©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE

STRAIGHT LINES

Solved Examples And Exercises

1. If the lines joining the origin and the point of intersection of curves $a x^{2}+2 h x y+b y^{2}+2 g x+0$ and $a_{1} x^{2}+2 h_{1} x y+b_{1} y^{2}+2 g_{1} x=0$ are mutually perpendicular, then prove that $g\left(a_{1}+b_{1}\right)=g_{1}(a+b)$.

- Watch Video Solution

2. Prove that the angle between the lines joining the origin to the points of intersection of the straight line $y=3 x+2$ with the curve
$x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ is $\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$

- Watch Video Solution

3. If $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ bisect angles between each other, then find the condition.

- Watch Video Solution

4. Find the value of a for which the lines represented by $a x^{2}+5 x y+2 y^{2}=0$ are mutually perpendicular.

- Watch Video Solution

5. Find the acute angle between the pair of lines represented by $x(\cos \alpha-y \sin \alpha)^{2}=\left(x^{2}+y^{2}\right) \sin ^{2} \alpha$
6. If the angle between the two lines represented by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is $\tan ^{-1}(m)$, then find the value of m.

- Watch Video Solution

7. If the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is rotated about the origin through 90°, then find the equations in the new position.

- Watch Video Solution

8. The lines joining the origin to the point of intersection of The lines joining the origin to the point of intersection of $3 x^{2}+m x y=4 x+1=0$ and $2 x+y-1=0$ are at right angles. Then which of the following is not a possible value of $m ?-4$ (b) 4 (c) 7 (d) 3

- Watch Video Solution

9. If the slope of one line is double the slope of another line and the combined equation of the pair of lines is $\left(\frac{x^{2}}{a}\right)+\left(\frac{2 x y}{h}\right)+\left(\frac{y^{2}}{b}\right)=0$, then find the ratio $a b: h^{2}$.

- Watch Video Solution

10. Find the combined equation of the pair of lines through the point (1 ,

0) and parallel to the lines represented by $2 x^{2}-x y-y^{2}=0$

- Watch Video Solution

11. The value k for which $4 x^{2}+8 x y+k y^{2}=9$ is the equation of a pair of straight lines is \qquad

- Watch Video Solution

12. The two lines represented by $3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are perpendicular to each other for (a)two values of a (b) a (c)for one value of
a (d) for no values of a

- Watch Video Solution

13. If two lines represented by $x^{4}+x^{3} y+c x^{2} y^{2}-x y^{3}+y^{4}=0$ bisect the angle between the other two, then the value of c is (a) 0 (b) -1 (c) 1
(d) -6

- Watch Video Solution

14. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is (a) 1 (b) 2 (c) $-\frac{1}{2}$ (d) -1

- Watch Video Solution

15. Statement 1: If $-h 2=a+b$, then one line of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes in the positive quadrant. Statement 2: If $a x+y(2 h+a)=0$ is a factor of
$a x^{2}+2 h x y+b y^{2}=0$, then $b+2 h+a=0$ Both the statements are true but statement 2 is the correct explanation of statement 1 . Both the statements are true but statement 2 is not the correct explanation of statement 1 . Statement 1 is true and statement 2 is false. Statement 1 is false and statement 2 is true.

- Watch Video Solution

16. Show that all chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.

- Watch Video Solution

17. Area of the triangle formed by the lines
$y^{2}-9 x y+18 x^{2}=0 a n d y=6$ is \qquad

- Watch Video Solution

18. The distance between the lines $(x+7 y)^{2}+4 \sqrt{2}(x+7 y)-42=0$ is \qquad

- Watch Video Solution

19. $x+y=7$ and $a x^{2}+2 h x y+a y^{2}=0,(a \neq 0)$, are three real distinct lines forming a triangle. Then the triangle is (a) isosceles
scalene (c) equilateral (d) right angled

- Watch Video Solution

20. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is the square of the other, then $\frac{a+b}{h}+\frac{8 h^{2}}{a b}=$ (a) 4 (b) 6 (c) 8 (d) none of these

- Watch Video Solution

21. Find the area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pair of lines $x^{2}-y^{2}+4 y-4=0$

- Watch Video Solution

22. The sides of a triangle have the combined equation $x^{2}-3 y^{2}-2 x y+8 y-4=0$. The third side, which is variable, always passes through the point $(-5,-1)$. Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.

- Watch Video Solution

23. Let $P Q R$ be a right-angled isosceles triangle, right angled at $P(2,1)$. If the equation of the line $Q R$ is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is

$$
\begin{equation*}
3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0 \tag{a}
\end{equation*}
$$

$3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
$3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0$
$3 x^{2}-3 y^{2}-8 x y-15 y-20=0$

- Watch Video Solution

24. Find the equation of the bisectors of the angles between the lines joining the origin to the point of intersection of the straight line $x-y=2$ with the curve $5 x^{2}+11 x y=8 y^{2}+8 x-4 y+12=0$

- Watch Video Solution

25. If θ is the angle between the lines given by the equation $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$, then find the equation of the line passing through the point of intersection of these lines and making an angle θ with the positive x-axis.

- Watch Video Solution

26. The distance of a point $\left(x_{1}, y_{1}\right)$ from two straight lines which pass through the origin of coordinates is p. Find the combined equation of these straight lines.

- Watch Video Solution

27. Prove that the product of the perpendiculars from (α, β) to the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{a \alpha^{2}-2 h \alpha \beta+\boldsymbol{\eta}^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}$

- Watch Video Solution

28. Find the area enclosed by the graph of $x^{2} y^{2}=9 x^{2}-25 y^{2}+225=0$

- Watch Video Solution

29. Show that the pairs of straight lines $2 x^{2}+6 x y+y^{2}=0$ and $4 x^{2}+18 x y+y^{2}=0$ have the same set of angular bisector.

(D) Watch Video Solution

30. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$.

- Watch Video Solution

31. Find the angle between the straight lines joining the origin to the point of intersection of $3 x^{2}+5 x y-3 y^{2}+2 x+3 y=0$ and $3 x-2 y=1$

- Watch Video Solution

32. Through a point A on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ at B and C. If $A B=B C$, then (a) $h^{2}=4 a b$ (b) $8 h^{2}=9 a b$ (c) $9 h^{2}=8 a b$ (d) $4 h^{2}=a b$

(Watch Video Solution

33. Find the lines whose combined equation is $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$

- Watch Video Solution

34. Does equation $x^{2}+2 y^{2}-2 \sqrt{3} x-4 y+5=0 \quad$ satisfies the condition $a b c+2 g h-a f^{2}-b g^{2}-c h^{2}=0$? Does it represent a pair of straight lines?

- Watch Video Solution

35. Find the value of λ if $2 x^{2}+7 x y+3 y^{2}+8 x+14 t+\lambda=0$ represents a pair of straight lines

- Watch Video Solution

36. The distance between the pair of parallel lines $x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$ is

- Watch Video Solution

37. If the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersect on the y -axis, then prove that $2 f g h=b g^{2}+c h^{2}$

- Watch Video Solution

38. Find the lines whose combined equation is $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$

- Watch Video Solution

39. If the component lines whose combined equation is $p x^{2}-q x y-y^{2}=0$ make the angles α and β with x-axis, then find the value of $\tan (\alpha+\beta)$.

(D) Watch Video Solution

40. Find the joint equation of the pair of lines which pass through the origin and are perpendicular to the lines represented the equation $y^{2}+3 x y-6 x+5 y-14=0$

- Watch Video Solution

41. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then c has the value

- Watch Video Solution

42. If the gradient of one of the lines $x^{2}+h x y+2 y^{2}=0$ is twice that of the other, then $h=$

- Watch Video Solution

43. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is (a) 1 (b) 2 (c) $-\frac{1}{2}$ (d) -1

D Watch Video Solution

44. Two pairs of straight lines have the equations $y^{2}+x y-12 x^{2}=0$ and $a x^{2}+2 h x y+b y^{2}=0$. One line will be common among them if.
$a+8 h-16 b=0$
(b) $a-8 h+16 b=0 \quad a-6 h+9 b=0$
$a+6 h+9 b=0$

- Watch Video Solution

45. If the equation of the pair of straight lines passing through the point $(1,1)$, one making an angle θ with the positive direction of the x-axis and the other making the same angle with the positive direction of the y-axis, is $x^{2}-(a+2) x y+y^{2}+a(x+y-1)=0, a \neq 2$, then the value of $\sin 2 \theta$ is
(a) $a-2$
(b) $a+2$
(c) $\frac{2}{a+2}$
(d) $\frac{2}{a}$

- Watch Video Solution

46. If one of the lines given by the equation $2 x^{2}+p x y+3 y^{2}=0$ coincide with one of those given by $2 x^{2}+q x y-3 y^{2}=0$ and the other lines represented by them are perpendicular, then $p=5$ (b) $p=-5$ $q=-1$ (d) $q=1$

- Watch Video Solution

47. If $x^{2}+2 h x y+y^{2}=0$ represents the equation of the straight lines through the origin which make an angle α with the straight line $y+x=0$
(a) $\sec 2 \alpha=h$
(b) $\cos \alpha=\sqrt{\frac{(1+h)}{(2 h)}}$
(c) $2 \sin \alpha=\sqrt{\frac{(1+h)}{h}}$
(d) $\cot \alpha=\sqrt{\frac{(1+h)}{(h-1)}}$

- Watch Video Solution

48. The equation to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}-6 y+5=0$. The equations to its diagonals are \quad (a) $x+4 y=13, y=4 x-7$
(b) $4 x+y=13,4 y=x-7$
$4 x+y=13, y=4 x-7$ (d) $y-4 x=13, y+4 x-7$

- Watch Video Solution

49. The image of the pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$ by the line mirror $y=0$ is $a x^{2}-2 h x y-b y^{2}=0$ $b x^{2}-2 h x y+a y^{2}=0 b x^{2}+2 h x y+a y^{2}=0 a x^{2}-2 h x y+b y^{2}=0$

- Watch Video Solution

50. Area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pairs of straight lines $x^{2}-y^{2}+2 y=1$ is
(a)2squnits
(b)4squnits
(c)6squnits
(d) 8 squnits

- Watch Video Solution

51. The equation $x^{2} y^{2}-9 y^{2}-6 x^{2} y+54 y=0$ represents (a) a pair of straight lines and a circle (b) a pair of straight lines and a parabola (c) a set of four straight lines forming a square (d) none of these

- Watch Video Solution

52. The straight lines represented by $(y-m x)^{2}=a^{2}\left(1+m^{2}\right)$ and $(y-n x)^{2}=a^{2}\left(1+n^{2}\right)$ from a (a) rectangle (b) rhombus (c) trapezium
(d) none of these
53. The condition that one of the straight lines given by the equation $a x^{2}+2 h x y+b y^{2}=0$ may coincide with one of those given by the equation

$$
a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0
$$

$\left(a b^{\prime}-a^{\prime} b\right)^{2}=4\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(a b^{\prime}-a^{\prime} b\right)^{2}=\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(h a^{\prime}-h^{\prime} a\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(b h^{\prime}-b^{\prime} h\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(h a^{\prime}-h^{\prime} a\right)$

- Watch Video Solution

54. The angle between the pair of lines whose equation is $4 x^{2}+10 x y+m y^{2}+5 x+10 y=0$ is (a) $\tan ^{-1}\left(\frac{3}{8}\right)$ (b) $\tan ^{-1}\left(\frac{3}{4}\right)$ (c) $\tan ^{-1}\left\{2 \frac{\sqrt{25-4 m}}{m+4}\right\}, m \in R(\mathrm{~d})$ none of these

(Watch Video Solution

55. Find the point of intersection of the pair of straight lines represented by the equation $6 x^{2}+5 x y-21 y^{2}+13 x+38 y-5=0$.

