

MATHS

BOOKS - CENGAGE

DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

Exercise

1. If
$$\begin{vmatrix} (a-x)^2 & (a-y)^2 & (a-z)^2 \\ (b-x)^2 & (b-y)^2 & (b-z)^2 \\ (c-x)^2 & (c-y)^2 & (c-a)^2 \end{vmatrix} = 0 \text{ and vectors } \vec{A}, \vec{B} \text{ and } \vec{C} \text{ , where }$$

 $\vec{A} = a^2 \hat{i} = a \hat{j} + \hat{k}$ etc. are non-coplanar, then prove that vectors \vec{X} , \vec{Y} and \vec{Z} where $\vec{X} = x^2 \hat{i} + x \hat{j} + \hat{k}$. etc.may be coplanar.

2. OABC is a tetrahedron where O is the origin and A,B,C have position vectors \vec{a} , \vec{b} , \vec{c} respectively prove that circumcentre of tetrahedron OABC is (a^2(vecbxxvecc)+b^2(veccxxveca)+c^2(vecaxxvecb))/(2[veca vecb vecc])`

3. Let *k* be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angel between any edge and a face not containing the edge is $\cos^{-1}(1/\sqrt{3})$.

View Text Solution

4. In *ABC*, a point *P* is taken on *AB* such that AP/BP = 1/3 and point *Q* is taken on *BC* such that CQ/BQ = 3/1. If *R* is the point of intersection of the lines *AQandCP*, ising vedctor method, find the are of *ABC* if the area of *BRC* is 1 unit

5. Let O be an interior point of $\triangle ABC$ such that OA + 2OB + 3OC = 0. Then the ratio of a $\triangle ABC$ to area of $\triangle AOC$ is **View Text Solution** 6. The lengths of two opposite edges of a tetrahedron of *aandb*; the shortest distance between these edges d, and the angel between them abdisnθ if θ Prove using vector4s that the volume of the tetrahedron is $\frac{1}{2}$ **View Text Solution** 7. Find the volume of a parallelopiped having three coterminus vectors of

equal magnitude |a| and equal inclination θ with each other.

8. Let \vec{p} and \vec{q} any two othogonal vectors of equal magnitude 4 each. Let \vec{a}, \vec{b} and \vec{c} be any three vectors of lengths $7\sqrt{15}$ and $2\sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector $(\vec{a}, \vec{p})\vec{p} + (\vec{a}, \vec{q})\vec{q} + (\vec{a}, (\vec{p} \times \vec{q}))(\vec{p} \times \vec{q}) + (\vec{b}, \vec{p})\vec{p} + (\vec{b}, \vec{p})\vec{q} + (\vec{b}, (\vec{b}, \vec{q}))(\vec{p} \times \vec{q}) + (\vec{a}, \vec{p})\vec{p} + (\vec{a}, \vec{q})\vec{q} + (\vec{a}, (\vec{p} \times \vec{q}))(\vec{p} \times \vec{q}) + (\vec{b}, \vec{p})\vec{p} + (\vec{b}, \vec{p})\vec{p} + (\vec{c}, (\vec{p} \times \vec{q}))(\vec{p} \times \vec{q}))$

from the origin.

View Text Solution

9. Given that \vec{A} , \vec{B} , \vec{C} form triangle such that $\vec{A} = \vec{B} + \vec{C}$. Find a,b,c,d such

that area of the triangle is $5\sqrt{6}$ where $\vec{A} = a\vec{i} + b\vec{i} + c\vec{k}$. $\vec{B} = d\vec{i} + 3\vec{j} + 3\vec{k}$ and $\vec{C} = 3\vec{i} + \vec{j} - 2\vec{k}$.

10. A line I is passing through the point \vec{b} and is parallel to vector \vec{c} . Determine the distance of point A(\vec{a}) from the line I in from

$$\left| \vec{b} - \vec{a} + \frac{\left(\vec{a} - \vec{b} \right) \vec{c}}{\left| \vec{c} \right|^2} \vec{c} \right|$$
 or $\frac{\left| \left(\vec{b} - \vec{a} \right) \times \vec{c} \right|}{\left| \vec{c} \right|}$

View Text Solution

11. If
$$\vec{e}_1, \vec{e}_2, \vec{e}_3 and \vec{E}_1, \vec{E}_2, \vec{E}_3$$
 are two sets of vectors such that
.
 $\vec{e}_i \vec{E}_j = 1$, if $i = jand \vec{e}_i \vec{E}_j = 0 and$ if $i \neq j$, then prove that
 $\left[\vec{e}_1 \vec{e}_2 \vec{e}_3\right] \left[\vec{E}_1 \vec{E}_2 \vec{E}_3\right] = 1$.

View Text Solution

12. In a quadrilateral ABCD, it is given that $AB \mid CD$ and the diagonals AC and BD are perpendicular to each other. Show that AD. $BC \ge AB$. CD.

13. *OABC* is regular tetrahedron in which D is the circumcentre of *OAB* and E is the midpoint of edge AC Prove that DE is equal to half the edge of tetrahedron.

ř

14. If $A(\vec{a}), B(\vec{b}) and C(\vec{c})$ are three non-collinear points and origin does not lie in the plane of the points A, BandC, then point $P(\vec{p})$ in the plane of the ABC such that vector \vec{OP} is \perp to planeof ABC, show that $\vec{OP} = \frac{\left[\vec{a}\vec{b}\vec{c}\right]\left(\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}\right)}{4^2}$, where is the area of the ABCView Text Solution

15. If \vec{a} , \vec{b} , \vec{c} are three given non-coplanar vectors and any arbitrary vector

$$\Delta_{1} = \begin{vmatrix} \vec{r} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{r} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{r} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c} \end{vmatrix}, \Delta_{2} = \left| (\vec{a} \cdot \vec{a}, \vec{r} \cdot \vec{a}, \vec{c} \cdot \vec{a}), (\vec{a} \cdot \vec{b}, \vec{r} \cdot \vec{b}, \vec{c} \cdot \vec{b}), (\vec{a} \cdot \vec{c}, \vec{r} \cdot \vec{c}, \vec{c}) \right|$$
$$\Delta_{3} = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{r} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{r} \cdot \vec{b} \end{vmatrix}, \Delta_{2} = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{r} \cdot \vec{a} \end{vmatrix}, \Delta_{2} = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{c} \cdot \vec{c} \end{vmatrix}, \text{ then prove that } \vec{r} = \frac{\Delta_{1}}{\Delta} \vec{a} + \frac{\Delta_{2}}{\Delta}$$

16. Two vectors in space are equal only if they have equal component in a. a given direction b. two given directions c. three given directions d. in any arbitrary direction

A. a given direction

B. two given directions

C. three given direction

D. in any arbitrary direaction

Answer: c

17. Let \vec{a} , \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between \vec{a} and \vec{b} is θ and $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{c}$. Then $\tan \theta$ is equal to

A. 0 B. $\frac{2}{3}$ C. $\frac{3}{5}$ D. $\frac{3}{4}$

Answer: d

View Text Solution

18. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors of equal magnitude such that the angle

between each pair is
$$\frac{\pi}{3}$$
. If $\left| \vec{a} + \vec{b} + \right| = \sqrt{6}$, then $\left| \vec{a} \right| =$

A. 2

B. - 1

C. 1

D. $\sqrt{6}/3$

Answer: c

View Text Solution

19. If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is (A) $\vec{a} + \vec{b} + \vec{c}$ (B) $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \vec{l} |\vec{c}| (C) \frac{\vec{a}}{|\vec{a}|^2} + \frac{\vec{b}}{|\vec{b}|^2} + \frac{\vec{c}}{|\vec{c}|^2} (D) |\vec{a}| \vec{a} - |\vec{b}| \vec{b} + |\vec{c}| \vec{c}$ A. $\vec{a} + \vec{b} + \vec{c}$ B. $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|}$ C. $\frac{\vec{a}}{|\vec{a}|^2} + \frac{\vec{b}}{|\vec{b}|^2} + \frac{\vec{c}}{|\vec{c}|^2}$

D.
$$\left| \vec{a} \right| \vec{a} - \left| \vec{b} \right| \vec{b} + \left| \vec{c} \right| \vec{c}$$

Answer: b

20. Let $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} - \hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is (A) (3, -1, 10 (B) (3, 1, -1) (C) (-3, 1, 1) (D) (-3, -1, -10 A. $\hat{i} - \hat{j} + \hat{k}$ B. $3\hat{i} - \hat{j} + \hat{k}$ C. $3\hat{i} + \hat{j} - \hat{k}$ D. $\hat{i} - \hat{j} - \hat{k}$

Answer: c

21. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b} < 0$ and $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ then the angle between angles between the vectors \vec{a} and \vec{b} is

Α. π

B. 7π/4

C. *π*/4

D. 3π/4

Answer: d

Watch Video Solution

22. If \hat{a} , \hat{b} and \hat{c} are three unit vectors such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector and θ_1 , θ_2 and θ_3 are angles between the vectors \hat{a} , \hat{b} , \hat{c} and \hat{c} , \hat{a} , respectively m then among θ_1 , θ_2 and θ_3

A. all are acute angles

B. all are right angles

C. at least one is obtuse angle

D. none of these

Answer: c

View Text Solution

23. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}, \vec{b} = 0 = \vec{a}, \vec{c}$ and the angle between \vec{b} and $\vec{c}is\pi/3$ then the value of $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|$ is

A. 1/2

B. 1

C. 2

D. none of these

Answer: b

24. P (\vec{p}) and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the postion vector of a variable point. If R moves such that $(\vec{r} - \vec{p}) \times (\vec{r} - \vec{q}) = \vec{0}$ then the locus of R is

A. a plane containing the origian O and parallel to two non-collinear

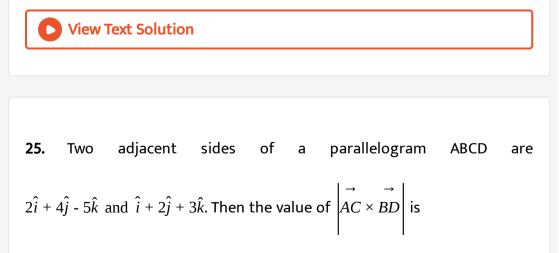
vectors \overrightarrow{OP} and \overrightarrow{OQ}

B. the surface of a sphere described on PQ as its diameter

C. a line passing through points P and Q

D. a set of lines parallel to line PQ

Answer: c



A. $20\sqrt{5}$

B. $22\sqrt{5}$

C. $24\sqrt{5}$

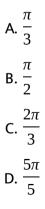
D. $26\sqrt{5}$

Answer: b

Watch Video Solution

26. If \hat{a} , \hat{b} and \hat{c} are three unit vectors inclined to each other at an angle θ .

The maximum value of θ is



Answer: c

27. Let the pair of vector \vec{a} , \vec{b} and \vec{c} , $\vec{c}d$ each determine a plane. Then the planes are parallel if

A.
$$(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$$

B. $(\vec{a} \times \vec{c}) \cdot (\vec{b} \times \vec{d}) = \vec{0}$
C. $(\vec{a} \times \vec{c}) \times (\vec{c} \times \vec{d}) = \vec{0}$
D. $(\vec{a} \times \vec{c}) \cdot (\vec{c} \times \vec{d}) = \vec{0}$

Answer: c

View Text Solution

28. If \vec{r} . $\vec{a} = \vec{r}$. $\vec{b} = \vec{r}$. $\vec{c} = 0$ where \vec{a} , \vec{b} and \vec{c} are non-coplanar, then

A.
$$\vec{r} \perp (\vec{c} \times \vec{a})$$

B. $\vec{r} \perp (\vec{a} \times \vec{b})$

C.
$$\vec{r} \perp (\vec{b} \times \vec{c})$$

D. $\vec{r} = \vec{0}$

Answer: d

29. If
$$\vec{a}$$
 satisfies $\vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$ then \vec{a} is equal to
A. $\lambda \hat{i} + (2\lambda - 1)\hat{j} + \lambda \hat{k}, \lambda \in R$
B. $\lambda \hat{i} + (1 - 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$
C. $\lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in R$

$$\mathsf{D}.\,\lambda\hat{i} + (1+2\lambda)\hat{j} + \lambda\hat{k}, \lambda \in \mathbb{R}$$

Answer: c

Watch Video Solution

30. Vectors $3\vec{a} - 5\vec{b}$ and $2\vec{a} + \vec{b}$ are mutually perpendicular. If $\vec{a} + 4\vec{b}$ and $\vec{b} - \vec{a}$ are also mutually perpendicular, then the cosine of the angle between $\vec{a}nad\vec{b}$ is

A.
$$\frac{19}{5\sqrt{43}}$$

B. $\frac{19}{3\sqrt{43}}$
C. $\frac{19}{\sqrt{45}}$
D. $\frac{19}{6\sqrt{43}}$

Answer: a

View Text Solution

31. The units vectors orthogonal to the vector $-\hat{i} + 2\hat{j} + 2\hat{k}$ and making equal angles with the X and Y axes islare) :

A.
$$\pm \frac{1}{3} \left(2\hat{i} + 2\hat{j} - \hat{k} \right)$$

B. $\frac{19}{5\sqrt{43}}$

$$\mathsf{C.} \pm \frac{1}{3} \left(\hat{i} + \hat{j} - \hat{k} \right)$$

D. none of these

Answer: a

View Text Solution

32. The value of x for which the angle between $\vec{a} = 2x^2\hat{i} + 4x\hat{j} = \hat{k} + \hat{k}$ and $\vec{b} = 7\hat{i} - 2\hat{j} = x\hat{k}$, is obtuse and the angle \vec{a}

between \vec{b} and the z-axis is acute and less than $\pi/6$, are

A. *a* < *x* < 1/2

B. 1/2 < *x* < 15

C. x < 1/2 or x < 0

D. none of these

Answer: b

33. If vectors \vec{a} and \vec{b} are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is

perpendicular to
$$\vec{a}$$
 is (A) $\vec{b} + \frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$ (B) $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}$ (C) $\vec{b} - \frac{\vec{b} \cdot \vec{a}}{(|\vec{a}|)^2}$ (D)

$$\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^{20}}$$
A. $\vec{b} + \frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$
B. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}$
C. $\vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2}$
D. $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$

Answer: a

34. A parallelogram is constructed on $3\vec{a} + \vec{b}and\vec{a} - 4\vec{b}$, where $|\vec{a}| = 6and |\vec{b}| = 8$, and $\vec{a}and\vec{b}$ are anti-parallel. Then the length of the longer diagonal is a .40 b. 64 c. 32 d. 48

A. 40

B. 64

C. 32

D. 48

Answer: c

35. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b} . If $\alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$ then.

A.
$$\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$$

B. $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$

$$\mathsf{C}.\, \mathsf{0} \le \theta \le \frac{\pi}{4}$$
$$\mathsf{D}.\, \mathsf{0} \le \theta \le \frac{3\pi}{4}$$

Answer: a

Watch Video Solution

36. \vec{a} and \vec{c} are unit vectors and $|\vec{b}| = 4$ the angle between \vec{a} and \vec{c} $is\cos^{-1}(1/4)$ and $\vec{b} - 2\vec{c} = \lambda\vec{a}$ the value of λ is

A. 3,-4

B. 1/4,3/4

C.-3,4

D. -1/4,
$$\frac{3}{4}$$

Answer: a

37. Let the position vectors of the points *PandQ* be $4\hat{i} + \hat{j} + \lambda\hat{k}and2\hat{i} - \hat{j} + \lambda\hat{k}$, respectively. Vector $\hat{i} - \hat{j} + 6\hat{k}$ is perpendicular to the plane containing the origin and the points *PandQ*. Then λ equals 1/2 b. 1/2 c. 1 d. none of these

A. - 1/2

B.1/2

C. 1

D. none of these

Answer: a

Watch Video Solution

38. A vector of magnitude $\sqrt{2}$ coplanar with the vectors $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$, and perpendicular to the vector $\vec{c} = \hat{i} + \hat{j} + \hat{k}$ is

A. - $\hat{j} + \hat{k}$

B. \hat{i} and \hat{k}

C. î - k

D. hati- hatj`

Answer: a

View Text Solution

39. Let *P* be a point interior to the acute triangle *ABC* If PA + PB + PC is a null vector, then w.r.t traingel *ABC*, point *P* is its a. centroid b. orthocentre c. incentre d. circumcentre

A. centroid

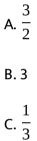
B. orthocentre

C. incentre

D. circumcentre

Answer: a

40. G is the centroid of triangle ABC and A_1 and B_1 are the midpoints of sides AB and AC, respectively. If Δ_1 is the area of quadrilateral GA_1AB_1 and Δ is the area of triangle ABC, then $\frac{\Delta}{\Delta_1}$ is equal to



D. none of these

Answer: b

41. Points
$$\vec{a}, \vec{b}, \vec{c}, and\vec{d}$$
 are coplanar and
 $(s \in \alpha)\vec{a} + (2\sin 2\beta)\vec{b} + (3\sin 3\gamma)\vec{c} - \vec{d} = 0$. Then the least value of
 $\sin^2 \alpha + \sin^2 2\beta + \sin^2 3\gamma is \frac{1}{14}$ b. 14 c. 6 d. $1/\sqrt{6}$
A. $1/14$
B. 14
C. 6
D. $1/\sqrt{6}$

Answer: a

Watch Video Solution

42. If \vec{a} and \vec{b} are any two vectors of magnitudes 1 and 2. respectively, and $(1 - 3\vec{a}, \vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47$ then the angle between \vec{a} and \vec{b} is

