© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

SEQUENCES AND SERIES

Solved Examples And Exercises

1. Find the sum to n terms of the series $1 /(1 \times 2)+1 /(2 \times 3)+1 /(3 \times 4)++1 / n(n+1)$.

- Watch Video Solution

2. If $\sum_{r=1}^{n} T_{r}=\left(3^{n}-1\right)$, then find the sum of $\sum_{r=1}^{n} \frac{1}{T_{r}}$.
3. Find the sum to n terms of the series $3+15+35+63+$

- Watch Video Solution

4. Find the sum to n terms of the series $1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots$

- Watch Video Solution

5. If $\sum_{r=1}^{n} T_{r}=n\left(2 n^{2}+9 n+13\right)$, then find the sum $\sum_{r=1}^{n} \sqrt{T_{r}}$.

- Watch Video Solution

6. Find the sum of series $31^{3}+32^{3}+\ldots . .+50^{3}$

- Watch Video Solution

7. Find the sum of first n terms of the series $1^{3}+3 \times 2^{2}+3^{3}+3 \times 4^{2}+5^{3}+3 \times 6^{2}+.$. When
(i) n is even (ii) n is odd

- Watch Video Solution

8. Find the sum of the series
$1 \times n+2(n-1)+3 \times(n-2)+\ldots+(n-1) \times 2+n \times 1$.

- Watch Video Solution

9. Find the sum up to the $17^{\text {th }}$ term of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$.
10. If a, b, c are in A.P., then prove that the following are also in A.P. $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$

- Watch Video Solution

11. If a, b, c are in A.P., then prove that the following are also in A.P.
$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$

- Watch Video Solution

12. If a, b, c are in A.P., then prove that the following are also in A.P.
$a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$

- Watch Video Solution

13. Find the sum of the following series:
$\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\frac{1}{2^{5}}+\frac{1}{3^{6}}+\infty$
14. Consider two A.P. s: $S_{1}: 2,7,12,17,500$ terms and $S_{1}: 1,8,15,22,300$ terms Find the number of common term. Also find the last common term.

- Watch Video Solution

15. If pth, qth, and rth terms of an A.P. are a, b, c, respectively, then show that $(a-b) r+(b-c) p+(c-a) q=0$

- Watch Video Solution

16. The sum of the first four terms of an A.P. is 56 . The sum of the last four terms is 112 . If its first term is 11 , then find the number of terms.

- Watch Video Solution

17. Given two A.P. $2,5,8,11 \ldots \ldots T_{60}$ and $3,5,79, \ldots \ldots \ldots T_{50}$. Then find the number of terms which are identical.

- Watch Video Solution

18. In a certain AP, 5times the $5^{\text {th }}$ term is equal to 8 times the $8^{\text {th }}$ term. Its $13^{\text {th }}$ term is

- Watch Video Solution

19. Find the term of the series $25,22 \frac{3}{4}, 20 \frac{1}{2}, 18 \frac{1}{4}$ which is numerically the smallest.

- Watch Video Solution

20. If a, b, c, d, e are in A.P., the find the value of $a-4 b+6 c-4 d+e$.
21. If $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$, are in A.P., prove that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are also in A.P.

- Watch Video Solution

22. If $a, b, c \in R+$ form an A.P., then prove that $a+1 /(b c), b+1 /(a c), c+1 /(a b)$ are also in A.P.

- Watch Video Solution

23. Find the degree of the expression $(1+x)\left(1+x^{6}\right)\left(1+x^{11}\right) \ldots \ldots .\left(1+x^{101}\right)$.

D Watch Video Solution

24. In an A.P. of 99 terms, the sum of all the odd-numbered terms is 2550.

Then find the sum of all the 99 terms of the A.P.
25. Divide 32 into four parts which are in A.P. such that the ratio of the product of extremes to the product of means is 7:15.

- Watch Video Solution

26. Show that the sum of $(m+n)^{t h}$ and $(m-n)^{t h}$ term of an A.P is equal to twice the $m^{\text {th }}$ term.

- Watch Video Solution

27. If the sum of three numbers in A.P., is 24 and their product is 440 , find the numbers.

- Watch Video Solution

28. Prove that the sum of n number of terms of two different A.P. s can be same for only one value of n.

- Watch Video Solution

$$
\begin{array}{lccc}
\text { 29. } & \text { In } & \text { an } & \text { A.P. } \\
S_{1}=T_{1}+T_{2}+T_{3}+\ldots .+T_{n}(\operatorname{nod}) \dot{S}_{2}=T_{2}+T_{4}+T_{6}+\ldots \ldots \ldots+T_{n-}
\end{array}
$$

, then find the value of S_{1} / S_{2} in terms of n.

- Watch Video Solution

30. The sum of the series $2,5,8,11, \ldots \ldots$ is 60100 , then n is

- Watch Video Solution

31. The digits of a positive integer, having three digits, are in A.P. and their sum is 15 . The number obtained by reversing the digits is 594 less than
the original number. Find the number.

- Watch Video Solution

32. If eleven A.M. 's are inserted between 28 and 10 , then find the number of integral A.M. 's.

- Watch Video Solution

33. Between 1 and 31 , m numbers have been inserted in such a way that the resulting sequence is an A. P. and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9$. Find the value of m.

- Watch Video Solution

34. Find the sum of first 24 terms of the A.P. $a_{1}, a_{2}, a_{3}, \ldots$, if it is known that $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$.
35. If the arithmetic progression whose common difference is nonzero the sum of first $3 n$ terms is equal to the sum of next n terms. Then, find the ratio of the sum of the $2 n$ terms to the sum of next $2 n$ terms.

- Watch Video Solution

36. The sums of n terms of two arithmetic progressions are in the ratio $5 n$ $+4: 9 n+6$. Find the ratio of their $18^{\text {th }}$ terms.

- Watch Video Solution

37. If the first two terms of a H.P are $2 / 5$ and $12 / 13$, respectively . Then find the largest term.

- Watch Video Solution

38. Insert five arithmetic means between 8 and 26. or Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

Watch Video Solution

39. If a, b, c are in G / P and $a-b, c-a$, and $b-c$ are H.P them prove that $a+4 b+c$ is equal to 0 .

- Watch Video Solution

40. Find the number of terms in the series $20,19 \frac{1}{3}, 18 \frac{2}{3} \ldots$ the sum of which is 300 . Explain the answer.

- Watch Video Solution

41. If $x, y a n d z$ are in A.P., $a x, b y, a n d c z$ in G.P. and a, b, c in H.P. then prove that $\frac{x}{z}+\frac{z}{x}=\frac{a}{c}+\frac{c}{a}$.
42. Find the sum of all three-digit natural numbers, which are divisible by 7.

- Watch Video Solution

43. If a,b,c and the d are in H.P then find the vlaue of $\frac{a^{-2}-d^{-2}}{b^{-2}-c^{-2}}$

- Watch Video Solution

44. Prove that a sequence in an A.P., if the sum of its n terms is of the form $A n^{2}+B n$, where A, B are constants.

- Watch Video Solution

45. The product of three numbers in G.P is 125 and sum of their products taken in pairs is $\frac{175}{2}$.Find them.

- Watch Video Solution

46. If the sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is an A.P., then prove that $a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots+a_{2 n-1}^{2}-a_{2 n}^{2}=\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)$

- Watch Video Solution

47. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b .

- Watch Video Solution

48. Three non zero numbers a, b, c are in A.P. Increasing a by 1 or increasing c by 2, the number become in G.P then b equals
49. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.

- Watch Video Solution

50. If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

- Watch Video Solution

51. If the sum of n terms of a G.P. is $3-\frac{3^{n+1}}{4^{2 n}}$, then find the common ratio.

- Watch Video Solution

52. Which term of the G.P. $2,1, \frac{1}{2}, \frac{1}{4}, i s \frac{1}{128}$?

- Watch Video Solution

53. ' n ' A. $M^{\prime} s$ are inserted between a and 2 b , and then between 2 a and b. If $p^{t h}$ mean in each case is a equal, $\frac{a}{b}$ is equal to

- Watch Video Solution

54. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b, then find the value of n.

- Watch Video Solution

55. The first and second term of a G.P. are x^{-4} and x^{n} respectively. If x^{52} is the $8^{\text {th }}$ term, then find the value of n.

- Watch Video Solution

56. If $\frac{a+b x}{a-b x}=\frac{b-c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$ then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.

- Watch Video Solution

57. If n arithmetic means are inserted between 2 and 38 , then the sum of the resulting series is obtained as 200 . Then find the value of n.

- Watch Video Solution

58. The first term of a G.P. is 1 . The sum of the third term and fifth term is 90. Find the common ratio of G.P.

- Watch Video Solution

59. If a, b, c, d, e, f are A.M.s between 2 and 12 , then find the sum $a+b+c+d+e+f$.
60. Three numbers are in G.P. if we double the middle term, we get an A.P. Then the common ratio of G.P equals

- Watch Video Solution

61. Divide 28 into four parts in an A.P. so that the ratio of the product of first and third with the product of second and fourth is 8:15.

- Watch Video Solution

62. The fourth, seventh, and the last term of a G.P. are 10, 80, and 2560, respectively. Find the first term and the number of terms in G.P.

- Watch Video Solution

63. If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P., then prove that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are also in A.P.

