

MATHS

NCERT - NCERT Maths(Tamil)

POLYNOMIALS

1. Find the number zeroes of the given polynomials. And also find their values. p(x) = 2x + 1

2. Find the number zeroes of the given polynomials. And also find their values. $q(y) = y^2 - 1$

3. Find the number zeroes of the given polynomials. And also find their values.

$$r(z)=z^3$$

4. Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$, and verify the relationship between the zeroes and the coefficients.

5. Find the zeroes of the polynomial $x^2 - 3$ and verify the relationship between the zeroes and the coefficients.

Watch Video Solution

6. Find the quadratic polynomial, whose sum and product of the zeroes are - 3 and 2, respectively.

Watch Video Solution

7. Find the quadratic polynomial whose zeroes are 2 and $\frac{-1}{3}$

8. Verify whether 3, -1 and $-\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x) = 3x^3 - 5x^2 - 11x - 3$, and then verify the relationship between the zeroes and the coefficients.

2. State which of the following are polynomials

and which are not ? Give reasons.

$$rac{1}{x}-1(x
eq 0)$$

3. State which of the following are polynomials

and which are not ? Give reasons.

$$4z^2+rac{1}{7}$$

4. State which of the following are polynomials

and which are not ? Give reasons.

$$m^2-\sqrt{2}m+2$$

Watch Video Solution

5. State which of the following are polynomials

and which are not ? Give reasons.

$$p^{-2} + 1$$

6. If $p(x) = x^2 - 5x - 6$, then find the values of

p(1), p(2), p(3), p(0), p(-1), p(-2), p(-3)

Watch Video Solution

7. If
$$p(m) = m^2 - 3m + 1$$
, then find the value

of p(1) and p(-1).

8. Let $p(x) = x^2 - 4x + 3$. Find the value of p(0), p(1), p(2), p(3) and obtain zeroes of the polynomial p(x).

9. Check whether -3 and 3 are the zeroes of

the polynomial $x^2 - 9$.

10. Draw the graph of (i) y = 2x + 5, (ii) y = 2x - 5, (iii) y = 2x and find the point of intersection on X - axis Is the x-coordinate of these points also the zeroes of the polynomial ?

Watch Video Solution

11. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship

to the coeffcients of terms of terms in the polynomial.

$$p(x) = x^2 - x - 6$$

Watch Video Solution

12. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship to the coeffcients of terms of terms in the polynomial.

$$p(x) = x^2 - 4x + 3$$

13. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship to the coeffcients of terms of terms in the polynomial.

$$p(x) = x^2 - 4$$

14. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship to the coeffcients of terms of terms in the polynomial.

 $p(x) = x^2 + 2x + 1$

1. Write 3 different quadratic, cubic and 2 linear polynomials with different number of terms.

2. Write the general form of a quadratic polynomial and cubic polynomial in variable x.

3. Write a general polynomial q(z) of degree n

with coefficients that are $b_0, b_1, b_2, \ldots, b_n$,

What are the conditions on $b_0, b_1, b_2, \ldots, b_n$?

4. Draw the graphs of (i) $y = x^2 - x - 6$ (ii)

 $y = 6 - x - x^2$ and find zeroes in each case.

What do you notice ?

5. Write three quadratic polynomials that have

2 zeroes each.

6. Write one quadratic polynomial that has one zero.

7. How will you verify if a quadratic polynomial

has only one zero ?

Watch Video Solution

8. Write three quadratic polynomials that have

no zeroes.

9. Find the zeroes of cubic polynomials (i) $-x^3$ (ii) $x^2 - x^3$ (iii) $x^3 - 5x^2 + 6x$ without drawing the graph of the polynomial.

11. What is the quadratic polynomial the sum of whose zeroes id $\frac{-3}{2}$ and the product of

the zeroes is -1

Watch Video Solution

Exercise 31

1. In
$$p(x) = 5x^7 - 6x^5 + 7x + 6$$
, what is the
(i) coefficient of x^5 (ii) degree of $p(x)$ (iii)
consstant term.

2. State whether the following statement is true or false. Give reasons for your choice. The degree of the polynomial $\sqrt{2}x^2 - 3x + 1$ is $\sqrt{2}$.

Watch Video Solution

3. State whether the following statement is true or false. Give reasons for your choice.

Watch Video Solution

4. State whether the following statement is

true or false. Give reasons for your choice.

The degree of a constant term is zero.

5. State whether the following statement is

true or false. Give reasons for your choice.

$$rac{1}{x^2-5x+6}$$
 is a quadratic polynomial.

6. State whether the following statement is true or false. Give reasons for your choice.

The degree of a polynomial is one more than

the number of terms in it.

7. If $p(t) = t^3 - 1$, find the values of p(1), p(-1), p(0), p(2), p(-2).

Watch Video Solution

8. Check whether -2 and 2 are the zeroes of

the polynomial $x^4 - 16$.

the polynomial p(x) when $p(x) = x^2 - x - 6$.

