© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

Exercises

1. If $\left|\begin{array}{lll}(a-x)^{2} & (a-y)^{2} & (a-z)^{2} \\ (b-x)^{2} & (b-y)^{2} & (b-z)^{2} \\ (c-x)^{2} & (c-y)^{2} & (c-a)^{2}\end{array}\right|=0$ and vectors \vec{A}, \vec{B} and \vec{C}, where
$\vec{A}=a^{2} \hat{i}=a \hat{j}+\hat{k}$ etc. are non-coplanar, then prove that vectors
\vec{X}, \vec{Y} and \vec{Z} where $\vec{X}=x^{2} \hat{i}+x \hat{j}+\hat{k}$. etc.may be coplanar.

- View Text Solution

2. If $O A B C$ is a tetrahedron where O is the origin and A, B, and C are the other three vertices with position vectors, \vec{a}, \vec{b}, and \vec{c} respectively, then prove that the centre of the sphere circumscribing the tetrahedron is riven by $a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})$

$$
2[\vec{a} \vec{b} \vec{c}]
$$

- Watch Video Solution

3. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angel between any edge and a face not containing the edge is $\cos ^{-1}(1 / \sqrt{3})$.

- View Text Solution

4. In $\triangle A B C$, a point P is taken on $A B$ such that $A P / B P=1 / 3$ and point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of intersection
of the lines AQandCP, using vector method, find the area of $A B C$ if the area of $B R C$ is 1 unit

- Watch Video Solution

5. Let O be an interior point of $\triangle A B C$ such that $O A+2 O B+3 O C=0$.

Then the ratio of a $\triangle A B C$ to area of $\triangle A O C$ is

- View Text Solution

6. The lengths of two opposite edges of a tetrahedron of aandb; the shortest distane between these edgesis d, and the angel between them if θ Prove using vector 4 s that the volume of the tetrahedron is $\frac{a b d i s n \theta}{6}$.

- Watch Video Solution

7. Find the volume of a parallelopiped having three coterminus vectors of equal magnitude $|a|$ and equal inclination θ with each other.

- View Text Solution

8. \vec{p}, \vec{q}, and \vec{r} are three mutually perpendicular vectors of the same magnitude. If vector \vec{x} satisfies the equation $\vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p}) \times \vec{r})=0$, then \vec{x} is given by $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$ b. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$ c. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$ d. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

- Watch Video Solution

9. Given the vectors \vec{A}, \vec{B}, and \vec{C} form a triangle such that $\vec{A}=\vec{B}+\vec{C}$ find $a, b, c, a n d d$ such that the area of the triangle is 56 where $\vec{A}=a \hat{i}+b \hat{j}+c \hat{k}$ $\vec{B}=d \hat{i}+3 \hat{j}+4 \hat{k} \vec{C}=3 \hat{i}+\hat{j}-2 \hat{k}$

- Watch Video Solution

10. A line I is passing through the point \vec{b} and is parallel to vector \vec{c}. Determine the distance of point $A(\vec{a})$ from the line I in from
$\left|\vec{b}-\vec{a}+\frac{(\vec{a}-\vec{b}) \vec{c}}{|\vec{c}|^{2}} \vec{c}\right|$ or $\frac{|(\vec{b}-\vec{a}) \times \vec{c}|}{|\vec{c}|}$

- View Text Solution

11. If $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ are two sets of vectors such that $\vec{e}_{i} \vec{E}_{j}=1$, if $i=j a n d \vec{e}_{i} \vec{E}_{j}=0$ and if $i \neq j$, then prove that $\left[\vec{e}_{1} \vec{e}_{2} \vec{e}_{3}\right]\left[\vec{E}_{1} \vec{E}_{2} \vec{E}_{3}\right]=1$.

- View Text Solution

12. In a quadrilateral $A B C D$, it is given that $A B|\mid C D$ and the diagonals $A C$ and $B D$ are perpendicular to each other. Show that $A D . B C \geq A B . C D$.

- View Text Solution

13. $O A B C$ is regular tetrahedron in which D is the circumcentre of $O A B$ and E is the midpoint of edge $A C$ Prove that $D E$ is equal to half the edge of tetrahedron.

- Watch Video Solution

14. If $A(\vec{a}), B(\vec{b}) \operatorname{andC}(\vec{c})$ are three non-collinear points and origin does not lie in the plane of the points A, Band C, then point $P(\vec{p})$ in the plane of the $A B C$ such that vector $\vec{O} P$ is \perp to planeof $A B C$, show that
$\vec{O} P=\frac{[\vec{a} \vec{b} \vec{c}](\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})}{4^{2}}$, where is the area of the $A B C$.

D View Text Solution

15. If $\vec{a}, \vec{b}, \vec{c}$ are three given non-coplanar vectors and any arbitrary vector \vec{r} in space, where

$$
\begin{aligned}
& \Delta_{1}=\left|\begin{array}{lll}
\vec{r} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\
\vec{r} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\
\vec{r} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}
\end{array}\right|, \Delta_{2}=\mid(\vec{a} \cdot \vec{a}, \vec{r} \cdot \vec{a}, \vec{c} \cdot \vec{a}),(\vec{a} \cdot \vec{b}, \vec{r} \cdot \vec{b}, \vec{c} \cdot \vec{b}),(\vec{a} \cdot \vec{c}, \vec{r} \cdot \vec{c} \vec{c} \\
& \Delta_{3}=\left|\begin{array}{lll}
\vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{r} \cdot \vec{a} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{r} \cdot \vec{b} \\
\vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{r} \cdot \vec{c}
\end{array}\right|, \Delta=\left|\begin{array}{lll}
\vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\
\vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}
\end{array}\right| \text {, then prove that } \vec{r}=\frac{\Delta_{1}}{\Delta} \vec{a}+\frac{\Delta_{2}}{\Delta}
\end{aligned}
$$

- View Text Solution

Exercises Mcq

1. Two vectors in space are equal only if they have equal component in a. a
given direction
b. two given directions
c. three given
directions
d. in any arbitrary direction
A. a given direction
B. two given directions
C. three given direction
D. in any arbitrary direaction

Answer: c

- Watch Video Solution

2. Let \vec{a}, \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3 , respectively, such that the angle between \vec{a} and \vec{b} is θ and $\vec{a} \times(\vec{a} \times \vec{b})=\vec{c}$. Then $\tan \theta$ is equal to
A. 0
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$

Answer: d

3. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors of equal magnitude such that the angle between each pair is $\frac{\pi}{3}$. If $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$, then $|\vec{a}|=$
A. 2
B. -1
C. 1
D. $\sqrt{6} / 3$

Answer: c

- View Text Solution

4. Let \vec{p} and \vec{q} be any two orthogonal vectors of equal magnitude 4 each. Let \vec{a}, \vec{b}, and \vec{c} be any three vectors of lengths $7 \sqrt{15}$ and $2 \sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector

$$
(\vec{a} \vec{p}) \vec{p}+(\vec{a} \vec{q}) \vec{q}+(\vec{a} \vec{p} \times \vec{q})(\vec{p} \times \vec{q})+(\vec{b} \vec{p}) \vec{p}(\vec{b} \vec{q}) \vec{q}+(\vec{b} \vec{p} \times \vec{q})(\vec{p} \times \vec{q})+(
$$

from the origin.
A. $\vec{a}+\vec{b}+\vec{c}$
B. $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$
C. $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$
D. $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$

Answer: b

D Watch Video Solution

5. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$, then the point of intersection of the $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is a. $(3,-1,1)$ b. $(3,1,-1)$ c. $(-3,1,1) \mathrm{d}$. $(-3,-1,-1)$
A. $\hat{i}-\hat{j}+\hat{k}$
B. $3 \hat{i}-\hat{j}+\hat{k}$
C. $3 \hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}-\hat{j}-\hat{k}$

Answer: c

- Watch Video Solution

6. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} . \vec{b}<0$ and $|\vec{a} . \vec{b}|=|\vec{a} \times \vec{b}|$ then the angle between the vectors \vec{a} and \vec{b} is (a) π (b) $\frac{7 \pi}{4}$ (c) $\frac{\pi}{4}$ (d) $\frac{3 \pi}{4}$
A. π
B. $7 \pi / 4$
C. $\pi / 4$
D. $3 \pi / 4$

Answer: d

- View Text Solution

7. If \hat{a}, \hat{b}, and \hat{c} are three unit vectors, such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are angles between the vectors $\hat{a}, \hat{b} ; \hat{b}, \hat{c} a n d \hat{c}, \hat{a}$ respectively, then among θ_{1}, θ_{2} and θ_{3}. a. all are acute angles b . all are right angles c. at least one is obtuse angle d. none of these
A. all are acute angles
B. all are right angles
C. at least one is obtuse angle
D. none of these

Answer: c

- Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} . \vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$.
B. 1
C. 2
D. none of these

Answer: b

- Watch Video Solution

9. about to only mathematics
A. a plane containing the origian O and parallel to two non-collinear vectors $\overrightarrow{O P}$ and $\overrightarrow{O Q}$
B. the surface of a sphere described on PQ as its diameter
C. a line passing through points P and Q
D. a set of lines parallel to line PQ

Answer: c

10. Two adjacent sides of a parallelogram $A B C D$ are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Then the value of $|A C \times B D|$ is a. $20 \sqrt{5}$ b. $22 \sqrt{5}$ c. $24 \sqrt{5}$ d. $26 \sqrt{5}$
A. $20 \sqrt{5}$
B. $22 \sqrt{5}$
C. $24 \sqrt{5}$
D. $26 \sqrt{5}$

Answer: b

- Watch Video Solution

11. If \hat{a}, \hat{b}, and \hat{c} are three unit vectors inclined to each other at angle θ, then the maximum value of θ is $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{2 \pi}{3}$ d. $\frac{5 \pi}{6}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{5}$

Answer: c

- Watch Video Solution

12. Let the pairs a, b, and c, d each determine a plane. Then the planes are parallel if a. $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0} \quad$ b. $\quad(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0} \quad$ c. $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$ d. $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$
A. $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0}$
B. $(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0}$
C. $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$
D. $(\vec{a} \times \vec{c}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$

Answer: c

13. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ where \vec{a}, \vec{b} and \vec{c} are non-coplanar, then
A. $\vec{r} \perp(\vec{c} \times \vec{a})$
B. $\vec{r} \perp(\vec{a} \times \vec{b})$
C. $\vec{r} \perp(\vec{b} \times \vec{c})$
D. $\vec{r}=\overrightarrow{0}$

Answer: d

- View Text Solution

14. If \vec{a} satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$ then \vec{a} is equal to
A. $\lambda \hat{i}+(2 \lambda-1) \hat{j}+\lambda \hat{k}, \lambda \in R$
B. $\lambda \hat{i}+(1-2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R$
C. $\lambda \hat{i}+(2 \lambda+1) \hat{j}+\lambda \hat{k}, \lambda \in R$
D. $\lambda \hat{i}+(1+2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R$

Answer: c

D View Text Solution

15. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b}$ and
$\vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angle
between a and b is a. $\frac{19}{5 \sqrt{43}}$ b. $\frac{19}{3 \sqrt{43}}$ c. $\frac{19}{2 \sqrt{45}}$ d. $\frac{19}{6 \sqrt{43}}$
A. $\frac{19}{5 \sqrt{43}}$
B. $\frac{19}{3 \sqrt{43}}$
C. $\frac{19}{\sqrt{45}}$
D. $\frac{19}{6 \sqrt{43}}$

Answer: a

16. The unit vector orthogonal to vector $-\hat{i}+\hat{j}+2 \hat{k}$ and making equal angles with the x and y-axis a. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$ b. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$ C. $\pm \frac{1}{3}(2 \hat{i}-2 \hat{j}-\hat{k}) \mathrm{d}$. none of these
A. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
B. $\frac{19}{5 \sqrt{43}}$
C. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$
D. none of these

Answer: a

- Watch Video Solution

17. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\hat{k}$ is obtuse and the angle between b and the z -axis acute and less than $\pi / 6$ is given by

$$
\text { A. } a<x<1 / 2
$$

B. $1 / 2<x<15$
C. $x<1 / 2$ or $x<0$
D. none of these

Answer: b

- Watch Video Solution

18. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is a. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
A. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
B. $\frac{\vec{a} . \vec{b}}{}$
$|\vec{b}|^{2}$
C. $\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}$
$\vec{a} \times(\vec{b} \times \vec{a})$
D.

$$
|\vec{b}|^{2}
$$

Answer: a

- Watch Video Solution

19. A parallelogram is constructed on $2 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and \vec{a} and \vec{b} are anti-parallel. Then the length of the longer diagonal is 40 b .64 c .32 d .48
A. 40
B. 64
C. 32
D. 48

Answer: c

20. Let $\vec{a} . \vec{b}=0$ where \vec{a} and \vec{b} are unit vectors and the vector \vec{c} is inclined an anlge θ to both
\vec{a} and \vec{b}. If $\vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$ then
A. $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$
B. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
C. $0 \leq \theta \leq \frac{\pi}{4}$
D. $0 \leq \theta \leq \frac{3 \pi}{4}$

Answer: a

D View Text Solution

21. If a and c are unit vectors and $|b|=4$. The angel between aandc is $\cos ^{-1}(1 / 4) a n d a \times b=2 a \times c$ then, $b-2 c=\lambda a$ The value of λ is
A. 3,-4
B. $1 / 4,3 / 4$
C. $-3,4$
D. $-1 / 4, \frac{3}{4}$

Answer: a

- Watch Video Solution

22. Let the position vectors of the points PandQ be $4 \hat{i}+\hat{j}+\lambda \hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$, respectively. Vector $\hat{i}-\hat{j}+6 \hat{k}$ is perpendicular to the plane containing the origin and the points PandQ. Then λ equals a $-1 / 2 \mathrm{~b} .1 / 2 \mathrm{c} .1 \mathrm{~d}$. none of these
A. $-1 / 2$
B. $1 / 2$
C. 1
D. none of these

Answer: a

23. A vector of magnitude $\sqrt{2}$ coplanar with the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$, and perpendicular to the vector $\vec{c}=\hat{i}+\hat{j}+\hat{k}$, is a. $-\hat{j}+\hat{k}$ b. $\hat{i}-\hat{k}$ c. $\hat{i}-\hat{j}$ d. $\hat{i}-\hat{j}$
A. $-\hat{j}+\hat{k}$
B. \hat{i} and \hat{k}
C. $\hat{i}-\hat{k}$
D. hati- hatj'