Watch Video Solution

64. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P, prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.

- Watch Video Solution

65. Let S_{n} denote the sum of first n terms of an A.P. If $S_{2 n}=3 S_{n}$, then find the ratio $S_{3 n} / S_{n}$.

- Watch Video Solution

66. If p, q and r are in A.P., show that the pth , qth and r th terms of any G.P. are in G.P.
67. Find four number in an A.P. whose sum is 20 and sum of their squares is 120 .

- Watch Video Solution

68. Find the sum of the following series : $0.7+0.77+0.777+\rightarrow n$ terms

- Watch Video Solution

69. Find the sum of the series
$\frac{1}{3^{2}+1}+\frac{1}{4^{2}+2}+\frac{1}{5^{2}+3}+\frac{1}{6^{2}+4}+\infty$

- Watch Video Solution

70. Prove that in a sequence of numbers $49,4489,444889,44448889$ in which every number is made by inserting $48-48$ in the middle of previous as indicated, each number is the square of an integer.

- Watch Video Solution

71. Find the sum of first 100 terms of the series whose general term is given by $a_{k}=\left(k^{2}+1\right) k!$

- Watch Video Solution

72. If the product of three consecutive terms in G.P. is 216 and sum of their products in pairs is 156 , find them.

- Watch Video Solution

73. Find the sum of the series
$\frac{2}{1 \times 2}+\frac{5}{2 \times 3} \times 2+\frac{10}{3 \times 4} \times 2^{2}+\frac{17}{4 \times 5} \times 2^{3}+\rightarrow n$ terms.

- Watch Video Solution

74. The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2 , respectively. Find the last term and the number of terms.

- Watch Video Solution

75. A sequence of numbers $A_{\cap}=1,2,3$ is defined as follows : $A_{1}=\frac{1}{2}$ and for each $n \geq 2, \quad A_{n}=\left(\frac{2 n-3}{2 n}\right) A_{n-1}$, then prove that $\sum_{k=1}^{n} A_{k}<1, n \geq 1$

- Watch Video Solution

76. The sum of three numbers in G.P. is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

- Watch Video Solution

77. Find the sum of the products of the ten numbers $\pm 1, \pm 2, \pm 3, \pm 4$, and ± 5 taking two at a time.

- Watch Video Solution

78. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that a,c,e are in GP.

- Watch Video Solution

79. Find the sum $\sum_{r=0}^{n} \wedge(n+r) C_{r}$.
80. Find the sum to n terms of the sequence $(x+1 / x)^{2},\left(x^{2}+1 / x\right)^{2},\left(x^{3}+1 / x\right)^{2}$,

- Watch Video Solution

81. Write the first five terms of each of the sequences and obtain the corresponding series:
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2$

- Watch Video Solution

82. Prove that the sum to n terms of the series $11+103+1005+\ldots$. Is $(10 / 9)\left(10^{n}-1\right)+n^{2}$.

- Watch Video Solution

83. If $a_{n+1}=\frac{1}{1-a_{n}}$ for $n \geq 1$ and $a_{3}=a_{1}$. then find the value of $\left(a_{2001}\right)^{2001}$.

- Watch Video Solution

84. Determine the number of terms in a G.P., if $a_{1}=3, a_{n}=96$ and $S_{n}=189$

- Watch Video Solution

85. Let $\left\{a_{n}\right\}(n \geq 1)$ be a sequence such that $a_{1}=1$, and $3 a_{n+1}-3 a_{n}=1$ for all $n \geq 1$. Then find the value of a_{2002}.

- Watch Video Solution

86. Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}=S^{n}$.
87. If the pth term of an A.P. is q and the qth term is p, then find its r th term.

- Watch Video Solution

88. Find the product of three geometric means between 4 and $1 / 4$

- Watch Video Solution

89. If the $(m+1)$ th, $(n+1)$ th terms of an A.P. are in G.P. and m, n, r are in H.P., then find the value of the ratio of the common difference to the first term of the A.P.

- Watch Video Solution

90. Insert four G.M's between 2 and 486 .
91. Find the sum $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$ up to $22^{\text {nd }}$ find the sum when n is odd.

- Watch Video Solution

92. If G is the geometric mean of xandy then prove that $\frac{1}{G^{2}-x^{2}}+\frac{1}{G^{2}-y^{2}}=\frac{1}{G^{2}}$

- Watch Video Solution

93. If the A.M. of two positive numbers $\operatorname{aandb}(a>b)$ is twice their geometric mean. Prove that : $a: b=(2+\sqrt{3}):(2-\sqrt{3})$.

- Watch Video Solution

94. Sum of infinite number of terms in GP is 20 and sum of their square is 100. The common ratio of GP is

- Watch Video Solution

$$
\begin{aligned}
& \text { 95. Find the sum of the series } \\
& 1+2(1-x)+3(1-x)(1-2 x)+\ldots+n(1-x)(1-2 x)(1-3 x) \ldots(
\end{aligned}
$$

- Watch Video Solution

96. prove that $6^{1 / 2} \times 6^{1 / 4} \times 6^{1 / 8} \ldots \infty=6$

- Watch Video Solution

97. Three numbers are in G.P. whose sum is 70 . If the extremes be each multiplied by 4 and the means by 5 , they will be in A.P. Find the numbers.

- Watch Video Solution

98.

$x=a+\frac{a}{r}+\frac{a}{r^{2}}+\infty, y=b-\frac{b}{r}+\frac{b}{r^{2}}+\infty, a n d z=c+\frac{c}{r^{2}}+\frac{c}{r^{4}}+\infty$ prove that $\frac{x y}{z}=\frac{a b}{c}$.

- Watch Video Solution

99. Find the sum $1+4+13+40+121+$.

- Watch Video Solution

100. If each term of infinite G.P is twice the sum of terms following it, then find the comon ratio of the G.P.

- Watch Video Solution

101. Find the sum to n terms of the series $1+\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right)+\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}\right)+\ldots$

- Watch Video Solution

102. Find the sum of the following series:
$(\sqrt{2}+1)+1+(\sqrt{2}-1)+\ldots \ldots .+\infty$

- Watch Video Solution

103. If the set of natural numbers is partitioned into subsets $S_{1}=\{1\}, S_{2}=\{2,3\}, S_{3}=\{4,5,6\}$ and so on then find the sum of the terms in S_{50}.

- Watch Video Solution

104. If $p(x)=\left(1+x^{2}+x^{4}++x^{2 n-2}\right) /\left(1+x+x^{2}++x^{n-1}\right)$ is a polomial in x, then find possible value of n.

- Watch Video Solution

105. If the sum of the squares of the first n natural numbers exceeds theri sum by 330 , then find n.

- Watch Video Solution

106. If f is a function satisfying $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ for all $x, y \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, find the value of n .

- Watch Video Solution

107. If $\sum_{r=1}^{n} T_{r}=\frac{n}{8}(n+1)(n+2)(n+3)$ then find $\sum_{r=1}^{n} \frac{1}{T_{r}}$
108. Find the sum to n terms of the series : $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+$:

- Watch Video Solution

109. If the sum to infinity of the series
$3+(3+d) \frac{1}{4}+(3+2 d) \frac{1}{4^{2}}+\ldots \infty$ is $\frac{44}{9}$, then find d.

- Watch Video Solution

110. Find the sum to infinity of the series $1^{2}+2^{2} x+3^{2} x^{2}+\infty$.

- Watch Video Solution

111. If a, b, c, d are in G.P., then prove that
$\left(a^{3}+b^{3}\right)^{-1},\left(b^{3}+c^{3}\right)^{-1},\left(c^{3}+d^{3}\right)^{-1}$ are also in G.P.
112. Find the sum of the series $1+3 x+5 x^{2}+7 x^{3}+\ldots \ldots . n$ terms.

- Watch Video Solution

113. In a geometric progression consisting of positive terms, each term equals the sum of the next terms. Then find the common ratio.

- Watch Video Solution

114. If the A.M. between two positive numbers exceeds their G.M. by 2 and the G.M. exceeds their H.M. by $8 / 5$, find the numbers.

- Watch Video Solution

115. The A.M of two given positive numbers is $2 . I f$ the larger number is increased by 1 , the G.M of the mubers becomes equal to the A.M of the given numbers .Then find the H.M

- Watch Video Solution

116. Find the sum of the series ${ }^{`} 1+3 x+5 x^{\wedge} 2+7 x^{\wedge} 3+$ \qquad

- Watch Video Solution

117. If $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r z}$ and p, q and r are in A.P., then prove that x, y, z are in H.P.

- Watch Video Solution

118. Sum to infininty of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \ldots$. is
119. Find the sum $\frac{1^{2}}{2}+\frac{3^{2}}{2^{2}}+\frac{5^{2}}{2^{3}}+\frac{7^{2}}{2^{4}}+\ldots . \infty$

- Watch Video Solution

120. If H is the harmonic mean between PandQ then find the value of $H / P+H / Q$.

- Watch Video Solution

121. If $T_{r}=r\left(r^{2}-1\right)$, then find $\sum_{r=2}^{\infty} \frac{1}{T}$.

- Watch Video Solution

122. Insert four H.M.,s between $2 / 3$ and $2 / 13$.
123. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are respectively the $p^{t h} q^{t h}$ and $r^{\text {th }}$ terms of a GP. Show that $(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.