Α. *π*/3

B.
$$\pi - \cos^{-1}(1/4)$$

C. $\frac{2\pi}{3}$
D. $\cos^{-1}(1/4)$

Answer: c

View Text Solution

43. If \vec{a} and \vec{b} are any two vectors of magnitudes 2 and 3, respectively, such

that $\left|2\left(\vec{a} \times \vec{b}\right)\right| + \left|3\left(\vec{a} \cdot \vec{b}\right)\right| = k$, then the maximum value of k is $a.\sqrt{13}$ b. $2\sqrt{13}$ c. $6\sqrt{13}$ d. $10\sqrt{13}$

A. $\sqrt{13}$

B. $2\sqrt{13}$

 $C. 6\sqrt{13}$

D. 10√13

Answer: c

44. \vec{a} , \vec{b} and \vec{c} are unit vecrtors such that $|\vec{a} + \vec{b} + 3\vec{c}| = 4$ Angle between \vec{a} and $\vec{b}is\theta_1$, between \vec{b} and $\vec{c}is\theta_2$ and between \vec{a} and \vec{b} varies $[\pi/6, 2\pi/3]$. Then the maximum value of $\cos\theta_1 + 3\cos\theta_2$ is

A. 3

B. 4

C. $2\sqrt{2}$

D. 6

Answer: b

45. If the vector product of a constant vector $\vec{O}A$ with a variable vector $\vec{O}B$ in a fixed plane OAB be a constant vector, then the locus of B is a straight line perpendicular to $\vec{O}A$ b. a circle with centre O and radius equal to $|\vec{O}A|$ c. a straight line parallel to $\vec{O}A$ d. none of these

A. a straight line perpendicular to OA

B. a circle with centre O and radius equal to OA

C. a striaght line parallel to OA

D. none of these

Answer: c

46. Let \vec{u} , \vec{v} and \vec{w} be such that $|\vec{u}| = 1$, $|\vec{v}| = 2$ and $|\vec{w}| = 3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $|\vec{u} - \vec{v} + \vec{w}|$ equals a. 2 b. $\sqrt{7}$ c. $\sqrt{14}$ d. 14

A. 2

 $B.\sqrt{7}$

 $C.\sqrt{14}$

D. 14

Answer: c

Watch Video Solution

47. If the two adjacent sides of two rectangles are represented by vectors $\vec{p} = 5\vec{a} - 3\vec{b}, \vec{q} = -\vec{a} - 2\vec{b}$ and $\vec{r} = -4\vec{a} - \vec{b}, \vec{s} = -\vec{a} + \vec{b}$, respectively, then the angle between the vectors $\vec{x} = \frac{1}{3}(\vec{p} + \vec{r} + \vec{s})$ and $\vec{y} = \frac{1}{5}(\vec{r} + \vec{s})$ is A. $-\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$ B. $\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$

C.
$$\pi \cos^{-1} \left(\frac{19}{5\sqrt{43}} \right)$$

D. cannot of these

Answer: b

View Text Solution

48. If
$$\vec{\alpha} \mid |(\vec{b} \times \vec{\gamma}), then(\vec{\alpha} \times \vec{\beta}).(\vec{\alpha} \times \vec{\gamma}) = (A) |\vec{\alpha}|^2(\vec{\beta}.\vec{\gamma})$$
 (B)
 $|\vec{\beta}|^2(\vec{\gamma}.\vec{\alpha})(C)|\vec{\gamma}|^2(\vec{\alpha}.\vec{\beta})(D)|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$
A. $|\vec{\alpha}|^2(\vec{\beta}.\vec{\gamma})$
B. $|\vec{\beta}|^2(\vec{\gamma}.\vec{\alpha})$
C. $|\vec{\gamma}|^2(\vec{\alpha}.\vec{\beta})$
D. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$

Answer: a

49. The position vectors of points A,B and C are $\hat{i} + \hat{j}, \hat{i} + 5\hat{j} - \hat{k}$ and $2\hat{i} + 3\hat{j} + 5\hat{k}$, respectively the greatest angle of triangle ABC is

A. 120 °

B.90 $^{\circ}$

C. $\cos^{-1}(3/4)$

D. none of these

Answer: b

View Text Solution

50. Given three vectors $e\vec{a}$, \vec{b} and \vec{c} two of which are non-collinear. Futrther if $(\vec{a} + \vec{b})$ is collinear with \vec{c} , $(\vec{b} + \vec{c})$ is collinear with \vec{a} , $|\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$ find the value of \vec{a} . $\vec{b} + \vec{b}$. $\vec{c} + \vec{c}$. \vec{a} **B.** - 3

C. 0

D. cannot of these

Answer: b

View Text Solution

51. If
$$\vec{a}$$
 and \vec{b} are unit vectors such that $(\vec{a} + \vec{b})$. $(2\vec{a} + 3\vec{b}) \times (3\vec{a} - 2\vec{b}) = \vec{0}$ then angle between \vec{a} and \vec{b} is
A. 0
B. $\pi/2$
C. π
D. indeterminate

Answer: d

52. If in a right-angled triangle *ABC*, the hypotenuse $AB = p, then \vec{A}BAC + \vec{B}C\vec{B}A + \vec{C}A\vec{C}B$ is equal to $2p^2$ b. $\frac{p^2}{2}$ c. p^2 d. none of these

A. $2p^2$ B. $\frac{p^2}{2}$

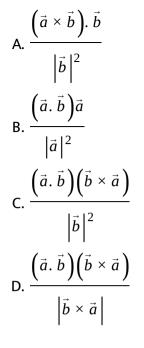
C. *p*²

D. none of these

Answer: c

View Text Solution

53. Resolved part of vector \vec{a} and along vector \vec{b} is $\vec{a}1$ and that prependicular to \vec{b} is $\vec{a}2$ then $\vec{a}1 \times \vec{a}2$ is equi to



Answer: c

View Text Solution

54. Let $\vec{a} = 2\hat{i} = \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ be three vectors . A vector in the pland of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude $\sqrt{\left(\frac{2}{3}\right)}$ is (A) $2\hat{i} + 3\hat{j} + 3\hat{k}$ (B) $2\hat{i} + 3\hat{j} - 3\hat{k}$ (C) $-2\hat{i} - \hat{j} + 5\hat{k}$ (D) $2\hat{i} + \hat{j} + 5\hat{k}$ A. $2\hat{i} + 3\hat{j} - 3\hat{k}$ B. $-2\hat{i} - \hat{j} + 5\hat{k}$ C. $2\hat{i} + 3\hat{j} + 3\hat{k}$ D. $2\hat{i} + \hat{j} + 5\hat{k}$

Answer: b

View Text Solution

55. If *P* is any arbitrary point on the circumcirlce of the equilateral trangle of side length *l* units, then $|\vec{P}A|^2 + |\vec{P}B|^2 + |\vec{P}C|^2$ is always equal to $2l^2$ b. $2\sqrt{3}l^2$ c. l^2 d. $3l^2$

A. 2*l*²

B. $2\sqrt{3}l^2$

 $C. l^2$

D. 3*l*²

Answer: a

56. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r} + b\vec{s}|$ is minimum, then the value of $|b\vec{s}|^2 + |\vec{r} + b\vec{s}|^2$ is equal to $2|\vec{r}|^2$ b. $|\vec{r}|^2/2$ c. $3|\vec{r}|^2$ d. $|r|^2$

- A. 2 $|\vec{r}|^2$
- **B.** $|\vec{r}|^2/2$
- C. 3 $|\vec{r}|^2$
- D. $|\vec{r}|^2$

Answer: b

57. \vec{a} and \vec{b} are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$ is equal to

A.
$$\frac{1}{\sqrt{2}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

B.
$$\frac{1}{2} \left(\vec{a} \times \vec{b} + \vec{a} + \vec{b} \right)$$

C.
$$\frac{1}{\sqrt{3}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

D.
$$\frac{1}{3} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

Answer: a

View Text Solution

58. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a} + \vec{b} = \mu \vec{p}, \vec{b}, \vec{q} = 0$ and $(\vec{b})^2 = 1$ where μ is a sclar. Then $|(\vec{a}, \vec{q})\vec{p} - (\vec{p}, \vec{q})\vec{a}|$ is equal to

A. $2 \left| \vec{p} \vec{q} \right|$ B. $(1/2) \left| \vec{p} \cdot \vec{q} \right|$ C. $\left| \vec{p} \times \vec{q} \right|$ D. $\left| \vec{p} \cdot \vec{q} \right|$

Answer: d

59. The position vectors of the vertices A, B and C of a triangle are three unit vectors \vec{a}, \vec{b} and \vec{c} respectively. A vector \vec{d} is such that $\vec{d}, \hat{a} = \vec{d}, \hat{b} = \vec{d}, \hat{c}$ and $\vec{d} = \lambda (\hat{b} + \hat{c})$. Then triangle ABC is

A. acute angled

B. obtuse angled

C. right angled

D. none of these

Answer: a

60. If *a* is real constant *A*, *BandC* are variable angles and $\sqrt{a^2 - 4} \tan A + a \tan B} \sqrt{a^2 + 4} \tan c = 6a$, then the least vale of $\tan^2 A + \tan^2 b + \tan^2 Cis \ 6b. \ 10c. \ 12d. \ 3$

A. 6 B. 10 C. 12

D. 3

Answer: d

View Text Solution

61. The vertex *A* triangle *ABC* is on the line $\vec{r} = \hat{i} + \hat{j} + \lambda \hat{k}$ and the vertices *BandC* have respective position vectors $\hat{i}and\hat{j}$. Let Delta be the area of the triangle and Delta $[3/2, \sqrt{33}/2]$. Then the range of values of λ corresponding to *A* is $[-8, 4] \cup [4, 8]$ b. [-4, 4] c. [-2, 2] d. $[-4, -2] \cup [2, 4]$

A. [-8, -4]cup[4,8]`

B.[-4,4]

C. [-2,2]

D.[-4,-2] U [2,4]

Answer: c

View Text Solution

62. A non-zero vecto \vec{a} is such that its projections along vectors $\frac{\hat{i} + \hat{j}}{\sqrt{2}}, \frac{-\hat{i} + \hat{j}}{\sqrt{2}}$ and \hat{k} are equal, then unit vector along \vec{a} us

A.
$$\frac{\sqrt{2}\hat{j} - \hat{k}}{\sqrt{3}}$$

B.
$$\frac{\hat{j} - \sqrt{2}\hat{k}}{\sqrt{3}}$$

C.
$$\frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}}$$

D.
$$\frac{\hat{j} - \hat{k}}{\sqrt{2}}$$

Answer: a

View Text Solution

63. Position vector \hat{k} is rotated about the origin by angle 135^0 in such a

way that the plane made by it bisects the angel between $\hat{i}and\hat{j}$. Then its

new position is $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$ b. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}$ - $\frac{\hat{k}}{\sqrt{2}}$ c. $\frac{\hat{i}}{\sqrt{2}}$ - $\frac{\hat{k}}{\sqrt{2}}$ d. none of these

A.
$$\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$$

B. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$
C. $\frac{\hat{i}}{\sqrt{2}} - \frac{\hat{k}}{\sqrt{2}}$

D. none of these

Answer: d

64. In a quadrilateral *ABCD*, \overrightarrow{AC} is the bisector of the $\begin{pmatrix} \overrightarrow{AB} \land \overrightarrow{AD} \end{pmatrix}$ which is

$$\frac{2\pi}{3}, 15 \left| \overrightarrow{AC} \right| = 2 \left| \overrightarrow{AB} \right| = 5 \left| \overrightarrow{AD} \right| \text{ then } \cos\left(\overrightarrow{BA} \wedge \overrightarrow{CD} \right) \text{ is}$$
A. $\cos^{-1} \frac{\sqrt{14}}{7\sqrt{2}}$
B. $\cos^{-1} \frac{\sqrt{21}}{7\sqrt{3}}$
C. $\cos^{-1} \frac{2}{\sqrt{7}}$
D. $\cos^{-1} \frac{2\sqrt{7}}{14}$

Answer: c

View Text Solution

65. In fig. 2.33 AB, DE and GF are parallel to each other and AD, BG and EF ar parallel to each other . If CD: CE = CG:CB = 2:1 then the value of area $(\triangle AEG)$: *area* $(\triangle ABD)$ is equal to

A.	7/	/2

B. 3

C. 4

D.9/2

Answer: b

View Text Solution

66. Vectors \hat{a} in the plane of $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} - \hat{j} + \hat{k}$ is such that it is equally inclined to \vec{b} and \vec{d} where $\vec{d} = \hat{j} + 2\hat{k}$ the value of \hat{a} is

A.
$$\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$

B.
$$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$$

C.
$$\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$

D.
$$\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$

Answer: b

67. Let ABCD be a tetrahedron such that the edges AB, ACandAD are mutually perpendicular. Let the area of triangles ABC, ACDandADB be 3, 4 and 5sq. units, respectively. Then the area of triangle BCD is $5\sqrt{2}$ b. 5 c. $\frac{\sqrt{5}}{2} \text{ d. } \frac{5}{2}$ A. $5\sqrt{2}$ B. 5 C. $\frac{\sqrt{5}}{2}$ D. $\frac{5}{2}$

Answer: a

68. Let $f(t) = [t]\hat{i} + (t - [t])\hat{j} + [t + 1]\hat{k}$, where[.] denotes the greatest integer

A. parallel to each other

B. perpendicular to each other

function. Then the vectors `vecf(5/4)a n df(t),0

C. inclined at
$$\frac{\cos^{-1}2}{\sqrt{7}(1-t^2)}$$

D. inclined at
$$\frac{\cos^{-1}(8+t)}{9\sqrt{1+t^2}}$$

Answer: d

View Text Solution

69. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$ is equal to

A. $|\vec{a}|^2 (\vec{b}. \vec{c})$ B. $|\vec{b}|^2 (\vec{a}. \vec{c})$ C. $|\vec{c}|^2 (\vec{a}. \vec{b})$ D. none of these

Answer: a

View Text Solution

70. The three vectors $\hat{i} + \hat{j}, \hat{j} + \hat{k}, \hat{k} + \hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:

A. 1/3B. 4 C. $(3\sqrt{3})/4$ D. $4\sqrt{3}$

Answer: d

71. If
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is a on zero vector and
 $\left| \left(\vec{d} \cdot \vec{c} \right) \left(\vec{a} \times \vec{b} \right) + \left(\vec{d} \cdot \vec{a} \right) \left(\vec{b} \times \vec{c} \right) + \left(\vec{d} \cdot \vec{b} \right) \left(\vec{c} \times \vec{a} \right) \right| = 0$ then (A)
 $\left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| \vec{d} \right|$ (B) $\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$ (C) $\vec{a}, \vec{b}, \vec{c}$ are coplanar (D)
 $\vec{a} + \vec{c} = 2\vec{b}$

A.
$$\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$$

B. $\left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| \vec{d} \right|$

C. \vec{a} , \vec{b} and \vec{c} are coplanar

D. none of these

Answer: c

View Text Solution

72. If
$$|\vec{a}| = 2$$
 and $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 0$, then $(\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b}))))$ is equal

A. 48 \hat{b}

 $\mathsf{B.-48}\hat{b}$

C. 48â

D. - 48â

Answer: a

View Text Solution

73. If two diagonals of one of its faces are $6\hat{i} + 6\hat{k}$ and $4\hat{j} + 2\hat{k}$ and of the edges not containing the given diagonals is $\vec{c} = 4\hat{j} - 8\hat{k}$, then the volume of a parallelpiped is

A. 60

B. 80

C. 100

D. 120

Answer: d

74. The volume of a tetrahedron fomed by the coterminus edges \vec{a} , \vec{b} and $\vec{c}is3$. Then the volume of the parallelepiped formed by the coterminus edges $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ is

A. 6

B. 18

C. 36

D. 9

Answer: c

View Text Solution

75. If \vec{a} , \vec{b} and \vec{c} are three mutually orthogonal unit vectors , then the triple product $\left[\vec{a} + \vec{b} + \vec{c}\vec{a} + \vec{b}\vec{b} + \vec{c}\right]$ equals

A. 0

B. 1 or -1

C. 1

D. 3

Answer: b

View Text Solution

76. Vector \vec{c} is perpendicular to vectors $\vec{a} = (2, -3, 1)and\vec{b} = (1, -2, 3)$ and satisfies the condition $\vec{c} \cdot (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$. Then vector \vec{c} is equal to a.(7, 5, 1) b. -7, -5, -1 c. 1, 1, -1 d. none of these

A. 7,5,1

B. (-7, -5, -1)

C. 1,1,-1

D. none of these

Answer: a

77. Given
$$\vec{a} = x\hat{i} + y\hat{j} + 2\hat{k}$$
, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j}$, $\vec{a} \perp \vec{b}$, \vec{a} . $\vec{c} = 4$ then

A. $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2 = \begin{vmatrix} \vec{a} \end{vmatrix}$ B. $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{a} \end{vmatrix}$ C. $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0$ D. $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0$

Answer: d

View Text Solution

78. Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non zero vectors such that \vec{c} is a unit vector perpendicular to both

$$\vec{a}$$
 and \vec{b} . If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$ is equal

to

A. 0

B. 1

C.
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$$

D. $\frac{3}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$

Answer: c

View Text Solution

79. Let
$$\vec{r}, \vec{a}, \vec{b}$$
 and \vec{c} be four non-zero vectors such that
 $\vec{r}. \vec{a} = 0, |\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}|, |\vec{r} \times \vec{c}| = |\vec{r}| |\vec{c}|$ then
 $[\vec{a} \ \vec{b} \ \vec{c}] =$

A. |a||b||c|

B. - |a||b||c|

C. 0

D. none of these

Answer: c

View Text Solution

80. If \vec{a}, \vec{b} and \vec{c} are such that $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 1, \vec{c} = \lambda \vec{a} \times \vec{b}$, angle between \vec{a} and $\vec{b}is2\pi/3$, $\begin{vmatrix} \vec{a} \end{vmatrix} = \sqrt{2} \begin{vmatrix} \vec{b} \end{vmatrix} = \sqrt{3}$ and $\begin{vmatrix} \vec{c} \end{vmatrix} = \frac{1}{\sqrt{3}}$ then the angle between \vec{a} and \vec{b} is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: b

