair of graphs intersect?

(i)
$$y = x^2 - x$$
 and $y = 1$

(ii) $y = x^2 - 2x + 3$ and $y = \sin x$

Watch Video Solution

856. If α, β be the roots $x^2 + px - q = 0$ and γ, δ be the roots of $x^2 + px + r = 0, p + r\phi_0$, then $\frac{(\alpha - \gamma)(\alpha - \delta)}{(\beta - \gamma)(\beta - \delta)}$ is equal to

Watch Video Solution

857. If the equations $ax^2 + bx + c = 0$ and $x^3 + 3x^2 + 3x + 2 = 0$ have two

common roots, then a) a = b = c b) $a = b \neq c$ c) a = -b = c d) a+b+c=3

858. The value *m* for which one of the roots of $x^2 - 3x + 2m = 0$ is double of one of the roots of $x^2 - x + m = 0$ is a. -2 b. 1 c. 2 d. none of these

Watch Video Solution

859. Let P(x)=0 be the polynomial equation of least possible degree with rational coefficients having $3\sqrt{7} + 3\sqrt{49}$ as a root. Then the product of all the roots of P(x)=0 is

Watch Video Solution

860. The value of 'a' for which the equation $x^3 + ax + 1=0$ and $x^4 + ax^2 + 1$

=0, we have a common root is

861. If $(m_r, \frac{1}{m_r})$ where r=1,2,3,4, are four pairs of values of x and y that satisfy the equation $x^2 + y^2 + 2gx + 2fy + c = 0$, then the value of $m_1. m_2. m_3. m_4$ is a. 0 b. 1 c. -1 d. none of these

Watch Video Solution

862. If α , β , γ , σ are the roots of the equation $x^4 + 4x^3 - 6x^2 + 7x - 9 = 0$,

then the value of
$$(1 + \alpha^2)(1 - \beta^2)(1 - \gamma^2)(1 - \sigma^2)$$
 is a. -75 b. 25 c. 0 d. 75

Watch Video Solution

863. If
$$\tan\theta_1, \tan\theta_2, \tan\theta_3$$
 are the real roots of the $x^3 - (a+1)x^2 + (b-a)x - b = 0$, where $\theta_1 + \theta_2 + \theta_3 \in (0, \pi)$, then $\theta_1 + \theta_2 + \theta_3$, is equal to $\pi/2$ b. $\pi/4$ c. $3\pi/4$ d. π

864. If roots of an equation $x^n - 1 = 0$ are 1, a_1, a_2, \dots, a_{n-1} , then the value

of
$$(1 - a_1)(1 - a_2)(1 - a_3)(1 - a_{n-1})$$
 will be *n* b. n^2 c. n^n d. 0

Watch Video Solution

865. If α , β are the roots of $ax^2 + bx + c = 0$, $(a \neq 0)$ and $\alpha + \delta$, $\beta + \delta$ are the roots of $Ax^2 + Bx + C = 0$, $(A \neq 0)$ for some constant δ then prove that $\frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2}$ Watch Video Solution

866. Let $f(x) = Ax^2 + Bx + c$, where A, B, C are real numbers. Prove that if f(x) is an integer whenever x is an integer, then the numbers 2A, A + B, and C are all integer. Conversely, prove that if the number 2A, A + B, and C are all integers, then f(x) is an integer whenever x is integer.

867. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the lengths of sides of the quadrilateral, prove that $2 \le a_2 + b_2 + c_2 + d_2 \le 4$

Watch Video Solution

868. The real numbers x_1, x_2, x_3 satisfying the equation $x^3 - x^2 + bx + \gamma = 0$

are in A.P. Find the intervals in which β and γ lie.

Watch Video Solution

869. Let a,b,c be real. If $ax^2 + bx + c = 0$ has two real roots α, β where

$$\alpha < -1 \text{ and } \beta > 1, \text{then show that } 1 + \frac{c}{a} + \left| \frac{b}{a} \right| < 0.$$

870. For $a \le 0$, determine all real roots of the equation $x^2 - 2a|x - a| - 3a^2 = 0$

Watch Video Solution

871. Solve for
$$x: (5 + 2\sqrt{6})^{x^2 - 3} + (5 - 2\sqrt{6})^{x^2 - 3} = 10.$$

Watch Video Solution

872. If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the $n^{t}h$ power of the other root then show that, $\left(ac^n\right)^{\frac{1}{n+1}} + \left(a^nc\right)^{\frac{1}{n+1}} + b=0$

Watch Video Solution

873. If *a*, *b*, *c* \in *R* and equations $ax^2 + bx + c = 0$ and $x^2 + 2x + 3 = 0$ have

a common root, then find a:b:c
874. Find the condition that the expressions $ax^2 - bxy + cy^2 anda_1x^2 + b_1xy + c_1y^2$ may have factors y - mxandmy - x, respectively.

Watch Video Solution

875. If $x^2 + (a - b)x + (1 - a - b) = 0$. wherea, $b \in R$, then find the values of

a for which equation has unequal real roots for all values of b

Watch Video Solution

876. Let *a*, *b*, *c* be real numbers with $a \neq 0$ and α , β be the roots of the equation $ax^2 + bx + c = 0$. Express the roots of $a^3x^2 + abcx + c^3 = 0$ in terms of α , β

Watch Video Solution

877. If the product of the roots of the equation $(a + 1)x^2 + (2a + 3)x + (3a + 4) = 0is2$, then find the sum roots.

Watch Video Solution