- Watch Video Solution

124. The A.M. and H.M. between two numbers are 27 and 122, respectively, then find their G.M.

(Watch Video Solution

125. If $a, a_{1}, a_{2}, a_{3} \ldots, a_{2 n} \mathrm{~b}$ are in A.P and $a, g_{1}, g_{2}, g_{3} \ldots g_{2 n} \mathrm{~b}$ are in G.P in and h is the H.M of a and b, the prove that

$$
\frac{a_{1}+a_{2 n}}{g_{1} g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{2} g_{2 n-1}}+\ldots+\frac{a_{n}+a_{n+1}}{g_{n} g_{n+1}}=\frac{2 n}{h}
$$

- Watch Video Solution

126. If nine arthimatic means and nine harmonic means are inserted between 2 and 3 alternatively, then prove that $A+6 / H=5$ (where A is any of the A.M.'s and H the corresponding H.M)

- Watch Video Solution

127. If $x, 1, a n d z$ are in A.P. and $x, 2, a n d z$ are in G.P., then prove that $x, a n d 4, z$ are in H.P.

- Watch Video Solution

128. Find two numbers whose arithmetic mean is 34 and the geometric means is 16 .

- Watch Video Solution

129. If a, b, d and p are distinct non - zero real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0 \quad$ then $\quad \mathrm{n}$. Prove that $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G. P and $\mathrm{ad}=\mathrm{bc}$

- Watch Video Solution

130. If the A.M. and G.M. between two numbers are in the ratio $\mathrm{m}: \mathrm{n}$, then prove that the numbers are in the ratio $\left(m+\sqrt{m^{2}-n^{2}}\right),\left(m-\sqrt{m^{2}-n^{2}}\right)$.

- Watch Video Solution

131. Prove that $(666 \ldots . \ldots)^{2}+(888 \ldots .8)=4444 \ldots \ldots 4$.

- Watch Video Solution

132. If a is the A.M. of b and c and the two geometric means are G_{1} and G_{2}, then prove that $G_{1}^{3}+G_{2}^{3}$

Watch Video Solution

133. If a, b, c, d are distinct integers in an A.P. such that $d=a^{2}+b^{2}+c^{2}$, then find the value of $a+b+c+d$.

- Watch Video Solution

134. The 8th and 14th term of a H.P. are $1 / 2$ and $1 / 3$, respectively. Find its 20th term. Also, find its general term.

D Watch Video Solution

135. Find the number of common terms to the two sequences $17,21,25$, 417 and 16, 21, 26, .., 466.
136. If the 20th term of a H.P. is 1 and the 30 th term is $-1 / 17$, then find its largest term.

- Watch Video Solution

137. Find the sum $\frac{3}{2}-\frac{5}{6}+\frac{7}{18}-\frac{9}{54}+\ldots . \infty$

- Watch Video Solution

138. If a, b, candd are in H.P., then prove that
$(b+c+d) / a,(c+d+a) / b,(d+a+b) / c$ and $(a+b+c) / d$, are in A.P.

- Watch Video Solution

139. The harmonic mean between two numbers is $21 / 5$, their A.M ' A ' and G.M 'G' satisfy the relation $3 A+G^{2}=36$ Then find the sum of square of numbers

- Watch Video Solution

140. The mth term of a H.P. is n and the nth term is m. Prove that its r th term is mn / r.

- Watch Video Solution

141. The pth term of an A.P. is a and qth term is b. Then find the sum of its $(p+q)$ terms.

- Watch Video Solution

142. If $a>1, b>1$ and $c>1$ are in G.P. then show that $\frac{1}{1+(\log)_{e} a}, \frac{1}{1+(\log)_{e} b}$, and $\frac{1}{1+(\log)_{e} c}$ are in H.P.

- Watch Video Solution

143. Solve the equation $(x+1)+(x+4)+(x+7)+\ldots+(x+28)=155$.

- Watch Video Solution

144. If $a, b, a n d c$ be in G.P. and $a+x, b+x, a n d c+x$ in H.P. then find the value of x ($\mathrm{a}, \mathrm{b}, \mathrm{c}$ are distinct numbers) .

- Watch Video Solution

145. The ratio of the sum of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of $m^{\text {th }}$ and $n^{\text {th }}$ term is $2 m-1: 2 n-1$.
146. If first three terms of the sequence $1 / 16, a, b, 1 / 6$ are in geometric series and last three terms are in harmonic series, then find the values of a and b.

- Watch Video Solution

147. The sum of first $\mathrm{n}, 2 \mathrm{n}$ and 3 n terms of an A.P. are S_{1}, S_{2}, S_{3} respectively. Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.

- Watch Video Solution

148. In a certain A.P., 5 times the 5th term is equal to 8 times the 8th terms then find its 13th term.

- Watch Video Solution

149. If x is a positive real number different from 1 , then prove that the numbers $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{a-\sqrt{x}}, \ldots$ are in A.P.

Also find their common difference.

- Watch Video Solution

150. Which term of the sequence $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}$, is the first negative term?

- Watch Video Solution

151. If $S_{n}=n P=\frac{n(n-1)}{2} \mathrm{Q}$, where S_{n} denotes the sum of the first n terms of an A.P, then find the common difference.

- Watch Video Solution

152. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$ where $\mathrm{a}, \mathrm{b}, \mathrm{and} \mathrm{c}$ are in A.P and $|a|<1,|b|<1$ and $|c| 1$ then prove that x, y and z are in H.P

Watch Video Solution

153. If the sum of the series $\sum_{n=0}^{\infty} r^{n},|r|<1$ is s , then find the sum of the series $\sum_{n=0}^{\infty} r^{2 n}$.

- Watch Video Solution

154. The value of $1^{2}-2^{2}+3^{2}-4^{2}+\ldots .+11^{2}$ is equal to

- Watch Video Solution

155. Find the sum $2+5+10+17+26+\ldots$.
156. Find the sum
up to 20 terms.
$1+\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+\frac{1}{4}(1+2+3+4)+$

- Watch Video Solution

157. If $a, b, a n d c$ are in G.P. then prove that $\frac{1}{a^{2}-b^{2}}+\frac{1}{b^{2}}=\frac{1}{b^{2}-c^{2}}$.

- Watch Video Solution

158. Find the value of $(32)(32)^{1 / 6}(32)^{1 / 36} \infty$.

- Watch Video Solution

159. Find the sum of the series $1^{2}+3^{2}+5^{2}+\ldots$ to n terms

- Watch Video Solution

160. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equl to the sum of the squares of their reciprocals, then prove that $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in H.P.

- Watch Video Solution

161. The first term of an arithmetic progression is 1 and the sum of the first nine terms equal to 369 . The first and the ninth term of a geometric progression coincide with the first and the ninth term of the arithmetic progression. Find the seventh term of the geometric progression.

- Watch Video Solution

162. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive integers such that $\frac{b}{a}$ is an integer. If a, b, c are in GP and the arithmetic mean of a, b, c, is $b+2$ then the value of $\frac{a^{2}+a-14}{a+1}$ is
163. Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6: 11 and the seventh term lies in between 130 and 140 , then the common difference of this A.P. is

- Watch Video Solution

164. The sum of an infinite geometric series is 162 and the sum of its first n terms is 160 . If the inverse of its common ratio is an integer, then which of the following is not a possible first term? 108 b .144 c .160 d . none of these

- Watch Video Solution

165. If a, b, c are digits, then the rational number represented by
$\odot c a b a b a b$...is cab/990
b. $(99 c+b a) / 990$
c. $(99 c+10 a+$
b) /99 d.
$(99 c+10 a+b) / 990$
$a=\underbrace{111 \ldots .1}_{55 \text { times }}, b=1+10+10^{2}+10^{3}+10^{4}$ and $c=1+10^{5}+10^{10}+.$. then

- Watch Video Solution

167. Consider the ten numbers $a r, a r^{2}, a r^{3}, \ldots, a r^{10}$.If their sum is 18 and the sum of their reciprocals is 6 , then the product of these ten numbers is

- Watch Video Solution

168. The sum of 20 terms of a series of which every even term is 2 times the term before it, every odd term is 3 times the term before it , the a . $\left(\frac{2}{7}\right)\left(6^{10}-1\right)$ b. $\left(\frac{3}{7}\right)\left(6^{10}-1\right)$ c. $\left(\frac{3}{5}\right)\left(6^{10}-1\right)$ d. none of these
169. Let a_{n} be the nth term of a G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2 n}=\alpha$ and $\sum_{n=1}^{100} a_{2 n-1}=\beta$, such that $\alpha \neq \beta$, then the common ratio is α / β b. β / α c. $\sqrt{\alpha / \beta}$ d. $\sqrt{\beta / \alpha}$

- Watch Video Solution

170. If the pth, qth, and rth terms of an A.P. are in G.P., then the common ratio of the G.P. is a. $\frac{p r}{q^{2}}$ b. $\frac{r}{p}$ c. $\frac{q+r}{p+q}$ d. $\frac{q-r}{p-q}$

- Watch Video Solution

171. In a GP the first , third and fifth terms may be considered as the firs, fourth ,and sixteenth terms of an A.P. Then the fourth terms of the A.P knowing that its first terms is 5 , is

- Watch Video Solution

172. If a, b, c, d are in G.P, then $(b-c)^{2}+(c-a)^{2}+(d-b)^{2}$ is equal to

- Watch Video Solution

173. If $p^{\text {th }}, q^{\text {th }}, r^{\text {th }}$ and $s^{\text {th }}$ terms of an A.P. are in G.P, then show that ($\mathrm{p}-$ $q),(q-r),(r-s)$ are also in G.P.

