



# MATHS

# **BOOKS - CENGAGE PUBLICATION**

# **STRAIGHT LINES**

#### Others

1. The pair of lines joining the origin to the points of intersection of the

curves

$$ax^2+2hxy+by^2+2gx=0$$
 and

$$a\,{}^{\prime}x^2+2h\,{}^{\prime}xy+b\,{}^{\prime}y^2+2g\,{}^{\prime}x=0$$

will be at right angles to one another , if

2. Find the angle between the lines joining the origin to the points of intersection of the straight line y = 3x + 2 with the curve  $x^2 + 2xy + 3y^2 + 4x + 8y = 11 = 0.$ 

# Watch Video Solution

3. Prove that the straight lines joining the origin to the points of intersection of the straight line hx + ky = 2hk and the curve  $(x - k)^2 + (y - h)^2 = c^2$  are at right angle if  $h^2 + k^2 = c^2$ .

#### Watch Video Solution

**4.** If pairs of straight lines  $x^2 - 2pxy - y^2 = 0$  and  $x^2 - 2qxy - y^2 = 0$ 

be such that each pair bisects the angle between the other pair ,then

5. Find the value of a for which the lines represented by  $ax^2 + 5xy + 2y^2 = 0$  are mutually perpendicular.

# Watch Video Solution

6. Find the acute angle between the pair of lines represented by  $(x\coslpha-y\sinlpha)^2=ig(x^2+y^2ig)\sin^2lpha.$ 

Watch Video Solution



# Watch Video Solution

8. If the pair of straight lines  $ax^2+2hxy+by^2=0$  is rotated about the origin through  $90^\circ$  , then find its equation in the new position.



9. The orthocenter of the triangle formed by the lines xy = 0 and x + y = 1 is

Watch Video Solution

10. The lines joining the origin to the point of intersection of  $3x^2 + mxy - 4x + 1 = 0$  and 2x + y - 1 = 0 are at right angles. Then which of the following is a possible value of m?

# Watch Video Solution

11. If the slope of one line is double the slope of another line and the combined equation of the pair of lines is  $\left(x^2/a\right) + \left(2xy/h\right) + \left(y^2/b\right) = 0$ , then find the ratio ab :  $h^2$ .

12. Find the combined equation of the pair of lines through the point (1,0) and parallel to the lines respresented by  $2x^2 - xy - y^2 = 0$ .



13. The value k for which  $4x^2 + 8xy + ky^2 = 9$  is the equation of a pair of

straight lines is \_\_\_\_\_.

Watch Video Solution

14. The two lines represented by  $3ax^2+5xy+ig(a^2-2ig)y^2=0$  are

perpendicular to each other for



15. If two lines represented by  $x^4 + x^3y + cx^2y^2 - xy^3 + y^4 = 0$ bisector of the angle between the other two, then the value of c is



16. The straight lines represented by  $x^2 + mxy - 2y^2 + 3y - 1 = 0$ meet at (a)  $\left(-\frac{1}{3}, \frac{2}{3}\right)$  (b)  $\left(-\frac{1}{3}, -\frac{2}{3}\right)$  (c)  $\left(\frac{1}{3}, \frac{2}{3}\right)$  (d) none of these

Watch Video Solution

17. The straight lines represented by the equation  $135x^2 - 136xy + 33y^2 = 0$  are equally inclined to the line (a) x - 2y = 7 (b) x+2y=7 (c) x - 2y = 4 (d) 3x + 2y = 4

Watch Video Solution

18. If one of the lines of  $my^2 + (1 - m^2)xy - mx^2 = 0$  is a bisector of the angle between the lines xy = 0, then m is

19. Statement 1 : If -2h = a + b, then one line of the pair of lines  $ax^2 + 2hxy + by^2 = 0$  bisects the angle between the coordinate axes in the positive quadrant. Statement 2 : If ax + y(2h + a) = 0 is a factor of  $ax^2 + 2hxy + by^2 = 0$ , then b + 2h + a = 0.

Watch Video Solution

**20.** Show that all chords of the curve  $3x^2 - y^2 - 2x + 4y = 0$ , which subtend a right angle at the origin , pass through a fixed point. Find the coordinates of the point .



22. The distance between the lines  $\left(x+7y
ight)^2+4\sqrt{7}(x+7y)-42=0$ 



**23.** 
$$x + y = 7$$
 and  $ax^2 + 2hxy + ay^2 = 0$ ,  $(a \neq 0)$ , are three real

distinct lines forming a triangle is

Watch Video Solution

**24.** If the slope of one of the lines represented by  $ax^2 + 2hxy + by^2 = 0$ 

is the square of the other , then 
$$\displaystyle rac{a+b}{h} + \displaystyle rac{8h^2}{ab} =$$

# Watch Video Solution

25. Area of the triangle formed by the line x + y = 3 and the angle bisectors of the pairs of straight lines  $x^2 - y^2 + 2y = 1$  is (a) 2 sq units

### (b) 4 sq units (c) 6 sq units (d) 8 sq units



**26.** The sides of a triangle have the combined equation  $x^2 - 3y^2 - 2xy + 8y - 4 = 0$ . The third side, which is variable, always passes through the point (-5, -1). Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.

Watch Video Solution

27. Let PQR be a right - angled isosceles triangle , right angled at P(2,1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is

**28.** The combined equation of three sides of a triangle is  $(x^2 - y^2)(2x + 3y - 6) = 0$  if (-2,a) is an interior point and (b,1) is an exterior point of the triangle, then

# Watch Video Solution

**29.** Find the equation of the bisectors of the angles between the lines joining the origin to the point of intersection of the straight line x - y = 2 with the curve  $5x^2 + 11xy + 8y^2 + 8x - 4y + 12 = 0$ 



**30.** If  $\theta$  is the angle between the lines given by the equation  $6x^2 + 5xy - 4y^2 + 7x + 13y - 3 = 0$ , then find the equation of the line passing through the point of intersection of these lines and making an angles  $\theta$  with the positive x-axis.

**31.** The distance of a point  $(x_1, y_1)$  from each of the two straight lines which pass through the origin of coordinates is p. Find the combined equation of these straigh lines .

**Watch Video Solution** 

**32.** prove that the product of the perpendiculars drawn from the point  $(x_1, y_1)$  to the pair of straight lines  $ax^2 + 2hxy + by^2 = 0$  is  $\left|\frac{ax_1^2 + 2hx_1y_1 + by_1^2}{\sqrt{(a-b)^2 + 4h^2}}\right|$ 

Watch Video Solution

**33.** Find the area enclosed by the graph of  $x^2y^2 - 9x^2 - 25y^2 + 225 = 0$ .

**34.** Show that the pairs of straight lines  $2x^2 + 6xy + y^2 = 0$  and  $4x^2 - 18xy + y^2 = 0$  have the same set of angular bisector.

### Watch Video Solution

**35.** Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines  $ax^2 + 2hxy + by^2 = 0$  is  $(a - b)(x^2 - y^2) + 4hxy = 0$ 



**36.** Find the angle between the straight lines joining the origin to the points of intersection of  $3x^2 + 5xy - 3y^2 + 2x + 3y = 0$  and 3x - 2y = 1.

**37.** Through a point A on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines  $ax^2 + 2hxy + by^2 = 0$  at B and C. If AB = BC, then (a)  $h^2 = 4ab$  (b)  $8h^2 = 9ab$  (c)  $9h^2 = 8ab$  (d)  $4h^2 = ab$ 

Watch Video Solution

**38.** Find the equation of two straigh lines whose combined equation is  $6x^2 + 5xy - 4y^2 + 7x + 13y - 3 = 0.$ 

Watch Video Solution

**39.** Does equation  $x^2 + 2y^2 - 2\sqrt{3}x - 4y + 5 = 0$  satisfies the condition  $abc + 2gh - af^2 - bg^2 - ch^2 = 0$ ? Does it represent a pair of straight lines ?

**40.** Find the value of  $\lambda$  if  $2x^2 + 7xy + 3y^2 + 8x + 14y + \lambda = 0$  represent a pair of straight lines.



41. Find the distance between the pair of parallel lines

$$x^2 + 4xy + 4y^2 + 3x + 6y - 4 = 0.$$

Watch Video Solution

**42.** If the pair of lines  $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$  intersect

on the y-axis , then prove that  $2fgh=bg^2+ch^2.$ 

#### Watch Video Solution

**43.** Find the equation of two straigh lines whose combined equation is  $6x^2 + 5xy - 4y^2 + 7x + 13y - 3 = 0.$ 



44. If the component lines whose combined equation is  $px^2 - qxy - y^2 = 0$  make the angles  $\alpha$  and  $\beta$  with x-axis, then find the value of tan  $(\alpha + \beta)$ .

Watch Video Solution

**45.** Find the joint equation of pair of lines which passes through origin and are perpendicular to the lines represented by the equation  $y^2 + 3xy - 6x + 5y - 14 = 0.$ 

### Watch Video Solution

**46.** If the sum of the slopes of the lines given by  $x^2 - 2cxy - 7y^2 = 0$  is four times their product , then find the value of c.

47. The distance between the two lines represented by the equation 9x<sup>2</sup>-

24xy+16y^2-12x+16y-12 =0



**48.** The gradient of one of the lines  $ax^2 + 2hxy + by^2 = 0$  is twice that

of the other, then

Watch Video Solution

**49.** If one of the lines of  $my^2 + ig(1-m^2ig)xy - mx^2 = 0$  is a bisector of

the angle between the lines xy = 0, then m is

#### Watch Video Solution

50. Two pairs of straight lines have the equations  $y^2 + xy - 12x^2 = 0$ and  $ax^2 + 2hxy + by^2 = 0$ . One line will be common among them if.



Watch Video Solution

**51.** If the equation of the pair of straight lines passing through the point (1, 1), one making an angle  $\theta$  with the positive direction of the x-axis and the other making the same angle with the positive direction of the y-axis, is  $x^2 - (a+2)xy + y^2 + a(x+y-1) = 0, a \neq 2$ , then the value of  $\sin 2\theta$  is

Watch Video Solution

52. If one of the lines given by the equation  $2x^2 + pxy + 3y^2 = 0$ coincide with one of those given by  $2x^2 + qxy - 3y^2 = 0$  and the other lines represented by them are perpendicular, then value of p + q is



**53.** If  $x^2 + 2hxy + y^2 = 0$  represents the equation of the straight lines through the origin which make an angle  $\alpha$  with the straight line y + x = 0 then, (a)  $\sec 2\alpha = h$  (b)  $\cos \alpha = \sqrt{\frac{(1+h)}{(2h)}}$  (c)  $2\sin \alpha$  $= \sqrt{\frac{(1+h)}{h}}$  (d)  $\cot \alpha = \sqrt{\frac{(1+h)}{(h-1)}}$ 

Watch Video Solution

54. The equation to a pair of opposite sides of a parallelogram are  $x^2 - 5x + 6 = 0$  and  $y^2 - 6y + 5 = 0$ . The equations to its diagonals are x + 4y = 13, y = 4x - 7 (b) 4x + y = 13, 4y = x - 74x + y = 13, y = 4x - 7 (d) y - 4x = 13, y + 4x - 7

Watch Video Solution

55. The equation  $a^2x^2 + 2h(a+b)xy + b^2y^2 = 0$  and  $ax^2 + 2hxy + bx^2 = 0$  represent

$$ax^2+2hxy+by^2=0$$
 represent

**56.** The equation  $x^3 + x^2y - xy^2 = y^3$  represents (a)three real straight lines (b)lines in which two of them are perpendicular to each other (c)lines in which two of them are coincident (d)none of these

### Watch Video Solution

57. The image of the pair of lines represented by  $ax^2+2hxy+by^2=0$ 

by the line mirror y=0 is a.  $ax^2-2hxy-by^2=0$  b.

 $bx^2-2hxy+ay^2=0$  c.  $x^2+2hxy+ay^2=0$  d.  $ax^2-2hxy+by^2=0$ 

# Watch Video Solution

58. The combined equation of the lines  $l_1andl_2$  is  $2x^2 + 6xy + y^2 = 0$ and that of the lines  $m_1andm_2$  is  $4x^2 + 18xy + y^2 = 0$ . If the angle between  $l_1$  and  $m_2$  is  $\alpha$  then the angle between  $l_2andm_1$  will be 59. If the equation  $ax^2 - 6xy + y^2 + bx + cy + d = 0$  represents a pair of lines whose slopes are m and  $m^2$ , then the value(s) of a is/are

**60.** The equations of a line which is parallel to the line common to the pair of lines given by  $6x^2 - xy - 12y^2 = 0$  and  $15x^2 + 14xy - 8y^2 = 0$  and the sum of whose intercepts on the axes is 7, is :

# Watch Video Solution

**61.** If the sum of the slopes of the lines given by  $x^2 - 2cxy - 7y^2 = 0$  is

four times their product , then find the value of c.

