©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

STRAIGHT LINES

Others

1. The pair of lines joining the origin to the points of intersection of the curves
$a x^{2}+2 h x y+b y^{2}+2 g x=0$ and
$a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$
will be at right angles to one another, if

- Watch Video Solution

2. Find the angle between the lines joining the origin to the points of intersection of the straight line $y=3 x+2$ with the curve $x^{2}+2 x y+3 y^{2}+4 x+8 y=11=0$.

- Watch Video Solution

3. Prove that the straight lines joining the origin to the points of intersection of the straight line $h x+k y=2 h k$ and the curve $(x-k)^{2}+(y-h)^{2}=c^{2}$ are at right angle if $h^{2}+k^{2}=c^{2}$.

- Watch Video Solution

4. If pairs of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair ,then

- Watch Video Solution

5. Find the value of a for which the lines represented by $a x^{2}+5 x y+2 y^{2}=0$ are mutually perpendicular.

- Watch Video Solution

6. Find the acute angle between the pair of lines represented by $(x \cos \alpha-y \sin \alpha)^{2}=\left(x^{2}+y^{2}\right) \sin ^{2} \alpha$.

- Watch Video Solution

7. If the angle between the lines represented by $2 x^{2}+5 x y+3 y^{2}+7 x+13 y-3=0$ is $\tan ^{-1}(m)$, then m is equal to

- Watch Video Solution

8. If the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is rotated about the origin through 90°, then find its equation in the new position.
9. The orthocenter of the triangle formed by the lines $x y=0$ and $x+y=1$ is

- Watch Video Solution

10. The lines joining the origin to the point of intersection of $3 x^{2}+m x y-4 x+1=0$ and $2 x+y-1=0$ are at right angles. Then which of the following is a possible value of m ?

- Watch Video Solution

11. If the slope of one line is double the slope of another line and the combined equation of the pair of lines is $\left(x^{2} / a\right)+(2 x y / h)+\left(y^{2} / b\right)=0$, then find the ratio ab: h^{2}.
12. Find the combined equation of the pair of lines through the point $(1,0)$ and parallel to the lines respresented by $2 x^{2}-x y-y^{2}=0$.

Watch Video Solution

13. The value k for which $4 x^{2}+8 x y+k y^{2}=9$ is the equation of a pair of straight lines is \qquad .

- Watch Video Solution

14. The two lines represented by $3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are perpendicular to each other for

- Watch Video Solution

15. If two lines represented by $x^{4}+x^{3} y+c x^{2} y^{2}-x y^{3}+y^{4}=0$ bisector of the angle between the other two, then the value of c is
16. The straight lines represented by $x^{2}+m x y-2 y^{2}+3 y-1=0$ meet at (a) $\left(-\frac{1}{3}, \frac{2}{3}\right)$ (b) $\left(-\frac{1}{3},-\frac{2}{3}\right)$ (c) $\left(\frac{1}{3}, \frac{2}{3}\right)$ (d) none of these

- Watch Video Solution

17. The straight lines represented by the equation $135 x^{2}-136 x y+33 y^{2}=0$ are equally inclined to the line (a) $x-2 y=7$ (b) $\mathrm{x}+2 \mathrm{y}=7$ (c) $x-2 y=4$ (d) $3 x+2 y=4$

- Watch Video Solution

18. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is

- Watch Video Solution

19. Statement 1: If $-2 h=a+b$, then one line of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes in the positive quadrant. Statement 2 : If $a x+y(2 h+a)=0$ is a factor of $a x^{2}+2 h x y+b y^{2}=0$, then $b+2 h+a=0$.

- Watch Video Solution

20. Show that all chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point .

- Watch Video Solution

21. Area of the triangle formed by the lines $y^{2}-9 x y+18 x^{2}=0$ and $y=6$ is \qquad .

- Watch Video Solution

22. The distance between the lines $(x+7 y)^{2}+4 \sqrt{7}(x+7 y)-42=0$ is \qquad .

- Watch Video Solution

23. $x+y=7$ and $a x^{2}+2 h x y+a y^{2}=0,(a \neq 0)$, are three real distinct lines forming a triangle is

- Watch Video Solution

24. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is the square of the other, then $\frac{a+b}{h}+\frac{8 h^{2}}{a b}=$

- Watch Video Solution

25. Area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pairs of straight lines $x^{2}-y^{2}+2 y=1$ is (a) 2 sq units
(b) 4 sq units (c) 6 sq units (d) 8 sq units

- Watch Video Solution

26. The sides of a triangle have the combined equation $x^{2}-3 y^{2}-2 x y+8 y-4=0$. The third side, which is variable, always passes through the point $(-5,-1)$. Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.

- Watch Video Solution

27. Let $P Q R$ be a right - angled isosceles triangle , right angled at $P(2,1)$. If the equation of the line QR is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is

- Watch Video Solution

28. The combined equation of three sides of a triangle is $\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0$ if $(-2, \mathrm{a})$ is an interior point and $(\mathrm{b}, 1)$ is an exterior point of the triangle, then

- Watch Video Solution

29. Find the equation of the bisectors of the angles between the lines joining the origin to the point of intersection of the straight line $x-y=2$ with the curve $5 x^{2}+11 x y+8 y^{2}+8 x-4 y+12=0$

- Watch Video Solution

30. If θ is the angle between the lines givne by the equation $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$, then find the equation of the line passing through the point of intersection of these lines and making an angles θ with the positive x-axis.
31. The dis tance of a point $\left(x_{1}, y_{1}\right)$ from each of the two straight lines which pass through the origin of coordinates is p . Find the combined equation of these straigh lines.

- Watch Video Solution

32. prove that the product of the perpendiculars drawn from the point $\left(x_{1}, y_{1}\right)$ to the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is

$$
\frac{a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}
$$

- Watch Video Solution

33. Find the area enclosed by the graph of $x^{2} y^{2}-9 x^{2}-25 y^{2}+225=0$.

- Watch Video Solution

34. Show that the pairs of straight lines $2 x^{2}+6 x y+y^{2}=0$ and $4 x^{2}-18 x y+y^{2}=0$ have the same set of angular bisector.

- Watch Video Solution

35. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$

- Watch Video Solution

36. Find the angle between the straight lines joining the origin to the points of intersection of $3 x^{2}+5 x y-3 y^{2}+2 x+3 y=0$ and $3 x-2 y=1$.

- Watch Video Solution

37. Through a point A on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ at B and C. If $A B=B C$, then (a) $h^{2}=4 a b$ (b) $8 h^{2}=9 a b$ (c) $9 h^{2}=8 a b$ (d) $4 h^{2}=a b$

- Watch Video Solution

38. Find the equation of two straigh lines whose combined equation is $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$.

- Watch Video Solution

39. Does equation $x^{2}+2 y^{2}-2 \sqrt{3} x-4 y+5=0$ satisfies the condition $a b c+2 g h-a f^{2}-b g^{2}-c h^{2}=0$? Does it represent a pair of straight lines?

- Watch Video Solution

40. Find the value of λ if $2 x^{2}+7 x y+3 y^{2}+8 x+14 y+\lambda=0$ represent a pair of straight lines.

- Watch Video Solution

41. Find the distance between the pair of parallel lines
$x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$.

- Watch Video Solution

42. If the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersect on the y -axis , then prove that $2 f g h=b g^{2}+c h^{2}$.

- Watch Video Solution

43. Find the equation of two straigh lines whose combined equation is $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$.
44. If the component lines whose combined equation is $p x^{2}-q x y-y^{2}=0$ make the angles α and β with x-axis , then find the value of $\tan (\alpha+\beta)$.

- Watch Video Solution

45. Find the joint equation of pair of lines which passes through origin and are perpendicular to the lines represented by the equation $y^{2}+3 x y-6 x+5 y-14=0$.

- Watch Video Solution

46. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then find the value of c .
47. The distance between the two lines represented by the equation $9 x^{\wedge} 2-$ $24 x y+16 y^{\wedge} 2-12 x+16 y-12=0$

- Watch Video Solution

48. The gradient of one of the lines $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, then

- Watch Video Solution

49. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is

- Watch Video Solution

50. Two pairs of straight lines have the equations $y^{2}+x y-12 x^{2}=0$ and $a x^{2}+2 h x y+b y^{2}=0$. One line will be common among them if.
$a+8 h-16 b=0 \quad$ (b) $\quad a-8 h+16 b=0 \quad a-6 h+9 b=0$
$a+6 h+9 b=0$

- Watch Video Solution

51. If the equation of the pair of straight lines passing through the point $(1,1)$, one making an angle θ with the positive direction of the x-axis and the other making the same angle with the positive direction of the y-axis, is $x^{2}-(a+2) x y+y^{2}+a(x+y-1)=0, a \neq 2$, then the value of $\sin 2 \theta$ is

- Watch Video Solution

52. If one of the lines given by the equation $2 x^{2}+p x y+3 y^{2}=0$ coincide with one of those given by $2 x^{2}+q x y-3 y^{2}=0$ and the other lines represented by them are perpendicular , then value of $p+q$ is

- Watch Video Solution

53. If $x^{2}+2 h x y+y^{2}=0$ represents the equation of the straight lines through the origin which make an angle α with the straight line
$y+x=0$ then, (a) $\sec 2 \alpha=h$ (b) $\cos \alpha=\sqrt{\frac{(1+h)}{(2 h)}}$ (c) $2 \sin \alpha$ $=\sqrt{\frac{(1+h)}{h}}$ (d) $\cot \alpha=\sqrt{\frac{(1+h)}{(h-1)}}$

- Watch Video Solution

54. The equation to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}-6 y+5=0$. The equations to its diagonals are $\quad x+4 y=13, y=4 x-7 \quad$ (b) $\quad 4 x+y=13,4 y=x-7$ $4 x+y=13, y=4 x-7$ (d) $y-4 x=13, y+4 x-7$

Watch Video Solution

55. The equation $a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0 \quad$ and $a x^{2}+2 h x y+b y^{2}=0$ represent
56. The equation $x^{3}+x^{2} y-x y^{2}=y^{3}$ represents (a)three real straight lines (b)lines in which two of them are perpendicular to each other (c)lines in which two of them are coincident (d)none of these

- Watch Video Solution

57. The image of the pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$ by the line mirror $y=0$ is a. $a x^{2}-2 h x y-b y^{2}=0 \quad$ b.
$b x^{2}-2 h x y+a y^{2}=0$
c. $\quad x^{2}+2 h x y+a y^{2}=0$
d.
$a x^{2}-2 h x y+b y^{2}=0$

- Watch Video Solution

58. The combined equation of the lines $l_{1} a n d l_{2}$ is $2 x^{2}+6 x y+y^{2}=0$ and that of the lines m_{1} andm m_{2} is $4 x^{2}+18 x y+y^{2}=0$. If the angle between l_{1} and m_{2} is α then the angle between l_{2} and m_{1} will be
59. If the equation $a x^{2}-6 x y+y^{2}+b x+c y+d=0$ represents a pair of lines whose slopes are m and m^{2}, then the value(s) of a is/are

- Watch Video Solution

60. The equations of a line which is parallel to the line common to the pair of lines given by $6 x^{2}-x y-12 y^{2}=0$ and $15 x^{2}+14 x y-8 y^{2}=0$ and the sum of whose intercepts on the axes is 7 , is :

- Watch Video Solution

61. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then find the value of c .

- Watch Video Solution

62. Area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pairs of straight lines $x^{2}-y^{2}+2 y=1$ is (a) 2 sq units (b) 4 sq units (c) 6 sq units (d) 8 sq units

- Watch Video Solution

63. The equation $x^{2} y^{2}-9 y^{2}-6 x^{2} y+54 y=0$ represents (a) a pair of straight lines and a circle (b) a pair of straight lines and a parabola (c) a set of four straight lines forming a square (d) none of these

- Watch Video Solution

64. The straight lines represented by
$(y-m x)^{2}=a^{2}\left(1+m^{2}\right)$ and $(y-n x)^{2}=a^{2}\left(1+n^{2}\right)$ form a

- Watch Video Solution

65. If the pairs of lines $x^{2}+2 x y+a y^{2}=0$ and $a x^{2}+2 x y+y^{2}=0$ have exactly one line in common then the joint equation of the other two lines is given by

- Watch Video Solution

66. The condition that one of the straight lines given by the equation $a x^{2}+2 h x y+b y^{2}=0$ may coincide with one of those given by the equation $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$ is
$\left(a b^{\prime}-a^{\prime} b\right)^{2}=4\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(a b^{\prime}-a^{\prime} b\right)^{2}=\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(h a^{\prime}-h^{\prime} a\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(b h^{\prime}-b^{\prime} h\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(h a^{\prime}-h^{\prime} a\right)$

- Watch Video Solution

67. If the lines represented by the equation $3 y^{2}-x^{2}+2 \sqrt{3} x-3=0$ are rotated about the point $(\sqrt{3}, 0)$ through an angle of 15^{0}, one in
clockwise direction and the other in anticlockwise direction, so that they become perpendicular, then the equation of the pair of lines in the new position is

- Watch Video Solution

68. A point moves so that the distance between the foot of perpendiculars from it on the lines $a x^{2}+2 h x y+b y^{2}=0$ is a constant 2d . Show that the equation to locus is $\left(x^{2}+y^{2}\right)\left(h^{2}-a b\right)=d^{2}\left\{(a-b)^{2}+4 h^{2}\right\}$.

- Watch Video Solution

69. The angle between the pair of lines whose equation is $4 x^{2}+10 x y+m y^{2}+5 x+10 y=0$ is

- Watch Video Solution

70. Find the point of intersection of the pair of straight lines represented by the equation $6 x^{2}+5 x y-21 y^{2}+13 x+38 y-5=0$.

- Watch Video Solution

71. Find the angle between the lines represented by $x^{2}+2 x y \sec \theta+y^{2}=0$.

- Watch Video Solution

72. If the pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ is rotated about the origin by $\pi / 6$ in the anticlockwise sense, then find the equation of the pair of lines in the new position.

- Watch Video Solution

73. If the equation $2 x^{2}+k x y+2 y^{2}=0$ represents a pair of real and distinct lines, then find the values of k.

- Watch Video Solution

74. If the equation $x^{2}+(\lambda+\mu) x y+\lambda u y^{2}+x+\mu y=0$ represents two parallel straight lines, then prove that $\lambda=\mu$.

