© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

SEQUENCES AND SERIES

Others

1. Find the sum of the following series to n terms $5+7+13+31+85+$

- Watch Video Solution

2. Find the sum to n terms of the series
$1 /(1 \times 2)+1 /(2 \times 3)+1 /(3 \times 4)+\ldots+1 / n(n+1)$

- Watch Video Solution

3. If $\sum_{r=1}^{n} T_{r}=\left(3^{n}-1\right)$, then find the sum of $\sum_{r=1}^{n} \frac{1}{T_{r}}$.

- Watch Video Solution

4. Find the sum to n terms of the series $3+15+35+63+$

- Watch Video Solution

5. Sum of n terms the series : $1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots$.

- Watch Video Solution

6. If $\sum_{r=1}^{n} T_{r}=n\left(2 n^{2}+9 n+13\right)$, then find the sum $\sum_{r=1}^{n} \sqrt{T_{r}}$.

- Watch Video Solution

7. Find the sum of the series $31^{3}+32^{3}+\ldots .+50^{3}$.

- Watch Video Solution

8. Find the sum of the first n terms of the series $1^{3}+3.2^{2}+3^{3}+3.4^{2}+5^{2}+3.6^{2}+\ldots$. when n is odd

- Watch Video Solution

9. Find the sum of the series $1 . n+2(n-1)+3(n-2)+\ldots . n .1$.

- Watch Video Solution

10. Find the sum of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+$ up to n terms.

- Watch Video Solution

11. If a, b, c are in A.P., then prove that the following are also in A.P.
$a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$

- Watch Video Solution

12. If a, b, c are in A.P., then prove that the following are also in A.P.
$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$

- Watch Video Solution

13. If a, b, c are in A.P., then prove that the following are also in A.P.
$a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$

- Watch Video Solution

14. The Fibonacci sequence is defined by $1=a_{1}=a_{2}$ and $a_{n}=a_{n-1}+a_{n-2,} n>2$. Find $\frac{a_{n+1}}{a_{n}}$, for $\mathrm{n}=5$.
15. Consider the sequence defined by $a_{n}=a n^{2}+b n+c$. If $a_{1}=1, a_{2}=5$, and $a_{3}=11$, then find the value of a_{10}.

- Watch Video Solution

16. Show that the sequence $9,12,15,18, \ldots$ is an A.P. Find its 16 th term and the general term.

- Watch Video Solution

17. A sequence of integers $a_{1}+a_{2}+\ldots \ldots+a_{n}$ satisfies $a_{n+2}=a_{n+1}-a_{n}$ for $n \geq 1$. Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99 . Find the sum of the first 2002 terms.
18. Write down the sequence whose nth term is $2^{n} / n$ and

$$
\left[3+(-1)^{n}\right] / 3^{n}
$$

Watch Video Solution

19. Write the first three terms of the sequence defined by $a_{1}=2, a_{n+1}=\frac{2 a_{n}+3}{a_{n}+2}$.

- Watch Video Solution

20. Find the sequence of the numbers defined by $a_{n}=\left\{\frac{1}{n}\right.$, when n is odd $-\frac{1}{n}$, when n is even

- Watch Video Solution

21. Find the sum of n terms of the sequence
$\left(a_{n}\right)$, wherea $_{n}=5-6 n, n \in N$.
22. Show that the sequence $\log a, \log (a b), \log \left(a b^{2}\right), \log \left(a b^{3}\right)$, is an A.P. Find the nth term.

- Watch Video Solution

23. Find the sum of the following series:
$\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\frac{1}{2^{5}}+\frac{1}{3^{6}}+\ldots+\infty$

- Watch Video Solution

24. Consider two A.P.: $S_{2}: 2,7,12,17,500$ terms and $S_{1}: 1,8,15,22,300$ terms Find the number of common term. Also find the last common term.

- Watch Video Solution

25. If pth, qth, and rth terms of an A.P. are a, b, c, respectively, then show that $(a-b) r+(b-c) p+(c-a) q=0$

- Watch Video Solution

26. The sum of the first four terms of an A.P. is 56 . The sum of the last four terms is 112 . If its first term is 11 , then find the number of terms.

D Watch Video Solution

27. Given two A.P. $2,5,8,11 \ldots . . T_{60}$ and $3,5,7,9, \ldots \ldots \ldots T_{50}$. Then find the number of terms which are identical.

- Watch Video Solution

28. In a certain A.P., 5 times the 5th term is equal to 8 times the 8 th terms then find its 13th term.
29. Find the term of the series $25,22 \frac{3}{4}, 20 \frac{1}{2}, 18 \frac{1}{4}$ which is numerically the smallest.

- Watch Video Solution

30. How many terms are there in the A.P. 3, 7, 11, ... 407?

- Watch Video Solution

31. If a, b, c, d, e are in A.P., the find the value of $a-4 b+6 c-4 d+e$.

- Watch Video Solution

32. If $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$, are in A.P., prove that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are also in A.P.
33. If $a, b, c \in R+$ form an A.P., then prove that $a+1 /(b c), b+(1 / a c), c+1 /(a b)$ are also in A.P.

- Watch Video Solution

34. Find the degree of the expression
$(1+x)\left(1+x^{6}\right)\left(1+x^{11}\right) \ldots \ldots .\left(1+x^{101}\right)$.

- Watch Video Solution

35. In an A.P. of 99 terms, the sum of all the odd-numbered terms is 2550 .

Then find the sum of all the 99 terms of the A.P.

- Watch Video Solution

36. Divide 32 into four parts which are in A.P. such that the ratio of the product of extremes to the product of means is 7:15.

- Watch Video Solution

37. Show $(m+n) t h$ and $(m-n) t h$ terms of an A.P. is equal to twice the mth terms.

- Watch Video Solution

38. If the sum of three consecutive numbers in A.P., is 24 and their product is 440 , find the numbers.

- Watch Video Solution

39. Prove that the sum of n number of terms of two different A.P. s can be same for only one value of n.
40. In an A.P. if $S_{1}=T_{1}+T_{2}+T_{3}+\ldots .+T_{n}$ (n is odd) $S_{2}=T_{2}+T_{4}+T_{6}+\ldots \ldots \ldots+T_{n-1}$, then find the value of S_{1} / S_{2} in terms of n.

- Watch Video Solution

41. If the sum of the series $2,5,8,11, \ldots$ is 60100 , then find the value of n.

- Watch Video Solution

42. The digits of a positive integer, having three digits, are in A.P. and their sum is 15 . The number obtained by reversing the digits is 594 less than the original number. Find the number.

- Watch Video Solution

43. If eleven A.M. 's are inserted between 28 and 10 , then find the number of integral A.M. 's.

- Watch Video Solution

44. Between 1 and 31 , m numbers have been inserted in such a way that the resulting sequence is an A. P. and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9$. Find the value of m.

- Watch Video Solution

45. Find the sum of first 24 terms of the A.P. $a_{1}, a_{2}, a_{3} \ldots \ldots$, if it is inown that $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$.

- Watch Video Solution

46. If the arithmetic progression whose common difference is nonzero the sum of first $3 n$ terms is equal to the sum of next n terms. Then, find
the ratio of the sum of the $2 n$ terms to the sum of next $2 n$ terms.

- Watch Video Solution

47. The sum of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their 18th terms.

- Watch Video Solution

48. If the first two terms of as H.P. are $\frac{2}{5}$ and $\frac{12}{13}$, respectively. Then find the largest term.

- Watch Video Solution

49. Insert five arithmetic means between 8 and 26 . or Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
50. If a, b, c are in G.P. and $a-b, c-a, a n d b-c$ are in H.P., then prove that $a+4 b+c$ is equal to 0 .

- Watch Video Solution

51. Find the number of terms in the series $20,19 \frac{1}{3}, 18 \frac{2}{3} \ldots$ the sum of which is 300. Explain the answer.

- Watch Video Solution

52. If $a, b a n d c$ are in A.P., $a x, b y, a n d c z$ in G.P. and x, y, z in H.P. then prove that $\frac{x}{z}+\frac{z}{x}=\frac{a}{c}+\frac{c}{a}$.

- Watch Video Solution

53. Find the sum of all three-digit natural numbers, which are divisible by
54. If a, b, c, and d are in H.P., then find the value of $\frac{a^{-2}-d^{-2}}{b^{-2}-c^{-2}}$.

- Watch Video Solution

55. Prove that a sequence in an A.P., if the sum of its n terms is of the form $A n^{2}+B n$, where A, B are constants.

- Watch Video Solution

56. The product of the three numbers in G.P. is 125 and sum of their product taken in pairs is $\frac{175}{2}$. Find them.

- Watch Video Solution

57. If the sequence $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}$, forms an A.P., then prove that $a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots \ldots .+a_{2 n-1}^{2}-a_{2 n}^{2}=\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)$

Watch Video Solution

58. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b .

- Watch Video Solution

59. Three non-zero numbers a, b, c are in A.P. Increasing a by 1 or increasing c by 2 , the numbers are in G.P. Then find $b-a$

- Watch Video Solution

60. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common

- Watch Video Solution

61. If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$.

- Watch Video Solution

62. If the sum of n terms of a G.P. is $3-\frac{3^{n+1}}{4^{2 n}}$, then find the common ratio.

- Watch Video Solution

63. Which term of the G.P. $2,1, \frac{1}{2}, \frac{1}{4}, i s \frac{1}{128} ?$

- Watch Video Solution

64. ' n ' $A . M^{\prime} s$ are inserted between a and 2 b , and then between 2 a and b. If $p^{\text {th }}$ mean in each case is a equal, $\frac{a}{b}$ is equal to

- Watch Video Solution

65. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b , then find the value of n .

- Watch Video Solution

66. The first and second terms of a G.P. are x^{-4} and x^{n}, respectively. If x^{52} is the 8 th term, then find the value of n.

- Watch Video Solution

67. If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$, then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.

- Watch Video Solution

68. If n arithmetic means are inserted between 2 and 38 , then the sum of the resulting series is obtained as 200 . Then find the value of n.

- Watch Video Solution

69. The first terms of a G.P. is 1 . The sum of the third and fifth terms is 90 .

Find the common ratio of the G.P.

- Watch Video Solution

70. If a, b, c, d, e, f are A.M.s between 2 and 12 , then find the sum $a+b+c+d+e+f$.

- Watch Video Solution

71. Three positive numbers from an increasing G.P. If the middle term in this G.P is double, the new numbers are in A.P then the common ratio of the G.P. is :

- Watch Video Solution

72. Divide 28 into four parts in an A.P. so that the ratio of the product of first and third with the product of second and fourth is 8:15.

- Watch Video Solution

73. The fourth, seventh, and the last term of a G.P. are 10,80 , and 2560 , respectively. Find the first term and the number of terms in G.P.

- Watch Video Solution

74. If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P., then prove that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are also in A.P.

Watch Video Solution

75. If a, b, c, d are in G.P. prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.

- Watch Video Solution

76. Let S_{n} denote the sum of first n terms of an A.P. If $S_{2 n}=3 S_{n}$, then find the ratio $S_{3 n} / S_{n}$.

- Watch Video Solution

77. If $p, q, a n d r$ are inA.P., show that the pth, qth, and r th terms of any G.P. are in G.P.
78. Find four number in an A.P. whose sum is 20 and sum of their squares is 120 .

- Watch Video Solution

79. Find the sum of the following series: $0.7+0.77+0.777+\rightarrow n$ terms

- Watch Video Solution

$$
\begin{aligned}
& \text { 80. Find } \begin{array}{l}
\text { the sum } \\
\frac{1}{3^{2}+1}+\frac{1}{4^{2}+2}+\frac{1}{5^{2}+3}+\frac{1}{6^{2}+4}+\infty
\end{array}
\end{aligned}
$$

- Watch Video Solution

81. Prove that in a sequence of numbers $49,4489,444889,44448889$ in which every number is made by inserting $48-48$ in the middle of previous as indicated, each number is the square of an integer.

- Watch Video Solution

82. Find the sum of first 100 terms of the series whose general term is given by $a_{k}=\left(k^{2}+1\right) k!$

- Watch Video Solution

83. If the continued product o three numbers in a G.P. is 216 and the sum of their products in pairs is 156 , find the numbers.

- Watch Video Solution

84. Find the sum of the series
$\frac{2}{1 \times 2}+\frac{5}{2 \times 3} \times 2+\frac{10}{3 \times 4} \times 2^{2}+\frac{17}{4 \times 5} \times 2^{3}+\rightarrow n$ terms.

- Watch Video Solution

85. The sum of some terms of G. P. is 315 whose first term and the common ratio are 5 and 2 , respectively. Find the last term and the number of terms.