62. Area of the triangle formed by the line x + y = 3 and the angle bisectors of the pairs of straight lines  $x^2 - y^2 + 2y = 1$  is (a) 2 sq units (b) 4 sq units (c) 6 sq units (d) 8 sq units



**63.** The equation  $x^2y^2 - 9y^2 - 6x^2y + 54y = 0$  represents (a) a pair of straight lines and a circle (b) a pair of straight lines and a parabola (c) a set of four straight lines forming a square (d) none of these



**65.** If the pairs of lines  $x^2 + 2xy + ay^2 = 0$  and  $ax^2 + 2xy + y^2 = 0$ have exactly one line in common then the joint equation of the other two lines is given by

#### Watch Video Solution

66. The condition that one of the straight lines given by the equation  $ax^2 + 2hxy + by^2 = 0$  may coincide with one of those given by the equation  $a'x^2 + 2h'xy + b'y^2 = 0$  is  $(ab' - a'b)^2 = 4(ha' - h'a)(bh' - b'h)$   $(ab' - a'b)^2 = (ha' - h'a)(bh' - b'h)$   $(ha' - h'a)^2 = 4(ab' - a'b)(bh' - b'h)$  $(bh' - b'h)^2 = 4(ab' - a'b)(ha' - h'a)$ 

Watch Video Solution

67. If the lines represented by the equation  $3y^2 - x^2 + 2\sqrt{3}x - 3 = 0$  are rotated about the point  $(\sqrt{3}, 0)$  through an angle of  $15^0$ , one in

clockwise direction and the other in anticlockwise direction, so that they become perpendicular, then the equation of the pair of lines in the new position is

# Watch Video Solution

**68.** A point moves so that the distance between the foot of perpendiculars from it on the lines  $ax^2 + 2hxy + by^2 = 0$  is a constant 2d . Show that the equation to locus is  $(x^2 + y^2)(h^2 - ab) = d^2 \{(a - b)^2 + 4h^2\}.$ 

Watch Video Solution

**69.** The angle between the pair of lines whose equation is  $4x^2 + 10xy + my^2 + 5x + 10y = 0$ is

70. Find the point of intersection of the pair of straight lines represented

by the equation  $6x^2 + 5xy - 21y^2 + 13x + 38y - 5 = 0$ .



**72.** If the pair of lines  $\sqrt{3}x^2 - 4xy + \sqrt{3}y^2 = 0$  is rotated about the origin by  $\pi/6$  in the anticlockwise sense , then find the equation of the pair of lines in the new position.



73. If the equation  $2x^2 + kxy + 2y^2 = 0$  represents a pair of real and

distinct lines , then find the values of k.



74. If the equation  $x^2+(\lambda+\mu)xy+\lambda uy^2+x+\mu y=0$  represents two parallel straight lines, then prove that  $\lambda=\mu.$ 

Watch Video Solution

75. If one of the lines of the pair  $ax^2 + 2hxy + by^2 = 0$  bisects the angle

between the positive direction of the axes. Then find the relation for a, band h.



**76.** Prove that the equation  $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ respresents a pair of straight lines .Find the coordinates of their point of intersection and also the angle between them.

77. A line L passing through the point (2, 1) intersects the curve  $4x^2 + y^2 - x + 4y - 2 = 0$  at the point AandB. If the lines joining the origin and the points A, B are such that the coordinate axes are the bisectors between them, then find the equation of line L.



79. If one of the lines denoted by the line pair  $ax^2 + 2hxy + by^2 = 0$  bisects the angle between the coordinate axes, then prove that  $\left(a+b\right)^2 = 4h^2$ 

Watch Video Solution

**80.** If the middle points of the sides BC, CA, and AB of triangle ABC are (1,3), (5,7), and (-5,7), respectively, the find the equation of the side AB.



81. Find the equations of the lines which pass through the origin and are

inclined at an angle  $\tan^{-1}m$  to the line y = mx + c.

**82.** If (-2,6) is the image of the point (4,2) with respect to line L=0, then find the equation of line L.



83. If the lines x + (a-1)y + 1 = 0 and  $2x + a^2y - 1 = 0$  are perpendicular, then find the value of a.

Watch Video Solution

84. Find the eqution of the right bisector of the line segment joining the

points (3,4) and (-1,2).



85. Find the slope of the line perpendicular to the line joining the points

$$(2, -3)$$
 and  $(1, 4)$ .



86. If the coordinates of the vertices of triangle ABC are (-1,6), (-3,-9), and

(5,-8), respectively, then find the equation of the median through C.



**89.** Find the equaiton of the straight line passing through the intersection of the lines x-2y=1 and x+3y=2 and parallel to 3x+4y=0.



**90.** Find the value of  $\lambda$ , if the lines 3x-4y-13=0, 8x-11y-33, and  $2x - 3y + \lambda = 0$  are concurrent.

Watch Video Solution

**91.** If the point  $P(a, a^2)$  lies completely inside the triangle formed by the lines x = 0, y = 0, and x + y = 2, then find the exhaustive range of values of a is (A) (0, 1) (B)  $(1, \sqrt{2})$  (C)  $(\sqrt{2} - 1, 1)$  (D)  $(\sqrt{2} - 1, 2)$ 

**92.** If the point (a,a) is placed in between the lines |x+y| = 4, then find the

value of a.



93. Find the set of positive values of b for which the origin and the point (1, 1) lie on the same side of the straight line,  $a^2x + aby + 1 = 0, \ \forall a \in R., b>0$ 

Watch Video Solution

94. If the point  $P(a^2, a)$  lies in the region of acute angle between the

lines 2y=x and 4y = x, then find the values of a.



**95.** Find the range of values of the ordinate of a point moving on the line x = 1, which always remain in the interior of the triangle formed by the lines y = x, the x-axis and x + y = 4.



96. The point (8, -9) with respect to the lines 2x + 3y - 4 = 0 and

6x + 9y + 8 = 0 lies on

Watch Video Solution

97. If point  $(a^2, a + 1)$  lies in the angle between the line 3x-y+1=0 and

x+2y-5=0 containing the origin, then find the values of a.

**98.** Find the range of alpha if  $(\alpha, 2 + \alpha)$  and  $\left(\frac{3\alpha}{2}, a^2\right)$  lie on the opposite sides of the line 2x + 3y = 6.

#### Watch Video Solution

99. How the following pairs of points are placed w.r.t the line 3x-8y-7=0?

(i)(-3, -4) and (1, 2) (ii)(-1, -1) and (3, 7)

Watch Video Solution

**100.** If the line  $\frac{x}{b} + \frac{y}{b} = 1$  moves in such a way that  $\frac{1}{a_2} + \frac{1}{b_2} = \frac{1}{c_2}$ , where c is a constant, then prove that the foot of perpendicular from the origin upon the straight line describes the curve

$$x^2 + y(2) = c^2.$$

101. Consider the lines given by  $L_1: x + 3y - 5 = 0$   $L_2: 3x - ky - 1 = 0$  $L_3: 5x + 2y - 12 = 0$  Column I|Column II  $L_1, L_2, L_3$  are concurrent if|p. k = -9 One of  $L_1, L_2, L_3$  is parallel to at least one of the other two if|q.  $k = -\frac{6}{5}$   $L_1, L_2, L_3$  form a triangle if|r.  $k = \frac{5}{6}$   $L_1, L_2, L_3$  do not form a triangle if|s. k = 5

Watch Video Solution

**102.** A variable line through the point of intersection of the lines  $\frac{x}{a} + \frac{y}{b} = 1$  and  $\frac{x}{b} + \frac{y}{a} = 1$ , meets the co-ordinate axes in A and B, then the locus of mid point of AB is

Watch Video Solution

**103.** The line 3x+2y=24 meets the y-axis at A and the x-axis at B. The perpendicular bisector of AB meets the line through (0, -1) parallel to the x-axis at C. The area of triangle ABC is\_\_\_\_\_.

104. Find the equation of the line passing through the point (2,2) and

cutting off intercepts on the axes whose sum is 9.



**106.** A ray of light is sent along the line 2x - 3y = 5. After refracting across the line x + y = 1 it enters the opposite side after torning by  $15^0$  away from the line x + y = 1. Find the equation of the line along which the refracted ray travels.

$$P\equiv (\,-1,0), Q\equiv (0,0), ext{and} \ \ R\equiv ig(3,3\sqrt{3}ig) \ \ ext{beta} ext{ three points}.$$

Then the equation of the bisector of  $\angle PQR$  is

Watch Video Solution

108. A ray of light is rent along the line x-2y-3 = 0. Upon reaching the line

3x-2y-5=0, the ray is reflected from it.

Find the equation of the containing the reflected ray.

# Watch Video Solution

**109.** Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line

L has intercepts 
$$p$$
 and  $q$ . Then (a)  $a^2 + b^2 = p^2 + q^2$  (b)  
 $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$  (c)  $a^2 + p^2 = b^2 + q^2$  (d)  $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$
110. If the sum of the distances of a point from two perpendicular lines in

a plane is 1, then its locus is

Watch Video Solution

**111.** A line 4x + y = 1 through the point A(2,-7) meets the line BC whose equation is 3x-4y + 1 = 0 at the point B. Find the equation of the line AC, so that AB=AC,

# Watch Video Solution

**112.** A straight canal is  $4\frac{1}{2}$  miles from a place and the shortest route from this place to the canal is exactly north-east. A village is 3miles north and four miles east from the place. Does it lie by the nearest edge of the canal?

**113.** Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is (1) 4x - 7y - 11 = 0 (2) 2x + 9y + 7 = 0 (3) 4x + 7y + 3 = 0 (4) 2x - 9y - 11 = 0

Watch Video Solution

**114.** Find the equation of the line which satisfy the given conditions : Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive xaxis is  $30^{\circ}$ .

Watch Video Solution

**115.** The number of integral values of m for which the x-coordinate of the point of intersection of the lines 3x+4y=9 and y=mx+1 is also an integer is

**116.** Reduce the line 2x-3y + 5 = 0, in slope-intercept, intercept and normal forms. Also, find the distance of the line from origin and inclination of normal of the line with x-axis.



```
Watch Video Solution
```

118. Passing through the point (- 4, 3) with slope 1/2 then the equation of

the line is?



119. The lines 2x+3y+19=0 and 9x+6y-17=0 , cut the

coordinate axes at concyclic points.



120. The straight lines 3x + y - 4 = 0, x + 3y - 4 = 0 and x + y = 0form a triangle which is : a) isosceles b) right-angled c) equilateral d) scalene

Watch Video Solution

121. A Line through the variable point A(1+k,2k) meets the lines

7x + y - 16 = 0; 5x - y - 8 = 0 and x-5y+8=0` at B,C,D respectively.

Prove that AC;AB and AD are in HP.



**122.** Two particles start from the point (2,-1), one moves 2 units along the line x+y = 1 and the other moves 5 units along the line x-2y = 4. If the particles move upward w.r.t coordinates axes, then find their new positions.

Watch Video Solution

123. If  $P\equiv(1,0), Q\equiv(-1,0), R\equiv(2,0)$  are three given points, then

the locus of the point S satisfying the condition  $SQ^2+SR^2=2SP^2$  is

Watch Video Solution

124. Distance of point (1,3) from the line 2x - 3y + 9 = 0 along

$$x - y + 1 = 0$$

125. A rectangle ABCD has its side AB parallel to line y = x, and vertices A, BandD lie on y = 1, x = 2, and x = -2, respectively. The locus of vertex C is x = 5 (b) x - y = 5 y = 5 (d) x + y = 5

**126.** Two adjacent vertices of a square are (1,2) and (-2,6). Find the other vertices.

Watch Video Solution

**127.** The equation of a line through the point (1, 2) whose distance from

the point (3,1) has the greatest value is (a)y = 2x (b)y = x + 1 (c)

$$x+2y=5$$
 (d)  $y=3x-1$ 

**128.** Find the equation of the line through the point A(2,3) and making an angle of  $45\circ$  with the x axis Also determine the length of intercept on it between A and the line x+y+1=0

**129.** The line  $\frac{x}{a} + \frac{y}{b} = 1$  meets the x-axis at A, the y-axis at B, and the line y=x at C such that the area of  $\Delta AOC$  is twice the area of  $\Delta BOC$ . Then the coordinates of C are



**130.** The line joining two points A(2,0) and B(3,1) is rotated about A in anticlockwise direction through an angle of  $15^{\circ}$ . find the equation of line in the new position. If B goes to C in the new position what will be the coordinates of C.

131. The area of the triangle formed by the lines y = ax, x + y - a = 0and the y-axis is (a)  $\frac{1}{2|1+a|}$  (b)  $\frac{1}{|1+a|}$  (c)  $\frac{1}{2} \left| \frac{a}{1+a} \right|$  (d)  $\frac{a^2}{2|1+a|}$ 

### Watch Video Solution

132. Find the equation of the lines through the point (3, 2) which make an angle of  $45^0$  with the line x-2y=3 .

Watch Video Solution

133. Consider the points A(0, 1) and B(2, 0), and P be a point on the line

4x + 3y + 9 = 0. The coordinates of P such that |PA - PB| is maximum are (a)  $\left(-\frac{24}{5}, \frac{17}{5}\right)$  (b)  $\left(-\frac{84}{5}, \frac{13}{5}\right)$  (c)  $\left(\frac{31}{7}, \frac{31}{7}\right)$  (d) (-3, 0)

**134.** A straight line is drawn through the point P(2,3) and is inclined at an angle of  $30^{\circ}$  with the x-axis . Find the coordinates of two points on it at a distance 4 from point P.



**135.** A line of fixed length 2 units moves so that its ends are on the positive x-axis and that part of the line x + y = 0 which lies in the second quadrant. Then the locus of the midpoint of the line has equation.

Watch Video Solution

**136.** The perpendicular from the origin to a line meets it at the point

 $\left(2,9
ight)$  , find the equation of the line.

**137.** The line x/3 + y/4=1 meets y-and x-axis at A and B, respectively. A square ABCD is constructed on the line segment AB away from the origin. The coordinates of the vertex of the square fathest from the origin are

A. (a) (7,3)

B. (b) (4,7)

C. (c) (6,4)

D. (d) (3,8)

Answer: null

Watch Video Solution

**138.** Find the direction in which a straight line must be drawn through the point (-1,2) so that its point of intersection with the line x+y=4 may be at a distance of 3 units from this point.



**139.** The centroid of an equilateral triangle is (0, 0). If two vertices of the triangle lie on  $x + y = 2\sqrt{2}$ , then one of them will have its coordinates. (a)  $(\sqrt{2} + \sqrt{6}, \sqrt{2} - \sqrt{6})$  (b) $(\sqrt{2} + \sqrt{3}, \sqrt{2} - \sqrt{3})$  (c)  $(\sqrt{2} + \sqrt{5}, \sqrt{2} - \sqrt{5})$  (d) none of these

**140.** Two fixed point A and B are taken on the cordinate axes such that OA = a and OB = b. Two variable points A' and B' are taken on the same axes such that OA'+OB' = OA + OB. Find the locus of the point of intersection of AB' and A'B.