- Watch Video Solution

174. $A B C$ is a right-angled triangle in which $\angle B=90^{\circ}$ and $B C=a$. If n points $L_{1}, L_{2}, L_{n} o n A B$ is divided in $n+1$ equal parts and $L_{1} M_{1}, L_{2} M_{2}, L_{n} M_{n}$ are line segments parallel to $\operatorname{BCand} M_{1}, M_{2}, M_{n}$ are on $A C$, then the sum of the lengths of $L_{1} M_{1}, L_{2} M_{2},, L_{n} M_{n}$ is $\frac{a(n+1)}{2}$ b. $\frac{a(n-1)}{2}$ c. $\frac{a n}{2}$ d. none of these
175. If $(1-p)\left(1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}\right)=1-p^{6}, p \neq 1$ then the value of $\frac{p}{x}$ is

- Watch Video Solution

176. ABCD is a square of length a, $a \in N$, a > 1. Let $L_{1}, L_{2}, L_{3} \ldots$ be points on BC such that $B L_{1}=L_{1} L_{2}=L_{2} L_{3}=\ldots .1$ and $M_{1}, M_{2}, M_{3}, \ldots$ be points on CD such that $C M_{1}=M_{1} M_{2}=M_{2} M_{3}=\ldots=1$. Then $\sum_{n=1}^{a-1}\left(\left(A L_{n}\right)^{2}+\left(L_{n} M_{n}\right)^{2}\right)$ is equal to :

- Watch Video Solution

177. Let $T_{r} a n d S_{r}$ be the rth term and sum up to rth term of a series, respectively. If for an odd number $n, S_{n}=\operatorname{nand} T_{n}=\frac{T_{n}-1}{n^{2}}$, $\operatorname{then} T_{m}$ (m being even)is a. $\frac{2}{1+m^{2}}$ b. $\frac{2 m^{2}}{1+m^{2}}$ c. $\frac{(m+1)^{2}}{2+(m+1)^{2}}$ d. $\frac{2(m+1)^{2}}{1+(m+1)^{2}}$

- Watch Video Solution

$(1+3+5+\ldots .+p)+(1+3+5+\ldots .+q)=(1+3+5+\ldots .+$
where each set of parentheses contains the sum consecutive odd integers as shown , the smallest possible value of $\mathrm{P}+\mathrm{q}+\mathrm{r}($ where $p>6$) is

- Watch Video Solution

179. If $a x^{3}+b x^{2}+c x+d$ is divisible by $a x^{2}+c$, thena $, b, c, d$ are in a.
A.P. b. G.P. c. H.P. d. none of these

- Watch Video Solution

180. The line $x+y=1$ meets X -axis at A and Y -axis at B, P is the mid-point of $A B, P_{1}$ is the foot ofperpendicular from P to $O A, M_{1}$, is that of P_{1}, from $O P ; P_{2}$, is that of M_{1} from $O A, M_{2}$, is that of P_{2}, from $O P ; P_{3}$ is that of M_{2}, from OA and so on. If P_{n} denotes the nth foot of the perpendicular on OA , then find $O P_{n}$.
181. In a geometric series, the first term is a and common ratio is r . If S_{n} denotes the sum of the n terms and $U_{n}=\sum_{n=1}^{n} S_{n}$, then $r S_{n}+(1-r) U_{n}$ equals

- Watch Video Solution

182. If, x, y and z are distinct prime numbers, then

- Watch Video Solution

183. If $x, y, a n d z$ are in G.P. and $x+3+, y+3, a n d z+3$ are in H.P., then $y=2$ b. $y=3$ c. $y=1$ d. $y=0$

- Watch Video Solution

184. If A.M., G.M., and H.M. of the first and last terms of the series of $100,101,102, \ldots n-1, n$ are the terms of the series itself, then the value
of $n \mathrm{n}$ is '(100
A. a. 200
B. b. 300
C. c. 400
D. d. 500

Answer: null

- Watch Video Solution

185. In a sequence of $(4 n+1)$ terms the first $(2 n+1)$ terms are in AP whose common difference is 2 , and the last $(2 n+1)$ terms are in GP whose common ratio is 0.5 . If the middle terms of the AP and GP are equal, then the middle term of the sequence is

- Watch Video Solution

186. The coefficient of x^{49} in the product $(x-1)(x-3)(x-99) i s-99^{2}$
b. 1 c. -2500 d . none of these

Watch Video Solution

187. Let $S=\frac{4}{19}+\frac{44}{19^{2}}+\frac{444}{19^{3}}+\ldots .+$ up to ∞. Then S is equal to

- Watch Video Solution

188. If $H_{n}=1+\frac{1}{2}+\ldots \ldots+\frac{1}{n}$, then the value of
$S_{n}=1+\frac{3}{2}+\frac{5}{2}+\ldots+\frac{99}{50} i s$

- Watch Video Solution

189. The sum to infinity of the series $1+2 r+3 r^{2}+4 r^{3}+\ldots .$. is $9 / 4$, then value of r is
190. Find the sum $1+\frac{4}{5}+\frac{7}{25}+\frac{10}{125}+\ldots$

- Watch Video Solution

191. Ifa, $\frac{1}{b}, q, \frac{1}{r}$ form two arthimatic progression of the same common difference, then a, q, c are in A.P. If

- Watch Video Solution

192. Suppose that $\mathrm{F}(\mathrm{n}+1)=\frac{2 F(n)+1}{2}$ for $\mathrm{n}=1,2,3, \ldots$ and $\mathrm{F}(1)=2$. Then, $\mathrm{F}(101)$ equals

- Watch Video Solution

193. In an A.P. of which a is the term, if the sum of the first p terms is zero, then the sum of the next q terms is
194. If S_{n} denotes the sum of first n terms of an A.P. and $\frac{S_{3 n}-S_{n-1}}{S_{2 n}-S_{2 n+1}}=31$, then the value n is

- Watch Video Solution

195. If a, b, c are in A.P., then $a^{3}+c^{3}-8 b^{3}$ is equal to

- Watch Video Solution

196. The number of terms of an A.P. is even; the sum of the odd terms is 24 , and of the even terms is 30 , and the last term exceeds the first by $21 / 2$ then the number of terms in the series is 8 b .4 c .6 d .10

- Watch Video Solution

197. The largest term common to the sequence $1,11,21,31, \ldots$. .to 100 terms and $31,36,41,46$,..... to 100 tetms is

- Watch Video Solution

198. If the sum of m terms of an A.P. is same as the sum of its n terms, then the sum of its $(m+n)$ terms is

- Watch Video Solution

199. If S_{n} denotes the sum of n terms of A.P., then $\left.S_{n+3}-3 S_{n+2}+3 S_{n+1}-S_{n}=a\right) \cdot 2^{S}-n$ b). s_{n+1} c). $3 S_{n}$ d). 0

- Watch Video Solution

200. 150 workers were engaged to finish a piece of work in a certain number of days. Four workers dropped from the work on the second day.

Four workers dropped on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed. [Let the no.of days to finish the work is 'r' then
$150 x=\frac{x+8}{2}[2 \times 150+(x+8-1)(-4)]$

- Watch Video Solution

201. if a G.P $(p+q)$ th term $=m$ and $(p-q)$ th term $=n$, then find its p th term

- Watch Video Solution

202. If $A_{1}, A_{2}, G_{1}, G_{2}, ;$ and H_{1}, H_{2} are two arithmetic, geometric and harmonic means respectively, between two quantities aandb, thenab is equal to
A. a. $A_{1} H_{2}$
B. b. $A_{2} H_{1}$
C. c. $G_{1} G_{2}$
D. d. none of these

Answer: null

- Watch Video Solution

203. Let S_{1}, S_{2}, \ldots be square such that for each $n \geq 1$ the length of a side of S_{n} equal the length of a diagonal of S_{n+1}. If the length of a side of S_{1} is 10 cm , then for which of the following values of n is the area of S_{n} less than 1 sq cm ?

(Watch Video Solution

204. If $\frac{1}{b-a}+\frac{1}{b-c}=\frac{1}{a}+\frac{1}{c}$, then A. $a, b, a n d c$ are in H.P. B. $a, b, a n d c$ are in A.P. C. $b=a+c$ D. $3 a=b+c$

- Watch Video Solution

205. If a, b and c are in GP and x, y respectively, are the arithmetic means between a, b and b, c then the value of $\frac{a}{x}+\frac{c}{y}$ is

Watch Video Solution

206. Consider a sequence $\left\{a_{n}\right\}$ witha $a_{1}=2 a n d a_{n}=\frac{a n^{2}-1}{a_{n-2}}$ for all $n \geq 3$, terms of the sequence being distinct. Given that $a_{1} a n d a_{5}$ are positive integers and $a_{5} \leq 162$ then the possible value (s) of a_{5} can be a.