- Watch Video Solution

86. A sequence of numbers $A_{n}, n=1,2,3$ is defined as follows : $A_{1}=\frac{1}{2}$ and for each $n \geq 2, \quad A_{n}=\left(\frac{2 n-3}{2 n}\right) A_{n-1}$, then prove that $\sum_{k=1}^{n} A_{k}<1, n \geq 1$

- Watch Video Solution

87. The sum of three numbers in GP. is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

- Watch Video Solution

88. Find the sum of the products of the ten numbers $\pm 1, \pm 2, \pm 3, \pm 4$, and ± 5 taking two at a time.

- Watch Video Solution

89. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that $\mathrm{a}, \mathrm{c}, \mathrm{e}$ are in G.P.

- Watch Video Solution

90. Find the sum $\sum_{r=0} \cdot{ }^{n+r} C_{r}$.
91. Find the sum to n terms of the sequence $(x+1 / x)^{2},\left(x^{2}+1 / x\right)^{2},\left(x^{3}+1 / x\right)^{2}, \ldots$.

- Watch Video Solution

92. Write the first five terms of the following sequence and obtain the corresponding series. $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2$

- Watch Video Solution

93. Prove that the sum to n terms of the series $11+103+1005+i s\left(\frac{10}{9}\right)\left(10^{n}-1\right)+n^{2}$.

- Watch Video Solution

94. If $a_{n+1}=\frac{1}{1-a_{n}}$ for $n \geq 1$ and $a_{3}=a_{1}$. then find the value of $\left(a_{2001}\right)^{2001}$.

- Watch Video Solution

95. Determine the number of terms in a G.P., if $a_{1}=3, a_{n}=96, a n d S_{n}=189$.

- Watch Video Solution

96. Let $\left\{a_{n}\right\}(n \geq 1)$ be a sequence such that $a_{1}=1, a n d 3 a_{n+1}-3 a_{n}=1$ for all $n \geq 1$. Then find the value of a_{2002}.

- Watch Video Solution

97. Let S be the sum, P the product, and R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}=S^{n}$.
98. If the pth term of an A.P. is q and the qth term is p, then find its r th term.

- Watch Video Solution

99. Find the product of three geometric means between 4 and $1 / 4$.

- Watch Video Solution

100. if $(m+1) t h,(n+1)$ th and $(r+1)$ th term of an AP are in GP.and m, n and r in HP. . find the ratio of first term of A.P to its common difference

- Watch Video Solution

101. Insert four G.M.'s between 2 and 486 .

- Watch Video Solution

102. Find the sum $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+$ up to 22 nd term.

- Watch Video Solution

103. If G is the geometric mean of xandy then prove that
$\frac{1}{G^{2}-x^{2}}+\frac{1}{G^{2}-y^{2}}=\frac{1}{G^{2}}$

- Watch Video Solution

104. If the A.M. of two positive numbers $\operatorname{aandb}(a>b)$ is twice their geometric mean. Prove that : $a: b=(2+\sqrt{3}):(2-\sqrt{3})$.

- Watch Video Solution

105. The sum of infinite number of terms in G.P. is 20 and the sum of their squares is 100 . Then find the common ratio of G.P.

Watch Video Solution

106. Find the sum of the series $1+2(1-x)+3(1-x)(1-2 x)+\ldots .+n(1-x)(1-2 x)$ (1$3 x)[1-(n-1) x]$.

(Watch Video Solution

107. Prove that $6^{1 / 2} \times 6^{1 / 4} \times 6^{1 / 8} \ldots \infty=6$.

(Watch Video Solution

108. Three numbers are in G.P. whose sum is 70 . If the extremes be each multiplied by 4 and the means by 5 , they will be in A.P. Find the numbers.
109.

$x=a+\frac{a}{r}+\frac{a}{r^{2}}+\infty, y=b-\frac{b}{r}+\frac{b}{r^{2}}+\infty, a n d z=c+\frac{c}{r^{2}}+\frac{c}{r^{4}}+\infty$ prove that $(x y) / z=(a b) / c$

- Watch Video Solution

110. Find the sum of n terms $1+4+13+40+121+\ldots$. .

- Watch Video Solution

111. If each term of an infinite G.P. is twice the sum of the terms following it, then find the common ratio of the G.P.

- Watch Video Solution

112.

The
sum
to
n terms
of
series
$1+\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right)+\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}\right)+$ is
113. Find the sum of the following series: $(\sqrt{2}+1)+1+(\sqrt{2}-1)+\ldots \ldots .+\infty$

- Watch Video Solution

114. If the set of natural numbers is partitioned into subsets $S_{1}=\{1\}, S_{2}=\{2,3\}, S_{3}=\{4,5,6\}$ and so on then find the sum of the terms in S_{50}.

- Watch Video Solution

115. If $p(x)=\left(1+x^{2}+x^{4}++x^{2 n-2}\right) /\left(1+x+x^{2}++x^{n-1}\right)$ is a polomial in x, then find possible value of n.

- Watch Video Solution

116. If the sum of the squares of the first n natural numbers exceeds their sum by 330 , then find n.

- Watch Video Solution

117. If $f(x)$ is a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, then the value of n is

- Watch Video Solution

118. If $\sum_{r=1}^{n} T_{r}=\frac{n}{8}(n+1)(n+2)(n+3)$ then find $\sum_{r=1}^{n} \frac{1}{T_{r}}$

(Watch Video Solution

119. Find the sum to n terms of the series : $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\ldots$

D Watch Video Solution

120. If the sum to infinity of the series $3+(3+d) \frac{1}{4}+(3+2 d) \frac{1}{4^{2}}+\ldots \ldots \infty$ is $\frac{44}{9}$, then find $\mathrm{d} .$.

- Watch Video Solution

121. Find the sum to infinity of the series $1^{2}+2^{2} x+3^{2} x^{2}+\infty$.

- Watch Video Solution

122. If a, b, c, d are in G.P., then prove that $\left(a^{3}+b^{3}\right)^{-1},\left(b^{3}+c^{3}\right)^{-1},\left(c^{3}+d^{3}\right)^{-1}$ are also in G.P.

- Watch Video Solution

123. Find the sum of the series $1-3 x+5 x^{2}-7 x^{3}+\rightarrow n$ terms.
124. In a geometric progression consisting of positive terms, each term equals the sum of the next terms. Then find the common ratio.

- Watch Video Solution

125. If the A.M. between two numbers exceeds their G.M. by 2 and the GM.

Exceeds their H.M. by 8/5, find the numbers.

(Watch Video Solution

126. The $A M$ of two given positive numbers is 2 . If the larger number is increased by 1 , the $G M$ of the numbers becomes equal to the $A M$ to the given numbers. Then, the HM of the given numbers is

- Watch Video Solution

127. Find the sum of the series $1+3 x+5 x^{2}+7 x^{3}+\ldots \ldots \ldots$ upto n terms.

- Watch Video Solution

128. If $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r z}$ and p, q, and r are in A.P., then prove that x, y, z are in H.P.

- Watch Video Solution

129. Find the sum of n terms of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \ldots$.

- Watch Video Solution

130. Find the sum $\frac{1^{2}}{2}-\frac{3^{2}}{2^{2}}+\frac{5^{2}}{2^{3}}-\frac{7^{2}}{2^{4}}+\ldots . \infty$.

- Watch Video Solution

131. If H is the harmonic mean between P and Q then find the value of $H / P+H / Q$.

- Watch Video Solution

132. If $T_{r}=r\left(r^{2}-1\right)$, then find $\sum_{r=2}^{\infty} \frac{1}{T_{r}}$.

- Watch Video Solution

133. Insert four H.M.'s between $2 / 3$ and $2 / 13$.

- Watch Video Solution

134. If $a, b, a n d c$ are respectively, the pth, qth, and rth terms of a G.P., show that $(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.
135. The A.M. and H.M. between two numbers are 27 and 12, respectively, then find their G.M.

- Watch Video Solution

136. If $a, a_{1}, a_{2}, a_{3}, a_{2 n}, b$ are in A.P. and $a, g_{1}, g_{2}, g_{3},, g_{2 n}, b$. are in G.P. and $h \quad s$ the H.M. of aandb, then prove that $\frac{a_{1}+a_{2 n}}{g_{1} g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{1} g_{2 n-1}}++\frac{a_{n}+a_{n+1}}{g_{n} g_{n+1}}=\frac{2 n}{h}$

- Watch Video Solution

137. If nine arithmetic means and nine harmonic means are inserted between 2 and 3 alternatively, then prove that $A+6 / H=5$ (where A is any of the A.M.'s and H the corresponding H.M.).

- Watch Video Solution

138. If $x, 1$, and z are in A.P. and $x, 2, a n d z$ are in G.P., then prove that $x, a n d 4, z$ are in H.P.

- Watch Video Solution

139. Find two numbers whose arithmetic mean is 34 and the geometric mean is 16 .

- Watch Video Solution

140. If a, b, c, d and p are distinct real number such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$ then $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in

- Watch Video Solution

141. If A.M. and G.M. between two numbers is in the ratio $m: n$ then prove that the numbers are in the ratio $\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$.

- Watch Video Solution

142. Prove that $(666 \ldots . .6)^{2}+(888 \ldots .8)=4444 \ldots .4$.

- Watch Video Solution

143. If a is the A.M. of b and c and the two geometric mean are G_{1} and
G_{2}, then prove that $G_{1}^{3}+G_{2}^{3}=2 a b c$

- Watch Video Solution

144. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are distinct integer in AP such that $d=a^{2}+b^{2}+c^{2}$, then $a+b+c+d$ is
145. The 8th and 14th term of a H.P. are $1 / 2$ and $1 / 3$, respectively. Find its 20th term. Also, find its general term.

- Watch Video Solution

146. Find the number of common terms to the two sequences $17,21,25, \ldots ., 417$ and $16,21,26, . . ., 466$.

- Watch Video Solution

147. If the 20th term of a H.P. is 1 and the 30th term is $-1 / 17$, then find its largest term.

- Watch Video Solution

148. Find the sum $\frac{3}{2}-\frac{5}{6}+\frac{7}{18}-\frac{9}{54}+\ldots \infty$.

- Watch Video Solution

149. If a, b, candd are in H.P., then prove that $(b+c+d) / a,(c+d+a) / b,(d+a+b) / c$ and $(a+b+c) / d$, are in A.P.

- Watch Video Solution

150. The harmonic mean between two numbers is $21 / 5$, their A.M. ' A ' and G.M. ' G ' satisfy the relation $3 A+G^{2}=36$. Then find the sum of square of numbers.

- Watch Video Solution

151. The mth term of a H.P is n and the nth term is m. Proves that its rth term is $\frac{m n}{r}$

- Watch Video Solution

152. The pth term of an A.P. is a and qth term is b. Then find the sum of its $(p+q)$ terms.

- Watch Video Solution

153. If $a>1, b>1$ and $c>1$ are in G.P., then show that $\frac{1}{1+\log _{e} a}, \frac{1}{1+\log _{e} b}$ and $\frac{1}{1+\log _{e} c}$ are in H.P.

(Watch Video Solution

$(x+1)+(x+4)+(x+7)+\ldots+(x+28)=155$.
155. If $a, b, a n d c$ be in G.P. and $a+x, b+x$, and $c+x$ in H.P. then find the value of $\mathrm{x}(\mathrm{a}, \mathrm{b}$ and c are distinct numbers).

- Watch Video Solution

156. The ratio of the sum of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio m th and nth term is $(2 m-1):(2 n-1)$.

- Watch Video Solution

157. If first three terms of the sequence $\frac{1}{16}, a, b, \frac{1}{6}$ are in geometric series and last three terms are in harmonic series, then find the values of a, b.

- Watch Video Solution

158. The sum of $n, 2 n, 3 n$ terms of an A.P. are $S_{1} S_{2}, S_{3}$, respectively. Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.

- Watch Video Solution

159. In a certain A.P., 5 times the 5 th term is equal to 8 times the 8 th terms then find its 13th term.

- Watch Video Solution

160. If x is a positive real number different from 1 , then prove that the numbers $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}$, , are in A.P. Also find their common difference.

- Watch Video Solution

161. Which term of the sequence $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}$, is the first negative term?
162. If $S_{n}=n P+\frac{n(n-1)}{2} Q$, where S_{n} denotes the sum of the first n terms of an A.P., then find the common difference.