81. If
$$4\vec{a} + 5\vec{b} + 9\vec{c} = 0$$
, then $(\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$ is equal to a.

vector perpendicular to the plane of a, b, c b. a scalar quantity c. $\vec{0}$ d. none

of these

A. a vector perpendicular to the plane of \vec{a} , \vec{b} and \vec{c}

B. a scalar quantity

C. $\vec{0}$

D. none of these

Answer: c

Watch Video Solution

82. Value of $\begin{bmatrix} \vec{a} \times \vec{b} \vec{a} \times \vec{c} \vec{d} \end{bmatrix}$ is always equal to $(\vec{a}, \vec{d}) \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}$ b. $(\vec{a}, \vec{c}) \begin{bmatrix} \vec{a} \vec{b} \vec{d} \end{bmatrix}$ c. $(\vec{a}, \vec{b}) \begin{bmatrix} \vec{a} \vec{b} \vec{d} \end{bmatrix}$ d. none of these

- $\mathsf{A}.\left(\vec{a}.\,\vec{d}\right)\left[\vec{a}\,\vec{b}\,\vec{c}\,\right]$
- B. `(veca.vecc)[veca vecb vecd]
- $\mathsf{C}.\left(\vec{a}.\,\vec{b}\right)\left[\vec{a}\,\vec{b}\,\vec{d}\,\right]$
- D. none of these

Answer: a

Watch Video Solution

83. Let $\vec{a}and\vec{b}$ be mutually perpendicular unit vectors. Then for any arbitrary \vec{r} , a. $\vec{r} = (\vec{r}.\hat{a})\hat{a} + (\vec{r}.\hat{b})\hat{b} + (\vec{r}.(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$ b. $\vec{r} = (\vec{r}.\hat{a}) - (\vec{r}.\hat{b})\hat{b} - (\vec{r}.(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$ c. $\vec{r} = (\vec{r}.\hat{a})\hat{a} - (\vec{r}.\hat{b})\hat{b} + (\vec{r}.(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$ d.none of these A. $\vec{r} = (\vec{r}.\hat{a})\hat{a} + (\vec{r}.\hat{b})\hat{b} + (\vec{r}.(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$ B. $\vec{r} = (\vec{r}.\hat{a}) - (\vec{r}.\hat{b})\hat{b} - (\vec{r}.(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$ C. $\vec{r} = (\vec{r}.\hat{a})\hat{a} - (\vec{r}.\hat{b})\hat{b} - (\vec{r}.(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$

D. none of these

Answer: a

84. Let \vec{a} and \vec{b} be unit vectors that are perpendicular to each other I. then $\left[\vec{a} + \left(\vec{a} \times \vec{b}\right)\vec{b} + \left(\vec{a} \times \vec{b}\right)\vec{a} \times \vec{b}\right]$ will always be equal to A. 1 B. 0 **C**. - 1 D. none of these Answer: a View Text Solution

85.
$$\vec{a}$$
 and \vec{b} are two vectors such that $|\vec{a}| = 1$, $|\vec{b}| = 4$ and \vec{a} . Vecb = 2. If $\vec{c} = (2\vec{a} \times \vec{b}) - 3\vec{b}$ then find angle

between \vec{b} and \vec{c} .

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\frac{3\pi}{4}$
D. $\frac{5\pi}{6}$

Answer: d

86. Then for any arbitary vector
$$\vec{a}$$
, $\left(\left(\left(\vec{a} \times \vec{b}\right) + \left(\vec{a} \times \vec{b}\right)\right) \times \left(\vec{b} \times \vec{c}\right)\right)\left(\vec{b} - \vec{c}\right)$ is always equal to
View Text Solution

87. If
$$\vec{a}$$
. $\vec{b} = \beta$ and $\vec{a} \times \vec{b} = \vec{c}$, then \vec{b} is

A.
$$\frac{\left(\beta \vec{a} - \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$

B.
$$\frac{\left(\beta \vec{a} + \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$

C.
$$\frac{\left(\beta \vec{c} + \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$

D.
$$\frac{\left(\beta \vec{c} + \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$

Answer: a

View Text Solution

88. If $a(\vec{\alpha} \times \vec{\beta}) + b(\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = 0$ and at least one of *a*, *bandc* is nonzero, then vectors $\vec{\alpha}, \vec{\beta}and\vec{\gamma}$ are a. parallel b. coplanar c. mutually perpendicular d. none of these

A. parallel

B. coplanar

C. mutually perpendicular

D. none of these

Answer: b

Watch Video Solution

89. If $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \vec{b}$, where \vec{a} , \vec{b} and \vec{c} are non zero vectors then (A) \vec{a} , \vec{b} and \vec{c} canbecoplanar(B)veca,vecb and veccµstbecoplanar(C) veca,vecb and vecc cannot be coplanar (D) none of these

A. \vec{a} , \vec{b} and \vec{v} can be coplanar

B. \vec{a} , \vec{b} and \vec{c} must be coplanar

C. \vec{a} , \vec{b} and \vec{c} cannot be coplanar

D. none of these

Answer: c

90. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = \frac{1}{2}$ for some non zero vector \vec{r} and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is A. $|[\vec{a}\vec{b}\vec{c}]|$ B. $|\vec{r}|$

 $\mathsf{C}.\left|\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}\right|$

D. none of these

Answer: c

View Text Solution

91. A vector of magnitude 10 along the normal to the curve $3x^2 + 8xy + 2y^2 - 3 = 0$ at its point P(1, 0) can be $6\hat{i} + 8\hat{j}$ b. $-8\hat{i} + 3\hat{j}$ c. $6\hat{i} - 8\hat{j}$ d. $8\hat{i} + 6\hat{j}$

A. $6\hat{i} + 8\hat{j}$

C. $6\hat{i} - 8\hat{j}$

D. $8\hat{i} + 6\hat{j}$

Answer: a

Watch Video Solution

92. If \vec{a} and \vec{b} are two unit vectors inclined at an angle $\pi/3$ then $\{\vec{a} \times (\vec{b} + \vec{a} \times \vec{b})\}$. \vec{b} is equal to A. $\frac{-3}{4}$ B. $\frac{1}{4}$ C. $\frac{3}{4}$

D.
$$\frac{1}{2}$$

Answer: a

93. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} non - coplanar with \vec{a} and \vec{b} vector $\vec{r} \times \vec{a}$ is equal to

A.
$$\begin{bmatrix} \vec{r} \, \vec{a} \, \vec{b} \end{bmatrix} \vec{b} - (\vec{r} \, \cdot \vec{b}) (\vec{b} \times \vec{a})$$

B. $\begin{bmatrix} \vec{r} \, \vec{a} \, \vec{b} \end{bmatrix} (\vec{a} + \vec{b})$
C. $\begin{bmatrix} \vec{r} \, \vec{a} \, \vec{b} \end{bmatrix} \vec{a} + (\vec{r} \, \cdot \vec{a}) \vec{a} \times \vec{b}$

D. none of these

Answer: a

View Text Solution

94. If $\vec{a} + \vec{b}$, \vec{c} are any three non- coplanar vectors then the equation $\begin{bmatrix} \vec{b} \times \vec{c} \, \vec{c} \times \vec{a} \, \vec{a} \times \vec{b} \end{bmatrix} x^2 + \begin{bmatrix} \vec{a} + \vec{b} \, \vec{b} + \vec{c} \, \vec{c} + \vec{a} \end{bmatrix} x + 1 + \begin{bmatrix} \vec{b} - \vec{c} \, \vec{c} - \vec{c} - \vec{a} \, \vec{a} - \vec{b} \end{bmatrix} = 0$ has roots

A. real and distinct

B. real

C. equal

D. imaginary

Answer: c

View Text Solution

95. Sholve the simultasneous vector equations for `vecx aedn vecy: vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vec!=0

$$A. \vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c}. \vec{a})\vec{c}}{1 + \vec{c}. \vec{c}}$$
$$B. \vec{x} = \frac{\vec{c} \times \vec{b} + \vec{b} + (\vec{c}. \vec{a})\vec{c}}{1 + \vec{c}. \vec{c}}$$
$$C. \vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + (\vec{c}. \vec{b})\vec{c}}{1 + \vec{c}. \vec{c}}$$

D. none of these

Answer: b

96. The condition for equations $\vec{r} \times \vec{a} = \vec{b}and\vec{r} \times \vec{c} = \vec{d}$ to be consistent is

a. \vec{b} . $\vec{c} = \vec{a}$. \vec{d} b. \vec{a} . $\vec{b} = \vec{c}$. \vec{d} c. \vec{b} . $\vec{c} + \vec{a}$. $\vec{d} = 0$ d. $\vec{a}\vec{b} + \vec{\cdot}\vec{d} = 0$

A. \vec{b} . $\vec{c} = \vec{a}$. \vec{d} B. \vec{a} . $\vec{b} = \vec{c}$. \vec{d} C. \vec{b} . $\vec{c} + \vec{a}$. $\vec{d} = 0$

 $\mathsf{D}.\,\vec{a}.\,\vec{b}+\vec{c}.\,\vec{d}=0$

Answer: c

Watch Video Solution

97.

 $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}, \vec{c} = \hat{i} + \hat{j} + 2\hat{k} \text{ and } \left[\vec{a}\vec{b}\vec{i}\right]\hat{i} + \left[\vec{a}\vec{b}\vec{j}\right]\hat{j} + \left[\vec{a}\vec{b}\hat{k}\right]k$

is equal to

lf

98.

$$\vec{a} = 2\hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}, \vec{c} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $(1 + \alpha)\hat{i} + \beta(1 + \alpha)\hat{i} + \gamma(1 + \alpha)\hat{i}$

If

A. -2, -4,
$$-\frac{2}{3}$$

B. 2, -4, $\frac{2}{3}$
C. -2, 4, $\frac{2}{3}$
D. 2, 4, $-\frac{2}{3}$

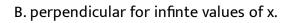
Answer: a

View Text Solution

99. Let
$$(\vec{a}(x) = (\sin x)\hat{i} + (\cos x)\hat{j}$$
 and $\vec{b}(x) = (\cos 2x)\hat{i} + (\sin 2x)\hat{j}$ be two

variable vectors ($x \in R$). Then $\vec{a}(x)$ and $\vec{b}(x)$ are

A. collinear for unique value of x



C. zero vectors for unique value of x

D. none of these

Answer: b

100. For any vectors

$$\vec{a}$$
 and \vec{b} , $(\vec{a} \times \hat{i}) + (\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j})$. $(\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k})$. $(\vec{b} \times \hat{k})$ is always
equal to
A. \vec{a} . \vec{b}
B. $2\vec{a}$. Vecb
C. zero
D. none of these
Answer: b

101. If \vec{a} , \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then

$$\left(\vec{a}\times\vec{b}\right)\times\left(\vec{r}\times\vec{c}\right)+\left(\vec{b}\times\vec{c}\right)\times\left(\vec{r}\times\vec{a}\right)+\left(\vec{c}\times\vec{a}\right)\times\left(\vec{r}\times\vec{b}\right)=$$

- A. $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \vec{r}$ B. 2 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \vec{r}$ C. 3 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \vec{r}$
- D. none of these

Answer: b

View Text Solution

102. If $\vec{P} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$. $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ and $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, where \vec{a}, \vec{b} and \vec{c} are

three non- coplanar vectors then the value of the expression

$$\left(\vec{a}+\vec{b}+\vec{c}\right)$$
. $\left(\vec{q}+\vec{q}+\vec{r}\right)$ is

A. 3

B. 2

C. 1

D. 0

Answer: a

View Text Solution

103. $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ are the vertices of triangle ABC and $R(\vec{r})$ is any point in the plane of triangle ABC, then $\vec{r}.(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})$ is always equal to

A. zero

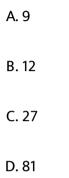
B. $\left[\vec{a}\vec{b}\vec{c}\right]$ C. - $\left[\vec{a}\vec{b}\vec{c}\right]$ D. none of these

Answer: b

104. If \vec{a} , \vec{b} and \vec{c} are non- coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times (\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c}$ is equal to A. $[\vec{a}\vec{b}\vec{c}]\vec{c}$ B. $[\vec{a}\vec{b}\vec{c}]\vec{b}$ C. $\vec{0}$ D. $[\vec{a}\vec{b}\vec{c}]\vec{a}$

Answer: c

105. If *V* be the volume of a tetrahedron and *V*^{*} be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and V = KV', *thenK* is equal to 9 b. 12 c. 27 d. 81



Answer: c

View Text Solution

106.
$$\left[\left(\vec{a} \times \vec{b}\right) \times \left(\vec{b} \times \vec{c}\right) \left(\vec{b} \times \vec{c}\right) \times \left(\vec{c} \times \vec{a}\right) \left(\vec{c} \times \vec{a}\right) \times \left(\vec{a} \times \vec{b}\right)\right]$$
 is equal to

(where \vec{a}, \vec{b} and \vec{c} are non - zero non- colanar vectors).

A.
$$\left[\vec{a}\vec{b}\vec{c}\right]^2$$

B. $\left[\vec{a}\vec{b}\vec{c}\right]^3$

C.
$$\left[\vec{a}\vec{b}\vec{c}\right]^4$$

D. $\left[\vec{a}\vec{b}\vec{c}\right]$

Answer: c

View Text Solution

107.

$$\vec{r} = x_1 \left(\vec{a} \times \vec{b} \right) + x_2 \left(\vec{b} \times \vec{a} \right) + x_3 \left(\vec{c} \times \vec{d} \right)$$
 and $4 \left[\vec{a} \vec{b} \vec{c} \right] = 1$ then $x_1 + x_2 + x_3$

If

is equal to

A.
$$\frac{1}{2}\vec{r}$$
. $\left(\vec{a} + \vec{b} + \vec{c}\right)$
B. $\frac{1}{4}\vec{r}$. $\left(\vec{a} + \vec{b} + \vec{c}\right)$
C. $2\vec{r}$. $\left(\vec{a} + \vec{b} + \vec{c}\right)$
D. $4\vec{r}$. $\left(\vec{a} + \vec{b} + \vec{c}\right)$

Answer: d

108. If the vectors \vec{a} and \vec{b} are perpendicular to each other then a vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations $\vec{v} \cdot \vec{a} = 0, \vec{v} \cdot \vec{b} = 1$ and $\begin{bmatrix} \vec{v} & \vec{a} & \vec{b} \end{bmatrix} = 1$ is

A.
$$\frac{\vec{b}}{\left|\vec{b}\right|^{2}} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^{2}}$$

B.
$$\frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^{2}}$$

C.
$$\frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|}$$

D. none of these

Answer: a

View Text Solution

109. If \vec{a} , $\vec{a} = \hat{i} + \hat{j}$, $\vec{b}' = \hat{i} - \hat{j} + 2\hat{k}nad\vec{c}' = 2\hat{i} = \hat{j} - \hat{k}$ then the altitude of the

parallelepiped formed by the vectors, \vec{a} , \vec{b} and \vec{c} having baswe formed by

 $ec{b}$ and $ec{c}$ is (where $ec{a}'$ is recipocal vector $ec{a}$, , etc.