Answer: a

- Watch Video Solution

24. Let P be a point interior to the acute triangle $A B C$ If $P A+P B+P C$ is a null vector, then w.r.t traingel $A B C$, point P is its a. centroid b . orthocentre c. incentre d. circumcentre
A. centroid
B. orthocentre
C. incentre
D. circumcentre

Answer: a

D Watch Video Solution

25. G is the centroid of triangle $A B C$ and A_{1} and B_{1} are the midpoints of sides $A B$ and $A C$, respectively. If Δ_{1} is the area of quadrilateral $G A_{1} A B_{1}$ and Δ is the area of triangle $A B C$, then $\frac{\Delta}{\Delta_{1}}$ is equal to
a. $\frac{3}{2}$
b. 3
C. $\frac{1}{3}$
d. none of these
A. $\frac{3}{2}$
B. 3
C. $\frac{1}{3}$
D. none of these

Answer: b

D Watch Video Solution

$$
\begin{aligned}
& \text { 26. Points } \vec{a}, \vec{b} \vec{c} \text { and } \vec{d} \text { are coplanar and } \\
& (\sin \alpha) \vec{a}+(2 \sin 2 \beta) \vec{b}+(3 \sin 3 \gamma) \vec{c}-\vec{d}=\overrightarrow{0} \quad \text {. Then the least value of } \\
& \sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3 \gamma \text { is }
\end{aligned}
$$

A. $1 / 14$
B. 14
C. 6
D. $1 / \sqrt{6}$

Answer: a

27. If $\vec{a} a n d \vec{b}$ are any two vectors of magnitudes 1 and 2 , respectively, and $(1-3 \vec{a} \cdot \vec{b})^{2}+|2 \vec{a}+\vec{b}+3(\vec{a} \times \vec{b})|^{2}=47$, then the angel between \vec{a} and \vec{b} is $\pi / 3 \mathrm{~b} \cdot \pi-\cos ^{-1}(1 / 4)$ c. $\frac{2 \pi}{3}$ d. $\cos ^{-1}(1 / 4)$
A. $\pi / 3$
B. $\pi-\cos ^{-1}(1 / 4)$
C. $\frac{2 \pi}{3}$
D. $\cos ^{-1}(1 / 4)$

Answer: c

- Watch Video Solution

28. If \vec{a} and \vec{b} are any two vectors of magnitudes 2 and 3 , respectively, such that $|2(\vec{a} \times \vec{b})|+|3(\vec{a} \cdot \vec{b})|=k$, then the maximum value of k is a. $\sqrt{13}$ b. $2 \sqrt{13}$ c. $6 \sqrt{13}$ d. $10 \sqrt{13}$
A. $\sqrt{13}$
B. $2 \sqrt{13}$
C. $6 \sqrt{13}$
D. $10 \sqrt{13}$

Answer: c

- Watch Video Solution

29. \vec{a}, \vec{b} and \vec{c} are unit vecrtors such that $|\vec{a}+\vec{b}+3 \vec{c}|=4$ Angle between \vec{a} and $\vec{b} i s \theta_{1}$, between \vec{b} and $\vec{c} i s \theta_{2}$ and between \vec{a} and \vec{b} varies $[\pi / 6,2 \pi / 3]$. Then the maximum value of $\cos \theta_{1}+3 \cos \theta_{2}$ is
A. 3
B. 4
C. $2 \sqrt{2}$
D. 6

D View Text Solution

30. If the vector product of a constant vector $\vec{O} A$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is a straight line perpendicular to $\vec{O} A \mathrm{~b}$. a circle with centre O and radius equal to $|\vec{O} A|$ c. a straight line parallel to $\vec{O} A \mathrm{~d}$. none of these
A. a straight line perpendicular to $\overrightarrow{O A}$
B. a circle with centre O and radius equal to $|\overrightarrow{O A}|$
C. a striaght line parallel to $O A$
D. none of these

Answer: c

31. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$ if the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals
A. 2
B. $\sqrt{7}$
C. $\sqrt{14}$
D. 14

Answer: c

- View Text Solution

32. If the two adjacent sides of two rectangles are represented by vectors
$\vec{p}=5 \vec{a}-3 \vec{b} ; \vec{q}=-\vec{a}-2 \vec{b}$ and $\vec{r}=-4 \vec{a}-\vec{b} ; \vec{s}=-\vec{a}+\vec{b}$, respectively, then the angel between the vector $\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\vec{y}=\frac{1}{5}(\vec{r}+\vec{s})$
is a. $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ b. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ c. $\pi-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ d. cannot be evaluate
A. $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
B. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
C. $\pi \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
D. cannot of these

Answer: b

- Watch Video Solution

33. if $\left.\vec{\alpha}|\mid(\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \beta) \cdot(\vec{\alpha} \times \vec{\gamma})$ equals to a. $| \vec{\alpha}\right|^{2}(\vec{\beta} \cdot \vec{\gamma})$ b.
$|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$ c. $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$ d. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$
A. $|\vec{\alpha}|^{2}(\vec{\beta} \cdot \vec{\gamma})$
B. $|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$
C. $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$
D. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$

Answer: a

- Watch Video Solution

34. The position vectors of points A, B and C are $\hat{i}+\hat{j}, \hat{i}+5 \hat{j}-\hat{k}$ and $2 \hat{i}+3 \hat{j}+5 \hat{k}$, respectively the greatest angle of triangle $A B C$ is
A. 120°
B. 90°
C. $\cos ^{-1}(3 / 4)$
D. none of these

Answer: b
35. Given three vectors \vec{a}, \vec{b}, and \vec{c} two of which are non-collinear. Further if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with $\vec{a},|\vec{a}|=|\vec{b}|=|\vec{c}|=\sqrt{2}$ Find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ a. $3 \mathrm{~b} .-3 \mathrm{c} .0 \mathrm{~d}$. cannot be evaluated
A. 3
B. -3
C. 0
D. cannot of these

Answer: b

- Watch Video Solution

36. If \vec{a} and \vec{b} are unit vectors such that $(\vec{a}+\vec{b}) \cdot[(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})]=0$, then angle between \vec{a} and \vec{b} is
A. 0
B. $\pi / 2$
C. π
D. indeterminate

Answer: d

- Watch Video Solution

37. If in a right-angled triangle $A B C$, the hypotenuse
$A B=p$, then $\vec{A} B \dot{A} C+\vec{B} C \vec{B} A+\vec{C} A \vec{C} B$ is equal to $2 p^{2}$ b. $\frac{p^{2}}{2}$ c. p^{2} d. none of these
A. $2 p^{2}$
B. $\frac{p^{2}}{2}$
C. p^{2}
D. none of these

- Watch Video Solution

38. Resolved part of vector \vec{a} and along vector \vec{b} is $\vec{a} 1$ and that prependicular to \vec{b} is $\vec{a} 2$ then $\vec{a} 1 \times \vec{a} 2$ is equl to
$\underline{(\vec{a} \times \vec{b}) \cdot \vec{b}}$
$|\vec{b}|^{2}$
$\underline{(\vec{a} \cdot \vec{b}) \vec{a}}$
$|\vec{a}|^{2}$
$(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})$
C.
$|\vec{b}|^{2}$
D. $\underline{(\vec{a} . \vec{b})(\vec{b} \times \vec{a})}$

$$
|\vec{b} \times \vec{a}|
$$

Answer: c

39. Let $a=2 i-j+k, b=i+2 j-k$ and $c=i+j-2 k$ be three vectors. A vector r in the plane of b and c whose projection on a is of magnitude $\sqrt{\frac{2}{3}}$ is
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $-2 \hat{i}-\hat{j}+5 \hat{k}$
C. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: b

- Watch Video Solution

40. If P is any arbitrary point on the circumcircle of the equilateral triangle of side length l units, then $|\vec{P} A|^{2}+|\vec{P} B|^{2}+|\vec{P} C|^{2}$ is always equal to $2 l^{2}$ b. $2 \sqrt{3} l^{2}$ c. l^{2} d. $3 l^{2}$
A. $2 l^{2}$
B. $2 \sqrt{3} 1^{2}$
C. l^{2}
D. $3 l^{2}$

Answer: a

- Watch Video Solution

41. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r}+b \vec{s}|$ is minimum, then the value of $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}$ is equal to 2 $|\vec{r}|^{2}$ b. $|\vec{r}|^{2} / 2$ c. $3|\vec{r}|^{2}$ d. $|r|^{2}$
A. $2|\vec{r}|^{2}$
B. $|\vec{r}|^{2 / 2}$
C. $3|\vec{r}|^{2}$
D. $|\vec{r}|^{2}$
42. \vec{a} and \vec{b} are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is equal to
A. $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
B. $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$
C. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
D. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$

Answer: a

- View Text Solution

43. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that
$\vec{a}+\vec{b}=\mu \vec{p}, \vec{b} \vec{q}=\operatorname{Oand}(\vec{b})^{2}=1$, where μ is a scalar. Then $|(\vec{a} \vec{q}) \vec{p}-(\vec{p} \vec{q}) \vec{a}|$
is equal to $2|\vec{p} \vec{q}|$ b. (1/2) $|\vec{p} \vec{q}|$ c. $|\vec{p} \times \vec{q}|$ d. $|\vec{p} \vec{q}|$
A. $2|\vec{p} \vec{q}|$
B. $(1 / 2)|\vec{p} . \vec{q}|$
C. $|\vec{p} \times \vec{q}|$
D. $|\vec{p} . \vec{q}|$

Answer: d

- Watch Video Solution

44. The position vectors of the vertices A, Band C of a triangle are three unit vectors \vec{a}, \vec{b}, and \vec{c}, respectively. A vector \vec{d} is such that $\vec{d} \cdot \vec{a}=\vec{d} \cdot \vec{b}=\vec{d} \cdot \vec{c}$ and $\vec{d}=\lambda(\vec{b}+\vec{c})$ Then triangle $A B C$ is a. acute angled b. obtuse angled c. right angled d. none of these

A. acute angled

B. obtuse angled
C. right angled
D. none of these

Answer: a

- Watch Video Solution

45. If a is real constant A, B and C are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan C=6 a$, then the least value of $\tan ^{2} A+\tan ^{2} B+\tan ^{2} C$ is a. 6 b. 10 c. 12 d. 3
A. 6
B. 10
C. 12
D. 3

Answer: d
46. The vertex A triangle $A B C$ is on the line $\vec{r}=\hat{i}+\hat{j}+\lambda \hat{k}$ and the vertices Band have respective position vectors $\hat{i} a n d \dot{\hat{j}}$ Let Delta be the area of the triangle and Delta $[3 / 2, \sqrt{33} / 2]$. Then the range of values of λ corresponding to A is $[-8,4] \cup[4,8]$ b. $[-4,4]$ c. $[-2,2]$ d. $[-4,-2] \cup[2,4]$
A. $[-8,-4]$ cup $[4,8]^{`}$
B. $[-4,4]$
C. $[-2,2]$
D. $[-4,-2] \cup[2,4]$

Answer: c

- View Text Solution

47. A non-zero vector \vec{a} is such that its projections along vectors
$\hat{i}+\hat{j}-\hat{i}+\hat{j}$
$\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal, then unit vector along \vec{a} is a. $\frac{\sqrt{3}}{\sqrt{3}}$
b.
$\frac{\hat{j}-\sqrt{2} \hat{k}}{\sqrt{3}}$ c. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$ d. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$
A. $\frac{\sqrt{2 \hat{j}}-\hat{k}}{\sqrt{3}}$
$\hat{j}-\sqrt{2} \hat{k}$
B. $\frac{\sqrt{3}}{\sqrt{2}}$
C. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$
D. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$

Answer: a

- Watch Video Solution

48. Position vector \hat{k} is rotated about the origin by angle 135° in such a way that the plane made by it bisects the angel between $\hat{i} a n d \hat{j}$ Then its new position is $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$ b. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$ c. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$ d. none of these
A. $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$
B. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
C. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$
D. none of these

Answer: d

- View Text Solution

49. In a quadrilateral $A B C D, \vec{A} C$ is the bisector of $\vec{A} B a n d \vec{A} D$, angle between $\vec{A} B$ and $\vec{A} D$ is $2 \pi / 3,15|\vec{A} C|=3|\vec{A} B|=5|\vec{A} D|$ Then the angle between \vec{B} Aand $\vec{C} D$ is $(a) \cos ^{-1}\left(\frac{\sqrt{14}}{7 \sqrt{2}}\right)$ b. $\cos ^{-1}\left(\frac{\sqrt{21}}{7 \sqrt{3}}\right)$ c. $\cos ^{-1}\left(\frac{2}{\sqrt{7}}\right)$ d. $\cos ^{-1}\left(\frac{2 \sqrt{7}}{14}\right)$
A. $\cos ^{-1} \frac{\sqrt{14}}{7 \sqrt{2}}$
B. $\cos ^{-1} \frac{\sqrt{21}}{7 \sqrt{3}}$
C. $\cos ^{-1} \frac{2}{\sqrt{7}}$
D. $\cos ^{-1} \frac{2 \sqrt{7}}{14}$

Answer: c

- Watch Video Solution

50. In fig. $A B, D E a n d G F$ are parallel to each other and $A D, B G a n d E F$ are parallel to each other. If $C D: C E=C G: C B=2: 1$, then the value of area (AEG): area $(A B D)$ is equal to $7 / 2$ b. 3 c. 4 d. $9 / 2$
A. $7 / 2$
B. 3
C. 4
D. $9 / 2$

Answer: b

51. Vector \vec{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that it is equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{j}+2 \hat{k}$. The value of \vec{a} is $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}} \mathrm{~b}$. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$ c. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$ d. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$
c. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
D. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$

Answer: b

- Watch Video Solution

52. Let $A B C D$ be a tetrahedron such that the edges $A B, A C$ and $A D$ are mutually perpendicular. Let the area of triangles $A B C, A C D$ and $A D B$ be 3,4 and $5 s q$. units, respectively. Then the area of triangle $B C D$ is
a. $5 \sqrt{2}$
b. 5
$\sqrt{5}$
c. $\frac{}{2}$
d. $\frac{5}{2}$
A. $5 \sqrt{2}$
B. 5
C. $\frac{\sqrt{5}}{2}$
D. $\frac{5}{2}$