- Watch Video Solution

163. Find the sum $\sum_{r=1}^{n} r(r+1)(r+2)(r+3)$

- Watch Video Solution

164. Find the sum $\sum_{r=1}^{n} \frac{r}{(r+1)!}$ where $\mathrm{n}!=1 \times 2 \times 3 \ldots n$.

- Watch Video Solution

165. Find the sum $\sum_{r=1}^{n} r(r+1)(r+2)(r+3)$
166.

Find
the
sum
$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots \ldots \ldots .+\frac{1}{1+2+3+\ldots \ldots \ldots+n}$.

- Watch Video Solution

167. Find the sum to n terms of the series
$\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots$

- Watch Video Solution

168. Find the sum to n terms of the series $3 /\left(1^{2} \times 2^{2}\right)+5 /\left(2^{2} \times 3^{2}\right)+7 /\left(3^{2} \times 4^{2}\right)+$.

- Watch Video Solution

169. Find the sum $\sum_{r=1}^{n} \frac{1}{(a r+b)(a r+a+b)}$.

- Watch Video Solution

170. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$, wherera, b, andc are in A.P. and $|a|<,|b|<1, a n d|c|<1$, then prove that $x, y a n d z$ are in H.P.

- Watch Video Solution

171. If the sum of the series $\sum_{n=0}^{\infty} r^{n},|r|<1$ is s, then find the sum of the series $\sum_{n=0}^{\infty} r^{2 n}$.

- Watch Video Solution

172. Find the sum of the series $\sum_{k=1}^{360}\left(\frac{1}{k \sqrt{k+1}+(k+1) \sqrt{k}}\right)$
173.

Find the
sum
$\frac{1^{4}}{1 \times 3}+\frac{2^{4}}{3 \times 5}+\frac{3^{4}}{5 \times 7}+\ldots \ldots+\frac{n^{4}}{(2 n-1)(2 n+1)}$

- Watch Video Solution

174. Find the value of $11^{2}+12^{2}+13^{2}++20^{2}$.

- Watch Video Solution

175. Find the sum $2+5+10+17+26+\ldots$.

- Watch Video Solution

176. Find the sum up to 20 terms.
$1+\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+\frac{1}{4}(1+2+3+4)+\ldots$.
177. If a, b and c are in G.P. then prove that $\frac{1}{a^{2}-b^{2}}+\frac{1}{b^{2}}=\frac{1}{b^{2}-c^{2}}$.

- Watch Video Solution

178. Find the value of $(32) \cdot(32)^{1 / 6} \cdot(32)^{1 / 36} \ldots \ldots . .$.

- Watch Video Solution

179. Find the sum of the series $1^{2}+3^{2}+5^{2}+\rightarrow n$ terms.

- Watch Video Solution

180. If $S=\frac{1}{1 \times 3 \times 5}+\frac{1}{3 \times 5 \times 7}+\frac{1}{5 \times 7 \times 9}+.$. to infinity, then find the value of $[36 S]$, where [.] represents the greatest integer function.

- Watch Video Solution

181. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals, then prove that $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in H.P.

- Watch Video Solution

182. Let T_{r} denote the rth term of a G.P. for $r=1,2,3$, If for some positive integers mandn, we have $T_{m}=1 / n^{2}$ and $T_{n}=1 / m^{2}$, then find the value of $T_{m+n / 2}$.

- Watch Video Solution

183. Prove that $\frac{b^{2}+c^{2}}{b+c}+\frac{c^{2}+a^{2}}{c+a}+\frac{a^{2}+b^{2}}{a+b}>a+b+c$

- Watch Video Solution

184. If $y z+z x+x y=12$, and x, y, z are positive values, find the greatest value of $x y z$.

Watch Video Solution

185. If $S=a_{1}+a_{2}+\ldots \ldots+a_{n}, a_{i} \in R^{+}$for $\mathrm{i}=1$ to n , then prove that $\frac{S}{S-a_{1}}+\frac{S}{S-a_{2}}+\ldots \ldots+\frac{S}{S-a_{n}} \geq \frac{n^{2}}{n-1}, \forall n \geq 2$

- Watch Video Solution

186.

If

$$
m>1, n \in N
$$

show
that
$1^{m}+2^{m}+2^{2 m}+2^{3 m}+\ldots+2^{n m-m}>n^{1-m}\left(2^{n}-1\right)^{m}$

- Watch Video Solution

187. If $a, b>0$ such that $a^{3}+b^{3}=2$, then show that $a+b \leq 2$.
188. Prove that $2^{n}>1+n \sqrt{2^{n-1}}, \forall n>2$ where n is a positive integer.

- Watch Video Solution

189. In a triangle $A B C$ prove that $\frac{a}{a+c}+\frac{b}{c+a}+\frac{c}{a+b}<2$

- Watch Video Solution

190. Find the least value of $\sec A+\sec B+\sec C$ in an acute angled triangle.

- Watch Video Solution

191. Prove that $[(n+1) / 2]^{n}>(n!)$.

- Watch Video Solution

192. If $a_{1}+a_{2}+a_{3}+\ldots \ldots .+a_{n}=1 \forall a_{i}>0, i=1,2,3, \ldots \ldots, n$, then find the maximum value of $a_{1} a_{2} a_{3} a_{4} a_{5} \ldots \ldots a_{n}$.

- Watch Video Solution

193. If a, b, c are positive, then prove that
$a /(b+c)+b /(c+a)+c /(a+b) \geq 3 / 2$.

- Watch Video Solution

194. If $(\log)_{10}\left(x^{3}+y^{3}\right)-(\log)_{10}\left(x^{2}+y^{2}-x y\right) \leq 2$, and x, y are positive real number, then find the maximum value of $x y$.

- Watch Video Solution

195. If $\log _{2}(a+b)+\log _{2}(c+d) \geq 4$. Then the minimum value of the expression $a+b+c+d$ is
196. $\begin{aligned} & a+b+c=1, \\ & \frac{8}{27 a b c}>\left\{\frac{1}{a}-1\right\}\left\{\frac{1}{b}-1\right\}\left\{\frac{1}{c}-1\right\}>8 .\end{aligned}$

- Watch Video Solution

197. If $a, b, a n d c$ are distinct positive real numbers such that $a+b+c=1$, then prove that $(1-\mathrm{a})(1-\mathrm{b})(1-\mathrm{c})>8$.

Watch Video Solution

198. If $a^{2}+b^{2}+c^{2}-a b-b c-c a=0$ then, prove that $\mathrm{a}=\mathrm{b}=\mathrm{c}$

- Watch Video Solution

199. Find the minimum value of $4 \sin ^{2} x+4 \cos ^{2} x$.
200. Prove that $(a b+x y)(a x+b y)>4 a b x y(a, b, x, y>0)$.

- Watch Video Solution

201. The minimum value of the sum of real number $a^{-5}, a^{-4}, 3 a^{-3}, 1, a^{8}$ and a^{10} with $a>0$ is

- Watch Video Solution

202. If $a_{1}, a_{2}, \ldots . a_{n}$ are positive real number whose product is a fixed number c , then the minimum value of $a_{1}+a_{2}+\ldots \ldots+a_{n-1}+a_{n}$ is

- Watch Video Solution

203. If a, b, c, d are positive real number such that $a+b+c+d=2$, then $M=$ $(a+b)(c+d)$ satisfies the relation:

(D) Watch Video Solution

204. A straight line through the vertex P of a triangle $P Q R$ intersects the side $P Q$ at the point S and the circumcircle of the triangle $P Q R$ at the point T. If S is not the center of the circumcircle, then

$$
\begin{array}{ll}
\frac{1}{P S}+\frac{1}{S T}<\frac{2}{\sqrt{Q S x S R}} & \frac{1}{P S}+\frac{1}{S T}>\frac{2}{\sqrt{Q S x S R}} \\
\frac{1}{P S}+\frac{1}{S T}<\frac{4}{Q R} & \text { (d) } \frac{1}{p s}+\frac{1}{S T}>\frac{4}{Q R}
\end{array}
$$

- Watch Video Solution

205. If $\alpha \in\left(0, \frac{\pi}{2}\right)$, then $\sqrt{x^{2}+x}+\frac{\tan ^{2} \alpha}{\sqrt{x^{2}+x}}$ is always greater than or equal to (a) $2 \tan \alpha$ (b) 1 (c) 2 (d) $\sec 2 \alpha$

- Watch Video Solution

206. In triangle $A B C$, prove that $\cos e c \frac{A}{2}+\operatorname{cosec} \frac{B}{2}+\operatorname{cosec} \frac{C}{2} \geq 6$.
207. Prove that in $A B C, \tan A+\tan C \geq 3 \sqrt{3}$, where A, B, C are circle angles.

- Watch Video Solution

208. If a, b, andc are distinct positive real numbers such that $a+b+c=1$, then prove that $(1-\mathrm{a})(1-\mathrm{b})(1-\mathrm{c})>8$.

- Watch Video Solution

209. If $a^{2}+b^{2}+c^{2}=x^{2}+y^{2}+z^{2}=1$, then show that $a x+b y+c z \leq 1$.

- Watch Video Solution

210. Prove that $a^{4}+b^{4}+c^{4}>a b c(a+b+c)$. [a,b,c are distinct positive real number]..

- Watch Video Solution

211. Prove that the greatest value of $x y$ is $\frac{c^{3}}{\sqrt{2 a b}}$, if $a^{2} x^{4}+b^{2} y^{4}=c^{6}$.

- Watch Video Solution

212. If $y=\sin ^{-1}(10 x)+\frac{\pi}{2}$ then find the value of $\frac{d y}{d x}$.

- Watch Video Solution

213. If $a+b=1, a>0$, prove that $\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2} \geq \frac{25}{2}$.

- Watch Video Solution

214. If x and y are positive real numbers and m, n are any positive integers, then prove that $\frac{x^{n} y^{m}}{\left(1+x^{2 n}\right)\left(1+y^{2 m}\right)}<\frac{1}{4}$

- Watch Video Solution

215. The least value of the expression
$2(\log)_{10} x-(\log)_{x}(0.01), f$ or $x>1$, is a. 10 b. 2 c. -0.01 d . none of these

- Watch Video Solution

216. If a, b, c are positive real no., then prove that $[(1+a)(1+b)(1+c)]^{7}>7^{7} a^{4} b^{4} c^{4}$.

- Watch Video Solution

217. True / False For every intger $n>1$, the inequality $(n!)^{1 / n}<\frac{n+1}{2}$ holds
218. If $x, y \in R^{+}$satisfying $x+y=3$, then the maximum value of $x^{2} y$ is.

- Watch Video Solution

219. For any $x, y, \in R^{+}, x y>0$. Then the minimum value of $\frac{2 x}{y^{3}}+\frac{x^{3} y}{3}+\frac{4 y^{2}}{9 x^{4}}$ is.

- Watch Video Solution

220. If $a, b, a n d c$ are positive and $9 a+3 b+c=90$, then the maximum value of $(\log a+\log b+\log c)$ is (base of the logarithm is 10).
221. Given that x, y, z are positive real such that $x y z=32$. If the minimum value of $x^{2}+4 x y+4 y^{2}+2 z^{2}$ is equal m, then the value of $m / 16$ is.

- Watch Video Solution

222. If the product of n positive numbers is n^{n}, then their sum is (a)a positive integer (b). divisible by n (c)equal to $n+1 / n$ (d)never less than n^{2}

- Watch Video Solution

223. If a, b, c are different positive real numbers such that $b+c-a, c+a-b \quad$ and $a+b-c$ are positive, then $(b+c-a)(c+a-b)(a+b-c)-a b c$ is a. positive b. negative c. nonpositive d. non-negative
224. Find the greatest value of $x^{2} y^{3}$, where x and y lie in the first quadrant on the line $3 x+4 y=5$.

- Watch Video Solution

225. Find the maximum value of $(7-x)^{4}(2+x)^{5}$ when x lies between -2 and 7.

- Watch Video Solution

$$
\begin{aligned}
& \text { 226. If } a_{1}, a_{2}, \ldots \ldots, a_{n}>0, \quad \text { then prove that } \\
& \frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{4}}+\ldots .+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}>n
\end{aligned}
$$

- Watch Video Solution

227. If $a>b$ and n is a positive integer, then prove that $a^{n}-b^{n}>n(a b)^{(n-1) / 2}(a-b)$.
228. If a, b, andc are positive and $a+b+c=6$, show that $(a+1 / b)^{2}+(b+1 / c)^{2}+(c+1 / a)^{2} \geq 75 / 4$.

- Watch Video Solution

229.