A. 1

B. $3\sqrt{2}/2$

C. $1/\sqrt{6}$

D. $1/\sqrt{2}$

Answer: d

View Text Solution

110. If $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} + \hat{k}$, $\vec{c} = \hat{k} + \hat{i}$ then in the reciprocal system of vectors \vec{a} , \vec{b} , \vec{c} reciprocal \vec{a} of vector \vec{a} is

A.
$$\frac{\hat{i} + \hat{j} + \hat{k}}{2}$$

B.
$$\frac{\hat{i} - \hat{j} + \hat{k}}{2}$$

C.
$$\frac{-\hat{i} - \hat{j} + \hat{k}}{2}$$

D.
$$\frac{\hat{i} + \hat{j} - \hat{k}}{2}$$

Answer: d

111. If the unit vectors \vec{a} and \vec{b} are inclined of an angle 2θ such that $\left|\vec{a} - \vec{b}\right| < 1$ and $0 \le \theta \le \pi$ then θ in the interval

A. [0, π/6)

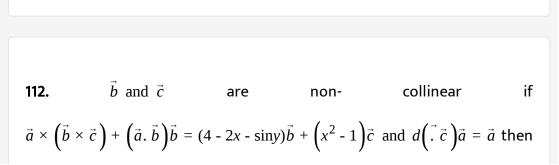
B. (5*π*/6, *π*]

C. [π/6, π/2]

D. (*π*/2, 5*π*/6]

View Text Solution

Answer: a,b



A. x =1

B. x = -1
C. y =
$$(4n + 1)\frac{\pi}{2}, n \in I$$

D. y(2n + 1) $\frac{\pi}{2}, n \in I$

Answer: a,c

View Text Solution

113. Let $\vec{a} \cdot \vec{b} = 0$ where \vec{a} and \vec{b} are unit vectors and the vector \vec{c} is inclined an anlge θ to both \vec{a} and $\vec{b} \cdot If\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a} \times \vec{b}), (m, n, p \in R)$ then

A.
$$\alpha = \beta$$

B. $\gamma^2 = 1 - 2\alpha^2$
C. $\gamma^2 = -\cos 2\theta$
D. $\beta^2 = \frac{1 + \cos 2\theta}{2}$

114. \vec{a} and \vec{b} are two given vectors. On these vectors as adjacent sides a parallelogram is constructed. The vector which is the altitude of the parallelogam and which is perpendicular to \vec{a} is not equal to

A.
$$\frac{\left(\vec{a} \cdot \vec{b}\right)}{\left|\vec{a}\right|^{2}}\vec{a} \cdot \vec{b}$$

B.
$$\frac{1}{\left|\vec{a}\right|^{2}}\left\{\left|\vec{a}\right|^{2}\vec{b} \cdot \left(\vec{a} \cdot \vec{b}\right)\vec{a}\right\}$$

C.
$$\frac{\vec{a} \times \left(\vec{a} \times \vec{b}\right)}{\left|\vec{a}\right|^{2}}$$

D.
$$\frac{\vec{a} \times \left(\vec{b} \times \vec{a}\right)}{\left|\vec{b}\right|^{2}}$$

Answer: a,b,c

115. If
$$\vec{a} \times (\vec{b} \times \vec{c})$$
 is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have a.
 $(\vec{a} \cdot \vec{c}) |\vec{b}|^2 = (\vec{a} \cdot \vec{b}) (\vec{b} \cdot \vec{c})$ b. $\vec{a} \vec{b} = 0$ c. $\vec{a} \vec{c} = 0$ d. $\vec{b} \vec{c} = 0$
A. $(\vec{a} \cdot \vec{b}) |\vec{b}|^2 = (\vec{a} \cdot \vec{b}) (\vec{b} \cdot \vec{c})$
B. $\vec{a} \cdot \vec{b} = 0$
C. $\vec{a} \cdot \vec{c} = 0$
D. $\vec{b} \cdot \vec{c} = 0$

Answer: a,c

Watch Video Solution

116. If
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a} \quad \vec{b} \quad \vec{c}\right]}$$
, $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a} \quad \vec{b} \quad \vec{c}\right]}$, $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a} \quad \vec{b} \quad \vec{b}\right]}$ where \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors, then the value of the expression $\left(\vec{a} + \vec{b} + \vec{c}\right)$. $\left(\vec{p} + \vec{q} + \vec{r}\right)$ is
A. $x\left[\vec{a}\vec{b}\vec{c}\right] + \frac{\left[\vec{p}\vec{q}\vec{r}\right]}{x}$ has least value 2

B.
$$x^2 \left[\vec{a} \vec{b} \vec{c} \right]^2 + \frac{\left[\vec{p} \vec{q} \vec{r} \right]}{x^2}$$
 has least value $\left(\frac{3}{2^{2/3}} \right)$

 $\mathsf{C}.\left[\vec{p}\vec{q}\vec{r}\right]>0$

D. none of these

Answer: a,c

View Text Solution

117. $a_1, a_2, a_3 \in R - \{0\}$ and $+ a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$ " for all " x in R`

then

A. vectors
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
 and $\vec{b} = 4\hat{i} + 2\hat{j} + \hat{k}$ are perpendicular to

each other

B. vectors $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + 2\hat{k}$ are parallel to each

each other

C. if vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $(a_1, a_2, a_3) = (1, -1, -2)$

D. if
$$2a_1 + 3a_2 + 6a_3 + 6a_3 = 26$$
, then $\left| \vec{a}\hat{i} + a_2\hat{j} + a_3\hat{k} \right| is 2\sqrt{6}$

Answer: a,b,c,d

118. If \vec{a} and \vec{b} are two vectors and angle between them is θ , then

A.
$$\left| \vec{a} \times \vec{b} \right|^2 + \left(\vec{a} \cdot \vec{b} \right)^2 = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2$$

B. $\left| \vec{a} \times \vec{b} \right|^2 + \left(\vec{a} \cdot \vec{b} \right)^2$, if $\theta = \pi/4$
C. $\vec{a} \times \vec{b} = \left(\vec{a} \cdot Vecb \right) \hat{n}$ (where \hat{n} is a normal unit vector) if $\theta f = \pi/4$
D. $\left(\vec{a} \times \vec{b} \right) \cdot \left(\vec{a} + \vec{b} \right) = 0$

Answer: a,b,c,d

119. Let \vec{a} and \vec{b} be two non-zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a}$ can be

A.
$$\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$$

B. $2\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$
C. $\left|\vec{a}\right|\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$
D. $\left|\vec{b}\right|\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$

Answer: a,b,cd,

View Text Solution

120. If vector
$$\vec{b} = (\tan \alpha, -12\sqrt{\sin \alpha/2})$$
 and $\vec{c} = (\tan \alpha, \tan \alpha - \frac{3}{\sqrt{\sin \alpha/2}})$ are

orthogonal and vector $\vec{a} = (13, \sin 2\alpha)$ makes an obtuse angle with the z-

axis, then the value of
$$\alpha$$
 is $\alpha = (4n + 1)\pi + \tan^{-1}2$ b. $\alpha = (4n + 1)\pi - \tan^{-1}2$
c. $\alpha = (4n + 2)\pi + \tan^{-1}2$ d. $\alpha = (4n + 2)\pi - \tan^{-1}2$
A. $\alpha = (4n + 1)\pi + \tan^{-1}2$
B. $\alpha = (4n + 1)\pi - \tan^{-1}2$
C. $\alpha = (4n + 2)\pi + \tan^{-1}2$

D.
$$\alpha = (4n + 2)\pi - \tan^{-1}2$$

Answer: b,d

Watch Video Solution

121. Let
$$\vec{r}$$
 be a unit vector satisfying
 $\vec{r} \times \vec{a} = \vec{b}$, where $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = \sqrt{2}$
A. $\vec{r} = \frac{2}{3}(\vec{a} + \vec{a} \times \vec{b})$
B. $\vec{r} = \frac{1}{3}(\vec{a} + \vec{a} \times \vec{b})$
C. $\vec{r} = \frac{2}{3}(\vec{a} - \vec{a} \times \vec{b})$

$$\mathsf{D}.\ \vec{r} = \frac{1}{3} \Big(-\vec{a} + \vec{a} \times \vec{b} \Big)$$

Answer: b,d

122. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{a} + \vec{b}$ then angle θ between \vec{a} and \vec{b} is A. 0 B. $\pi/2$ C. $\pi/4$ D. π

Answer: b,d

123. If \vec{a} and \vec{b} are two unit vectors perpenicualar to each other and $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$, then which of the following is (are) true ?

A.
$$\lambda_1 = \vec{a} \cdot \vec{c}$$

B. $\lambda_2 = \left| \vec{b} \times \vec{c} \right|$
C. $\lambda_3 = \left| \left(\vec{a} \times \vec{b} \right| \times \vec{c} \right|$
D. $\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 \left(\vec{a} \times \vec{b} \right)$

Answer: a,d

View Text Solution

124. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector \in thepla \neq of veca and vecb(B) \in thepla \neq of veca and vecb (C)equally \in cl \in edotas and \vec{b} (D) perpendicat \rightarrow veca xx vecb

A. a unit vector

B. in the plane of \vec{a} and \vec{b}

C. equally inclined to \vec{a} and \vec{b}

D. perpendicular to $\vec{a} \times \vec{b}$

Answer: b,c,d

View Text Solution

125. If \vec{a} and \vec{b} are non - zero vectors such that $\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - 2\vec{b} \right|$ then

A.
$$2\vec{a} \cdot \vec{b} = |\vec{b}|^2$$

B. $\vec{a} \cdot \vec{b} = |\vec{b}|^2$
C. least value of $\vec{a} \cdot Vecb + \frac{1}{|\vec{b}|^2 + 2}$ is $\sqrt{2}$
D. least value of $\vec{a} \cdot \vec{b} + \frac{1}{|\vec{b}|^2 + 2}$ is $\sqrt{2} - 1$

Answer: a,d

126. Let $\vec{a}\vec{b}$ and \vec{c} be non-zero vectors aned $\vec{V}_1 = \vec{a} \times (\vec{b} \times \vec{c})$ and $\vec{V}_2 = (\vec{a} \times \vec{b}) \times \vec{c}$.vectors \vec{V}_1 and \vec{V}_2 are equal. Then

A. \vec{a} and \vec{b} ar orthogonal

B. \vec{a} and \vec{c} are collinear

C. \vec{b} and \vec{c} ar orthogonal

D. $\vec{b} = \lambda (\vec{a} \times \vec{c})$ when λ is a scalar

Answer: b,d

View Text Solution

127. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}, \vec{c} \times \vec{a} = \vec{b}$ then prove that $|\vec{a}| = |\vec{b}| = |\vec{c}|$ A. $\vec{A} = \frac{(\vec{a} \times \vec{b}) - \vec{a}}{r^2}$

$$B. \vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) + \vec{a}\left(a^2 - 1\right)}{a^2}$$
$$C. \vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) + \vec{a}}{a^2}$$
$$D. \vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) - \vec{a}\left(a^2 - 1\right)}{a^2}$$

Answer: b,c,

128. A vector \vec{d} is equally inclined to three vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} - 2\hat{k}$. Let \vec{x}, \vec{y} and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b}; \vec{b}, \vec{;} \vec{c}, \vec{a}$, respectively. Then

A. \vec{x} . $\vec{d} = -1$

 $\mathbf{B}.\,\vec{y}.\,\vec{d}=1$

C. vecz.vecd=0`

D. vecr.vecd=0, " where " vecr=lambda vecx + mu vecy +deltavecz`

Answer: c.d

129. Vectors perpendicular $to\hat{i} - \hat{j} - \hat{k}$ and in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ are (A) $\hat{i} + \hat{k}$ (B) $2\hat{i} + \hat{j} + \hat{k}$ (C) $3\hat{i} + 2\hat{j} + \hat{k}$ (D) $-4\hat{i} - 2\hat{j} - 2\hat{k}$ A. $\hat{i} + \hat{k}$ B. $2\hat{i} + \hat{j} + \hat{k}$ C. $3\hat{i} + 2\hat{j} + \hat{k}$ D. $-4\hat{i} - 2\hat{j} - 2\hat{k}$

Answer: b,d

130. If the sides AB of an equilateral triangle ABC lying in the xy-plane is $3\hat{i}$

then the side \overrightarrow{CB} can be (A) $-\frac{3}{2}(\hat{i}-\sqrt{3})$ (B) $\frac{3}{2}(\hat{i}-\sqrt{3})$ (C) $-\frac{3}{2}(\hat{i}+\sqrt{3})$ (D) $\frac{3}{2}(\hat{i}+\sqrt{3})$ A. $-\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$ B. $-\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$ C. $-\frac{3}{2}(\hat{i}+\sqrt{3}\hat{j})$

$$D = \frac{3}{2} \left(\hat{i} + \sqrt{3} \hat{j} \right)$$

Answer: b,d

View Text Solution

131. Let \hat{a} be a unit vector and \hat{b} a non zero vector non parallel to \vec{a} . Find the angles of the triangle tow sides of which are represented by the vectors. $\sqrt{3}(\hat{x} \vec{b})$ and $\vec{b} - (\hat{a}, \vec{b})\hat{a}$ A. $\tan^{-1}(\sqrt{3})$ B. $\tan^{-1}\left(1/\sqrt{3}\right)$

 $C. \cot^{-1}(0)$

D. tant^(-1)(1)`

Answer: a,b,c

View Text Solution

132. \vec{a} , \vec{b} and \vec{c} are unimdular and coplanar. A unit vector \vec{d} is perpendicualt to them, $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6}\hat{i} - \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k}$, and the angle between \vec{a} and $\vec{b}is30^\circ$ then \vec{c} is

A.
$$(\hat{i} - 2\hat{j} + 2\hat{k})/3$$

B. $(-\hat{i} + 2\hat{j} - 2\hat{k})/3$
C. $(-\hat{i} + 2\hat{j} - \hat{k})/3$
D. $(-2\hat{i} - 2\hat{j} + \hat{k})/3$

Answer: a,b

133. If
$$\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$$
 then $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} =$

A.
$$2\left(\vec{a} \times \vec{b}\right)$$

B. $6\left(\vec{b} \times \vec{c}\right)$
C. $3\left(\vec{c} \times \vec{a}\right)$
D. $\vec{0}$

Answer: c,d

View Text Solution

134. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u} = \vec{a} - (\vec{a}, \vec{b})\vec{b}$ and $\vec{=} \vec{a} \times \vec{b}$, then $|\vec{v}|$ is

A. $\left| \vec{u} \right|$ B. $\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{b} \right|$ C. $\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{a} \right|$

D. none of these

Answer: b,d

135. if
$$\vec{a} \times \vec{b} = \vec{c} \cdot \vec{b} \times \vec{c} = \vec{a}$$
, where $\vec{c} \neq \vec{0}$ then

A. $|\vec{a}| = |\vec{c}|$ B. $|\vec{a}| = |\vec{b}|$ C. $|\vec{b}| = 1$

D.
$$|\vec{a}| = b| = |\vec{c}| = 1$$

Answer: a,c

136. Let \vec{a} , \vec{b} , and \vec{c} be three non-coplanar vectors and \vec{d} be a non -zero ,

which is perpendicular to
$$\left(\vec{a} + \vec{b} + \vec{c}\right)$$
. $Now\vec{d} = \left(\vec{a} \times \vec{b}\right)$ sinx + $\left(\vec{b} \times \vec{c}\right)$ cosy + 2 $\left(\vec{c} \times \vec{a}\right)$. Then

A.
$$\frac{\vec{d} \cdot (\vec{a} + \vec{c})}{\left[\vec{a}\vec{b}\vec{c}\right]} = 2$$

B.
$$\frac{\vec{d} \cdot (\vec{a} + \vec{c})}{\left[\vec{a}\vec{b}\vec{c}\right]} = -2$$

C. minimum value of $x^2 + y^2 i s \pi^2 / 4$

D. minimum value of
$$x^2 + y^2 i s 5\pi^2/4$$

Answer: b,d

View Text Solution

137. If \vec{a} , \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$, then $(\vec{b} \text{ and } \vec{c} \text{ being non parallel})$

A. angle between \vec{a} and $\vec{b}is\pi/3$

B. angle between \vec{a} and $\vec{c} i s \pi/3$

C. angle between \vec{a} and $\vec{b}is\pi/2$

D. angle between \vec{a} and $\vec{c}is\pi/2$

Answer: b,c

View Text Solution

138. If in triangle ABC,
$$\overrightarrow{AB} = \frac{\vec{u}}{|\vec{u}|} - \frac{\vec{v}}{|\vec{v}|}$$
 and $\overrightarrow{AC} = \frac{2\vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq |\vec{v}|$,

then

A. $1 + \cos 2A + \cos 2B + \cos 2C = 0$

 $B. \sin A = \cos C$

C. projection of AC on BC is equal to BC

D. projection of AB on BC is equal to AB

Answer: a,b,c

139.
$$\begin{bmatrix} \vec{a} \times \vec{b} & \vec{c} \times \vec{d} & \vec{e} \times \vec{f} \end{bmatrix}$$
 is equal to

- A. $\left[\vec{a}\vec{b}\vec{d}\right]\left[\vec{c}\vec{e}\vec{f}\right] \left[\vec{a}\vec{b}\vec{c}\right]\left[\vec{d}\vec{e}\vec{f}\right]$
- $\mathbf{B}.\left[\vec{a}\vec{b}\vec{e}\right]\left[\vec{f}\vec{c}\vec{d}\right] \left[\vec{a}\vec{b}\vec{f}\right]\left[\vec{e}\vec{c}\vec{d}\right]$
- $\mathsf{C}.\left[\vec{c}\vec{d}\vec{a}\right]\left[\vec{b}\vec{e}\vec{f}\right]-\left[\vec{a}\vec{d}\vec{b}\right]\left[\vec{a}\vec{e}\vec{f}\right]$
- D. $\left[\vec{a}\,\vec{c}\,\vec{e}\,\right] \left[\vec{b}\,\vec{d}\,\vec{f}\,\right]$

Answer: a,b,c

View Text Solution

140. The scalars I and m such that $l\vec{a} + m\vec{b} = \vec{c}$, where \vec{a}, \vec{b} and \vec{c} are

given vectors, are equal to

$$A. l = \frac{\left(\vec{c} \times \vec{b}\right). \left(\vec{a} \times \vec{b}\right)}{\left(\vec{a} \times \vec{b}\right)^{2}}$$
$$B. l = \frac{\left(\vec{c} \times \vec{a}\right). \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)}$$
$$C. m = \frac{\left(\vec{c} \times \vec{a}\right). \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)^{2}}$$
$$D. m = \frac{\left(\vec{c} \times \vec{a}\right). \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)}$$

Answer: a,c

View Text Solution

141. If $(\vec{a} \times v\vec{b}) \times (\vec{c} \times \vec{d})$. $(\vec{a} \times \vec{d}) = 0$ then which of the following may be true ?