Answer: a

- Watch Video Solution

53. Let $f(t)=[t] \hat{i}+(t-[t]) \hat{j}+[t+1] \hat{k}$, where $[$.$] denotes the greatest integer$
function. Then the vectors $f\left(\frac{5}{4}\right) \operatorname{andf}(t), 0<t<1$ are(a) parallel to each
other(b) perpendicular(c) inclined at $\cos ^{-1} 2\left(\sqrt{7\left(1-t^{2}\right)}\right)$ (d)inclined at $\cos ^{-1}\left(\frac{8+t}{\sqrt{1+t^{2}}}\right) ;$
A. parallel to each other
B. perpendicular to each other
C. inclined at $\frac{\cos ^{-1} 2}{\sqrt{7}\left(1-t^{2}\right)}$
D. inclined at $\frac{\cos ^{-1}(8+t)}{9 \sqrt{1+t^{2}}}$

Answer: d

- Watch Video Solution

54. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to a. $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$
b. $|\vec{b}|^{2}(\vec{a} . \vec{c})$ c. $|\vec{c}|^{2}(\vec{a} . \vec{b})$ d. none of these
A. $|\vec{a}|^{2}(\vec{b} . \vec{c})$
B. $|\vec{b}|^{2}(\vec{a} \cdot \vec{c})$
c. $|\vec{c}|^{2}(\vec{a} . \vec{b})$
D. none of these

Answer: a

- Watch Video Solution

55. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: \qquad
A. $1 / 3$
B. 4
C. $(3 \sqrt{3}) / 4$
D. $4 \sqrt{3}$

Answer: d
56. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0$, then
a. $|\vec{a}|=|\vec{b}|=|\vec{c}|$
b. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$
c. \vec{a}, \vec{b}, and \vec{c} are coplanar
d. none of these
A. $|\vec{a}|=|\vec{b}|=|\vec{c}|$
B. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$
C. \vec{a}, \vec{b} and \vec{c} are coplanar
D. none of these

Answer: c

57. If $|\vec{a}|=2$ and $|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=0$, then $(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b}))))$ is equal to the given diagonal is $\vec{c}=4 \hat{k}=8 \hat{k}$ then, the volume of a parallelpiped is
A. $48 \hat{b}$
B. $-48 \hat{b}$
C. $48 a ̂$
D. $-48 \hat{a}$

Answer: a

- View Text Solution

58. If the two diagonals of one its faces are $6 \hat{i}+6 \hat{k} a n d 4 \hat{j}+2 \hat{k}$ and of the edges not containing the given diagonals is $c=4 \hat{j}-8 \hat{k}$, then the volume of a parallelepiped is a. 60 b .80 c .100 d .120
B. 80
C. 100
D. 120

Answer: d

- Watch Video Solution

59. The volume of a tetrahedron formed by the coterminous edges \vec{a}, \vec{b}, and \vec{c} is 3 . Then the volume of the parallelepiped formed by the coterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is 6 b .18 c .36 d .9
A. 6
B. 18
C. 36
D. 9

Answer: c

60. If \vec{a}, \vec{b}, and \vec{c} are three mutually orthogonal unit vectors, then the triple product $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ equals: (a.) 0 (b.) 1 or -1 (c.) 6 (d.) 3
A. 0
B. 1 or - 1
C. 1
D. 3

Answer: b

Watch Video Solution

61. vector \vec{c} are perpendicular to vectors $\vec{a}=(2,-3,1)$ and $\vec{b}=(1,-2,3)$ and satifies the condition \vec{c}. $(\hat{i}+2 \hat{j}-7 \hat{k})=10$ then vector \vec{c} is equal to $(a)(7,5,1)(b)(-7,-5,-1)(c)(1,1,-1)(d)$ none of these
A. $7,5,1$
B. $(-7,-5,-1)$
C. 1,1,-1
D. none of these

Answer: a

- View Text Solution

62. Given $\vec{a}=x \hat{i}+y \hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}, \vec{a} \perp \vec{b}, \vec{a} . \vec{c}=4$ then find the value of $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$.
A. $[\vec{a} \vec{b} \vec{c}]^{2}=|\vec{a}|$
B. $[\vec{a} \vec{b} \vec{c}]=|\vec{a}|$
C. $[\vec{a} \vec{b} \vec{c}]=0$
D. $[\vec{a} \vec{b} \vec{c}]=0$

- View Text Solution

63. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non zero vectors such that \vec{c} is a unit vector perpendicular to both
\vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
A. 0
B. 1
C. $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
D. $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$

Answer: c

64. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four nonzero vectors such that $\vec{r} \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$ Then [abc] is equal to $|a||b||c|$ b. $-|a||b||c| c .0$ d. none of these
A. $|a||b||c|$
B. $-|a||b||c|$
C. 0
D. none of these

Answer: c

- Watch Video Solution

65. If \vec{a}, \vec{b} and \vec{c} are such that $[\vec{a} \vec{b} \vec{c}]=1, \vec{c}=\lambda(\vec{a} \times \vec{b})$, angle between \vec{c} and \vec{b} is $2 \pi / 3,|\vec{a}|=\sqrt{2},|\vec{b}|=\sqrt{3}$ and $|\vec{c}|=\frac{1}{\sqrt{3}}$ then the angle between \vec{a} and \vec{b} is
A. (a) $\frac{\pi}{6}$
B. (b) $\frac{\pi}{4}$
C. (c) $\frac{\pi}{3}$
D. (d) $\frac{\pi}{2}$

Answer: b

- View Text Solution

66. If $4 \vec{a}+5 \vec{b}+9 \vec{c}=0$, then $(\vec{a} \times \vec{b}) \times[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$ is equal to a.
vector perpendicular to the plane of $a, b, c b$. a scalar quantity $c . \overrightarrow{0} \mathrm{~d}$. none of these
A. a vector perpendicular to the plane of \vec{a}, \vec{b} and \vec{c}
B. a scalar quantity
C. $\overrightarrow{0}$
D. none of these

Answer: c

D Watch Video Solution

67. value of $[\vec{a} \times \vec{b} \vec{a} \times \vec{c} \vec{d}]$ is always equal to
A. $(\vec{a} \cdot \vec{d})[\vec{a} \vec{b} \vec{c}]$
B. '(veca.vecc)[veca vecb vecd]
C. $(\vec{a} \cdot \vec{b})[\vec{a} \vec{b} \vec{d}]$
D. none of these

Answer: a

D View Text Solution

68. Let $\vec{a} a n d \vec{b}$ be mutually perpendicular unit vectors. Then for any
arbitrary

$$
\vec{r}=(\vec{r} \hat{a}) \hat{a}+(\stackrel{\rightharpoonup}{r} \hat{b}) \hat{b}+(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})
$$

$\vec{r}=(\dot{\vec{r}} \dot{\hat{a}})-(\dot{r} \hat{b}) \hat{b}-(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$
$\vec{r}=(\dot{\vec{r}} \dot{\hat{a}}) \hat{a}-(\vec{r} \hat{b}) \hat{b}+(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$ none of these
A. $\vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}+(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} \cdot(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
B. $\vec{r}=(\vec{r} . \hat{a})-(\vec{r} . \hat{b}) \hat{b}-(\vec{r} .(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
C. $\vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}-(\vec{r} \cdot \hat{b}) \hat{b}-(\vec{r} \cdot(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
D. none of these

Answer: a

- Watch Video Solution

69. Let \vec{a} and \vec{b} be unit vectors that are perpendicular to each other, then $[\vec{a}+(\vec{a} \times \vec{b})+(\vec{a} \times \vec{b})]$ is equal to
A. 1
B. 0
C. -1
D. none of these

Answer: a

- View Text Solution

70. \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=1,|\vec{b}|=4$ and \vec{a}. Vecb $=2$. If vecc $=(2$ vecaxx vecb $)-3$ vecbthenf $\in d \angle$ betweenvecb and vecc'.
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{6}$

Answer: d
71. If \vec{b} and \vec{c} are unit vectors, then for any arbitary vector $\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \cdot(\vec{b}-\vec{c})$ is always equal to

- View Text Solution

72. If $\vec{a} \cdot \vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is
A. $\frac{(\beta \vec{a}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
B. $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
C. $\frac{(\beta \vec{c}+\vec{a} \times \vec{c})}{|\vec{a}|}$
$|\vec{a}|^{2}$
D. $\frac{(\beta \vec{c}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$

Answer: a

- View Text Solution

73. If $a(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=0$ and at least one of a, bandc is nonzero, then vectors $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are a. parallel b. coplanar c. mutually perpendicular d. none of these
A. parallel
B. coplanar
C. mutually perpendicular
D. none of these

Answer: b

- Watch Video Solution

74. if $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b} and \vec{c} are non-zero vectors, then
A. \vec{a}, \vec{b} and \vec{v} can be coplanar
B. \vec{a}, \vec{b} and \vec{c} must be coplanar
C. \vec{a}, \vec{b} and \vec{c} cannot be coplanar
D. none of these

Answer: c

- View Text Solution

75. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=\frac{1}{2}$ for some non zero vector \vec{r} and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is
A. $|[\vec{a} \vec{b} \vec{c}]|$
B. $|\vec{r}|$
C. $|[\vec{a} \vec{b} \vec{c}] \vec{r}|$
D. none of these

Answer: c

76. A vector of magnitude 10 along the normal to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at its point $P(1,0)$ can be $6 \hat{i}+8 \hat{j}$ b. $-8 \hat{i}+3 \hat{j}$ c. $6 \hat{i}-8 \hat{j}$ d. $8 \hat{i}+6 \hat{j}$
A. $6 \hat{i}+8 \hat{j}$
B. $-8 \hat{i}+3 \hat{j}$
C. $6 \hat{i}-8 \hat{j}$
D. $8 \hat{i}+6 \hat{j}$

Answer: a

- Watch Video Solution

77. If $\vec{a} a n d \vec{b}$ are two unit vectors incline at angle $\pi / 3$, then
$\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \vec{b}$ is equal to $\frac{-3}{4}$ b. $\frac{1}{4}$ c. $\frac{3}{4}$ d. $\frac{1}{2}$
A. $\frac{-3}{4}$
B. $\frac{1}{4}$
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: a

- Watch Video Solution

78. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} non coplanar with \vec{a} and \vec{b} vector $\vec{r} \times \vec{a}$ is equal to
A. $[\vec{r} \vec{a} \vec{b}] \vec{b}-(\vec{r} \cdot \vec{b})(\vec{b} \times \vec{a})$
B. $[\vec{r} \vec{a} \vec{b}](\vec{a}+\vec{b})$
C. $[\vec{r} \vec{a} \vec{b}] \vec{a}+(\vec{r} . \vec{a}) \vec{a} \times \vec{b}$
D. none of these

Answer: a

79. If $\vec{a}+\vec{b}, \vec{c}$ are any three non- coplanar vectors then the equation $[\vec{b} \times \vec{c} \vec{c} \times \vec{a} \vec{a} \times \vec{b}] x^{2}+[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}] x+1+[\vec{b}-\vec{c} \vec{c}-\vec{c}-\vec{a} \vec{a}-\vec{b}]=0$ has roots
A. real and distinct
B. real
C. equal
D. imaginary

Answer: c

- View Text Solution

80. Solve the simultaneous vector equations for
\vec{x} and $\vec{y}: \vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}, \vec{c} \neq 0$

$$
\text { A. } \vec{x}=\frac{\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}
$$

B. $\vec{x}=\frac{\vec{c} \times \vec{b}+\vec{b}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
C. $\vec{y}=\frac{\vec{c}+\vec{c} \cdot \vec{c}}{1+\vec{c}}$
D. none of these

Answer: b

- View Text Solution

81. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is
a. $\vec{b} \vec{c}=\vec{a} \vec{d}$ b. $\vec{a} \vec{b}=\vec{c} \vec{d}$ c. $\vec{b} \vec{c}+\vec{a} \vec{d}=0$ d. $\vec{a} \vec{b}+\vec{c} \vec{d}=0$
A. $\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{d}$
B. $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{d}$
C. $\vec{b} \cdot \vec{c}+\vec{a} \cdot \vec{d}=0$
D. $\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d}=0$

Watch Video Solution

82. If $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$ then $[\vec{a} \vec{b} \vec{i}] \hat{i}+[\vec{a} \vec{b} \vec{j}] \hat{j}+[\vec{a} \vec{b} \hat{k}] k$ is equal to

- View Text Solution

83.

$\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+\hat{j}+2 \hat{k}$ and $(1+\alpha) \hat{i}+\beta(1+\alpha) \hat{j}+\gamma(1+\alpha)($
A. $-2,-4,-\frac{2}{3}$
B. $2,-4, \frac{2}{3}$
C. $-2,4, \frac{2}{3}$
D. $2,4,-\frac{2}{3}$

Answer: a

84. Let $(\vec{a}(x)=(\sin x) \hat{i}+(\cos x) \hat{j}$ and $\vec{b}(x)=(\cos 2 x) \hat{i}+(\sin 2 x) \hat{j}$ be two variable vectors $(x \in R)$. Then $\vec{a}(x)$ and $\vec{b}(x)$ are
A. collinear for unique value of x
B. perpendicular for infinte values of x .
C. zero vectors for unique value of x
D. none of these

Answer: b

- View Text Solution

85.