Prove
that
$\left[\frac{x^{2}+y^{2}+z^{2}}{x+y+z}\right]^{x+y+z}>x^{x} y^{y} z^{z}>\left[\frac{x+y+z}{3}\right]^{x+y+z}(x, y, z>0)$

- Watch Video Solution

230. Prove that $1^{1} \times 2^{2} \times 3^{3} \times n^{n} \leq\left[\frac{2 n+1}{3}\right]^{n \frac{n+1}{2}}, n \in N$.

- Watch Video Solution

231. Prove that $\frac{2}{b+c}+\frac{2}{c+a}+\frac{2}{a+b}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$,where $a, b, c>0$.

- Watch Video Solution

232. The minimum value of $2^{\sin x}+2^{\cos x}$ is

- Watch Video Solution

233. In how many parts an integer $N \geq 5$ should be divide so that the product of the parts is maximized.

- Watch Video Solution

234. In $\triangle A B C$ internal angle bisector Al, Bl and Cl are produced to meet opposite sides in $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Prove that the maximum value of $\frac{A I \times B I \times C I}{A A^{\prime} \times B B^{\prime} \times C C^{\prime}}$ is $\frac{8}{27}$
235. The minimum value of $\frac{x^{4}+y^{4}+z^{2}}{x y z}$ for positive real numbers x, y, z is (a) $\sqrt{2}$ (b) $2 \sqrt{2}$ (c) $4 \sqrt{2}$ (d) $8 \sqrt{2}$

- Watch Video Solution

236. If x, y, z are positive real number, then show that $\sqrt{\left(x^{-1} y\right)} \mathrm{x}$ $\sqrt{\left(y^{-1} z\right)} \times \sqrt{\left(z^{-1} x\right)}=1$

- Watch Video Solution

237. The least value of $6 \tan ^{2} \varphi+54 \cot ^{2} \varphi+18$ is $(I) 54$ when $A . M . \geq G M$. Is applicable for $6 \tan ^{2} \varphi, 54 \cot ^{2} \varphi, 18(I I) 54$ when A. M. $\geq G M$. Is applicable for $6 \tan ^{2} \varphi, 54 \cot ^{2} \varphi$ and 18 is added further (III) 78 when $\tan ^{2} \varphi=\cot ^{2} \varphi(I V)$ none
238. A rod of fixed length k slides along the coordinates axes, If it meets the axes at $A(a, 0) \operatorname{and} B(0, b)$, then the minimum value of $\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2}$ (a)0 (b) 8 (c) $k^{2}+4+\frac{4}{k^{2}}$ (d) $k^{2}+4+\frac{4}{k^{2}}$

- Watch Video Solution

239. If $y=3^{x-1}+3^{-x-1}$, then the least value of y is (a) 2 (b) 6 (c) $2 / 3$ (d) $3 / 2$

- Watch Video Solution

240. If $a b^{2} c^{3}, a^{2} b^{3} c^{4}, a^{3} b^{4} c^{5}$ are in A.P. $(a, b, c>0)$, then the minimum value of $a+b+c$ is (a) 1 (b) 3 (c) 5 (d) 9

- Watch Video Solution

241. If the product of n positive numbers is n^{n}, then their sum is a positive integer b. divisible by n equal to $n+1 / n$ never less than n^{2}

Watch Video Solution

242. Minimum value of $(b+c) / a+(c+a) / b+(a+b) / c$ (for real positive numbers a, b, c) is (a)1 (b)2 (c) 4 (d) 6

- Watch Video Solution

243. Prove that $p x^{q-r}+q x^{r-p}+r x^{p-q}>p+q+r$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are distinct number and $x>0, x=!1$.

- Watch Video Solution

244. Given are positive rational numbers a, b, c such that $a+b+c=1$, then prove that $a^{a} b^{b} c^{c}+a^{b} b^{c} c^{a}+a^{c} b^{a} c^{b}<1$.
245. Prove that $\left[\frac{a^{2}+b^{2}}{a+b}\right]^{a+b}>a^{a} b^{b}>\left\{\frac{a+b}{2}\right\}^{a+b}$.

- Watch Video Solution

246. Prove that $a^{p} b^{q}<\left(\frac{a p+b q}{p+q}\right)^{p+q}$.

- Watch Video Solution

247. Let $x_{1}, x_{2},, x_{n}$ be positive real numbers and we define $S=x_{1}+x_{2}+x_{n}$. Prove that
$\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{n}\right) \leq 1+S+\frac{S^{2}}{2!}+\frac{S^{3}}{3!}++\frac{S^{n}}{n!}$

- Watch Video Solution

248. If $2 x^{3}+a x^{2}+b x+4=0$ (a and b are positive real numbers) has 3 real roots, then prove that $a+b \geq 6\left(2^{\frac{1}{3}}+4^{\frac{1}{3}}\right)$.

Watch Video Solution

249. Find the greatest value of $x^{2} y^{3} z^{4}$ if $x+y+z=1$, wherex, y, z are positive.

- Watch Video Solution

250.

Prove
$.{ }^{n} C_{1}+2 \times \cdot{ }^{n} C_{2}+3 \times \cdot{ }^{n} C_{3}+\ldots . .+n \times \cdot{ }^{n} C_{n}=n 2^{n-1}$.
Hence, prove that
${ }^{n} C_{1} \cdot\left(.{ }^{n} C_{2}\right)^{2} \cdot\left(.{ }^{n} C_{3}\right)^{3} \ldots \ldots .\left(.{ }^{n} C_{n}\right)^{n} \leq\left(\frac{2^{n}}{n+1}\right)^{.{ }^{n+1} C_{2}} \forall n \in N$.

- Watch Video Solution

251. If $y=\frac{x^{4}}{x^{8}+8 x^{2}}$, then find the value of $\frac{d y}{d x}$

- Watch Video Solution

252. If a, b, c are three distinct positive real numbers in G.P., then prove that $c^{2}+2 a b>3 a c$

- Watch Video Solution

253. For $x \geq 0$, the smallest value of the function $f(x)=\frac{4 x^{2}+8 x+13}{6(1+x)}$, is

(Watch Video Solution

254. If the first and the $(2 n-1)^{t} h$ term of an A.P.G.P anf H.P are equal and their nth term are a,b,c respectively,then
255. For positive real numbers $a, b c$ such that $a+b+c=p$, which one holds? (a) $\quad(p-a)(p-b)(p-c) \leq \frac{8}{27} p^{3}$
$(p-a)(p-b)(p-c) \geq 8 a b c$ (c) $\frac{b c}{a}+\frac{c a}{b}+\frac{a b}{c} \leq p$ (d) none of these

- Watch Video Solution

256. If x, y, z are positive numbers is $A \dot{P}$; then (a) $y^{2} \geq x z$ $x y+y z \geq 2 x z$ (c) $\frac{x+y}{2 y-x}+\frac{y+z}{2 y-z} \geq 4$ (d) none of these

- Watch Video Solution

257. Find $\int \frac{1}{\left(1-x^{2}\right) \sqrt{1+x^{2}}} d x$

- Watch Video Solution

258. If $a>0$, then least value of $\left(a^{3}+a^{2}+a+1\right)^{2}$ is (a) $64 a^{2}$ (b) $16 a^{4}$ (c) $16 a^{3}$ (d)d. none of these

D Watch Video Solution

259. The minimum value of $|z-1|+|z-3|$ is

- Watch Video Solution

260. If $a, b, c, d \in R^{+}$such that $a+b+c=18$, then the maximum value of $a^{2} b^{3} c^{4}$ is equal to a. $2^{18} \times 3^{2}$ b. $2^{18} \times 3^{3}$ c. $2^{19} \times 3^{2}$ d. $2^{19} \times 3^{3}$

- Watch Video Solution

261. If x, y and z are positive real umbers and $x=\frac{12-y z}{y+z}$. The maximum value of $x y z$ equals.

- Watch Video Solution

262. Let $x^{2}-3 x+p=0$ has two positive roots $a a n d b$, then minimum value if $\left(\frac{4}{a}+\frac{1}{b}\right)$ is,

- Watch Video Solution

263. If $a, b, c \in R^{+}$, then the minimum value of $a\left(b^{2}+c^{2}\right)+b\left(c^{2}+a^{2}\right)+c\left(a^{2}+b^{2}\right)$ is equal to (a) $a b c$ (b) $2 a b c$ (c) $3 a b c$ (d) $6 a b c$

- Watch Video Solution

264. If $a, b, c, d \in R^{+}$and a, b, c, d are in H.P., then (a) $a+d>b+c$ (b) $a+b>c+d$ (c) $a+c>b+d$ (d)none of these

- Watch Video Solution

265. The minimum value of $P=b c x+c a y+a b z$, when $x y z=a b c$, is $a .3 a b c b .6 a b c c . a b c d .4 a b c$

- Watch Video Solution

266. If l, m, n are the three positive roots of the equation $x^{3}-a x^{2}+b x-48=0, \quad$ then the minimum value of $(1 / l)+(2 / m)+(3 / n)$ equals a1 b2 c $\frac{3}{2} \mathrm{~d} \frac{5}{2}$

- Watch Video Solution

267. If positive numbers a, b, c are in H.P., then equation $x^{2}-k x+2 b^{101}-a^{101}-c^{101}=0(k \in R)$ has (a)both roots positive (b)both roots negative (c)one positive and one negative root (d)both roots imaginary

- Watch Video Solution

268. For $x^{2}-(a+3)|x|+4=0$ to have real solutions, the range of a is
a. $(-\infty,-7] \cup[1, \infty)$
b. $(-3, \infty)$
c. $(-\infty,-7)$ d. $[1, \infty)$

- Watch Video Solution

269. If a, b, c are the sides of a triangle, then the minimum value of $\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}$ is equal to (a)3 (b)6 (c)9 (d)12

- Watch Video Solution

270. If $a, b, c, d \in R^{ \pm}\{1\}$, then the minimum value of $(\log)_{d} a+(\log)_{b} d+(\log)_{a} c+(\log)_{c} b$ is (a) 4 (b) 2 (c) 1 (d)none of these

- Watch Video Solution

271. If $a, b, c \in R^{+}$, then $\frac{b c}{b+c}+\frac{a c}{a+c}+\frac{a b}{a+b} \quad$ is always
$\leq \frac{1}{2}(a+b+c)(\mathrm{b}) \geq \frac{1}{3} \sqrt{a b c}(\mathrm{c}) \leq \frac{1}{3}(a+b+c)$ (d) $\geq \frac{1}{2} \sqrt{a b c}$
272. If $a, b, c \in R^{+}$then $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ is always (a) ≥ 12 (b) ≥ 9 (c) ≤ 12 (d)none of these

- Watch Video Solution

273. The first term of an arithmetic progression is 1 and the sum of the first nine terms equal to 369 . The first and the ninth term of a geometric progression coincide with the first and the ninth term of the arithmetic progression. Find the seventh term of the geometric progression.

- Watch Video Solution

274. Let a, b, c be positive integers such that b / a is an integer. if a, b, c are in geometric progression and the arithmetic mean of a, b, c is $b+2$, then the value of $\frac{a^{2}+a-14}{a+1}$ is
275. Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6: 11 and the seventh term lies in between 130 and 140 , then the common difference of this A.P. is

- Watch Video Solution

276. If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are $\frac{3}{5}, \frac{4}{5}$ b. $\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}$ c. $\frac{1}{2}, \frac{\sqrt{3}}{2}$ d. none of these

- Watch Video Solution

277. The sum of an infinite geometric series is 162 and the sum of its first n terms is 160 . If the inverse of its common ratio is an integer, then which of the following is not a possible first term? 108 b .144 c .160 d . none of these
278. If a, b, c are digits, then the rational number represented by $0 . c a b a b a b \ldots$. is a. $\frac{c a b}{990}$ b. $\frac{99 c+b a}{990}$ c. $\frac{99 c+10 a+b}{99}$ d. $\frac{99 c+10 a+b}{990}$

- Watch Video Solution

279. If $a=\underbrace{111 \ldots .1}_{55 \text { times }}, b=1+10+10^{2}+10^{3}+10^{4}$ and $c=1+10^{5}$ $+10^{10}+\ldots+10^{50}$ then prove that $a=b c$

- Watch Video Solution

280. Consider the ten numbers $a r, a r^{2}, a r^{3}, \ldots ., a r^{10}$. If their sum is 18 and the sum of their reciprocals is 6 , then the product of these ten numbers is a. 81 b. 243 c. 343 d .324

- Watch Video Solution

281. The sum of 20 terms of a series of which every even term is 2 times the term before it, every odd term is 3 times the term before it, the first term being unity is a. $\left(\frac{2}{7}\right)\left(6^{10}-1\right)$ b. $\left(\frac{3}{7}\right)\left(6^{10}-1\right)$ c. $\left(\frac{3}{5}\right)\left(6^{10}-1\right)$ d. none of these