162 b. 64 c. 32 d. 2

- Watch Video Solution

207. Which of the following can be terms (not necessarily consecutive) of any A.P.?
A. a. 1,6,19
B. b. $\sqrt{2}, \sqrt{50}, \sqrt{98}$
C. c. $\log 2, \log 16, \log 128$
D. d. $\sqrt{2}, \sqrt{3}, \sqrt{7}$

Answer: null

D Watch Video Solution

208. The numbers $1,4,16$ can be three terms (not necessarily consecutive) of
A. no A.P.
B. only on G.P.
C. infinite number o A.P.'s
D. infinite number of G.P.'s

Answer: null

209. Each question has four choices a, b, c and d out of which only one is correct. Each question contains Statement 1 and Statement 2. Make your answer as: If both the statements are true and Statement 2 is the correct explanation of statement 1 . If both the statements are True but Statement 2 is not the correct explanation of Statement 1. If Statement 1 is True and Statement 2 is False. If Statement 1 is False and Statement 2 is True. Statement 1: $\frac{\sin \pi}{18}$ is a root of $8 x^{3}-6 x+1=0$ Statement 2: For any $\theta \in R, \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$

- Watch Video Solution

210. If $\left(1^{2}-t_{1}\right)+\left(2^{2}-t_{2}\right)+\ldots .+\left(n^{2}-t_{n}\right)=\frac{n\left(n^{2}-1\right)}{3}$ then t_{n} is equal to

- Watch Video Solution

211. If $b_{n+1}=\frac{1}{1-b_{n}} f$ or $n \geq 1 a n d b_{1}=b_{3}$, then $\sum_{r=1}^{2001} b r^{2001}$ is equal to

2001 b. - 2001 c. 0 d. none of these

(D) Watch Video Solution

212. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{100}$ be an arithmetic progression with $a_{1}=3$ and $S_{p}=\sum_{i=1}^{p} a_{i}, 1 \leq p \leq 100$. For any integer n with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m}}{S_{n}}$ does not depend on n , then a_{2} is equal to

- Watch Video Solution

213.

$1^{2}+2^{2}+3^{2}+\ldots .+2003^{2}=(2003)(4007)(334)$ and $(1)(2003)+(2)(200$ equals
A. a.2005b. 2004c. 2003d. 2001
B.
C.
D.

Answer: null

D Watch Video Solution

214. The sum of $0.2+0.004+0.00006+0.0000008+\ldots$ to ∞ is $\frac{200}{891}$
b. $\frac{2000}{9801}$ c. $\frac{1000}{9801}$ d. none of these

- Watch Video Solution

215. If $\quad t_{n}=\frac{1}{4}(n+2)(n+3) \quad$ for $\quad n=1,2,3, \ldots . \quad$ then $\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{1}{t_{3}}+\ldots .+\frac{1}{t_{2003}}=$

- Watch Video Solution

216. The coefficient of x^{19} in the polynomial
$(x-1)(x-2)\left(x-2^{2}\right) \ldots \ldots .\left(x-2^{19}\right)$ is $2^{20}-2^{19}$
b. $1-2^{20}$
c. 2^{20}
d.
none of these
217. If $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+=\frac{\pi}{4} \quad$, then value of $\frac{1}{1 \times 3}+\frac{1}{5 \times 7}+\frac{1}{9 \times 11}+$ is $\pi / 8$ b. $\pi / 6$ c. $\pi / 4$ d. $\pi / 36$

- Watch Video Solution

218. The number of positive integral ordered pairs of (a, b) such that $6, a, b$ are in harmonic progression is \qquad .

- Watch Video Solution

219. Let $a, b>0$, let $5 a-b, 2 a+b, a+2 b$ be in A.P. and $(b+1)^{2}, a b+1,(a-1)^{2}$ are in G.P., then the value of $\left(a^{-1}+b^{-1}\right)$ is
\qquad .

- Watch Video Solution

220. The difference between the sum of the first k terms of the series $1^{3}+2^{3}+3^{3}++n^{3}$ and the sum of the first k terms of $1+2+3++n i s 1980$. The value of k is \qquad .

- Watch Video Solution

221. Let a, b, c, d be four distinct real numbers in A.P. Then half of the $\begin{array}{lllll}\text { smallest } & \text { positive } & \text { valueof } & k & \text { satisfying }\end{array}$ $2(a-b)+k(b-c)^{2}+(c-a)^{3}=2(a-d)+(b-d)^{2}+(c-d)^{3}$ is
\qquad .

- Watch Video Solution

222. Let $a_{1}, a_{2}, a_{3},, a_{101}$ are in G.P. with $a_{101}=25 a n d \sum_{i=1}^{201} a_{1}=625$. Then the value of $\sum_{i=1}^{201} \frac{1}{a_{1}}$ equals \qquad .

- Watch Video Solution

223. Let $\mathrm{S}=\sum_{n=1}^{9999} \frac{1}{(\sqrt{n}+\sqrt{n+1})(\sqrt[4]{n}+\sqrt[4]{n+1})}$, then S equals
\qquad .

- Watch Video Solution

224. The next term of the G.P. $x, x^{2}+2, a n d x^{3}+10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54

- Watch Video Solution

225. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{x}+\frac{5}{y}+\frac{3}{z}\right)$, then x, y, and z are in H.P. b. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}=\frac{1}{c}$

- Watch Video Solution

226. If $1+2 x+3 x^{2}+4 x^{3}+\infty \geq 4$, then a.least value of $x i s 1 / 2$ b.greatest value of $x i s \frac{4}{3}$ c.least value of $x i s 2 / 3$ d.greatest value of x does not exists

(D) Watch Video Solution

227. If $n>1$, the value of the positive integer m for which $n^{m}+1$ divides $a=1+n+n^{2}+\ddot{+} n^{63}$ is/are 8 b. 16 c. 32 d. 64

Watch Video Solution

228. For an increasing A.P. $a_{1}, a_{2}, \ldots . a_{n}$ if $a_{1}+a_{3}+a_{5}=-12$ and $a_{1} a_{3} a_{5}=80$, then which of the following is/are true? a. $a_{1}=-10 \mathrm{~b}$. $a_{2}=-1$ c. $a_{3}=-4$ d. $a_{5}=+2$

- Watch Video Solution

229. Q. Let n be an odd integer if $\sin n \theta=\sum_{r=0}^{n}\left(b_{r}\right) \sin ^{r} \theta$, for every value of theta then b_{0} and $b_{1}--$
230. Let $S_{n}=\sum_{k=1}^{4 n}(-1) \frac{k(k+1)}{2} k^{2}$. Then S_{n} can take value (s) 1056 b . 1088 c. 1120 d. 1332

- Watch Video Solution

231. The 15 th term of the series $2 \frac{1}{2}+1 \frac{7}{13}+1 \frac{1}{9}+\frac{20}{23}+\ldots$ is

(D) Watch Video Solution

232. Let $\left(a_{1}, a_{2}, a_{3} \ldots, a_{11}\right)$ be real numbers satsfying
$a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2}$ for $k=3,4 \ldots ., 11$,
If
$\frac{a_{1}^{2}+a_{2}^{2}+\ldots \ldots+a_{11}^{2}}{11}=90$ then the value of $\frac{a_{1}+a_{2}+\ldots \ldots+a_{1}}{11}$
is equal to \qquad .

- Watch Video Solution

233. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{2}+\frac{5}{y}+\frac{3}{z}\right)$, then x, y, and z are in H.P. b. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}=\frac{1}{c}$

- Watch Video Solution

234. Statement 1: If an infinite G.P. has 2 nd term x and its sum is 4 , then x belongs to $(-8,1)$. Statement 2 : Sum of an infinite G.P. is finite if for its common ratio $r, 0<|r|<1$.

- Watch Video Solution

235. statement 1: Let $p_{1}, p_{2}, \ldots, p_{n}$ and x be distinct real number such that $\left(\sum_{r=1}^{n-1} p_{r}^{2}\right) x^{2}+2\left(\sum_{r=1}^{n-1} p_{r} p_{r+1}\right) x+\sum_{r=2}^{n} p_{r}^{2} \leq 0$ then $p_{1}, p_{2}, \ldots, p_{n}$ are in G.P. and when $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\ldots+a_{n}^{2}=0, a_{1}=a_{2}=a_{3}=\ldots=a_{n}=0$ Statement 2
: If $\frac{p_{2}}{p_{1}}=\frac{p_{3}}{p_{2}}=\ldots=\frac{p_{n}}{p_{n-1}}$, then $p_{1}, p_{2}, \ldots, p_{n}$ are in G.P.