Watch Video Solution

Watch Video Solution

141. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6, respectively.

**142.** Find the equation of the straight line which passes through the origin and makes angle  $60^{\circ}$  with the line  $x + \sqrt{3}y + 3$ 

$$\sqrt{3} = 0$$

## Watch Video Solution

143. The equation of a straight line passing through the point (2, 3) and inclined at an angle of  $\tan^{-1}\left(\frac{1}{2}\right)$  with the line y + 2x = 5 (a) y = 3 (b)  $x = 2 \ 3x + 4y - 18 = 0$  (d) 4x + 3y - 17 = 0



144. If we reduce 3x + 3y + 7 = 0 to the form  $x \cos \alpha + y \sin \alpha = p,$ 

then find the value of p.

**145.** The equation of the lines on which the perpendicular from the origin make  $30^{\circ}$  angle with the x-axis and which form a triangle of area  $50/\sqrt{3}$  with the axes are

**146.** Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line

L has intercepts p and q. Then (a)  $a^2 + b^2 = p^2 + q^2$  (b)  $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$  (c)  $a^2 + p^2 = b^2 + q^2$  (d)  $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$ 

Watch Video Solution

**147.** A line intersects the straight lines 5x-y-4=0 and 3x-4y-4=0 at A and B, respectively. If a point P(1,5) on the line AB is such that AP : PB = 2:1(internally), find point A.

**148.** A line L is a drawn from P(4, 3) to meet the lines  $L - 1andL_2$  given by 3x + 4y + 5 = 0 and 3x + 4y + 15 = 0 at points AandB, respectively. From A, a line perpendicular to L is drawn meeting the line  $L_2$  at  $A_1$ . Similarly, from point  $B_1$ . Thus, a parallelogram  $\forall_1 BB_1$  is formed. Then the equation of L so that the area of the parallelogram  $\forall_1 BB_1$  is the least is (a) x - 7y + 17 = 0 (b) 7x + y + 31 = 0 (c) x - 7y - 17 = 0 (d) x + 7y - 31 = 0

Watch Video Solution

**149.** A straight line through the point A (3,4) is such that its intercept between the axis is bisected at A then its equation is : A. x + y = 7 B.

$$3x-4y+7=0$$
 C.  $4x+3y=24$  D.  $3x+4y=24$ 

## Watch Video Solution

**150.** Two straight line u=0 and v=0 pass through the origin and the angle

between them is  $\tan^{-1}(7/9)$ . If the ratio of the slope of v=0 and u=0 is

### 9/2, then their equations are



**151.** A straight line through the point (2,2) intersects the lines  $\sqrt{3}x + y = 0$  and  $\sqrt{3}x - y = 0$  at thep points A and B, respectively. Then find the equation of the line AB so that triangle OAB is equilateral.

# Watch Video Solution

**152.** Let  $u = ax + by + a^3\sqrt{b} = 0$ ,  $v = bx - ay + b^3\sqrt{a} = 0$ ,  $a, b \in R$ , be two straight lines. The equations of the bisectors of the angle formed by  $k_1u - k_2v = 0$  and  $k_1u + k_2v = 0$ , for nonzero and real  $k_1$  and  $k_2$ are

153. If the foot of the perpendicular from the origin to a straight line is at

(3,-4), then find the equation of the line.



154. Two sides of a triangle are parallel to the coordinate axes. If the slopes of the medians through the acute angles of the triangle are 2 and m, then m =

Watch Video Solution

155. The diagonals AC and BD of a rhombus intersect at  $(5,6)\cdot$  If

 $A=(\,-\,3,2),\,$  then find the equation of diagonal  $BD_{\cdot}$ 

**156.** A line which makes an acute angle  $\theta$  with the positive direction of the x-axis is drawn through the point P(3, 4) to meet the line x = 6 at R and y = 8 at S. Then,



**157.** Find the values of non-negative real numbers  $h_1$ ,  $h_2$ ,  $h_3$ ,  $k_1$ ,  $k_2$ ,  $k_3$  such that algebraic sum of the perpendiculars drawn from points  $(2, k_1), (3, k_2), (7, k_3), (h_1, 4), (h_2, 5), (h_3, -3)$  on a variable line passing through (2,1) is zero.

# Watch Video Solution

**158.** The sides of a triangle ABC lie on the lines 3x + 4y = 0, 4x + 3y = 0and x = 3. Let (h, k) be the centre of the circle inscribed in  $\triangle ABC$ . The value of (h + k) equals

**159.** If a and b are two arbitray constants, then prove that the straight line (a-2b)x+(a+3b)y+3a+4b=0 will pass through a fixed. Find that point.

**160.** Find the incentre of a triangle formed by the lines  

$$x\cos\frac{\pi}{9} + y\sin\frac{\pi}{9} = \pi, x\cos\frac{8\pi}{9} + y\sin\frac{8\pi}{9} = \pi$$
 and  
 $x\cos\frac{13\pi}{9} + y\sin\left(\frac{13\pi}{9}\right) = \pi.$ 

Watch Video Solution

**161.** If the two sides of rhombus are x+2y+2=0 and 2x+y-3=0, then find the

slope of the longer diagonal.



162. The lines x + y - 1 = 0,  $(m - 1)x + (m^2 - 7)y - 5 = 0$ , and (m - 2)x + (2m - 5)y = 0 are (a)concurrent for three values of m (b)concurrent for no value of m (c)parallel for one value of m (d)parallel for two values of m

Watch Video Solution

**163.** In triangle ABC, the equation of the right bisectors of the sides AB and AC are x+y=0 and y-x=0. respectively.

If  $A\equiv(5,7)$  the find the equation of side BC.

# > Watch Video Solution

**164.** If 
$$\left(\frac{x}{a}\right) + \left(\frac{y}{b}\right) = 1$$
 and  $\left(\frac{x}{c}\right) + \left(\frac{y}{d}\right) = 1$  intersect the axes at four concylic points and  $a^2 + c^2 = b^2 + d^2$ , then these lines can intersect at,  $(a, b, c, d > 0)$ 

165. Show that the straight lines given by x(a+2b) + y(a+3b) = a+b for different values of a and b pass through a fixed point.

## Watch Video Solution

166. The straight line 3x + 4y - 12 = 0 meets the coordinate axes at AandB . An equilateral triangle ABC is constructed. The possible coordinates of vertex C (a)  $\left(2\left(1 - \frac{3\sqrt{3}}{4}\right), \frac{3}{2}\left(1 - \frac{4}{\sqrt{3}}\right)\right)$  (b)  $\left(-2(1+\sqrt{3}), \frac{3}{2}(1-\sqrt{3})\right)$  (c)  $\left(2(1+\sqrt{3}), \frac{3}{2}(1+\sqrt{3})\right)$  (d)  $\left(2\left(1 + \frac{3\sqrt{3}}{4}\right), \frac{3}{2}\left(1 + \frac{4}{\sqrt{3}}\right)\right)$ 

Watch Video Solution

**167.** Let ax+by+c=0 be a variable straight line, where a, b and c are  $1^{st}$ ,  $3^{rd}$  and  $7^{th}$  terms of an increasing A.P., respectively.

Then prove that the variable straight line always passes through a fixed point and find that point.



168. Angle made with the x-axis by a straight line drawn through (1, 2) so that it intersects x + y = 4 at a distance  $\frac{\sqrt{6}}{3}$  from (1, 2) is (a) $105^0$  (b)  $75^0$  (c)  $60^0$  (d)  $15^0$ 

Watch Video Solution

**169.** Prove that all the having sum of the intercepts on the axes equal to half of the product of the intercepts pass through a fixed point. Also, find that fixed point.



 170.
 Three
 straight

 2x + 11y - 5 = 0, 24x + 7y - 20 = 0 and 4x - 3y - 2 = 0 4x - 3y - 2 = 0 

  $\bigcirc$  Watch Video Solution

lines

**171.** Find the straight line passing through the point of intersection of lines 2x+3y+5=0 and 5x-2y-16=0 and through the point (-1,3) using the concept of family of lines.

Watch Video Solution

172. Three lines x + 2y + 3 = 0, x + 2y - 7 = 0, and 2x - y - 4 = 0

form the three sides of two squares. The equation of the four side of the

each square is

**173.** Consider a family of straight lines  $(x + y) + \lambda(2x - y + 1) = 0$ . Find the equation of the straight line belonging to his family that is farthest from (1,-3).

**174.** Find  $\alpha$  if  $(\alpha, \alpha^2)$  lies inside the triangle having sides along the lines 2x+3y=1, x+2y-3=0, 6y=5x-1.

Watch Video Solution

175. If 5a+4b+20c=t,then the value of t for which the line ax+by+c-1=0

always passes through a fixed point is



**176.** If the chord y = mx + 1 subtends an angle of measure  $45^0$  at the major

segment of the circle  $x^2+y^2=1$  then value of 'm' is

## Watch Video Solution

**177.** If  $\frac{x}{l} + \frac{y}{m} = 1$  is any line passing through the intersection point of the lines  $\frac{x}{a} + \frac{y}{b} = 1$  and  $\frac{x}{b} + \frac{y}{a} = 1$  then prove that  $\frac{1}{l} + \frac{1}{m} = \frac{1}{a} + \frac{1}{b}$ 

Watch Video Solution

**178.** Two sides of a rhombus OABC (lying in the first or third quadrant) of area equal to 2 sq. units are  $y = x/\sqrt{3}, y = \sqrt{3}x$ . Then the possible

coordinates of B is are (O being the origin)

179. The equation of straight line belonging to both the families of lines  $(x - y + 1) + \lambda_1(2x - y - 2) = 0$  and  $(5x + 3y - 2) + \lambda_2(3x - y - 4) = 0$  where  $\lambda_1, \lambda_2$  are arbitrary numbers is (A) 5x - 2y - 7 = 0 (B)2x + 5y - 7 = 0 (C) 5x + 2y - 7 = 0(D) 2x - 5y - 7 = 0

Watch Video Solution

180. If  $m_1$  and  $m_2$  are the roots of the equation  $x^2-ax-a-1=0$  , then the area of the triangle formed by the three straight lines  $y=m_1x, y=m_2x,$  and y=a(a
eq-1) is `

Watch Video Solution

**181.** Let the algebraic sum of the perpendicular distance from the points (2, 0), (0,2), and (1, 1) to a variable straight line be zero. Then the line passes through a fixed point whose coordinates are\_\_\_\_

**182.** If the points 
$$\left(\frac{a^3}{(a-1)}\right)$$
,  $\left(\frac{(a^2-3)}{(a-1)}\right)$ ,  $\left(\frac{b^3}{b-1}\right)$ ,  $\left(\left(\frac{b^2-3}{(b-1)}\right)$ ,

and  $\left(\frac{(c^2-3)}{(c-1)}\right)$ , where a, b, c are different from 1, lie on the

lx+my+n=0 , then

Watch Video Solution

**183.** If a, b, c are in harmonic progression, then the straight line  $\left(\frac{x}{a}\right) + \left(\frac{y}{b}\right) + \left(\frac{1}{c}\right) = 0$  always passes through a fixed point. Find that

point.

Watch Video Solution

**184.** A variable line cuts n given concurrent straight lines at  $A_1, A_2...A_n$ 

such that  $\sum_{i=1}^{n} rac{1}{OA_i}$  is a constant. Show that it always passes through a

fixed point, O being the point of intersection of the lines

185. Prove that the area of the parallelogram formed by the lines

 $3x - 4y + a = 0, \ 3x - 4y + 3a = 0, \ 4x - 3y - a = 0`and4x - 3y - 2a = 0`is rac{2a^2}{7} squares$ 

Watch Video Solution

**186.** Two sides of a rhombus lying in the first quandrant are given by 3x-4y=0 and 12x-5y=0 If the length of the longer diagonal is 12, then find the equation of the other two sides of the rhombus.

Watch Video Solution

**187.** The equation of straight line passing through (-2,-7) and having an intercept of length 3 between the straight lines : 4x + 3y = 12, 4x + 3y = 3 are :

(A) 7x + 24y + 182 = 0

(B) 7x + 24y + 18 = 0(C) x + 2 = 0

(D) x - 2 = 0

Watch Video Solution

**188.** Let ABC be a given isosceles triangle with AB = AC. Sides ABandAC are extended up to EandF, respectively, such that  $BE \cdot CF = AB^2$ . Prove that the line EF always passes through a fixed point.

## Watch Video Solution

**189.** ABC is an equilateral triangle with A(0,0) and B(a,0), (a>0).

L,M and V are the foot of the perpendiculars drawn from a point P to the sides AB, BC, and CA, respectively. If P lies inside the triangle and satisfies the condition  $PL^2 = PM \cdot PN$ , then find the locus of P.

**190.** Let  $L_1 = 0$  and  $L_2 = 0$  be two fixed lines. A variable line is drawn through the origin to cut the two lines at R and S. P is a point on the line AB such that (m+n)/OP=m/OR+n/OS. Show that the locus of P is a straight line passing through the point of intersection of the given lines (R,S,P are on the same side of O).



**191.** Find the points on y - ais whose perpendicular distance from the line 4x - 3y - 12 = 0 is 3.

Watch Video Solution

**192.** Find all the values of  $\theta$  for which the point  $(\sin^2 \theta, \sin \theta)$  lies inside

the square formed by the line xy = 0 and 4xy - 2x - 2y + 1 = 0.

193. If p and q are the lengths of perpendiculars from the origin to the lines  $x\cos heta-y\sin heta=k\cos2 heta$  and  $x\sec heta+y\ \csc heta=k$ , respectively, prove that  $p^2+4q^2=k^2$ .