- Watch Video Solution

56. Find the angle between the lines represented by $x^{2}+2 x y \sec \theta+y^{2}=0$

- Watch Video Solution

57. If the pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ is rotated about the origin by $\frac{\pi}{6}$ in the anticlockwise sense, then find the equation of the pair in the new position.

- Watch Video Solution

58. If the equation $2 x^{2}+k x y+2 y^{2}=0$ represents a pair of real and distinct lines, then find the values of k.

Watch Video Solution

59. If the equation $x^{2}+(\lambda+\mu) x y+\lambda u y^{2}+x+\mu y=0$ represents two parallel straight lines, then prove that $\lambda=\mu$.

- Watch Video Solution

60. If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the positive direction of the axes. Then find the relation for a, b, h

- Watch Video Solution

61. Prove that the equation $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ represents a pair of straight lines. Find the coordinates of their point of intersection and also the angle between them.

- Watch Video Solution

62. A line L passing through the point $(2,1)$ intersects the curve $4 x^{2}+y^{2}-x+4 y-2=0$ at the point $A a n d B$. If the lines joining the origin and the points A, B are such that the coordinate axes are the bisectors between them, then find the equation of line L.

- Watch Video Solution

63. If $(-2,6)$ is the image of the point $(4,2)$ with respect to line $L=0$, then L is:

- Watch Video Solution

64. Find the equation of the line which satisfy the given conditions : Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive xaxis is 30°.

- Watch Video Solution

65. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is (a)2 (b) 0 (c) 4 (d) 1

- Watch Video Solution

66. Reduce the line $2 x-3 y+5=0$ in slope-intercept, intercept, and normal forms.

- Watch Video Solution

67. The line $5 x+4 y=0$ passes through the point of intersection of straight lines (1) $x+2 y-10=0,2 x+y=-5$

- Watch Video Solution

68. If the intercept of a line between the coordinate axes is divided by the point $(-5,4)$ in the ratio $1: 2$, then find the equation of the line.

- Watch Video Solution

69. Show that the lines $2 x+3 y+19=0$ and $9 x+6 y-17=0$, cut the coordinate axes at concyclic points.

- Watch Video Solution

70. The straight lines $3 x+y-4=0, x+3 y-4=0 \quad$ and $x+y-4=0$ form a triangle which is :
71. If $P=(1,0) ; Q=(-1,0) \& R=(2,0)$ are three given points, then the locus of the points S satisfying the relation, $S Q^{2}+S R^{2}=2 S P^{2}$ is (a)a straight line parallel to x-axis (b) A circle through origin (c) A circle with center at the origin (d)a straight line parallel to y-axis

- Watch Video Solution

72. Distance of point $(2,3)$ from the line $2 x-3 y+9=0$ along $x-y+1=0$

- Watch Video Solution

73. A rectangle $A B C D$ has its side $A B$ parallel to line $y=x$, and vertices A, BandD lie on $y=1, x=2$, and $x=-2$, respectively. The locus of vertex C is (a) $x=5$ (b) $x-y=5$ (c) $y=5$ (d) $x+y=5$
74. The equation of a line through the point $(1,2)$ whose distance from the point $(3,1)$ has the greatest value is (a) $y=2 x$ (b) $y=x+1$ (c) $x+2 y=5$ (d) $y=3 x-1$

- Watch Video Solution

75. Find the equation of the line through the point $A(2,3)$ and making an angle an angle of 45^{0} with the $x-a x i s$. Also, determine the length of intercept on it between Aand the line $x+y+1=0$.

- Watch Video Solution

76. The line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an angle of 15°. find the equation of line in the new position. If b goes to c in the new position what will be the coordinates of C .
77. The area of the triangle formed by the lines $y=a x, x+y-a=0$, and the y -axis to (a) $\frac{1}{2|1+a|}$ (b) $\frac{1}{|1+a|}$ (c) $\frac{1}{2}\left|\frac{a}{1+a}\right|$ (d) $\frac{a^{2}}{2|1+a|}$

- Watch Video Solution

78. The equations of the lines through the point $(3,2)$ which makes an angle of 45° with the line $x-2 y=3$ are

- Watch Video Solution

79. Consider the points $A(0,1)$ and $B(2,0)$, and P be a point on the line $4 x+3 y+9=0$. The coordinates of P such that $|P A-P B|$ is maximum are

- Watch Video Solution

80. The perpendicular from the origin to a line meets it at the point $(-2,9)$ find the equation of the line.

- Watch Video Solution

81. Find the direction in which a straight line must be drawn through the point ($-1,2$) so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.

- Watch Video Solution

82. Two fixed points A and B are taken on the coordinates axes such that $O A=a$ and $O B=b$. Two variable points A^{\prime} and B^{\prime} are taken on the same axes such that $O A^{\prime}+O B^{\prime}=O A+O B$. Find the locus of the point of intersection of $A B^{\prime}$ and $A^{\prime} B$.

- Watch Video Solution

83. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.

- Watch Video Solution

84. Find the equation of the straight line which passes through the origin and makes angle 60° with the line $x+\sqrt{3} y+3$
$\sqrt{3}=0$

- Watch Video Solution

85. The equation of a straight line passing through the point $(2,3)$ and inclined at an angle of $\tan ^{-1}(1 / 2)$ with the line $y+2 x=5$ is

- Watch Video Solution

86. If we reduce $3 x+3 y+7=0$ to the form $x \cos \alpha+y \sin \alpha=p$, then find the value of p.

(D) Watch Video Solution

87. The equation of lines on which the perpendiculars from the origin make 30° angle with the x-axis and which form a triangle of area $\frac{50}{\sqrt{3}}$ with the axes are
(a) $\sqrt{3} x+y-10=0$
(b) $\sqrt{3} x+y+10=0$
$x+\sqrt{3} y-10=0$ (d) $x-\sqrt{3} y-10=0$

- Watch Video Solution

88. A line intersects the straight lines $5 x-y-4=0$ and $3 x-4 y-4=0$ at A and B, respectively. If a point $P(1,5)$ on the line $A B$ is such that $A P: P B=2: 1$ (internally), find point A.

- Watch Video Solution

89. A line is a drawn from $P(4,3)$ to meet the lines L_{1} and l_{2} given by $3 x+4 y+5=0$ and $3 x+4 y+15=0 \quad$ at points $\quad A$ and B
respectively. From A, a line perpendicular to L is drawn meeting the line L_{2} at A_{1} Similarly, from point B_{1} Thus a parallelogram $\forall_{1} B B_{1}$ is formed. Then the equation of L so that the area of the parallelogram $\forall_{1} B B_{1}$ is the least is (a) $x-7 y+17=0$ (b) $7 x+y+31=0$ (c) $x-7 y-17=0$ (d) $x+7 y-31=0$

Watch Video Solution

90. Two straight lines $u=0 a n d v=0$ pass through the origin and the angle between them is $\tan ^{-1}\left(\frac{7}{9}\right)$. If the ratio of the slope of $v=0$ and $u=0$ is $\frac{9}{2}$, then their equations are (a) $y+3 x=0$ and $3 y+2 x=0$ (b) $2 y-3 x=0 a n d 3 y-x=0$
(c) $2 y=3 x a n d 3 y=x$
$y=3 x a n d 3 y=2 x$

- Watch Video Solution

91. A straight line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the points A and B . The equation of
$A B$ so that the triangle $O A B$ is equilateral, where O is the origin.

- Watch Video Solution

92. Let $u \equiv a x+b y+a^{3} \sqrt{b}=0, v \equiv b x-a y+b^{3} \sqrt{a}=0, a, b \in R$, be two straight lines. The equations fo the bisectors of the angle formed by $k_{1} u-k_{2_{v}=0}$ and $k_{1} u+k_{2 v}=0$, for nonzero and real k_{1} and k_{2}, are

- Watch Video Solution

93. A line which makes an acute angle θ with the positive direction of the x-axis is drawn through the point $P(3,4)$ to meet the line $x=6$ at R and $y=8$ at S. Then, (a) $P R=3 \sec \theta$
(b) $P S=4 \cos e c \theta$
$P R=+P S=\left(2 \frac{3 \sin \theta+4 \cos \theta}{\sin 2 \theta}\right)$ (d) $\frac{9}{(P R)^{2}}+\frac{16}{(P S)^{2}}=1$

- Watch Video Solution

94. Find the values of non-negative real number $h_{1}, h_{2}, h_{3}, k_{1}, k_{2}, k_{3}$ such that the algebraic sum of the perpendiculars drawn from the points $\left.\left(2, k_{1}\right),\left(3, k_{2}\right), * 7, k_{3}\right),\left(h_{1}, 4\right),\left(h_{2}, 5\right),\left(h_{3},-3\right)$ on a variable line passing through $(2,1)$ is zero.

- Watch Video Solution

95. The sides of a triangle $A B C$ lie on the lines $3 x+4 y=0,4 x+3 y=0$, and $x=3$. Let (h, k) be the center of the circle inscribed in $\Delta A B C$. The value of ($\mathrm{h}+\mathrm{k}$) equals.

- Watch Video Solution

96. If a and b are two arbitray constants, then prove that the straight line $(a-2 b) x+(a+3 b) y+3 a+4 b=0$ will pass through a fixed. Find that point.

- Watch Video Solution

97. If the two sides of rhombus are $x+2 y+2=0$ and $2 x+y-3=0$, then find the slope of the longer diagonal.

- Watch Video Solution

98. The lines $x+y-1=0,(m-1) x+\left(m^{2}-7\right) y-5=0$, and $(m-2) x+(2 m-5) y=0$ are (a)concurrent for three values of m (b)concurrent for one value of m (c)concurrent for no value of m
(d)parallel for $m=3$.

- Watch Video Solution

99. In triangle $A B C$, the equation of the right bisectors of the sides $A B$ and
$A C$ are $x+y=0$ and $y-x=0$. respectively.
If $A \equiv(5,7)$ the find the equation of side $B C$.

- Watch Video Solution

100. Show that the straight lines given by $x(a+2 b)+y(a+3 b)=a$ for different values of $a a n d b$ pass through a fixed point.