- Watch Video Solution

236. If the sum of n terms of an A.P is $\mathrm{cn}(\mathrm{n}-1)$ where $c \neq 0$ then the sum of the squares of these terms is

- Watch Video Solution

237. If $|a|<1 a n d|b|<1$, then the sum of the series $1+(1+a) b+\left(1+a+a^{2}\right) b^{2}+\left(1+a+a^{2}+a^{3}\right) b^{3}+\ldots$ is
A. (a) $\frac{1}{(1-a)(1-b)}$
B. (b). $\frac{1}{(1-a)(1-a b)}$
C. (c.) $\frac{1}{(1-b)(1-a b)}$
D. (d.) $\frac{1}{(1-a)(1-b)(1-a b)}$

Answer: null

- Watch Video Solution

238. Let $n \in N, n>25$. Let A, G, H deonote te arithmetic mean, geometric mean, and harmonic mean of 25 and n. The least value of n for which $A, G, H \in\{25,26, n\}$ is a. 49 b .81 c .169 d .225

- Watch Video Solution

239. If $a_{1}, a_{2}, a_{3}\left(a_{1}>0\right)$ are three successive terms of a G.P. with common ratio r, for which $a_{3}>4 a_{2}-3 a_{1}$ holds is given by
A. a. $1<r<\rightarrow 3$
B. b. $-3<r<-1$
C. c. $r>3$ or $r<1$
D. d. none of these

Answer: null

- Watch Video Solution

240. Three numbers form an increasing G.P. If the middle number is doubled, then the new numbers are in A.P. The common ratio of the G.P. is
A. (A) $2-\sqrt{3}$
B. (B) $3+\sqrt{3}$
C. (c) $2+\sqrt{3}$
D. (D) $3+\sqrt{2}$

Answer: null

- Watch Video Solution

241. If $S_{1}, S_{2}, S_{3}, \ldots, S_{m}$ are the sums of n terms of m A.P.'s whose first terms are $1,2,4, \ldots, m$ and whose common differences are $1,3,5, \ldots,(2 m-1)$ repectively, then show that
$S_{1}+S_{2}+S_{3}+\ldots+S_{n}=\frac{1}{2} m n(m n+1)$
242. In a sequence of $(4 n+1)$ terms, the first $(2 n+1)$ terms are n A.P. whose common difference is 2 , and the last $(2 n+1)$ terms are in G.P. whose common ratio is 0.5 if the middle terms of the A.P. and LG.P. are equal ,then the middle terms of the sequence is $\frac{n .2 n+1}{2^{2 n}-1}$ b. $\frac{n .2 n+1}{2^{n}-1}$ c. $n .2^{n}$ d. none of these

- Watch Video Solution

243. Find the sum of n terms of the seriesf whose nth term is $T(n)=\frac{\tan x}{2^{n}} \times \frac{\sec x}{2^{n-1}}$.

- Watch Video Solution

244. Find the value of $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^{i} 3^{j} 3^{k}}$.

$$
(\in e j \neq k)
$$

- Watch Video Solution

245. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that
$\sqrt{a_{1}}+\sqrt{a_{2}-1}+\sqrt{a_{3}-2}+\ldots+\sqrt{a_{n}-(n-1)}$
$=\frac{1}{2}\left(a_{1}+a_{2}+\ldots .+a_{n}\right)-\frac{n(n-3)}{4}$
Then the value of find the value of $\sum_{i=1}^{100} a_{i}$

- Watch Video Solution

246. If $\log _{2}\left(5 \times 2^{x}+1\right), \log _{4}\left(2^{1-x}+1\right)$ and 1 are in A.P., then x equals

- Watch Video Solution

247. Let S_{k}, where $k=1,2, \ldots, 100$, denotes the sum of the infinite geometric series whose first term is $\frac{k-1}{k!}$ and the common ratio is $\frac{1}{k}$. Then, the value of $\frac{100^{2}}{100!}+\sum_{k=2}^{100}\left|\left(k^{2}-3 k+1\right) S_{k}\right|$ is....

- Watch Video Solution

248. The real number x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+\beta x+\gamma=0$ are in AP. Find the intervals in which beta and gamma lie.

- Watch Video Solution

249. Let a, b, c, d be real numbers in G. P. If u, v, w satisfy the system of equations $u+2 v+3 w=6,4 u+5 v+6 w=12$ and $6 u+9 v=4$ then show that the roots of the equation $\left(\frac{1}{u}+\frac{1}{v}+\frac{1}{w}\right) x^{2}+\left[(b-c)^{2}+(c-a)^{2}+(d-b)^{2}\right] x+u+v+w=0$ and ' $20 x^{\wedge} 2+10(a-d)^{\wedge} 2 x-9=0$ are reciprocals of each other.

- Watch Video Solution

250. The sum of the first three terms of a strictly increasing G.P. is αs and sum of their squares is s^{2} then if 'alpha'^ $2=2$, then the value of r is

- Watch Video Solution

251. If $(\log)_{3} 2,(\log)_{3}\left(2^{x}-5\right) \operatorname{and}(\log)_{3}\left(2^{x}-\frac{7}{2}\right)$ are in arithmetic progression, determine the value of x.

- Watch Video Solution

252. If p is the first of the n arithmetic means between two numbers and q be the first on n harmonic means between the same numbers. Then, show that q does not lie between p and $\left(\frac{n+1}{n-1}\right)^{2} p$.

- Watch Video Solution

253. The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° and the common difference is 5° Find the number of sides of the polygon

- Watch Video Solution

254. If $a_{1}, a_{2}, \ldots a_{n}$ are in arthimatic progression, where $a_{i}>0$ for all I, then show that

$$
\begin{aligned}
& \frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}} \\
& \frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}
\end{aligned}
$$

- Watch Video Solution

255. Does there exist a geometric progression containing 27 and 8 and 12 as there of its terms ? If it exists, how many such progressions are possible?

- Watch Video Solution

256. Find three numbers a,b,c between 2 \& 18 such that; (G) their sum is 25 (ii) the numbers $2, \mathrm{a}, \mathrm{b}$ are consecutive terms of an AP \& (ii) the numbers $\mathrm{b}, \mathrm{c}, 18$ are consecutive terms of a G.P.
257. Find the sum $1+2\left(1+\frac{1}{50}\right)+3\left(1+\frac{1}{50}\right)^{2}+\ldots .50$ terms.

- Watch Video Solution

258. The sum to 50 terms of the series
$\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{+} 2^{2}+3^{2}}+\ldots .+\ldots i s$

- Watch Video Solution

259. If a_{1}, a_{2}, a_{n} are in A.P. with common difference $d \neq 0$, then the sum of the series $\sin d\left[\sec a_{1} \sec a_{2}+(\sec)_{2} \sec a_{3}+\ldots .+\sec a_{n-1}(\sec)_{n}\right]$ is
: a.coseca $a_{n}-\operatorname{cosecab.} \cot a_{n}-\cot a$ c. seca $a_{n}-$ seca d. $\operatorname{tana}_{n}-\operatorname{tana}$

- Watch Video Solution

260. The sum of the series $a-(a+d)+(a+2 d)-(a+3 d)+$ up to
$(2 n+1)$ terms is- a. $-n d$. b. $a+2 n d$. c. $a+n d$. d. $2 n d$
261. If a, b and c are in GP and x, y respectively, are the arithmetic means between a, b and b, c then the value of $\frac{a}{x}+\frac{c}{y}$ is

- Watch Video Solution

262. If a, b and c are in A.P and p and p are, respecitvely,A.M and G.M between a and b while q, q are , respectively the A.M and G.M. between b and c , then

- Watch Video Solution

263.

Find
the
sum
$\frac{3}{1 \times 2} \times \frac{1}{2}+\frac{4}{2 \times 3} \times\left(\frac{1}{2}\right)^{2}+\frac{5}{3 \times 4} \times\left(\frac{1}{2}\right)^{2}+\rightarrow n$ terms.

- Watch Video Solution

264. If the sum of n terms of the series

$$
\frac{2 n+1}{2 n-1}+3\left(\frac{2 n+1}{2 n-1}\right)^{2}+5\left(\frac{2 n+1}{2 n-1}\right)^{3}+\ldots
$$

is 820 then the value of n is \qquad

- Watch Video Solution

265. Let

$$
x=1+3 a+6 a^{2}+10 a^{3}+,|a|<1 .
$$

$y=1+4 b+10 b^{2}+20 b^{3}+,|b|<1$. Find $S+1+3(a b)+5(a b)^{2}+$ in terms of xandy.

- Watch Video Solution

266. If the first and the $n^{\text {th }}$ term of a G.P. are a and b , respectively, and if P is the product of n terms, prove that $P^{2}=(a b)^{n}$.

- Watch Video Solution

267. A long a road lie an odd number of stones placed at intervals of 10 meters. These stones have to be assembled around the middle stone. A person can carry only one stone ar a time. A man started the job with one of the end stones by carrying them in succession. In carrying all the stones, the man covered a total distance of 3 kilometers. Then the total number of stones is

- Watch Video Solution

268. Find a three - digit number such that its digits are in increasing G.P.
(from left to right) and the digits of the number obtained from it by subtracting 100 form an A.P.