A. \vec{a} , \vec{b} and \vec{d} are nenessarily coplanar

B. \vec{a} lies iin the plane of \vec{c} and \vec{d}

C. $\vec{v}b$ lies in the plane of \vec{a} and \vec{d}

D. \vec{c} lies in the plane of \vec{a} and \vec{d}

Answer: b,c,d

View Text Solution

142. A,B C and dD are four points such that

$$\vec{AB} = m(2\hat{i} - 6\hat{j} + 2\hat{k})\vec{BC} = (ahti - 2\hat{j}) \text{ and } \vec{CD} = n(-6\hat{i} + 15\hat{j} - 3\hat{k}).$$
 If CD

intersects AB at some points E, then

A. *m* ≥ 1/2

B. $n \ge 1/3$

C. m= n

D. *m* < *n*

Answer: a,b

143. If the vectors \vec{a} , \vec{b} , \vec{c} are non -coplanar and l, m, n are distinct scalars such that

 $\begin{bmatrix} l\vec{a} + m\vec{b} + n\vec{c} & l\vec{b} + m\vec{c} + n\vec{a} & l\vec{c} + m\vec{a} + n\vec{b} \end{bmatrix} = 0 \text{ then}$

A. l + m + n = 0

B. roots of the equation $lx^2 + mx + n = 0$ are equal

C. $l^2 + m^2 + n^2 = 0$

D. $l^3 + m^2 + n^3 = 3lmn$

Answer: a,b,d

View Text Solution

144. Let $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$, $\vec{\beta} = b\hat{i} + c\hat{j} + a\hat{k}$ and $\vec{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$ be three coplnar vectors with $a \neq b$, and $\vec{v} = \hat{i} + \hat{j} + \hat{k}$. Then \vec{v} is perpendicular to

Α. *α*

Β. *β*

C. $\vec{\gamma}$

D. none of these

Answer: a,b,c

View Text Solution

145. If vectors $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{B} = \hat{i} + \hat{j} + 5\hat{k}$ and \vec{C} form a left handed system then \vec{C} is (A) $11\hat{i} - 6\hat{j} - \hat{k}$ (B) $-11\hat{i} + 6\hat{j} + \hat{k}$ (C) $-11\hat{i} + 6\hat{j} - \hat{k}$ (D) $-11\hat{i} + 6\hat{j} - \hat{k}$ A. $11\hat{i} - 6\hat{j} - \hat{k}$ B. $-11\hat{i} - 6\hat{j} - \hat{k}$ C. $-11\hat{i} - 6\hat{j} + \hat{k}$ D. $-11\hat{i} + 6\hat{j} - \hat{k}$

Answer: b,d

$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}, \ \vec{b} = y\hat{i} + z\hat{j} + x\hat{k} \ \text{and} \ \vec{c} = z\hat{i} + x\hat{j} + y\hat{k}, \ \text{, then} \ \vec{a} \times (\vec{b} \times \vec{c})$$
 is

A. parallel to
$$(y - z)\hat{i} + (z - x)\hat{j} + (x - y)\hat{k}$$

- B. orthogonal to $\hat{i} + \hat{j} + \hat{k}$
- C. orthogonal to $(y + z)\hat{i} + (z + x)\hat{j} + (x + y)\hat{k}$
- D. orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$

Answer: a,b,c,d

147. If
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$
 for non coplanar \vec{a} , \vec{b} , \vec{c} then.....
A. $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$
B. $\vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$
C. $\vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$

D.
$$\vec{c} \times \vec{a} \times \vec{b} = \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$$

Answer: a,c,d

148. A vector \vec{d} is equally inclined to three vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} - 2\hat{k}$. Let \vec{x}, \vec{y} and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b}; \vec{b}, \vec{;} \vec{c}, \vec{a}$, respectively. Then

A. $\vec{z} \cdot \vec{d} = 0$ B. $\vec{x} \cdot \vec{d} = 1$ C. $\vec{y} \cdot \vec{d} = 32$

D. \vec{r} . $\vec{d} = 0$, where $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \gamma \vec{z}$

Answer: a,d

149. A parallelogram is constructed on the vectors $\vec{a} = 3\vec{\alpha} - \vec{\beta}, \vec{b} = \vec{\alpha} + 3\vec{\beta}.$ If $|\vec{\alpha}| = |\vec{\beta}| = 2$ and angle between $\vec{\alpha}$ and $\vec{\beta}is\frac{\pi}{3}$ then the length of a diagonal of the parallelogram is (A) $4\sqrt{5}$ (B) $4\sqrt{3}$ (C) 4sqrt(7)` (D) none of these

A. 4√5

B. $4\sqrt{3}$

C. $4\sqrt{7}$

D. none of these

Answer: b,c

View Text Solution

150. Statement 1: Vector $\vec{c} = 5\hat{i} + 7\hat{j} + 2\hat{k}$ is along the bisector of angle

between $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = -8\hat{i} + \hat{j} - 4\hat{k}$.

Statement 2: \vec{c} is equally inclined to \vec{a} and \vec{b} .

A. Both the statements are true and statement 2 is the correct

explanation for statement 1.

B. Both statements are true but statement 2 is not the correct

explanation for statement 1.

- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

Answer: b

Watch Video Solution

151. Statement1: A component of vector $\vec{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}$ in the direction perpendicular to the direction of vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}i\hat{s}\hat{i} - \hat{j}$ Statement 2: A component of vector in the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}i\hat{s}\hat{2}\hat{i} + 2\hat{j} + 2\hat{k}$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct

explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: c

Watch Video Solution

152. Statement 1: Distance of point D(1,0,-1) from the plane of points A(1,-2,0), B (3, 1,2) and C(-1,1,-1) is $\frac{8}{\sqrt{229}}$

Statement 2: volume of tetrahedron formed by the points A,B, C and D is $\sqrt{229}$

2

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct

explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: d

Watch Video Solution

153. Prove that
$$\begin{bmatrix} \vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a} \end{bmatrix} = 0$$

A. Both the statements are true and statement 2 is the correct

explanation for statement 1.

- B. Both statements are true but statement 2 is not the correct explanation for statement 1.
- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

Answer: b

Watch Video Solution

154. Statement 1: If $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b}_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ are three mutually perpendicular unit vectors then $a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$, $a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ and $a_3\hat{i} + b_3\hat{j} + c_3\hat{k}$ may be mutually perpendicular unit vectors.

Statement 2 : value of determinant and its transpose are the same.

- A. Both the statements are true and statement 2 is the correct explanation for statement 1.
- B. Both statements are true but statement 2 is not the correct

explanation for statement 1.

- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

155. Statement 1: $\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}, \vec{B} = \hat{i} + \hat{j} - 2\hat{k}$ and $\vec{C} = \hat{i} + 2\hat{j} + \hat{k}$ then $\left|\vec{A} \times \left(\vec{A} \times \left(\vec{A} \times \vec{B}\right)\right), \vec{C}\right| = 243$ Statement 2: $\left|\vec{A} \times \left(\vec{A} \times \left(\vec{A} \times \vec{B}\right)\right), \vec{C}\right| = \left|\vec{A}\right|^2 \left|\left[\vec{A}\vec{B}\vec{C}\right]\right|$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

- B. Both statements are true but statement 2 is not the correct explanation for statement 1.
- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

Answer: d

156. Statement 1: \vec{a} , \vec{b} and \vec{c} arwe three mutually perpendicular unit vectors and \vec{d} is a vector such that \vec{a} , \vec{b} , \vec{c} and \vec{d} are non- coplanar. If $\left[\vec{d}\vec{b}\vec{c}\right] = \left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right] = 1$, then $\vec{d} = \vec{a} + \vec{b} + \vec{c}$ Statement 2: $\left[\vec{d}\vec{b}\vec{c}\right] = \left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right] \Rightarrow \vec{d}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

- A. Both the statements are true and statement 2 is the correct explanation for statement 1.
- B. Both statements are true but statement 2 is not the correct explanation for statement 1.
- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

Answer: b

157. Consider three vectors \vec{a} , \vec{b} and \vec{c}

Statement 1: $\vec{a} \times \vec{b} = \left(\left(\hat{i} \times \vec{a}\right), \vec{b}\right)\hat{i} + \left(\left(\hat{j} \times \vec{a}\right), \vec{b}\right)\hat{j} + \left(\hat{k} \times \vec{a}\right), \vec{b}\right)\hat{k}$ Statement 2: $\vec{c} = \left(\hat{i}, \vec{c}\right)\hat{i} + \left(\hat{j}, \vec{c}\right)\hat{j} + \left(\hat{k}, \vec{c}\right)\hat{k}$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct

explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: a

View Text Solution

158. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$ and

A.
$$\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$$

B. $\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$
C. $2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$
D. $\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$

Answer: b

View Text Solution

159. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$ and | Vector \vec{u} is A. $2\vec{a} - 3\vec{c}$ B. $3\vec{b} - 4c$ C. $-4\vec{c}$ D. $\vec{a} + \vec{b} + 2\vec{c}$

Answer: c

View Text Solution

160. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$ and |Vector \vec{u} is

A.
$$\frac{2}{3}(2\vec{c} - \vec{b})$$

B. $\frac{1}{3}(\vec{a} - \vec{b} - \vec{c})$
C. $\frac{1}{3}\vec{a} - \frac{2}{3}\vec{b} - 2\vec{c}$
D. $\frac{4}{3}(\vec{c} - \vec{b})$

Answer: d

161. vertors \vec{x} , \vec{y} and \vec{z} each of magnitude $\sqrt{2}$, make an angle of 60 ° with each other. $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$ Vector \vec{x} is

A.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{b} \right) \times \vec{c} + \left(\vec{a} + \vec{b} \right) \right]$$

B.
$$\frac{1}{2} \left[\left(\vec{a} + \vec{b} \right) \times \vec{c} + \left(\vec{a} - \vec{b} \right) \right]$$

C.
$$\frac{1}{2} \left[- \left(\vec{a} + \vec{b} \right) \times \vec{c} + \left(\vec{a} + \vec{b} \right) \right]$$

D.
$$\frac{1}{2} \left[\left(\vec{a} + \vec{b} \right) \times \vec{c} - \left(\vec{a} + \vec{b} \right) \right]$$

Answer: d

Watch Video Solution

162. vertors \vec{x} , \vec{y} and \vec{z} each of magnitude $\sqrt{2}$, make an angle of 60 $^{\circ}$ with

each other.
$$\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}, \vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$$
 and $\vec{x} \times \vec{y} = \vec{c}$

Vector \vec{x} is

A.
$$\frac{1}{2} \left[\left(\vec{a} + \vec{c} \right) \times \vec{b} - \vec{b} - \vec{a} \right]$$

B.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{c} \right) \times \vec{b} + \vec{b} + \vec{a} \right]$$

C. $\frac{1}{2} \left[\left(\vec{a} - \vec{b} \right) \times \vec{c} + \vec{b} + \vec{a} \right]$
D. $\frac{1}{2} \left[\left(\vec{a} - \vec{c} \right) \times \vec{a} + \vec{b} - \vec{a} \right]$

Answer: c

Watch Video Solution

163. vertors \vec{x} , \vec{y} and \vec{z} each of magnitude $\sqrt{2}$, make an angle of 60 ° with

each other. $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}, \vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$

Vector \vec{x} is

A.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{c} \right) \times \vec{c} - \vec{b} + \vec{a} \right]$$

B. $\frac{1}{2} \left[\left(\vec{a} - \vec{b} \right) \times \vec{c} + \vec{b} - \vec{a} \right]$
C. $\frac{1}{2} \left[\vec{c} \times \left(\vec{a} - \vec{b} \right) + \vec{b} + \vec{a} \right]$

D. none of these

Answer: b

164. If $\vec{x} \times \vec{y} = \vec{a}, \vec{y} \times \vec{z} = \vec{b}, \vec{x}, \vec{b} = \gamma, \vec{x}, \vec{y} = 1$ and $\vec{y}, \vec{z} = 1$ then find x,y,z

in terms of \vec{a} , \vec{b} and γ .

A.
$$\frac{1}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$

B.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \vec{b} - \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$

C.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \vec{b} + \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$

D. none of these

Answer: b

View Text Solution

165. If $\vec{x} \cdot \vec{x} \cdot \vec{y} = \vec{a}$, $\vec{y} \times \vec{z} = \vec{b}$, $\vec{x} \cdot \vec{b} = \gamma$, $\vec{x} \cdot \vec{y} = 1$ and $\vec{y} \cdot \vec{z} = 1$ then find x,y,z in

terms of `veca,vecb and gamma.

A.
$$\frac{\vec{a} \times \vec{b}}{\gamma}$$

B. $\vec{a} + \frac{\vec{a} \times \vec{b}}{\gamma}$
C. $\vec{a} + \vec{b} + \frac{\vec{a} \times \vec{b}}{\gamma}$

Answer: a

View Text Solution

166. If
$$\vec{x} x \vec{y} = \vec{a}, \vec{y} \times \vec{z} = \vec{b}, \vec{x}. \vec{b} = \gamma, \vec{x}. \vec{y} = 1$$
 and $\vec{y}. \vec{z} = 1$ then find x,y,z in

terms of `veca,vecb and gamma.

A.
$$\frac{\gamma}{\left|\vec{a}\times\vec{b}\right|^{2}}\left[\vec{a}+\vec{b}\times\left(\vec{a}\times\vec{b}\right)\right]$$

B.
$$\frac{\gamma}{\left|\vec{a}\times\vec{b}\right|^{2}}\left[\vec{a}+\vec{b}-\vec{a}\times\left(\vec{a}\times\vec{b}\right)\right]$$

C.
$$\frac{\gamma}{\left|\vec{a}\times\vec{b}\right|^{2}}\left[\vec{a}+\vec{b}+\vec{a}\times\left(\vec{a}\times\vec{b}\right)\right]$$

D. none of these

Answer: c

167. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P}

be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$. then

$$\left(\vec{P} \times \vec{B} \right) \times \vec{B}$$
 is equal to

A. \vec{P}

B. - \vec{P}

C. $2\vec{B}$

 $\mathsf{D}.\vec{A}$

Answer: b

168. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$. then

A.
$$\frac{\vec{A}}{2} + \frac{\vec{A} \times \vec{B}}{2}$$

B. $\frac{\vec{A}}{2} + \frac{\vec{B} \times \vec{A}}{2}$
C. $\frac{\vec{A} \times \vec{B}}{2} - \frac{\vec{A}}{2}$
D. $\vec{A} \times \vec{B}$

 $\left(\vec{P}\times\vec{B}\right)\times\vec{B}$ is equal to

Answer: b

Watch Video Solution

169. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$. then

which of the following statements is false ?

A. vectors \vec{P} , \vec{A} and $\vec{P} \times \vec{B}$ ar linearly dependent.

B. vectors \vec{P} , \vec{B} and $\vec{P} \times \vec{B}$ ar linearly independent

C. \vec{P} is orthogonal to \vec{B} and has length $\frac{1}{\sqrt{2}}$.

D. none of these

Answer: d

Watch Video Solution

170. Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let \vec{a}_1 be the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then \vec{a}_2 is equal to

A.
$$\frac{943}{49} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$$

B. $\frac{943}{49^2} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$
C. $\frac{943}{49} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$
D. $\frac{943}{49^2} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$

Answer: b

171. Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let \vec{a}_1 be

the projection of $\vec{a}on\vec{b}$ and \vec{a}_2 be the projection of $\vec{a}_1on\vec{c}$. Then

 \vec{a}_1 . \vec{b} is equal to

A. - 41

B.-41/7

C. 41

D. 287

Answer: a

172. Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let \vec{a}_1 be the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a} on \vec{c} . Then which of the following is true ?

- A. \vec{a} and $vcea_2$ are collinear
- **B**. \vec{a}_1 and \vec{c} are collinear
- C. $\vec{a}m\vec{a}_1$ and \vec{b} are coplanar
- D. \vec{a} , \vec{a}_1 and a_2 are coplanar

Answer: c

View Text Solution

173. Consider a triangular pyramid ABCD the position vectors of whone agular points are A(3, 0, 1), B(-1, 4, 1), C(5, 3, 2) and D(0, -5, 4) Let G be the point of intersection of the medians of the triangle BCT. The length of -

A. $\sqrt{17}$

B. $\sqrt{51}/3$

C. $3/\sqrt{6}$

D. $\sqrt{59}/4$

Answer: b

174. Consider a triangular pyramid *ABCD* the position vectors of whone agular points are A(3, 0, 1), B(-1, 4, 1), C(5, 3, 2) and D(0, -5, 4) Let *G* be the point of intersection of the medians of the triangle *BCT*. The length of the perpendicular from the vertex *D* on the opposite face

A. 24

B. $8\sqrt{6}$

C. $4\sqrt{6}$

D. none of these

Answer: c

- A. $14/\sqrt{6}$
- B. $2/\sqrt{6}$
- C. $3/\sqrt{6}$

D. none of these

Answer: a

176. Vertices of a parallelogram taken in order are A, (2,-1,4), B (1,0,-1), C (

1,2,3) and D.

The distance between the parallel lines AB and CD is

A. $\sqrt{6}$ B. $3\sqrt{6/5}$

C. $2\sqrt{2}$

D. 3

Answer: c

Watch Video Solution

177. Vertices of a parallelogram taken in order are A, (2,-1,4), B (1,0,-1), C (

1,2,3) and D.

Distance of the point P (8, 2,-12) from the plane of the parallelogram is

A.
$$\frac{4\sqrt{6}}{9}$$

$$B. \frac{32\sqrt{6}}{9}$$
$$C. \frac{16\sqrt{6}}{9}$$

D. none

Answer: b

Watch Video Solution

178. Vertices of a parallelogram taken in order are A, (2,-1,4), B (1,0,-1), C (

1,2,3) and D.