- Watch Video Solution

101. The straight line $3 x+4 y-12=0$ meets the coordinate axes at AandB. An equilateral triangle $A B C$ is constructed. The possible coordinates of vertex C (a) $\left(2\left(1-\frac{3 \sqrt{3}}{4}\right), \frac{3}{2}\left(1-\frac{4}{\sqrt{3}}\right)\right)$
$\left(-2(1+\sqrt{3}), \frac{3}{2}(1-\sqrt{3})\right) \quad$ (c) $\left(2(1+\sqrt{3}), \frac{3}{2}(1+\sqrt{3})\right)$
$\left(2\left(1+\frac{3 \sqrt{3}}{4}\right), \frac{3}{2}\left(1+\frac{4}{\sqrt{3}}\right)\right)$

(Watch Video Solution

102. Let $a x+b y+c=0$ be a variable straight line, where a, $b a n d c$ are the 1st, 3rd, and 7th terms of an increasing AP, respectively. Then prove that the variable straight line always passes through a fixed point. Find that point.

- Watch Video Solution

103. Prove that all the having sum of the intercepts on the axes equal to half of the product of the intercepts pass through a fixed point. Also, find that fixed point.

- Watch Video Solution

104. Given three straight lines $2 x+11 y-5=0,24 x+7 y-20=0$, and $4 x-3 y-2=0$. Then,

- Watch Video Solution

105. Find the straight line passing through the point of intersection of lines $2 x+3 y+5=0$ and $5 x-2 y-16=0$ and through the point $(-1,3)$ using the concept of family of lines.
106. The lines $x+2 y+3=0, x+2 y-7=0$, and $2 x-y-4=0$ are the sides of a square. The equation of the remaining side of the square can be (a) $2 x-y+6=0$ (b) $2 x-y+8=0$ (c) $2 x-y-10=0$ (d) $2 x-y-14=0$

- Watch Video Solution

107. Consider a family of straight lines $(x+y)+\lambda(2 x-y+1)=0$.

Find the equation of the straight line belonging to this family that is farthest from $(1,-3)$.

- Watch Video Solution

108. The equation of straight line belonging to both the families of lines
$(x-y+1)+\lambda_{1}(2 x-y-2)=0 \quad$ and
$(5 x+3 y-2)+\lambda_{2}(3 x-y-4)=0 \quad$ where $\quad \lambda_{1}, \lambda_{2} \quad$ are arbitrary
numbers is (A) $5 x-2 y-7=0$ (B) $2 x+5 y-7=0$ (C) $5 x+2 y-7=0$
(D) $2 x-5 y-7=0$

- Watch Video Solution

109. If the algebraic sum of the distances of a variable line from the points $(2,0),(0,2)$, and $(-2,-2)$ is zero, then the line passes through the fixed point. (a) ($-1,-1$) (b) $(0,0)(c)(1,1)(d)(2,2)$

- Watch Video Solution

110. If the points $\left(\frac{a^{3}}{(a-1)}\right),\left(\frac{\left(a^{2}-3\right)}{(a-1)}\right),\left(\frac{b^{3}}{b-1}\right),\left(\frac{b^{2}-3}{(b-1)}\right)$, $\left(\frac{c^{3}}{c-1}\right)$ and $\left(\frac{\left(c^{2}-3\right)}{(c-1)}\right)$, where a, b, c are different from 1, lie on the $l x+m y+n=0$, then (a) $a+b+c=-\frac{m}{l}$ (b) $a b+b c+c a=\frac{n}{l}$ (c) $a b c=\frac{(m+n)}{l}(\mathrm{~d}) a b c-(b c+c a+a b)+3(a+b+c)=0$
111. If a, b, c are in harmonic progression, then the straight line $\left(\left(\frac{x}{a}\right)\right)+\left(\frac{y}{b}\right)+\left(\frac{1}{c}\right)=0$ always passes through a fixed point. Find that point.

- Watch Video Solution

112. Prove that the area of the parallelogram contained by the lines $4 y-3 x-a=0,3 y-4 x+a=0,4 y-3 x+3 a=0, \quad$ and $3 y-4 x+2 a=0$ is $\left(\frac{2}{7}\right) a^{2}$.

- Watch Video Solution

113. Let $A B C$ be a given isosceles triangle with $A B=A C$. Sides $A B$ and $A C$ are extended up to E and F , repectively, such that $B E \times C F=A B^{2}$. Prove that the line EF always passes through a fixed point.

- Watch Video Solution

114. Find the points on y-axis whose perpendicular distance from the line $4 x-3 y-12=0$ is 3.

- Watch Video Solution

115. Find all the values of θ for which the point $\left(\sin ^{2} \theta, \sin \theta\right)$ lies inside the square formed by the line $x y=0$ and $4 x y-2 x-2 y+1=0$.

- Watch Video Solution

116. If p and q are the lengths of perpendiculars from the origin to the lines $\quad x \cos \theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \cos e c \theta=k$, respectively, prove that $p^{2}+4 q^{2}=k^{2}$.

- Watch Video Solution

117. The equations of two sides of a triangle are $3 y-x-2=0$ and $y+x-2=0$. The third side, which is variable, always passes through the point (5,-1). Find the range of the values of the slope of the third side, so that the origin is an interior point of the triangle.

- Watch Video Solution

118. Prove that the lengths of the perpendiculars from the points $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right)$, and $\left(m^{\prime 2}, 2 m^{\prime}\right)$ to the line $x+y+1=0$ are in GP.

- Watch Video Solution

119. Find the equations of lines parallel to $3 x-4 y-5=0$ at a unit distance from it.

- Watch Video Solution

120. Find the equation of a straight line passing through the point $(-5,4)$ and which cuts off an intercept of $\sqrt{2}$ units between the lines $x+y+1=0$ and $x+y-1=0$.

- Watch Video Solution

121. Are the points $(3,4)$ and $(2,-6)$ on the same or opposite sides of the line $3 x-4 y=8$?

- Watch Video Solution

122. Consider the equation $y-y_{1}=m\left(x-x_{1}\right)$. If $\operatorname{mand} x_{1}$ are fixed and different lines are drawn for different values of y_{1}, then (a)the lines will pass through a fixed point (b)there will be a set of parallel lines (c)all the lines intersect the line $x=x_{1}$ (d)all the lines will be parallel to the line $y=x_{1}$
123. In a triangle $A B C$, side $A B$ has equation $2 x+3 y=29$ and side $A C$ has equation $x+2 y=16$. If the midpoint of $B C$ is $(5,6)$, then find the equation of $B C$.

- Watch Video Solution

124. The foot of the perpendicular on the line $3 x+y=\lambda$ drawn from the origin is C. If the line cuts the x and the y-axis at AandB, respectively, then $B C: C A$ is
(a) $1: 3$
(b) $3: 1$
(c) $1: 9$
(d) $9: 1$

- Watch Video Solution

125. If the two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one diagonal is $11 x+7 y=9$, find the
equation of the other diagonal.

- Watch Video Solution

126. The real value of a for which the value of m satisfying the equation $\left(a^{2}-1\right) m^{2}-(2 a-3) m+a=0$ given the slope of a line parallel to the y-axis is (a) $\frac{3}{2}$ (b) 0 (c) 1 (d) ± 1

- Watch Video Solution

127. If one of the sides of a square is $3 x-4 y-12=0$ and the center is $(0,0)$, then find the equations of the diagonals of the square.

- Watch Video Solution

128. If the quadrilateral formed by the lines $a x+b y+c=0, a^{\prime} x+b^{\prime} y+c=0, a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}=$
has perpendicular diagonals, then (a) $b^{2}+c^{2}=b^{\prime 2}+c^{\prime 2}$ $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2}$ (c) $a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$ (d) none of these

- Watch Video Solution

129. The vertex P of an equilateral triangle $\triangle P Q R$ is at $(2,3)$ and the equation of the opposite side QR is given by $x+y=2$. Find the possible equations of the side PQ .

- Watch Video Solution

130. The straight lines $7 x-2 y+10=0$ and $7 x+2 y-10=0$ form an isosceles triangle with the line $y=2$. The area of this triangle is equal to (a) $\frac{15}{7}$ squnits (b) $\frac{10}{7}$ squinits (c) $\frac{18}{7}$ squnits (d) none of these

- Watch Video Solution

131. Find the least value of $(x-2)^{2}+(y-2)^{2}$ under the condition $3 x+4 y-2=0$.

- Watch Video Solution

132. θ_{1} and θ_{2} are the inclination of lines $L_{1} a n d L_{2}$ with the x-axis. If $L_{1} a n d L_{2}$ pass through $P\left(x_{1}, y_{1}\right)$, then the equation of one of the angle bisector of these lines is (a) $\frac{x-x_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
$\frac{x-x_{1}}{-\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
(c) $\frac{x-x_{1}}{\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
$\frac{x-x_{1}}{-\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$

- Watch Video Solution

133. Find the least and greatest values of the distance of the point $(\cos \theta, \sin \theta), \theta \in R$, from the line $3 x-4 y+10=0$.
134. A light ray coming along the line $3 x+4 y=5$ gets reflected from the line $a x+b y=1$ and goes along the line $5 x-12 y=10$. Then, (A) $a=\frac{64}{115}, b=\frac{112}{15}$ (B) $a=\frac{14}{15}, b=-\frac{8}{115}$ (C) $a=\frac{64}{115}, b=-\frac{8}{115}$
(D) $a=\frac{64}{15}, b=\frac{14}{15}$

- Watch Video Solution

135. Line $a x+b y+p=0$ makes angle $\frac{\pi}{4} \quad$ with $x \cos \alpha+y \sin \alpha=p, p \in R^{+}$. If these lines and the line $x \sin \alpha-y \cos \alpha=0 \quad$ are concurrent, then (a) $a^{2}+b^{2}=1$
$a^{2}+b^{2}=2(\mathrm{c}) 2\left(a^{2}+b^{2}\right)=1$ (d) none of these

Watch Video Solution

136. Two sides of a square lie on the lines $x+y=1 a n d x+y+2=0$.

What is its area?
137. A line is drawn perpendicular to line $y=5 x$, meeting the coordinate axes at AandB. If the area of triangle $O A B$ is 10 sq. units, where O is the origin, then the equation of drawn line is (a) $3 x-y-9$ $5 y+x=10$ (c) $5 y+x=-10$ (d) $x-4 y=10$

- Watch Video Solution

138. Find the coordinates of a point on $x+y+3=0$, whose distance from $x+2 y+2=0$ is $\sqrt{5}$.

- Watch Video Solution

139. If $x-2 y+4=0$ and $2 x+y-5=0$ are the sides of an isosceles triangle having area 10 squinits, the equation of the third side is (a) $3 x-y=-9$ (b) $3 x-y+11=0$ (c) $x-3 y=19$ (d) $3 x-y+15=0$
140. If p is length of perpendicular from the origin to the line whose intercepts on the axes are a and b , then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

- Watch Video Solution

141. The number of values of a for which the lines $2 x+y-1=0$, $a x+3 y-3=0$, and $3 x+2 y-2=0$ are concurrent is 0 (b) 1 (c) 2 (d) infinite

- Watch Video Solution

142. The centre of a square is at the origin and one vertex is $A(2,1)$. Find the coordinates of other vertices of the square.