For
any
vectors
\vec{a} and $\vec{b},(\vec{a} \times \hat{i})+(\vec{b} \times \hat{i})+(\vec{a} \times \hat{j}) \cdot(\vec{b} \times \hat{j})+(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})$ is always equal to
A. $\vec{a} . \vec{b}$
B. $2 \vec{a}$. Vecb
C. zero
D. none of these

Answer: b

- View Text Solution

86. \vec{b} and \vec{c} are unit vectors. Then for any arbitrary vector
$\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \vec{b}-\vec{c}$ is always equal to $|\vec{a}|$ b. $\frac{1}{2}|\vec{a}|$ c. $\frac{1}{3}|\vec{a}|$ d. none of these
A. $[\vec{a} \vec{b} \vec{c}] \vec{r}$
B. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$
C. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$
D. none of these

Watch Video Solution

87. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and $\vec{p}, \vec{q} a n d \vec{r}$ the vectors
defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{c}]}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{b} \vec{c}]}$ Then the

$$
\left[\begin{array}{lll}
\vec{a} \vec{b} \vec{c}]^{\prime} & {[\vec{a} \vec{b} \vec{c}]} & {[\vec{a} \vec{b} \vec{c}]}
\end{array}\right.
$$

value of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \vec{q}+(\vec{c}+\vec{a}) \vec{r}$ is 0 b. 1 c. 2 d. 3
A. 3
B. 2
C. 1
D. 0

Answer: a

88. $A(\vec{a}), B(\vec{b}) \operatorname{and} C(\vec{c})$ are the vertices of triangle $A B C$ and $R(\vec{r})$ is any point in the plane of triangle $A B C$, thenr $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is always equal to a. zero b. $[\vec{a} \vec{b} \vec{c}]$ c. $-[\vec{a} \vec{b} \vec{c}]$ d. none of these
A. zero
B. $[\vec{a} \vec{b} \vec{c}]$
C. $-[\vec{a} \vec{b} \vec{c}]$
D. none of these

Answer: b

- View Text Solution

89. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times(\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times(\vec{b} \times \vec{c})] \times \vec{c}$ is equal to
A. $[\vec{a} \vec{b} \vec{c}] \vec{c}$
B. $[\vec{a} \vec{b} \vec{c}] \vec{b}$
C. $\overrightarrow{0}$
D. $[\vec{a} \vec{b} \vec{c}] \vec{a}$

Answer: c

- View Text Solution

90. If V be the volume of a tetrahedron and V^{\prime} be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and $V=K V^{\prime}$, then K is equal to a. 9 b .12 c .27 d .81
A. 9
B. 12
C. 27
D. 81

Answer: c

91. $[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to (where \vec{a}, \vec{b} and \vec{c} are nonzero non-coplanar vector) a. $[\vec{a} \vec{b} \vec{c}]^{2}$ b. $[\vec{a} \vec{b} \vec{c}]^{3} \mathrm{c}$. $[\vec{a} \vec{b} \vec{c}]^{4}$ d. $[\vec{a} \vec{b} \vec{c}]$
A. $[\vec{a} \vec{b} \vec{c}]^{2}$
B. $[\vec{a} \vec{b} \vec{c}]^{3}$
C. $[\vec{a} \vec{b} \vec{c}]^{4}$
D. $[\vec{a} \vec{b} \vec{c}]$

Answer: c

- Watch Video Solution

92.

$\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{a})+x_{3}(\vec{c} \times \vec{d})$ and $4[\vec{a} \vec{b} \vec{c}]=1$ then $x_{1}+x_{2}+x_{3}$ is equal to
A. $\frac{1}{2} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
B. $\frac{1}{4} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
C. $2 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
D. $4 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$

Answer: d

- View Text Solution

93. If the vectors \vec{a} and \vec{b} are perpendicular to each other then a vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations $\vec{v} \cdot \vec{a}=0, \vec{v} \cdot \vec{b}=1$ and $\left[\begin{array}{ccc}\vec{v} & \vec{a} & \vec{b}\end{array}\right]=1$ is
A. $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
B. $\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
C. $\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
D. none of these

Answer: a

- View Text Solution

94. If $\vec{a}^{\prime}=\hat{i}+\hat{j}, \vec{b}^{\prime}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}^{\prime}=2 \hat{i}-\hat{j}-\hat{k}$ then the altitude of the parallelepiped formed by the vectors, \vec{a}, \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}^{\prime} is recipocal vector \vec{a}) (a) 1 (b) $3 \sqrt{2} / 2 \quad(c) 1 / \sqrt{6}$ (d) $1 / \sqrt{2}$
A. 1
B. $3 \sqrt{2} / 2$
C. $1 / \sqrt{6}$
D. $1 / \sqrt{2}$

Answer: d

95. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$ then in the reciprocal system of vectors $\vec{a}, \vec{b}, \vec{c}$ reciprocal \vec{a} of vector \vec{a} is
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{2}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{2}$
C. $\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$
D. $\frac{\hat{i}+\hat{j}-\hat{k}}{2}$

Answer: d

- Watch Video Solution

96. If unit vectors \vec{a} and \vec{b} are inclined at angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in interval a. $[0, \pi / 6)$ b. $(5 \pi / 6, \pi]$ c. $[\pi / 6, \pi / 2]$ d. $[\pi / 2,5 \pi / 6]$
A. $[0, \pi / 6)$
B. $(5 \pi / 6, \pi]$
C. $[\pi / 6, \pi / 2]$
D. $(\pi / 2,5 \pi / 6]$

Answer: a,b

- Watch Video Solution

97.

\vec{a}, \vec{b} and \vec{c}
are
non-collinear
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a}=\vec{c}$ Then
a. $x=1$ b. $x=-1 \mathrm{c} . y=(4 n+1) \pi / 2, n \in I$ d. $y=(2 n+1) \pi / 2, n \in I$
A. $x=1$
B. $x=-1$
C. $y=(4 n+1) \frac{\pi}{2}, n \in I$
D. $y(2 n+1) \frac{\pi}{2}, n \in I$

Answer: a,c

Watch Video Solution

98. Let $\vec{a} \vec{b}=0$, where $\vec{a} a n d \vec{b}$ are unit vectors and the unit vector \vec{c} is inclined at an angle θ to both $\vec{a} a n d \vec{b}$ If $\vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$, then $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ b. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$ c.
$0 \leq \theta \leq \frac{\pi}{4}$ d. $0 \leq \theta \leq \frac{3 \pi}{4}$
A. $\alpha=\beta$
B. $\gamma^{2}=1-2 \alpha^{2}$
C. $y^{2}=-\cos 2 \theta$
D. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

Answer: a,b,c,d

- Watch Video Solution

99. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is a. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
A. $\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^{2}} \vec{a}-\vec{b}$
B. $\frac{1}{|\vec{a}|^{2}}\left\{|\vec{a}|^{2} \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}\right\}$
C. $\frac{\vec{a} \times(\vec{a} \times \vec{b})}{|\vec{a}|^{2}}$
D. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$

Answer: a,b,c

Watch Video Solution
100. If $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have a.

$$
(\vec{a} \cdot \vec{c})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})(\vec{c} \cdot \vec{a}) \text { b. } \vec{a} \vec{b}=0 \text { c. } \vec{a} \vec{c}=0 \text { d. } \vec{b} \vec{c}=0
$$

A. $(\vec{a} \cdot \vec{b})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})$
B. $\vec{a} \cdot \vec{b}=0$
C. $\vec{a} \cdot \vec{c}=0$
D. $\vec{b} \cdot \vec{c}=0$

Answer: ac

- Watch Video Solution

101. If $\vec{p}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{b}\end{array}\right]}$ where $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then the value of the expression

$$
(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{p}+\vec{q}+\vec{r}) \text { is }
$$

A. $x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x}$ has least value 2
B. $x^{2}[\vec{a} \vec{b} \vec{c}]^{2}+\frac{[\vec{p} \vec{q} \vec{r}]}{x^{2}}$ has least value $\left(3 / 2^{2 / 3}\right)$
C. $[\vec{p} \vec{q} \vec{r}]>0$
D. none of these

Answer: a,c

- View Text Solution

102. $a_{1}, a_{2}, a_{3} \in R-\{0\}$ and $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ " for all " x in R then (a) vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=4 \hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to each other (b)vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each each other (c)if vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2) \quad$ (d) if $2 a_{1}+3 a_{2}+6 a_{3}=26$, then $\left|\vec{a} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right| i s 2 \sqrt{6}$
A. vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=4 \hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to each other
B. vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each each other
C. if vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$
D. if $2 a_{1}+3 a_{2}+6 a_{3}+6 a_{3}=26$, then $\left|\vec{a} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right| i s 2 \sqrt{6}$

Answer: a,b,c,d

- View Text Solution

103. If $\vec{a} a n d \vec{b}$ are two vectors and angle between them is θ, then

$$
|\vec{a} \times \vec{b}|^{2}+(\vec{a} \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \quad|\vec{a} \times \vec{b}|=(\vec{a} \vec{b}), \quad \text { if } \theta=\pi / 4
$$

$\vec{a} \times \vec{b}=(\vec{a} \vec{b}) \hat{n}$, (wheren̂ is unit vector,) if $\theta=\pi / 4(\vec{a} \times \vec{b}) \vec{a}+\vec{b}=0$
A. $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
B. $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}$, if $\theta=\pi / 4$
C. $\vec{a} \times \vec{b}=(\vec{a} . V e c b) \hat{n}$ (where \hat{n} is a normal unit vector) if $\quad \theta f=\pi / 4$
D. $(\vec{a} \times \vec{b}) \cdot(\vec{a}+\vec{b})=0$

Answer: a,b,c,d

- Watch Video Solution

104. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
A. $\vec{b}-\frac{\vec{a} \times \vec{b}}{}$
$|\vec{b}|^{2}$
B. $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{}$
$|\vec{b}|^{2}$
c. $|\vec{a}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
D. $|\vec{b}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

- View Text Solution

105. If vector $\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2})$ and $\vec{c}=\left(\tan \alpha, \tan \alpha,-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(1,3, \sin 2 \alpha)$ makes an obtuse angle with the $z-$ axis, then the value of α is
A. $\alpha=(4 n+1) \pi+\tan ^{-1} 2$
B. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$
C. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$
D. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

Answer: b,d

- Watch Video Solution

106.

Let be
a unit vector
satisfying
$\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$, then $(a) \vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
$\vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})(\mathrm{c}) \vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})(\mathrm{d}) \vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$
A. $\vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
B. $\vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})$
C. $\vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})$
D. $\vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$

Answer: b,d

107. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$ then angle θ between \vec{a} and \vec{b} is
A. 0
B. $\pi / 2$
C. $\pi / 4$
D. π

- View Text Solution

108. If \vec{a} and \vec{b} are two unit vectors perpenicualar to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$, then which of the following is (are) true ?
A. $\lambda_{1}=\vec{a} . \vec{c}$
B. $\lambda_{2}=|\vec{b} \times \vec{c}|$
C. $\lambda_{3}=\mid(\vec{a} \times \vec{b}|\times \vec{c}|$
D. $\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$

Answer: a,d

- View Text Solution

109. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit
vector (B) in the plane of \vec{a} and \vec{b} (C) equally inclined to \vec{a} and \vec{b} (D) perpendicular to $\vec{a} \times \vec{b}$
A. a unit vector
B. in the plane of \vec{a} and \vec{b}
C. equally inclined to \vec{a} and \vec{b}
D. perpendicular to $\vec{a} \times \vec{b}$

Answer: b,c,d

- View Text Solution

110. If \vec{a} and \vec{b} are non-zero vectors such that $|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$ then
A. $2 \vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
B. $\vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
C. least value of $\vec{a} \cdot \vec{b}+\frac{1}{|\vec{b}|^{2}+2}$ is $\sqrt{2}$
D. least value of $\vec{a} \cdot \vec{b}+\frac{1}{\mid \vec{b}}$ is $\sqrt{2}-1$

$$
|\vec{b}|^{2}+2
$$

Answer: a,d

- View Text Solution

111. Let $\vec{a} \vec{b}$ and \vec{c} be non- zero vectors aned $\vec{V}_{1}=\vec{a} \times(\vec{b} \times \vec{c})$ and $\vec{V}_{2}=(\vec{a} \times \vec{b}) \times \vec{c}$.vectors \vec{V}_{1} and \vec{V}_{2} are equal. Then
A. \vec{a} and \vec{b} ar orthogonal
B. \vec{a} and \vec{c} are collinear
C. \vec{b} and \vec{c} ar orthogonal
D. $\vec{b}=\lambda(\vec{a} \times \vec{c})$ when λ is a scalar
112. Vectors \vec{A} and \vec{B} satisfying the vector equation $\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b}$ and $\vec{A} \cdot \vec{a}=1$. where veca and \vec{b} are given vectosrs, are
A. $\vec{A}=\frac{(\vec{a} \times \vec{b})-\vec{a}}{a^{2}}$
B. $\vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
C. $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$
D. $\vec{B}=\frac{(\vec{b} \times \vec{a})-\vec{a}\left(a^{2}-1\right)}{a^{2}}$

Answer: b,c,

- View Text Solution

113. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$ Let \vec{x}, \vec{y}, and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then a. $\vec{x} \cdot \vec{d}=-1$ b. $\vec{y} \cdot \vec{d}=1$ C.
$\vec{z} \cdot \vec{d}=0 \mathrm{~d} \cdot \vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$
A. $\vec{x} \cdot \vec{d}=-1$
B. $\vec{y} \cdot \vec{d}=1$
C. vecz.vecd=0`
D. vecr.vecd=0, " where " vecr=lambda vecx + mu vecy + deltavecz'

Answer: c.d

- Watch Video Solution

114. Vectors perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\vec{k}$ are $\hat{i}+\hat{k}$ b. $2 \hat{i}+\hat{j}+\hat{k}$ c. $3 \hat{i}+2 \hat{j}+\hat{k}$ d. $-4 \hat{i}-2 \hat{j}-2 \hat{k}$
A. $\hat{i}+\hat{k}$
B. $2 \hat{i}+\hat{j}+\hat{k}$
C. $3 \hat{i}+2 \hat{j}+\hat{k}$
D. $-4 \hat{i}-2 \hat{j}-2 \hat{k}$

Answer: b,d

- Watch Video Solution

115. If side $\vec{A} B$ of an equilateral trangle $A B C$ lying in the $x-y$ plane $3 \hat{i}$, then side $\vec{C} B$ can be a. $-\frac{3}{2}(\hat{i}-\sqrt{3 \hat{j}})$ b. $\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$ c. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$ d. $\frac{3}{2}(\hat{i}+\sqrt{3 \hat{j}})$
A. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$
B. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$
C. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$
D. $\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$

Answer: b,d

116. Let \hat{a} be a unit vector and \hat{b} a non zero vector non parallel to \vec{a}. Find the angles of the triangle tow sides of which are represented by the vectors. $\sqrt{3}(\hat{x} \vec{b})$ and $\vec{b}-(\hat{a} . \vec{b}) \hat{a}$
A. $\tan ^{-1}(\sqrt{3})$
B. $\tan ^{-1}(1 / \sqrt{3})$
C. $\cot ^{-1}(0)$
D. $\operatorname{tant}^{\wedge}(-1)(1)^{`}$