- Watch Video Solution

75. If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the positive direction of the axes. Then find the relation for a, b and h.

- Watch Video Solution

76. Prove that the equation $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ respresents a pair of straight lines. Find the coordinates of their point of intersection and also the angle between them.

- Watch Video Solution

77. A line L passing through the point $(2,1)$ intersects the curve $4 x^{2}+y^{2}-x+4 y-2=0$ at the point $A a n d B$. If the lines joining the origin and the points A, B are such that the coordinate axes are the bisectors between them, then find the equation of line L.

- Watch Video Solution

| 78. Show that | straight | lines |
| :--- | :---: | :---: | :---: |
| $\left(A^{2}-3 B^{2}\right) x^{2}+8 A B x y+\left(B^{2}-3 A^{2}\right) y^{2}=0$ | form with the line | | $A x+B y+C=0$ an equilateral triangle of area $\frac{C^{2}}{\sqrt{3}\left(A^{2}+B^{2}\right)}$.

79. If one of the lines denoted by the line pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes, then prove that $(a+b)^{2}=4 h^{2}$

- Watch Video Solution

80. If the middle points of the sides $B C, C A$, and $A B$ of triangle $A B C$ are $(1,3),(5,7)$, and ($-5,7$), respectively, the find the equation of the side $A B$.

- Watch Video Solution

81. Find the equations of the lines which pass through the origin and are inclined at an angle $\tan ^{-1} m$ to the line $y=m x+c$.

- Watch Video Solution

82. If $(-2,6)$ is the image of the point $(4,2)$ with respect to line $L=0$, then find the equation of line L.

- Watch Video Solution

83. If the lines $x+(a-1) y+1=0$ and $2 x+a^{2} y-1=0$ are perpendicular, then find the value of a.

- Watch Video Solution

84. Find the eqution of the right bisector of the line segment joining the points (3,4) and ($-1,2$).

- Watch Video Solution

85. Find the slope of the line perpendicular to the line joining the points
$(2,-3)$ and $(1,4)$.
86. If the coordinates of the vertices of triangle $A B C$ are $(-1,6),(-3,-9)$, and $(5,-8)$, respectively, then find the equation of the median through C.

- Watch Video Solution

87. Find the eqution of the line perpendicular to the line $\frac{x}{b}-\frac{y}{b}=1$ and passing through a point at which it cuts the x-axis.

- Watch Video Solution

88. Find the area bounded by the curves $x+2|y|=1$ and $x=0$.

- Watch Video Solution

89. Find the equaiton of the straight line passing through the intersection of the lines $x-2 y=1$ and $x+3 y=2$ and parallel to $3 x+4 y=0$.

- Watch Video Solution

90. Find the value of λ, if the lines $3 x-4 y-13=0,8 x-11 y-33$, and
$2 x-3 y+\lambda=0$ are concurrent.

- Watch Video Solution

91. If the point $P\left(a, a^{2}\right)$ lies completely inside the triangle formed by the lines $x=0, y=0$, and $x+y=2$, then find the exhaustive range of values of a is (A) $(0,1)$ (B) $(1, \sqrt{2})$ (C) $(\sqrt{2}-1,1)$ (D) $(\sqrt{2}-1,2)$

- Watch Video Solution

92. If the point (a, a) is placed in between the lines $|x+y|=4$, then find the value of a.

- Watch Video Solution

93. Find the set of positive values of b for which the origin and the point
(1, 1) lie on the same side of the straight line,
$a^{2} x+a b y+1=0, \forall a \in R, b>0$

- Watch Video Solution

94. If the point $P\left(a^{2}, a\right)$ lies in the region of acute angle between the lines $2 y=x$ and $4 y=x$, then find the values of a.

- Watch Video Solution

95. Find the range of values of the ordinate of a point moving on the line $x=1$, which always remain in the interior of the triangle formed by the lines $y=x$, the x-axis and $x+y=4$.

- Watch Video Solution

96. The point $(8,-9)$ with respect to the lines $2 x+3 y-4=0$ and $6 x+9 y+8=0$ lies on

- Watch Video Solution

97. If point $\left(a^{2}, a+1\right)$ lies in the angle between the line $3 \mathrm{x}-\mathrm{y}+1=0$ and $x+2 y-5=0$ containing the origin, then find the values of a.

- Watch Video Solution

98. Find the range of alpha if $(\alpha, 2+\alpha)$ and $\left(\frac{3 \alpha}{2}, a^{2}\right)$ lie on the opposite sides of the line $2 x+3 y=6$.

- Watch Video Solution

99. How the following pairs of points are placed w.r.t the line $3 x-8 y-7=0$?
$(i)(-3,-4)$ and $(1,2)$
(ii) ($-1,-1$) and (3,7)

- Watch Video Solution

100. If the line $\frac{x}{b}+\frac{y}{b}=1$ moves in such a way that $\frac{1}{a_{2}}+\frac{1}{b_{2}}=\frac{1}{c_{2}}$, where c is a constant, then prove that the foot of perpendicular from the origin upon the straight line describes the curve $x^{2}+y(2)=c^{2}$.

- Watch Video Solution

101. Consider the lines given by $L_{1}: x+3 y-5=0 L_{2}: 3 x-k y-1=0$ $L_{3}: 5 x+2 y-12=0$ Column I|Column II L_{1}, L_{2}, L_{3} are concurrent if $\mid \mathrm{p}$. $k=-9$ One of L_{1}, L_{2}, L_{3} is parallel to at least one of the other two if|q. $k=-\frac{6}{5} L_{1}, L_{2}, L_{3}$ form a triangle if|r. $k=\frac{5}{6} L_{1}, L_{2}, L_{3}$ do not form a triangle if|s. $k=5$

- Watch Video Solution

102. A variable line through the point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$, meets the co-ordinate axes in A and B, then the locus of mid point of $A B$ is

- Watch Video Solution

103. The line $3 x+2 y=24$ meets the y-axis at A and the x-axis at B. The perpendicular bisector of $A B$ meets the line through $(0,-1)$ parallel to the x-axis at C. The area of triangle $A B C$ is \qquad .
104. Find the equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .

- Watch Video Solution

105. The area of the parallelogram formed by the lines $y=m x, y=x m+1, y=n x$, and $y=n x+1$ equals.
(a) $\frac{|m+n|}{(m-n)^{2}}$ (b)
(b) $\frac{2}{|m+n|} \frac{1}{(|m+n|)}$
(d) $\frac{1}{(|m-n|)}$

- Watch Video Solution

106. A ray of light is sent along the line $2 x-3 y=5$. After refracting across the line $x+y=1$ it enters the opposite side after torning by 15^{0} away from the line $x+y=1$. Find the equation of the line along which the refracted ray travels.
107.

$P \equiv(-1,0), Q \equiv(0,0)$, and $R \equiv(3,3 \sqrt{3})$ be three points.
Then the equation of the bisector of $\angle P Q R$ is

- Watch Video Solution

108. A ray of light is rent along the line $x-2 y-3=0$. Upon reaching the line $3 x-2 y-5=0$, the ray is reflected from it.

Find the equation of the containing the reflected ray.

- Watch Video Solution

109. Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts p and q. Then (a) $a^{2}+b^{2}=p^{2}+q^{2}$

$$
\begin{equation*}
\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}} \text { (c) } a^{2}+p^{2}=b^{2}+q^{2} \text { (d) } \frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}} \tag{b}
\end{equation*}
$$

110. If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is

- Watch Video Solution

111. A line $4 x+y=1$ through the point $A(2,-7)$ meets the line $B C$ whose equation is $3 x-4 y+1=0$ at the point B. Find the equation of the line $A C$, so that $A B=A C$,

- Watch Video Solution

112. A straight canal is $4 \frac{1}{2}$ miles from a place and the shortest route from this place to the canal is exactly north-east. A village is 3 miles north and four miles east from the place. Does it lie by the nearest edge of the canal?
113. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through $(1,-1)$ and parallel to PS is (1) $4 x-7 y-11=0$ $2 x+9 y+7=0(3) 4 x+7 y+3=0(4) 2 x-9 y-11=0$

- Watch Video Solution

114. Find the equation of the line which satisfy the given conditions : Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive xaxis is 30°.

- Watch Video Solution

115. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is
116. Reduce the line $2 x-3 y+5=0$, in slope-intercept, intercept and normal forms. Also, find the distance of the line from origin and inclination of normal of the line with x-axis.

- Watch Video Solution

117. Prove that, The line $5 x+4 y=0$ passes through the point of intersection of straight lines $x+2 y-10=0,2 x+y=-5$

(Watch Video Solution

118. Passing through the point $(-4,3)$ with slope $1 / 2$ then the equation of the line is?
119. The lines $2 x+3 y+19=0$ and $9 x+6 y-17=0$, cut the coordinate axes at concyclic points.

Watch Video Solution

120. The straight lines $3 x+y-4=0, x+3 y-4=0$ and $x+y=0$ form a triangle which is: a) isosceles b) right-angled c) equilateral d) scalene

- Watch Video Solution

121. A Line through the variable point $A(1+k, 2 k)$ meets the lines $7 x+y-16=0 ; 5 x-y-8=0$ and $x-5 y+8=0^{\prime}$ at B,C,D respectively. Prove that $A C ; A B$ and $A D$ are in $H P$.

- Watch Video Solution

122. Two particles start from the point $(2,-1)$, one moves 2 units along the line $x+y=1$ and the other moves 5 units along the line $x-2 y=4$. If the particles move upward w.r.t coordinates axes, then find their new positions.

- Watch Video Solution

123. If $P \equiv(1,0), Q \equiv(-1,0), R \equiv(2,0)$ are three given points, then the locus of the point S satisfying the condition $S Q^{2}+S R^{2}=2 S P^{2}$ is

- Watch Video Solution

124. Distance of point $(1,3)$ from the line $2 x-3 y+9=0$ along $x-y+1=0$

- Watch Video Solution

125. A rectangle $A B C D$ has its side $A B$ parallel to line $y=x$, and vertices A, BandD lie on $y=1, x=2$, and $x=-2$, respectively. The locus of vertex C is $x=5$ (b) $x-y=5 y=5$ (d) $x+y=5$

- Watch Video Solution

126. Two adjacent vertices of a square are $(1,2)$ and $(-2,6)$. Find the other vertices.

- Watch Video Solution

127. The equation of a line through the point $(1,2)$ whose distance from the point $(3,1)$ has the greatest value is (a) $y=2 x$ (b) $y=x+1$ (c) $x+2 y=5$ (d) $y=3 x-1$

- Watch Video Solution

128. Find the equation of the line through the point $A(2,3)$ and making an angle of $45 \circ$ with the x axis Also determine the length of intercept on it between A and the line $x+y+1=0$

- Watch Video Solution

129. The line $\frac{x}{a}+\frac{y}{b}=1$ meets the x -axis at A , the y -axis at B , and the line $\mathrm{y}=\mathrm{x}$ at C such that the area of $\triangle A O C$ is twice the area of $\triangle B O C$. Then the coordinates of C are

- Watch Video Solution

130. The line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an angle of 15°. find the equation of line in the new position. If B goes to C in the new position what will be the coordinates of C .
131. The area of the triangle formed by the lines $y=a x, x+y-a=0$
and the y -axis is (a) $\frac{1}{2|1+a|}$
(b) $\frac{1}{|1+a|}$
(c) $\frac{1}{2}\left|\frac{a}{1+a}\right|$
(d) $\frac{a^{2}}{2|1+a|}$

- Watch Video Solution

132. Find the equation of the lines through the point $(3,2)$ which make an angle of 45^{0} with the line $x-2 y=3$.

- Watch Video Solution

133. Consider the points $A(0,1) \operatorname{and} B(2,0)$, $a n d P$ be a point on the line $4 x+3 y+9=0$. The coordinates of P such that $|P A-P B|$ is maximum are (a) $\left(-\frac{24}{5}, \frac{17}{5}\right)$ (b) $\left(-\frac{84}{5}, \frac{13}{5}\right)$ (c) $\left(\frac{31}{7}, \frac{31}{7}\right)$ $(-3,0)$

- Watch Video Solution

134. A straight line is drawn through the point $P(2,3)$ and is inclined at an angle of 30° with the x-axis. Find the coordinates of two points on it at a distance 4 from point P.

- Watch Video Solution

135. A line of fixed length 2 units moves so that its ends are on the positive x-axis and that part of the line $x+y=0$ which lies in the second quadrant. Then the locus of the midpoint of the line has equation.

- Watch Video Solution

136. The perpendicular from the origin to a line meets it at the point $(2,9)$, find the equation of the line.

- Watch Video Solution

137. The line $x / 3+y / 4=1$ meets y-and x-axis at A and B, respectively. A square $A B C D$ is constructed on the line segment $A B$ away from the origin. The coordinates of the vertex of the square fathest from the origin are
A. (a) $(7,3)$
B. (b) $(4,7)$
C. (c) $(6,4)$
D. (d) $(3,8)$

Answer: null

- Watch Video Solution

138. Find the direction in which a straight line must be drawn through the point $(-1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.
139. The centroid of an equilateral triangle is $(0,0)$. If two vertices of the triangle lie on $x+y=2 \sqrt{2}$, then one of them will have its coordinates.
(a) $\quad(\sqrt{2}+\sqrt{6}, \sqrt{2}-\sqrt{6})$
(b) $(\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3})$
$(\sqrt{2}+\sqrt{5}, \sqrt{2}-\sqrt{5})(\mathrm{d})$ none of these

(Watch Video Solution

140. Two fixed point A and B are taken on the cordinate axes such that $O A$ $=a$ and $O B=b$. Two variable points A^{\prime} and B^{\prime} are taken on the same axes such that $O A^{\prime}+O B^{\prime}=O A+O B$. Find the locus of the point of intersection of $A B^{\prime}$ and $A^{\prime} B$.