- Watch Video Solution

143. $A B C D$ is a square $A \equiv(1,2), B \equiv(3,-4)$. If line $C D$ passes through $(3,8)$, then the midpoint of $C D$ is
A. (a) $(2,6)$
B. (b) $(6,2)$
C. (c) $(2,5)$
D. (d) $\left(\frac{28}{5}, \frac{1}{5}\right)$

Answer: null

- Watch Video Solution

144. Find the distance between $A(2,3)$ on the line of gradient $3 / 4$ and the point of intersection P of this line with $5 x+7 y+40=0$.

- Watch Video Solution

145. The equation of the straight line which passes through the point $(-4,3)$ such that the portion of the line between the axes is divided internally be the point in the ratio $5: 3$ is (A) $9 x-20 y+96=0$ $9 x+20 y=24$ (C) $20 x+9 y+53=0$ (D) None of these

- Watch Video Solution

146. The equation of the bisector of the acute angle between the lines
$2 x-y+4=0$ and $x-2 y=1$ is (a) $x-y+5=0$ (b) $x-y+1=0$
(c) $x-y=5$ (d) none of these

- Watch Video Solution

147. Find equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$.

- Watch Video Solution

148. If the equations $y=m x+c$ and $x \cos \alpha+y \sin \alpha=p$ represent the same straight line, then (a) $p=c \sqrt{1+m^{2}}$ (b) $c=p \sqrt{1+m^{2}}$ (c) $c p=\sqrt{1+m^{2}}$ (d) $p^{2}+c^{2}+m^{2}=1$

- Watch Video Solution

149. Find the equation of the line through $(2,3)$ which is (i) parallel to the x-axis and (ii) parallel to the y-axis.

- Watch Video Solution

150. Consider three lines as follows. $L_{1}: 5 x-y+4=0$ $L_{2}: 3 x-y+5=0 L_{3}: x+y+8=0$ If these lines enclose a triangle $A B C$ and the sum of the squares of the tangent to the interior angles can be expressed in the form $\frac{p}{q}$, where $p a n d q$ are relatively prime numbers, then the value of $p+q$ is (a) 500 (b) 450 (c) 230 (d) 465
151. Find the equation of a straight line cutting off an intercept-1 from the y-axis and being equally inclined to the axes.

(Watch Video Solution

152. The line $L_{1} \equiv 4 x+3 y-12=0$ intersects the x-and y-axies at A and B, respectively. A variable line perpendicular to L_{1} intersects the x and the y-axis at P and Q, respectively. Then the locus of the circumcenter of triangle $A B Q$ is (a) $3 x-4 y+2=0$
$4 x+3 y+7=0$ (c) $6 x-8 y+7=0$ (d) none of these

- Watch Video Solution

153. Intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the x-axis.

- Watch Video Solution

154. Find the locus of the point at which two given portions of the straight line subtend equal angle.

- Watch Video Solution

155. Find the equation of the perpendicular bisector of the line segment joining the points $A(2,3)$ and $B(6,-5)$.

- Watch Video Solution

156. If on a given base $B C$, a triangle is described such that the sum of the tangents of the base angles is m, then prove that the locus of the opposite vertex A is a parabola.

- Watch Video Solution

157. Find the equation of a line that has $-y$-intercept 4 and is a perpendicular to the line joining $(2,-3)$ and $(4,2)$.

Watch Video Solution

158. Find the equations of the diagonals of the square formed by the lines $x=o, y=0, x=1 a n d y=1$.

(Watch Video Solution

159. Find the equation of the straight line that passes through the point
$(3,4)$ and is perpendicular to the line $3 x+2 y+5=0$

- Watch Video Solution

160. Find the equation of the line which is parallel to $3 x-2 y+5=0$ and passes through the point $(5,-6)$

- Watch Video Solution

161. Consider two lines $L_{1} a n d L_{2}$ given by
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ respectivelywherec 1 and $c 2 \neq$ intersecting at point $P A$ line L_{3} is drawn through the origin meeting the lines $L_{1} a n d L_{2}$ at $\operatorname{Aand} B$, respectively, such that $P A=P B$. Similarly, one more line L_{4} is drawn through the origin meeting the lines L_{1} and L_{2} at A_{1} and B_{2}, respectively, such that $P A_{1}=P B_{1}$. Obtain the combined equation of lines L_{3} and L_{4}.

- Watch Video Solution

162. Find the locus of point P which moves such that its distance from the line $y=\sqrt{3} x-7$ is the same as its distance from $(2 \sqrt{3},-1)$

- Watch Video Solution

163. Find the coordinate of a point P on the line segment joinig $A(1,2)$ and $\mathrm{B}(6,7)$ in such a way that $A P=\frac{2}{5} \mathrm{AB}$.
164. In what ratio does the line joining the points $(2,3)$ and $(4,1)$ divide the segment joining the points $(1,2)$ and $(4,3)$?

- Watch Video Solution

165. Show that the lines $4 x+y-9=0, x-2 y+3=0,5 x-y-6=0$ make equal intercepts on any line of slope 2

- Watch Video Solution

166. Find the equation of the bisector of the obtuse angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$.

- Watch Video Solution

167. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0 a n d x-y-5=0 \quad$ at \quad the points B, CandD rspectively, if $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.

- Watch Video Solution

168. The incident ray is along the line $3 x-4 y-3=0$ and the reflected ray is along the line $24 x+7 y+5=0$. Find the equation of mirrors.

- Watch Video Solution

169. If the line $y l=\sqrt{3} x$ cuts the curve $x^{3}+y^{3}+3 x y+5 x^{2}+3 y^{2}+4 x+5 y-1=0$ at the point A, B, C, then $O A \dot{O} B \dot{O} C$ is equal to $\left(\frac{k}{13}\right)(3 \sqrt{3}-1)$. The value of k is

- Watch Video Solution

170. Two equal sides of an isosceles triangle are $7 x-y+3=0$ and $x+y-3=0$. Its third side passes the point $(1,-10)$.

Determine the equation of the third side.

- Watch Video Solution

171. The area of a parallelogram formed by the lines $a x \pm b x \pm c=0$ is
(a) $\frac{c^{2}}{(a b)}$
(b) $\frac{s c^{2}}{(a b)}$
(c) $\frac{c^{2}}{2 a b}$ (d) none of these

- Watch Video Solution

172. The vertices BandC of a triangle $A B C$ lie on the lines $3 y=4 x a n d y=0$, respectively, and the side $B C$ passes through the point $\left(\frac{2}{3}, \frac{2}{3}\right)$. If $A B O C$ is a rhombus lying in the first quadrant, O being the origin, find the equation of the line $B C$.

- Watch Video Solution

173. If each of the points ($\mathrm{x},, 4$), $(-2, \mathrm{y}$) lie on the-line joining the points (2 , $-1)$ and (5,-3) then the point $\mathrm{P}\left(x_{1}, y_{1}\right)$ lies on the line

- Watch Video Solution

174.

If
the
lines
$a_{1} x+b_{1} y+1=0, a_{2} x+b_{2} y+1=0$ and $a_{3} x+b_{3} y+1=0 \quad$ are concurrent, show that the points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ are collinear.

- Watch Video Solution

175. The diagonals of a parallelogram $P Q R S$ are along the lines $x+3 y=4$ and $6 x-2 y=7$, Then PQRS must be :

- Watch Video Solution

176. For the straight lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the:
(i) bisector of the abtuse angle between them
(ii) bisector of the acute angle between them
(iii) bisector of the angle which contains (1,2)
(iv) bisector of the angle which contains (0,0)

- Watch Video Solution

177. A straight line segment of length/moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio 1:2

- Watch Video Solution

178. Find the foot of the perpendicular from the point $(2,4)$ upon $x+y=1$.
179. The lines $x+y-1=0,(m-1) x+\left(m^{2}-7\right) y-5=0$, and $(m-2) x+(2 m-5) y=0$ are concurrent for three values of m concurrent for no value of m parallel for one value of m parallel for two value of m

- Watch Video Solution

180. In $\triangle A B C$, vertex A is $(1,2)$. If the internal angle bisector of $\angle B$ is $2 \mathrm{x}-$ $y+10=0$ and the perpendicular bisector of $A C$ is $y=x$, then find the equation of $B C$.

- Watch Video Solution

181. The equation of the line which bisects the obtuse angle between the line $x-2 y+4=0$ and $4 x-3 y+2=0$ is
182. The line $a x+b y=1$ passes through the point of intertsection of $y=x \tan$ $\alpha+p \sec \alpha$ and $y \sin \left(30^{\circ}-\alpha\right)-x \cos \left(30^{\circ}-\alpha\right)=p$. If it is inclined at 30° with $y=(\tan \alpha) x$, then prove that $a^{2}+b^{2}=\frac{3}{4 p^{2}}$.

- Watch Video Solution

183. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by line L, and the coordinate axes is 5 . Find the equation of line L.

- Watch Video Solution

184. Find the image of the point $(4,-13)$ in the line $5 x+y+6=0$.

- Watch Video Solution

185. Triangle $A B C$ with $A B=13, B C=5$, and $A C=12$ slides on the coordinates axes with $A a n d B$ on the positive x-axis and positive y-axis respectively. The locus of vertex C is a line $12 x-k y=0$. Then the value of k is \qquad

- Watch Video Solution

186. In a plane there two families of lines : $y=x+r, y=-x+r$, where $r \in\{0,1,2,3,4\}$. The number of the squares of the diagonal of length 2 formed by these lines is \qquad .

- Watch Video Solution

187. Line $\frac{x}{a}+\frac{y}{b}=1$ cuts the co-ordinate axes at $\mathrm{A}(\mathrm{a}, 0)$ and $\mathrm{B}(0, \mathrm{~b})$ and the line $\frac{x}{a}{ }^{\prime}+\frac{y}{b}{ }^{\prime}=-1$ at $A^{\prime}\left(-a^{\prime}, 0\right)$ and $B^{\prime}\left(0,-b^{\prime}\right)$. If the points $\mathrm{A}, \mathrm{B}, \mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ are concyclic then the orthocentre of triangle ABA ' is
188. If P is a point (x, y) on the line $y=-3 x$ such that P and the point $(3,4)$ are on the opposite sides of the line $3 x-4 y=8$, then

Watch Video Solution

189. The points $(1,3)$ and $(5,1)$ are two opposite vert of a rectangle. The other two vertices lie on the line find the $y=2 x+c$. Find c and the remaining vertices.