**194.** The equations of two sides of a triangle are 3y-x-2=0 and y+x-2=0. The third side, which is variable, always passes through the point (5,-1). Find the range of the values of the slope of the third side, so that the origin is an interior point of the triangle.

# Watch Video Solution

195. Prove that the lengths of the perpendicular from the points  $(m^2, 2m), (mm', m + m'), \text{ and } (m'^2, 2m')$  to the line x+y+1=0 are in GP.

**196.** A triangle has two sides  $y = m_1 x$  and  $y = m_2 x$  where  $m_1$  and  $m_2$  are the roots of the equation  $b\alpha^2 + 2h\alpha + a = 0$ . If (a, b) be the orthocenter of the triangle, then find the equation of the third side in terms of a, b and h.

Watch Video Solution

**197.** Find the ratio in which the line 3x+4y+2 = 0 divides the distance between 3x+4y+5=0 and 3x+4y-5=0.

Watch Video Solution

**198.** Let  $A \equiv (6, 7), B \equiv (2, 3) and C \equiv (-2, 1)$  be the vertices of a triangle. Find the point P in the interior of the triangle such that PBC is an equilateral triangle.

199. Find the equations of lines parallel to 3x-4y-5 = 0 at a unit distane

from it.



and which cuts off an intercept fo  $\sqrt{2}$  units between the lines x+y+1=0

and x+y-1=0



**202.** Are the points (3,4) and (2,-6) on the same or opposite sides of the

line 3x-4y=8?

**203.** Consider the equation  $y - y_1 = m(x - x_1)$ . If  $mandx_1$  are fixed and different lines are drawn for different values of  $y_1$ , then (a) the lines will pass through a fixed point (b) there will be a set of parallel lines (c) all the lines intersect the line  $x = x_1$  (d)all the lines will be parallel to the line  $y = x_1$ 

A. (a) the lines will pass through a fixed point

B. (b) there will be a set of parallel lines

C. (c) all the lines intersect the line  $x=x_1$ 

D. (d) all the lines will be parallel to the line  $y=x_1$ 

#### Answer: null

**204.** If the straight line ax + cy = 2b, where a, b, c > 0, makes a triangle of area 2 sq. units with the coordinate axes, then (a) a, b, c are in GP (b) a, -b, c are in GP (c) a, 2b, c are in GP (d) a, -2b, c are in GP



**205.** ABCD is a square whose vertices are A(0, 0), B(2, 0), C(2, 2), and D(0, 2). The square is roated in the XY-plane through and angle  $30^{\circ}$  in the anticlockwise sense about an axis passing though A perpendicular to the XY-plane. Find the equation of the diagonal BD of this rotated square.

# Watch Video Solution

**206.** The x-coordinates of the vertices of a square of unit area are the roots of the equation  $x^2 - 3|x| + 2 = 0$ . The y-coordinates of the vertices are the roots of the equation  $y^2 - 3y + 2 = 0$ . Then the possible vertices of the square is/are (a)(1, 1), (2, 1), (2, 2), (1, 2)(b)(-1, 1), (-2, 1), (-2, 2), (-1, 2)



Watch Video Solution

**207.** Consider a triangle with vertices A(1, 2), B(3, 1), and C(-3, 0). Find the equation of altitude through vertex A the equation of median through vertex A the equation of internal angle bisector of  $\angle A$ 

Watch Video Solution

**208.** If (x,y) is a variable point on the line y=2x lying between the lines 2(x+1)+y=0, and x+3(y-1)=0, then



**209.** A rectangle has two opposite vertices at the points (1, 2) and (5,5). If the other vertices lie on the line x = 3 , find the other vertices of the



**210.** If D, E, and F are three points on the sides BC, AC, and AB of a triangle ABC such that AD, BE, and CF are concurrent, then show that  $BD \cdot CE \cdot AF = DC \cdot EA \cdot FB$ .

Watch Video Solution

**211.** Find the coordinates of the foot of the perpendicular drawn from the

point P(1,-2) on the line y = 2x + 1. Also, find the image of P in the line.

Watch Video Solution

**212.** Let the sides of a parallelogram be U=a, U=b,V=a' and V=b', where U=lx+my+n, V=l'x+m'y+n'. Show that the equation of the diagonal through
the point of intersection of

$$U=a,V=a' ext{ and } U=b,V=b' ext{ is given by } egin{pmatrix} U&V&1\a&a'&1\b&b'&1 \end{bmatrix}=0.$$

Watch Video Solution

**213.** Find the image of the point (-8,12) which respect to the line 4x + 7y + 13 = 0

Watch Video Solution

**214.** One side of a rectangle lies along the line 4x+7y+5=0. Two of its vertices are (-3,1) and (1,1). Find the equations of the other three sides.



**215.** In a triangle ABC, side AB has equation 2x + 3y = 29 and side AC has equation x + 2y = 16. If the midpoint of BC is (5, 6), then find



**216.** The fooot of the perpendicular on the line  $3x + y = \lambda$  drawn from the origin is C. if the line cuts the x- and the y-axis at A and B, respectively,then BC:CA is



**217.** Two consecutive sides of a parallelogram are 4x + 5y = 0 and 7x + 2y = 0. If the equation of one diagonal is 11x + 7y = 9, find the equation of the other diagonal.



**218.** The real value of a for which the value of m satisfying the equation  $(a^2-1)m^2-(2a-3)m+a=0$  given the slope of a line parallel to

the y-axis is(a)  $rac{3}{2}$  (b) 0 (c) 1 (d)  $\pm 1$ 

Watch Video Solution

219. If one of the sides of a square is 3x-4y-12 = 0 and the center is (0,0),

then find the equations of the diagonals of the square.

Watch Video Solution

220. If the quadrilateral formed by the lines ax + by + c = 0, a'x + b'y + c = 0, ax + by + c' = 0, a'x + b'y + c' = 0 has perpendicular diagonals, then (a)  $b^2 + c^2 = b'^2 + c'^2$  (b)  $c^2 + a^2 = c'^2 + a'^2$  (c) $a^2 + b^2 = a'^2 + b'^2$  (d) none of these

## Watch Video Solution

**221.** A vertex of an equilateral triangle is (2,3) and the equation of the opposite side is x+y=2. Find the equation of the other sides of the

### triangle.



**223.** Find the least value of  $(x-1)^2 + (y-2)^2$  under the condition

3x+4y-2=0.

Watch Video Solution

**224.**  $\theta_1$  and  $\theta_2$  are the inclination of lines  $L_1$  and  $L_2$  with the x-axis. If  $L_1$  and  $L_2$  pass through  $P(x_1, y_1)$ , then the equation of one of the angle bisector of these lines is

**225.** Find the least and the greatest values of distance of the point  $(\cos\theta, \sin\theta), \theta \in R$ , from the line 3x-4y+10=0.

Watch Video Solution

**226.** A light ray coming along the line 3x + 4y = 5 gets reflected from

the line ax + by = 1 and goes along the line 5x - 12y = 10. Then,

Watch Video Solution

227. Prove that the product of the lengths of the perpendiculars drawn

228. Line ax + by + p = 0 makes angle  $\frac{\pi}{4}$  with  $x \cos \alpha + y \sin \alpha = p, p \in R^+$ . If these lines and the line  $x \sin \alpha - y \cos \alpha = 0$  are concurrent, then

**229.** Two sides of a square lie on the lines x+y=1 and x+y+2=0. What is its area?

Watch Video Solution

**230.** A line is drawn perpendicular to line y = 5x, meeting the coordinate axes at AandB. If the area of triangle OAB is 10 sq. units, where O is the origin, then the equation of drawn line is (a) 3x - y - 9(b) x + 5y = 10 x + 4y = 10 (d) x - 4y = 10

**231.** Find the coordinates of a point on x+y+3=0, whose distance from x+2y+2=0 is  $\sqrt{5}$ .

### Watch Video Solution

232. If x - 2y + 4 = 0 and 2x + y - 5 = 0 are the sides of an isosceles triangle having area 10squares, the equation of the third side is (a) 3x - y = -9 (b) 3x - y + 11 = 0 (c) x - 3y = 19 (d) 3x - y + 15 = 0

Watch Video Solution

233. If p is the length of the perpendicular from the origin to the line

$$rac{x}{a}+rac{y}{b}=1, ext{ then prove that } \ \ rac{1}{p^2}=rac{1}{a^2}+rac{1}{b^2}$$

234. Find the value of a for which the lines 2x + y - 1 = 0, ax + 3y - 3 = 0, 3x + 2y - 2 = 0 are concurrent.



**235.** The centre of a square is at the origin and one vertex is A(2,1). Find the coordinates of other vertices of the square.

Watch Video Solution

236. ABCD is a square  $A\equiv(1,2), B\equiv(3,\ -4)$ . If line CD passes

through (3, 8), then the midpoint of CD is (a) (2, 6) (b) (6, 2) (c) (2, 5)

(d) 
$$\left(\frac{28}{5}, \frac{1}{5}\right)$$

**237.** Find the distance between A(2, 3) on the line of gradient 3/4 and the point of intersection P of this line with 5x + 7y + 40 = 0.

| 0 | Watch | Video | So | lution |
|---|-------|-------|----|--------|
|   |       |       |    |        |

**238.** The equation of the straight line which passes through the point (-4,3) such that the portion of the line between the axes is divided internally by the point in the ratio 5:3 is

Watch Video Solution

**239.** If one side of the square is 2x-y+6=0 and one of the vertices is (2,1)

then find the other sides of the square.



240. The equation of the bisector of the acute angle between the lines

$$2x-y+4=0$$
 and  $x-2y=1$  is



**241.** Find equation of the line which is equidistant from parallel lines

9x + 6y - 7 = 0 and 3x + 2y + 6 = 0.

Watch Video Solution

242. If the equations y=mx+c and  $x\cos lpha+y\sin lpha=p$  represent the same straight line, then (a) $p=c\sqrt{1+m^2}$  (b)  $c=p\sqrt{1+m^2}$  (c)  $cp=\sqrt{1+m^2}$  (d)  $p^2+c^2+m^2=1$ 

**243.** Find the equation of the line passing through (2,3) which is parallel

to the x-axis.

# Watch Video Solution

**244.** Consider three lines as follows.  $L_1: 5x - y + 4 = 0$  $L_2: 3x - y + 5 = 0$   $L_3: x + y + 8 = 0$  If these lines enclose a triangle *ABC* and the sum of the squares of the tangent to the interior angles can be expressed in the form  $\frac{p}{q}$ , where p and q are relatively prime numbers, then the value of p + q is

Watch Video Solution

**245.** Find the equation of a straight line cutting off an intercept-1 from the y-axis and being equally inclined to the axes.



**246.** The line  $L_1 \equiv 4x + 3y - 12 = 0$  intersects the x-and y-axies at AandB, respectively. A variable line perpendicular to  $L_1$  intersects the xand the y-axis at P and Q , respectively. Then the locus of the circumcenter of triangle ABQ is

Watch Video Solution

**247.** Find the equation of the line which intersects the y-axis at a distance of 2 units above the origin and makes and angle of  $30^{\circ}$  with the positive direction of the x-axis.

Watch Video Solution

**248.** Find the locus of the point at which two given portions of the straight line subtend equal angle.

249. Find the equation of the perpendicular bisector of the line segment

joining the points A(2,3) and B (6,-5).



**250.** Having given the bases and the sum of the areas of a number of triangles which have a common vertex, show that the locus of the vertex is a straight line.

Watch Video Solution

251. Find the equation of a line that y-intercept 4 and is perpendicular to

the joining A(2,-3) and B(4,2).



252. The equations of the diagonals of square formed by lines

x=0, y=0, x=1, and y=1 are



253. Find the equation of the straight line that passes through the point

(3,4) and is perpendicular to the line 3x+2y+5=0

Watch Video Solution

**254.** Find the equation of the line which is parallel to 3x - 2y + 5 = 0and passes through the point (5, -6).



intersecting at point  $P\dot{A}$  line  $L_3$  is drawn through the origin meeting the lines  $L_1andL_2$  at AandB, respectively, such that PA = PB. Similarly, one more line  $L_4$  is drawn through the origin meeting the lines  $L_1andL_2$ at  $A_1andB_2$ , respectively, such that  $PA_1 = PB_1$ . Obtain the combined equation of lines  $L_3andL_4$ .

Watch Video Solution

256. Find the locus of point P which moves such that its distance from the

line  $y=\sqrt{3}x-7$  is the same as its distance from  $\left(2\sqrt{3},\ -1
ight)$ 

# Watch Video Solution

**257.** Consider two lines  $L_1$  and  $L_2$  given by x-y=0 and x+y=0, respectively, and a moving point P(x,y). Let  $d(P, L_i)$ , i=1,2, represents the distance of point P from the line  $L_i$ . If point P moves in a certain region R is such a way that  $2 \le d(P, L_1) + d(P, L_2) \le 4$ ,

find the area of region R.

258. In what ratio does the line joining the points (2, 3) and (4, 1) divide

the segment joining the points (1, 2) and (4, 3)?



**259.** Show that the lines 4x+y-9=0, x-2y+3=0, 5x-y-6=0 make equal intercepts on any line of slope 2

Watch Video Solution

260. Find the equation of the bisector of the obtuse angle between of the

lines 3x-4y+7 = 0 and 12+5y-2 = 0

**261.** A Line through the variable point A(1 + k, 2k) meets the lines 7x + y - 16 = 0; 5x - y - 8 = 0 and x-5y+8=0° at B,C,D respectively. Prove that AC;AB and AD are in HP.