- Watch Video Solution

141. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.
142. Find the equation of the straight line which passes through the origin and makes angle 60° with the line $x+\sqrt{3} y+3$
$\sqrt{3}=0$

- Watch Video Solution

143. The equation of a straight line passing through the point $(2,3)$ and inclined at an angle of $\tan ^{-1}\left(\frac{1}{2}\right)$ with the line $y+2 x=5$ (a) $y=3$ $x=23 x+4 y-18=0$ (d) $4 x+3 y-17=0$

- Watch Video Solution

144. If we reduce $3 x+3 y+7=0$ to the form $x \cos \alpha+y \sin \alpha=p$, then find the value of p.

- Watch Video Solution

145. The equation of the lines on which the perpendicular from the origin make 30° angle with the x-axis and which form a triangle of area $50 / \sqrt{3}$ with the axes are

- Watch Video Solution

146. Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts p and q. Then (a) $a^{2}+b^{2}=p^{2}+q^{2}$

$$
\begin{equation*}
\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}} \text { (c) } a^{2}+p^{2}=b^{2}+q^{2} \text { (d) } \frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}} \tag{b}
\end{equation*}
$$

- Watch Video Solution

147. A line intersects the straight lines $5 x-y-4=0$ and $3 x-4 y-4=0$ at A and B, respectively.lf a point $P(1,5)$ on the line $A B$ is such that $A P: P B=$ 2:1(internally), find point A.
148. A line L is a drawn from $P(4,3)$ to meet the lines $L-1$ and L_{2} given by $3 x+4 y+5=0$ and $3 x+4 y+15=0$ at points $A a n d B$, respectively. From A, a line perpendicular to L is drawn meeting the line L_{2} at A_{1}. Similarly, from point B_{1}. Thus, a parallelogram $\forall_{1} B B_{1}$ is formed. Then the equation of L so that the area of the parallelogram $\forall_{1} B B_{1}$ is the least is (a) $x-7 y+17=0$ (b) $7 x+y+31=0$ (c) $x-7 y-17=0$ (d) $x+7 y-31=0$

- Watch Video Solution

149. A straight line through the point $A(3,4)$ is such that its intercept between the axis is bisected at A then its equation is: A. $x+y=7 \mathrm{~B}$.
$3 x-4 y+7=0$ C. $4 x+3 y=24$ D. $3 x+4 y=24$

- Watch Video Solution

150. Two straight line $u=0$ and $v=0$ pass through the origin and the angle between them is $\tan ^{-1}(7 / 9)$. If the ratio of the slope of $v=0$ and $u=0$ is
$9 / 2$, then their equations are

- Watch Video Solution

151. A straight line through the point (2,2) intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at thep points A and B , respectively. Then find the equation of the line $A B$ so that triangle $O A B$ is equilateral.

- Watch Video Solution

152. Let $u=a x+b y+a^{3} \sqrt{b}=0, v=b x-a y+b^{3} \sqrt{a}=0, a, b \in R$, be two straight lines. The equations of the bisectors of the angle formed by $k_{1} u-k_{2} v=0$ and $k_{1} u+k_{2} v=0$, for nonzero and real k_{1} and k_{2} are

- Watch Video Solution

153. If the foot of the perpendicular from the origin to a straight line is at $(3,-4)$, then find the equation of the line.

- Watch Video Solution

154. Two sides of a triangle are parallel to the coordinate axes. If the slopes of the medians through the acute angles of the triangle are 2 and m, then $m=$

- Watch Video Solution

155. The diagonals $A C$ and $B D$ of a rhombus intersect at $(5,6)$. If $A=(-3,2)$, then find the equation of diagonal $B D$.

- Watch Video Solution

156. A line which makes an acute angle θ with the positive direction of the x -axis is drawn through the point $P(3,4)$ to meet the line $x=6$ at R and $y=8$ at S. Then,

- Watch Video Solution

157. Find the values of non-negative real numbers $h_{1}, h_{2}, h_{3}, k_{1}, k_{2}, k_{3}$ such that algebraic sum of the perpendiculars drawn from points $\left(2, k_{1}\right),\left(3, k_{2}\right),\left(7, k_{3}\right),\left(h_{1}, 4\right),\left(h_{2}, 5\right),\left(h_{3},-3\right)$ on a variable line passing through $(2,1)$ is zero.

- Watch Video Solution

158. The sides of a triangle ABC lie on the lines $3 x+4 y=0,4 x+3 y=0$ and $x=3$. Let (h, k) be the centre of the circle inscribed in $\triangle A B C$. The value of $(h+k)$ equals
159. If a and b are two arbitray constants, then prove that the straight line $(a-2 b) x+(a+3 b) y+3 a+4 b=0$ will pass through a fixed. Find that point.

- Watch Video Solution

160. Find the incentre of a triangle formed by the lines $x \cos \frac{\pi}{9}+y \sin \frac{\pi}{9}=\pi, x \cos \frac{8 \pi}{9}+y \sin \frac{8 \pi}{9}=\pi$ and
$x \cos \frac{13 \pi}{9}+y \sin \left(\frac{13 \pi}{9}\right)=\pi$.

- Watch Video Solution

161. If the two sides of rhombus are $x+2 y+2=0$ and $2 x+y-3=0$, then find the slope of the longer diagonal.

- Watch Video Solution

162. The lines $x+y-1=0,(m-1) x+\left(m^{2}-7\right) y-5=0$, and $(m-2) x+(2 m-5) y=0$ are (a)concurrent for three values of m (b)concurrent for no value of m (c)parallel for one value of m (d)parallel for two values of m

- Watch Video Solution

163. In triangle $A B C$, the equation of the right bisectors of the sides $A B$ and $A C$ are $x+y=0$ and $y-x=0$. respectively.

If $A \equiv(5,7)$ the find the equation of side $B C$.

- Watch Video Solution

164. If $\left(\frac{x}{a}\right)+\left(\frac{y}{b}\right)=1$ and $\left(\frac{x}{c}\right)+\left(\frac{y}{d}\right)=1$ intersect the axes at four concylic points and $a^{2}+c^{2}=b^{2}+d^{2}$, then these lines can intersect at, $(a, b, c, d>0)^{`}$
165. Show that the straight lines given by $x(a+2 b)+y(a+3 b)=a+b$ for different values of a and b pass through a fixed point.

- Watch Video Solution

166. The straight line $3 x+4 y-12=0$ meets the coordinate axes at AandB. An equilateral triangle $A B C$ is constructed. The possible coordinates of vertex C (a) $\left(2\left(1-\frac{3 \sqrt{3}}{4}\right), \frac{3}{2}\left(1-\frac{4}{\sqrt{3}}\right)\right)$
$\left(-2(1+\sqrt{3}), \frac{3}{2}(1-\sqrt{3})\right)$
(c) $\left(2(1+\sqrt{3}), \frac{3}{2}(1+\sqrt{3})\right)$
$\left(2\left(1+\frac{3 \sqrt{3}}{4}\right), \frac{3}{2}\left(1+\frac{4}{\sqrt{3}}\right)\right)$

- Watch Video Solution

167. Let $a x+b y+c=0$ be a variable straight line, where a, b and c are $1^{\text {st }}, 3^{\text {rd }}$ and $7^{\text {th }}$ terms of an increasing A.P., respectively.

Then prove that the variable straight line always passes through a fixed point and find that point.

- Watch Video Solution

168. Angle made with the x-axis by a straight line drawn through $(1,2)$ so that it intersects $x+y=4$ at a distance $\frac{\sqrt{6}}{3}$ from (1,2) is (a) 105^{0} (b) 75^{0} (c) 60^{0} (d) 15^{0}

- Watch Video Solution

169. Prove that all the having sum of the intercepts on the axes equal to half of the product of the intercepts pass through a fixed point. Also, find that fixed point.

- Watch Video Solution

$2 x+11 y-5=0,24 x+7 y-20=0$ and $4 x-3 y-2=0$

- Watch Video Solution

171. Find the straight line passing through the point of intersection of lines $2 x+3 y+5=0$ and $5 x-2 y-16=0$ and through the point $(-1,3)$ using the concept of family of lines.

- Watch Video Solution

172. Three lines $x+2 y+3=0, x+2 y-7=0$, and $2 x-y-4=0$ form the three sides of two squares. The equation of the four side of the each square is

- Watch Video Solution

173. Consider a family of straight lines $(x+y)+\lambda(2 x-y+1)=0$.

Find the equation of the straight line belonging to his family that is farthest from (1,-3).

- Watch Video Solution

174. Find α if $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle having sides along the lines $2 x+3 y=1, x+2 y-3=0,6 y=5 x-1$.

- Watch Video Solution

175. If $5 a+4 b+20 c=t$, then the value of t for which the line $a x+b y+c-1=0$ always passes through a fixed point is

- Watch Video Solution

176. If the chord $\mathrm{y}=\mathrm{mx}+1$ subtends an angle of measure 45^{0} at the major segment of the circle $x^{2}+y^{2}=1$ then value of ' m ' is

Watch Video Solution

177. If $\frac{x}{l}+\frac{y}{m}=1$ is any line passing through the intersection point of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ then prove that $\frac{1}{l}+\frac{1}{m}=\frac{1}{a}+\frac{1}{b}$

- Watch Video Solution

178. Two sides of a rhombus OABC (lying in the first or third quadrant) of area equal to 2 sq. units are $y=x / \sqrt{3}, y=\sqrt{3} x$. Then the possible coordinates of B is are (O being the origin)

- Watch Video Solution

179. The equation of straight line belonging to both the families of lines
$(x-y+1)+\lambda_{1}(2 x-y-2)=0$ and
$(5 x+3 y-2)+\lambda_{2}(3 x-y-4)=0 \quad$ where $\quad \lambda_{1}, \lambda_{2} \quad$ are arbitrary numbers is (A) $5 x-2 y-7=0$ (B) $2 x+5 y-7=0$ (C) $5 x+2 y-7=0$
(D) $2 x-5 y-7=0$

- Watch Video Solution

180. If m_{1} and m_{2} are the roots of the equation $x^{2}-a x-a-1=0$, then the area of the triangle formed by the three straight lines $y=m_{1} x, y=m_{2} x$, and $y=a(a \neq-1)$ is ${ }^{`}$

- Watch Video Solution

181. Let the algebraic sum of the perpendicular distance from the points $(2,0),(0,2)$, and $(1,1)$ to a variable straight line be zero. Then the line passes through a fixed point whose coordinates are \qquad
182. If the points $\left(\frac{a^{3}}{(a-1)}\right),\left(\frac{\left(a^{2}-3\right)}{(a-1)}\right),\left(\frac{b^{3}}{b-1}\right),\left(\left(\frac{b^{2}-3}{(b-1)}\right)\right.$,
and $\left(\frac{\left(c^{2}-3\right)}{(c-1)}\right)$, where a, b, c are different from 1 , lie on the $l x+m y+n=0$, then

(D) Watch Video Solution

183. If a, b, c are in harmonic progression, then the straight line $\left(\frac{x}{a}\right)+\left(\frac{y}{b}\right)+\left(\frac{1}{c}\right)=0$ always passes through a fixed point. Find that point.

- Watch Video Solution

184. A variable line cuts n given concurrent straight lines at $A_{1}, A_{2} \ldots A_{n}$ such that $\sum_{i=1}^{n} \frac{1}{O A_{i}}$ is a constant. Show that it always passes through a fixed point, O being the point of intersection of the lines
185. Prove that the area of the parallelogram formed by the lines $3 x-4 y+a=0,3 x-4 y+3 a=0,4 x-3 y-a=0$ and $4 x-3 y-2 a$ $=0$ is $\frac{2 a^{2}}{7}$ squinits.

- Watch Video Solution

186. Two sides of a rhombus lying in the first quandrant are given by $3 x-$ $4 y=0$ and $12 x-5 y=0$ If the length of the longer diagonal is 12 , then find the equation of the other two sides of the rhombus.

- Watch Video Solution

187. The equation of straight line passing through ($-2,-7$) and having an intercept of length 3 between the straight lines: $4 x+3 y=12,4 x+3 y=3$ are :
(A) $7 x+24 y+182=0$
(B) $7 x+24 y+18=0$
(C) $x+2=0$
(D) $x-2=0$

(Watch Video Solution

188. Let $A B C$ be a given isosceles triangle with $A B=A C$. Sides $A B a n d A C$ are extended up to EandF, respectively, such that $B E \cdot C F=A B^{2}$. Prove that the line $E F$ always passes through a fixed point.

- Watch Video Solution

189. ABC is an equilateral triangle with $\mathrm{A}(0,0)$ and $\mathrm{B}(\mathrm{a}, 0),(a>0)$.
L, M and V are the foot of the perpendiculars drawn from a point P to the sides $A B, B C$, and $C A$, respectively. If P lies inside the triangle and satisfies the condition $P L^{2}=P M \cdot P N$, then find the locus of P .
190. Let $L_{1}=0$ and $L_{2}=0$ be two fixed lines. A variable line is drawn through the origin to cut the two lines at R and $\mathrm{S} . \mathrm{P}$ is a point on the line $A B$ such that $(m+n) / O P=m / O R+n / O S$. Show that the locus of P is a straight line passing through the point of intersection of the given lines ($\mathrm{R}, \mathrm{S}, \mathrm{P}$ are on the same side of O).

- Watch Video Solution

191. Find the points on y-ais whose perpendicular distance from the line $4 x-3 y-12=0$ is 3 .

- Watch Video Solution

192. Find all the values of θ for which the point $\left(\sin ^{2} \theta, \sin \theta\right)$ lies inside the square formed by the line $x y=0$ and $4 x y-2 x-2 y+1=0$.
193. If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \operatorname{cosec} \theta=k$, respectively, prove that $p^{2}+4 q^{2}=k^{2}$.

- Watch Video Solution

194. The equations of two sides of a triangle are $3 y-x-2=0$ and $y+x-2=0$. The third side, which is variable, always passes through the point (5,-1). Find the range of the values of the slope of the third side, so that the origin is an interior point of the triangle.

- Watch Video Solution

195. Prove that the lengths of the perpendicular from the points $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right)$, and $\left(m^{\prime 2}, 2 m^{\prime}\right)$ to the line $\mathrm{x}+\mathrm{y}+1=0$ are in GP.

- Watch Video Solution

196. A triangle has two sides $y=m_{1} x$ and $y=m_{2} x$ where m_{1} and m_{2} are the roots of the equation $b \alpha^{2}+2 h \alpha+a=0$. If (a, b) be the orthocenter of the triangle, then find the equation of the third side in terms of a, b and h.

- Watch Video Solution

197. Find the ratio in which the line $3 x+4 y+2=0$ divides the distance between $3 x+4 y+5=0$ and $3 x+4 y-5=0$.

- Watch Video Solution

198. Let $A \equiv(6,7), B \equiv(2,3)$ and $C \equiv(-2,1)$ be the vertices of a triangle. Find the point P in the interior of the triangle such that $P B C$ is an equilateral triangle.