- Watch Video Solution

190. The ends A and B of a straight line segment of constant length c slide upon the fixed rectangular axes $O X$ and $O Y$, respectively. If the rectangle OAPB be completed, then the locus of the foot of the perpendicular drawn from P to $A B$ is

- Watch Video Solution

191. All points lying inside the triangle formed by the points $(1,3),(5,0)$ and ($-1,2$) satisfy

- Watch Video Solution

192. The equation to the straight line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \cos e c \theta=a$ is (A) $x \cos \theta-y \sin \theta=a \cos 2 \theta$
(B) $x \cos \theta+y \sin \theta=a \cos 2 \theta$
$x \sin \theta+y \cos \theta=a \cos 2 \theta$ (D) none of these

- Watch Video Solution

193. The equation of a straight line on which the length of perpendicular from the origin is four units and the line makes an angle of 120° with the x -axis is (A) $x \sqrt{3}+y+8=0$
$x-\sqrt{3} y+8=0$
194. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is (a)2 (b) 0 (c) 4 (d) 1

- Watch Video Solution

195. If the equation of base of an equilateral triangle is $2 x-y=1$ and the vertex is $(-1,2)$, then the length of the side of the triangle is

- Watch Video Solution

196. The equation of straight line passing through $(-a, 0)$ and making a triangle with the axes of area T is (a) $2 T x+a^{2} y+2 a T=0$ $2 T x-a^{2} y+2 a T=0$ (c) $2 T x-a^{2} y-2 a T=0$ (d)none of these

- Watch Video Solution

197. The line $P Q$ whose equation is $x-y=2$ cuts the x -axis at P, and Q is $(4,2)$. The line $P Q$ is rotated about P through 45° in the anticlockwise direction. The equation of the line $P Q$ in the new position is (A) $y=-\sqrt{2}$ (B) $y=2$ (C) $x=2$ (D) $x=-2$

- Watch Video Solution

198. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value of c is

- Watch Video Solution

199. The extremities of the base of an isosceles triangle are $(2,0) \operatorname{and}(0,2)$. If the equation of one of the equal side is $x=2$, then the equation of other equal side is (a) $x+y=2$ (b) $x-y+2=0$ (c) $y=2(\mathrm{~d}) 2 x+y=2$
200. A triangle is formed by the lines $x+y=0, x-y=0$, and $l x+m y=1$. If l and m vary subject to the condition $l^{2}+m^{2}=1$, then the locus of its circumcenter is (a) $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$
$\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)$
(c)
$\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y^{2}$
$\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$

- Watch Video Solution

201. The line $x+y=p$ meets the x - and y -axes at $A a n d B$, respectively. A triangle $A P Q$ is inscribed in triangle $O A B, O$ being the origin, with right angle at $Q \dot{P}$ and Q lie, respectively, on $O B a n d A B$. If the area of triangle $A P Q$ is $\frac{3}{8} t h$ of the are of triangle $O A B$, the $\frac{A Q}{B Q}$ is equal to (a)2(b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) 3

- Watch Video Solution

202. A is a point on either of two lines $y+\sqrt{3}|x|=2$ at a distance of $\frac{4}{\sqrt{3}}$ units from their point of intersection. The coordinates of the foot of perpendicular from A on the bisector of the angle between them are (a)
$\left(-\frac{2}{\sqrt{3}}, 2\right)$
(b) $(0,0)$ (c) $\left(\frac{2}{\sqrt{3}}, 2\right)$
(d) $(0,4)$

- Watch Video Solution

203. A pair of perpendicular straight lines is drawn through the origin forming with the line $2 x+3 y=6$ an isosceles triangle right-angled at the origin. The equation to the line pair is a. $5 x^{2}-24 x y-5 y^{2}=0 \mathrm{~b}$.

$$
\begin{array}{ll}
5 x^{2}-26 x y-5 y^{2}=0 & \text { c. } 5 x^{2}+24 x y-5 y^{2}=0 \\
5 x^{2}+26 x y-5 y^{2}=0 &
\end{array}
$$

- Watch Video Solution

204. If the vertices $P a n d Q$ of a triangle $P Q R$ are given by $(2,5)$ and $(4,-11)$, respectively, and the point R moves along the line N given by
$9 x+7 y+4=0$, then the locus of the centroid of triangle $P Q R$ is a straight line parallel to $P Q$ (b) QR (c) RP (d) N

- Watch Video Solution

205. Given $A \equiv(1,1)$ and $A B$ is any line through it cutting the x-axis at B. If $A C$ is perpendicular to $A B$ and meets the y -axis in C, then the equation of the locus of midpoint P of $B C$ is (a) $x+y=1$
$x+y=2$ (c) $x+y=2 x y$ (d) $2 x+2 y=1$

- Watch Video Solution

206. The straight lines $4 a x+3 b y+c=0$, where $a+b+c$ are concurrent at the point a) $(4,3)$ b) $\left(\frac{1}{4}, \frac{1}{3}\right)$ c) $\left(\frac{1}{2}, \frac{1}{3}\right)$ d) none of these

- Watch Video Solution

207. The line parallel to the x-axis and passing through the intersection of the lines $\mathrm{ax}+2 \mathrm{by}+3 \mathrm{~b}=0$ and $\mathrm{bx}-2 \mathrm{ay}-3 \mathrm{a}=0$, where $(a, b) \neq(0,0)$ is

Watch Video Solution

208. The line $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisector of the acute angle between L_{1} and L_{2} intersects L_{3} at R. Statement-1 : The ratio $P R: R Q$ equals $2 \sqrt{2}: \sqrt{5}$ Statement- 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles. Statement-1 is true, Statement-2 is true ; Statement-2 is correct explanation for Statement-1 Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for Statement-1 Statement-1 is true, Statement-2 is false Statement-1 is false, Statement-2 is true
209. If the lines $a x+y+1=0, x+b y+1=0$, and $x+y+c=0(a, b, c$ being distinct and different from 1$)$ are concurrent, then $\left(\frac{1}{1-a}\right)+\left(\frac{1}{1-b}\right)+\left(\frac{1}{1-c}\right)=$ (a) 0 (b) 1 (c) $\frac{1}{(a+b+c)}$ (d) none of these

- Watch Video Solution

210. Two sides of a rhombus ABCD are parallel to the lines $y=x+2$ and $y=$ $7 x+3$ If the diagonals of the rhombus intersect at the point $(1,2)$ and the vertex A is on the y-axis, then vertex A can be

- Watch Video Solution

211. Equation(s) of the straight line(s), inclined at 30^{0} to the x-axis such that the length of its (each of their) line segment(s) between the coordinate axes is 10 units, is (are) (a) $x+\sqrt{3} y+5 \sqrt{3}=0$ $x-\sqrt{3} y+5 \sqrt{3}=0$ (c) $x+\sqrt{3} y-5 \sqrt{3}=0$ (d) $x-\sqrt{3} y-5 \sqrt{3}=0$
212. If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line $2 x+3 y=6$, then area of the triangle so formed is (a) $\frac{36}{13}$ (b) $\frac{12}{17}$ (c) $\frac{13}{5}$ (d) $\frac{17}{14}$

- Watch Video Solution

213. The image of $P(a, b)$ on the line $y=-x$ is Q and the image of Q on the line $y=x$ is R. Then the midpoint of $P R$ is (a) $(a+b, b+a)$ (b) $\left(\frac{a+b}{2}, \frac{b+2}{2}\right)$ (c) $(a-b, b-a)$ (d) $(0,0)$

- Watch Video Solution

214. Consider a $\triangle A B C$ whose sides AB, BC, and CA are represented by the straight lines $2 x+y=0, x+p y=q$, and $x-y=3$, respectively. The point $P(2,3)$ is the orthocenter. The value of $(p+q)$ is \qquad .
215. Find the area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pair of lines $x^{2}-y^{2}+4 y-4=0$

- Watch Video Solution

216. The sides of a triangle have the combined equation $x^{2}-3 y^{2}-2 x y+8 y-4=0$. The third side, which is variable, always passes through the point $(-5,-1)$. Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.

- Watch Video Solution

217. The equation of the lines passing through the point $(1,0)$ and at a distance $\frac{\sqrt{3}}{2}$ from the origin is (a) $\sqrt{3} x+y-\sqrt{3}=0$ $x+\sqrt{3} y-\sqrt{3}=0$ (c) $\sqrt{3} x-y-\sqrt{3}=0$ (d) $x-\sqrt{3} y-\sqrt{3}=0$
218. The number of values of k for which the lines $(k+1) x+8 y=4$ kandkx $+(k+3) y=3 k-1 \quad$ are coincident is

- Watch Video Solution

219. For all real values of $a a n d b$, lines
$(2 a+b) x+(a+3 b) y+(b-3 a)=0 \quad$ and $\quad m x+2 y+6=0 \quad$ are concurrent. Then m is equal to \qquad

- Watch Video Solution

220. The line $x=C$ cuts the triangle with vertices $(0,0),(1,1)$, and $(9,1)$ into two regions. For the areas of the two regions to be the same, C must be equal to \qquad .
221. The absolute value of the sum of the abscissas of all the points on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$ is \qquad

- Watch Video Solution

222. The point (x, y) lies on the line $2 x+3 y=6$. The smallest value of the quantity $\sqrt{x^{2}+y^{2}}$ is m then the value of $\sqrt{13} m$ is \qquad

- Watch Video Solution

223. The equations of the perpendicular bisectors of the sides $A B a n d A C$ of triangle $A B C$ are $x-y+5=0$ and $x+2 y=0$, respectively. If the point A is $(1,-2)$, then find the equation of the line $B C$.
224. One of the diagonals of a square is the portion of the line $\frac{x}{2}+\frac{y}{3}=2$ intercepted between the axes. Then the extremities of the other diagonal are: (a) $(5,5),(-1,1)$ (b) $(0,0),(4,6)$ $(0,0),(-1,1)(d)(5,5), 4,6)$

- Watch Video Solution

225. Two sides of a triangle are along the coordinate axes and the medians through the vertices (other than the origin) are mutually perpendicular. The number of such triangles is/are zero (b) two (c) four (d) infinite

- Watch Video Solution

226. The graph of $y^{2}+2 x y+40|x|=400$ divides the plane into regions. Then the area of the bounded region is (a)200sq. units (b) 400sq. units (c) 800 sq. units (d) 500 sq. units
227. In a triangle $A B C, A=(\alpha, \beta) B=(2,3)$, and $C=(1,3)$. Point A lies on line $y=2 x+3$, where $\alpha \in I$. The area of $\triangle A B C$, , is such that $[\Delta]=5$. The possible coordinates of A are (where [.] represents greatest integer function). (a) $(2,3)$ (b) $(5,13) \quad$ (c) $(-5,-7)$ $(-3,-5)$

- Watch Video Solution

228. If the straight lines $2 x+3 y-1=0, x+2 y-1=0$,and $a x+b y-1=0$ form a triangle with the origin as orthocentre, then (a, b) is given by (a) $(6,4)$ (b) $(-3,3)$ (c) $(-8,8)$ (d) $(0,7)$

- Watch Video Solution

229. Let O be the origin. If $A(1,0) \operatorname{and} B(0,1) \operatorname{and} P(x, y)$ are points such that $x y>0 a n d x+y<1$, then (a) P lies either inside the triangle
$O A B$ or in the third quadrant. (b) P cannot lie inside the triangle $O A B$ (c) P lies inside the triangle $O A B$ (d) P lies in the first quadrant only

- Watch Video Solution

230. If the area of the rhombus enclosed by the lines $l x \pm m y \pm n=0$ is 2 sq. units, then, a) I,m,n are in G.P b) I,n,m are in G.P. c) $I m=n$ d) $I n=m$

- Watch Video Solution

231. In a triangle $A B C$, the bisectors of angles $B a n d C$ lies along the lines $x=$ yand $=0$. If A is $(1,2)$, then the equation of line $B C$ is (a) $2 x+y=1$ (b) $3 x-y=5$ (c) $x-2 y=3$ (d) $x+3 y=1$

- Watch Video Solution

232. If $\frac{a}{\sqrt{b c}}-2=\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{b}}$, where $a, b, c>0$, then the family of lines $\sqrt{a} x+\sqrt{b} y+\sqrt{c}=0$ passes though the fixed point given by (a)

$(1,1)$ (b) $(1,-2)(c)(-1,2)$ (d) $(-1,1)$

- Watch Video Solution

233. $P(m, n)$ (where m, n are natural numbers) is any point in the interior of the quadrilateral formed by the pair of lines $x y=0$ and the lines $2 x+y-2=0$ and $4 x+5 y=20$. The possible number of positions of the point P is. 7 (b) 5 (c) 4 (d) 6

Watch Video Solution

234. A diagonal of rhombus $A B C D$ is member of both the families of lines

$$
(x+y-1)+\lambda 1(2 x+3 y-2)=0 \text { and }
$$

$(x-y+2)+\lambda 2(2 x-3 y+5)=0$ and rhombus is $(3,2)$. If the area of the rhombus is $12 \sqrt{5}$ sq. units, then find the remaining vertices of the rhombus.