**262.** The incident ray is along the line 24x+7y+5=0. Find the equation of mirrors.

Watch Video Solution

263. If the line 
$$y = \sqrt{3}x$$
 cuts the curve  $x^3 + y^3 + 3xy + 5x^2 + 3y^2 + 4x + 5y - 1 = 0$  at the point  $A, B, C$ , then  $OA\dot{O}B\dot{O}C$  is equal to  $\left(\frac{k}{13}\right)(3\sqrt{3}-1)$ . The value of  $k$  is\_\_\_\_\_

**264.** Two equal sides of an isosceles triangle are 7x-y+3=0 and x+y-3=0. Its

third side passes the point (1,-10).

Determine the equation of the third side.



**266.** The vertices, B and C of a triangle ABC lie on the lines 3y=4x and y=0, respectively. The side BC passes through the point (2/3, 2/3). If ABOC is a rhombus lying in first quadrant, O being the origin, them find the equation of the line BC.



**267.** If each of the points  $(x_1, 4)$ ,  $(-2, y_1)$  lies on the line joining the points (2, -1), (5, -3), then the points  $P(x_1, y_1)$  lies on the line :



Watch Video Solution

269. The diagonals of a parallelogram PQRS are along the lines x+3y =4

and 6x-2y = 7, Then PQRS must be :

**270.** For the straight lines 4x+3y-6 = 0 and 5x+12y+9 = 0, find the equation

of the:

(i) bisector of the abtuse angle between them

(ii) bisector of the acute angle between them

(iii) bisector of the angle which contains (1,2)

(iv) bisector of the angle which contains (0,0)

Watch Video Solution

**271.** A straight line segment AB of length 'a' moves with its ends on the axes. Then the locus of the point P which divides the line in the ratio 1:2 is

Watch Video Solution

272. Find the foot of the perpendicular from the point (2,4) upon x+y=1.

**273.** The lines x + y - 1 = 0,  $(m - 1)x + (m^2 - 7)y - 5 = 0$ , and (m - 2)x + (2m - 5)y = 0 are (a)concurrent for three values of m (b)concurrent for no value of m (c)parallel for one value of m (d)parallel for two values of m

Watch Video Solution

**274.** In  $\Delta ABC$  , vertex A is (1,2). If the internal angle bisector of  $\angle B$  is 2x-

y+10=0 and the perpendicular bisector of AC is y=x, then find the equation

of BC.

Watch Video Solution

275. Find the equation of the bisector of the obtuse angle between of the

lines 3x-4y+7 = 0 and 12+5y-2 = 0

**276.** The line ax+by=1 passes through the point of intertsection of y=x tan  $\alpha + p \sec \alpha$  and  $y\sin(30^{\circ} - \alpha) - x\cos(30^{\circ} - \alpha) = p$ . If it is inclined at  $30^{\circ}$  with  $y = (\tan \alpha)x$ , then prove that  $a^2 + b^2 = \frac{3}{4p^2}$ .



**277.** A straight line L is perpendicular to the line 5x-y=1. The aera of the triangle formed by line L and the coordinate area is 5. Find the equation of line L.

Watch Video Solution

**278.** The reflection of the point (4,-13) about the line 5x + y + 6 = 0 is a.

$$(-1, -14)$$
 b.  $(3, 4)$  c.  $(0, -0)$  d.  $(1, 2)$ 

**279.** Triangle ABC with AB = 13, BC = 5, and AC = 12 slides on the coordinates axes with A and B on the positive x-axis and positive y-axis respectively. The locus of vertex C is a line 12x - ky = 0. Then the value of k is\_\_\_\_\_

### Watch Video Solution

**280.** The line 
$$y = \frac{3x}{4}$$
 meets the lines  $x - y + 1 = 0$  and  $2x - y = 5$  at A and B respectively. Find Coordinates of P on  $y = \frac{3x}{4}$  such that  $PA \cdot PB = 25$ .

### Watch Video Solution

**281.** In a plane there are two families of lines y = x + r, y = -x + r, where  $r \in \{0, 1, 2, 3, 4\}$ . Find the number of squares of diagonals of length 2 formed by the lines

**282.** Line  $\frac{x}{a} + \frac{y}{b} = 1$  cuts the co-ordinate axes at A(a,0) and B(0,b) and the line  $\frac{x}{a'} + \frac{y}{b'} = -1$  at A'(-a', 0) and B'(0, -b'). If the points

A,B,A',B' are concyclic then the orthocentre of triangle ABA' is



284. If the points (1,2) and (3, 4) are on the opposite side of the line 3x - 5y

+ a = 0, then :



**285.** Line segment AB of fixed lengh c slides between coordinate axes such that its ends A and B lie on the axes. If O is origin and rectangle OAPB is completed, then show that the locus of the foot of the perpendicular drawn from P to AB is  $x^{\frac{2}{3}} + y^{\frac{2}{3}} = c^{\frac{2}{3}}$ .

Watch Video Solution

286. All points lying inside the triangle formed by the points (1, 3), (5, 0)and(-1, 2) satisfy

Watch Video Solution

**287.** The equation to the straight line passing through the point  $(a\cos^3\theta, a\sin^3\theta)$  and perpendicular to the line  $x\sec\theta + y\csc\theta = a$  is

**288.** The equation of a straight line on which the length of perpendicular from the origin is four units and the line makes an angle of  $120^0$  with the x-axis is (a)  $x\sqrt{3} + y + 8 = 0$  (b)  $x\sqrt{3} - y = 8$  (c)  $x\sqrt{3} - y = 8$  (d)  $x - \sqrt{3}y + 8 = 0$ 

Watch Video Solution

289. The number of integral values of m for which the x-coordinate of the

point of intersection of the lines 3x+4y=9 and y=mx+1 is also an integer is



**290.** If the equation of base of an equilateral triangle is 2x - y = 1 and the vertex is (-1, 2), then the length of the sides of the triangle is



**291.** The equation of straight line passing through (-a, 0) and making a triangle with the axes of area T is (a)  $2Tx + a^2y + 2aT = 0$  (b)  $2Tx - a^2y + 2aT = 0$  (c) $2Tx - a^2y - 2aT = 0$  (d)none of these



**292.** The line PQ whose equation is x - y = 2 cuts the x-axis at P, andQ is (4,2). The line PQ is rotated about P through  $45^0$  in the anticlockwise direction. The equation of the line PQ in the new position is

**293.** If the equation of the locus of a point equidistant from the points  $(a_1, b_1)$  and  $(a_2, b_2)$  is  $(a_1 - a_2)x + (b_1 - b_2)y + c = 0$ , then the value of C is

**294.** If the extremities of the base of an isosceles triangle are the points (2a, 0) and (0, a), and the equation of one of the side is x = 2a, then the area of the triangle is

#### Watch Video Solution

**295.** A triangle is formed by the lines x + y = 0, x - y = 0, and lx + my = 1. If *landm* vary subject to the condition  $l^2 + m^2 = 1$ , then the locus of its circumcenter is (a)  $(x^2 - y^2)^2 = x^2 + y^2$  (b)  $(x^2 + y^2)^2 = (x^2 - y^2)$  (c)  $(x^2 + y^2)^2 = 4x^2y^2$  (d)  $(x^2 - y^2)^2 = (x^2 + y^2)^2$ 

Watch Video Solution

**296.** The line x + y = p meets the x- and y-axes at AandB, respectively. A triangle APQ is inscribed in triangle OAB, O being the origin, with right angle at  $Q\dot{P}$  and Q lie, respectively, on OBandAB. If the area of

triangle 
$$APQ$$
 is  $\frac{3}{8}th$  of the are of triangle  $OAB$ , the  $\frac{AQ}{BQ}$  is equal to (a)2(b)  $\frac{2}{3}$  (c)  $\frac{1}{3}$  (d)3

Watch Video Solution

**297.** A is a point on either of two lines  $y + \sqrt{3}|x| = 2$  at a distance of  $\frac{4}{\sqrt{3}}$  units from their point of intersection. The coordinates of the foot of

perpendicular from A on the bisector of the angle between them are (a)

$$\left(-rac{2}{\sqrt{3}},2
ight)$$
 (b)  $(0,0)$  (c)  $\left(rac{2}{\sqrt{3}},2
ight)$  (d)  $(0,4)$ 

Watch Video Solution

**298.** A pair of perpendicular straight lines is drawn through the origin forming with the line 2x + 3y = 6 an isosceles triangle right-angled at the origin. The equation to the line pair is a.  $5x^2 - 24xy - 5y^2 = 0$  b.  $5x^2 - 26xy - 5y^2 = 0$  c.  $5x^2 + 24xy - 5y^2 = 0$  d.  $5x^2 + 26xy - 5y^2 = 0$ 

**299.** If the vertices PandQ of a triangle PQR are given by (2, 5) and (4, -11), respectively, and the point R moves along the line N given by 9x + 7y + 4 = 0, then the locus of the centroid of triangle PQR is a straight line parallel to PQ (b) QR (c) RP (d) N

Watch Video Solution

**300.** Given A = (1, 1) and AB is any line through it cutting the x-axis at B. If AC is perpendicular to AB and meets the y-axis in C, then the equation of the locus of midpoint P of BC is (a) x + y = 1 (b) x + y = 2 (c) x + y = 2xy (d) 2x + 2y = 1

#### Watch Video Solution

**301.** The straight lines 4ax + 3by + c = 0 passes through which point? , where a + b + c=0 (a)(4, 3) (b)  $\left(\frac{1}{4}, \frac{1}{3}\right)$  (c) $\left(\frac{1}{2}, \frac{1}{3}\right)$  (d) none of these

**302.** The line parallel to the x-axis and passing through the intersection of the lines ax + 2by + 3b = 0 and bx - 2y - 3a = 0 where  $(a, b) \neq (0, 0)$ , is (a)above the x-axis at a distance of 3/2 units from it (b)above the x-axis at a distance of 2/3 units from it (c)below the x-axis at a distance of 3/2 units from it (d)below the x-axis at a distance of 2/3 units from it

Watch Video Solution

**303.** The lines  $L_1$ :y-x =0 and  $L_2$ : 2x+y =0 intersect the line  $L_3$  : y+2 =0 at P and Q respectively. The bisector of the acute angle between  $L_1$  and  $L_2$ intersects  $L_3$  at R Statement - 1 : The ratio PR : PQ equals  $2\sqrt{2}$ :  $\sqrt{5}$ 

Statement - 2 : In any triangle , bisector of an angle divides the triangle into two similar triangle

**304.** If the lines ax+y+1=0, x+by+1=0, x+y+c=0, (a, b, c are distinct and not equal to 1), are concurrent, then find the value of  $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ Watch Video Solution

**305.** Two sides of a rhombus ABCD are parallel to the lines y=x+2 and y=7x+3. If the diagonal of the rhombus intersect at the point (1,2) and the vertex. A is on the y-axis, then find the possible coodinates of A.



**306.** Equation(s) of the straight line(s), inclined at  $30^{\circ}$  to the x-axis such that the length of its (each of their) line segment(s) between the coordinates axes is 10 units, is (are)

**307.** If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line 2x + 3y = 6, then area of the triangle so formed is



**308.** The sides of a rhombus are parallel to the lines x+y-1=0 and 7x-y-5=0. It is given that the diagonals of the rhombus intersect at (1,3) and one vertex, A of the rhombus lies on the line y=2x. Then the coordinates of vertex A are



**309.** The image of P(a, b) on the line y = -x is Q and the image of Q

on the line y = x is R find the mid-point of P and R



**310.** Consider a  $\triangle ABC$  whose sides AB, BC and CA are represented by the straight lines 2x + y = 0, x + py = q and x - y = 3respectively. The point P is (2, 3). If P is orthocentre, then find the value of (p+q) is

Watch Video Solution

**311.** Area of the triangle formed by the line x + y = 3 and the angle bisectors of the pairs of straight lines  $x^2 - y^2 + 2y = 1$  is (a) 2 sq units (b) 4 sq units (c) 6 sq units (d) 8 sq units

# Watch Video Solution

**312.** The sides of a triangle have the combined equation  $x^2 - 3y^2 - 2xy + 8y - 4 = 0$ . The third side, which is variable, always passes through the point (-5, -1). Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.



**313.** The equation of the lines passing through the point (1, 0) and at a

distance  $\frac{\sqrt{3}}{2}$  from the origin is (a) $\sqrt{3}x + y - \sqrt{3} = 0$  (b)  $x + \sqrt{3}y - \sqrt{3} = 0$  (c)  $\sqrt{3}x - y - \sqrt{3} = 0$  (d)  $x - \sqrt{3}y - \sqrt{3} = 0$ 

Watch Video Solution

**314.** The number of values of k for which the lines (k+1)x+8y=4k and kx+

(k+3)y = 3k-1 are coincident is \_\_\_\_.

**Watch Video Solution** 

**315.** For all real values of a and b lines (2a + b)x + (a + 3b)y + (b - 3a) = 0 and mx+2y+6=0 are concurrent, then m is equal to **Watch Video Solution** 

**316.** The line x = c cuts the triangle with corners (0, 0), (1, 1) and (9, 1) into two region. For the area of the two regions to be the same c must be equal to (A)  $\frac{5}{2}$  (B) 3 (C)  $\frac{7}{2}$  (D) 5 or 15

Watch Video Solution

**317.** The absolute value of the sum of the abscissas of all the points on

the line x+y=4 that lie at a unit distance from the line 4x+3y-10=0 is\_\_\_\_.

Watch Video Solution

**318.** The point (x,y) lies on the line 2x + 3y = 6. The smallest value of the quantity  $\sqrt{x^2 + y^2}$  is m then the value of  $\sqrt{13} m$  is\_\_\_\_\_
**319.** The equations of the perpendicular bisectors of the sides ABandACof triangle ABC are x - y + 5 = 0 and x + 2y = 0, respectively. If the point A is (1, -2), then find the equation of the line BC.