- Watch Video Solution

199. Find the equations of lines parallel to $3 x-4 y-5=0$ at a unit distane from it.

- Watch Video Solution

200. Let $\mathrm{P}(\sin \theta, \cos \theta),(0 \leq \theta \leq 2 \pi)$, be apoint in a triangle with vertices
$(0,0),(\sqrt{3 / 2}, 0)$ and $(0, \sqrt{3 / 2})$. Then ,

- Watch Video Solution

201. Find the equation of a straight line passing through the point $(-5,4)$ and which cuts off an intercept fo $\sqrt{2}$ units between the lines $x+y+1=0$ and $\mathrm{x}+\mathrm{y}-\mathrm{l}=0$

- Watch Video Solution

202. Are the points $(3,4)$ and $(2,-6)$ on the same or opposite sides of the line $3 x-4 y=8$?

- Watch Video Solution

203. Consider the equation $y-y_{1}=m\left(x-x_{1}\right)$. If mand_{1} are fixed and different lines are drawn for different values of y_{1}, then (a) the lines will pass through a fixed point (b) there will be a set of parallel lines (c) all the lines intersect the line $x=x_{1}$ (d)all the lines will be parallel to the line $y=x_{1}$
A. (a) the lines will pass through a fixed point
B. (b) there will be a set of parallel lines
C. (c) all the lines intersect the line $x=x_{1}$
D. (d) all the lines will be parallel to the line $y=x_{1}$

Answer: null

- Watch Video Solution

204. If the straight line $a x+c y=2 b$, where $a, b, c>0$, makes a triangle of area 2 sq. units with the coordinate axes, then (a) a, b, c are in GP (b) a, -b, c are in GP (c) $a, 2 b, c$ are in GP (d) $a,-2 b, c$ are in GP

- Watch Video Solution

205. $A B C D$ is a square whose vertices are $A(0,0), B(2,0), C(2,2)$, and $D(0$,
2). The square is roated in the $X Y$-plane through and angle 30° in the anticlockwise sense about an axis passing though A perpendicular to the XY-plane. Find the equation of the diagonal BD of this rotated square.

- Watch Video Solution

206. The x-coordinates of the vertices of a square of unit area are the roots of the equation $x^{2}-3|x|+2=0$. The y-coordinates of the vertices are the roots of the equation $y^{2}-3 y+2=0$. Then the possible vertices of the square is/are $(a)(1,1),(2,1),(2,2),(1,2)$ (b) $(-1,1),(-2,1),(-2,2),(-1,2)$
$(c)(2,1),(1,-1),(1,2),(2,2)$
$(d)(-2,1),(-1,-1),(-1,2),(-2,2)$

- Watch Video Solution

207. Consider a triangle with vertices $A(1,2), B(3,1)$, and $C(-3,0)$.

Find the equation of altitude through vertex A the equation of median through vertex A the equation of internal angle bisector of $\angle A$

Watch Video Solution

208. If (x, y) is a variable point on the line $y=2 x$ lying between the lines $2(x+1)+y=0$, and $x+3(y-1)=0$, then

- Watch Video Solution

209. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, find the other vertices of the
rectangle.

- Watch Video Solution

210. If $D, E, a n d F$ are three points on the sides $B C, A C, a n d A B$ of a triangle $A B C$ such that $A D, B E$, andCF are concurrent, then show that $B D \cdot C E \cdot A F=D C \cdot E A \cdot F B$.

- Watch Video Solution

211. Find the coordinates of the foot of the perpendicular drawn from the point $P(1,-2)$ on the line $y=2 x+1$. Also, find the image of P in the line.

- Watch Video Solution

212. Let the sides of a parallelogram be $U=a, U=b, V=a$ and $V=b$ ', where $U=|x+m y+n, V=| ' x+m ' y+n$ '. Show that the equation of the diagonal through
the point of intersection of
$U=a, V=a^{\prime}$ and $U=b, V=b^{\prime}$ is given by $\left|\begin{array}{lll}U & V & 1 \\ a & a^{\prime} & 1 \\ b & b^{\prime} & 1\end{array}\right|=0$.

- Watch Video Solution

213. Find the image of the point $(-8,12)$ which respect to the line $4 x+7 y$ $+13=0$

- Watch Video Solution

214. One side of a rectangle lies along the line $4 x+7 y+5=0$. Two of its vertices are $(-3,1)$ and (1,1). Find the equations of the other three sides.

- Watch Video Solution

215. In a triangle $A B C$, side $A B$ has equation $2 x+3 y=29$ and side
$A C$ has equation $x+2 y=16$. If the midpoint of $B C$ is $(5,6)$, then find
the equation of $B C$.

- Watch Video Solution

216. The fooot of the perpendicular on the line $3 x+y=\lambda$ drawn from the origin is C. if the line cuts the x - and the y-axis at A and B, respectively,then $B C: C A$ is

- Watch Video Solution

217. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one diagonal is $11 x+7 y=9$, find the equation of the other diagonal.

- Watch Video Solution

218. The real value of a for which the value of m satisfying the equation $\left(a^{2}-1\right) m^{2}-(2 a-3) m+a=0$ given the slope of a line parallel to
the y-axis is(a) $\frac{3}{2}$ (b) 0 (c) 1 (d) ± 1

- Watch Video Solution

219. If one of the sides of a square is $3 x-4 y-12=0$ and the center is $(0,0)$, then find the equations of the diagonals of the square.

- Watch Video Solution

220. If the quadrilateral formed by the lines $a x+b y+c=0, a^{\prime} x+b^{\prime} y+c=0, a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}$ $=0$ has perpendicular diagonals, then (a) $b^{2}+c^{2}=b^{\prime 2}+c^{\prime 2}$ $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2}$ (c) $a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$ (d) none of these

- Watch Video Solution

221. A vertex of an equilateral triangle is $(2,3)$ and the equation of the opposite side is $x+y=2$. Find the equation of the other sides of the
triangle.

- Watch Video Solution

222. The straight lines $7 x-2 y+10=0$ and $7 x+2 y-10=0$ form an isosceles triangle with the line $y=2$. The area of this triangle is equal to $\frac{15}{7}$ squinits (b) $\frac{10}{7}$ squinits $\frac{18}{7}$ squinits(d) none of these

- Watch Video Solution

223. Find the least value of $(x-1)^{2}+(y-2)^{2}$ under the condition $3 x+4 y-2=0$.

- Watch Video Solution

224. θ_{1} and θ_{2} are the inclination of lines L_{1} and L_{2} with the x-axis. If L_{1} and L_{2} pass through $P\left(x_{1}, y_{1}\right)$, then the equation of one of the angle bisector of these lines is
225. Find the least and the greatest values of distance of the point $(\cos \theta, \sin \theta), \theta \in R$, from the line $3 \mathrm{x}-4 \mathrm{y}+10=0$.

- Watch Video Solution

226. A light ray coming along the line $3 x+4 y=5$ gets reflected from the line $a x+b y=1$ and goes along the line $5 x-12 y=10$. Then,

- Watch Video Solution

227. Prove that the product of the lengths of the perpendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
228. Line $a x+b y+p=0$ makes angle $\frac{\pi}{4} \quad$ with $x \cos \alpha+y \sin \alpha=p, p \in R^{+} \quad$. If these lines and the line $x \sin \alpha-y \cos \alpha=0$ are concurrent, then

- Watch Video Solution

229. Two sides of a square lie on the lines $x+y=1$ and $x+y+2=0$. What is its area?

- Watch Video Solution

230. A line is drawn perpendicular to line $y=5 x$, meeting the coordinate axes at $\operatorname{Aand} B$. If the area of triangle $O A B$ is 10 sq. units, where O is the origin, then the equation of drawn line is (a) $3 x-y-9$ (b) $x+5 y=10 x+4 y=10$ (d) $x-4 y=10$

- Watch Video Solution

231. Find the coordinates of a point on $x+y+3=0$, whose distance from $x+2 y+2=0$ is $\sqrt{5}$.

- Watch Video Solution

232. If $x-2 y+4=0 \operatorname{and} 2 x+y-5=0$ are the sides of an isosceles triangle having area 10 squinits, the equation of the third side is (a) $3 x-y=-9$ (b) $3 x-y+11=0$ (c) $x-3 y=19$ (d) $3 x-y+15=0$

- Watch Video Solution

233. If p is the length of the perpendicular from the origin to the line $\frac{x}{a}+\frac{y}{b}=1$, then prove that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
234. Find the value of a for which the lines $2 x+y-1=0$, $a x+3 y-3=0,3 x+2 y-2=0$ are concurrent.

- Watch Video Solution

235. The centre of a square is at the origin and one vertex is $A(2,1)$. Find the coordinates of other vertices of the square.

- Watch Video Solution

236. $A B C D$ is a square $A \equiv(1,2), B \equiv(3,-4)$. If line $C D$ passes through $(3,8)$, then the midpoint of $C D$ is (a) $(2,6)(b)(6,2)$ (c) $(2,5)$
(d) $\left(\frac{28}{5}, \frac{1}{5}\right)$

- Watch Video Solution

237. Find the distance between $A(2,3)$ on the line of gradient $3 / 4$ and the point of intersection P of this line with $5 x+7 y+40=0$.

- Watch Video Solution

238. The equation of the straight line which passes through the point $(-4,3)$ such that the portion of the line between the axes is divided internally by the point in the ratio 5:3 is

- Watch Video Solution

239. If one side of the square is $2 x-y+6=0$ and one of the vertices is $(2,1)$ then find the other sides of the square.

- Watch Video Solution

240. The equation of the bisector of the acute angle between the lines $2 x-y+4=0$ and $x-2 y=1$ is

Watch Video Solution

241. Find equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$.

- Watch Video Solution

242. If the equations $y=m x+c$ and $x \cos \alpha+y \sin \alpha=p$ represent the same straight line, then (a) $p=c \sqrt{1+m^{2}}$ (b) $c=p \sqrt{1+m^{2}}$ (c) $c p=\sqrt{1+m^{2}}$ (d) $p^{2}+c^{2}+m^{2}=1$

- Watch Video Solution

243. Find the equation of the line passing through $(2,3)$ which is parallel to the x-axis.

- Watch Video Solution

244. Consider three lines as follows. $L_{1}: 5 x-y+4=0$ $L_{2}: 3 x-y+5=0 L_{3}: x+y+8=0$ If these lines enclose a triangle $A B C$ and the sum of the squares of the tangent to the interior angles can be expressed in the form $\frac{p}{q}$, where p and q are relatively prime numbers, then the value of $p+q$ is

- Watch Video Solution

245. Find the equation of a straight line cutting off an intercept-1 from the y-axis and being equally inclined to the axes.

- Watch Video Solution

246. The line $L_{1} \equiv 4 x+3 y-12=0$ intersects the x -and y -axies at AandB, respectively. A variable line perpendicular to L_{1} intersects the xand the y -axis at P and Q, respectively. Then the locus of the circumcenter of triangle $A B Q$ is

Watch Video Solution

247. Find the equation of the line which intersects the y-axis at a distance of 2 units above the origin and makes and angle of 30° with the positive direction of the x-axis.

- Watch Video Solution

248. Find the locus of the point at which two given portions of the straight line subtend equal angle.

- Watch Video Solution

249. Find the equation of the perpendicular bisector of the line segment joining the points $A(2,3)$ and $B(6,5)$.

- Watch Video Solution

250. Having given the bases and the sum of the areas of a number of triangles which have a common vertex, show that the locus of the vertex is a straight line.

- Watch Video Solution

251. Find the equation of a line that y-intercept 4 and is perpendicular to the joining $A(2,-3)$ and $B(4,2)$.

- Watch Video Solution

252. The equations of the diagonals of square formed by lines
$x=0, y=0, x=1$, and $y=1$ are

Watch Video Solution

253. Find the equation of the straight line that passes through the point
$(3,4)$ and is perpendicular to the line $3 x+2 y+5=0$

- Watch Video Solution

254. Find the equation of the line which is parallel to $3 x-2 y+5=0$ and passes through the point $(5,-6)$.

- Watch Video Solution

255.

Consider
two
lines $\quad L_{1} a n d L_{2}$
given
by
$a_{1} x+b_{1} y+c_{1}=0$ anda $_{2} x+b_{2} y+c_{2}=0$ respectivelywherec 1 and $c 2 \neq$
intersecting at point $P A$ line L_{3} is drawn through the origin meeting the lines $L_{1} a n d L_{2}$ at Aand B, respectively, such that $P A=P B$. Similarly, one more line L_{4} is drawn through the origin meeting the lines L_{1} and L_{2} at A_{1} and B_{2}, respectively, such that $P A_{1}=P B_{1}$. Obtain the combined equation of lines $L_{3} a n d L_{4}$.

- Watch Video Solution

256. Find the locus of point P which moves such that its distance from the line $y=\sqrt{3} x-7$ is the same as its distance from $(2 \sqrt{3},-1)$

- Watch Video Solution

257. Consider two lines L_{1} and L_{2} given by $\mathrm{x}-\mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=0$, respectivel y , and a moving point $\mathrm{P}(\mathrm{x}, \mathrm{y})$. Let $\mathrm{d}\left(P, L_{i}\right), \mathrm{i}=1,2$, represents the distance of point P from the line L_{i}. If point P moves in a certain region R is such a way that $2 \leq d\left(P, L_{1}\right)+d\left(P, L_{2}\right) \leq 4$, find the area of region R.
258. In what ratio does the line joining the points $(2,3)$ and $(4,1)$ divide the segment joining the points $(1,2)$ and $(4,3)$?

- Watch Video Solution

259. Show that the lines $4 x+y-9=0, x-2 y+3=0,5 x-y-6=0$ make equal intercepts on any line of slope 2

- Watch Video Solution

260. Find the equation of the bisector of the obtuse angle between of the
lines $3 x-4 y+7=0$ and $12+5 y-2=0$

- Watch Video Solution

261. A Line through the variable point $A(1+k, 2 k)$ meets the lines $7 x+y-16=0 ; 5 x-y-8=0$ and $x-5 y+8=0^{\prime}$ at $\mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively. Prove that $A C ; A B$ and $A D$ are in $H P$.