Answer: a,b,c

- View Text Solution

117. \vec{a}, \vec{b}, and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicular to then. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\frac{1}{6} \hat{i}-\frac{1}{3} \hat{j}+\frac{1}{3} \hat{k}$, and the angel between \vec{a} and \vec{b} is 30^{0}, then \vec{c} is $(\hat{i}-2 \hat{j}+2 \hat{k}) / 3 \mathrm{~b} .(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3 \mathrm{c}$. $(2 \hat{i}+2 \hat{j}-\hat{k}) / 3$ d. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$
A. $(\hat{i}-2 \hat{j}+2 \hat{k}) / 3$
B. $(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3$
C. $(-\hat{i}+2 \hat{j}-\hat{k}) / 3$
D. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$

Answer: a,b

- Watch Video Solution

118. If $\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0}$ then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$
A. $2(\vec{a} \times \vec{b})$
B. $6(\vec{b} \times \vec{c})$
C. $3(\vec{c} \times \vec{a})$
D. $\overrightarrow{0}$

Answer: c,d

119. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} . \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is
A. $|\vec{u}|$
B. $|\vec{u}|+|\vec{u} . \vec{b}|$
C. $|\vec{u}|+|\vec{u} \cdot \vec{a}|$
D. none of these

Answer: b,d

- View Text Solution

120. if $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, where $\vec{c} \neq \overrightarrow{0}$ then (a) $|\vec{a}|=|\vec{c}|$
(b) $|\vec{a}|=|\vec{b}|$
(c) $|\vec{b}|=1$ (d) $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
A. $|\vec{a}|=|\vec{c}|$
B. $|\vec{a}|=|\vec{b}|$
c. $|\vec{b}|=1$
D. $|\vec{a}|=\vec{b}|=|\vec{c}|=1$

Answer: a,c

- View Text Solution

121. \vec{b} and \vec{c} are unit vectors. Then for any arbitrary vector $\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \vec{b}-\vec{c}$ is always equal to $|\vec{a}|$ b. $\frac{1}{2}|\vec{a}|$ c. $\frac{1}{3}|\vec{a}|$ d. none of these
$\vec{d} \cdot(\vec{a}+\vec{c})$
A. $\xrightarrow{(\vec{a}+\vec{c})}=2$
$[\vec{a} \vec{b} \vec{c}]$
$\vec{d} .(\vec{a}+\vec{c})$
B. $\quad=-2$
$[\vec{a} \vec{b} \vec{c}]$
C. minimum value of $x^{2}+y^{2} i s \pi^{2} / 4$
D. minimum value of $x^{2}+y^{2} i s 5 \pi^{2} / 4$

- Watch Video Solution

122. If \vec{a}, \vec{b}, and $\leftrightarrow c$ are three unit vecrtors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{1} \vec{b}$, then $(\vec{b}$ and \vec{c} being non-parallel) angle between \vec{a} and \vec{b} is $\pi / 3$ b.anglebetween $\vec{a} a n d \vec{c} i \mathrm{~s} \pi / 3 \mathrm{c}$. a. angle between $\vec{a} a n d \vec{b}$ is $\pi / 2 \mathrm{~d}$.
a. angle between \vec{a} and \vec{c} is $\pi / 2$
A. angle between \vec{a} and $\vec{b} i s \pi / 3$
B. angle between \vec{a} and $\vec{c} i s \pi / 3$
C. angle between \vec{a} and $\vec{b} i s \pi / 2$
D. angle between \vec{a} and $\vec{c} i s \pi / 2$

Answer: b,c

- View Text Solution

123. If in triangle $A B C, \overrightarrow{A B}=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|}$ and $\overrightarrow{A C}=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then $(a) 1+\cos 2 A+\cos 2 B+\cos 2 C=0(b) \sin A=\cos C$ (c)projection of $A C$ on $B C$ is equal to $B C$ (d) projection of $A B$ on $B C$ is equal to $A B$
A. $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
B. $\sin A=\cos C$
C. projection of $A C$ on $B C$ is equal to $B C$
D. projection of $A B$ on $B C$ is equal to $A B$

Answer: a,b,c

- View Text Solution

124. $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{c} \times \vec{d} & \vec{e} \times \vec{f}\end{array}\right]$ is equal to
A. $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}][\vec{d} \vec{e} \vec{f}]$
B. $[\vec{a} \vec{b} \vec{e}][\vec{f} \vec{c} \vec{d}]-[\vec{a} \vec{b} \vec{f}][\vec{e} \vec{c} \vec{d}]$
C. $[\vec{c} \vec{d} \vec{a}][\vec{b} \vec{e} \vec{f}]-[\vec{a} \vec{d} \vec{b}][\vec{a} \vec{e} \vec{f}]$
D. $[\vec{a} \vec{c} \vec{e}][\vec{b} \vec{d} \vec{f}]$

Answer: a,b,c

- View Text Solution

125. The scalars l and m such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to
A. $I=\frac{(\vec{c} \times \vec{b}) \cdot(\vec{a} \times \vec{b})}{(\vec{a} \times \vec{b})^{2}}$
B. $l=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$
$(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})$
C. $m=$
$(\vec{b} \times \vec{a})^{2}$
D. $m=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$

- Watch Video Solution

126. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \cdot(\vec{a} \times \vec{d})=0$ then which of the following may be true ?
A. \vec{a}, \vec{b} and \vec{d} are nenessarily coplanar
B. \vec{a} lies iin the plane of \vec{c} and \vec{d}
C. $\vec{v} b$ lies in the plane of \vec{a} and \vec{d}
D. \vec{c} lies in the plane of \vec{a} and \vec{d}

Answer: b,c,d

- View Text Solution

127. A, B, CandD
are four
points
such
that
$\vec{A} B=m(2 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{B} C=(\hat{i}-2 \hat{j}) a n d \vec{C} D=n(-6 \hat{i}+15 \hat{j}-3 \hat{k}) \quad$ If $\quad C D$
intersects $A B$ at some point E, then a. $m \geq 1 / 2$ b.n $\geq 1 / 3$ c. $m=n$ d. $m<n$
A. $m \geq 1 / 2$
B. $n \geq 1 / 3$
C. $m=n$
D. $m<n$

Answer: a,b

- Watch Video Solution

128. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar and $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are distinct real numbers, then $[(l \vec{a}+m \vec{b}+n \vec{c})(l \vec{b}+m \vec{c}+n \vec{a})(l \vec{c}+m \vec{a}+n \vec{b})]=0$, implies
(A) $l m+m n+n l=0$ (B) $l+m+n=0$ (C) $l^{2}+m^{2}+n^{2}=0$
A. $l+m+n=0$
B. roots of the equation $l x^{2}+m x+n=0$ are equal
C. $l^{2}+m^{2}+n^{2}=0$
D. $l^{3}+m^{2}+n^{3}=3 l m n$

Answer: a,b,d

- Watch Video Solution

129. Let $\vec{\alpha}=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplnar vectors with $a \neq b$, and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$. Then \vec{v} is perpendicular to
A. $\vec{\alpha}$
B. $\vec{\beta}$
C. $\vec{\gamma}$
D. none of these

Answer: a,b,c
130. If vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k}$ and \vec{C} form a left-handed system, then \vec{C} is a. $11 \hat{i}-6 \hat{j}-\hat{k}$ b. $-11 \hat{i}+6 \hat{j}+\hat{k}$ c. $11 \hat{i}-6 \hat{j}+\hat{k}$ d. $-11 \hat{i}+6 \hat{j}-\hat{k}$
A. $11 \hat{i}-6 \hat{j}-\hat{k}$
B. $-11 \hat{i}-6 \hat{j}-\hat{k}$
C. $-11 \hat{i}-6 \hat{j}+\hat{k}$
D. $-11 \hat{i}+6 \hat{j}-\hat{k}$

Answer: b,d

- Watch Video Solution

131. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k} \quad$ and $\quad \vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
(a)parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k} \quad$ (b)orthogonal to $\hat{i}+\hat{j}+\hat{k}$
(c)orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$ (d)orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$
A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$

Answer: a,b,c,d

- View Text Solution

132. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$ then
A. $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0}$
B. $\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$
C. $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
D. $\vec{c} \times \vec{a} \times \vec{b}=\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$

Answer: a,c,d

133. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$. Let \vec{x}, \vec{y} and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b}, \vec{b}, \overrightarrow{;} \vec{c}, \vec{a}$, respectively. Then
A. $\vec{z} \cdot \vec{d}=0$
B. $\vec{x} \cdot \vec{d}=1$
c. $\vec{y} \cdot \vec{d}=32$
D. $\vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\gamma \vec{z}$

Answer: a,d

- View Text Solution

134. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta}$. If $|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta} i s \frac{\pi}{3}$ then the length of a diagonal of the parallelogram is
A. $4 \sqrt{5}$
B. $4 \sqrt{3}$
C. $4 \sqrt{7}$
D. none of these

Answer: b,c

- View Text Solution

Reasoning Type

1. (a)Statement 1: Vector $\vec{c}=-5 \hat{i}+7 \hat{j}+2 \hat{k}$ is along the bisector of angle between $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=8 \hat{i}+\hat{j}-4 \hat{k}$.

Statement $2: \vec{c}$ is equally inclined to \vec{a} and \vec{b}.
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b

- View Text Solution

2. Statement 1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular totehdirectin of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$ Statement 2: A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s 2 \hat{i}+2 \hat{j}+2 \hat{k}$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

3. Statement 1: Distance of point $D(1,0,-1)$ from the plane of points $A($ $1,-2,0), B(3,1,2)$ and $C(-1,1,-1)$ is $\frac{8}{\sqrt{229}}$

Statement 2: volume of tetrahedron formed by the points A, B, C and D is $\sqrt{229}$

2
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: d

4. Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for given non-zero vectors $\vec{a} \vec{b}$ and \vec{c}

Statement 1: $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$
Statement 2: $[\vec{a} \vec{b} \vec{c}]=0$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b
5. Statement 1: If $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ are three mutually perpendicular unit vectors then $a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}, a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}$ and $a_{3} \hat{i}+b_{3} \hat{j}+c_{3} \hat{k}$ may be mutually perpendicular unit vectors.

Statement 2 : value of determinant and its transpose are the same.
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: a

- View Text Solution

6. Statement 1: $\vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{B}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{C}=\hat{i}+2 \hat{j}+\hat{k}$ then
$|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=243$ Statement 2:
$|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=|\vec{A}|^{2}|[\vec{A} \vec{B} \vec{C}]|$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: d

- View Text Solution

7. Statement $1: \vec{a}, \vec{b}$, and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that $\vec{a}, \vec{b}, \vec{c} a n d \vec{d}$ are non-coplanar. If

$$
\begin{aligned}
& {[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}]=1 \text {, thend }=\vec{a}+\vec{b}+\vec{c} \text {. Statement }} \\
& {[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}] \text {; then } \vec{d} \text { equally inclined to } \vec{a}, \vec{b} \text { and } \vec{c} .}
\end{aligned}
$$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

8. Consider three vectors \vec{a}, \vec{b} and \vec{c}

Statement 1: $\vec{a} \times \vec{b}=((\hat{i} \times \vec{a}) \cdot \vec{b}) \hat{i}+((\hat{j} \times \vec{a}) \cdot \vec{b}) \hat{j}+(\hat{k} \times \vec{a}) \cdot \vec{b}) \hat{k}$
Statement 2: $\vec{c}=(\hat{i} \cdot \vec{c}) \hat{i}+(\hat{j} \cdot \vec{c}) \hat{j}+(\hat{k} \cdot \vec{c}) \hat{k}$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: a

- View Text Solution

Comprehension Type

1. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and Vector \vec{u} is
A. $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
B. $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
C. $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
D. $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$

Answer: b

- View Text Solution

2. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and

Vector \vec{u} is
A. (a) $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
B. (b) $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
C. (c) $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
D. (d) $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$
3. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and Vector \vec{u} is
A. (a) $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
B. (b) $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
C. (c) $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
D. (a) $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$

Answer: d

- View Text Solution

4. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

View Text Solution

5. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60^{0} with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
A. $\frac{1}{2}[(\vec{a}+\vec{c}) \times \vec{b}-\vec{b}-\vec{a}]$
B. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{b}+\vec{b}+\vec{a}]$
C. $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+\vec{b}+\vec{a}]$
D. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{a}+\vec{b}-\vec{a}]$

Answer: c

D View Text Solution

6. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\overrightarrow{\times} x(\vec{y} \times(\vec{z} \times \vec{x})=\vec{b} n d \overrightarrow{\times} x \vec{y}=\vec{c}, f \in d \vec{x}, \vec{y}, \vec{z}$ in terms of
\vec{a}, \vec{b} and \vec{c}.
A. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{c}-\vec{b}+\vec{a}]$
B. $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+\vec{b}-\vec{a}]$
C. $\frac{1}{2}[\vec{c} \times(\vec{a}-\vec{b})+\vec{b}+\vec{a}]$
D. none of these

Answer: b

- View Text Solution

7. If $\vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} . \vec{b}=\gamma, \vec{x} . \vec{y}=1$ and $\vec{y} . \vec{z}=1$ then find x, y, z in terms of 'vec a, vec band y.
A. $\frac{1}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times(\vec{a} \times \vec{b})]$
B. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
C. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{a} \times(\vec{a} \times \vec{b})]$
D. none of these

Answer: b

- View Text Solution

8. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
A. $\frac{\vec{a} \times \vec{b}}{\gamma}$
B. $\vec{a}+\frac{\vec{a} \times \vec{b}}{\gamma}$
C. $\vec{a}+\vec{b}+\frac{\vec{a} \times \vec{b}}{\gamma}$
D. none of these

Answer: a

9. If $\vec{x} \cdot x \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$ then find x, y, z in terms of 'veca,vecb and gamma.
A. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b} \times(\vec{a} \times \vec{b})]$
B. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
C. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}+\vec{a} \times(\vec{a} \times \vec{b})]$
D. none of these

Answer: c

- View Text Solution

10. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then $(\vec{P} \times \vec{B}) \times \vec{B}$ is equal to
A. \vec{P}
B. $-\vec{P}$
C. $2 \vec{B}$
D. \vec{A}

Answer: b

- View Text Solution

11. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then \vec{P} is equal to
A. $\frac{\vec{A}}{2}+\frac{\vec{A} \times \vec{B}}{2}$
B. $\frac{\vec{A}}{2}+\frac{\vec{B} \times \vec{A}}{2}$
C. $\frac{\vec{A} \times \vec{B}}{2}-\frac{\vec{A}}{2}$
D. $\vec{A} \times \vec{B}$