**320.** One of the diagonals of a square is the portion of the line  $\frac{x}{2} + \frac{y}{3} = 2$  intercepted between the axes. Then the extremities of the other diagonal are: (a) (5, 5), (-1, 1) (b) (0, 0), (4, 6), (0, 0), (-1, 1) (d) (5, 5), 4, 6)

## Watch Video Solution

**321.** Two sides of a triangle are along the coordinate axes and the medians through the vertices (other than the origin) are mutually perpendicular. The number of such triangles is/are (a) zero (b) two (c) four (d) infinite

**322.** The graph of  $y^2 + 2xy + 40|x| = 400$  divides the plane into regions. Then the area of the bounded region is (a)200squnits (b) 400squnits (c) 800squnits (d) 500squnits

Watch Video Solution

**323.** In a triangle ABC,  $A = (\alpha, \beta)B = (2, 3)$ , andC = (1, 3). Point A lies on line y = 2x + 3, where  $\alpha \in I$ . The area of ABC, , is such that  $[\Delta] = 5$ . The possible coordinates of A are (where [.] represents greatest integer function). (a)(2, 3) (b) (5, 13) (c)(-5, -7) (d) (-3, -5)

Watch Video Solution

**324.** If the straight lines 2x + 3y - 1 = 0, x + 2y - 1 = 0, and ax + by - 1 = 0 form a triangle





Watch Video Solution

**326.** If the area of the rhombus enclosed by the lines  $lx\pm my\pm n=0$  is

2 sq. units, then, a) l,m,n are in G.P b) l,n,m are in G.P. c) lm=n d) ln=m

Watch Video Solution

**327.** In a triangle ABC, the bisectors of angles BandC lies along the lines x = yandy = 0. If A is (1, 2), then the equation of line BC is



**328.** If  $\frac{a}{\sqrt{bc}} - 2 = \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{b}}$ , where a, b, c > 0, then the family of lines  $\sqrt{ax} + \sqrt{by} + \sqrt{c} = 0$  passes though the fixed point given by (a) (1, 1) (b) (1, -2) (c)(-1, 2) (d) (-1, 1)



**329.** P(m, n) (where m, n are natural numbers) is any point in the interior of the quadrilateral formed by the pair of lines xy = 0 and the lines 2x + y - 2 = 0 and 4x + 5y = 20. The possible number of positions of the point P is. (a) 7 (b) 5 (c) 4 (d) 6

## Watch Video Solution

**330.** A diagonal of rhombus ABCD is member of both the families of

lines  $(x+y-1) + \lambda(2x+3y-2) = 0$  and  $(x-y+2) + \lambda(2x-3y+5) = 0$  and rhombus is (3, 2). If the area of the rhombus is  $12\sqrt{5}$  sq. units, then find the remaining vertices of the rhombus.

**331.** A regular polygon has two of its consecutive diagonals as lines  $\sqrt{3}x + y = \sqrt{3}$  and  $2y = \sqrt{3}$ . Point (1,c) is one of its vertices. Find the equation of the sides of the polygon and also find the coordinates of the vertices.

Watch Video Solution

**332.** Find the locus of the circumcenter of a triangle whose two sides are along the coordinate axes and the third side passes through the point of intersection of the lines ax+by+c=0 and lx+my+n=0.



**333.** A line  $L_1 = 3y - 2x - 6 = 0$  is rotated about its point of intersection with the y-axis in the clockwise direction to make it  $L_2$  such

that the are formed by  $L_1, L_2$  the x-axis, and line x = 5 is  $\frac{49}{3}squarts$  if its point of intersection with x = 5 lies below the x-axis. Find the equation of  $L_2$ .

# Watch Video Solution

**334.** Straight lines  $y = mx + c_1$  and  $y = mx + c_2$  where  $m \in R^+$ , meet the x-axis at  $A_1andA_2$ , respectively, and the y-axis at  $B_1andB_2$ , respectively. It is given that points  $A_1, A_2, B_1$ , and  $B_2$  are concylic. Find the locus of the intersection of lines  $A_1B_2$  and  $A_2B_1$ .

Watch Video Solution

335. Show that the reflection of the line ax+by+c=0 in the line x+y+1=0 is

```
the line bx+ay+(a+b-c)=0, where a \neq b.
```

**336.** Two equal sides of an isosceles triangle are 7x-y+3=0 and x+y-3=0. Its

third side passes the point (1,-10).

Determine the equation of the third side.



**337.** The number of possible straight lines passing through (2,3) and forming a triangle with the coordinate axes, whose area is 12sq. Units, is

Watch Video Solution

**338.** In a triangle ABC, if A is (2, -1), and7x - 10y + 1 = 0 and 3x - 2y + 5 = 0 are the equations of an altitude and an angle bisector, respectively, drawn from B, then the equation of BC is (a) a + y + 1 = 0 (b)5x + y + 17 = 0 (c)4x + 9y + 30 = 0 (d) x - 5y - 7 = 0

**339.** The sides of a triangle are the straight line x+y=1, 7y=x, and  $\sqrt{3}y + x = 0$ . Then which of the following is an interior point of the triangle?

Watch Video Solution

340. One of the diameters of the circle circumscribing the rectangle ABCD

is 4y = x + 7. If A and B are (-3, 4), (5, 4) then find the area of the rectangle.

Watch Video Solution

341. The coordinates of two consecutive vertices A and B of a regular

hexagon ABCDEF are (1,0) and (2,0), respectively.

The equation of the diagonal CE is



**342.** P is a point on the line y + 2x = 1, and QandR two points on the line 3y + 6x = 6 such that triangle PQR is an equilateral triangle. The length of the side of the triangle is



## Watch Video Solution

**344.** In ABC, the coordinates of the vertex A are (4, -1), and lines x - y - 1 = 0 and 2x - y = 3 are the internal bisectors of angles BandC. Then, the radius of the encircle of triangle ABC is (a)  $\frac{4}{\sqrt{5}}$  (b)  $\frac{3}{\sqrt{5}}$  (c)  $\frac{6}{\sqrt{5}}$  (d)  $\frac{7}{\sqrt{5}}$ 

**345.** If the equation of any two diagonals of a regular pentagon belongs to the family of lines  $(1+2\lambda)y - (2+\lambda)x + 1 - \lambda = 0$  and their lengths are sin  $36^0$ , then the locus of the center of circle circumscribing the given pentagon (the triangles formed by these diagonals with the sides of pentagon have no side common) is

(a)  $x^2 + y^2 - 2x - 2y + 1 + \sin^2 72^0 = 0$ (b)  $x^2 + y^2 - 2x - 2y + \cos^2 72^0 = 0$ (c)  $x^2 + y^2 - 2x - 2y + 1 + \cos^2 72^0 = 0$ (d)  $x^2 + y^2 - 2x - 2y + \sin^2 72^0 = 0$ 

## Watch Video Solution

**346.** If it is possible to draw a line which belongs to all the given family of

lines

$$(y-2x+1+\lambda_1(2y-x-1)=0, 3y-x-6+\lambda_2(y-3x+6)=0, ax+6)=0, ax+6)=0, ax+1+\lambda_1(2y-x-1)=0, ax+1+\lambda_1(2x-x-1)=0, ax+1+\lambda_1(x-x-1)=0, ax$$

, then



Watch Video Solution

**348.** ABC is a variable triangle such that A is (1, 2), and BandC on the line  $y = x + \lambda(\lambda)$  is a variable). Then the locus of the orthocentre of triangle ABC is x + y = 0 (b) x - y = 0  $x^2 + y^2 = 4$  (d) x + y = 3

## Watch Video Solution

**349.** If  $P\left(1 + \frac{\alpha}{\sqrt{2}}, 2 + \frac{\alpha}{\sqrt{2}}\right)$  be any point on a line, then the range of values of  $\alpha$  for which the point P lies between the parallel lines x+2y=1 and 2x+4y= 15 is

**350.** If the intercepts made by the line y = mx by lines y = 2 and y = 6

is less than 5, then the range of values of m is a.  $\left(-\infty, -\frac{4}{3}\right) \cup \left(\frac{4}{3}, \infty\right)$  b.  $\left(-\frac{4}{3}, \frac{4}{3}\right)$  c.  $\left(-\frac{3}{4}, \frac{4}{3}\right)$  d. none of

these



**351.** If the extremities of the base of an isosceles triangle are the points (2a, 0) and (0, a), and the equation of one of the side is x = 2a, then the area of the triangle is

Watch Video Solution

352. The coordinates of the foot of the perpendicular from the point

(2,3) on the line -y+3x+4=0 are given by

**353.** The straight lines x + 2y - 9 = 0, 3x + 5y - 5 = 0, and ax + by - 1 = 0 are concurrent, if the straight line 35x - 22y + 1 = 0 passes through the point (a) (a, b) (b) (b, a) (c)(-a, -b) (d) none of these

Watch Video Solution

**354.** If lines x + 2y - 1 = 0, ax + y + 3 = 0, and bx - y + 2 = 0 are concurrent, and S is the curve denoting the locus of (a, b), then the least distance of S from the origin is

## Watch Video Solution

**355.**  $L_1 and L_2$  are two lines. If the reflection of  $L_1 on L_2$  and the reflection of  $L_2$  on  $L_1$  coincide, then the angle between the lines is (a) $30^0$  (b)  $60^0$  $45^0$  (d)  $90^0$  **356.**  $A \equiv (-4, 0), B \equiv (4, 0)MandN$  are the variable points of the yaxis such that M lies below NandMN = 4. Lines AMandBN intersect at P. The locus of P is



**357.** If  $\sin(\alpha + \beta)\sin(\alpha - \beta) = \sin\gamma(2\sin\beta + \sin\gamma)$ , where  $0 < \alpha, \beta, \gamma < \pi$ , then the straight line whose equation is  $x\sin\alpha + y\sin\beta - \sin\gamma = 0$  passes through point (a) (1, 1) (b) (-1, 1) (c) (1, -1) (d) none of these

Watch Video Solution

**358.** Let P be (5,3) and a point R on y=x and Q on the x-axis such that PQ+OR+RP is minimum. Then the coordinates of Q are

**359.** Given A(0,0) and B(x,y) wih  $x \in (0, 1)$  and y > 0. Let the slope of line AB be  $m_1$ , where $0 < m_2 < m_1$ . If the are of triangle ABC can be expresses as  $(m_1 - m_2)f(x)$ . then the largest possible value of f(x) is



**360.** If the straight lines x + y - 2 - 0, 2x - y + 1 = 0 and ax + by - c = 0 are concurrent, then the family of lines 2ax + 3by + c = 0(a, b, c are nonzero) is concurrent at (a) (2, 3) (b)  $\left(\frac{1}{2}, \frac{1}{3}\right)$  (c)  $\left(-\frac{1}{6}, -\frac{5}{9}\right)$  (d)  $\left(\frac{2}{3}, -\frac{7}{5}\right)$ 

Watch Video Solution

**361.** The equaiton of the lines through the point (2, 3) and making an intercept of length 2 units between the lines y + 2x = 3 and y + 2x = 5 are

(A) 
$$x + 3 = 0, 3x + 4y = 12$$
 (B)  $y - 2 = (0, 4x - 3y = 6$  (C)

x-2=0, 3x+4y=18 (D) none of these

#### Watch Video Solution

**362.** A beam of light is sent along the line x - y = 1, which after refracting from the x-axis enters the opposite side by turning through  $30^0$  towards the normal at the point of incidence on the x-axis. Then the equation of the refracted ray is (a)  $(2 - \sqrt{3})x - y = 2 + \sqrt{3}$  (b)  $(2 + \sqrt{3})x - y = 2 + \sqrt{3}$  (c)  $(2 - \sqrt{3})x + y = (2 + \sqrt{3})$  (d)  $y = (2 - \sqrt{3})(x - 1)$ 

Watch Video Solution

**363.** Find  $\alpha$  if  $(\alpha, \alpha^2)$  lies inside the triangle having sides along the lines 2x+3y=1, x+2y-3=0, 6y=5x-1.



**364.** A line through A(-5,-4) meets the lines x+3y+2=0, 2x+y+4=0 and x-y-5=0 at the points B, C and D respectively. If  $\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right)^2$  find the equation of the line.

Watch Video Solution

**365.** If  $u = a_1x + b_1y + c_1 = 0$ ,  $v = a_2x + b_2y + c_2 = 0$ , and  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ , then the curve u + kv = 0 is (a)the same straight line u (b)different straight line (c)not a straight line (d)none of these

Watch Video Solution

**366.** The point (2,1) , translated parallel to the line x - y = 3 by the distance of 4 units. If this new position A' is in the third quadrant, then the coordinates of A' are-



**367.** Let ABC be a triangle. Let A be the point (1, 2), y = x be the perpendicular bisector of AB, and x - 2y + 1 = 0 be the angle bisector of  $\angle C$ . If the equation of BC is given by ax + by - 5 = 0, then the value of a + b is

(a)1(b) 2(c) 3 (d) 4

Watch Video Solution

**368.** The area enclosed by  $2|x| + 3|y| \le 6$  is (a) 3 sq. units (b) 4 sq. units

12 sq. units (d) 24 sq. units

Watch Video Solution

**369.** The lines  $y = m_1 x, y = m_2 x and y = m_3 x$  make equal intercepts on

the line 
$$x+y=1.$$
 Then (a)  
 $2(1+m_1)(1+m_3)=(1+m_2)(2+m_1+m_3)$  (b)  
 $(1+m_1)(1+m_3)=(1+m_2)(1+m_1+m_3)$  (c)

$$(1+m_1)(1+m_2) = (1+m_3)(2+m_1+m_3)$$
 (d)

$$2(1+m_1)(1+m_3)=(1+m_2)(1+m_1+m_3)$$

Watch Video Solution

**370.** Find the condition in a,b such that the portion of the line ax+by=1, intercepted between the lines ax+y=0 and x + by=0 sustains a right angle at origin.