- Watch Video Solution

235. A regular polygon has two of its consecutive diagonals as lines $\sqrt{3} x+y=\sqrt{3}$ and $2 y=\sqrt{3}$. Point $(1, \mathrm{c})$ is one of its vertices. Find the equation of the sides of the polygon and also find the coordinates of the vertices.

- Watch Video Solution

236. Find the locus of the circumcenter of a triangle whose two sides are along the coordinate axes and the third side passes through the point of intersection of the line $a x+b y+c=0$ and $l x+m y+n=0$.

- Watch Video Solution

237. A line $L_{1} \equiv 3 y-2 x-6=0$ is rotated about its point of intersection with the y -axis in the clockwise direction to make it L_{2} such that the are formed by L_{1}, L_{2} the x-axis, and line $x=5$ is $\frac{49}{3}$ squinits if its point of intersection with $x=5$ lies below the x-axis. Find the equation of L_{2}.
238. Show that the reflection of the line $a x+b y+c=0$ on the line $x+y+1=0$ is the line $b+a y+(a+b-c)=0$ where $a \neq b$.

- Watch Video Solution

239. Two equal sides of an isosceles triangle are $7 x-y+3=0$ and $x+y-3=0$. Its third side passes the point (1,-10).

Determine the equation of the third side.

- Watch Video Solution

240. The number of possible straight lines passing through $(2,3)$ and forming a triangle with the coordinate axes, whose area is $12 s q$. Units, is

- Watch Video Solution

241. In a triangle $A B C$, if A is $(2,-1), a n d 7 x-10 y+1=0$ and $3 x-2 y+5=0$ are the equations of an altitude and an angle bisector, respectively, drawn from B, then the equation of $B C$ is (a)
$a+y+1=0$
(b) $5 x+y+17=0$
(c) $4 x+9 y+30=0$
$x-5 y-7=0$

- Watch Video Solution

242. The sides of a triangle are the straight lines $x+y=1,7 y=x$, and $\sqrt{3} y+x=0$. Then which of the following is an interior point of the triangle? (a)Circumcenter (b) Centroid (c)Incenter (d) Orthocenter

- Watch Video Solution

243. One of the diameter of a circle circumscribing the rectangle ABCD is $4 y=x+7$, If A and B are the points $(-3,4)$ and $(5,4)$ respectively, then the area of rectangle is
244. The coordinates of two consecutive vertices A and B of a regular hexagon $A B C D E F$ are $(1,0)$ and $(2,0)$, respectively. The equation of the diagonal $C E$ is
A. (a) $\sqrt{3} x+y=4$
B. (b) $x+\sqrt{3} y+4=0$
C. (c) $x+\sqrt{3} y=4$
D. (d) none of these

Answer: null

- Watch Video Solution

245. P is a point on the line $y+2 x=1$, and Q and R two points on the line $3 y+6 x=6$ such that triangle $P Q R$ is an equilateral triangle. The length of the side of the triangle is (a) $\frac{2}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{4}{\sqrt{5}}$ (d) none of these
246. Distance of origin from the line $(1+\sqrt{3}) y+(1-\sqrt{3}) x=10$ along the line $y=\sqrt{3} x+k$

- Watch Video Solution

247. In $\triangle A B C$, the coordinates of the vertex A are,$(4,-1)$ and lines $x-y-1=0$ and $2 x-y=3$ are the internal bisectors of angles B and C. Then the radius of the circles of triangle $A b C$ is

- Watch Video Solution

248. If the equation of any two diagonals of a regular pentagon belongs to the family of lines $(1+2 \lambda) y-(2+\lambda) x+1-\lambda=0$ and their lengths are $\sin 36^{0}$, then the locus of the center of circle circumscribing the given pentagon (the triangles formed by these diagonals with the sides of pentagon have no side common) is
$x^{2}+y^{2}-2 x-2 y+1+\sin ^{2} 72^{0}=0$
$x^{2}+y^{2}-2 x-2 y+\cos ^{2} 72^{0}=0$
$x^{2}+y^{2}-2 x-2 y+1+\cos ^{2} 72^{0}=0$
$x^{2}+y^{2}-2 x-2 y+\sin ^{2} 72^{0}=0$

- Watch Video Solution

249. If it is possible to draw a line which belongs to all the given family of lines
$y-2 x+1+\lambda_{1}(2 y-x-1)=0,3 y-x-6+\lambda_{2}(y-3 x+6)=0, a x+$
, then

- Watch Video Solution

250. The locus of the image of the point $(2,3)$ in the line $(x-2 y+3)+\lambda(2 x-3 y+4)=0 \quad$ is $(\lambda \in R)$
$x^{2}+y^{2}-3 x-4 y-4=0$
(b) $2 x^{2}+3 y^{2}+2 x+4 y-7=0$
$x^{2}+y^{2}-2 x-4 y+4=0$ (d) none of these
251. $A B C$ is a variable triangle such that A is $(1,2)$ and B and C lie on line $y=x+\lambda$ (where λ is a variable). Then the locus of the orthocentre of triangle $A B C$ is (a) $(x-1)^{2}+y^{2}=4$ (b) $x+y=3$ (c) $2 x-y=0$ (d) none of these

- Watch Video Solution

252. If $P\left(1+\frac{t}{\sqrt{2}}, 2+\frac{t}{\sqrt{2}}\right)$ is any point on a line, then the range of the values of t for which the point P lies between the parallel lines

$$
\begin{align*}
& x+2 y=1 \text { and } 2 x+4 y=15 . \quad \text { is } \quad \text { (a) } \quad \frac{4 \sqrt{2}}{3}<t<5(\sqrt{2}) 6 \tag{b}\\
& 0<t<(5 \sqrt{2}) \text { (c) } 4 \sqrt{2}<t<0 \text { (d) none of these }
\end{align*}
$$

- Watch Video Solution

253. If the intercepts made by the line $y=m x$ by lines $x=2$ and $x=5$ is less than 5, then the range of values of m is a.

$$
\left(-\infty,-\frac{4}{3}\right) \cup\left(\frac{4}{3}, \infty\right) \text { b. }\left(-\frac{4}{3}, \frac{4}{3}\right) \text { c. }\left(-\frac{3}{4}, \frac{4}{3}\right) \text { d. none of }
$$ these

- Watch Video Solution

254. If the extremities of the base of an isosceles triangle are the points $(2 a, 0)$ and $(0, \mathrm{a})$, and the equation of one of the side is $x=2 a$, then the area of the triangle is (a) $5 a^{2}$ squinits (b) $\frac{5 a^{2}}{2}$ squinits (c) $\frac{25 a^{2}}{2}$ squinits (d) none of these

- Watch Video Solution

255. The coordinates of the foot of the perpendicular from the point $(2,3)$ on the line $-y+3 x+4=0$ are given by (a) $\left(\frac{37}{10},-\frac{1}{10}\right)$
$\left(-\frac{1}{10}, \frac{37}{10}\right)$ (c) $\left(\frac{10}{37},-10\right)$ (d) $\left(\frac{2}{3},-\frac{1}{3}\right)$
256. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line $35 x-22 y+1=0$ passes through the point (a) (a, b) (b) $(b, a)(c)(-a,-b)$ (d) none of these

- Watch Video Solution

257. If lines $x+2 y-1=0, a x+y+3=0$, and $b x-y+2=0$ are concurrent, and S is the curve denoting the locus of (a, b), then the least distance of S from the origin is (a) $\frac{5}{\sqrt{57}}$ (b) $\frac{5}{\sqrt{51}}$ (c) $\frac{5}{\sqrt{58}}$ (d) $\frac{5}{\sqrt{59}}$

- Watch Video Solution

258. L_{1} and L_{2} are two lines. If the reflection of $L_{1} o n L_{2}$ and the reflection of L_{2} on L_{1} coincide, then the angle between the lines is (a) 30^{0} (b) 60° (c) 45^{0} (d) 90^{0}
259. $A \equiv(-4,0), B \equiv(4,0)$ Mand N are the variable points of the y axis such that M lies below $N a n d M N=4$. Lines $A M a n d B N$ intersect at P. The locus of P is a. $2 x y-16-x^{2}=0$ b. $2 x y+16-x^{2}=0 \mathrm{c}$. $2 x y+16+x^{2}=0$ d. $2 x y-16+x^{2}=0$

- Watch Video Solution

260. If $\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin \gamma(2 \sin \beta+\sin \gamma)$, where $0<\alpha, \beta, \gamma<\pi, \quad$ then the straight line whose equation is $x \sin \alpha+y \sin \beta-\sin \gamma=0$ passes through point (a) $(1,1)$ (b) $(-1,1)$
(c) $(1,-1)$ (d) none of these

- Watch Video Solution

261. Let P be $(5,3)$ and a point R on $y=x$ and Q on the X - axis be such that $P Q+Q R+R P$ is minimum ,then the coordinates of Q are
262. Given $A(0,0)$ and $B(x, y)$ with $x \in(0,1)$ and $y>0$. Let the slope of line $A B$ be m_{1}. Point C lies on line $x=1$ such that the slope of $B C$ is equal to m_{2} where $0<m_{2}<m_{1}$ If the area of triangle $A B C$ can be expressed as $\left(m_{1}-m_{2}\right) f(x)$ then the largest possible value of x is

(D) Watch Video Solution

263. If the straight lines $x+y-2-0,2 x-y+1=0$ and $a x+b y-c=0$ are concurrent, then the family of lines $2 a x+3 b y+c=0(a, b, c)$ are nonzero) is concurrent at (a) $(2,3)$
$\left(\frac{1}{2}, \frac{1}{3}\right)$
(c) $\left(-\frac{1}{6},-\frac{5}{9}\right)$
(d) $\left(\frac{2}{3},-\frac{7}{5}\right)$

- Watch Video Solution

264. The equaiton of the lines through the point $(2,3)$ and making an intercept of length 2 units between the lines $y+2 x=3$ and $y+2 x=5$ are
A. (A) $x+3=0,3 x+4 y=12$
В. (В) $y-2=(0,4 x-3 y=6$
С. (C) $x-2=0,3 x+4 y=18$
D. (D) none of these

Answer: null

- Watch Video Solution

265. A beam of light is sent along the line $x-y=1$, which after refracting from the x-axis enters the opposite side by turning through 30^{0} towards the normal at the point of incidence on the x-axis. Then the equation of the refracted ray is (a) $(2-\sqrt{3}) x-y=2+\sqrt{3}$
$(2+\sqrt{3}) x-y=2+\sqrt{3}$
(c) $\quad(2-\sqrt{3}) x+y=(2+\sqrt{3})$
$y=(2-\sqrt{3})(x-1)$

- Watch Video Solution

266. Determine all the values of α for which the point $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle formed by the lines. $2 x+3 y-1=0 \quad x+2 y-3=0$ $5 x-6 y-1=0$

- Watch Video Solution

267.