1. Find the zeroes of the given polynomials.

$$p(x) = 3x$$

2. Find the zeroes of the given polynomials.

$$p(x) = x^2 + 5x + 6$$

Watch Video Solution

3. Find the zeroes of the given polynomial.

$$p(x) = (x+2)(x+3)$$

4. Draw the graphs of the given polynomial and find the zeroes. Justify the answers. $p(x) = x^2 - x - 12$

Watch Video Solution

5. Draw the graphs of the given polynomial and find the zeroes. Justify the answers.

$$p(x) = x^2 - 6x + 9$$

6. Draw the graphs of the given polynomial and find the zeroes. Justify the answers. $p(x) = x^2 - 4x + 5$

Watch Video Solution

7. Draw the graphs of the given polynomial and find the zeroes. Justify the answers.

$$p(x) = x^2 - 4x + 5$$

8. Draw the graphs of the given polynomial and find the zeroes. Justify the answers.

$$p(x) = x^2 - 1$$

Watch Video Solution

9. Why are
$$rac{1}{4}$$
 and -1 zeroes of the polynomials $p(x)=4x^2+3x-1$?

Watch Video Solution

Exercise 3 3

1. Find the zeroes of the following quadratic polynomials and verify relationship between the zeroes and the coefficients.

$$x^2-2x-8$$

2. Find the zeroes of the following quadratic polynomials and verify relationship between the zeroes and the coefficients.

$$4s^2 - 4s + 1$$

3. Find the zeroes of the following quadratic polynomials and verify relationship between the zeroes and the coefficients.

 $6x^2 - 3 - 7x$

Watch Video Solution

4. Find the zeroes of the following quadratic polynomials and verify relationship between

the zeroes and the coefficients.

$$4u^2 + 8u$$

5. Find the zeroes of the following quadratic polynomials and verify relationship between the zeroes and the coefficients.

 $t^2 - 15$

6. Find the zeroes of the following quadratic polynomials and verify relationship between the zeroes and the coefficients.

$$3x^2 - x - 4$$

Watch Video Solution

7. Find the quadratic polynomial in each case, with the given numbers as the sum and product of its zeroes respectively. $\frac{1}{4}$, -1

8. Find the quadratic polynomial in each case, with the given numbers as the sum and product of its zeroes respectively.

$$\sqrt{2}, \frac{1}{3}$$

9. Find the quadratic polynomial in each case,

with the given numbers as the sum and

product of its zeroes respectively.

 $0,\sqrt{5}$

Watch Video Solution

10. Find the quadratic polynomial in each case,

with the given numbers as the sum and product of its zeroes respectively.

1,1

11. Find the quadratic polynomial in each case, with the given numbers as the sum and product of its zeroes respectively.

$$-rac{1}{4},rac{1}{4}$$

Watch Video Solution

12. Find the quadratic polynomial in each case, with the given numbers as the sum and product of its zeroes respectively.

4,1

13. Find the quadratic polynomial, for the zeroes α , β given in each case.

2, -1

Watch Video Solution

14. Find the quadratic polynomial, for the zeroes α, β given in each case.

$$\sqrt{3}, -\sqrt{3}$$

15. Verify that 1, -1 and +3 are the zeroes of the cubic polynomial $x^2 - 3x^2 - x + 3$ and check the relationship between zeroes and the coefficients.

Watch Video Solution

Exercise 3 4

1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :

 $p(x)=x^3-3x^2+5x-3, g(x)=x^2-2$

Watch Video Solution

2. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :

$$p(x) = x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 - x$$

3. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :

$$p(x) = x^4 - 5x + 6, g(x) = 2 - x^2$$

Watch Video Solution

4. Check in which case the first polynomial is a factor of the second polynomial by dividing

the second polynomial by the first polynomial :

$$t^2-3, 2t^4+3t^3-2t^2-9t-12$$

Watch Video Solution

5. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :

$$x^2+3x+1,\,3x^4+5x^3-7x^2+2x+2$$

6. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :

$$x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$

7. Obtain all other zeroes of
$$3x^4 + 6x^3 - 2x^3 - 10x - 5$$
, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

8. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x) the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

Watch Video Solution

9. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and deg p(x) = deg q(x)

Watch Video Solution

10. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and deg q(x) = deg r(x)

11. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the

division algorithm and

 $\deg r(x) = 0$

Optional Exercise For Extensive Learning

1. Verify that the number given alongside the cubic polynomials are their zeroes. Also verify relationship betweeen the zeroes and coefficients in each case.

$$2x^3+x^2-5x+2,\left(rac{1}{2},1,\ -2
ight)$$

2. Verify that the number given alongside the cubic polynomials are their zeroes. Also verify relationship between the zeroes and coefficients in each case.

$$x^3-4x^2+5x-2, (2,1,1)$$

3. Find a cubic polynomial with the sum, sum of the product of zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

5. If two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3},$

find the other zeroes.

Watch Video Solution

6. If the polynomial $x^4-6x^3+16x^2-25x+10$ is divided by another polynomial x^2-2x+k , the remainder comes out to be x+a, find k and a.