- Watch Video Solution

282. Let a_{n} be the nth term of a G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2 n}=\alpha$ and $\sum_{n=1}^{100} a_{2 n-1}=\beta$, such that $\alpha \neq \beta$, then the common ratio is
(a) α / β b. β / α c. $\sqrt{\alpha / \beta}$ d. $\sqrt{\beta / \alpha}$

- Watch Video Solution

283. If the pth, qth, and rth terms of an A.P. are in G.P., then the common ratio of the G.P. is a. $\frac{p r}{q^{2}}$ b. $\frac{r}{p}$ c. $\frac{q+r}{p+q}$ d. $\frac{q-r}{p-q}$
284. In a G.P. the first, third, and fifth terms may be considered as the first, fourth, and sixteenth terms of an A.P. Then the fourth term of the A.P., knowing that its first term is 5 , is 10 b .12 c .16 d .20

- Watch Video Solution

285. If a,b,c,d be in G.P. show that $(b-c)^{2}+(c-a)^{2}+(d-b)^{2}=(a-d)^{2}$.

- Watch Video Solution

286. If the pth, qth, ruth, and th terms of an A.P. are in G.P., then $p-q, q-r, r-s$ are in a. A.P. b. G.P. c. H.P. d. none of these

- Watch Video Solution

287. $A B C$ is a right-angled triangle in which $\angle B=90^{\circ}$ and $B C=a$. If n points $L_{1}, L_{2}, L_{n} o n A B$ is divided in $n+1$ equal parts and
$L_{1} M_{1}, L_{2} M_{2},, L_{n} M_{n}$ are line segments parallel to $B \operatorname{Cand} M_{1}, M_{2},, M_{n}$ are on $A C$, then the sum of the lengths of $L_{1} M_{1}, L_{2} M_{2},, L_{n} M_{n}$ is $\frac{a(n+1)}{2}$ b. $\frac{a(n-1)}{2}$ c. $\frac{a n}{2}$ d. none of these

- Watch Video Solution

288. If $(1-p)\left(1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}\right)=1-p^{6}, p \neq 1$, then the value of $\frac{p}{x}$ is
a. $\frac{1}{3}$ b. 3 c. $\frac{1}{2}$ d. 2

- Watch Video Solution

289. ABCD is a square of length a, $a \in N$, a > 1. Let $L_{1}, L_{2}, L_{3} \ldots$ be points on BC such that $B L_{1}=L_{1} L_{2}=L_{2} L_{3}=\ldots .1$ and $M_{1}, M_{2}, M_{3}, \ldots$ be points on CD such that $C M_{1}=M_{1} M_{2}=M_{2} M_{3}=\ldots=1$. Then $\sum_{n=1}^{a-1}\left(\left(A L_{n}\right)^{2}+\left(L_{n} M_{n}\right)^{2}\right)$ is equal to :
290. Let $T_{r} a n d S_{r}$ be the rth term and sum up to rth term of a series, respectively. If for an odd number $n, S_{n}=\operatorname{nand} T_{n}=\frac{T_{n}-1}{n^{2}}$, then T_{m} (m being even)is $\frac{2}{1+m^{2}}$ b. $\frac{2 m^{2}}{1+m^{2}}$ c. $\frac{(m+1)^{2}}{2+(m+1)^{2}}$ d. $\frac{2(m+1)^{2}}{1+(m+1)^{2}}$

- Watch Video Solution

291. If $(1+3+5++p)+(1+3+5++q)=(1+3+5++r)$ where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of $p+q+r($ wherep $>6)$ is 12 b .21 c .45 d .54

- Watch Video Solution

292. If $a x^{3}+b x^{2}+c x+d$ is divisible by $a x^{2}+c$, thena, b, c, d are in a.
A.P. b. G.P. c. H.P. d. none of these

- Watch Video Solution

293. If the lines $3 x+b y+5=0$ and $a x-5 y+7=0$ are perpendicular to each other, find the relation connecting a and b.

- Watch Video Solution

294. In a geometric series, the first term is a and common ratio is r. If S_{n} denotes the sum of the terms and $U_{n}=\sum_{n=1}^{n} S_{n}$,then $r S_{n}+(1-r) U_{n}$ equals a. 0 b. n c. $n a$ d. $n a r$

- Watch Video Solution

295. If $x, y, a n d z$ are distinct prime numbers, then (a). x, y, andz may be in A.P. but not in G.P. (b) x, y, andz may be in G.P. but not in A.P. (c). $x, y, a n d z$ can neither be in A.P. nor in G.P. (d).none of these

- Watch Video Solution

296. If x, y, and z are in G.P. and $x+3, y+3$, and $z+3$ are in H.P., then a. $y=2$ b. $y=3$ c. $y=1$ d. $y=0$

- Watch Video Solution

297. If A.M., G.M., and H.M. of the first and last terms of the series of $100,101,102, \ldots(n-1), n$ are the terms of the series itself, then the value of n is $(100<n<500)$

- Watch Video Solution

298. The sum $1+3+7+15+31+\ldots \rightarrow 100$ terms is a. $2^{100}-102 \mathrm{~b}$.
$2^{99}-101$ c. $2^{101}-102 \mathrm{~d}$. none of these

- Watch Video Solution

299. The sum of first 15 terms of an A.P. is 750 and its first term is 15 . Find its 20th term.

- Watch Video Solution

300. The coefficient of x^{49} in the product $(x-1)(x-3)(x-99)$ is a.
-99^{2} b. 1 c. -2500 d. none of these

- Watch Video Solution

301. Let $S=\frac{4}{19}+\frac{44}{19^{2}}+\frac{444}{19^{3}}+u p \rightarrow \infty$. Then s is equal to a. $40 / 9$ b. $38 / 81$ c. $36 / 171 \mathrm{~d}$. none of these

- Watch Video Solution

302. If $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$, then the value of $S_{n}=1+\frac{3}{2}+\frac{5}{3}+\ldots+\frac{99}{50}$ is a. $H_{50}+50$ b. $100-H_{50}$ c. $49+H_{50}$ d.

- Watch Video Solution

303. If the sum to infinity of the series $1+2 r+3 r^{2}+4 r^{3}+$ is $9 / 4$, then value of r is (a) $1 / 2 \mathrm{~b} .1 / 3 \mathrm{c} .1 / 4 \mathrm{~d}$. none of these

- Watch Video Solution

304. The sum of series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\infty$ is a. $7 / 16$ b. $5 / 16 \mathrm{c}$. 104/64 d. $35 / 16$

- Watch Video Solution

305. The sum 20 terms of a series whose r th term is given by $T_{r}=(-1)^{r}\left(\frac{r^{2}+r+1}{r!}\right)$ is
306. Consider the sequence $1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, \ldots$. Then 1025th terms will be (a) 2^{9} b. 2^{11} c. 2^{10} d. 2^{12}

- Watch Video Solution

307. If the first term of an A.P. is - 18 and its 10th term is zero, then find its common difference.

- Watch Video Solution

308. Suppose that $\mathrm{F}(\mathrm{n}+1)=\frac{2 F(n)+1}{2}$ for $\mathrm{n}=1,2,3, \ldots$, and $\mathrm{F}(1)=2$. Then $F(101)$ is

- Watch Video Solution

309. If the numbers $n-2,4 n-1$ and $5 n+2$ are in A.P., find the value of n.
310. The first and the last terms of an A.P. are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is their sum?

D Watch Video Solution

311. If a, b, and c are in A.P., then $a^{3}+c^{3}-8 b^{3}$ is equal to (a). $2 a b c$ (b). $6 a b c$ (c). $4 a b c$ (d). none of these

- Watch Video Solution

312. The number of terms of an A.P. is even. The sum of the odd terms is 24 , and of the even terms is 30 , and the last term exceeds the first by $10 \frac{1}{2}$ then the number of terms in the series is a. 8 b. 4 c. 6 d. 10

D Watch Video Solution

313. The first term of an A.P. is 5 , the last term is 45 and the sum is 400 .

Find the number of terms and the common difference.

- Watch Video Solution

314. If the sum of m terms of an A.P. is the same as the sum of its n terms, then the sum of its $(m+n)$ terms is (a). $m n$ (b). $-m n$ (c). $1 / m n$ (d). 0

- Watch Video Solution

315. Find the 20th term of the A.P. whose 7th term is 24 less than the 11th term, first term being 12.

- Watch Video Solution

316. About 150 workers were engaged to finish a piece of work in a certain number of days. Four workers stopped working on the second day, four more workers stopped their work on the third day and so on. It took 8
more days to finish the work. Then the number of days in which the work was completed is 29 days b. 24 days c. 25 days d. none of these

- Watch Video Solution

317. in a $G . P(p+q)$ th term $=m$ and $(p-q)$ th term $=n$, then find its p th term

- Watch Video Solution

318. The sum of three numbers in A.P. is 3 and their product is -35 . Find the numbers.

- Watch Video Solution

319. Find the sum of first 51 terms of the A.P. whose second and third terms are 14 and 18 respectively.
320. Let S_{1}, S_{2}, ,", be squares such that for each $n \geq 1$ the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a sides of S_{1} is 10 cm , then for which of the following values of n in the ares of S_{n} less than $1 \mathrm{sq} . \mathrm{cm}$?

- Watch Video Solution

321. Find the 6th term from the end of the list of numbers $3,-6,12,-24$,
..., 12288.

- Watch Video Solution

322. Determine the 12th term of a G.P. whose 8th term is 192 and common ratio is 2.

- Watch Video Solution

323. Consider a sequence $\left\{a_{n}\right\}$ with $a_{1}=2$ and $a_{n}=\frac{a_{n-1}^{2}}{a_{n-2}}$ for all $n \geq 3$, terms of the sequence being distinct. Given that a_{1} and a_{5} are positive integers and $a_{5} \leq 162$ then the possible value(s) of a_{5} can be (a) 162 (b) 64 (c) 32 (d) 2

- Watch Video Solution

324. Which of the following can be terms of any A.P.? a. 1,6,19 b.
$\sqrt{2}, \sqrt{50}, \sqrt{98}$ c. $\log 2, \log 16, \log 128$ d. $\sqrt{2}, \sqrt{3}, \sqrt{7}$

- Watch Video Solution

325. $x, x+3, x+9$ are first three terms of a G.P. Find the value of x.

- Watch Video Solution

326. Each question has four choices a, b, c and d out of which only one is correct. Each question contains Statement 1 and Statement 2. Make your answer as: If both the statements are true and Statement 2 is the correct explanation of statement 1 . If both the statements are True but Statement 2 is not the correct explanation of Statement 1. If Statement 1 is True and Statement 2 is False. If Statement 1 is False and Statement 2 is True. Statement 1: $\frac{\sin \pi}{18}$ is a root of $8 x^{3}-6 x+1=0$ Statement 2: For any $\theta \in R, \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$

- Watch Video Solution

327. Find the sum of the following A.P.s : (i) $1 / 15,1 / 12,1 / 10, \ldots$ to 11 terms

- Watch Video Solution

328. Find the value of x such that, (i) $-2 / 7, x,-7 / 2$ are three consecutive terms of a G.P.
329. Let $a_{1}, a_{2}, \ldots, a_{100}$ be an arithmetic progression with $a_{1}=3$ and $S_{p}=\sum_{j=1}^{p} a_{j}, 1 \leq p \leq 100 . F$ or any $\int e \geq$ rnwith 1 le n le 20
$, \leq t m=5 n, \quad$ if \quad S_m $_{-} /$S_ndoes $\neg n$, thena_2 ${ }^{2}$ is

- Watch Video Solution

330. If $1^{2}+2^{2}+3^{2}++2003^{2}=(2003)(4007)(334)$ and
$(1)(2003)+(2)(2002)+(3)(2001)++(2003)(1)=(2003)(334)(x)$, then x is equal to a. 2005 b. 2004 c. 2003 d. 2001

- Watch Video Solution

331. The value of $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1=220$, then the value of n equals a. 11 b . 12 c. 10 d .9
332. The sum of $0.2+0.004+0.00006+0.0000008+\ldots$ to ∞ is a. $\frac{200}{891}$
b. $\frac{2000}{9801}$
c. $\frac{1000}{9801}$ d. none of these

Watch Video Solution

333. If $\quad t_{n}=\frac{1}{4}(n+2)(n+3) \quad$ for $\quad n=1,2,3, \ldots . \quad$ then $\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{1}{t_{3}}+\ldots .+\frac{1}{t_{2003}}=$

- Watch Video Solution

334. The coefficient of x^{19} in the polynomial $(x-1)(x-2)\left(x-2^{2}\right)\left(x-2^{19}\right)$ is $2^{20}-2^{19}$ b. $1-2^{20}$ c. 2^{20} d. none of these

- Watch Video Solution

335. If $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+=\frac{\pi}{4} \quad$, then value of $\frac{1}{1 \times 3}+\frac{1}{5 \times 7}+\frac{1}{9 \times 11}+$ is $\pi / 8$ b. $\pi / 6$ c. $\pi / 4$ d. $\pi / 36$

- Watch Video Solution

336. Find the value of p, given that the line $y / 2=x-p$ passes through the point (-4, 4)

- Watch Video Solution

337. If t_{n} denotes the nth term of the series $2+3+6+11+18+\ldots$ then t_{50} a. $49^{2}-1$ b. 49^{2} c. $50^{2}+1$ d. $49^{2}+2$

- Watch Video Solution

338. The number of positive integral ordered pairs of (a, b) such that $6, a, b$ are in harmonic progression is \qquad .
339. Let $a, b>0$, let $5 a-b, 2 a+b, a+2 b$ be in A.P. and $(b+1)^{2}, a b+1,(a-1)^{2}$ are in G.P., then the value of $\left(a^{-1}+b^{-1}\right)$ is

- Watch Video Solution

340. The difference between the sum of the first k terms of the series $1^{3}+2^{3}+3^{3}+\ldots \ldots .+n^{3}$ and the sum of the first k terms of $1+2+3+\ldots \ldots . .+n$ is 1980 . The value of k is \qquad .