D View Text Solution

12. Given two orthogonal vectors \vec{A} and $\operatorname{Vec} B$ each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then which of the following statements is false?
A. vectors \vec{P}, \vec{A} and $\vec{P} \times \vec{B}$ ar linearly dependent.
B. vectors \vec{P}, \vec{B} and $\vec{P} \times \vec{B}$ ar linearly independent
C. \vec{P} is orthogonal to \vec{B} and has length $\frac{1}{\sqrt{2}}$.
D. none of these

Answer: d

- View Text Solution

13. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then \vec{a}_{2} is equal to
A. $\frac{943}{49}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
B. $\frac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
c. $\frac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$
D. $\frac{943}{49^{2}}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$

Answer: b

D View Text Solution

14. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then $\vec{a}_{1} \cdot \vec{b}$ is equal to
B. $-41 / 7$
C. 41
D. 287

Answer: a

- View Text Solution

15. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then \vec{a}_{2} is equal to
A. \vec{a} and $v c e a_{2}$ are collinear
B. \vec{a}_{1} and \vec{c} are collinear
C. $\vec{a} m \vec{a}_{1}$ and \vec{b} are coplanar
D. \vec{a}, \vec{a}_{1} and a_{2} are coplanar

Answer: c

16. Consider a triangular pyramid ABCD the position vectors of whose angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle BCD. The length of the vec $A G$ is
A. $\sqrt{17}$
B. $\sqrt{51} / 3$
C. $3 / \sqrt{6}$
D. $\sqrt{59} / 4$

Answer: b

- View Text Solution

17. Consider a triangular pyramid ABCD the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be
the point of intersection of the medians of the triangle $B C T$. The length of the perpendicular from the vertex D on the opposite face
A. 24
B. $8 \sqrt{6}$
C. $4 \sqrt{6}$
D. none of these

Answer: c

D View Text Solution

18. Consider a triangular pyramid ABCD the position vectors of whose agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle BCD. The length
of the vector $A G$ is
A. $14 / \sqrt{6}$
B. $2 / \sqrt{6}$
C. $3 / \sqrt{6}$
D. none of these

Answer: a

- View Text Solution

19. Vertices of a parallelogram taken in order are $\mathrm{A},(2,-1,4), \mathrm{B}(1,0,-1), \mathrm{C}($ $1,2,3$) and $D(x, y, z)$ The distance between the parallel lines $A B$ and $C D$ is
A. $\sqrt{6}$
B. $3 \sqrt{6 / 5}$
C. $2 \sqrt{2}$
D. 3

Answer: c

20. Vertices of a parallelogram taken in order are $\mathrm{A}(2,-1,4) \mathrm{B}(1,0,-1) \mathrm{C}(1,2,3)$ and D .

Distance of the point $P(8,2,-12)$ from the plane of the parallelogram is
A. $\frac{4 \sqrt{6}}{9}$
B. $\frac{32 \sqrt{6}}{9}$
C. $\frac{16 \sqrt{6}}{9}$
D. none

Answer: b

D View Text Solution

21. Vertices of a parallelogram taken in order are $A(2,-1,4) B(1,0,-1) C(1,2,3)$ and D .

Distance of the point $\mathrm{P}(8,2,-12)$ from the plane of the parallelogram is
B. 2,4,14
C. $4,2,14$
D. 2,14,4

Answer: d

- Watch Video Solution

22. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that

$$
\vec{r} \cdot(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad \text { and }
$$

$p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. A tangent line is drawn to the curve $y=\frac{8}{x^{2}}$ at the point A with abscissa 2. The drawn line cuts x-axis at a point B
A. 9
B. $2 \sqrt{2}-1$
C. $6 \sqrt{6}+3$
D. $9-4 \sqrt{2}$

D View Text Solution

23. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that

$$
\vec{r} .(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad \text { and }
$$

$p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. Then $p_{1}+p_{2}$ is equal to
A. 2
B. 10
C. 18
D. 5

Answer: c

24. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that $\vec{r} .(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad$ and
$p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. Then $p_{1}+p_{2}$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer: c

- View Text Solution

25. $A b, A C$ and $A D$ are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and
$\mathrm{A}, \mathrm{B}, \mathrm{D}$ are \vec{b} and \vec{c}, respectively, i.e. $A B \times A C=\vec{b}$ and $A D \times A B=\vec{c}$ the projection of each edge $A B$ and $A C$ on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$
vector $A B$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: a

- Watch Video Solution

26. $A b, A C$ and $A D$ are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and
$\mathrm{A}, \mathrm{B}, \mathrm{D}$ are \vec{b} and \vec{c}, respectively, i.e. $A B \times A C$ and $A D \times A B=\vec{c}$ the projection of each edge $A B$ and $A C$ on diagonal vector $\vec{a} i s \frac{|\vec{a}|}{3}$
vector $A D$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: b

- View Text Solution

27. $A b, A C$ and $A D$ are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and

A, B, D are \vec{b} and \vec{c}, respectively, i.e. $A B \times A C=\vec{b}$ and $A D \times A B=\vec{c}$ the projection of each edge $A B$ and $A C$ on diagonal vector $\vec{a} i s \frac{|\vec{a}|}{3}$
vector $A B$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: c

- View Text Solution

Martrix Match Type

- View Text Solution

2.

- View Text Solution

3.

- View Text Solution

4. Given two vectors $\vec{a}=-\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{j}-\hat{k}$

- View Text Solution

5. Given two vectors $\vec{a}=-\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$ find $|\vec{a} \times \vec{b}|$

Watch Video Solution
6.

- View Text Solution

7. Volume of parallelpiped formed bectors $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36 sq. units.

- View Text Solution

8.
9.

- View Text Solution

10.

- View Text Solution

Integer Type

1. If $\vec{a} a n d b$ are any two unit vectors, then find the greatest positive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$.
2. Let \vec{u} be a vector on rectangular coodinate system with sloping angle 60° suppose that $|\vec{u}-\hat{i}|$ is geomtric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x-axis. Then find the value of $\frac{\sqrt{2}-1}{}$ $|\vec{u}|$

- View Text Solution

3. Find the absolute value of parameter t for which the area of the triangle whose vertices the $A(-1,1,2) ; B(1,2,3)$ and $C(5,1,1)$ is minimum.

- Watch Video Solution

4. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k} \quad$ and
$[3 \vec{a}+\vec{b} 3 \vec{b}+\vec{c} 3 \vec{c}+\vec{a}]=\lambda\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ then find the value of $\frac{\lambda}{4}$

- View Text Solution

5. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\alpha \hat{i}+2 \alpha \hat{j}-2 \hat{k}$, and $\vec{c}=2 \hat{i}-\alpha \hat{j}+\hat{k}$ Find thevalue of 6α, such that $\{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})\} \times(\vec{c} \times \vec{a})=0$.

- Watch Video Solution

6. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+(b-3) \beta+c\right] \vec{y}+\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right.$ are three distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$

- Watch Video Solution

7. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$. Find the value of $[\vec{u} \vec{v} \vec{w}]$.

- Watch Video Solution

8. Find the value of λ if the volume of a tetrahedron whose vertices are with position vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic unit.

- Watch Video Solution

9.

Given
that
$\vec{u}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{v}=2 \hat{i}+\hat{k}+4 \hat{k}, \vec{w}=\hat{i}+3 \hat{j}+3 \hat{k}$ and $(\vec{u} \cdot \vec{R}-15) \hat{i}+(\vec{c} \cdot \vec{R}-30) \hat{j}$
.Then find the greatest integer less than or equal to $|\vec{R}|$.

- Watch Video Solution

10. Let a three dimensional vector \vec{V} satisfy the condition, $2 \vec{V}+\vec{V} \times(\hat{i}+2 \hat{j})=2 \hat{i}+\hat{k}$ If $3|\vec{V}|=\sqrt{m}$ Then find the value of m

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} . \vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$.

- Watch Video Solution

12. Let $\vec{O} A=\vec{a}, \hat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, Aand C are noncollinear points. Let p denotes the areaof quadrilateral OACB, and let q denote the area of parallelogram with OAandOC as adjacent sides. If $p=k q$, then find k

- Watch Video Solution

13. Find the work done by the force $F=3 \hat{i}-\hat{j}-2 \hat{k}$ acrting on a particle such that the particle is displaced from point $A(-3,-4,1) \rightarrow B(-1,-1,-2)$
14. If \vec{a} and \vec{b} are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}$ then find the value of $(2 \vec{a}+\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$

- View Text Solution

15. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=i+2 \hat{j}+3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} . \vec{a}=0$ then find the value of $\vec{r} . \vec{b}$.

- View Text Solution

16. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is.

- Watch Video Solution

17. Let \vec{a}, \vec{b}, and \vec{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are scalars then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is

- Watch Video Solution

Subjective Type

1. From a point O inside a triangle $A B C$, perpendiculars $O D$, OEandOf are drawn to rthe sides $B C, C A a n d A B$, respecrtively. Prove that the perpendiculars from A, B, and C to the sides $E F, F D a n d D E$ are concurrent.

- View Text Solution

2. about to only mathematics
3. If c is a given non-zero scalar, and \vec{A} and \vec{B} are given non-zero vector such that $\vec{A} \perp \vec{B}$, then find vector \vec{X} which satisfies the equation $\vec{A} \cdot \vec{X}=c$ and $\vec{A} \times \vec{X}=\vec{B}$

- Watch Video Solution

4. A, B, CandD are any four points in the space, then prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$).

- Watch Video Solution

5. If the vectors \vec{a}, \vec{b}, and \vec{c} are coplanar show that
$\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=0$

- Watch Video Solution

6. Let $\vec{A}=2 \vec{i}+\vec{k}, \vec{B}=\vec{i}+\vec{j}+\vec{k} \quad \vec{C}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} . \vec{A}=0$.

- Watch Video Solution

7. Determine the value of c so that for all real x, vectors $c x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other.

- Watch Video Solution

8. If vectors, \vec{b}, \vec{c} and \vec{d} are not coplanar, the prove that vector $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})$ is parallel to \vec{a}.

- View Text Solution

9. The position vectors of the vertices A, B and C of a tetrahedron $A B C D$ are $\hat{i}+\hat{j}+\hat{k}, \hat{k}, \hat{i}$ and $\hat{3}$ i, respectively. The altitude from vertex D to the opposite face $A B C$ meets the median line through Aof triangle $A B C$ at a point E. If the length of the side $A D$ is 4 and the volume of the tetrahedron is $2 \sqrt{ } 2 / 3$, find the position vectors of the point E for all its possible positions

D View Text Solution

10. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar unit vectors, equally inclined to one another at angle θ then $[\vec{a} \vec{b} \vec{c}]$ in terms of θ is equal to :

(Watch Video Solution

11. If \vec{A}, \vec{B} and \vec{C} are vectors such that $|\vec{B}|=|\vec{C}|$. Prove that $[(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})] \times(\vec{B}+\vec{C}) \cdot(\vec{B}+\vec{C})=0$
12. For any two vectors \vec{u} and \vec{v} prove that $\left(1+|\vec{u}|^{2}\right)\left(1+|\vec{v}|^{2}\right)=(1-\vec{u} \cdot \vec{v})^{2}+|\vec{u}+\vec{v}+(\vec{u} \times \vec{v})|^{2}$

- Watch Video Solution

13. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w}+\vec{w} \times \vec{u}=\vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v}.

- Watch Video Solution

14. Find 3-dimensional vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \quad$ satisfying
$\vec{v}_{1} \cdot \vec{v}_{1}=4, \vec{v}_{1} \cdot \vec{v}_{2}=-2, \vec{v}_{1} \cdot \vec{v}_{3}=6$,
$\vec{v}_{2} \cdot \vec{v}_{2}=2, \vec{v}_{2} \cdot \vec{v}_{3}=-5, \vec{v}_{3} \cdot \vec{v}_{3}=29$

- Watch Video Solution

15. Let V be the volume of the parallelopiped formed by the vectors
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. If a_{r}, b_{r} and c_{r}, where $r=1,2,3$, are non-negative real numbers and 3
$\sum_{r=1}\left(a_{r}+b_{r}+c_{r}\right)=3 L$ show that $V \leq L^{3}$

- Watch Video Solution

16. \vec{u}, \vec{v} and \vec{w} are three non-coplanar unit vecrtors and α, β and γ are the angles between \vec{u} and \vec{v}, \vec{v} and \vec{w}, and \vec{w} and \vec{u}, respectively, and \vec{x}, \vec{y} and \vec{z} are unit vectors along the bisectors of the angles $\alpha, \beta a n d \gamma$, respectively. Prove that $[\vec{x} \times \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x}]=\frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \sec ^{2}\left(\frac{\alpha}{2}\right) \sec ^{2}\left(\frac{\beta}{2}\right) \sec ^{2}\left(\frac{\gamma}{2}\right)$.

- Watch Video Solution

17. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} ar distinct vectors such that

$$
\begin{aligned}
& \vec{a} \times \vec{c}=\vec{b} \times \vec{d} \text { and } \vec{a} \times \vec{b}=\vec{c} \times \vec{d} . \\
& (\vec{a}-\vec{d}) \cdot(\vec{c}-\vec{b}) \neq 0 \text {, i.e. }, \vec{a} \cdot \vec{b}+\vec{d} . \vec{c} \neq \vec{d} \cdot \vec{b}+\vec{a} . \vec{c} .
\end{aligned}
$$

Prove
that
18. $P_{1} n d P_{2}$ are planes passing through origin $L_{1} a n d L_{2}$ are two lines on P_{1} and P_{2}, respectively, such that their intersection is the origin. Show that there exist points $A, B a n d C$, whose permutation A^{\prime}, B^{\prime} and C^{\prime}, respectively, can be chosen such that (1)A is on $L_{1}, \operatorname{Bon} P_{1}$ but not on L_{1} andC not on P_{1}; (2)A' is on L_{2}, B^{\prime} onP P_{2} but not on L_{2} andC C^{\prime} not on P_{2}

- Watch Video Solution

19. about to only mathematics

- Watch Video Solution

Fill In The Blanks

1. Let \vec{A}, \vec{B} and \vec{C} be vectors of legth, 3,4 and 5 respectively. Let \vec{A} be perpendicular to $\vec{B}+\vec{C}, \vec{B}$ to $\vec{C}+\vec{A}$ and \vec{C} to $\vec{A}+\vec{B}$ then the length of vector $\vec{A}+\vec{B}+\vec{C}$ is \qquad .