Watch Video Solution

**371.** One diagonal of a square is along the line 8x-15y=0 and one of its vertex is (1,2). Then the equations of the sides of the square passing through this vertex are



**372.** The straight line ax + by + c = 0, where  $abc \neq 0$ , will pass through the first quadrant if (a) ac > 0, bc > 0 (b) ac > 0 or bc < 0 (c) bc > 0 or ac > 0 (d) ac < 0 or bc < 0



**373.** A square of side a lies above the x-axis and has one vertex at the origin. This side passing through the origin makes an angle  $\alpha(0 < \alpha < \pi/4)$  with the positive direction of the x-axis. The equation of its diagonal not passing through the origin is

Watch Video Solution

374. If the sum of the distances of a point from two perpendicular lines in

a plane is 1, then its locus is



**375.** ABC is a variable triangle such that A is (1, 2), and BandC on the line  $y = x + \lambda(\lambda)$  is a variable). Then the locus of the orthocentre of triangle ABC is x + y = 0 (b) x - y = 0  $x^2 + y^2 = 4$  (d) x + y = 3



**376.** Consider a  $\Delta ABC$  in which sides AB and AC are perpendicular to x-y-4=0 and 2x-y-5=0, repectively. Vertex A is (-2, 3) and the circumcenter of  $\Delta ABC$  is (3/2, 5/2).

The equation of the line in List I is of the form ax+by+c=0, where  $a, b, c \in I$ . Match it with the corresponding value of c in list II and then

choose the correct code.

| List I                                                               | List II       |
|----------------------------------------------------------------------|---------------|
| <b>a.</b> Equation of the perpendicular bisector of side <i>AB</i>   | <b>p.</b> –1  |
| <b>b.</b> Equation of the perpendicular bisector of side <i>AC</i> . | <b>q.</b> 1   |
| <b>c.</b> Equation of side <i>AC</i>                                 | <b>r.</b> –16 |
| <b>d.</b> Equation of the median through <i>A</i>                    | <b>s.</b> –4  |

Codes :

b cdasrpqr $\boldsymbol{s}$ qp $\boldsymbol{s}$ rpq rpsq

Watch Video Solution

**377.** Column I|Column II Two vertices of a triangle are (5, -1)and(-2, 3). If the orthocentre is the origin, then the coordinates of the third vertex are|p. (-4, -7) A point on the line x + y = 4 which lies at a unit distance from the line 4x + 3y = 10 is|q. (-7, 11) The orthocentre of the triangle formed by the lines x + y - 1 = 0, x - y + 3 = 0, 2x + y = 7 is|r. (2, -2) If 2a, b, c are in AP, then lines ax + by = c are concurrent at|s. (-1, 2)

## Watch Video Solution

378. Column I|Column II

a.Four

lines

x + 3y - 10 = 0, x + 3y - 20 = 0, 3x - y + 5 = 0, and 3x - y - 5 = 0form a figure which is|p. a quadrilateral which is neither a parallelogram nor a trapezium b.The points A(1, 2), B(2, 3), C(-1, -5), and D(-2, 4) in order are the vertices of|q. a parallelogram c.The lines 7x + 3y - 33 = 0, 3x - 7y + 19 = 0, 3x - 7y - 10, and 7x + 3y - 4 = 0 form a figure which is|r. a rectangle of area 10 sq. units d.Four lines 4y - 3x - 7 = 0, 3y - 4x + 7 = 0, 4y - 3x - 21 = 0, 3y - 4x + 14 = 0

form a figure which is|s. a square

Watch Video Solution

379.

#### The

#### lines

 $(a+b)x+(a-b)y-2ab=0,\,(a-b)x+(a+b)y-2ab=0\,\, ext{and}\,\,x+y$ 

form an isosceles triangle whose vertical angle is

**380.** Each equation contains statements given in two columns which have to be matched. Statements (a,b,c,d) in column I have to be matched with Statements (p, q, r, s) in column II. If the correct match are  $a\overrightarrow{p}, a\overrightarrow{s}, b\overrightarrow{q}, b\overrightarrow{r}, c\overrightarrow{p}, c\overrightarrow{q}$ , and  $d\overrightarrow{s}$ , then the correctly bubbled 4x4matrix should be as follows: Figure

Consider the lines represented by equation  $ig(x^2+xy-xig)(x-y)=0,$  forming a triangle. Then match the following:

Column I|Column II

a. Orthocenter of triangle |p. 
$$\left(\frac{1}{6}, \frac{1}{2}\right)$$
  
b.Circumcenter|q.  $\left(1\left(2+2\sqrt{2}\right), \frac{1}{2}\right)$   
c.Centroid|r.  $\left(0, \frac{1}{2}\right)$   
d.Incenter|s.  $\left(\frac{1}{2}, \frac{1}{2}\right)$ 

Watch Video Solution

**381.** The st. lines 3x + 4y = 5 and 4x - 3y = 15 interrect at a point A(3, -1). On these linepoints B and C are chosen so that AB = AC. Find the possible eqns of the line BC pass through the point (1, 2) **382.** The area of the triangular region in first quadrant bounded on the left by the line 7x + 4y = 168, and bounded below by the line 5x + 3y = 121 is A. Then the value of  $\frac{3A}{10}$  is\_\_\_\_\_

Watch Video Solution

383. Find the area enclosed by the graph of 
$$x^2y^2 - 9x^2 - 25y^2 + 225 = 0.$$

Watch Video Solution

**384.** Line  $L_1 \equiv ax + by + c = 0$  and  $L_2 \equiv lx + my + n = 0$  intersect at point P and make an angle  $\theta$  with each other Find the equation of a line different from  $L_2$  which passes through P and makes the same angle  $\theta$  with  $L_1$ . **385.** Let ABC be a triangle with AB=AC. If D is the midpoint of BC, E is the foot of the perpendicular drawn from D to AC, and F is the midpoint of DE, then prove that AF is perpendicular to BE.

Watch Video Solution

**386.** For a > b > c > 0, the distance between (1 ,1) and the point of

intersection of the lines ax + by + c = 0 and bx + ay +c = 0 is less than  $2\sqrt{2}$ ,

then

Watch Video Solution

**387.** A straight lines L through the point (3, 2) is inclined at an angle  $60^\circ$  to the line  $\sqrt{3}x + y = 1$ . If L also intersects the x-axis, then the equation of L is

**388.** The locus of the orthocenter of the triangle formed by the line (1+p)x-py+p(1+p) = 0, (1+q)x-qy+q(1+q) = 0 and y = 0, whete  $p \neq q$ , is

# Watch Video Solution

**389.** The vertices of a triangle are A(-1, -7), B(5, 1) and C(1, 4). If the internal angle bisector of  $\angle B$  meets the side AC in D, then find the length AD.

Watch Video Solution

**390.** Let the algebraic sum of the perpendicular distance from the points

(2, 0), (0,2), and (1, 1) to a variable straight line be zero. Then the line

passes through a fixed point whose coordinates are\_\_\_

**391.** A straight line through the origin 'O' meets the parallel lines 4x + 2y = 9 and 2x + y = -6 at points P and Q respectively. Then the point 'O' divides the segment PQ in the ratio : (A) 1:2 (B) 3:2 (C) 2:1 D) 4:3



**392.** A straight line L with negative slope passes through the point (8,2) and cuts the positive coordinate axes at points P and Q. As L varies, the absolute minimum value of OP+OQ is (O is origin)



**393.** A straight lines L through the origin meets the lines x+y=1 and x+y=3 at P and Q respectively. Through P and Q two straight lines  $L_1$  and  $L_2$  are drawn, parallel to 2x-y=5 and 3x+y=5 respectively. Line  $L_1$  and  $L_2$  intersect at R. Show that the locus of R as L varies is a straight line.

**394.** A rectangle PQRS has its side PQ parallel to the line y=mx and vertices P,Q and S on the lines y = a, x= b and x = -b respectively, Find the locus of the vertex R.

**395.** The area of the triangle formed by the intersection of a line parallel to x-axis and passing through P (h, k) with the lines y = x and x + y = 2 is  $4h^2$ . Find the locus of the point P.

Watch Video Solution

**396.** The lines ax + by + c = 0, where 3a + 2b + 4c = 0, are concurrent at the

point (a) 
$$\left(rac{1}{2},rac{3}{4}
ight)$$
 (b)  $(1,3)$  (c)  $(3,1)$  (d)  $\left(rac{3}{4},rac{1}{2}
ight)$ 

**397.** The area enclosed within the curve |x|+|y|=1 is



**399.** If a, b and c are in AP, then the straight line ax + by + c = 0 will always pass through a fixed point whose coordinates are (a) (1,2) (b) (1,-2) (c) (2,3) (d) (0,0)



**400.** Statement-I: If the diagonals of the quadrilateral formed by the lines px + qy + r = 0, p'x + q'y + r' = 0, are at right angles, then

 $p^2 + q^2 = p^{\,\prime 2} \, + q^{\,\prime 2} \, .$ 

Statement-2: Diagonals of a rhombus are bisected and perpendicular to each other.

Only conclusion I follows Only

conclusion II follows

Either I or II follows

Neither I nor II follows

Watch Video Solution

**401.** Statement :Two different lines can be drawn passing through two given points.

Watch Video Solution

**402.** Statement 1: The joint equation of lines y = xandy = -x is

$$y^2 = \ - x^2, \,\, {
m i.e.}, \, x^2 + y^2 = 0$$

Statement 2: The joint equation of lines ax + by = 0 and cx + dy = 0 is (ax + by)(cx + dy) = 0, wher a, b, c, d are constant.

**403.** Statement 1: If the sum of algebraic distances from point A(1, 1), B(2, 3), C(0, 2) is zero on the line ax + by + c = 0, then a + 3b + c = 0 Statement 2: The centroid of the triangle is (1, 2)

Watch Video Solution

**404.** Each question has four choice: a, b, c and d, out of which only one is correct. Each question contains Statement 1 and Statement 2. Find the correct answer. Both the Statements are true but Statement 2 is the correct explanation of Statement 1. Both the Statement are True but Statement 2 is not the correct explanation of Statement 1. Statement 1. Statement 1 is True and Statement 2 is False. Statement 1 is False and Statement 2 is True Statement 1: The lines (a + b)x + (a - 2b)y = a are con-current at the point  $(\frac{2}{3}, \frac{1}{3})$ . Statement 2: The lines x + y - 1 = 0 and x - 2y = 0 intersect at the point  $(\frac{2}{3}, \frac{1}{3})$ .

**405.** Statement 1:If the point  $ig(2a-5,a^2ig)$  is on the same side of the line x+y-3=0 as that of the origin, then  $a\in(2,4)$ 

Statement 2: The points  $(x_1, y_1)and(x_2, y_2)$  lie on the same or opposite sides of the line ax + by + c = 0, as  $ax_1 + by_1 + c$  and  $ax_2 + by_2 + c$ have the same or opposite signs.

(a) Both the statements are true, and Statement-1 is the correct explanation of Statement 2.

(b)Both the statements are true, and Statement-1 is not the correct explanation of Statement 2.

(c) Statement 1 is true and Statement 2 is false.

(d) Statement 1 is false and Statement 2 is true.

## Watch Video Solution

**406.** Statement 1: Each point on the line y - x + 12 = 0 is equidistant from the lines 4y + 3x - 12 = 0, 3y + 4x - 24 = 0Statement 2: The locus of a point which is equidistant from two given lines is the angular bisector of the two lines.

(a) Statement 1 and Statement 2 are correct. Statement 2 is the correct

explanation for the Statement 1

(b) Statement 1 and Statement 2 are correct. Statement 2 is not the

correct explanation for the Statement 1

(c) Statement 1 is true but Statement 2 is false

(d) Statement 2 is true but Statement 1 is false

Watch Video Solution

**407.** If lines px + qy + r = 0, qx + ry + p = 0 and rx + py + q = 0 are concurrent, then prove that p + q + r = 0 (*where*, *p*, *q*, *r* are distinct ).

# Watch Video Solution

**408.** the diagonals of the parallelogram formed by the the lines  $a_1x + b_1y + c_1 = 0$ ,  $a_1x + b_1y + c_1' = 0$ ,  $a_2x + b_2y + c_1 = 0$ ,  $a_$ 

**409.** If the lines joining the origin and the point of intersection of curves  $ax^2 + 2hxy + by^2 + 2gx + 0$  and  $a_1x^2 + 2h_1xy + b_1y^2 + 2g_1x = 0$  are mutually perpendicular, then prove that  $g(a_1 + b_1) = g_1(a + b)$ .

Watch Video Solution

**410.** Find the angle between the lines joining the origin to the points of intersection of the straight line y = 3x + 2 with the curve  $x^2 + 2xy + 3y^2 + 4x + 8y = 11 = 0.$ 

Watch Video Solution

**411.** Prove that the straight lines joining the origin to the points of intersection of the straight line hx + ky = 2hk and the curve  $(x - k)^2 + (y - h)^2 = c^2$  are at right angle if  $h^2 + k^2 = c^2$ .

**412.** If pairs of straight lines  $x^2 - 2pxy - y^2 = 0$  and  $x^2 - 2qxy - y^2 = 0$  be such that each pair bisects the angle between the other pair ,then

Watch Video Solution

**413.** Find the value of a for which the lines represented by  $ax^2 + 5xy + 2y^2 = 0$  are mutually perpendicular.

Watch Video Solution

**414.** Find the acute angle between the pair of lines represented by  $x(\coslpha-ys\inlpha)^2=ig(x^2+y^2ig)\sin^2lpha$
**415.** If the angle between the lines represented by  $2x^2 + 5xy + 3y^2 + 7x + 13y - 3 = 0$  is  $\tan^{-1}(m)$ , then m is equal to

### > Watch Video Solution

**416.** If the pair of straight lines  $ax^2 + 2hxy + by^2 = 0$  is rotated about the origin through 90°, then find its equation in the new position.