- Watch Video Solution

341. The value of the $\sum_{n=0}^{\infty} \frac{2 n+3}{3^{n}}$ is equal to \qquad .

- Watch Video Solution

342. How many two digit numbers are divisible by 3 ?

- Watch Video Solution

343. If the roots of $10 x^{3}-n x^{2}-54 x-27=0$ are in harmonic progression, then n eqauls \qquad .

- Watch Video Solution

344. The 5th and 8th terms of a geometric sequence of real numbers are 7 ! And 8 ! Respectively. If the sum to first n tems of the G.P. is 2205 , then n equals \qquad .

- Watch Video Solution

345. Find the 31st term of an A.P. whose 11th term is 38 and 6th term is 73.
346. Find 23 rd term of the AP 7, 3, 1, -1, ,-3.

- Watch Video Solution

347. The 5th and 13 th term of an A.P are 5 and -3 respectively. Find the A.P and the 30th term.

- Watch Video Solution

348. If the sum of the first 14 terms of an AP is 1050 and its first term is 10 , find the 20th term .

- Watch Video Solution

349. The next term of the G.P. $x, x^{2}+2, a n d x^{3}+10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54

- Watch Video Solution

350. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{x}+\frac{5}{y}+\frac{3}{z}\right)$, then $x, y, a n d z$ are in a. H.P. b. A.P. c. G.P. d. None of These

- Watch Video Solution

351. If the sum of n terms of an A.P. is given by $S_{n}=a+b n+c n^{2}$, wherea, b, c are independent of n, then (a) $a=0$ (b) common difference of A.P. must be $2 b$ (c) common difference of A.P. must be $2 c$ (d) first term of A.P. is $b+c$

- Watch Video Solution

352. Find the sum of 20th term of the A.P $(x+y),(x-y),(x-3 y), \ldots$.

- Watch Video Solution

353. Find the sum of the series $2+5+8+11+\ldots . .+191$
354. If p, q, andr are inA.P., show that the pth, qth, and rth terms of any G.P. are in G.P.

Watch Video Solution

355. If $n>1$, the value of the positive integer m for which $n^{m}+1$ divides $a=1+n+n^{2}+\dot{+} n^{63}$ is/are a. 8 b. 16 c. 32 d. 64

- Watch Video Solution

356. For an increasing A.P. a_{1}, a_{2}, a_{n} if $a_{1}+a_{3}+a_{5}=-12$ and $a_{1} a_{3} a_{5}=80$, then which of the following is/are true? a. $a_{1}=-10 \mathrm{~b}$. $a_{2}=-1$ c. $a_{3}=-4$ d. $a_{5}=+2$

- Watch Video Solution

357. If $p(x)=\left(1+x^{2}+x^{4}++x^{2 n-2}\right) /\left(1+x+x^{2}++x^{n-1}\right)$ is a polomial in x, then find possible value of n.

- Watch Video Solution

358. Find the sum of all even integers between 101 and 199.

- Watch Video Solution

359. Match the statements/expressions given in column I with the values given in Column II. Column I, Column II In R^{2}, if the magnitude of the projection vector of the vector $\alpha \hat{i}+\beta \hat{j}$ on $\sqrt{3} \hat{i}+\hat{j} i s \sqrt{3}$ and if $|\alpha|$ is /are, (p) 1 Let $a a n d b$ be real numbers such that the function $f(x)=\left\{-3 a x^{2}-2, x<1 b x+a^{2}, x \geq 1\right.$ Differentiable for all $x \in R$. Then possible value (s) of a is/are, (q) 2 Let $\omega \neq 1$ be a complex cube root of unity If

$$
\left(3-3 \omega+2 \omega^{2}\right)^{4 n+3}+\left(2+3 \omega-3 \omega^{2}\right)^{4 n+3}+\left(-3-2 \omega+3 \omega^{2}\right)^{4 n+3}=0
$$

, then possible values (s) of n is /are, (r) 3 Let the harmonic mean of two
positive real numbers $a a n d b$ be 4 . If q is a positive real number such that $a, 5, q, b$ is an arithmetic progressin, then the values $(s) o f|q-a|$ is /are, (s) 4 , (t) 5

- Watch Video Solution

360. Prove that $1+i^{2}+i^{4}+i^{6}=0$

- Watch Video Solution

361. if a, b, c are in G.P.,then $(\log)_{a} 10,(\log)_{b} 10,(\log)_{c} 10$ are in \qquad

- Watch Video Solution

362. The 15th term of the series $2 \frac{1}{2}+1 \frac{7}{13}+1 \frac{1}{9}+\frac{20}{23}+\ldots . i s \frac{10}{39}$ b. 10
$\frac{10}{21}$ c. $\frac{10}{23}$ d. none of these
363. Let $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{11}$ be real number satisfying $a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2} \quad$ for $\quad \mathrm{k}=3,4, \ldots . .11$. If $\frac{a_{1}^{2}+a_{2}^{2}+\ldots \ldots a_{11}^{2}}{11}=90$, then the value of $\frac{a_{1}+a_{2}+\ldots . a_{11}}{11}$ is equal to

- Watch Video Solution

364. The coefficients of x^{n} in $\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots \ldots+\frac{x^{n}}{n!}\right)^{2}$ is

- Watch Video Solution

365. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{x}+\frac{5}{y}+\frac{3}{z}\right)$, then $x, y, a n d z$ are in
a. H.P. b. A.P. c. G.P. d. None of These

- Watch Video Solution

366. Find the conjugate of the following: $\sqrt{-3}$

(Watch Video Solution

367. The $x=1111 \ldots .1$ of 91 times of is a (a) Even number. (b) Prime number. (c) Not a prime. (d) none of these

- Watch Video Solution

368. Which term of the AP $64,60,56,52,48$,.... is 0 .

- Watch Video Solution

369. Statement 1: Sum of the series $1^{3}-2^{3}+3^{3}-4^{3}++11^{3}=378$. Statement 2: For any odd integer $n \geq 1, n^{3}-(n-1)^{3}++(-1)^{n-1} 1^{3}=\frac{1}{4}(2 n-1)(n+1)^{2}$.

- Watch Video Solution

370. Statement 1: $1^{99}+2^{99}++100^{99}$ is divisible by 10100 .

Statement 2: $a^{n}+b^{n}$ is divisible by $a+b$ if n is odd.
Only conclusion I follows Only
conclusion II follows

Either I or II follows
Neither I nor II follows

- Watch Video Solution

371. Find the nth term of the AP $8,3,-2,-7,-12, \ldots$.

- Watch Video Solution

372. The sum of three consecutiveterms of an AP is 21 , and the sum of the squares of thesetrems is 165 . Find these terms.

- Watch Video Solution

373. Let $a_{1}, a_{2}, a_{3}, \ldots$ be terms of an A.P. if $\frac{a_{1}+a_{2}+\ldots+a_{p}}{a_{1}+a_{2}+\ldots+a_{q}}=\frac{p^{2}}{q^{2}} \cdot p \neq q$ then $\frac{a_{6}}{a_{21}}$ equals

- Watch Video Solution

374. Consider an A.P. $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots$ such that $a_{3}+a_{5}+a_{8}=11$ and $a_{4}+a_{2}=-2$, then the value of $a_{1}+a_{6}+a_{7}$ is (a). -8 (b). 5 (c). 7 (d). 9

- Watch Video Solution

375. If the sum of n terms of an A.P is $c n(n-1)$ where $c \neq 0$ then find the sum of the squares of these terms.

- Watch Video Solution

376. If $|a|<1 a n d|b|<1$, then the sum of the series

$$
\begin{equation*}
1+(1+a) b+\left(1+a+a^{2}\right) b^{2}+\left(1+a+a^{2}+a^{3}\right) b^{3}+\ldots \quad \text { is } \tag{a}
\end{equation*}
$$

$\frac{1}{(1-a)(1-b)}$
 (b).
 (c.) $\frac{1}{(1-b)(1-a b)}$
 $\overline{(1-a)(1-b)(1-a b)}$

- Watch Video Solution

377. Find the sum of odd intergers from 1 to 201.

- Watch Video Solution

378. If $a_{1}, a_{2}, a_{3}\left(a_{1}>0\right)$ are three successive terms of a G.P. with common ratio r, for which $a_{3}>4 a_{2}-3 a_{1}$ holds true is given by a. $1<r<-3$ b. $-3<r<-1$ c. $r>3$ or $r<1$ d. none of these

- Watch Video Solution

379. Three numbers form an increasing G.P. If the middle number is doubled, then the new numbers are in A.P. The common ratio of the G.P. is
(A) $2-\sqrt{3}$
(B) $2+\sqrt{3}$
(C) $\sqrt{3}-2$ (D)
(D) $3+\sqrt{2}$

- Watch Video Solution

380. If $S_{1}, S_{2}, S_{3}, S_{m}$ are the sums of n terms of m A.P. ' s whose first terms are $1,2,3, m$ and common differences are $1,3,5,,(2 m-1)$ respectively. Show that $S_{1}+S_{2},+S_{m}=\frac{m n}{2}(m n+1)$

- Watch Video Solution

381. If S_{1}, S_{2} and S_{3} be respectively the sum of $\mathrm{n}, 2 \mathrm{n}$ and 3 n terms of a G.P., prove that $S_{1}\left(S_{3}-S_{2}\right)=\left(\left(S_{2}\right)-\left(S_{1}\right)\right)^{2}$

- Watch Video Solution

382. There are $4 n+1$ terms in a sequence of which first $2 n+1$ are in Arithmetic Progression and last $2 n+1$ are in Geometric Progression the common difference of Arithmetic Progression is 2 and common ratio of Geometric Progression is $\frac{1}{2}$. The middle term of the Arithmetic Progression is equal to middle term of Geometric Progression. Let middle
term of the sequence is T_{m} and T_{m} is the sum of infinite Geometric Progression whose sum of first two terms is $\left(\frac{5}{4}\right)^{2} n$ and ratio of these terms is $\frac{9}{16}$.
383. Number of terms in the given sequence is equal to -
(a) 9
(b) 17
(c) 13
(d) none
384. Middle term of the given sequence, i.e. T_{m} is equal to
(a) $16 / 7$
(b) $32 / 7$
(c) $48 / 7$
(d) $16 / 9$
385. First term of given sequence is equal to -
(a) $-8 / 7,-20 / 7$
(b) $-36 / 7$
(c) $36 / 7$
(d) $48 / 7$

- Watch Video Solution

383. If $(p+q)$ th term of a G.P. is a and its $(p-q) t h$ term is b where a, b in R^{+}, then its pth term is (a). $\sqrt{\frac{a^{3}}{b}}$ (b). $\sqrt{\frac{b^{3}}{a}}$ (c). $\sqrt{a b}$ (d). none of these

- Watch Video Solution

384. Find the sum of n terms of the series whose nth term is $T(n)=\frac{\tan x}{2^{n}} \times \frac{\sec x}{2^{n-1}}$.

- Watch Video Solution

385. Evaluate, $\sum_{i=0}^{i} \infty \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^{i} \cdot 3^{j} \cdot 3^{k}}(i \neq j \neq k)$
386. The first trem of a GP is -3 and the square of the second term is equal to its 4 th term. Find its 7 th term.