- Watch Video Solution

262. The incident ray is along the line $24 x+7 y+5=0$. Find the equation of mirrors.

- Watch Video Solution

263. If the line $y=\sqrt{3} x$ cuts the curve $x^{3}+y^{3}+3 x y+5 x^{2}+3 y^{2}+4 x+5 y-1=0$ at the point A, B, C, then $O A \dot{O} B \dot{O} C$ is equal to $\left(\frac{k}{13}\right)(3 \sqrt{3}-1)$. The value of k is

- Watch Video Solution

264. Two equal sides of an isosceles triangle are $7 x-y+3=0$ and $x+y-3=0$. Its third side passes the point $(1,-10)$.

Determine the equation of the third side.

- Watch Video Solution

265. The area of a parallelogram formed by the lines $a x \pm b y \pm c=0$ is

- Watch Video Solution

266. The vertices, B and C of a triangle $A B C$ lie on the lines $3 y=4 x$ and $y=0$, respectively. The side $B C$ passes through the point $(2 / 3,2 / 3)$. If $A B O C$ is a rhombus lying in first quadrant, O being the origin, them find the equation of the line $B C$.

- Watch Video Solution

267. If each of the points $\left(x_{1}, 4\right),\left(-2, y_{1}\right)$ lies on the line joining the points (2, -1$),(5,-3)$, then the points $P\left(x_{1}, y_{1}\right)$ lies on the line:

- Watch Video Solution

268. If the
$a_{1} x+b_{1} y+1=0, a_{2} x+b_{2} y+1=0$ and $a_{3} x+b_{3} y+1=0 \quad$ are concurrent, show that the point $\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ are collinear.

- Watch Video Solution

269. The diagonals of a parallelogram PQRS are along the lines $x+3 y=4$ and $6 x-2 y=7$, Then PQRS must be :

- Watch Video Solution

270. For the straight lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the:
(i) bisector of the abtuse angle between them
(ii) bisector of the acute angle between them
(iii) bisector of the angle which contains (1,2)
(iv) bisector of the angle which contains $(0,0)$

- Watch Video Solution

271. A straight line segment $A B$ of length 'a' moves with its ends on the axes. Then the locus of the point P which divides the line in the ratio 1:2 is

- Watch Video Solution

272. Find the foot of the perpendicular from the point $(2,4)$ upon $x+y=1$.
273. The lines $x+y-1=0,(m-1) x+\left(m^{2}-7\right) y-5=0$, and $(m-2) x+(2 m-5) y=0$ are (a)concurrent for three values of m (b)concurrent for no value of m (c)parallel for one value of m (d)parallel for two values of m

- Watch Video Solution

274. In $\triangle A B C$, vertex A is $(1,2)$. If the internal angle bisector of $\angle B$ is $2 \mathrm{x}-$ $y+10=0$ and the perpendicular bisector of $A C$ is $y=x$, then find the equation of $B C$.

- Watch Video Solution

275. Find the equation of the bisector of the obtuse angle between of the lines $3 x-4 y+7=0$ and $12+5 y-2=0$

- Watch Video Solution

276. The line $a x+b y=1$ passes through the point of intertsection of $y=x \tan$ $\alpha+p \sec \alpha$ and $y \sin \left(30^{\circ}-\alpha\right)-x \cos \left(30^{\circ}-\alpha\right)=p$. If it is inclined at 30° with $y=(\tan \alpha) x$, then prove that $a^{2}+b^{2}=\frac{3}{4 p^{2}}$.

- Watch Video Solution

277. A straight line L is perpendicular to the line $5 x-y=1$. The aera of the triangle formed by line L and the coordinate area is 5 . Find the equation of line L .

- Watch Video Solution

278. The reflection of the point (4,-13) about the line $5 x+y+6=0$ is a.
$(-1,-14)$
b. $(3,4)$
c. $(0,-0)$ d. $(1,2)$

- Watch Video Solution

279. Triangle $A B C$ with $A B=13, B C=5$, and $A C=12$ slides on the coordinates axes with A and B on the positive x-axis and positive y-axis respectively. The locus of vertex C is a line $12 x-k y=0$. Then the value of k is \qquad

- Watch Video Solution

280. The line $y=\frac{3 x}{4}$ meets the lines $x-y+1=0$ and $2 x-y=5$ at A and B respectively. Find Coordinates of P on $y=\frac{3 x}{4}$ such that $P A \cdot P B=25$.

- Watch Video Solution

281. In a plane there are two families of lines $y=x+r, y=-x+r$, where $r \in\{0,1,2,3,4\}$. Find the number of squares of diagonals of length 2 formed by the lines
282. Line $\frac{x}{a}+\frac{y}{b}=1$ cuts the co-ordinate axes at $\mathrm{A}(\mathrm{a}, \mathrm{O})$ and $\mathrm{B}(0, \mathrm{~b})$ and the line $\frac{x}{a^{\prime}}+\frac{y}{b^{\prime}}=-1$ at $A^{\prime}\left(-a^{\prime}, 0\right)$ and $B^{\prime}\left(0,-b^{\prime}\right)$. If the points $A, B, A^{\prime}, B^{\prime}$ are concyclic then the orthocentre of triangle $A B A^{\prime}$ is

- Watch Video Solution

283. If P is a point (x, y) on the line $y=-3 x$ such that P and the point $(3,4)$ are on the opposite sides of the line $3 x-4 y=8$, then

- Watch Video Solution

284. If the points $(1,2)$ and $(3,4)$ are on the opposite side of the line $3 x-5 y$ $+a=0$, then :

- Watch Video Solution

285. Line segment AB of fixed lengh c slides between coordinate axes such that its ends A and B lie on the axes. If O is origin and rectangle OAPB is completed, then show that the locus of the foot of the perpendicular drawn from P to AB is $x^{\frac{2}{3}}+y^{\frac{2}{3}}=c^{\frac{2}{3}}$.

- Watch Video Solution

286. All points lying inside the triangle formed by the points $(1,3),(5,0)$ and ($-1,2$) satisfy

- Watch Video Solution

287. The equation to the straight line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \operatorname{cosec} \theta=a$ is

- Watch Video Solution

288. The equation of a straight line on which the length of perpendicular from the origin is four units and the line makes an angle of 120° with the x -axis is (a) $x \sqrt{3}+y+8=0$
(b) $x \sqrt{3}-y=8$
(c) $x \sqrt{3}-y=8$
$x-\sqrt{3} y+8=0$

- Watch Video Solution

289. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is

- Watch Video Solution

290. If the equation of base of an equilateral triangle is $2 x-y=1$ and the vertex is $(-1,2)$, then the length of the sides of the triangle is

- Watch Video Solution

291. The equation of straight line passing through $(-a, 0)$ and making a triangle with the axes of area T is (a) $2 T x+a^{2} y+2 a T=0$ $2 T x-a^{2} y+2 a T=0$ (c) $2 T x-a^{2} y-2 a T=0$ (d)none of these

- Watch Video Solution

292. The line $P Q$ whose equation is $x-y=2$ cuts the x -axis at P, $a n d Q$ is $(4,2)$. The line $P Q$ is rotated about P through 45^{0} in the anticlockwise direction. The equation of the line $P Q$ in the new position is

- Watch Video Solution

293. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value of C is

- Watch Video Solution

294. If the extremities of the base of an isosceles triangle are the points $(2 a, 0)$ and $(0, \mathrm{a})$, and the equation of one of the side is $x=2 a$, then the area of the triangle is

- Watch Video Solution

295. A triangle is formed by the lines $x+y=0, x-y=0$, and $l x+m y=1$. If $l a n d m$ vary subject to the condition $l^{2}+m^{2}=1$, then the locus of its circumcenter is (a) $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$
$\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)$
(c)
$\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y^{2}$
$\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$

- Watch Video Solution

296. The line $x+y=p$ meets the x - and y -axes at $A a n d B$, respectively. A triangle $A P Q$ is inscribed in triangle $O A B, O$ being the origin, with right angle at $Q P$ and Q lie, respectively, on $O B a n d A B$. If the area of
triangle $A P Q$ is $\frac{3}{8} t h$ of the are of triangle $O A B$, the $\frac{A Q}{B Q}$ is equal to (a)2(b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) 3

- Watch Video Solution

297. A is a point on either of two lines $y+\sqrt{3}|x|=2$ at a distance of $\frac{4}{\sqrt{3}}$ units from their point of intersection. The coordinates of the foot of perpendicular from A on the bisector of the angle between them are (a) $\left(-\frac{2}{\sqrt{3}}, 2\right)$ (b) $(0,0)$ (c) $\left(\frac{2}{\sqrt{3}}, 2\right)$ (d) $(0,4)$

- Watch Video Solution

298. A pair of perpendicular straight lines is drawn through the origin forming with the line $2 x+3 y=6$ an isosceles triangle right-angled at the origin. The equation to the line pair is a. $5 x^{2}-24 x y-5 y^{2}=0 \mathrm{~b}$.
$5 x^{2}-26 x y-5 y^{2}=0$
c. $\quad 5 x^{2}+24 x y-5 y^{2}=0$
$5 x^{2}+26 x y-5 y^{2}=0$
d.
299. If the vertices $P a n d Q$ of a triangle $P Q R$ are given by $(2,5)$ and $(4,-11)$, respectively, and the point R moves along the line N given by $9 x+7 y+4=0$, then the locus of the centroid of triangle $P Q R$ is a straight line parallel to $P Q$ (b) $Q R$ (c) $R P$ (d) N

- Watch Video Solution

300. Given $A=(1,1)$ and $A B$ is any line through it cutting the x-axis at B. If $A C$ is perpendicular to $A B$ and meets the y-axis in C, then the equation of the locus of midpoint P of $B C$ is (a) $x+y=1$
$x+y=2$ (c) $x+y=2 x y$ (d) $2 x+2 y=1$

- Watch Video Solution

301. The straight lines $4 a x+3 b y+c=0$ passes through which point?, where $a+b+c=0(\mathrm{a})(4,3)(\mathrm{b})\left(\frac{1}{4}, \frac{1}{3}\right)(\mathrm{c})\left(\frac{1}{2}, \frac{1}{3}\right)$ (d) none of these
302. The line parallel to the x-axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $\quad b x-2 y-3 a=0 \quad$ where $(a, b) \neq(0,0)$, is (a)above the x-axis at a distance of $3 / 2$ units from it (b)above the x-axis at a distance of $2 / 3$ units from it (c)below the x-axis at a distance of $3 / 2$ units from it (d)below the x-axis at a distance of $2 / 3$ units from it

- Watch Video Solution

303. The lines $L_{1}: \mathrm{y}-\mathrm{x}=0$ and $L_{2}: 2 \mathrm{x}+\mathrm{y}=0$ intersect the line $L_{3}: \mathrm{y}+2=0$ at P and Q respectively. The bisector of the acute angle between L_{1} and L_{2} intersects L_{3} at R

Statement -1 : The ratio PR: PQ equals $2 \sqrt{2}: \sqrt{5}$
Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangle
304. If the lines $a x+y+1=0, x+b y+1=0, x+y+c=0,(a, b, c$ are distinct and not equal to 1), are concurrent, then find the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$

(Watch Video Solution

305. Two sides of a rhombus $A B C D$ are parallel to the lines $y=x+2$ and $y=7 x+3$. If the diagonal of the rhombus intersect at the point $(1,2)$ and the vertex. A is on the y-axis, then find the possible coodinates of A.

- Watch Video Solution

306. Equation(s) of the straight line(s), inclined at 30° to the x-axis such that the length of its (each of their) line segment(s) between the coordinates axes is 10 units, is (are)
307. If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line $2 x+3 y=6$, then area of the triangle so formed is

- Watch Video Solution

308. The sides of a rhombus are parallel to the lines $x+y-1=0$ and $7 x-y-5=0$.

It is given that the diagonals of the rhombus intersect at $(1,3)$ and one vertex, A of the rhombus lies on the line $y=2 x$. Then the coordinates of vertex A are

- Watch Video Solution

309. The image of $P(a, b)$ on the line $y=-x$ is Q and the image of Q on the line $y=x$ is R find the mid-point of P and R

- Watch Video Solution

310. Consider a $\triangle A B C$ whose sides $A B, B C$ and $C A$ are represented by the straight lines $2 x+y=0, x+p y=q$ and $x-y=3$ respectively. The point P is $(2,3)$. If P is orthocentre,then find the value of $(p+q)$ is

- Watch Video Solution

311. Area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pairs of straight lines $x^{2}-y^{2}+2 y=1$ is (a) 2 sq units (b) 4 sq units (c) 6 sq units (d) 8 sq units

- Watch Video Solution

312. The sides of a triangle have the combined equation $x^{2}-3 y^{2}-2 x y+8 y-4=0$. The third side, which is variable, always passes through the point $(-5,-1)$. Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.
313. The equation of the lines passing through the point $(1,0)$ and at a distance $\frac{\sqrt{3}}{2}$ from the origin is (a) $\sqrt{3} x+y-\sqrt{3}=0$ $x+\sqrt{3} y-\sqrt{3}=0$ (c) $\sqrt{3} x-y-\sqrt{3}=0$ (d) $x-\sqrt{3} y-\sqrt{3}=0$

- Watch Video Solution

314. The number of values of k for which the lines $(k+1) x+8 y=4 k$ and $k x+$ $(k+3) y=3 k-1$ are coincident is \qquad .

- Watch Video Solution

315. For all real values of a and b lines $(2 a+b) x+(a+3 b) y+(b-3 a)=0$ and $\mathrm{mx}+2 \mathrm{y}+6=0$ are concurrent, then m is equal to
316. The line $x=c$ cuts the triangle with corners $(0,0),(1,1)$ and $(9,1)$ into two region. For the area of the two regions to be the same c must be equal to (A) $\frac{5}{2}$ (B) 3 (C) $\frac{7}{2}$ (D) 5 or 15

- Watch Video Solution

317. The absolute value of the sum of the abscissas of all the points on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$ is \qquad .

- Watch Video Solution

318. The point (x, y) lies on the line $2 x+3 y=6$. The smallest value of the quantity $\sqrt{x^{2}+y^{2}}$ is m. then the value of $\sqrt{13} m$ is \qquad

- Watch Video Solution

319. The equations of the perpendicular bisectors of the sides $A B a n d A C$ of triangle $A B C$ are $x-y+5=0$ and $x+2 y=0$, respectively. If the point A is $(1,-2)$, then find the equation of the line $B C$.