- Watch Video Solution

269. If the terms $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ are in A.P and all are integers where $\mathrm{a}, \mathrm{x}>0$, then find the least composite value of a .
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$ to $\infty=\frac{\pi^{2}}{6}$, then $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$ equals

- Watch Video Solution

271. Find the coefficient of x^{18} in $\left(1+x+2 x^{2}+3 x^{2}+\ldots+18 x^{18}\right)^{2}$

- Watch Video Solution

272. If the sum of the first $2 n$ terms of the A.P. $2,5,8, \ldots$, is equal to the sum of the first n terms of A.P. $57,59,61, \ldots$, then n equals

- Watch Video Solution

273. Statement 1: If the arithmetic mean of two numbers is $5 / 2$ geometric mean of the numbers is 2 , then the harmonic mean will be $8 / 5$. Statement 2: For a group of positive numbers $(G \dot{M} .)^{2}=(A \dot{M}).(H \dot{M}$.$) .$

- Watch Video Solution

274. Let the positive numbers a, b, c, d be in AP. Then $a b c, a b d, a c d, b c d$ are

- Watch Video Solution

275. If three positive real numbers a, b, c are in A.P and $a b c=4$, then the minimum possible value of b is

- Watch Video Solution

276. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $3 / 4$, then $a=\frac{4}{7}, r=\frac{3}{7} \mathrm{~b}$. $a=2, r=\frac{3}{8}$ c. $a=\frac{3}{2}, r=\frac{1}{2}$ d. $a=3, r=\frac{1}{4}$

- Watch Video Solution

277. The maximum sum of the series $20+19 \frac{1}{3}+18 \frac{2}{3}+\ldots \ldots$ is (A) 310 (B) 300 (C) 0320 (D) none of these

- Watch Video Solution

278. In
the
quadratic
$a x^{2}+b x+c=0, D=b^{2}-4 a c$ and $\alpha+\beta, \alpha^{2}+\beta^{2}, \alpha^{3}+\beta^{3}$, are in G.P, where α, β are the roots of $a x^{2}+b x+c$, then (a) $\Delta \neq 0$
$b \Delta=0(c) c$ Delta $=0(d)$ Delta $=0 `$

- Watch Video Solution

279. Let, $a_{1}, a_{2} a, a_{3}, \ldots$ be in harmonic progression with $a_{1}=5$ and $a_{20}=25$ The least positive integer n for which $a_{n}<0$

- Watch Video Solution

280. An infinite G.P has first 13 term as a and sum 5 , then

- Watch Video Solution

281. Let $S \subset(0, \pi)$ denote the set of values of x satisfying the equation $8^{1+|\cos x|+\cos ^{2} x+\mid \cos ^{3 x \mid \rightarrow \infty}=4^{3}}$. Then, $S=\{\pi / 3\} \quad$ b. $\{\pi / 3,2 \pi / 3\}$ c. $\{-\pi / 3,2 \pi / 3\}$ d. $\{\pi / 3,2 \pi / 3\}$

- Watch Video Solution

282. The value of $\sum_{r=0}^{n}(a+r+a r)(-a)^{r}$ is equal to
A. a. $(-1)^{n}\left[(n+1) a^{n+1}-a\right]$
B. b. $(-1)^{n}(n+1) a^{n+1}$
C. c. $(-1)^{n} \frac{(n+2) a^{n+1}}{2}$
D. d. $(-1)^{n} \frac{n a^{n}}{2}$

Answer: null

- Watch Video Solution

283. If $x_{1}, x_{2} \ldots, x_{20}$ are in H.P and $x_{1}, 2, x_{20}$ are in G.P then $\sum_{r=1}^{19} x_{r} r_{x+1}$

Watch Video Solution

284. The sum of series $\frac{x}{1-x^{2}}+\frac{x^{2}}{1-x^{4}}+\frac{x^{4}}{1-x^{8}}+$ to infinite terms, if $|x|<1$, is
A. a. $\frac{x}{1-x}$
B. b. $\frac{1}{1-x}$
c. b. $\frac{1}{1-x}$
D. d. 1

Answer: null

- Watch Video Solution

285.

$b_{i}=1-a_{i} n a=\sum_{i=1}^{n} a_{i}, n b=\sum_{i=1}^{n} b_{i}$ then $\sum_{i=1}^{n} a_{b-} i+\sum_{i=1}^{n}\left(a_{i}-a\right)^{2}=$

- Watch Video Solution

286. The greatest integer by which $1+\sum_{r=1}^{30} r \times r$! is divisible is a. composite number b. odd number c. divisible by 3 d . none of these

- Watch Video Solution

287. $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{r}{1 \times 3 \times 5 \times 7 \times 9 \times \ldots \times(2 r+1)}$ is equal to
288. Value of $\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right) \ldots \ldots . \infty$ is equal to a. 3 b. $\frac{6}{5}$ c. $\frac{3}{2}$ d. none of these

- Watch Video Solution

289. If $\sum_{r=1}^{n} r^{4}=I(n)$, then $\sum_{r=1}^{n}(2 r-1)^{4}$ is equal to

- Watch Video Solution

290. If sum of an infinite G.P. $p, 1,1 / p, 1 / p^{2}, \ldots . . i s 9 / 2$ then value of p is a. 3 b. $3 / 2$ c. 3 d. $9 / 2$

- Watch Video Solution

291. The sum of $i-2-3 i+4$ up to 100 terms, where $i=\sqrt{-1}$ is a. $50(1-i)$ b. $25 i$ c. $25(1+i)$ d. $100(1-i)$

- Watch Video Solution

292. If $a_{1}, a_{2}, a_{3} \ldots a_{2 n+1}$ are in A.P then
$\frac{a_{2 n+1}-a_{1}}{a_{2 n+1}+a_{1}}+\frac{a_{2} n-a_{2}}{a_{2 n}+a_{2}}+\ldots+\frac{a_{n+2}-a_{n}}{a_{n+2}+a_{n}}$ is equal to

Watch Video Solution

293. If the sides of a triangle are in GP and its largest angle is twice tha smallset then the common ratio r satisfies the inequality

(Watch Video Solution

294. For
the
series,
$S=1+\frac{1}{(1+3)}(1+2)^{2}+\frac{1}{(1+3+5)}(1+2+3)^{2}+\frac{1}{(1+3+5+7)}($
$+. .$.
A. (A)7th term is 16
B. (B)7th term is 18
C. C)Sum of first 10 terms is $\frac{505}{4}$
D. (D)Sum of first 10 terms is $\frac{45}{4}$

Answer: null

- Watch Video Solution

295. If first and $(2 n-1)^{t} h$ terms of an AP, GP. and HP. are equal and their nth terms are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively, then

- Watch Video Solution

296. Let $a_{1}, a_{2},, a_{10}$ be in A.P. and h_{1}, h_{2}, h_{10} be in H.P. If $a_{1}=h_{1}=2 a n d a_{10}=h_{10}=3$, thena $_{4} h_{7}$ is

- Watch Video Solution

297. The harmonic mean of the roots of the equation

$$
(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0 \text { is }
$$

Watch Video Solution

298.

Find
the
sum
$(x+2)^{n-1}+(x+2)^{n-2}(x+1)^{+}(x+2)^{n-3}(x+1)^{2}++(x+1)^{n-1}$
A. a. $(x+2)^{n-2}-(x+1)^{n}$
B. b. $(x+2)^{n-2}-(x+1)^{n-1}$
C. c. $(x+2)^{n}-(x+1)^{n}$
D. d. none of these

Answer: null

299. If $\ln (a+c), \ln (a-c) \operatorname{andln}(a-2 b+c)$ are in A.P., then (a) a, b, c are in A.P. (b) a^{2}, b^{2}, c^{2}, are in A.P. (c) a, b, c are in G.P. d. (d) a, b, c are in H.P.

- Watch Video Solution

300. If a, b, c are in GP, then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in

- Watch Video Solution

301. The sum to n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots \ldots .$. is

- Watch Video Solution

302. The third term of a geometric progression is 4 . Then find the product of the first five terms.

- Watch Video Solution

303. In triangle $A B C$, Medians $A D$ and $C E$ are drawn. If $A D=5, \angle D A C=\frac{\pi}{8}$, and $\angle A C E=\frac{\pi}{4}$, then the area of the triangle $A B C$ is equal to $\frac{25}{9}$ (b) $\frac{25}{3}$ (c) $\frac{25}{18}$ (d) $\frac{10}{3}$

- Watch Video Solution

304. Suppose a, b, c are in a.P and a^{2}, b^{2}, c^{2} are in G.P. If $a<b<c$ and $a+b+c=\frac{3}{2}$ then the value of a Is

- Watch Video Solution

305. If x, y and z are pth ,qth and rht terms, respectively of an A.P and also of a G.P then prove that $x^{x-y} y^{z-x} z^{x-y}=1$

- Watch Video Solution

306. The sum of the first n terms of the series
$\frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+\ldots$ is

(Watch Video Solution

307. If a, b, andc are in H.P., then th value of

$$
\begin{aligned}
& \frac{(a c+a b-b c)(a b+b c-a c)}{(a b c)^{2}} \text { is } \frac{(a+c)(3 a-c)}{4 a^{2} c^{2}} \text { b. } \frac{2}{b c}-\frac{1}{b^{2}} \\
& \frac{2}{b c}-\frac{1}{a^{2}} \text { d. } \frac{(a-c)(3 a+c)}{4 a^{2} c^{2}}
\end{aligned}
$$

C.
308. If $a_{1}, a_{2}, a_{3} \ldots a_{n}$ are in H.P and $f(k)=\left(\sum_{r=1}^{n} a_{r}\right)-a_{k}$ then $\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(3)}, \ldots, \frac{a_{n}}{f(n)}$ are in

(Watch Video Solution

309. If a, b, c are in A.P., the $\frac{a}{b c}, \frac{1}{c}, \frac{1}{b}$ will be in a. A.P b. G.P. c. H.P. d. none of these

(Watch Video Solution

310. Let $a+a r_{1}+a r_{1}^{2}+\ldots \ldots+\infty$ and $a+a r_{2}+a r_{2}^{2}+\ldots+\infty$ be two infinite series of positive numbers with the same first term. The sum of the firest series is r_{1} and the value of the second series is r_{2}. Then the value of $\left(r_{1}+R_{2}\right)$ is \qquad .