#### Watch Video Solution

**417.** The orthocenter of the triangle formed by the lines xy = 0 and x + y = 1 is

#### Watch Video Solution

**418.** The lines joining the origin to the point of intersection of  $3x^2 + mxy - 4x + 1 = 0$  and 2x + y - 1 = 0 are at right angles. Then



Watch Video Solution

**421.** The value k for which  $4x^2 + 8xy + ky^2 = 9$  is the equation of a pair

of straight lines is \_\_\_\_\_.

**422.** The two lines represented by  $3ax^2 + 5xy + (a^2 - 2)y^2 = 0$  are perpendicular to each other for

**423.** If two lines represented by  $x^4 + x^3y + cx^2y^2 - xy^3 + y^4 = 0$  bisector of the angle between the other two, then the value of c is

Watch Video Solution

**424.** The straight lines represented by  $x^2 + mxy - 2y^2 + 3y - 1 = 0$ meet at (a)  $\left(-\frac{1}{3}, \frac{2}{3}\right)$  (b)  $\left(-\frac{1}{3}, -\frac{2}{3}\right)$ (c)  $\left(\frac{1}{3}, \frac{2}{3}\right)$  (d) none of these

425. The straight lines represented by the equation  $135x^2 - 136xy + 33y^2 = 0$  are equally inclined to the line (a) x - 2y = 7 (b) x+2y=7 (c) x - 2y = 4 (d) 3x + 2y = 4

### Watch Video Solution

**426.** If one of the lines of  $my^2 + ig(1-m^2ig)xy - mx^2 = 0$  is a bisector of

the angle between the lines xy = 0, then m is

Watch Video Solution

**427.** Statement 1 : If -2h = a + b, then one line of the pair of lines  $ax^2 + 2hxy + by^2 = 0$  bisects the angle between the coordinate axes in the positive quadrant. Statement 2 : If ax + y(2h + a) = 0 is a factor of  $ax^2 + 2hxy + by^2 = 0$ , then b + 2h + a = 0.

**428.** Show that all chords of the curve  $3x^2 - y^2 - 2x + 4y = 0$ , which subtend a right angle at the origin , pass through a fixed point. Find the coordinates of the point .



**431.** If the slope of one of the lines represented by  $ax^2 + 2hxy + by^2 = 0$ 

is the square of the other , then 
$$\displaystyle rac{a+b}{h} + \displaystyle rac{8h^2}{ab} =$$

$$\textbf{432.} \iint \left\{ \frac{2 - 3\sin x}{\cos^2 x} \right\} dx$$

Watch Video Solution

**433.** The sides of a triangle have the combined equation  $x^2 - 3y^2 - 2xy + 8y - 4 = 0$ . The third side, which is variable, always passes through the point (-5, -1). Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.

#### Watch Video Solution

**434.** Let PQR be a right - angled isosceles triangle , right angled at P(2,1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is **435.** The combined equation of three sides of a triangle is  $(x^2 - y^2)(2x + 3y - 6) = 0$  if (-2,a) is an interior point and (b,1) is an exterior point of the triangle, then

Watch Video Solution

**436.** Find the equation of the bisectors of the angles between the lines joining the origin to the point of intersection of the straight line x - y = 2 with the curve  $5x^2 + 11xy + 8y^2 + 8x - 4y + 12 = 0$ 

#### Watch Video Solution

**437.** If  $\theta$  is the angle between the lines givne by the equation  $6x^2 + 5xy - 4y^2 + 7x + 13y - 3 = 0$ , then find the equation of the line passing through the point of intersection of these lines and making an angles  $\theta$  with the positive x-axis.

**438.** The distance of a point  $(x_1, y_1)$  from each of the two straight lines which pass through the origin of coordinates is p. Find the combined equation of these straigh lines .

Watch Video Solution

**439.** prove that the product of the perpendiculars drawn from the point

 $(x_1,y_1)$  to the pair of straight lines  $ax^2+2hxy+by^2=0$  is  $\left|rac{ax_1^2+2hx_1y_1+by_1^2}{\sqrt{(a-b)^2+4h^2}}
ight|$ 

Watch Video Solution

**440.** Find the area enclosed by the graph of  $x^2y^2 - 9x^2 - 25y^2 + 225 = 0.$ 

**441.** Show that the pairs of straight lines  $2x^2 + 6xy + y^2 = 0$  and  $4x^2 + 18xy + y^2 = 0$  are equally inclined

Watch Video Solution

**442.** The product of the perpendiculars from origin to the pair of lines  $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$  is

Watch Video Solution

443. Find the angle between the straight lines joining the origin to the

points of intersection of

 $3x^2 + 5xy - 3y^2 + 2x + 3y = 0$  and 3x - 2y = 1.

**444.** Through a point A(2,0) on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines  $ax^2 + 2hxy + by^2 = 0$  at B and C. If AB = BC, then (a)  $h^2 = 4ab$  (b)  $8h^2 = 9ab$ (c)  $9h^2 = 8ab$  (d)  $4h^2 = ab$ 

Watch Video Solution

**445.** Find the equation of two straigh lines whose combined equation is  $6x^2 + 5xy - 4y^2 + 7x + 13y - 3 = 0.$ 

Watch Video Solution

**446.** Does equation  $x^2 + 2y^2 - 2\sqrt{3}x - 4y + 5 = 0$  satisfies the condition  $abc + 2gh - af^2 - bg^2 - ch^2 = 0$ ? Does it represent a pair of straight lines ?

**447.** Find the value of  $\lambda$  if  $2x^2 + 7xy + 3y^2 + 8x + 14y + \lambda = 0$ 

represent a pair of straight lines.



on the y-axis , then prove that  $2fgh=bg^2+ch^2.$ 

# Watch Video Solution

**450.** Find the equation of two straigh lines whose combined equation is

$$6x^2 + 5xy - 4y^2 + 7x + 13y - 3 = 0.$$

**451.** If the component lines whose combined equation is  $px^2 - qxy - y^2 = 0$  make the angles  $\alpha$  and  $\beta$  with x-axis, then find the value of tan  $(\alpha + \beta)$ .

Watch Video Solution

**452.** Find the joint equation of pair of lines which passes through origin and are perpendicular to the lines represented by the equation  $y^2 + 3xy - 6x + 5y - 14 = 0.$ 

Watch Video Solution

**453.** If the sum of the slopes of the lines given by  $x^2 - 2cxy - 7y^2 = 0$  is four times their product , then find the value of c.



**454.** The distance between the two lines represented by the sides of an

equilateral triangle a right-angled triangle an isosceles triangle



**457.** Two pairs of straight lines have the equations  $y^2 + xy - 12x^2 = 0$  and  $ax^2 + 2hxy + by^2 = 0$ . One line will be common among them if

**458.** If the equation of the pair of straight lines passing through the point (1, 1), one making an angle  $\theta$  with the positive direction of the x-axis and the other making the same angle with the positive direction of the y-axis, is  $x^2 - (a + 2)xy + y^2 + a(x + y - 1) = 0$ ,  $a \neq 2$ , then the value of  $\sin 2\theta$  is

Watch Video Solution

**459.** If one of the lines given by the equation  $2x^2 + pxy + 3y^2 = 0$ coincide with one of those given by  $2x^2 + qxy - 3y^2 = 0$  and the other lines represented by them are perpendicular, then value of p + q is

#### Watch Video Solution

**460.** If  $x^2 + 2hxy + y^2 = 0$  represents the equation of the straight lines through the origin which make an angle lpha with the straight line

$$y + x = 0$$
 then, (a)  $\sec 2\alpha = h$  (b)  $\cos \alpha = \sqrt{\frac{(1+h)}{(2h)}}$  (c)  $2\sin \alpha$   
 $= \sqrt{\frac{(1+h)}{h}}$  (d)  $\cot \alpha = \sqrt{\frac{(1+h)}{(h-1)}}$   
Watch Video Solution

461. The equation to a pair of opposite sides of a parallelogram are  $x^2 - 5x + 6 = 0$  and  $y^2 + 5 = 0$ . The equations to its diagonals are x + 4y = 13, y = 4x - 7 (b) 4x + y = 13, 4y = x - 74x + y = 13, y = 4x - 7 (d) y - 4x = 13, y + 4x - 7

Watch Video Solution

**462.** The equation  $a^2x^2+2h(a+b)xy+b^2y^2=0$  and  $ax^2+2hxy+by^2=0$  represent

**463.** The equation  $x^3 + x^2y - xy^2 = y^3$  represents (a)three real straight lines (b)lines in which two of them are perpendicular to each other (c)lines in which two of them are coincident (d)none of these

464. The image of the pair of lines represented by  $ax^2 + 2hxy + by^2 = 0$ by the line mirror y = 0 is a.  $ax^2 - 2hxy - by^2 = 0$  b.  $bx^2 - 2hxy + ay^2 = 0$  c.  $x^2 + 2hxy + ay^2 = 0$  d.  $ax^2 - 2hxy + by^2 = 0$ 

Watch Video Solution

**465.** The combined equation of the lines  $l_1andl_2$  is  $2x^2 + 6xy + y^2 = 0$ and that of the lines  $m_1andm_2$  is  $4x^2 + 18xy + y^2 = 0$ . If the angle between  $l_1$  and  $m_2$  is  $\alpha$  then the angle between  $l_2andm_1$  will be  $\frac{\pi}{2} - \alpha$ (b)  $2\alpha \frac{\pi}{4} + \alpha$  (d)  $\alpha$ 



**466.** If the equatoin  $ax^2 - 6xy + y^2 + 2bx + 2cy + d = 0$  represents a pair of lines whose slopes are m and  $m^2$ , then value (s) of a is /are

### Watch Video Solution

**467.** The equations of a line which is parallel to the line common to the pair of lines given by  $6x^2 - xy - 12y^2 = 0$  and  $15x^2 + 14xy - 8y^2 = 0$  and the sum of whose intercepts on the axes is 7, is :

## Watch Video Solution

**468.** If the sum of the slopes of the lines given by  $x^2 - 2cxy - 7y^2 = 0$  is

four times their product , then find the value of c.

**469.** Area of the triangle formed by the line x + y = 3 and angle bisectors of the pair of straight lines  $x^2 - y^2 + 2y = 1$  is

 $\mathsf{a.} 2 squarts$ 

b. 4 squarts

c. 6 squarts

d. 8squnits

Watch Video Solution

**470.** The equation  $x^2y^2 - 9y^2 + 6x^2y + 54y = 0$  represents a pair of straight lines and a circle a pair of straight lines and a parabola a set of four straight lines forming a square none of these

Watch Video Solution471. The straight lines represented by
$$(y - mx)^2 = a^2(1 + m^2)$$
 and  $(y - nx)^2 = a^2(1 + n^2)$  form a



**472.** If the pairs of lines  $x^2 + 2xy + ay^2 = 0$  and  $ax^2 + 2xy + y^2 = 0$ have exactly one line in common then the joint equation of the other two lines is given by

Watch Video Solution

**473.** The condition that one of the straight lines given by the equation  $ax^2 + 2hxy + by^2 = 0$  may coincide with one of those given by the equation  $a'x^2 + 2h'xy + b'y^2 = 0$  is  $(ab' - a'b)^2 = 4(ha' - h'a)(bh' - b'h)$  $(ab' - a'b)^2 = (ha' - h'a)(bh' - b'h)$  $(ha' - h'a)^2 = 4(ab' - a'b)(bh' - b'h)$  $(bh' - b'h)^2 = 4(ab' - a'b)(ha' - h'a)$ 

**474.** If the lines represented by the equation  $3y^2 - x^2 + 2\sqrt{3}x - 3 = 0$  are rotated about the point  $(\sqrt{3}, 0)$  through an angle of  $15^0$ , one in clockwise direction and the other in anticlockwise direction, so that they become perpendicular, then the equation of the pair of lines in the new position is

Watch Video Solution

**475.** A point moves so that the distance between the foot of perpendiculars from it on the lines  $ax^2 + 2hxy + by^2 = 0$  is a constant 2d . Show that the equation to locus is  $(x^2 + y^2)(h^2 - ab) = d^2 \{(a - b)^2 + 4h^2\}.$ 

Watch Video Solution

**476.** The angle between the pair of lines whose equation is  $4x^2 + 10xy + my^2 + 5x + 10y = 0$ is



**477.** Find the point of intersection of the pair of straight lines represented by the equation  $6x^2 + 5xy - 21y^2 + 13x + 38y - 5 = 0$ .



**478.** Find the angle between the lines represented by  $x^2 + 2xy \sec \theta + y^2 = 0.$ 

Watch Video Solution

**479.** If the pair of lines  $\sqrt{3}x^2 - 4xy + \sqrt{3}y^2 = 0$  is rotated about the origin by  $\pi/6$  in the anticlockwise sense , then find the equation of the pair of lines in the new position.

**480.** If the equation  $2x^2 + kxy + 2y^2 = 0$  represents a pair of real and

distinct lines , then find the values of k.



**481.** If the equation  $x^2+(\lambda+\mu)xy+\lambda uy^2+x+\mu y=0$  represents two parallel straight lines, then prove that  $\lambda=\mu.$ 

Watch Video Solution

**482.** If one of the lines of the pair  $ax^2 + 2hxy + by^2 = 0$  bisects the angle between the positive direction of the axes. Then find the relation for a, b and h.



**483.** Prove that the equation  $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$  respresents a pair of straight lines .Find the coordinates of their point of intersection and also the angle between them.

**484.** A line L passing through the point (2, 1) intersects the curve  $4x^2 + y^2 - x + 4y - 2 = 0$  at the point AandB. If the lines joining the origin and the points A, B are such that the coordinate axes are the bisectors between them, then find the equation of line L.



**486.** If one of the lines denoted by the line pair  $ax^2 + 2hxy + by^2 = 0$  bisects the angle between the coordinate axes, then prove that  $\left(a+b\right)^2 = 4h^2$