- Watch Video Solution

320. One of the diagonals of a square is the portion of the line $\frac{x}{2}+\frac{y}{3}=2$ intercepted between the axes. Then the extremities of the other diagonal are: (a) $(5,5),(-1,1)$ (b) $(0,0),(4,6)(0,0),(-1,1)$ (d) $(5,5), 4,6)$

- Watch Video Solution

321. Two sides of a triangle are along the coordinate axes and the medians through the vertices (other than the origin) are mutually perpendicular. The number of such triangles is/are (a) zero
(b) two
(c) four
(d) infinite
322. The graph of $y^{2}+2 x y+40|x|=400$ divides the plane into regions. Then the area of the bounded region is (a)200squnits (b) 400squinits (c) 800squinits (d) 500squinits

- Watch Video Solution

323. In a triangle $A B C, A=(\alpha, \beta) B=(2,3)$, and $C=(1,3)$. Point A lies on line $y=2 x+3$, where $\alpha \in I$. The area of $A B C$, , is such that $[\Delta]=5$. The possible coordinates of A are (where [.] represents greatest integer function). (a) $(2,3)$ (b) $(5,13) \quad$ (c) $(-5,-7)$ $(-3,-5)$

- Watch Video Solution

324. If the straight
lines
$2 x+3 y-1=0, x+2 y-1=0$, and $a x+b y-1=0$ form a triangle
with the origin as orthocentre, then (a, b) is given by

- Watch Video Solution

325. Let O be the origin. If $A(1,0) \operatorname{and} B(0,1) \operatorname{and} P(x, y)$ are points such that $x y>0$ and $x+y<1$, then P

- Watch Video Solution

326. If the area of the rhombus enclosed by the lines $l x \pm m y \pm n=0$ is 2 sq. units, then, a) I,m,n are in G.P b) I n, m are in G.P. c) $\mathrm{Im}=\mathrm{n}$ d) $\mathrm{In}=\mathrm{m}$

- Watch Video Solution

327. In a triangle $A B C$, the bisectors of angles $B a n d C$ lies along the lines $x=$ yand $y=0$. If A is $(1,2)$, then the equation of line $B C$ is
328. If $\frac{a}{\sqrt{b c}}-2=\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{b}}$, where $a, b, c>0$, then the family of lines $\sqrt{a} x+\sqrt{b} y+\sqrt{c}=0$ passes though the fixed point given by (a)
$(1,1)$
(b) $(1$
2) (c) $(-1,2)(d)$
(d) $(-1,1)$

- Watch Video Solution

329. $P(m, n)$ (where m, n are natural numbers) is any point in the interior of the quadrilateral formed by the pair of lines $x y=0$ and the lines $2 x+y-2=0$ and $4 x+5 y=20$. The possible number of positions of the point P is. (a) 7 (b) 5 (c) 4 (d) 6

- Watch Video Solution

330. A diagonal of rhombus $A B C D$ is member of both the families of lines

$$
\begin{aligned}
& \text { lines } \quad(x+y-1)+\lambda(2 x+3 y-2)=0 \\
& (x-y+2)+\lambda(2 x-3 y+5)=0 \text { and rhombus is }(3,2) \text {. If the area of }
\end{aligned}
$$ the rhombus is $12 \sqrt{5} \mathrm{sq}$. units, then find the remaining vertices of the rhombus.

(D) Watch Video Solution

331. A regular polygon has two of its consecutive diagonals as lines $\sqrt{3} x+y=\sqrt{3}$ and $2 y=\sqrt{3}$. Point $(1, \mathrm{c})$ is one of its vertices. Find the equation of the sides of the polygon and also find the coordinates of the vertices.

- Watch Video Solution

332. Find the locus of the circumcenter of a triangle whose two sides are along the coordinate axes and the third side passes through the point of intersection of the lines $a x+b y+c=0$ and $\mid x+m y+n=0$.

- Watch Video Solution

333. A line $L_{1}=3 y-2 x-6=0$ is rotated about its point of intersection with the y -axis in the clockwise direction to make it L_{2} such
that the are formed by L_{1}, L_{2} the x -axis, and line $x=5$ is $\frac{49}{3}$ squinits if its point of intersection with $x=5$ lies below the x-axis. Find the equation of L_{2}.

- Watch Video Solution

334. Straight lines $y=m x+c_{1}$ and $y=m x+c_{2}$ where $m \in R^{+}$, meet the x -axis at A_{1} and A_{2}, respectively, and the y -axis at B_{1} and B_{2}, respectively. It is given that points A_{1}, A_{2}, B_{1}, and B_{2} are concylic. Find the locus of the intersection of lines $A_{1} B_{2}$ and $A_{2} B_{1}$.

- Watch Video Solution

335. Show that the reflection of the line $a x+b y+c=0$ in the line $x+y+1=0$ is the line $\mathrm{bx}+\mathrm{ay}+(\mathrm{a}+\mathrm{b}-\mathrm{c})=0$, where $a \neq b$.

- Watch Video Solution

336. Two equal sides of an isosceles triangle are $7 x-y+3=0$ and $x+y-3=0$. Its third side passes the point $(1,-10)$.

Determine the equation of the third side.

- Watch Video Solution

337. The number of possible straight lines passing through $(2,3)$ and forming a triangle with the coordinate axes, whose area is 12 sq. Units, is

- Watch Video Solution

338. In a triangle $A B C$, if A is $(2,-1), \operatorname{and} 7 x-10 y+1=0$ and $3 x-2 y+5=0$ are the equations of an altitude and an angle bisector, respectively, drawn from B, then the equation of $B C$ is (a)
$a+y+1=0$
(b) $5 x+y+17=0$
(c) $4 x+9 y+30=0$
$x-5 y-7=0$
339. The sides of a triangle are the straight line $x+y=1,7 y=x$, and $\sqrt{3} y+x=0$. Then which of the following is an interior point of the triangle?

- Watch Video Solution

340. One of the diameters of the circle circumscribing the rectangle $A B C D$ is $4 y=x+7$. If A and B are $(-3,4),(5,4)$ then find the area of the rectangle.

- Watch Video Solution

341. The coordinates of two consecutive vertices A and B of a regular hexagon ABCDEF are $(1,0)$ and $(2,0)$, respectively.

The equation of the diagonal CE is

- Watch Video Solution

342. P is a point on the line $y+2 x=1$, and $\operatorname{Qand} R$ two points on the line $3 y+6 x=6$ such that triangle $P Q R$ is an equilateral triangle. The length of the side of the triangle is

- Watch Video Solution

343. The distance of origin from line $(1+\sqrt{3}) y+1(1-\sqrt{3}) x=10$ measured along the line $y=\sqrt{3} x+k$ is

- Watch Video Solution

344. In $A B C$, the coordinates of the vertex A are $(4,-1)$, and lines $x-y-1=0$ and $2 x-y=3$ are the internal bisectors of angles $B a n d C$.Then, the radius of the encircle of triangle $A B C$ is (a) $\frac{4}{\sqrt{5}}$
$\frac{3}{\sqrt{5}}$ (c) $\frac{6}{\sqrt{5}}$ (d) $\frac{7}{\sqrt{5}}$

- Watch Video Solution

345. If the equation of any two diagonals of a regular pentagon belongs to the family of lines $(1+2 \lambda) y-(2+\lambda) x+1-\lambda=0$ and their lengths are $\sin 36^{\circ}$, then the locus of the center of circle circumscribing the given pentagon (the triangles formed by these diagonals with the sides of pentagon have no side common) is
(a) $x^{2}+y^{2}-2 x-2 y+1+\sin ^{2} 72^{0}=0$
(b) $x^{2}+y^{2}-2 x-2 y+\cos ^{2} 72^{0}=0$
(c) $x^{2}+y^{2}-2 x-2 y+1+\cos ^{2} 72^{0}=0$
(d) $x^{2}+y^{2}-2 x-2 y+\sin ^{2} 72^{0}=0$

- Watch Video Solution

346. If it is possible to draw a line which belongs to all the given family of lines
$y-2 x+1+\lambda_{1}(2 y-x-1)=0,3 y-x-6+\lambda_{2}(y-3 x+6)=0, a x+$
, then
347. The locus of the image of the point $(2,3)$ in the line $(x-2 y+3)+\lambda(2 x-3 y+4)=0 \quad$ is $(\lambda \in R)$
$x^{2}+y^{2}-3 x-4 y-4=0$
(b) $2 x^{2}+3 y^{2}+2 x+4 y-7=0$
$x^{2}+y^{2}-2 x-4 y+4=0$ (d) none of these

- Watch Video Solution

348. $A B C$ is a variable triangle such that A is $(1,2)$, and $B a n d C$ on the line $y=x+\lambda(\lambda$ is a variable). Then the locus of the orthocentre of triangle $A B C$ is $x+y=0$ (b) $x-y=0 x^{2}+y^{2}=4$ (d) $x+y=3$

- Watch Video Solution

349. If $P\left(1+\frac{\alpha}{\sqrt{2}}, 2+\frac{\alpha}{\sqrt{2}}\right)$ be any point on a line, then the range of values of α for which the point P lies between the parallel lines $\mathrm{x}+2 \mathrm{y}=1$ and $2 x+4 y=15$ is
350. If the intercepts made by the line $y=m x$ by lines $y=2$ and $y=6$ is less than 5, then the range of values of m is a. $\left(-\infty,-\frac{4}{3}\right) \cup\left(\frac{4}{3}, \infty\right)$ b. $\left(-\frac{4}{3}, \frac{4}{3}\right)$ c. $\left(-\frac{3}{4}, \frac{4}{3}\right)$ d. none of these

- Watch Video Solution

351. If the extremities of the base of an isosceles triangle are the points
$(2 a, 0)$ and $(0, \mathrm{a})$, and the equation of one of the side is $x=2 a$, then the area of the triangle is

- Watch Video Solution

352. The coordinates of the foot of the perpendicular from the point $(2,3)$ on the line $-y+3 x+4=0$ are given by
353. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line $35 x-22 y+1=0$ passes through the point (a) (a, b) (b) (b, a) (c) $(-a,-b)$ (d) none of these

- Watch Video Solution

354. If lines $x+2 y-1=0, a x+y+3=0$, and $b x-y+2=0$ are concurrent, and S is the curve denoting the locus of (a, b), then the least distance of S from the origin is

- Watch Video Solution

355. L_{1} and L_{2} are two lines. If the reflection of $L_{1} o n L_{2}$ and the reflection of L_{2} on L_{1} coincide, then the angle between the lines is (a) 30^{0} (b) 60^{0} 45^{0} (d) 90^{0}
356. $A \equiv(-4,0), B \equiv(4,0)$ Mand N are the variable points of the y axis such that M lies below $\operatorname{NandMN}=4$. Lines $A M a n d B N$ intersect at P. The locus of P is

- Watch Video Solution

357. If $\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin \gamma(2 \sin \beta+\sin \gamma)$, where $0<\alpha, \beta, \gamma<\pi, \quad$ then the straight line whose equation is $x \sin \alpha+y \sin \beta-\sin \gamma=0$ passes through point (a) $(1,1)$ (b) $(-1,1)$ (c) $(1,-1)$ (d) none of these

- Watch Video Solution

358. Let P be $(5,3)$ and a point R on $y=x$ and Q on the x-axis such that $\mathrm{PQ}+\mathrm{OR}+\mathrm{RP}$ is minimum. Then the coordinates of Q are

- Watch Video Solution

359. Given $\mathrm{A}(0,0)$ and $\mathrm{B}(\mathrm{x}, \mathrm{y})$ wih $x \in(0,1)$ and $y>0$. Let the slope of line $A B$ be m_{1}, where $0<m_{2}<m_{1}$. If the are of triangle $A B C$ can be expresses as $\left(m_{1}-m_{2}\right) f(x)$. then the largest possible value of $f(x)$ is

- Watch Video Solution

360. If the straight lines $x+y-2-0,2 x-y+1=0$ and $a x+b y-c=0$ are concurrent, then the family of lines $2 a x+3 b y+c=0(a, b, c$ are nonzero) is concurrent at (a) $(2,3)$
$\left(\frac{1}{2}, \frac{1}{3}\right)$
(c) $\left(-\frac{1}{6},-\frac{5}{9}\right)$
(d) $\left(\frac{2}{3},-\frac{7}{5}\right)$

(Watch Video Solution

361. The equaiton of the lines through the point $(2,3)$ and making an intercept of length 2 units between the lines $y+2 x=3$ and $y+2 x=5$ are
(A) $\quad x+3=0,3 x+4 y=12 \quad$ (B) $\quad y-2=(0,4 x-3 y=6$
$x-2=0,3 x+4 y=18$ (D) none of these

- Watch Video Solution

362. A beam of light is sent along the line $x-y=1$, which after refracting from the x-axis enters the opposite side by turning through 30^{0} towards the normal at the point of incidence on the x-axis. Then the equation of the refracted ray is (a) $(2-\sqrt{3}) x-y=2+\sqrt{3}$
$(2+\sqrt{3}) x-y=2+\sqrt{3}$
(c) $(2-\sqrt{3}) x+y=(2+\sqrt{3})$
$y=(2-\sqrt{3})(x-1)$

- Watch Video Solution

363. Find α if $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle having sides along the lines $2 x+3 y=1, x+2 y-3=0,6 y=5 x-1$.

- Watch Video Solution

364. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0$ and $x-y-$ 5=0 at the points B, C and D respectively. If $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.

- Watch Video Solution

365. If $u=a_{1} x+b_{1} y+c_{1}=0, v=a_{2} x+b_{2} y+c_{2}=0, \quad$ and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the curve $u+k v=0$ is (a)the same straight line u (b)different straight line (c)not a straight line (d)none of these

- Watch Video Solution

366. The point (2,1), translated parallel to the line $x-y=3$ by the distance of 4 units. If this new position A^{\prime} is in the third quadrant, then the coordinates of A^{\prime} are-

- Watch Video Solution

367. Let $A B C$ be a triangle. Let A be the point (1,2), $y=x$ be the perpendicular bisector of $A B$, and $x-2 y+1=0$ be the angle bisector of $\angle C$. If the equation of $B C$ is given by $a x+b y-5=0$, then the value of $a+b$ is
(a)1(b) 2(c) 3 (d) 4

- Watch Video Solution

368. The area enclosed by $2|x|+3|y| \leq 6$ is (a) 3 sq. units (b) 4 sq. units 12 sq. units (d) 24 sq. units

- Watch Video Solution

369. The lines $y=m_{1} x, y=m_{2} x a n d y=m_{3} x$ make equal intercepts on the line $\quad x+y=1 . \quad$ Then

$$
\begin{equation*}
2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(2+m_{1}+m_{3}\right) \tag{b}
\end{equation*}
$$

$\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)$
$\left(1+m_{1}\right)\left(1+m_{2}\right)=\left(1+m_{3}\right)\left(2+m_{1}+m_{3}\right)$
$2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)$

- Watch Video Solution

370. Find the condition in a, b such that the portion of the line $a x+b y=1$, intercepted between the lines $a x+y=0$ and $x+b y=0$ sustains a right angle at origin.