Watch Video Solution

2. Find a unit vector perpendicular to the plane determined by the points
$(1,-1,2),(2,0,-1)$ and $(0,2,1)$

- Watch Video Solution

3. The area of the triangle whose vertices are
$A(1,-1,2), B(2,1-1) C(3,-1,2)$ is

- Watch Video Solution

4. If $\vec{A}, \vec{B}, \vec{C}$ are non-coplanar vectors then $\frac{\vec{A} \cdot \vec{B} \times \vec{C}}{\vec{C} \times \vec{A} \cdot \vec{B}}+\frac{\vec{B} \cdot \vec{A} \times \vec{C}}{\vec{C} \cdot \vec{A} \times \vec{B}}=$

Watch Video Solution

5. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors then find a vector \vec{B} satisfying equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$

- Watch Video Solution

6. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy-plane. Find all vetors in te same plane having projection 1 and 2 along \vec{b} and \vec{c} respectively.

- Watch Video Solution

7. The components of a vector \vec{a} along and perpendicular to a non-zero vector \vec{b} are \qquad and \qquad , respectively.

- Watch Video Solution

8. A unit vector coplanar with $\vec{i}+\vec{j}+2 \vec{k}$ and $\vec{i}+2 \vec{j}+\vec{k}$ and perpendicular to $\vec{i}+\vec{j}+\vec{k}$ is \qquad

- Watch Video Solution

9. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\vec{i}, \vec{i}+\vec{j}$ and thepane determined by the vectors $\vec{i}-\vec{j}, \vec{i}+\vec{k}$ then angle between \vec{a} and $\vec{i}-2 \vec{j}+2 \vec{k}$ is $=$ (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

- Watch Video Solution

10. If \vec{b} and \vec{c} are any two mutually perpendicular unit vectors and \vec{a} is any vector, then $(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^{2}}(\vec{b} \times \vec{c})=$ (A) 0 (B) $\vec{a}(C)$ veca $/ 2(D) 2$ veca

D View Text Solution

11. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 resectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$ then the acute angel between \vec{a} and \vec{c} is

- Watch Video Solution

12. A, B C and D are four points in a plane with position vectors, $\vec{a}, \vec{b} \vec{c}$ and \vec{d} respectively, such that
$(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=(\vec{b}-\vec{d}) \cdot(\vec{c}-\vec{a})=0$ then point D is the ___ of triangle $A B C$.
13. If $\vec{A}=\lambda(\vec{u} \times \vec{v})+\mu(\vec{v} \times \vec{w})+v(\vec{w} \times \vec{u})$ and $[\vec{u} \vec{v} \vec{w}]=\frac{1}{5}$ then $\lambda+\mu+v=$ (A) 5 (B) 10 (C) 15 (D) none of these

- View Text Solution

14. If $\vec{a}=\hat{j}+\sqrt{3} \hat{k}, \vec{b}=-\hat{j}+\sqrt{3} \hat{k}$ and $\vec{c}=2 \sqrt{3} \hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is

- Watch Video Solution

True And False

1. Let \vec{A}, \vec{B} and \vec{C} be unit vectors such that $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{C}=0$ and the angle between \vec{B} and \vec{C} be $/ / 3$. Then $\vec{A}= \pm 2(\vec{B} \times \vec{C})$.
2. If $\vec{x} \cdot \vec{a}=0 \vec{x} \cdot \vec{b}=0$ and $\vec{x} \cdot \vec{c}=0$ for some non zero vector \vec{x} then show that $[\vec{a} \vec{b} \vec{c}]=0$

- Watch Video Solution

3. for any three vectors, \vec{a}, \vec{b} and $\vec{c},(\vec{a}-\vec{b}) \cdot(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})=$

D Watch Video Solution

Exercise 21

1. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

D Watch Video Solution

2. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is a perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors $\vec{a} a n d \vec{b}$

- Watch Video Solution

3. If the vectors A, B, C of a triangle $A B C$ are $(1,2,3),(-1,0,0),(0,1,2)$, respectively then find $\angle A B C$

- Watch Video Solution

4. If $|a|=3,|b|=4 a n d$ the angle between $a a n d b$ is 120°, then find the value of $|4 a+3 b|$

- Watch Video Solution

5. If vectors $\hat{i}-2 x \hat{j}-3 y \hat{k}$ and $\hat{i}+3 x \hat{j}+2 y \hat{k}$ are orthogonal to each other, then find the locus of th point (x, y).

- Watch Video Solution

6. Let \vec{a}, \vec{b} and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$, the find the length of $\vec{a}+\vec{b}+\vec{c}$.

D Watch Video Solution

7. If $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$ find the angle between the vectors \vec{a} and \vec{b}.

(Watch Video Solution

8. If the angel between unit vectors $\vec{a} a n d \vec{b} 60^{\circ}$, then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

9. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} is a unit vector such that $\vec{u} . \hat{n}=0$ and $\vec{v} \cdot \hat{n}=0,|\vec{w} . \hat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3

View Text Solution

10. A, B, C and d are any four points prove that
$\overrightarrow{A B} \cdot \overrightarrow{C D}+\overrightarrow{B C} \cdot \overrightarrow{A D}+\overrightarrow{C A} \cdot \overrightarrow{B D}=0$

- View Text Solution

11. $P(1,0,-1), Q(2,0,-3), R(-1,2,0) \operatorname{andS}(3,-2,-1)$, then find the projection length of $\vec{P} Q o n \vec{R} S$

- Watch Video Solution

12. If the vectors $3 \vec{p}+\vec{q} ; 5 p-3 \vec{q}$ and $2 \vec{p}+\vec{q} ; 3 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular vectors, then find the angle between vectors $\vec{p} a n d \vec{q}$

- Watch Video Solution

13. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A}+\vec{B})$ bisects the internal angle between \vec{A} and \vec{B}, then find the value of α

- Watch Video Solution

14. Let \vec{a}, \vec{b} and \vec{c} be unit vectors, such that $\vec{a}+\vec{b}+\vec{c}=\vec{x}, \vec{a} \vec{x}=1, \vec{b} \vec{x}=\frac{3}{2},|\vec{x}|=2$. Then find the angle between \vec{c} and \vec{x}

- Watch Video Solution

15. If \vec{a} and \vec{b} are unit vectors, then find the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$.
16. Constant forces $P_{1}=\hat{i}+\hat{j}+\hat{k}, P_{2}=-\hat{i}+2 \hat{j}-\hat{k}$ and $P_{3}=-\hat{j}-\hat{k}$ act on a particle at a point A Determine the work done when particle is displaced from position $A(4 \hat{i}-3 \hat{j}-2 \hat{k})$ to $B(6 \hat{i}+\hat{j}-3 \hat{k})$

- Watch Video Solution

17. If $|\vec{a}|=4,|\vec{a}-\vec{b}|=6$ and $|\vec{a}+\vec{b}|=8$ then find $|\vec{b}|$

- Watch Video Solution

18. If A, B, C, D are four distinct point in space such that $A B$ is not perpendicular to $C D \quad$ and
$|\overrightarrow{B D}|^{2} \mid$, then find the value of k
$\overrightarrow{A B \cdot} \overrightarrow{C D}=k\left(|\overrightarrow{A D}|^{2}+|\overrightarrow{B C}|^{2}-|\overrightarrow{A C}|^{2}-|\overrightarrow{B D}|^{2}\right)$, then find the value of k

- Watch Video Solution

1. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k}$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then find (m, n)

- Watch Video Solution

2. If $|\vec{a}|=3,|\vec{b}|=6$ and $|\vec{a} \times \vec{b}|=9$ then find the value between $|\vec{a}|$ and $|\vec{b}|$.

- Watch Video Solution

3. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq 0$, where \vec{a}, \vec{b}, and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a}+\vec{c}=k \vec{b}$

- Watch Video Solution

4. If $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}, \vec{b}=-\vec{i}+2 \vec{j}-4 \vec{k}$ and $\vec{c}=\vec{i}+\vec{j}+\vec{k}$, then find the value of $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$

- Watch Video Solution

5. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right-handed system, then find \vec{c}

- Watch Video Solution

6. Given that $\vec{a} \vec{b}=\vec{a} \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\vec{c}$

- Watch Video Solution

7. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2 \vec{a} \times \vec{b}$ and give a geometrical interpretation of it.

- View Text Solution

8. If \vec{x} and \vec{y} are unit vectors and $|\vec{z}|=\frac{2}{\sqrt{7}}$ such that $\vec{z}+\vec{z} \times \vec{x}=\vec{y}$ then find the angle θ between \vec{x} and \vec{z}

- View Text Solution

9. Prove that $(\vec{a} . \hat{i})(\vec{a} \times \hat{i})+(\vec{a} . \hat{j})(\vec{a} \times \hat{j})+(\vec{a} . \hat{k})(\vec{a} \times \hat{k})=\overrightarrow{0}$

- View Text Solution

10. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three non-zero vectors such that $a+b+c=0$, then $\lambda b \times a+b \times c+c \times a=0$, where λ is
11. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2)$ and $(1,2,-2)$ Find the velocity of the particle at point $P(3,6,4)$

- Watch Video Solution

12. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a} . \vec{b}=0=\vec{a}$. \vec{c}. It the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ then find \vec{a}.

- View Text Solution

13. if $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=36$ and $|\vec{a}|=3$ the find the value of $|\vec{b}|$

- Watch Video Solution

14. Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$ if \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$ then find the value of $\vec{c} \cdot \vec{b}$.

- View Text Solution

15. Find the moment of \vec{F} about point $(2,-1,3)$, where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point $(1,-1,2)$.

- Watch Video Solution

Exercise 23

1. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are four non-coplanar unit vectors such that \vec{d} makes equal angles with all the three vectors $\vec{a}, \vec{b}, \vec{c}$ then prove that $[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{b}]=[\vec{d} \vec{c} \vec{a}]$
2. If $\vec{l}, \vec{m}, \vec{n}$ are three non coplanar vectors prove that $\left[\begin{array}{l}\vec{~} \\ \\ \text { vecm vecn }]\end{array}\right.$ (vecaxxvecb) $=\mid($ vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm), (vecn.veca, vecn.vecb, vecn)|`

- View Text Solution

3. If the volume of a parallelepiped whose adjacent edges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\alpha \hat{k}$ is 15 , then find the value of α if $(\alpha>0)$

- Watch Video Solution

4. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ then find the vector \vec{c} such that $\vec{a} . \vec{c}=2$ and $\vec{a} \times \vec{c}=\vec{b}$.
5. If \vec{x}. Veca $=0, \vec{x}$. Vecb $=0$ and $\vec{x} \cdot \vec{c}=0$ for some non-zero vector \vec{x}. Then prove that $[\vec{a} \vec{b} \vec{c}]=0$

D View Text Solution

6. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ then find the vector \vec{c} such that $\vec{a} \cdot \vec{c}=2$ and $\vec{a} \times \vec{c}=\vec{b}$.

D View Text Solution

7. If \vec{a}, \vec{b}, and \vec{c} are three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then prove that $|\vec{a}|=|\vec{b}|=|\vec{c}|$.

- Watch Video Solution

$$
\vec{b} \times(\vec{a} \times \vec{b})
$$

8. If $\vec{a}=\vec{P}+\vec{q}, \vec{P} \times \vec{b}=\overrightarrow{0}$ and $\vec{q} \cdot \vec{b}=0$ then prove that

$$
\vec{b} \cdot \vec{b}
$$

9. Prove that $(\vec{a} .(\vec{b} \times \hat{i})) \hat{i}+(\vec{a} .(\vec{b} \times \hat{j})) \hat{j}+(\vec{a} .(\vec{b} \times \hat{k})) \hat{k}=\vec{a} \times \vec{b}$

- View Text Solution

10. For any four vectors, $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} prove that
$\vec{d} .(\vec{a} \times(\vec{b} \times(\vec{c} \times \vec{d})))=(\vec{b} \cdot \vec{d})[\vec{a} \vec{c} \vec{d}]$.

- Watch Video Solution

11. If \vec{a} and \vec{b} be two non-collinear unit vector such that $\vec{a} \times(\vec{a} \times \vec{b})=\frac{1}{2} \vec{b}$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

12. show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b}=\overrightarrow{0}$

- View Text Solution

13. If \vec{a}, \vec{b}, and \vec{c} be non-zero vectors such that no two are collinear or $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ If θ is the acute angle between vectors \vec{b} and \vec{c}, then find the value of $\sin \theta$

- Watch Video Solution

14. If $\vec{p}, \vec{q}, \vec{r}$ denote vector $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$, respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}, \vec{b}$ is parallel $\vec{r} \times \vec{p}, \vec{c}$ is parallel to $\vec{p} \times \vec{q}$.

- Watch Video Solution

15. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar vectors and let the equation $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vector $\vec{a}, \vec{b}, \vec{c}$, then prove that $\vec{a} \times \vec{a}^{\prime}+\vec{b} \times \vec{b}^{\prime}+\vec{c} \times \vec{c}^{\prime}$ is a null vector.