- Watch Video Solution

311. The coefficient of the quadratic equation $a x^{2}+(a+d) x+(a+2 d)=0$ are consecutive terms of a positively valued, increasing arithmetic sequence. Then the least integral value of d / a such that the equation has real solutions is \qquad .

- Watch Video Solution

312. Let S denote sum of the series $\frac{3}{2^{3}}+\frac{4}{2^{4} .3}+\frac{5}{2^{6} .3}+\frac{6}{2^{7} .5}+\infty$ Then the value of S^{-1} is \qquad .

- Watch Video Solution

313. Let the sum of first three terms of G.P. with real terms be $13 / 12$ and their product is -1 . If the absolute value of the sum of their infinite terms is S, then the value of $7 S$ is \qquad .

- Watch Video Solution

314. Given a, b, c are in A.P. b, c, d are in G.P. and c, d, e are in H.P. If $a=2$ and $e=18$, then the sum of all possible value of c is \qquad .

- Watch Video Solution

315. The terms a_{1}, a_{2}, a_{3} from an arithmetic sequence whose sum s 18 . The terms $a_{1}+1, a_{2}, a_{3},+2$, in that order, form a geometric sequence. Then the absolute value of the sum of all possible common difference of the A.P. is \qquad .

- Watch Video Solution

316. Let $f(x)=2 x+1$. Then the number of real number of real values of x for which the three unequal numbers $f(x), f(2 x), f(4 x)$ are in G.P. is 1 b .2 c .0 d . none of these

- Watch Video Solution

317. Concentic circles of radii $1,2,3, 100 \mathrm{~cm}$ are drewn. The interior of the smallest circle is colored red and the angular regions are colored altermately green and red, so that no two adjacent regions are of the same colour . Then the total area of the green regions in sq.cm is equal to

- Watch Video Solution

318. Let $\left\{t_{n}\right\}$ be a sequence of integers in G.P. in which $t_{4}: t_{6}=1: 4$ and $t_{2}+t_{5}=216$. then t_{1} is

- Watch Video Solution

319. If $x, 2 y, 3 z$ are in AP where the distinct numbers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in GP then the common ratio r satisfies the inequality

- Watch Video Solution

- Watch Video Solution

321. If $a_{1}, a_{2}, \ldots a_{n}$ are in H.P then
$\frac{a_{1}}{a_{2}+, a_{3}, \ldots, a_{n}}, \frac{a_{2}}{a_{1}+a_{3}+\ldots+a_{n}}, \ldots, \frac{a_{n}}{a_{1}+a_{2}+\ldots .+a_{n-1}}$ are in

- Watch Video Solution

322. If H_{1}, H_{2}, H_{20} are 20 harmonic means between 2 and 3 , then $\frac{H_{1}+2}{H_{1}-2}+\frac{H_{20}+3}{H_{20}-3}=$ a. 20 b. 21 c. 40 d. 38

- Watch Video Solution

323. A pack contains n cards numbered from 1 to n . Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is 1224 . If the smaller of the numbers on the removed cards is k, then $k-20$ is equal to

- Watch Video Solution

324. Let $a_{n}=16,4,1$, be a geometric sequence. Define P_{n} as the product of the first n terms. Then the value of $\frac{1}{4} \sum_{n=1}^{\infty} P_{n}^{\frac{1}{n}}$ is \qquad .

- Watch Video Solution

325. If he equation $x^{3}+a x^{2}+b x+216=0$ has three real roots in G.P., then b / a has the value equal to \qquad .

- Watch Video Solution

326. Let T_{r} denote the rth term of G.P for $\mathrm{r}=1,2,3$...If for some postive intergers m and n , we have $T_{m}=1 / n^{2}$ and $T_{n}=1 / m^{2}$ then find the vlaue of $T_{(m+n) / 2}$

- Watch Video Solution

327. Let $A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$
$B_{n}=1-A_{n}$. Find a least odd natural number n_{0}, so that $B_{n}>A_{n}, \forall n \geq n_{0}$

- Watch Video Solution

328. For a positive integer n let
$a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{\left(2^{n}\right)-1}$, then

- Watch Video Solution

329 $\frac{1}{1+\log x}, \frac{1}{1+\log y}, \frac{1}{1+\log z}$ are in

- Watch Video Solution

330. .Let $a_{1}, a_{2}, \ldots \ldots \ldots . .$. be positive real numbers in geometric progression. For each n , let $A_{n} G_{n}, H_{n}$, be respectively the arithmetic mean, geometric mean \& harmonic mean of $a_{1}, a_{2} \ldots \ldots \ldots . a_{n}$. Find an expression ,for the geometric mean of $G_{1}, G_{2}, \ldots \ldots . . G_{n}$ in terms of $A_{1}, A_{2}, \ldots \ldots . ., A_{n}, H_{1}, H_{2}, \ldots \ldots \ldots, H_{n}$.

- Watch Video Solution

331. The fourth power of the common difference of an arithmetic progression with integer entries is added to the product of any four consecutive of it. Prove that the resulting sum is the squares of an integer.
332. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in AP, a^{2}, b^{2}, c^{2} are in HP, then prove that either $a=b=c$ or $a, b,-\frac{c}{2}$ form a GP.

- Watch Video Solution

333. Let a and b be positive real numbers. If $\mathrm{a}, A_{1}, A_{2}, \mathrm{~b}$ are in arthimatic progression, a G_{1}, G_{2}, b are in geometric progression and a, $H_{1}, H_{2}, \mathrm{~b}$ are in harmonic progression, show that $\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}=\frac{(2 a+b)(a+2 b)}{9 a b}$.

- Watch Video Solution

334. The sum of an infinite G.P. is 57 and the sum of their cubes is 9747 , then the common ratio of the G.P. is
A. $a .1 / 2$
B. b. $2 / 3$
C. c. $1 / 6$
D. d. none of these

Answer: null

- Watch Video Solution

335. If $a^{2}+b^{2}, a b+b c$, and $b^{2}+c^{2}$ are in G.P then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in

- Watch Video Solution

336. If x, y, z are in G.P. and $a^{x}=b^{y}=c^{z}$, then $(\log)_{b} a=(\log)_{a} c$ b.
$(\log)_{c} b=(\log)_{a} c \mathrm{c} .(\log)_{b} a=(\log)_{c} b$ d. none of these

- Watch Video Solution

337. After striking the floor, a certain ball rebounds (4/5)th of height from which it has fallen. Then the total distance that it travels before coming to rest, if it is gently dropped of a height of 120 m is 1260 m b. 600 m c . 1080 md . none of these

- Watch Video Solution

338. If S dentes the sum to infinity and S_{n} the sum of n terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$. , such that $S-S_{n}<\frac{1}{1000}$ then the least value of n is

- Watch Video Solution

339. The first term of an infinite geometric series is 21 . The second term and the sum of the series are both positive integers. Then which of the following is not the possible value of the second term 12 b .14 c .18 d . none of these
340. Given that $x+y+z=15 w h e n a, x, y, z, b$ are in A.P. and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+=\frac{5}{3}$ whena, x, y, z, b are in H.P.

Watch Video Solution

341. Let $a_{1}, a_{2}, a_{3} \ldots \ldots, a_{n}$ be in G.P such that
$3 a_{1}+7 a_{2}+3 a_{3}-4 a_{5}=0$ Then common ratio of G.P can be

- Watch Video Solution

342. The consecutive digits of a three digit number are in G.P. If middle digit is increased by 2 , then they form an A.P. If 792 is subtracted from this, then we get the number constituting of same three digits but in reverse order. Then number is divisible by a. 7 b.
49
c. 19
d. none of these
343. If $\sum_{r=1}^{n} r(r+1)(2 r+3)=a n^{4}+b n^{3}+c n^{2}+d n+e$, then a. $a-b=d-c$ b.e $=0$ c. $a, b-2 / 3, c-1$ are in A.P. d. $\frac{c}{a}$ is an integer

- Watch Video Solution

344. The terms of an infinitely decreasing G.P. in which all the terms are positive, the first term is 4 , and the difference between the third and fifth terms is $32 / 81$, then $r=1 / 3 \mathrm{~b} . r=2 \sqrt{2} / 3 \mathrm{c} . S_{\infty}=6 \mathrm{~d}$. none of these

- Watch Video Solution

345. If a, x, and b and b are in A.P .., a, y, and a, z, b are in H.P such that $x=9 z$ and $a>0, b>0$ then

- Watch Video Solution

346. If $a, b, a n d c$ are in G.P., then $a+b, 2 b, a n d b+c$ are in a. A.P b. G.P. c. H.P. d. none of these

- Watch Video Solution

347. $a, b, c x \in R^{+}$such that $a, b, a n d c$ are in A.P. and $b, c a n d d$ are in H.P., then $a b=c d$ b. $a c=b d \mathrm{c} . b c=a d \mathrm{~d}$. none of these

- Watch Video Solution

348. The harmonic mean of two numbers is 4 . Their arithmetic mean A and the geometric mean G satisfy the relation $2 A+G^{2}=27$. Find two numbers.