- Watch Video Solution

387. If $\log _{2}\left(5.2^{x}+1\right), \log _{4}\left(2^{1-x}+1\right)$ and 1 are in A.P.then x equals

- Watch Video Solution

388. Find the geometric series whose 5th and 8th terms are 80 and 640 respectively.

- Watch Video Solution

389.

$0<\theta<\frac{\pi}{2}, \quad$ if $\quad x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \theta, z=\sum_{n=0}^{\infty} \cos ^{2 n} \theta \sin ^{2 n} \theta$
390. The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+b x+\gamma=0$ are in A.P. Find the intervals in which β and γ lie.

- Watch Video Solution

391. Let a, b, c, d be real numbers in G. P. If u, v, w satisfy the system of equations $u+2 v+3 w=6,4 u+5 v+6 w=12$ and $6 u+9 v=4$ then show that the roots of the equation $\left(\frac{1}{u}+\frac{1}{v}+\frac{1}{w}\right) x^{2}+\left[(b-c)^{2}+(c-a)^{2}+(d-b)^{2}\right] x+(u+v+w)=$ and $20 x^{2}+10(a-d)^{2} x-9=0$ are reciprocals of each other.

- Watch Video Solution

392. The 5th, 8th and 11th terms of a GP are a,b,c respectively. Show that, $b^{2}=a c$

- Watch Video Solution

393. If $(\log)_{3} 2,(\log)_{3}\left(2^{x}-5\right) \operatorname{and}(\log)_{3}\left(2^{x}-\frac{7}{2}\right)$ are in arithmetic progression, determine the value of x.

- Watch Video Solution

394. If p be the first of n arithmetic means between two numbers and q be the first of n harmonic means between the same two numbers, then prove that the value of q can not lie between p and $\left(\frac{n+1}{n-1}\right)^{2} p$.

- Watch Video Solution

395. Find the centre and radius of the circle: $(x+5)^{2}+(y-3)^{2}=20$

- Watch Video Solution

396. The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° and the common difference is 5°. Find the number of sides of the polygon.

- Watch Video Solution

397. If $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}$ are in AP where $a_{1}>0 \forall i$ then the value of
$\frac{1}{\sqrt{a}_{1}+\sqrt{a}_{2}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a}_{3}}+\ldots \frac{.1}{\sqrt{a}_{n-1}+\sqrt{a}_{n}=}$

- Watch Video Solution

398. Does there exist a GP containing 27,8 and 12 as three of its terms ? If it exists, how many such progressions are possible ?

- Watch Video Solution

399. Find three numbers a,b,c between 2 \& 18 such that; their sum is 25 ; the numbers $2, a, b$ are consecutive terms of an AP \& the numbers $b, c, 18$ are consecutive terms of a G.P.

- Watch Video Solution

400. The sum of 50 terms of the series
$1+2\left(1+\frac{1}{50}\right)+3\left(1+\frac{1}{50}\right)^{2}+$ is given by (A) 2500 (B) 2550 (C) 2450
(D) none of these

- Watch Video Solution

401. The sum of 50 terms of the series $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots \ldots \ldots .$. is (a). $\frac{100}{17}$ (b). $\frac{150}{17}$ (c). $\frac{200}{51}$
(d). $\frac{50}{17}$

- Watch Video Solution

402. Which term of the AP $3,10,17, \ldots$ will be 84 more than its 13 th term?

- Watch Video Solution

403. The sum of the series $a-(a+d)+(a+2 d)-(a+3 d)+\ldots$ up to $(2 n+1)$ terms is: a. $-n d$. b. $a+2 n d$. c. $a+n d$. d. $2 n d$

(Watch Video Solution

404. If $a, b, a n d c$ are in G.P. and x, y, respectively, are the arithmetic means between $a, b, a n d b, c$, then the value of $\frac{a}{x}+\frac{c}{y}$ is $1 \mathrm{~b} .2 \mathrm{c} .1 / 2 \mathrm{~d}$. none of these

D Watch Video Solution

405. Find the number of multiples of 4 lies between 10 and 250 .
406. Find the sum $\frac{3}{1 \times 2} \times \frac{1}{2}+\frac{4}{2 \times 3} \times\left(\frac{1}{2}\right)^{2}+\frac{5}{3 \times 4} \times\left(\frac{1}{2}\right)^{3}+$ to n terms.

- Watch Video Solution

407. Find the sum of the series upto n terms $\left(\frac{2 n+1}{2 n-1}\right)+3\left(\frac{2 n+1}{2 n-1}\right)^{2}+5\left(\frac{2 n+1}{2 n-1}\right)^{3}+\ldots$.

- Watch Video Solution

408. If $k, 2(k+1), 3(k+1)$ are in GP, Then find the value of k.

- Watch Video Solution

409. If the first and the nth terms of a G.P are a and b, respectively, and if P is the product of the first n terms then prove that $P^{2}=(a b)^{n}$.
410. Find the sum of first 10 evenwhole number.

- Watch Video Solution

411. Find the sum of the natural numbers less than 100 , which are divisible by 4.

- Watch Video Solution

412. If the terms of the A.P, $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ are all in integers, where $a>x>0$, then find the least composite value of a.

- Watch Video Solution

413. For $a, x,>0$ prove tht at most one term of the G.P. $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ can be rational.
414. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots . \quad$ upto $\infty=\frac{\pi^{2}}{6} \quad$, then, find $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots . u p t o \infty$

- Watch Video Solution

415. Coefficient of x^{18} in $\left(1+x+2 x^{2}+3 x^{3}++18 x^{18}\right)^{2}$ equal to 995
b. 1005 c. 1235 d . none of these

- Watch Video Solution

416. Let α, β be the roots of $x^{2}-x+p=0$ and γ, δ be the roots of $x^{2}-4 x+q=0$. If α, β, γ are in GP , then the integer values of p and q respectively are:

- Watch Video Solution

417. If the sum of the first $2 n$ terms of the AP $2,5,8$.....is equal to the sum of the first n terms of the AP 57,59,61,then n equals

- Watch Video Solution

418. Statement 1: If the arithmetic mean of two numbers is $5 / 2$ geometric mean of the numbers is 2 , then the harmonic mean will be $8 / 5$. Statement

2: For a group of positive numbers $(G \dot{M} .)^{2}=(A \dot{M}).(H \dot{M}$.$) .$

(Watch Video Solution

419. Number of positive integral ordered pairs of (x, y), so that $8, x, y$ are in H.P. is a. 0 b. 1 c. 2. d. 3

(Watch Video Solution

420. If three positive real numbers a, b, c are in A.P such that $a b c=4$, then the minimum value of b is a) $2^{1 / 3}$ b) $2^{2 / 3}$ c) $2^{1 / 2}$ d) $2^{3 / 23}$

(D) Watch Video Solution

421. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $3 / 4$, then (a) $a=\frac{4}{7}, r=\frac{3}{7}$ (b). $a=2, r=\frac{3}{8}$ (c). $a=\frac{3}{2}, r=\frac{1}{2}$ (d). $a=3, r=\frac{1}{4}$

- Watch Video Solution

422. The maximum sum of the series $20+19 \frac{1}{3}+18 \frac{2}{3}+\ldots \ldots$ is (A) 310 (B) 300 (C) 320 (D) none of these

- Watch Video Solution

423. The sum of n terms of a progression is $\left(2^{n}-1\right)$. Show that it is a GP and Find its common ratio.

- Watch Video Solution

424. Let a_{1}, a_{2}, \ldots be in harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<0$

- Watch Video Solution

425. An infinite G.P. has first term as a and sum 5 , then a belongs to a) $|a|<10$ b) $-10<a<0$ c) $0<a<10$ d) $a>10$

- Watch Video Solution

426. Let $S \subset(0, \pi)$ denote the set of values of x satisfying the equation $8^{1+|\cos x|+\cos ^{2} x+\mid \cos ^{3 x \mid \rightarrow \infty}}=4^{3}$. Then, $S=\{\pi / 3\}$ b. $\{\pi / 3,2 \pi / 3\}$ c.
$\{-\pi / 3,2 \pi / 3\}$ d. $\{\pi / 3,2 \pi / 3\}$

- Watch Video Solution

427. Find the number of terms of a G.P. whose first term is $3 / 4$, common ratio is 2 and the last term is 384 .
428. In an A.P. (with usual notations) : (i) given $\mathrm{a}=7, a_{13}=35$, find d and S_{13}

- Watch Video Solution

429. Find the geometric progression whose 4 th term is 54 and the 7th term is 1458 .

(Watch Video Solution

430. The first term of G.P. is 27 and 8 th term is $\frac{1}{81}$. Find the sum of its first 10 terms.
431. The greatest integer by which $1+\sum_{r=1}^{30} r \times r$! is divisible is a. composite number b. odd number c. divisible by 3 d . none of these

- Watch Video Solution

432. $(\lim)_{n \rightarrow \infty} \sum_{r=1}^{n} \frac{r}{1 \times 3 \times 5 \times 7 \times 9 \times \ldots . \times(2 r+1)}$ is equal to $\frac{1}{3}$ b. $\frac{3}{2}$ c. $\frac{1}{2}$ d. none of these

- Watch Video Solution

433. Value of $\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right) \ldots \ldots . \infty$ is equal to a. 3 b. $\frac{6}{5}$ c. $\frac{3}{2}$ d. none of these

- Watch Video Solution

434. Find the third term of a G.P. whose common ratio is 3 and the sum of

Watch Video Solution

435. If sum of an infinite G.P. : $p, 1,1 / p, 1 / p^{2}, \ldots \ldots .$. is $9 / 2$ then value of p is
a. 1 b. $3 / 2$
c. 3 d. 9/2

- Watch Video Solution

436. The sum of $i-2-3 i+4$ up to 100 terms, where $i=\sqrt{-1}$ is $50(1-i)$ b. $25 i$ c. $25(1+i)$ d. $100(1-i)$

- Watch Video Solution

437. The 24th term of an A.P. is twice its 10th term. Show that its 72 nd term is four times its 15th term.

- Watch Video Solution

438. If the seventh term of an A.P. is $\frac{1}{9}$ and its ninth term is $\frac{1}{7}$, find its 63rd term.

- Watch Video Solution

439.

For
the
series,
$S=1+\frac{1}{(1+3)}(1+2)^{2}+\frac{1}{(1+3+5)}(1+2+3)^{2}+\frac{1}{(1+3+5+7)}($

+ ...
a.7th term is 16
b.7th term is 18
c. Sum of first 10 terms is $\frac{505}{4}$
d. Sum of first 10 terms is $\frac{45}{4}$

- Watch Video Solution

440. If the first and the $(2 n-1)^{t} h$ term of an A.P.G.P anf H.P are equal and their nth term are a,b,c respectively,then
441. Find the value of k for which $k+12, k-6,3$ are in GP .

- Watch Video Solution

442. IF $a_{1}, a_{2}, a_{3}, \ldots . a_{10}$ be in AP and $h_{1}, h_{2}, h_{3}, \ldots . h_{10}$ be in HP. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, then find value of $a_{4} h_{7}$.

- Watch Video Solution

443. The harmonic mean of the roots of the equation

$$
(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0 \text { is } 2 \text { b. } 4 \text { c. } 6 \text { d. } 8
$$

- Watch Video Solution

444. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, Prove that, $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$

- Watch Video Solution

445. If $\ln (a+c), \ln (a-c)$ and $\ln (a-2 b+c)$ are in A.P., then (a) a, b, c are in A.P. (b) a^{2}, b^{2}, c^{2}, are in A.P. (c) a, b, c are in G.P. (d) a, b, c are in H.P.

- Watch Video Solution

446. If a, b, c are in G.P., then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root if $\mathrm{d} / \mathrm{a}, \mathrm{e} / \mathrm{b}, \mathrm{f} / \mathrm{c}$ are in

- Watch Video Solution

447. Sum of the first n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots \ldots \ldots$ is equals to (a). $2^{n}-n-1$ (b). $1-2^{-n}$ (c). $n+2^{-n}-1$ (d).None of these

- Watch Video Solution

448. The third term of a geometric progression is 4 . Then the product of the first five terms is a. 4^{3} b. 4^{5} c. 4^{4} d. none of these

Watch Video Solution

449. In triangle ABC medians AD and CE are drawn, if $\mathrm{AD}=5, \angle D A C=\frac{\pi}{8}$ and $\angle A C E=\frac{\pi}{4}$, then the area of triangle $A B C$ is equal to a. $\frac{25}{8}$ b. $\frac{25}{3}$ c. $\frac{25}{18}$ d. $\frac{10}{3}$

- Watch Video Solution

450. If t_{k} is the kth term of a G.P., then show that t_{n-k}, t_{n}, t_{n+k} also form a GP for any positive integer k.