- Watch Video Solution

371. One diagonal of a square is along the line $8 x-15 y=0$ and one of its vertex is $(1,2)$. Then the equations of the sides of the square passing through this vertex are

- Watch Video Solution

372. The straight line $a x+b y+c=0$, where $a b c \neq 0$, will pass through the first quadrant if (a) $a c>0, b c>0$ (b) $a c>0$ or $b c<0$ (c) $b c>0$ or $a c>0$ (d) $a c<0$ or $b c<0$

- Watch Video Solution

373. A square of side a lies above the x-axis and has one vertex at the origin. This side passing through the origin makes an angle $\alpha(0<\alpha<\pi / 4)$ with the positive direction of the x-axis. The equation of its diagonal not passing through the origin is

- Watch Video Solution

374. If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is
375. $A B C$ is a variable triangle such that A is $(1,2)$, and $B a n d C$ on the line $y=x+\lambda(\lambda$ is a variable). Then the locus of the orthocentre of triangle $A B C$ is $x+y=0$ (b) $x-y=0 x^{2}+y^{2}=4$ (d) $x+y=3$

- Watch Video Solution

376. Consider a $\triangle A B C$ in which sides AB and AC are perpendicular to $\mathrm{x}-\mathrm{y}$ $4=0$ and $2 x-y-5=0$, repectively. Vertex A is $(-2,3)$ and the circumcenter of $\triangle A B C$ is $(3 / 2,5 / 2)$.

The equation of the line in List 1 is of the form $a x+b y+c=0$, where $a, b, c \in I$. Match it with the corresponding value of c in list II and then choose the correct code.

List I	List II
a. Equation of the perpendicular bisector of side $A B$	p. -1
b. Equation of the perpendicular bisector of side $A C$	q. 1
c. Equation of side $A C$	r. -16
d. Equation of the median through A	s. -4

Codes:

a	b	c	d
r	s	p	q
s	r	q	p
q	p	s	r
r	p	s	q

- Watch Video Solution

377. Column I|Column II Two vertices of a triangle are $(5,-1)$ and $(-2,3)$. If the orthocentre is the origin, then the coordinates of the third vertex are|p. $(-4,-7)$ A point on the line $x+y=4$ which lies at a unit distance from the line $4 x+3 y=10$ is $\mid \mathrm{q}$. ($-7,11$) The orthocentre of the triangle formed by the lines $x+y-1=0, x-y+3=0,2 x+y=7$ is|r. $(2,-2)$ If $2 a, b, c$ are in $A P$, then lines $a x+b y=c$ are concurrent at|s. $(-1,2)$

- Watch Video Solution

378. Column I|Column II
$x+3 y-10=0, x+3 y-20=0,3 x-y+5=0$, and $3 x-y-5=0$ form a figure which is $\mid \mathrm{p}$. a quadrilateral which is neither a parallelogram nor a trapezium
b.The points $A(1,2), B(2,3), C(-1,-5)$, and $D(-2,4)$ in order are the vertices of|q. a parallelogram
c.The lines $7 x+3 y-33=0,3 x-7 y+19=0,3 x-7 y-10, \quad$ and $7 x+3 y-4=0$ form a figure which is|r. a rectangle of area 10 sq. units d.Four
$4 y-3 x-7=0,3 y-4 x+7=0,4 y-3 x-21=0,3 y-4 x+14=0$
form a figure which is|s. a square

- Watch Video Solution

$(a+b) x+(a-b) y-2 a b=0,(a-b) x+(a+b) y-2 a b=0$ and $x+y$ form an isosceles triangle whose vertical angle is

- Watch Video Solution

380. Each equation contains statements given in two columns which have to be matched. Statements (a, b, c, d) in column I have to be matched with Statements (p, q, r, s) in column II. If the correct match are $a \vec{p}, a \vec{s}, b \vec{q}, b \vec{r}, c \vec{p}, c \vec{q}$, and $d \vec{s}$, then the correctly bubbled $4 x 4$ matrix should be as follows: Figure

Consider the lines represented by equation $\left(x^{2}+x y-x\right)(x-y)=0$, forming a triangle. Then match the following:

Column I|Column II
a. Orthocenter of triangle |p. $\left(\frac{1}{6}, \frac{1}{2}\right)$
b.Circumcenter|q. $\left(1(2+2 \sqrt{2}), \frac{1}{2}\right)$
c.Centroid|r. $\left(0, \frac{1}{2}\right)$
d.Incenter|s. $\left(\frac{1}{2}, \frac{1}{2}\right)$

- Watch Video Solution

381. The st. lines $3 x+4 y=5$ and $4 x-3 y=15$ interrect at a point $A(3,-1)$. On these linepoints B and C are chosen so that $A B=A C$. Find the possible eqns of the line $B C$ pass through the point $(1,2)$
382. The area of the triangular region in first quadrant bounded on the left by the line $7 x+4 y=168$, and bounded below by the line $5 x+3 y=121$ is A. Then the value of $\frac{3 A}{10}$ is \qquad

- Watch Video Solution

383. Find the area enclosed by the graph of $x^{2} y^{2}-9 x^{2}-25 y^{2}+225=0$.

- Watch Video Solution

384. Line $L_{1} \equiv a x+b y+c=0$ and $L_{2} \equiv l x+m y+n=0$ intersect at point P and make an angle θ with each other Find the equation of a line different from L_{2} which passes through P and makes the same angle θ with L_{1}.
385. Let $A B C$ be a triangle with $A B=A C$. If D is the midpoint of $B C, E$ is the foot of the perpendicular drawn from D to $A C$, and F is the midpoint of $D E$, then prove that $A F$ is perpendicular to $B E$.

- Watch Video Solution

386. For $a>b>c>0$, the distance between $(1,1)$ and the point of intersection of the lines $a x+b y+c=0$ and $b x+a y+c=0$ is less than $2 \sqrt{2}$, then

- Watch Video Solution

387. A straight lines L through the point $(3,2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$. If L also intersects the x -axis, then the equation of L is
388. The locus of the orthocenter of the triangle formed by the line $(1+\mathrm{p}) \mathrm{x}-\mathrm{py}+\mathrm{p}(1+\mathrm{p})=0,(1+\mathrm{q}) \mathrm{x}-\mathrm{qy}+\mathrm{q}(1+\mathrm{q})=0$ and $\mathrm{y}=0$, whete $p \neq q$, is

- Watch Video Solution

389. The vertices of a triangle are $A(-1,-7), B(5,1) \operatorname{and} C(1,4)$. If the internal angle bisector of $\angle B$ meets the side $A C$ in D, then find the length $A D$.

- Watch Video Solution

390. Let the algebraic sum of the perpendicular distance from the points $(2,0),(0,2)$, and $(1,1)$ to a variable straight line be zero. Then the line passes through a fixed point whose coordinates are \qquad

- Watch Video Solution

391. A straight line through the origin ' O ' meets the parallel lines $4 x+2 y=9$ and $2 x+y=-6$ at points P and Q respectively. Then the point ' O ' divides the segment $P Q$ in the ratio : (A) 1:2 (B) $3: 2$ (C) 2:1 D) 4:3

- Watch Video Solution

392. A straight line L with negative slope passes through the point $(8,2)$ and cuts the positive coordinate axes at points P and Q. As L varies, the absolute minimum value of $O P+O Q$ is (O is origin)

- Watch Video Solution

393. A straight lines L through the origin meets the lines $x+y=1$ and $x+y=3$ at P and Q respectively. Through P and Q two straight lines L_{1} and L_{2} are drawn, parallel to $2 \mathrm{x}-\mathrm{y}=5$ and $3 \mathrm{x}+\mathrm{y}=5$ respectively. Line L_{1} and L_{2} intersect at R. Show that the locus of R as L varies is a straight line.
394. A rectangle $P Q R S$ has its side $P Q$ parallel to the line $y=m x$ and vertices P, Q and S on the lines $y=a, x=b$ and $x=-b$ respectively, Find the locus of the vertex R .

- Watch Video Solution

395. The area of the triangle formed by the intersection of a line parallel to x-axis and passing through $P(h, k)$ with the lines $y=x$ and $x+y=2$ is $4 h^{2}$. Find the locus of the point P .

- Watch Video Solution

396. The lines $a x+b y+c=0$, where $3 a+2 b+4 c=0$, are concurrent at the point (a) $\left(\frac{1}{2}, \frac{3}{4}\right)$ (b) $(1,3)$ (c) (3,1)(d) $\left(\frac{3}{4}, \frac{1}{2}\right)$

- Watch Video Solution

397. The area enclosed within the curve $|x|+|y|=1$ is

- Watch Video Solution

398. The orthocentre of the triangle formed by the lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0$ lies in

- Watch Video Solution

399. If a, b and c are in $A P$, then the straight line $a x+b y+c=0$ will always pass through a fixed point whose coordinates are (a) (1,2) (b) (1,-2)
(c) $(2,3)(\mathrm{d})(0,0)$

- Watch Video Solution

400. Statement-I: If the diagonals of the quadrilateral formed by the lines $p x+q y+r=0, p^{\prime} x+q^{\prime} y+r^{\prime}=0$, are at right angles, then
$p^{2}+q^{2}=p^{\prime 2}+q^{\prime 2}$.
Statement-2: Diagonals of a rhombus are bisected and perpendicular to each other.

Only conclusion I follows Only
conclusion II follows
Either I or II follows
Neither I nor II follows

- Watch Video Solution

401. Statement :Two different lines can be drawn passing through two given points.

- Watch Video Solution

402. Statement 1: The joint equation of lines $y=x a n d y=-x$ is $y^{2}=-x^{2}$, i.e., $x^{2}+y^{2}=0$

Statement 2: The joint equation of lines $a x+b y=0$ and $c x+d y=0$ is $(a x+b y)(c x+d y)=0$, wher a, b, c, d are constant.

- Watch Video Solution

403. Statement 1: If the sum of algebraic distances from point $A(1,1), B(2,3), C(0,2)$ is zero on the line $a x+b y+c=0$, then $a+3 b+c=0$ Statement 2: The centroid of the triangle is $(1,2)$

- Watch Video Solution

404. Each question has four choice: a, b, c and d, out of which only one is correct. Each question contains Statement 1 and Statement 2. Find the correct answer. Both the Statements are true but Statement 2 is the correct explanation of Statement 1. Both the Statement are True but Statement 2 is not the correct explanation of Statement 1 . Statement 1 is True and Statement 2 is False. Statement 1 is False and Statement 2 is True Statement 1: The lines $(a+b) x+(a-2 b) y=a$ are con-current at the point $\left(\frac{2}{3}, \frac{1}{3}\right)$. Statement 2 : The lines $x+y-1=0$ and $x-2 y=0$ intersect at the point $\left(\frac{2}{3}, \frac{1}{3}\right)$.
405. Statement 1:If the point $\left(2 a-5, a^{2}\right)$ is on the same side of the line $x+y-3=0$ as that of the origin, then $a \in(2,4)$

Statement 2: The points $\left(x_{1}, y_{1}\right) \operatorname{and}\left(x_{2}, y_{2}\right)$ lie on the same or opposite sides of the line $a x+b y+c=0$, as $a x_{1}+b y_{1}+c$ and $a x_{2}+b y_{2}+c$ have the same or opposite signs.
(a) Both the statements are true, and Statement-1 is the correct explanation of Statement 2.
(b)Both the statements are true, and Statement-1 is not the correct explanation of Statement 2.
(c) Statement 1 is true and Statement 2 is false.
(d) Statement 1 is false and Statement 2 is true.

- Watch Video Solution

406. Statement 1: Each point on the line $y-x+12=0$ is equidistant from the lines $4 y+3 x-12=0,3 y+4 x-24=0$

Statement 2: The locus of a point which is equidistant from two given
lines is the angular bisector of the two lines.
(a) Statement 1 and Statement 2 are correct. Statement 2 is the correct explanation for the Statement 1
(b) Statement 1 and Statement 2 are correct. Statement 2 is not the correct explanation for the Statement 1
(c) Statement 1 is true but Statement 2 is false
(d) Statement 2 is true but Statement 1 is false

- Watch Video Solution

407. If lines $p x+q y+r=0, q x+r y+p=0$ and $r x+p y+q=0$ are concurrent, then prove that $p+q+r=0(w h e r e, p, q, r$ are distinct).

- Watch Video Solution

408. the diagonals of the parallelogram formed by the the lines
$a_{1} x+b_{1} y+c_{1}=0, a_{1} x+b_{1} y+c_{1}{ }^{\prime}=0, a_{2} x+b_{2} y+c_{1}=0, a_{2} x+b_{2} y+$
will be right angles if:

- Watch Video Solution

409. If the lines joining the origin and the point of intersection of curves $a x^{2}+2 h x y+b y^{2}+2 g x+0$ and $a_{1} x^{2}+2 h_{1} x y+b_{1} y^{2}+2 g_{1} x=0$ are mutually perpendicular, then prove that $g\left(a_{1}+b_{1}\right)=g_{1}(a+b)$.

D Watch Video Solution

410. Find the angle between the lines joining the origin to the points of intersection of the straight line $y=3 x+2$ with the curve $x^{2}+2 x y+3 y^{2}+4 x+8 y=11=0$.

- Watch Video Solution

411. Prove that the straight lines joining the origin to the points of intersection of the straight line $h x+k y=2 h k$ and the curve $(x-k)^{2}+(y-h)^{2}=c^{2}$ are at right angle if $h^{2}+k^{2}=c^{2}$.
412. If pairs of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair ,then

- Watch Video Solution

413. Find the value of a for which the lines represented by $a x^{2}+5 x y+2 y^{2}=0$ are mutually perpendicular.

- Watch Video Solution

414. Find the acute angle between the pair of lines represented by $x(\cos \alpha-y s \in \alpha)^{2}=\left(x^{2}+y^{2}\right) \sin ^{2} \alpha$

- Watch Video Solution

415. If the angle between the lines represented by $2 x^{2}+5 x y+3 y^{2}+7 x+13 y-3=0$ is $\tan ^{-1}(m)$, then m is equal to

- Watch Video Solution

416. If the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is rotated about the origin through 90°, then find its equation in the new position.