If
the equation
$2 x+3 y+1=0,3 x+y-2=0$, andax $+2 y-b=0$ are consistent, then prove that $a-b=2$.

- Watch Video Solution

268. If $\quad u=a_{1} x+b_{1} y+c_{1}=0, v=a_{2} x+b_{2} y+c_{2}=0, \quad$ and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the curve $u+k v=0$ is (a)the same straight line u (b)different straight line (c)not a straight line (d)none of these

- Watch Video Solution

269. The point $A(2,1)$ is translated parallel to the line $x-y=3$ by a distance of 4 units. If the new position A^{\prime} is in the third quadrant, then the coordinates of A^{\prime} are (A) $(2+2 \sqrt{2}, 1+2 \sqrt{2})$ $(-2+\sqrt{2},-1-2 \sqrt{2})$ (C) $(2-2 \sqrt{2}, 1-2 \sqrt{2})$ (D) none of these Watch Video Solution
270. Let $A B C$ be a triangle. Let A be the point (1,2), $y=x$ be the perpendicular bisector of $A B$, and $x-2 y+1=0$ be the angle bisector of $\angle C$. If the equation of $B C$ is given by $a x+b y-5=0$, then the value of $a+b$ is (a)1(b) 2(c) 3 (d) 4

- Watch Video Solution

271. The area enclosed by $2|x|+3|y| \leq 6$ is (a) 3 sq. units (b) 4 sq. units (c) 12 sq. units (d) 24 sq. units
272. The lines $y=m_{1} x, y=m_{2} x a n d y=m_{3} x$ make equal intercepts on the line $\quad x+y=1 . \quad$ Then (a)

$$
\begin{align*}
& 2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(2+m_{1}+m_{3}\right) \tag{b}\\
& \left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right) \tag{c}\\
& \left(1+m_{1}\right)\left(1+m_{2}\right)=\left(1+m_{3}\right)\left(2+m_{1}+m_{3}\right) \tag{d}\\
& 2\left(1+m_{1}\right)\left(1+m_{3}\right)=\left(1+m_{2}\right)\left(1+m_{1}+m_{3}\right)
\end{align*}
$$

- Watch Video Solution

273. The condition on a and b, such that the portion of the line $a x+b y-1=0$ intercepted between the lines $a x+y=0$ and $x+b y=0$ subtends a right angle at the origin, is (a) $a=b$ (b) $a+b=0$ (c) $a=2 b$ (d) $2 a=b$

- Watch Video Solution

274. One diagonal of a square is along the line $8 x-15 y=0$ and one of its vertex is (1,2). Then the equations of the sides of the square passing
through this vertex are a. $23 x+7 y=9,7 x+23 y=53 \quad$ b. $23 x-7 y+9=0,7 x+23 y+53=0$ c.
$23 x-7 y-9=0,7 x+23 y-53=0$ d.none of these

- Watch Video Solution

275. The straight line $a x+b y+c=0$, where $a b c \neq 0$, will pass through the first quadrant if (a) $a c>0, b c>0$ (b) $a c>0$ or $b c<0$ (c) $b c>0$ or $a c>0$ (d) $a c<0$ or $b c<0$

- Watch Video Solution

276. A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes and angle α ($0<\alpha<\frac{\pi}{4}$) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is

- Watch Video Solution

277. If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is a (a) square (b) a circle (c) a straight line
(d) two intersecting lines

- Watch Video Solution

278. $A B C$ is a variable triangle such that A is $(1,2)$ and B and C lie on line $y=x+\lambda$ (where λ is a variable). Then the locus of the orthocentre of triangle $A B C$ is $(x-1)^{2}+y^{2}=4 x+y=32 x-y=0$ (d) none of these

- Watch Video Solution

279.

The
lines
$(a+b) x+(a-b) y-2 a b=0,(a-b) x+(a+b) y-2 a b=0$ and $x+y$
form an isosceles triangle whose vertical angle is
280. Each equation contains statements given in two columns which have to be matched. Statements (a,b,c,d) in column I have to be matched with Statements (p, q, r, s) in column II. If the correct match are $a \vec{p}, a \vec{s}, b \vec{q}, b \vec{r}, c \vec{p}, c \vec{q}$, and $d \vec{s}$, then the correctly bubbled $4 x 4$ matrix should be as follows: Figure Consider the lines represented by equation $\left(x^{2}+x y-x\right) x(x-y)=0$, forming a triangle. Then match the following: Column \|Column ॥ Orthocenter of triangle |p. $\left(\frac{1}{6}, \frac{1}{2}\right)$ Circumcenter|q. $\quad\left(1(2+2 \sqrt{2}), \frac{1}{2}\right) \quad$ Centroid|r. $\left(0, \frac{1}{2}\right)$ Incenter|s. $\left(\frac{1}{2}, \frac{1}{2}\right)$

- Watch Video Solution

281. The straight lines $3 x+4 y=5$ and $4 x-3 y=15$ interrect at a point $A(3,-1)$. On these linepoints B and C are chosen so that $A B=A C$. Find the possible eqns of the line BC pathrough the point $(1,2)$
282. The area of the triangular region in first quadrant bounded on the left by the line $7 x+4 y=168$, and bounded below by the line $5 x+3 y=121$ is A. Then the value of $\frac{3 A}{10}$ is \qquad

- Watch Video Solution

283. Find the area enclosed by the graph of
$x^{2} y^{2}-9 x^{2}-25 y^{2}+225=0$

- Watch Video Solution

284. Line $L_{1} \equiv a x+b y+c=0$ and $L_{2} \equiv l x+m y+n=0$ intersect at point P and make an angle θ with each other Find the equation of a line different from L_{2} which passes through P and makes the same angle θ with L_{1}.

- Watch Video Solution

285. Let $A B C$ be a triangle with $A B=A C$. If D is the midpoint of $B C, E$ is the foot of the perpendicular drawn from D to $A C, \operatorname{andF}$ is the midpoint of $D E$, then prove that $A F$ is perpendicular to $B E$.

- Watch Video Solution

286. For $a>b>c>0$, if the distance between $(1,1)$ and the point of intersection of the line $a x+b y-c=0$ is less than $2 \sqrt{2}$ then,

- Watch Video Solution

287. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$ If L also intersects the x -axis then the equation of L is

- Watch Video Solution

288. The locus of the orthocentre of the triangle formed by the lines $(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+q)=0$ and $\mathrm{y}=0$, where $p \neq \cdot q$, is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line

- Watch Video Solution

289. The vertices of a triangle are $(A(-1,-7), B(5,1)$, and $C(1,4)$.

The equation of the bisector of $\angle A B C$ is \qquad

- Watch Video Solution

290. If the algebraic sum of the distances from the points $(2,0),(0,2)$ and $(1,1)$ to a variable line be zero then the line passes through the fixed point.

- Watch Video Solution

291. A straight line through the origin O meets the parallel lines $4 x+2 y=9$ and $2 x+y+6=0$ at points P and Q, respectively. Then the point O divides the segment $P Q$ in the ratio

- Watch Video Solution

292. A rectangle PQRS has its side $P Q$ parallel to the line $y=m x$ and vertices P, Q, and S on the lines $y=a, x=b$,and $x=-b$, respectively. Find the locus of the vertex R.

- Watch Video Solution

293. The area of the triangle formed by the intersection of a line parallel to x-axis and passing through $P(h, k)$ with the lines $y=x$ and $x+y=2$ is $4 h^{2}$. Find the locus of the point P .

- Watch Video Solution

294. The set of lines $a x+b y+c=0$ where $3 a+2 b+4 c=0$ intersect at the point

- Watch Video Solution

295. The area enclosed by the curve $|x|+|y|=1$ is

(Watch Video Solution

296. Find the orthocentre of the triangle the equations of whose sides are $x+y=1,2 x+3 y=6 a n d 4 x-y+4=0$.

D Watch Video Solution

297. If a, b, c are in AP then $a x+b y+c=0$ will always pass through a fixed point whose coordinates are
298. Statement-l: If the diagonals of the quadrilateral formed by the lines $p x+g y+r=0, p^{\prime} x+g y+r^{\prime}=0, p^{\prime} x+q^{\prime} y+r^{\prime}=0$, are at right angles, then $p^{2}+q^{2}=p^{2}+q^{\prime 2}$. Statement-2: Diagonals of a rhombus are bisected and perpendicular to each other.

- Watch Video Solution

299. Statement 1: The internal angle bisector of angle C of a triangle $A B C$ with sides $A B, A C$, and $B C$ as $y=0,3 x+2 y=0$, and $2 x+3 y+6=0$, respectively, is $5 x+5 y+6=0$ Statement 2: The image of point A with respect to $5 \mathrm{x}+5 \mathrm{y}+6=0$ lies on the side $B C$ of the triangle.

- Watch Video Solution

300. The joint equation of lines $y=x a n d y=-x$ is $y^{2}=-x^{2}$, i.e., $x^{2}+y^{2}=0$ Statement 2: The joint equation of lines $a x+b y=0$ and
$c x+d y=0$ is $(a x+b y)(c x+d y)=0$, wher a, b, c, d are constant.

- Watch Video Solution

301. Statement 1: If the sum of algebraic distances from point $A(1,1), B(2,3), C(0,2)$ is zero on the line $a x+b y+c=0$, then $a+3 b+c=0$ Statement 2 : The centroid of the triangle is $(1,2)$

- Watch Video Solution

302. Each question has four choice: a, b, c and d, out of which only one is correct. Each question contains Statement 1 and Statement 2. Find the correct answer. Both the Statements are true but Statement 2 is the correct explanation of Statement 1. Both the Statement are True but

Statement 2 is not the correct explanation of Statement 1 . Statement 1 is
True and Statement 2 is False. Statement 1 is False and Statement 2 is
True Statement 1: The lines $(a+b) x+(a-2 b) y=a$ are con-current at
the point $\left(\frac{2}{3}, \frac{1}{3}\right)$. Statement 2 : The lines $x+y-1=0$ and $x-2 y=0$ intersect at the point $\left(\frac{2}{3}, \frac{1}{3}\right)$.