- Watch Video Solution

451. If pth, qth, and rth term of an AP are equal to corresponding terms of a GP and these terms are respectively $\mathrm{x}, \mathrm{y}, \mathrm{z}$, then $x^{y-z} y^{z-x} z^{x-y}$ equals

- Watch Video Solution

452.

Sum
of
$\frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+\frac{1}{\sqrt{11}+\sqrt{14}}+\ldots \rightarrow n$
terms $=$ (A) $\frac{n}{\sqrt{3 n+2}-\sqrt{2}}$ (B) $\frac{1}{3}\left(\sqrt{2}-\sqrt{3 n+2}\right.$ (C) $\frac{n}{\sqrt{3 n+2}+\sqrt{2}}$
(D) none of these

- Watch Video Solution

453. If fourth term of an HP is $\frac{3}{5}$ and its 8th term is $\frac{1}{3}$, then find its first term.

- Watch Video Solution

454. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, Prove that a^{2}, b^{2}, c^{2} are in GP.

- Watch Video Solution

455. If a, b, c are in A.P., the $\frac{a}{b c}, \frac{1}{c}, \frac{1}{b}$ will be in a. A.P b. G.P. c. H.P. d. none of these

- Watch Video Solution

456. If $\left(p^{2}+q^{2}\right),(p q+q r),\left(q^{2}+r^{2}\right)$ are in GP then Prove that p, q, r are in G.P.

- Watch Video Solution

457. The coefficient of the quadratic equation
$a x^{2}+(a+d) x+(a+2 d)=0$ are consecutive terms of a positively
valued, increasing arithmetic sequence. Then the least integral value of d / a such that the equation has real solutions is \qquad .

- Watch Video Solution

458. Let S denote sum of the series
$\frac{3}{2^{3}}+\frac{4}{2^{4} .3}+\frac{5}{2^{6} .3}+\frac{6}{2^{7} .5}+\ldots \ldots \infty$ Then the value of S^{-1} is \qquad .

- Watch Video Solution

459. Let the sum of first three terms of G.P. with real terms be $\frac{13}{12}$ and their product is -1 . If the absolute value of the sum of their infinite terms is S, then the value of $7 S$ is \qquad .

- Watch Video Solution

460. Given a,b,c are in A.P.,b,c,d are in G.P and c,d,e are in H.P .If $a=2$ and $\mathrm{e}=18$, then the sum of all possible value of c is \qquad .

- Watch Video Solution

461. The terms a_{1}, a_{2}, a_{3} form an arithmetic sequence whose sum is 18.The terms sum of all possible common difference of the A.P is \qquad .

- Watch Video Solution

462. Let $f(x)=2 x+1$. Then the number of real number of real values of x for which the three unequal numbers $f(x), f(2 x), f(4 x)$ are in G.P. is 1 b .2 c .0 d . none of these

- Watch Video Solution

463. Concentric circles of radii $1,2,3, \ldots, 100 \mathrm{~cm}$ are drawn. The interior of the smallest circle is colored red and the angular regions are colored alternately green and red, so that no two adjacent regions are of the same color. Then, the total area of the green regions in sq. cm is equal to 1000π b. 5050π c. 4950π d. 5151π

(D) Watch Video Solution

464. Let $\left\{t_{n}\right\}$ be a sequence of integers in G.P. in which $t_{4}: t_{6}=1: 4$ and $t_{2}+t_{5}=216$. Then t_{1} is (a). 12 (b). 14 (c). 16 (d). none of these

- Watch Video Solution

465. If $x, 2 y, 3 z$ are in A.P., where the distinct numbers x, y, z are in G.P, then the common ratio of the G.P. is a. 3 b. $\frac{1}{3}$ c. 2 d. $\frac{1}{2}$

- Watch Video Solution

466. If a, b, c, d are in GP then prove that, $\left(a^{2}-b^{2}\right),\left(b^{2}-c^{2}\right),\left(c^{2}-d^{2}\right)$ are in GP.

- Watch Video Solution

G.P. c. H.P. d. none of these

- Watch Video Solution

468. If a, b, care in GP then prove that a^{3}, b^{3}, c^{3} are in GP.

- Watch Video Solution

469. The second term of an H.P. is $\frac{3}{14}$ and the fifth term is $\frac{1}{10}$. Find the sum of its 6th and the 7th term.

- Watch Video Solution

470. A pack contains n cards numbered from 1 to n . Two consecutive numbered cards are removed from the pack and the sum of the numbers
on the remaining cards is 1224 . If the smaller of the numbers on the removed cards is k , then $k-20$ is equal to

- Watch Video Solution

471. If the sixth term of an H.P. is 10 and the 11 th term is 18 Find the 16th term.

- Watch Video Solution

472. If he equation $x^{3}+a x^{2}+b x+216=0$ has three real roots in G.P., then b / a has the value equal to \qquad .

D Watch Video Solution

473. Let T_{r} be the r th term of an A.P., for $r=1,2,3, \ldots$. If for some positive integers m, n, we have $T_{m}=\frac{1}{n} a n d T_{n}=\frac{1}{m}, \operatorname{then} T_{m n}$ equals a. $\frac{1}{m n}$ b. $\frac{1}{m}+\frac{1}{n}$ c. 1 d. 0
474. Let $A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots .+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$, B_n = 1 - A_n. Find a least odd natural number n_{0}, so that $B_{n}>A_{n} \forall n \geq n_{0}$.

- Watch Video Solution

475. For a positive integer n let
$a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \ldots .+\frac{1}{\left(2^{n}\right)-1}$ then

- Watch Video Solution

476. If $x>1, y>1$, and $z>1$ are in G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}$ and $\frac{1}{1+\ln z}$ are in a. $A \dot{P}$. b. $H \dot{P}$. c. $G \dot{P}$. d. none of these
477. Compute the 100th term of HP if the 10th and 20th term of HP are 20 and 40 respectively.

- Watch Video Solution

478. Find the 6 th and nth term of the GP $2,6,18,54$,.....

- Watch Video Solution

479. If a,b,c are in AP and a^{2}, b^{2}, c^{2} are in HP, then

- Watch Video Solution

480. Let a, b be positive real numbers. If a, A_{1}, A_{2}, b be are in arithmetic progression a, G_{1}, G_{2}, b are in geometric progression, and a, H_{1}, H_{2}, b are in harmonic progression, show that $\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}$
481. The sum of an infinite G.P. is 57 and the sum of their cubes is 9747 , then the common ratio of the G.P. is $1 / 2 \mathrm{~b} .2 / 3 \mathrm{c} .1 / 6 \mathrm{~d}$. none of these

- Watch Video Solution

482. If $a^{2}+b^{2}, a b+b c$ and $b^{2}+c^{2}$ are in G.P., then a, b, c are in a. A.P. b.
G.P. c. H.P. d. none of these

- Watch Video Solution

483. If $y^{2}=x z a n d a^{x}=b^{y}=c^{z}$, then prove that $(\log)_{6} a=(\log)_{c} b$.

- Watch Video Solution

484. The geometric mean between -9 and -16 is a. 12 b. -12 c. -13 d . none of these

Watch Video Solution

485. The value of $0.568 \times 4.9=$?

- Watch Video Solution

486. If $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots\left(1+x^{128}\right)=\sum_{r=0}^{n} x^{r}$ then n is

- Watch Video Solution

487. The number of terms common between the series $1+2+4+8 \ldots .$. to

100 terms and $1+4+7+10+\ldots$ to 100 terms is

- Watch Video Solution

488. Express the given complex number in $(a+i b)$ form: $(5-2 i)^{2}$
489. If S denotes the sum to infinity and S_{n} the sum of n terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+$, such that $S-S_{n}<\frac{1}{1000}$, then the least value of n is 8 b .9 c .10 d .11

- Watch Video Solution

490. If $(a-b),(b-c),(c-a)$ are in $G P$ then prove that $(a+b+c)^{2}=3(a b+b c+c a) .$.

- Watch Video Solution

491. Given that $x+y+z=15 w h e n a, x, y, z, b$ are in A.P. and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{5}{3}$ whena, x, y, z, b are in H.P. Then
(i) G.M. of a and b is 3
(ii) One possible value of $a+2 b$ is 11
(iii) A.M. of a and b is 6
(iv) Greatest value of $a-b$ is 8

- Watch Video Solution

492. Let $a_{1}, a_{2}, a_{3} \ldots \ldots, a_{n}$ be in G.P such that $3 a_{1}+7 a_{2}+3 a_{3}-4 a_{5}=0$ Then find common ratio of G.P.

- Watch Video Solution

493. The 9th term of the series $27+9+5 \frac{2}{5}+3 \frac{6}{7}+\ldots$ will be (a) $1 \frac{10}{17}$ (b) $\frac{10}{17}$
(c) $\frac{16}{27}$ (d) $\frac{17}{27}$

- Watch Video Solution

494. If a, b, c are in GP then prove that, $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$
495. If $\sum_{r=1}^{n} r(r+1)(2 r+3)=a n^{4}+b n^{3}+c n^{2}+d n+e$, then (a) $a-b=d-c$ (b) $e=0$ (c) $a, b-2 / 3, c-1$ are in A.P. (d) $(b+d) / a$ is an integer

- Watch Video Solution

496. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in GP then prove thst $(b+c)(b+d)=(c+a)(c+d)$

- Watch Video Solution

497. If a, x, b are in A.P., a,y,b are in G.P. and a, z, b are in H.P. such that $x=9 z$ and $a>0, b>0$, then (a) $y=3 z$. (b) $x=3 y$ (c) $2 y=x+z$ (d) none of these

- Watch Video Solution

498. If a, b, and c are in G.P then $a+b, 2 b$ and $b+c$ are in

Watch Video Solution

499. If in a progression $a_{1}, a_{2}, a_{3}, \ldots \ldots . .$. etc; $\left(a_{r}-a_{r+1}\right)$ bears a constant ratio with $a_{r} \times a_{r+1}$, then the terms of the progression are in a. A.P b. G.P. c. H.P. d. none of these

- Watch Video Solution

500. $\mathrm{a}, \mathrm{b}, \mathrm{c} x \in R^{+}$such that a, b, and c are in A.P. and b, c and d are in H.P., then $a b=c d \mathrm{~b} . a c=b d \mathrm{c} . b c=a d \mathrm{~d}$. none of these

- Watch Video Solution

501. Let $\alpha, \beta \in R$. If α, β^{2} are the roots of quadratic equation $x^{2}-p x+1=0 a n d \alpha^{2}, \beta$ is the roots of quadratic equation $x^{2}-q x+8=0$, then the value of r if $\frac{r}{8}$ is the arithmetic mean of p and q, is a. $\frac{83}{2}$ b. 83 c. $\frac{83}{8}$ d. $\frac{83}{4}$
502. Let $a \in(0,1]$ satisfies the equation $a^{2008}-2 a+1=0$ and $S=1+a+a^{2}+\ldots .+a^{2007}$ Then sum of all possible values of S is a . 2010 b. 2009 c. 2008 d. 2

- Watch Video Solution

503. If a, b and c are in A.P. and $b-a, c-b$ and a are in G.P., then $a: b: c$ is (a). $1: 2: 3$ (b).1:3:5 (c). $2: 3: 4$ (d). $1: 2: 4$

- Watch Video Solution

504. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q, a n d c r$ are in G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to a. $\frac{a}{c}+\frac{c}{a}$ b. $\frac{a}{c}-\frac{c}{a}$ c. $\frac{b}{q}+\frac{q}{b}$ d. $\frac{b}{q}-\frac{q}{b}$

- Watch Video Solution

505. The sum of three numbers in G.P. is 14 . If one is added to the first and second numbers and 1 is subtracted from the third, the new numbers are $\begin{array}{llll}\text { in ;A.P. The smallest of them is a. } 2 & \text { b. } 4 & \text { c. } 6 & \text { d. } 10\end{array}$

- Watch Video Solution

506. If $x, 2 x+2$ and $3 x+3$ are the first three terms of a G.P., then the fourth term is a. 27 b. -27 c. 13.5 d. -13.5

- Watch Video Solution

507. The harmonic mean of two numbers is 4 . Their arithmetic mean A and the geometric mean A and the geometric mean G satisfy the relation $2 A+G^{2}=27$. Find the numbers.

- Watch Video Solution