- Watch Video Solution

16. Given unit vectors $\hat{m} \hat{n}$ and \hat{p} such that angle between \hat{m} and $\hat{n} i s \alpha$ and angle between \hat{p} and $\hat{m} X$ ñisoif $[\mathrm{n} \mathrm{p} \mathrm{m}]=1 / 4$ find alpha

- View Text Solution

17. $\vec{a}, \vec{b}, a n d \vec{c}$ are three unit vectors and every two are inclined to each other at an angel $\cos ^{-1}(3 / 5)$ If $\vec{a} \times \vec{b}=p \vec{a}+q \vec{b}+r \vec{c}$, wherep, q, r are scalars, then find the value of q

- View Text Solution

18. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ gve three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. If the angle between \vec{a} and $\vec{b} i \frac{\pi}{6}$, then prove that

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| p=\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)
$$

- View Text Solution

Single Correct Answer Type

1. The scalar $\vec{A}((\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C}))$ equals a. 0 b. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$ c. $[\vec{A} \vec{B} \vec{C}]$ d. none of these
A. 0
B. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
C. $[\vec{A} \vec{B} \vec{C}]$
D. none of these

Answer: a

- Watch Video Solution

2. For non-zero vectors \vec{a}, \vec{b} and $\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}=|\vec{a}|| \vec{b}| | \vec{c} \mid$ holds if and only if
A. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$
B. $\vec{b} \cdot \vec{c}=0, \vec{c}, \vec{a}=0$
C. $\vec{c} \cdot \vec{a}=0, \vec{a}, \vec{b}=0$
D. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

Answer: d

D Watch Video Solution

3. The volume of he parallelepiped whose sides are given by $\vec{O} A=2 i-2 j, \vec{O} B=i+j-k a n d \vec{O} C=3 i-k$ is a. $\frac{4}{13}$ b. 4 c. $\frac{2}{7}$ d. 2
A. $4 / 13$
B. 4
C. 2/7
D. 2

Answer: d

- Watch Video Solution

4. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p}, $\vec{q} a n d \vec{r}$ the vectors
defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]} \operatorname{and} \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. Then the
value of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \vec{q}+(\vec{c}+\vec{a}) \vec{r}$ is 0 b. 1 c. 2 d .3
A. 0
B. 1
C. 2
D. 3

Answer: d

- Watch Video Solution

5. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$. If \hat{d} is anit vector such that $\vec{a} . \hat{d}=0=[\vec{b} \vec{c} \vec{d}]$ then \hat{d} equals
A. $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$
B. $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$
C. $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
D. $\pm \hat{k}$

Answer: a

6. If \vec{a}, \vec{b} and \vec{c} are non-coplanar unit vectors such that
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is $\mathrm{a} .3 \pi / 4 \mathrm{~b} . \pi / 4 \mathrm{c}$. $\pi / 2 \mathrm{~d} . \pi$
A. $3 \pi / 4$
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: a

- Watch Video Solution

7. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$ if $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$ then $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$ is
A. 7
B. -25
C. 0
D. -7

Answer: b

- Watch Video Solution

8. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors, then $(\vec{a}+\vec{b}+\vec{c})[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ is :
A. 0
B. $[\vec{a} \vec{b} \vec{c}]$
C. $2[\vec{a} \vec{b} \vec{c}]$
D. $-[\vec{a} \vec{b} \vec{c}]$

Answer: d

Watch Video Solution

9. Let $\vec{p}, \vec{q}, \vec{r}$ be three mutually perpendicular vectors of the same magnitude. If a vector \vec{x} satisfies the equation
$\vec{p} \times\{\vec{x}-\vec{q}) \times \vec{p}\}+\vec{q} \times\{\vec{x}-\vec{r}) \times \vec{q}\}+\vec{r} \times\{\vec{x}-\vec{p}) \times \vec{r}\}=\overrightarrow{0}$,
then \vec{x} is given by
A. (a) $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$
B. (b) $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C. (c) $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
D. (d) $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

Answer: b

- Watch Video Solution

10. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} . \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to
A. $2 / 3$
B. $3 / 2$
C. 2
D. 3

Answer: b

- Watch Video Solution

11. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a}, then \vec{c} is a. $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$ b. $\frac{1}{\sqrt{3}}(-\hat{i}-\hat{j}-\hat{k})$ $\frac{1}{\sqrt{5}}(-\hat{k}-2 \hat{j})$ d. $\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$
A. $\frac{1}{\sqrt{2}}(-j+k)$
B. $\frac{1}{\sqrt{3}}(i-j-k)$
C. $\frac{1}{\sqrt{5}}(i-2 j)$
D. $\frac{1}{\sqrt{3}}(i-j-k)$

Answer: a

D Watch Video Solution

12. If the vectors \vec{a}, \vec{b}, and \vec{c} form the sides $B C$, $C A a n d A B$, respectively, of triangle $A B C$, then
A. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
C. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
D. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$

- Watch Video Solution

13. Let vectors $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$. Let $P_{1} a n d P_{2}$ be planes determined by the pair of vectors \vec{a}, \vec{b}, and \vec{c}, \vec{d}, respectively. Then the angle between $P_{1} a n d P_{2}$ is $0 \mathrm{~b} . \pi / 4 \mathrm{c} . \pi / 3 \mathrm{~d} . \pi / 2$
A. 0
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: a

- Watch Video Solution

14. If $\vec{a}, \vec{b} a n d \vec{c}$ are unit coplanar vectors, then the scalar triple product
$[2 \vec{a}-\vec{b} 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}]$ is 0 b. 1 c. $-\sqrt{3}$ d. $\sqrt{3}$
A. 0
B. 1
C. $-\sqrt{3}$
D. $\sqrt{3}$

Answer: a

- Watch Video Solution

15. If \hat{a}, \hat{b}, and \hat{c} are unit vectors, then $|\hat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\hat{c}-\hat{a}|^{2}$ does not exceed
A. 4
B. 9
C. 8
D. 6
16. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is
A. 45°
B. 60°
C. $\cos ^{-1}(1 / 3)$
D. $\cos ^{-1}(2 / 7)$

Answer: b

- Watch Video Solution

17. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k} a n d \vec{W}=\hat{i}+3 \hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product $[U V W]$ is a.- 1 b. $\sqrt{10}+\sqrt{6}$ c. $\sqrt{59}$ d. $\sqrt{60}$
B. $\sqrt{10}+\sqrt{6}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: c

- Watch Video Solution

18. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+k, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.
A. -3
B. 3
C. $1 / \sqrt{3}$
D. $\sqrt{3}$

Answer: c

19. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \vec{b} is
A. $\hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{i}-\hat{k}$
c. \hat{i}
D. $2 \hat{i}$

Answer: c

- Watch Video Solution

20. The unit vector which is orthogonal to the vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ b. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$ c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
d. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$
A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

Answer: c

D Watch Video Solution

21. if \vec{a}, \vec{b} and \vec{c} are three non-zero, non- coplanar vectors and

$$
\vec{b}_{1}=\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{b}_{2}=\vec{b}+\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{c}_{1}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}+\frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1}, \vec{c}_{2}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{b}}{\mid \vec{b}}
$$

, then the set of orthogonal vectors is
A. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$
B. $\left(\vec{c} a, \vec{b}_{1}, \vec{c}_{2}\right)$
C. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$
D. $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$

Answer: c

- Watch Video Solution

22. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k} a n d \vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by a. $\hat{i}-3 \hat{j}+3 \hat{k}$ b. $-3 \hat{i}-3 \hat{j}+3 \hat{k} \mathrm{c} .3 \hat{i}-\hat{j}+3 \hat{k} \mathrm{~d} . \hat{i}+3 \hat{j}-3 \hat{k}$
A. $4 \hat{i}-\hat{j}+4 \hat{k}$
B. $3 \hat{i}+\hat{j}-3 \hat{k}$
C. $2 \hat{i}+\hat{j}-2 \hat{k}$
D. $4 \hat{i}+\hat{j}-4 \hat{k}$

Answer: a

D Watch Video Solution

23. Let two non-collinear unit vector \hat{a} a $\mathrm{n} \mathrm{d} \hat{b}$ form an acute angle. A point P moves so that at any time t, the position vector $O P$ (where O is the origin) is given by âcost $+\hat{b} \sin t W h e n P$ is farthest from origin O, let M be the length of OPandû be the unit vector along $O P$ Then (a)
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{andM}=(1+\hat{a} \hat{b})^{1 / 2}$ (b) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ andM $=\left(1+\hat{a}^{\wedge}\right)^{1 / 2}$
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{andM}=(1+2 \hat{a} \hat{b})^{1 / 2}$ (d) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|} \operatorname{andM}=(1+2 \hat{a} \hat{b})^{1 / 2}$
A.,$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} . \hat{b})^{1 / 2}$
B. , $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} . \hat{b})^{1 / 2}$
C. $\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} . \hat{b})^{1 / 2}$
D. $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} . \hat{b})^{1 / 2}$

Answer: a

24. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot \vec{c} \times \vec{d}=1$ and $\vec{a} . \vec{c}=\frac{1}{2}$ then a) \vec{a}, \vec{b} and \vec{c} are non-coplanar b) $\vec{b}, \vec{c}, \vec{d}$ are non-coplanar c) \vec{b}, \vec{d} are non parallel d) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel
A. \vec{a}, \vec{b} and \vec{c} are non- coplanar
B. \vec{b}, \vec{c} and \vec{d} are non-coplanar
C. \vec{b} and \vec{d} are non- parallel
D. \vec{a} and \vec{d} are parallel and \vec{b} and \vec{c} are parallel

Answer: c

- Watch Video Solution

25. Two adjacent sides of a parallelogram $A B C D$ are given by
$\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$ The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$

If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: b

- Watch Video Solution

26. Let P, Q, R and S be the points on the plane with position vectors $-2 i-j, 4 i, 3 i+3 j a n d-3 i+2 j$, respectively. The quadrilateral PQRS must be (a) Parallelogram, which is neither a rhombus nor a rectangle (b)

Square (c) Rectangle but not a square (d) Rhombus, but not a square
A. Parallelogram, which is neither a rhombus nor a rectangle
B. square
C. rectangle, but not a square
D. rhombus, but not a square.

Answer: a

- Watch Video Solution

27. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vectors \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by
A. $\hat{i}-3 \hat{j}+3 \hat{k}$
B. $-3 \hat{i}-3 \hat{j}+\hat{k}$
C. $3 \hat{i}-\hat{j}+3 \hat{k}$
D. $\hat{i}+3 \hat{j}-3 \hat{k}$

Answer: c

28. Let $\vec{P} R=3 \hat{i}+\hat{j}-2 \hat{k} a n d \vec{S} Q=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS, and $\vec{P} T=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelepiped determine by the vectors $\vec{P} T, \vec{P} Q$ and $\vec{P} S$ is 5
b. 20 c. 10 d. 30
A. 5
B. 20
C. 10
D. 30

Answer: c

- Watch Video Solution

Multiple Correct Answers Type
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \quad \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non- zero vectors such that c is a unit vectors perpendicular to both the vectors $\begin{array}{llllllll}a & \vec{a} & \vec{b} & \text { and } & \vec{b} \text {. If the angle between } & \vec{a} & \text { and } & \vec{b}\end{array}$ is $\frac{\pi}{6}$ then
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
A. (a) 0
B. (b) 1
C. (c) $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{2}^{2}\right)$
D. (d) $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{2}^{2}\right)\left(c_{1}^{2}+c_{2}^{2}+c_{2}^{2}\right)$

Answer: c

2. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0) a n d \vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite
A. one
B. two
C. three
D. infinite

Answer: b

- Watch Video Solution

3. Let $a=2 i-j+k, b=i+2 j-k$ and $c=i+j-2 k$ be three vectors. A vector r in the plane of b and c whose projection on a is of magnitude $\sqrt{\frac{2}{3}}$ is
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
C. $-2 \hat{i}-\hat{j}+5 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: a,c

- Watch Video Solution

4. For three vectors \vec{u}, $\vec{v} a n d \vec{w}$ which of the following expressions is not equal to any of the remaining three ? $\vec{u} \vec{v} \times \vec{w} \mathrm{~b}$. $(\vec{v} \times \vec{w}) \vec{u}$ c. $\vec{v} \vec{u} \times \vec{w} \mathrm{~d}$.
$(\vec{u} \times \vec{v}) \vec{w}$
A. (a) $\vec{u} .(\vec{v} \times \vec{w})$
B. (b) $(\vec{v} \times \vec{w}) \cdot \vec{u}$
C. (c) $\vec{v} \cdot(\vec{u} \times \vec{w})$
D. (d) $(\vec{u} \times \vec{v}) \cdot \vec{w}$

Answer: c

5. Which of the following expressions are meaningful? a. $\vec{u} .(\vec{v} \times \vec{w})$ b. $\vec{u} \cdot \vec{v} \cdot \vec{w} c \cdot(\vec{u} \vec{v}) \cdot \vec{w} \mathrm{~d} \cdot \vec{u} \times(\vec{v} \cdot \vec{w})$
A. $\vec{u} .(\vec{v} \times \vec{w})$
B. $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$
C. $(\vec{u} \cdot \vec{v}) \vec{w}$
D. $\vec{u} \times(\vec{v} . V e c w)$

Answer: a,c

- Watch Video Solution

6. If \vec{a} and \vec{b} are two non collinear vectors and $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$ then $|\vec{v}|$ is
A. $|\vec{u}|$
B. $|\vec{u}|+\mid \vec{u}$. Veca \mid
C. $|\vec{u}|+|\vec{u} . \vec{b}|$
D. $|\vec{u}|+\vec{u} \cdot(\vec{a}+\vec{b})$

Answer: a,c

- Watch Video Solution

7. $\vec{P}=(2 \hat{i}-2 \hat{j}+\hat{k})$, then find $|\vec{P}|$

- Watch Video Solution

8. Let \vec{A} be a vector parallel to the line of intersection of planes $P_{1} a n d P_{2}$ Plane P_{1} is parallel to vectors $2 \hat{j}+3 \hat{k} a n d 4 \hat{j}-3 k a n d P_{2}$ is parallel to $\hat{j}-\hat{k} a n d 3 \hat{i}+3 \hat{j}$ Then the angle betweenvector \vec{A} and a given vector $2 \hat{i}+\hat{j}-2 \hat{k}$ is $\pi / 2$ b. $\pi / 4$ c. $\pi / 6$ d. $3 \pi / 4$
A. $\pi / 2$
B. $\pi / 4$
C. $\pi / 6$
D. $3 \pi / 4$

Answer: b,d

- Watch Video Solution

9. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is/are a.
$\hat{j}-\hat{k}$ b. $-\hat{i}+\hat{j}$ c. $\hat{i}-\hat{j}$ d. $-\hat{j}+\hat{k}$
A. $\hat{j}-\hat{k}$
B. $-\hat{i}+\hat{j}$
C. $\hat{i}-\hat{j}$
D. $-\hat{j}+\hat{k}$

Answer: a,d
10. Let \vec{x}, \vec{y} and \vec{z} be three vector each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. if vcea is a non - zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then
A. (a) $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
B. (b) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
C. (c) $\vec{a} . \vec{b}=-(\vec{a} . \vec{y})(\vec{b} \cdot \vec{z})$
D. (d) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

Answer: a,b,c

- Watch Video Solution

11.

Let
$\triangle P Q R$
be
a triangle
Let
$\vec{a}=Q R, \vec{b}=R P$ and $\vec{c}=P Q$ if $|\vec{a}|=12,|\vec{b}|=4 \sqrt{3}$ and $\vec{b} . \vec{c}=24$, then which of the following is (are) true ?
A. (a) $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=12$
B. (b) $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=30$
C. (c) $|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=48 \sqrt{3}$
D. (d) $\vec{a} \cdot \vec{b}=-72$

Answer: a,c,d

- Watch Video Solution