Distance of the point P (8, 2,-12) from the plane of the parallelogram is

Watch Video Solution

179. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that $\vec{r} \cdot (10\hat{j} - 8\hat{i} - \vec{r}) = 40$ and $p_1 = \max\left\{ |\vec{r} + 2\hat{i} - 3\hat{j}|^2 \right\}, p_2 = \min\left\{ |\vec{r} + 2\hat{i} - 3\hat{j}|^2 \right\}.$ A tangent line is drawn to the curve $y = \frac{8}{x^2}$ at the point A with abscissa 2. The drawn line

cuts x-axis at a point B

A. 9

B. $2\sqrt{2} - 1$

C. $6\sqrt{6} + 3$

D. 9 - $4\sqrt{2}$

Answer: d

View Text Solution

180. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane

such that
$$\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$$
 and

 $p_1 = \max\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}, p_2 = \min\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}.$ A tangent line is

drawn to the curve $y = \frac{8}{x^2}$ at the point A with abscissa 2. The drawn line cuts x-axis at a point B

A	۱.	2

B. 10

C. 18

D. 5

Answer: c

View Text Solution

181. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane

such that
$$\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$$
 and

 $p_1 = \max\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}, p_2 = \min\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}.$ A tangent line is

drawn to the curve $y = \frac{8}{x^2}$ at the point A with abscissa 2. The drawn line cuts x-axis at a point B

Then AB. OB is equal to

A. 1

B. 2

C. 3

D. 4

Answer: c

View Text Solution

182. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a} . The vector of the faces containing vertices A, B, C and A, B, D are \vec{b} and \vec{c} , respectively, i.e. $\overrightarrow{AB} \times \overrightarrow{AC}$ and $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector $\vec{a}is\frac{|\vec{a}|}{3}$

vector AD is

A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$

B.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

$$\mathsf{C}.\,\frac{1}{3}\vec{a} + \frac{\vec{a}\times\left(\vec{b}-\vec{c}\right)}{\left|\vec{a}\right|^2} - \frac{3\left(\vec{b}\times\vec{a}\right)}{\left|\vec{a}\right|^2}$$

Answer: a

Watch Video Solution

183. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a} . The vector of the faces containing vertices A, B, C and A, B, D are \vec{b} and \vec{c} , respectively , i.e. $\overrightarrow{AB} \times \overrightarrow{AC}$ and $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector $\vec{a}is\frac{|\vec{a}|}{3}$

A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$

B.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

$$\mathsf{C}.\,\frac{1}{3}\vec{a} + \frac{\vec{a}\times\left(\vec{b}-\vec{c}\right)}{|\vec{a}|^2} - \frac{3\left(\vec{b}\times\vec{a}\right)}{|\vec{a}|^2}$$

Answer: b

View Text Solution

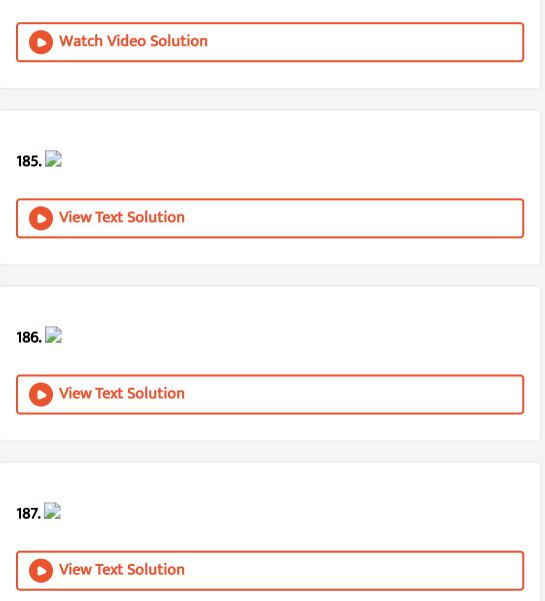
184. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a} . The vector of the faces containing vertices A, B, C and A, B, D are \vec{b} and \vec{c} , respectively , i.e. $\overrightarrow{AB} \times \overrightarrow{AC}$ and $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector $\vec{a}is\frac{|\vec{a}|}{3}$

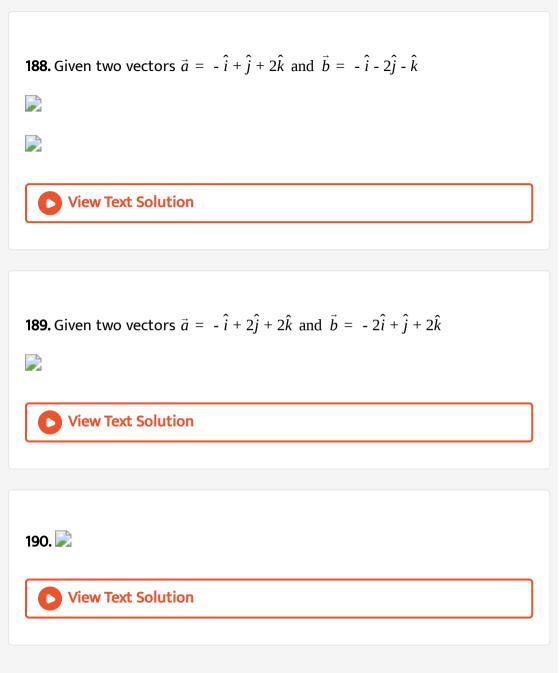
A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$

B.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

$$\mathsf{C}.\,\frac{1}{3}\vec{a} + \frac{\vec{a}\times\left(\vec{b}-\vec{c}\right)}{\left|\vec{a}\right|^2} - \frac{3\left(\vec{b}\times\vec{a}\right)}{\left|\vec{a}\right|^2}$$

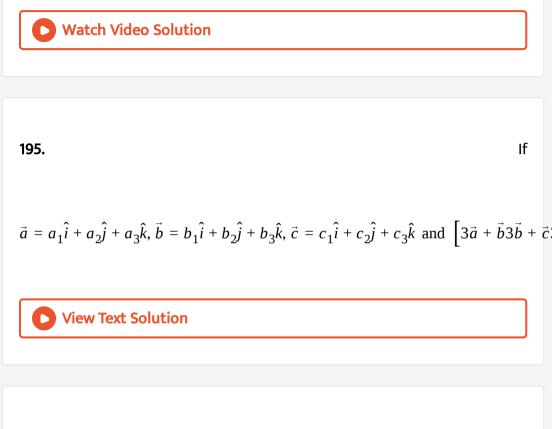
Answer: c





191. Valume of parallelpiped formed by vectors $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36 sq. units. Watch Video Solution **192.** If \vec{a} and \vec{b} are any two unit vectors, then find the greatest postive integer in the range of $\frac{3\left|\vec{a}+\vec{b}\right|}{2}+2\left|\vec{a}-\vec{b}\right|$ Watch Video Solution **193.** Let \vec{u} be a vector on rectangular coodinate system with sloping angle 60° suppose that $|\vec{u} - \hat{i}|$ is geomtric mean of $|\vec{u}|$ and $|\vec{u} - 2\hat{i}|$, where \hat{i} is the unit vector along the x-axis . Then find the value of $\frac{\sqrt{2} - 1}{\left| \vec{u} \right|}$

194. Find the absolute value of parameter t for which the area of the triangle whose vertices the A(-1, 1, 2); B(1, 2, 3) and C(5, 1, 1) is minimum.



196. Let $\vec{a} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{b} = \hat{i} + 2\alpha \hat{j} - 2\hat{k}$ and $\vec{c} = 2\hat{i} - \alpha \hat{j} + \hat{k}$. Find the value of 6α . Such that $\left\{ \left(\vec{a} \times \vec{b} \right) \times \left(\vec{b} \times \vec{c} \right) \right\} \times \left(\vec{c} \times \vec{a} \right) = 0$

197. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $[(a-2)\alpha^2 + (b-3)\alpha + c]\vec{x} + [(a-2)\beta^2 + (b-3)\beta + c]\vec{y} + [(a-2)\gamma^2 + (b-3)\gamma + c]$ are three distinct real numbers, then find the value of $(a^2 + b^2 + c^2 - 4)^2$.

View Text Solution

198. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$ Find the value of $\begin{bmatrix} \vec{u} \vec{v} \vec{w} \end{bmatrix}$.

Watch Video Solution

199. The volume of the tetrahedron whose vertices are the points with positon vectors $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$, $5\hat{i} - \hat{j} + \hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 cubic units if the value of λ is

Given

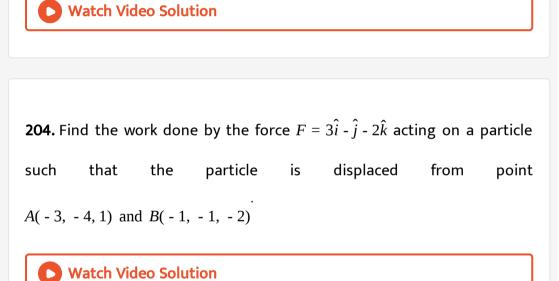
 $\vec{u} = \hat{i} + 2\hat{j} + 3\hat{k}, \vec{v} = 2\hat{i} + \hat{k} + 4\hat{k}, \vec{w} = \hat{i} + 3\hat{j} + 3\hat{k} \text{ and } (\vec{u} \cdot \vec{R} - 15)\hat{i} + (\vec{c} \cdot \vec{R} - 30)\hat{j}$. Then find the greatest integer less than or equal to $|\vec{R}|$.

201. Let a three-dimensional vector \vec{V} satissgy the condition , $2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k}$. If $3|\vec{V}| = \sqrt{m}$. Then find the value of m.

View Text Solution

202. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} . $Vecb = 0 = \vec{a}$. \vec{c} and the angle between \vec{b} and $\vec{c}is\frac{\pi}{3}$, then find the value of $\left|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}\right|$

203. Let $\vec{O}A - \vec{a}$, $\vec{O}B = 10\vec{a} + 2\vec{b}and\vec{O}C = \vec{b}$, where O, AandC are noncollinear points. Let p denotes the area of quadrilateral OACB, and let q denote the area of parallelogram with OAandOC as adjacent sides. If p = kq, then find \vec{k}



205. From a point O inside a triangle ABC, perpendiculars OD, OE and OF are drawn to the sides BC, CA and AB, respectively. Prove that the perpendiculars from A, B and C to the sides EF, FD and DE are concurrent

206. A_1, A_2, \dots, A_n are the vertices of a regular plane polygon with n sides

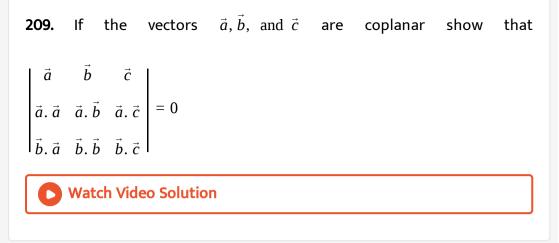
and O ars its centre. Show that
$$\sum_{i=1}^{n-1} \left(\overrightarrow{OA}_i \times \overrightarrow{OA}_{i+1} \right) = (1-n) \left(\overrightarrow{OA}_2 \times \overrightarrow{OA}_1 \right)$$

Watch Video Solution

207. If \vec{c} is a given non-zero scalar, and $\vec{A}and\vec{B}$ are given non-zero vector such that $\vec{A} \perp B$, then find vector \vec{X} which satisfies the equation $\vec{A}.\vec{X} = c$ and $\vec{A} \times \vec{X} = \vec{B}$

Watch Video Solution

208. *A*, *B*, *CandD* are any four points in the space, then prove that $\left| \vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD} \right| = 4$ (area of *ABC*.)



210. Let
$$\vec{A} = 2\vec{i} + \vec{k}$$
, $\vec{B} = \vec{i} + \vec{j} + \vec{k}$ Determine a vector \vec{R} satisfying
 $\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$ and $\vec{R}\vec{A} = 0$.

Watch Video Solution

211. Determine the value of c so that for all real x, vectors $cx\hat{i} - 6\hat{j} - 3\hat{k}andx\hat{i} + 2\hat{j} + 2cx\hat{k}$ make an obtuse angle with each other.

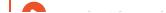
212. If vectors, \vec{b} , *vcec* and \vec{d} are not coplanar, the pove that vector $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c})$ is parallel to \vec{a} .

Watch Video Solution

213. The position vectors of the vertices A, B and C of a tetrahedron ABCD are $\hat{i} + \hat{j} + \hat{k}$, \hat{k} , \hat{i} and $\hat{3}i$,respectively. The altitude from vertex D to the opposite face ABC meets the median line through Aof triangle ABC at a point E. If the length of the side AD is 4 and the volume of the tetrahedron is2/2/3, find the position vectors of the point E for all its possible positfons

Watch Video Solution

214. If \vec{a} and \vec{b} are two unit vectors inclined at an angle $\pi/3$ then $\{\vec{a} \times (\vec{b} + \vec{a} \times \vec{b})\}$. \vec{b} is equal to



215. If
$$\vec{a}, \vec{b}, \vec{c}$$
 are vectors such that $\left| \vec{b} \right| = \left| \vec{c} \right|$ then $\left\{ \left(\vec{a} + \vec{b} \right) \times \left(\vec{a} + \vec{c} \right) \right\} \times \left(\vec{b} \times \vec{c} \right) \cdot \left(\vec{b} + \vec{c} \right) =$

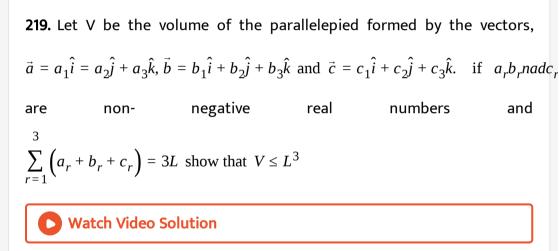
View Text Solution

216. for any two vectors \vec{u} and \vec{v} , prove that

a.
$$(\vec{u}.\vec{v})^2 + |\vec{u}\times\vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2$$
 and
b. $(\vec{1}+|\vec{u}|^2)(\vec{1}+|\vec{v}|^2) = (1=\vec{u}.\vec{v})^2 + |\vec{u}+\vec{v}+(\vec{u}\times\vec{v})|^2$
Watch Video Solution

217. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w} + \vec{w} \times \vec{u} = \vec{v}$, then prove that $|(\vec{u} \times \vec{v}), \vec{w}| \le \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v} .

218. Prove that if the vectors $\vec{a}, \vec{b}, \vec{c}$ satisfy $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then $\vec{b} \times \vec{c} = \vec{c} \times \vec{a} = \vec{a} \times \vec{b}$



220. \vec{u} , \vec{v} and \vec{w} are three nono-coplanar unit vectors and α , β and γ are the angles between \vec{u} and \vec{u} , \vec{v} and \vec{w} and \vec{w} and \vec{u} , respectively and \vec{x} , \vec{y} and \vec{z} are unit vectors along the bisectors of the angles α , β and γ . respectively, prove that $\left[\vec{x} \times \vec{y}\vec{y} \times \vec{z}\vec{z} \times \vec{x}\right] = \frac{1}{16} \left[\vec{u}\vec{v}\vec{w}\right]^2 \frac{\sec^2\alpha}{2} \frac{\sec^2\beta}{2} \frac{\sec^2\gamma}{2}$. **221.** If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$. Prove that $(\vec{a} - \vec{d}). (\vec{c} - \vec{b}) \neq 0, i. e., \vec{a}. \vec{b} + \vec{d}. \vec{c} \neq \vec{d}. \vec{b} + \vec{a}. \vec{c}$. Watch Video Solution

222. $P_1 n dP_2$ are planes passing through origin $L_1 and L_2$ are two lines on $P_1 and P_2$, respectively, such that their intersection is the origin. Show that there exist points A, BandC, whose permutation A', B'andC', respectively, can be chosen such that A is on L_1 , $BonP_1$ but not on $L_1 andC$ not on P_1 ; A' is on L_2 , $B'onP_2$ but not on $L_2 andC'$ not on P_2

Watch Video Solution

223. about to only mathematics

224. Let \vec{A} , \vec{B} and \vec{C} be vectors of legth , 3,4and 5 respectively. Let \vec{A} be perpendicular to $\vec{B} + \vec{C}$, \vec{B} to $\vec{C} + \vec{A}$ and \vec{C} to $\vec{A} + \vec{B}$ then the length of vector $\vec{A} + \vec{B} + \vec{C}$ is _____.

Watch Video Solution

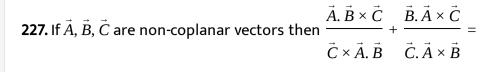
225. The unit vector perendicular to the plane determined by P (1,-1,2)

,C(3,-1,2) is _____.

Watch Video Solution

226. The area of the triangle whose vertices are

A(1, -1, 2), B(2, 1 - 1)C(3, -1, 2) is

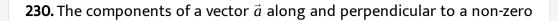


228. If $\vec{A} = (1, 1, 1)$ and $\vec{C} = (0, 1, -1)$ are given vectors then find a vector

 \vec{B} satisfying equations $\vec{A} \times \vec{B} = \vec{C}$ and $\vec{A} \cdot \vec{B} = 3$

Watch Video Solution

229. Let $\vec{b} = 4\hat{i} + 3\hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy-plane. Find all vetors in te same plane having projection 1 and 2 along \vec{b} and \vec{c} respectively.



vector \vec{b} are _____ and _____, respectively.

231. A unit vector coplanar with $\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$ and perpendicular to $\vec{i} + \vec{j} + \vec{k}$ is _____

Watch Video Solution

232. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors \hat{i} , $\hat{i} + \hat{j}$ and thepane determined by the vectors

 $\hat{i} - \hat{j}, \hat{i} + \hat{k}$ then angle between \vec{a} and $\hat{i} - 2\hat{j} + 2\hat{k}$ is = (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

233. If \vec{b} and \vec{c} are any two mutually perpendicular unit vectors and \vec{a} is

any vector, then
$$(\vec{a}.\vec{b})\vec{b} + (\vec{a}.\vec{c})\vec{c} + \frac{\vec{a}.(\vec{b}\times\vec{c})}{|\vec{b}\times\vec{c}|^2}(\vec{b}\times\vec{c}) = (A) \ O(B) \ \vec{a}(C)$$

veca/2(D)2veca`

Watch Video Solution

234. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 resectively. If $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = \vec{0}$ then the acute angel between \vec{a} and \vec{c} is

Watch Video Solution

235. A, B C and D are four points in a plane with position vectors, $\vec{a}, \vec{b}\vec{c}$ and \vec{d} respectively, such that $(\vec{a} - \vec{d}), (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}), (\vec{c} - \vec{a}) = 0$ then point D is the _____ of triangle ABC.