- Watch Video Solution

417. The orthocenter of the triangle formed by the lines $x y=0$ and $x+y=1$ is

- Watch Video Solution

418. The lines joining the origin to the point of intersection of $3 x^{2}+m x y-4 x+1=0$ and $2 x+y-1=0$ are at right angles. Then
which of the following is a possible value of m ?

- Watch Video Solution

419. If the slope of one line is double the slope of another line and the combined equation of the pair of lines is $\left(x^{2} / a\right)+(2 x y / h)+\left(y^{2} / b\right)=0$, then find the ratio ab: h^{2}.

- Watch Video Solution

420. Find the combined equation of the pair of lines through the point $(1,0)$ and parallel to the lines respresented by $2 x^{2}-x y-y^{2}=0$.

- Watch Video Solution

421. The value k for which $4 x^{2}+8 x y+k y^{2}=9$ is the equation of a pair of straight lines is \qquad .
422. The two lines represented by $3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are perpendicular to each other for

- Watch Video Solution

423. If two lines represented by $x^{4}+x^{3} y+c x^{2} y^{2}-x y^{3}+y^{4}=0$ bisector of the angle between the other two, then the value of c is

- Watch Video Solution

424. The straight lines represented by $x^{2}+m x y-2 y^{2}+3 y-1=0$ meet at (a) $\left(-\frac{1}{3}, \frac{2}{3}\right)$ (b) $\left(-\frac{1}{3},-\frac{2}{3}\right)$ (c) $\left(\frac{1}{3}, \frac{2}{3}\right)$ (d) none of these

(Watch Video Solution

425. The straight lines represented by the equation $135 x^{2}-136 x y+33 y^{2}=0$ are equally inclined to the line (a) $x-2 y=7$ (b) $\mathrm{x}+2 \mathrm{y}=7$ (c) $x-2 y=4$ (d) $3 x+2 y=4$

- Watch Video Solution

426. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is

- Watch Video Solution

427. Statement 1: If $-2 h=a+b$, then one line of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes in the positive quadrant. Statement 2 : If $a x+y(2 h+a)=0$ is a factor of $a x^{2}+2 h x y+b y^{2}=0$, then $b+2 h+a=0$.

- Watch Video Solution

428. Show that all chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point .

- Watch Video Solution

429. The distance between the lines $(x+7 y)^{2}+4 \sqrt{7}(x+7 y)-42=0$ is \qquad .

- Watch Video Solution

430. $x+y=7$ and $a x^{2}+2 h x y+a y^{2}=0,(a \neq 0)$, are three real distinct lines forming a triangle is

- Watch Video Solution

431. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is the square of the other, then $\frac{a+b}{h}+\frac{8 h^{2}}{a b}=$

(D) Watch Video Solution

432. $\int\left\{\frac{2-3 \sin x}{\cos ^{2} x}\right\} d x$

- Watch Video Solution

433. The sides of a triangle have the combined equation $x^{2}-3 y^{2}-2 x y+8 y-4=0$. The third side, which is variable, always passes through the point $(-5,-1)$. Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.

- Watch Video Solution

434. Let $P Q R$ be a right - angled isosceles triangle , right angled at $P(2,1)$. If the equation of the line QR is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is
435. The combined equation of three sides of a triangle is $\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0$ if $(-2, \mathrm{a})$ is an interior point and $(\mathrm{b}, 1)$ is an exterior point of the triangle, then

- Watch Video Solution

436. Find the equation of the bisectors of the angles between the lines joining the origin to the point of intersection of the straight line $x-y=2$ with the curve $5 x^{2}+11 x y+8 y^{2}+8 x-4 y+12=0$

- Watch Video Solution

437. If θ is the angle between the lines givne by the equation $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$, then find the equation of the line passing through the point of intersection of these lines and making an angles θ with the positive x-axis.
438. The dis tance of a point $\left(x_{1}, y_{1}\right)$ from each of the two straight lines which pass through the origin of coordinates is p. Find the combined equation of these straigh lines .

- Watch Video Solution

439. prove that the product of the perpendiculars drawn from the point $\left(x_{1}, y_{1}\right)$ to the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is

$$
\left|\frac{a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}\right|
$$

- Watch Video Solution

440. Find the area enclosed by the graph of
$x^{2} y^{2}-9 x^{2}-25 y^{2}+225=0$.
441. Show that the pairs of straight lines $2 x^{2}+6 x y+y^{2}=0$ and $4 x^{2}+18 x y+y^{2}=0$ are equally inclined

- Watch Video Solution

442. The product of the perpendiculars from origin to the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is

- Watch Video Solution

443. Find the angle between the straight lines joining the origin to the points of intersection of $3 x^{2}+5 x y-3 y^{2}+2 x+3 y=0$ and $3 x-2 y=1$.

- Watch Video Solution

444. Through a point $A(2,0)$ on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ at B and C. If $A B=B C$, then (a) $h^{2}=4 a b$ (b) $8 h^{2}=9 a b$ (c) $9 h^{2}=8 a b$ (d) $4 h^{2}=a b$

- Watch Video Solution

445. Find the equation of two straigh lines whose combined equation is $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$.

- Watch Video Solution

446. Does equation $x^{2}+2 y^{2}-2 \sqrt{3} x-4 y+5=0$ satisfies the condition $a b c+2 g h-a f^{2}-b g^{2}-c h^{2}=0$? Does it represent a pair of straight lines?

- Watch Video Solution

447. Find the value of λ if $2 x^{2}+7 x y+3 y^{2}+8 x+14 y+\lambda=0$ represent a pair of straight lines.

- Watch Video Solution

448. Find the distance between the pair of parallel lines
$x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$.

- Watch Video Solution

449. If the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersect on the y -axis , then prove that $2 f g h=b g^{2}+c h^{2}$.

- Watch Video Solution

450. Find the equation of two straigh lines whose combined equation is $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$.
451. If the component lines whose combined equation is $p x^{2}-q x y-y^{2}=0$ make the angles α and β with x-axis, then find the value of $\tan (\alpha+\beta)$.

- Watch Video Solution

452. Find the joint equation of pair of lines which passes through origin and are perpendicular to the lines represented by the equation $y^{2}+3 x y-6 x+5 y-14=0$.

- Watch Video Solution

453. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then find the value of c .

- Watch Video Solution

454. The distance between the two lines represented by the sides of an equilateral triangle a right-angled triangle an isosceles triangle

- Watch Video Solution

455. If the gradient of one of the lines $x^{2}+h x y+2 y^{2}=0$ twice that of the other , then sum of possible values of h \qquad .

- Watch Video Solution

456. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is

- Watch Video Solution

457. Two pairs of straight lines have the equations $y^{2}+x y-12 x^{2}=0$ and $a x^{2}+2 h x y+b y^{2}=0$. One line will be common among them if

(D) Watch Video Solution

458. If the equation of the pair of straight lines passing through the point $(1,1)$, one making an angle θ with the positive direction of the x axis and the other making the same angle with the positive direction of the y-axis, is $x^{2}-(a+2) x y+y^{2}+a(x+y-1)=0, a \neq 2$, then the value of $\sin 2 \theta$ is

- Watch Video Solution

459. If one of the lines given by the equation $2 x^{2}+p x y+3 y^{2}=0$ coincide with one of those given by $2 x^{2}+q x y-3 y^{2}=0$ and the other lines represented by them are perpendicular, then value of $p+q$ is

- Watch Video Solution

460. If $x^{2}+2 h x y+y^{2}=0$ represents the equation of the straight lines through the origin which make an angle α with the straight line
$y+x=0$ then, (a) $\sec 2 \alpha=h$ (b) $\cos \alpha=\sqrt{\frac{(1+h)}{(2 h)}}$ (c) $2 \sin \alpha$ $=\sqrt{\frac{(1+h)}{h}}$ (d) $\cot \alpha=\sqrt{\frac{(1+h)}{(h-1)}}$

- Watch Video Solution

461. The equation to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}+5=0$. The equations to its diagonals are
$x+4 y=13, y=4 x-7$
(b) $\quad 4 x+y=13,4 y=x-7$
$4 x+y=13, y=4 x-7$ (d) $y-4 x=13, y+4 x-7$

- Watch Video Solution

462. The equation $a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0 \quad$ and $a x^{2}+2 h x y+b y^{2}=0$ represent

- Watch Video Solution

463. The equation $x^{3}+x^{2} y-x y^{2}=y^{3}$ represents (a)three real straight lines (b)lines in which two of them are perpendicular to each other (c)lines in which two of them are coincident (d)none of these

- Watch Video Solution

464. The image of the pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$ by the line mirror $y=0$ is a. $a x^{2}-2 h x y-b y^{2}=0 \quad$ b. $b x^{2}-2 h x y+a y^{2}=0$
c. $\quad x^{2}+2 h x y+a y^{2}=0$
d.
$a x^{2}-2 h x y+b y^{2}=0$

- Watch Video Solution

465. The combined equation of the lines $l_{1} a n d l_{2}$ is $2 x^{2}+6 x y+y^{2}=0$ and that of the lines m_{1} andm 2 is $4 x^{2}+18 x y+y^{2}=0$. If the angle between l_{1} and m_{2} is α then the angle between $l_{2} a n d m_{1}$ will be $\frac{\pi}{2}-\alpha$ (b) $2 \alpha \frac{\pi}{4}+\alpha$ (d) α
466. If the equatoin $a x^{2}-6 x y+y^{2}+2 b x+2 c y+d=0$ represents a pair of lines whose slopes are m and m^{2}, then value (s) of a is /are

- Watch Video Solution

467. The equations of a line which is parallel to the line common to the pair of lines given by $6 x^{2}-x y-12 y^{2}=0$ and $15 x^{2}+14 x y-8 y^{2}=0$ and the sum of whose intercepts on the axes is 7 , is :

- Watch Video Solution

468. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then find the value of c .

- Watch Video Solution

469. Area of the triangle formed by the line $x+y=3$ and angle bisectors of the pair of straight lines $x^{2}-y^{2}+2 y=1$ is
a.2squnits
b. 4 squinits
c. 6 squinits
d. 8sqünits

- Watch Video Solution

470. The equation $x^{2} y^{2}-9 y^{2}+6 x^{2} y+54 y=0$ represents a pair of straight lines and a circle a pair of straight lines and a parabola a set of four straight lines forming a square none of these

- Watch Video Solution

471. The straight
lines
represented

$$
(y-m x)^{2}=a^{2}\left(1+m^{2}\right) \text { and }(y-n x)^{2}=a^{2}\left(1+n^{2}\right) \text { form a }
$$

472. If the pairs of lines $x^{2}+2 x y+a y^{2}=0$ and $a x^{2}+2 x y+y^{2}=0$ have exactly one line in common then the joint equation of the other two lines is given by

- Watch Video Solution

473. The condition that one of the straight lines given by the equation $a x^{2}+2 h x y+b y^{2}=0$ may coincide with one of those given by the equation $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$ is

$$
\left(a b^{\prime}-a^{\prime} b\right)^{2}=4\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)
$$

$$
\left(a b^{\prime}-a^{\prime} b\right)^{2}=\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)
$$

$$
\left(h a^{\prime}-h^{\prime} a\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(b h^{\prime}-b^{\prime} h\right)
$$

$\left(b h^{\prime}-b^{\prime} h\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(h a^{\prime}-h^{\prime} a\right)$

- Watch Video Solution

474. If the lines represented by the equation $3 y^{2}-x^{2}+2 \sqrt{3} x-3=0$ are rotated about the point $(\sqrt{3}, 0)$ through an angle of 15^{0}, one in clockwise direction and the other in anticlockwise direction, so that they become perpendicular, then the equation of the pair of lines in the new position is

- Watch Video Solution

475. A point moves so that the distance between the foot of perpendiculars from it on the lines $a x^{2}+2 h x y+b y^{2}=0$ is a constant 2d . Show that the equation to locus is $\left(x^{2}+y^{2}\right)\left(h^{2}-a b\right)=d^{2}\left\{(a-b)^{2}+4 h^{2}\right\}$.

- Watch Video Solution

476. The angle between the pair of lines whose equation is $4 x^{2}+10 x y+m y^{2}+5 x+10 y=0$ is
477. Find the point of intersection of the pair of straight lines represented by the equation $6 x^{2}+5 x y-21 y^{2}+13 x+38 y-5=0$.

- Watch Video Solution

478. Find the angle between the lines represented by $x^{2}+2 x y \sec \theta+y^{2}=0$.

- Watch Video Solution

479. If the pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ is rotated about the origin by $\pi / 6$ in the anticlockwise sense, then find the equation of the pair of lines in the new position.

- Watch Video Solution

480. If the equation $2 x^{2}+k x y+2 y^{2}=0$ represents a pair of real and distinct lines, then find the values of k.

- Watch Video Solution

481. If the equation $x^{2}+(\lambda+\mu) x y+\lambda u y^{2}+x+\mu y=0$ represents two parallel straight lines, then prove that $\lambda=\mu$.

- Watch Video Solution

482. If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the positive direction of the axes. Then find the relation for a, b and h.

- Watch Video Solution

483. Prove that the equation $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ respresents a pair of straight lines. Find the coordinates of their point of intersection and also the angle between them.

- Watch Video Solution

484. A line L passing through the point $(2,1)$ intersects the curve $4 x^{2}+y^{2}-x+4 y-2=0$ at the point $A a n d B$. If the lines joining the origin and the points A, B are such that the coordinate axes are the bisectors between them, then find the equation of line L.

- Watch Video Solution

485. Show that straight lines
$\left(A^{2}-3 B^{2}\right) x^{2}+8 A B x y+\left(B^{2}-3 A^{2}\right) y^{2}=0$ form with the line $A x+B y+C=0$ an equilateral triangle of area $\frac{C^{2}}{\sqrt{3}\left(A^{2}+B^{2}\right)}$.
486. If one of the lines denoted by the line pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes, then prove that $(a+b)^{2}=4 h^{2}$

- Watch Video Solution