236.

$$\vec{A} = \lambda \left(\vec{u} \times \vec{v} \right) + \mu \left(\vec{v} \times \vec{w} \right) + v \left(\vec{w} \times \vec{u} \right) \text{ and } \left[\vec{u} \vec{v} \vec{w} \right] = \frac{1}{5} then\lambda + \mu + v =$$
(A) 5

If

(B) 10 (C) 15 (D) none of these

View Text Solution

237. If $\vec{a} = \hat{j} + \sqrt{3}\hat{k} = -\hat{j} + \sqrt{3}\hat{k}$ and $\vec{c} = 2\sqrt{3}\hat{k}$ form a triangle , then the

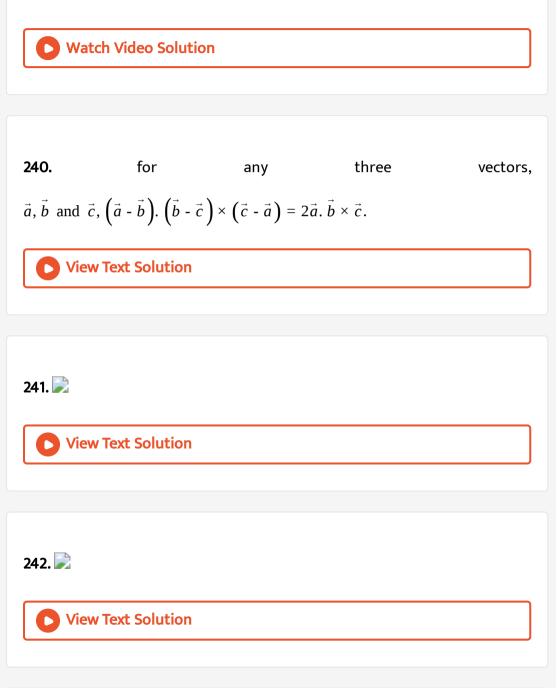
internal angle of the triangle between \vec{a} and \vec{b} is _____

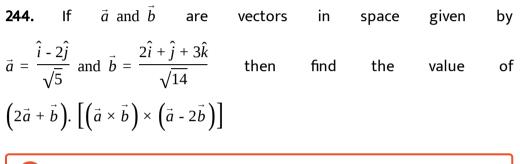
View Text Solution

238. If \vec{a} , \vec{b} , \vec{c} be unit vectors such that \vec{a} . $\vec{b} = \vec{a}$. $\vec{c} = 0$ and the angle between \vec{b} and \vec{c} is $\pi/6$. Prove that $\vec{a} = \pm 2(\vec{b} \times \vec{c})$

239. If \vec{x} . $\vec{a} = 0$, \vec{x} . $\vec{b} = 0$, \vec{x} . $\vec{c} = 0$ and $\vec{x} \neq \vec{0}$ then show yhat \vec{a} , \vec{b} , \vec{c} are

coplanar.





View Text Solution

245. Let $\vec{a} = -\hat{i} - \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = i + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{r} \cdot \vec{a} = 0$ then find the value of $\vec{r} \cdot \vec{b}$.

View Text Solution

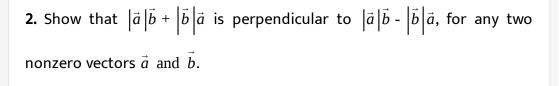
246. If
$$\vec{a}, \vec{b}$$
 and \vec{c} are unit vectors satisfying
 $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$ then $|2\vec{a} + 5\vec{b} + 5\vec{c}|$ is
View Text Solution

247. Let \vec{a}, \vec{b} , and \vec{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b} + \vec{b} \times \vec{x} = p\vec{a} + q\vec{b} + r\vec{c}$ where p,q,r are scalars then the value of $\frac{p^2 + 2q^2 + r^2}{q^2}$ is

View Text Solution

Exercise 2.1

1. Find
$$|\vec{a}|$$
 and $|\vec{b}|$, if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8|\vec{b}|$.



Watch Video Solution

3. If the vertices A,B, C of a triangle ABC are (1,2,3),(-1, 0,0), (0, 1,2), respectively, then find $\angle ABC$.

Watch Video Solution

4. If |a| = 3, |b| = 4 and the angle between *a* and *b* is 120° , then find the

value of |4a + 3b|

Watch Video Solution

5. If vectors $\hat{i} - 2x\hat{j} - 3y\hat{k}$ and $\hat{i} + 3x\hat{j} + 2y\hat{k}$ are orthogonal to each other,

then find the locus of th point (x,y).

View Text Solution

6. Let $\vec{a}\vec{b}$ and \vec{c} be pairwise mutually perpendicular vectors, such that

 $\left|\vec{a}\right| = 1$, $\left|\vec{b}\right| = 2$, $\left|\vec{c}\right| = 2$, the find the length of $\vec{a} + \vec{b} + \vec{c}$.

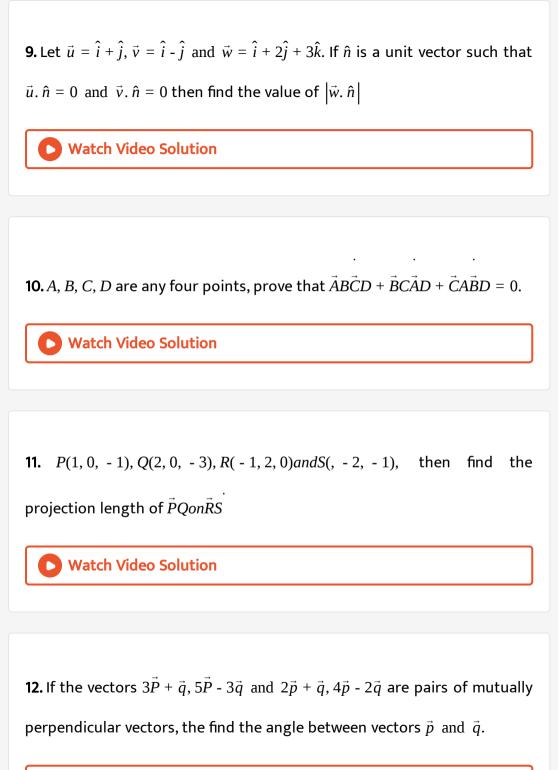
View Text Solution

7. If
$$\vec{a} + \vec{b} + \vec{c} = 0$$
, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then find the angle between

 \vec{a} and \vec{b} .

View Text Solution

8. If the angle between unit vectors \vec{a} and \vec{b} is 60 °. Then find the value of $\left| \vec{a} - \vec{b} \right|$.



13. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $\left(\alpha \vec{A} + \vec{B}\right)$ bisets the internal angle between \vec{A} and \vec{B} then find the value of α .

View Text Solution

14. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} + 2\vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 7$, find the angle between \vec{a} and \vec{b} .

Watch Video Solution

15. If \vec{a} and \vec{b} are unit vectors, then find the greatest value of $\left|\vec{a} + \vec{b}\right| + \left|\vec{a} - \vec{b}\right|$.

16. Constant forces $P_1 = \hat{i} + \hat{j} + \hat{k}$, $P_2 = \hat{i} + 2\hat{j} - \hat{k}andP_3 = \hat{j} - \hat{k}$ act on a particle at a point \hat{A} Determine the work done when particle is displaced from position $A(4\hat{i} - 3\hat{j} - 2\hat{k}) \rightarrow B(6\hat{i} + \hat{j} - 3\hat{k})$

Watch Video Solution

17. If
$$\left| \vec{a} \right| = 5$$
, $\left| \vec{a} - \vec{b} \right| = 8$ and $\left| \vec{a} + \vec{b} \right| = 10$ then find $\left| \vec{b} \right|$

Watch Video Solution

18. If *A*, *B*, *C*, *D* are four distinct point in space such that *AB* is not perpendicular to *CD* and satisfies . $\vec{ABCD} = k \left(\left| \vec{AD} \right|^2 + \left| \vec{BC} \right|^2 - \left| \vec{AC} \right|^2 = \left| \vec{BD} \right|^2 \right)$, then find the value of *k*

Watch Video Solution

Exercise 2.2

1. If
$$\vec{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$$
, $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$ and $\vec{a} \times \vec{b} = \vec{0}$ then find (m,n)

Watch Video Solution

2. If $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $|\vec{a} \times \vec{b}| = 8$ then find the value of $\vec{a} \cdot \vec{b}$

Watch Video Solution

3. If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0$ where \vec{a}, \vec{b} and \vec{c} are coplanar vectors, then for

some scalar k prove that $\vec{a} + \vec{c} = k\vec{b}$.

Watch Video Solution

4. If $\vec{a} = 2\vec{i} + 3\vec{j} - \vec{k}$, $\vec{b} = -\vec{i} + 2\vec{j} - 4\vec{k}$ and $\vec{c} = \vec{i} + \vec{j} + \vec{k}$, then find the value of $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$

5. if the vectors \vec{c} , $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{b} = \hat{j}$ are such that \vec{a} , \vec{c} and \vec{b}

from a right -handed system, then find \vec{c} .

6. Given that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show

that $\vec{b} = \vec{c}$.

Watch Video Solution

7. Show that
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

Watch Video Solution

8. If \vec{x} and \vec{y} are unit vectors and $|\vec{z}| = \frac{2}{\sqrt{7}}$ such that $\vec{z} + \vec{z} \times \vec{x} = \vec{y}$ then

find the angle θ between \vec{x} and \vec{z}

9. prove that
$$(\vec{a}, \hat{i})(\vec{a} \times \hat{i}) + (\vec{a}, \hat{j})(\vec{a} \times \hat{j}) + (\vec{a}, \hat{k})(\vec{a} \times \hat{k}) = \vec{0}$$

Watch Video Solution

10. Let $\vec{a}\vec{b}$ and \vec{c} be three non-zero vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $\lambda \vec{b} \times \vec{a} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} + \vec{a} = \vec{0}$ then find the value of λ .

View Text Solution

11. A particle has an angular speed of 3 rad/s and the axis of rotation passes through the points (1, 1, 2) and (1, 2, -2) Find the velocity of the particle at point P(3, 6, 4)

View Text Solution

12. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a}, \vec{b} = \vec{a}, \vec{c} = 0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$. Prove that $\vec{a} = \pm \frac{2}{\sqrt{3}} (\vec{b} \times \vec{c})$.

Watch Video Solution

13. If
$$|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = 144$$
 and $|\vec{a}| = 4$, then $|\vec{b}|$ is equal to

Watch Video Solution

14. Given
$$|\vec{a}| = |\vec{b}| = 1$$
 and $|\vec{a} + \vec{b}| = \sqrt{3}$. If \vec{c} be a vector such that $\vec{c} - \vec{a} - 2\vec{b} = 3(\vec{a} \times \vec{b})$, then $\vec{c} \cdot \vec{b}$ is equal to

View Text Solution

15. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F} = 3\hat{i} + 2\hat{j} - 4\hat{k}$

is acting on point (1, -1, 2).

Exercise 2.3

1. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are four non-coplanar unit vectors such that \vec{d} makes equal angles with all the three vectors $\vec{a}, \vec{b}, \vec{c}$ then prove that $\left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right]$

Watch Video Solution

2. Prove that
$$\begin{bmatrix} \vec{l} \ \vec{m} \ \vec{n} \end{bmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{l} & \vec{a} & \vec{l} & \vec{b} & \vec{l} & \vec{c} \\ \vec{m} & \vec{a} & \vec{m} & \vec{b} & \vec{m} & \vec{c} \\ \vec{n} & \vec{a} & \vec{n} & \vec{b} & \vec{n} & \vec{c} \end{vmatrix}$$

Watch Video Solution

3. If the volume of a parallelepiped whose adjacent edges are $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + \alpha\hat{j} + 2\hat{k}, \vec{c} = \hat{i} + 2\hat{j} + \alpha\hat{k}$ is 15, then find the value of α if ($\alpha > 0$)

4. If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ then find the vector \vec{c} such that $\vec{a}, \vec{c} = 2$ and $\vec{a} \times \vec{c} = \vec{b}$.

View Text Solution

5. If $\vec{x} \cdot \vec{a} = 0\vec{x} \cdot \vec{b} = 0$ and $\vec{x} \cdot \vec{c} = 0$ for some non zero vector \vec{x} then show that $\left[\vec{a}\vec{b}\vec{c}\right] = 0$

View Text Solution

6. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ then find the vector \vec{c} such that

 \vec{a} . \vec{c} = 2 and $\vec{a} \times \vec{c}$ = \vec{b} .

View Text Solution

7. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$, $\vec{c} \times \vec{a} = \vec{b}$ then prove that $|\vec{a}| = |\vec{b}| = |\vec{c}|$

8. If
$$\vec{a} = \vec{P} + \vec{q}$$
, $\vec{P} \times \vec{b} = \vec{0}$ and \vec{q} . $\vec{b} = 0$ then prove that $\frac{\vec{b} \times (\vec{a} \times \vec{b})}{\vec{b} \cdot \vec{b}} = \vec{q}$

View Text Solution

9. prove that
$$\left(\vec{a}.\left(\vec{b}\times\hat{i}\right)\right)\hat{i} + \left(\vec{a}.\left(\vec{b}\times\hat{j}\right)\right)\hat{j} + \left(\vec{a}.\left(\vec{b}\times\hat{k}\right)\right)\hat{k} = \vec{a}\times\vec{b}$$

Watch Video Solution

10. for any four vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} prove that $\vec{d}. (\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d}))) = (\vec{b}. \vec{d}) [\vec{a} \vec{c} \vec{d}]$ **11.** If \vec{a} and \vec{b} be two non-collinear unit vectors such that $\vec{a} \times (\vec{a} \times \vec{b}) = \frac{1}{2}\vec{b}$ then find the angle between \vec{a} and \vec{b} .

View Text Solution

12. show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b} \times \vec{0}$

View Text Solution

13. Let \vec{a} , \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and $(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$ if θ is the acute angle between vectors \vec{b} and \vec{c} then find value of $\sin\theta$.

14. If \vec{p} , \vec{q} , \vec{r} denote vector $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$, $\vec{a} \times \vec{b}$, respectively, show that \vec{a} is

parallel to $\vec{q} \times \vec{r}$, \vec{b} is parallel $\vec{r} \times \vec{p}$, \vec{c} is parallel to $\vec{p} \times \vec{q}$

15. Let \vec{a} , \vec{b} , \vec{c} be non -coplanar vectors and let equations \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vector \vec{a} , \vec{b} , \vec{c} then prove that $\vec{a} \times \vec{a}' + \vec{b} \times \vec{b}' + \vec{c} \times \vec{c}'$ is a null vector.

View Text Solution

16. Given unit vectors $\hat{m}\hat{n}$ and \hat{p} such that angle between \hat{m} and $\hat{n}is\alpha$ and angle between \hat{p} and $\hat{m}X\hat{n}is\alpha$ find alpha

View Text Solution

17. \vec{a} , \vec{b} , and \vec{c} are three unit vectors and every two are inclined to each other at an angel $\cos^{-1}(3/5)$ If $\vec{a} \times \vec{b} = p\vec{a} + q\vec{b} + r\vec{c}$, wherep, q, r are scalars, then find the value of q

View Text Solution

18. Let
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, $\vec{b} = b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ give three
non-zero vectors such that \vec{c} is a unit vector perpendicular to both
 \vec{a} and \vec{b} . If the angle between \vec{a} and $\vec{b}is\frac{\pi}{6}$, then prove that
 $\begin{vmatrix}a_1 & a_2 & a_3\\b_1 & b_2 & b_3\\c_1 & c_2 & c_3\end{vmatrix} = \frac{1}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$

View Text Solution

JEE Previous Year (Single Question)

1. The scalar \vec{A} . $\left(\vec{B} + \vec{C}\right) \times \left(\vec{A} + \vec{B} + \vec{C}\right)$ equals (A) 0 (B) $\left[\vec{A}\vec{B}\vec{C}\right] + \left[\vec{B}\vec{C}\vec{A}\right]$ (C) $\left[\vec{A}\vec{B}\vec{C}\right]$ (D) none of these

A. 0

- B. $\left[\vec{A}\vec{B}\vec{C}\right] + \left[\vec{B}\vec{C}\vec{A}\right]$ C. $\left[\vec{A}\vec{B}\vec{C}\right]$
- LJ
- D. none of these

Answer: a

View Text Solution

2. For non-zero vectors \vec{a} , \vec{b} and \vec{c} , $\left|\left(\vec{a} \times \vec{b}\right), \vec{c} = \left|\vec{a}\right| \left|\vec{b}\right| \left|\vec{c}\right|$ holds if and

only if

A. \vec{a} . $\vec{b} = 0$, \vec{b} . $\vec{c} = 0$

B. \vec{b} . $\vec{c} = 0$, \vec{c} , $\vec{a} = 0$

C. \vec{c} . $\vec{a} = 0$, \vec{a} , $\vec{b} = 0$

D.
$$\vec{a}$$
. $\vec{b} = \vec{b}$. $\vec{c} = \vec{c}$. $\vec{a} = 0$

Answer: d

3. The volume of he parallelepiped whose sides are given by $\vec{O}A = 2i - 2, j, \vec{O}B = i + j - kand\vec{O}C = 3i - k$ is 4/13 b. 4 c. 2/7 d. 2

A. 4/13

B.4

C. 2/7

D. 2

Answer: d

4. If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vector and \vec{p} , \vec{q} \vec{r} are defind by the

relations
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$
, $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, then
 $\vec{p} \cdot \left(\vec{a} + \vec{b}\right) + \vec{q} \cdot \left(\vec{b} + \vec{c}\right) + \vec{r} \cdot \left(\vec{c} + \vec{a}\right) = \dots$

- A. 0
- B. 1
- C. 2
- D. 3

Answer: d

Watch Video Solution

5. Let $\vec{a} = \hat{i} - \hat{j}, \vec{b} = \hat{j} - \hat{k}, \vec{c} = \hat{k} - \hat{i}$. If \hat{d} is a unit vector such that $\vec{a} \cdot \hat{d} = 0 = \begin{bmatrix} \vec{b} \cdot \vec{c} \cdot \vec{d} \end{bmatrix}$ then \hat{d} equals $\hat{i} + \hat{i} - 2\hat{k}$

$$A. \pm \frac{i+j-2k}{\sqrt{6}}$$

B.
$$\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$$

C. $\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$
D. $\pm \hat{k}$

Answer: a

View Text Solution

6. If \vec{a} , \vec{b} , \vec{c} are three non - coplanar vector such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$,

then the angle between \vec{a} and \vec{b} is

A. 3π/4

B. $\pi/4$

C. *π*/2

D. *π*

Answer: a

7. Let \vec{u}, \vec{v} and \vec{w} be vector such that $\vec{u} + \vec{v} + \vec{w} = \vec{0}$. If $|\vec{u}| = 3$, $|\vec{v}| = 4$ and $|\vec{w}| = 5$ then $\vec{u}.\vec{v} + \vec{v}.\vec{w} + \vec{w}.\vec{u}$ is

A. 47

B. - 25

C. 0

D. 25

Answer: b

Watch Video Solution

8. If \vec{a}, \vec{b} and \vec{c} 1 are three non-coplanar vectors, then $\left(\vec{a}+\vec{b}+\vec{c}\right)$. $\left[\left(\vec{a}+\vec{b}\right)\times\left(\vec{a}+\vec{c}\right)\right]$ equals

B.
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

C. 2 $\left[\vec{a}\vec{b}\vec{c}\right]$
D. - $\left[\vec{a}\vec{b}\vec{c}\right]$

Answer: d

View Text Solution

9. Let $\vec{p}, \vec{q}, \vec{r}$ be three mutually perpendicular vectors of the same magnitude. If a vector \vec{x} satisfies the equation

$$\vec{p} \times \left\{ \vec{x} - \vec{q} \right\} \times \vec{p} \right\} + \vec{q} \times \left\{ \vec{x} - \vec{r} \right\} \times \vec{q} \right\} + \vec{r} \times \left\{ \vec{x} - \vec{p} \right\} \times \vec{r} \right\} = \vec{0},$$

then \vec{x} is given by

A.
$$\frac{1}{2} (\vec{p} + \vec{q} - 2\vec{r})$$

B. $\frac{1}{2} (\vec{p} + \vec{q} + \vec{r})$
C. $\frac{1}{3} (\vec{p} + \vec{q} + \vec{r})$
D. $\frac{1}{3} (2\vec{p} + \vec{q} - \vec{r})$

Answer: b

10. Let
$$\vec{a} = 2\vec{j} + \vec{j} - 2\vec{k}$$
, $\vec{b} = \vec{i} + \vec{j}$. If \vec{c} is a vector such that
 $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°. Find
the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|$

A. 2/3

B.3/2

C. 2

D. 3

Answer: b

11. Let $\vec{a} = 2i + j + k$, $\vec{b} = i + 2j - k$ and a unit vector \vec{c} be coplanar. If \vec{c} is pependicular to \vec{a} . Then \vec{c} is

A.
$$\frac{1}{\sqrt{2}}(-j+k)$$

B. $\frac{1}{\sqrt{3}}(i-j-k)$
C. $\frac{1}{\sqrt{5}}(i-2j)$
D. $\frac{1}{\sqrt{3}}(i-j-k)$

Answer: a

View Text Solution

12. If the vectors \vec{a} , \vec{b} , \vec{c} form the sides BC,CA and AB respectively of a triangle ABC then (A) \vec{a} . $(\vec{b} \times \vec{c}) = \vec{0}$ (B) $\vec{a} \times (\vec{b}x\vec{c}) = \vec{0}$ (C) \vec{a} . $\vec{b} = \vec{c} = \vec{c} = \vec{a}$. $a \neq 0$ (D) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\vec{0}$

A. \vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} = 0

 $\mathbf{B}.\,\vec{a}\times\vec{b}=\vec{b}\times\vec{c}=\vec{c}\times\vec{a}$

 $\mathsf{C}.\,\vec{a}.\,\vec{b}=\vec{b}.\,\vec{c}=\vec{c}.\,\vec{a}$

 $\mathsf{D}.\,\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}=\vec{0}$

Answer: b

13. Consider the vectors, $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ Let P_1 and P_2 be the planes determined by the pairs of vectors, \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Then the angle between P_1 and P_2 is

A. 0

B. $\pi/4$

C. *π*/3

D. *π*/2

Answer: a

14. If \vec{a} , $\vec{b}and\vec{c}$ are unit coplanar vectors, then the scalar triple product $\left[2\vec{a} - \vec{b}2\vec{b} - \vec{c}2\vec{c} - \vec{a}\right]$ is a.0 b. 1 c. $-\sqrt{3}$ d. $\sqrt{3}$

A. 0

B. 1

C. $-\sqrt{3}$

D. √3

Answer: a

Watch Video Solution

15. If \hat{a} , \hat{b} , and \hat{c} are unit vectors, then $|\hat{a} - \hat{b}|^2 + |\hat{b} - \hat{c}|^2 + |\hat{c} - \hat{a}|^2$ does not exceed 45⁰ b. 60⁰ c. cos⁻¹(1/3) d. cos⁻¹(2/7)

C. 8

D. 6

Answer: b

Watch Video Solution

16. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is (A) 45^{0} (B) 60^{0} (C) $\cos^{-1}\left(\frac{1}{3}\right)$ (D) $\cos^{-1}\left(\frac{2}{7}\right)$ A. 45° B. 60°

C. $\cos^{-1}(1/3)$

D. $\cos^{-1}(2/7)$

Answer: b

17. Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}and\vec{W} = \hat{i} + 3\hat{k}$ If \vec{U} is a unit vector, then the maximum

value of the scalar triple product [*UVW*] is a.-1 b. $\sqrt{10}$ + $\sqrt{6}$ c. $\sqrt{59}$ d. $\sqrt{60}$

A. - 1 B. $\sqrt{10} + \sqrt{6}$ C. $\sqrt{59}$

D. $\sqrt{60}$

Answer: c

Watch Video Solution

18. Find the value of *a* so that the volume of the parallelepiped formed by vectors $\hat{i} + a\hat{j} + k$, $\hat{j} + a\hat{k}anda\hat{i} + \hat{k}$ becomes minimum.

B. 3

C. $1/\sqrt{3}$

D. $\sqrt{3}$

Answer: c

Watch Video Solution

19. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{i} - \hat{k}$, then $\vec{b} \cdot (3\hat{i} + 4\hat{j} + 5\hat{k}) =$

A. $\hat{i} - \hat{j} + \hat{k}$ B. $2\hat{i} - \hat{k}$ C. \hat{i}

D. 2î

Answer: c

20. The unit vector which is orthogonal to the vector $5\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ is

A.
$$\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$$

B.
$$\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$$

C.
$$\frac{3\hat{j} - \hat{k}}{\sqrt{10}}$$

D.
$$\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$$

Answer: c

View Text Solution

21. if \vec{a}, \vec{b} and \vec{c} are three non-zero, non- coplanar vectors and $\vec{b}_1 = \vec{b} - \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}, \vec{b}_2 = \vec{b} + \frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\vec{a}, \vec{c}_1 = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} + \frac{\vec{b}.\vec{c}}{|\vec{c}|^2}\vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{b}.\vec{c}}{|\vec{b}|^2}\vec{b}_1$

, then the set of orthogonal vectors is

 $\mathsf{A}.\left(\vec{a},\,\vec{b}_{1},\,\vec{c}_{3}\right)$

B.
$$\left(\vec{c}a, \vec{b}_1, \vec{c}_2\right)$$

C. $\left(\vec{a}, \vec{b}_1, \vec{c}_1\right)$
D. $\left(\vec{a}, \vec{b}_2, \vec{c}_2\right)$

Answer: c

View Text Solution

22. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{=} \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - \hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is (A) $4\hat{i} - \hat{j} + 4\hat{k}$ (B) $\hat{i} + \hat{j} - 3\hat{k}$ (C) $2\hat{i} + \hat{j} - 2\hat{k}$ (D) $4\hat{i} + \hat{j} - 4\hat{k}$

A. $4\hat{i} - \hat{j} + 4\hat{k}$ B. $3\hat{i} + \hat{j} - 3\hat{k}$ C. $2\hat{i} + \hat{j} - 2\hat{k}$ D. $4\hat{i} + \hat{j} - 4\hat{k}$

Answer: a

23. Left two non collinear unit vectors \hat{a} and \hat{b} form and acute angle. A point P moves so that at any time t the position vector OP (where O is the origin) is given by $\hat{a}\cos t + \hat{b}\sin t$. When P is farthest from origin O, let M be the length of OP and \hat{u} be the unit vector along OP Then (A) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{\frac{1}{2}}$ (B) $\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{\frac{1}{2}}$ (C) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + 2\hat{a}.\hat{b})^{\frac{1}{2}}$ (D) $\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$ and $M = (1 + 2\hat{a}.\hat{b})^{\frac{1}{2}}$ A., $\hat{u} = \frac{\hat{a} + b}{|\hat{a} + \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$ B., $\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$ C. $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + 2\hat{a}.\hat{b})^{1/2}$

D.,
$$\hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|}$$
 and $M = \left(1 + 2\hat{a} \cdot \hat{b}\right)^{1/2}$

Answer: a

24. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b})$. $(\vec{c} \times \vec{d}) = 1$ and \vec{a} . $\vec{c} = \frac{1}{2}$ then (A) \vec{a} , \vec{b} , \vec{c} are non coplanar (B) \vec{b} , \vec{c} , \vec{d} are non coplanar (C) \vec{b} , \vec{d} are non paralel (D) \vec{a} , \vec{d} are paralel and \vec{b} , \vec{c} are parallel

A. \vec{a} , \vec{b} and \vec{c} are non-coplanar

- B. \vec{b} , \vec{c} and \vec{d} are non-coplanar
- C. \vec{b} and \vec{d} are non-parallel
- D. \vec{a} and \vec{d} are parallel and \vec{b} and \vec{c} are parallel

Answer: c

View Text Solution

25. Two adjacent sides of a parallelogram ABCD are given by $\vec{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}and\vec{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$ The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD 'If AD' makes a right angle with the side AB, then the cosine of the angel α is given by a. $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4\sqrt{5}}{9}$ A. $\frac{8}{9}$ B. $\frac{\sqrt{17}}{9}$ C. $\frac{1}{9}$ D. $\frac{4\sqrt{5}}{9}$

Answer: b

26. Let P, Q, R and S be the points on the plane with position vectors $-2\hat{i} - \hat{j}, 4\hat{i}, 3\hat{i} + 3\hat{j}$ and $-3\hat{i} + 2\hat{j}$ respectively. The quadrilateral PQRS must

A. Parallelogram, which is neither a rhombus nor a rectangle

B. square

C. rectangle, but not a square

D. rhombus, but not a square.

Answer: a

View Text Solution

27. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ be three vectors. A vectors \vec{v} in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by

A. $\hat{i} - 3\hat{j} + 3\hat{k}$ B. $-3\hat{i} - 3\hat{j} + \hat{k}$ C. $3\hat{i} - \hat{j} + 3\hat{k}$ D. $\hat{i} + 3\hat{i} - 3\hat{k}$

Answer: c

28. Let $PR = 3\hat{i} + \hat{j} - 2\hat{k}$ and $SQ = \hat{i} - 3\hat{j} - 4\hat{k}$ determine diagonals of a parallelogram PQRS and $PT = \hat{i} + 2\hat{j} + 3\hat{k}$ be another vector. Then the - - - - - volume of the parallelepiped determined by the vectors PT, PQ and PS is

A. 5

B. 20

C. 10

D. 30

Answer: c

View Text Solution

JEE Previous Year (Multiple Question)

1. about to only mathematics

A. 0
B. 1
C.
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_2^2 \right) \left(b_1^2 + b_2^2 + b_2^2 \right)$$

D. $\frac{3}{4} \left(a_1^2 + a_2^2 + a_2^2 \right) \left(b_1^2 + b_2^2 + b_2^2 \right) \left(c_1^2 + c_2^2 + c_2^2 \right)$

Answer: c

2. The number of vectors of unit length perpendicular to vectors $\vec{a} = (1, 1, 0) and \vec{b} = (0, 1, 1)$ is a. one b. two c. three d. infinite

A. one

B. two

C. three

D. infinite

Answer: b

Watch Video Solution

3. Let
$$\vec{a} = 2\hat{i} = \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ be three vectors . A vector in the pland of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude $\sqrt{\left(\frac{2}{3}\right)}$ is (A) $2\hat{i} + 3\hat{j} + 3\hat{k}$ (B) $2\hat{i} + 3\hat{j} - 3\hat{k}$ (C) $-2\hat{i} - \hat{j} + 5\hat{k}$ (D) $2\hat{i} + \hat{j} + 5\hat{k}$
A. $2\hat{i} + 3\hat{j} - 3\hat{k}$
B. $2\hat{i} + 3\hat{j} + 3\hat{k}$
C. $-2\hat{i} - \hat{j} + 5\hat{k}$
D. $2\hat{i} + \hat{j} + 5\hat{k}$

Answer: a,c

View Text Solution

4. For three vectors \vec{u} , \vec{v} and \vec{w} which of the following expressions is not equal to any of the remaining three ? $\mathbf{a}.\vec{u}.(\vec{v} \times \vec{w})$ b. $(\vec{v} \times \vec{w}).\vec{u}$ c. $\vec{v}.(\vec{u} \times \vec{w})$ d. $(\vec{u} \times \vec{v}).\vec{w}$

A. \vec{u} . $(\vec{v} \times \vec{w})$ B. $(\vec{v} \times \vec{w})$. \vec{u} C. \vec{v} . $(\vec{u} \times \vec{w})$ D. $(\vec{u} \times \vec{v})$. \vec{w}

Answer: c

Watch Video Solution

5. Which of the following expressions are meaningful? $a.\vec{u}(\vec{v} \times \vec{w})$ b. $(\vec{u}.\vec{v}).\vec{w}$ c. $(\vec{u}.\vec{v})\vec{w}$ d. $\vec{u} \times (\vec{v}.\vec{w})$

A. \vec{u} . $(\vec{v} \times \vec{w})$ B. (\vec{u}, \vec{v}) . \vec{w} C. $(\vec{u}. \vec{v})\vec{w}$ D. $\vec{u} \times (\vec{v}. Vecw)$

Answer: a,c

Watch Video Solution

6. If \vec{a} and \vec{b} are two non collinear vectors and vecuveca0(veca.vecb)vecb and vecv=vecaxxvecb*then*|vecv|*is*(*A*)|vecu|(*B*)|vecu|+|vecu.vecb|(*C*) |vecu|+|vecu.veca|`(D) none of these

A. $|\vec{u}|$ B. $|\vec{u}| + |\vec{u}. Veca|$ C. $|\vec{u}| + |\vec{u}. \vec{b}|$ D. $|\vec{u}| + \vec{u}. (\vec{a} + \vec{b})$

Answer: a,c

7. Vector
$$\frac{1}{3} \left(2\hat{i} - 2\hat{j} + \hat{k} \right)$$
 is

A. a unit vector

- B. makes an angle $\pi/3$ with vector $(2\hat{i} 4\hat{j} + 3\hat{k})$
- C. parallel to vector $\left(-\hat{i}+\hat{j}-\frac{1}{2}\hat{k}\right)$

D. perpendicular to vector $3\hat{i} + 2\hat{j} - 2\hat{k}$

Answer: a,c,d

View Text Solution

8. Let \vec{A} be a vector parallel to the line of intersection of planes $P_1 and P_2$ Plane P_1 is parallel to vectors $2\hat{j} + 3\hat{k}and4\hat{j} - 3kandP_2$ is parallel to $\hat{j} - \hat{k}and3\hat{i} + 3\hat{j}$ Then the angle betweenvector \vec{A} and a given vector $2\hat{i} + \hat{j} - 2\hat{k}$ is $\pi/2$ b. $\pi/4$ c. $\pi/6$ d. $3\pi/4$ **B**. *π*/4

C. $\pi/6$

D. 3π/4

Answer: b,d

Watch Video Solution

9. The vectors which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$ and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is /are (A) $\hat{j} - \hat{k}$ (B) $-\hat{i} + \hat{j}$ (C) $\hat{i} - \hat{j}$ (D) $-\hat{j} + \hat{k}$

A. $\hat{j} - \hat{k}$ B. $-\hat{i} + \hat{j}$ C. $\hat{i} - \hat{j}$ D. $-\hat{j} + \hat{k}$

Answer: a,d

10. Let \vec{x} , \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$ if \vec{a} is a non-zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then

A.
$$\vec{b} = (\vec{b}. \vec{z})(\vec{z} - \vec{x})$$

B. $\vec{a} = (\vec{a}. \vec{y})(\vec{y} - \vec{z})$
C. $\vec{a}. \vec{b} = -(\vec{a}. \vec{y})(\vec{b}. \vec{z})$
D. $\vec{a} = (\vec{a}. \vec{y})(\vec{z} - \vec{y})$

Answer: a,b,c

Niew Text Solution

11. Let $ti \angle PQR$ be a triangle . Let $\vec{a} = QR, \vec{b} = RP$ and $\vec{c} = PQ$. if $|\vec{a}| = 12, |\vec{b}| = 4\sqrt{3}$ and $\vec{b} \cdot \vec{c} = 24$ then which of the following is (are) true ?

A.
$$\frac{|\vec{c}|^2}{2} - |\vec{a}| = 12$$

B. $\frac{|\vec{c}|^2}{2} - |\vec{a}| = 30$
C. $|\vec{a} \times \vec{v}b + \vec{c} \times \vec{a}| = 48\sqrt{3}$
D. \vec{a} . $\vec{b} = -72$

Answer: a,c,d

D View Text Solution