Watch Video Solution

303. Statement 1:If the point $\left(2 a-5, a^{2}\right)$ is on the same side of the line $x+y-3=0$ as that of the origin, then $a \in(2,4)$ Statement 2 : The points $\left(x_{1}, y_{1}\right) \operatorname{and}\left(x_{2}, y_{2}\right)$ lie on the same or opposite sides of the line $a x+b y+c=0$, as $a x_{1}+b y_{1}+c$ and $a x_{2}+b y_{2}+c$ have the same or opposite signs.

- Watch Video Solution

304. Statement 1: Each point on the line $y-x+12=0$ is equidistant from the lines $4 y+3 x-12=0,3 y+4 x-24=0$ Statement 2 : The locus of a point which is equidistant from two given lines is the angular bisector of the two lines.
305. If lines $p x+q y+r=0, q x+r y+p=0 a n d r x+p y+q=0$ are concurrent, then prove that $p+q+r=0($ wherep, q, r are distinct $)$.

- Watch Video Solution

306. the diagonals of the parallelogram formed by the the lines $a_{1} x+b_{1} y+c_{1}=0, a_{1} x+b_{1} y+c_{1}{ }^{\prime}=0 \quad, \quad a_{2} x+b_{2} y+c_{1}=0$, $a_{2} x+b_{2} y+c_{1}{ }^{\prime}=0$ will be right angles if:

- Watch Video Solution

307. If the lines joining the origin and the point of intersection of curves $a x^{2}+2 h x y+b y^{2}+2 g x+0$ and $a_{1} x^{2}+2 h_{1} x y+b_{1} y^{2}+2 g_{1} x=0$ are mutually perpendicular, then prove that $g\left(a_{1}+b_{1}\right)=g_{1}(a+b)$.

- Watch Video Solution

308. Prove that the angle between the lines joining the origin to the points of intersection of the straight line $y=3 x+2$ with the curve $x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ is $\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$

(Watch Video Solution

309. Prove that the straight lines joining the origin to the point of intersection of the straight line $h x+k y=2 h k$ and the curve $(x-k)^{2}+(y-h)^{2}=c^{2}$ are perpendicular to each other if $h^{2}+k^{2}=c^{2}$.

(Watch Video Solution

310. If $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ bisect angles between each other, then find the condition.

- Watch Video Solution

311. Find the value of a for which the lines represented by $a x^{2}+5 x y+2 y^{2}=0$ are mutually perpendicular.

- Watch Video Solution

312. Find the acute angle between the pair of lines represented by $x(\cos \alpha-y \sin \alpha)^{2}=\left(x^{2}+y^{2}\right) \sin ^{2} \alpha$

- Watch Video Solution

313. If the angle between the two lines represented by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is $\tan ^{-1}(m)$, then find the value of m.

- Watch Video Solution

314. If the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is rotated about the origin through 90°, then find the equations in the new position.

- Watch Video Solution

315. The orthocentre of the triangle formed by the lines $x=0, y=0$ and $x+$ $y=1$ is

- Watch Video Solution

316. The lines joining the origin to the point of intersection of $3 x^{2}+m x y-4 x+1=0$ and $2 x+y-1=0$ are at right angles. Then which of the following is not a possible value of $m ?-4$ (b) 4 (c) 7 (d) 3

- Watch Video Solution

317. If the slope of one line is double the slope of another line and the combined equation of the pair of lines is $\left(\frac{x^{2}}{a}\right)+\left(\frac{2 x y}{h}\right)+\left(\frac{y^{2}}{b}\right)=0$, then find the ratio $a b: h^{2}$.

- Watch Video Solution

318. Find the combined equation of the pair of lines through the point (1 ,

0) and parallel to the lines represented by $2 x^{2}-x y-y^{2}=0$

- Watch Video Solution

319. The value k for which $4 x^{2}+8 x y+k y^{2}=9$ is the equation of a pair of straight lines is \qquad

- Watch Video Solution

320. The two lines represented by $3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are perpendicular to each other for (a)two values of a (b) a (c)for one value of a (d) for no values of a

- Watch Video Solution

321. If two lines represented by $x^{4}+x^{3} y+c x^{2} y^{2}-x y^{3}+y^{4}=0$ bisect the angle between the other two, then the value of c is (a) 0 (b) -1 (c) 1 (d) -6

- Watch Video Solution

322. The straight lines represented by $x^{2}+m x y-2 y^{2}+3 y-1=0$ meet at (a) $\left(-\frac{1}{3}, \frac{2}{3}\right)$ (b) $\left(-\frac{1}{3},-\frac{2}{3}\right)$ (c) $\left(\frac{1}{3}, \frac{2}{3}\right)$ (d) none of these

- Watch Video Solution

323. The straight lines represented by the equation $135 x^{2}-136 x y+33 y^{2}=0$ are equally inclined to the line (a) $x-2 y=7$ (b) $\mathrm{x}+2 \mathrm{y}=7$ (c) $x-2 y=4$ (d) $3 x+2 y=4$

- Watch Video Solution

324. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is (a) 1 (b) 2 (c) $-\frac{1}{2}$ (d) -1

- Watch Video Solution

325. Statement 1: If $-2 h=a+b$, then one line of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes in the positive quadrant. Statement 2 : If $a x+y(2 h+a)=0$ is a factor of $a x^{2}+2 h x y+b y^{2}=0$, then $b+2 h+a=0$ Both the statements are true but statement 2 is the correct explanation of statement 1 . Both the statements are true but statement 2 is not the correct explanation of
statement 1 . Statement 1 is true and statement 2 is false. Statement 1 is false and statement 2 is true.

- Watch Video Solution

326. Show that all chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.

- Watch Video Solution

327. Area of the triangle formed by the lines $y^{2}-9 x y+18 x^{2}=0 a n d y=6$ is

- Watch Video Solution

328. The distance between the lines $(x+7 y)^{2}+4 \sqrt{2}(x+7 y)-42=0$
\qquad
329. $x+y=7$ and $a x^{2}+2 h x y+a y^{2}=0,(a \neq 0)$, are three real distinct lines forming a triangle. Then the triangle is (a) isosceles scalene (c) equilateral (d) right angled

- Watch Video Solution

330. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is the square of the other, then $\frac{a+b}{h}+\frac{8 h^{2}}{a b}=$ (a) 4 (b) 6 (c) 8 (d) none of these

- Watch Video Solution

331. Find the area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pair of lines $x^{2}-y^{2}+4 y-4=0$
332. The sides of a triangle have the combined equation $x^{2}-3 y^{2}-2 x y+8 y-4=0$. The third side, which is variable, always passes through the point $(-5,-1)$. Find the range of values of the slope of the third line such that the origin is an interior point of the triangle.

- Watch Video Solution

333. Let $P Q R$ be a right-angled isosceles triangle, right angled at $P(2,1)$. If the equation of the line $Q R$ is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is (a) $3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0$
$3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
$3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0$
$3 x^{2}-3 y^{2}-8 x y-15 y-20=0$

- Watch Video Solution

334. The combined equation of three sides of a triangle is
$\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0$. If $(-2, a)$ is an interior point and $(b, 1)$ is an exterior point of the triangle, then (a) $2<a<\frac{10}{3}$
$-2<a<\frac{10}{3}$ (c) $-1<b<\frac{9}{2}$ (d) $-1<b<1$

Watch Video Solution

335. Find the equation of the bisectors of the angles between the lines joining the origin to the point of intersection of the straight line $x-y=2$ with the curve $5 x^{2}+11 x y-8 y^{2}+8 x-4 y+12=0$

- Watch Video Solution

336. If θ is the angle between the lines given by the equation $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$, then find the equation of the line passing through the point of intersection of these lines and making an angle θ with the positive x-axis.
337. The distance of a point $\left(x_{1}, y_{1}\right)$ from two straight lines which pass through the origin of coordinates is p. Find the combined equation of these straight lines.

- Watch Video Solution

338. Prove that the product of the perpendiculars from (α, β) to the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{a \alpha^{2}-2 h \alpha \beta+\boldsymbol{\eta}^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}$

- Watch Video Solution

339. Find the area enclosed by the graph of $x^{2} y^{2}=9 x^{2}-25 y^{2}+225=0$

- Watch Video Solution

340. Show that the pairs of straight lines $2 x^{2}+6 x y+y^{2}=0$ and $4 x^{2}+18 x y+y^{2}=0$ have the same set of angular bisector.

- Watch Video Solution

341. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$.

- Watch Video Solution

342. Find the angle between the straight lines joining the origin to the point of intersection of $3 x^{2}+5 x y-3 y^{2}+2 x+3 y=0$ and $3 x-2 y=1$

- Watch Video Solution

343. Through a point A on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ at B and C. If $A B=B C$, then (a) $h^{2}=4 a b$ (b) $8 h^{2}=9 a b$ (c) $9 h^{2}=8 a b$ (d) $4 h^{2}=a b$

- Watch Video Solution

344. Find the lines whose combined equation is $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-3=0$

- Watch Video Solution

345. Does equation $x^{2}+2 y^{2}-2 \sqrt{3} x-4 y+5=0$ satisfies the condition $a b c+2 g h-a f^{2}-b g^{2}-c h^{2}=0$? Does it represent a pair of straight lines?

- Watch Video Solution

346. Find the value of λ if $2 x^{2}+7 x y+3 y^{2}+8 x+14 y+\lambda=0$ represents a pair of straight lines

- Watch Video Solution

347. The distance between the pair of parallel lines
$x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$ is

- Watch Video Solution

348. If the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersect on the y -axis, then prove that $2 f g h=b g^{2}+c h^{2}$

- Watch Video Solution

349. Find the joint equation of the pair of lines which pass through the origin and are perpendicular to the lines represented the equation
$y^{2}+3 x y-6 x+5 y-14=0$
350. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then c has the value

- Watch Video Solution

351. If the gradient of one of the lines $x^{2}+h x y+2 y^{2}=0$ is twice that of the other, then $h=$

- Watch Video Solution

352. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is

- Watch Video Solution

353. Two pairs of straight lines have the equations $y^{2}+x y-12 x^{2}=0$ and $a x^{2}+2 h x y+b y^{2}=0$. One line will be common among them if. (a)
$a+8 h-16 b=0$
(b) $a-8 h+16 b=0$
(c) $a-6 h+9 b=0$
$a+6 h+9 b=0$

- Watch Video Solution

354. If the equation of the pair of straight lines passing through the point $(1,1)$, one making an angle θ with the positive direction of the x axis and the other making the same angle with the positive direction of the y -axis, is $x^{2}-(a+2) x y+y^{2}+a(x+y-1)=0, a \neq 2$, then the value of $\sin 2 \theta$ is
(a) $a-2$
(b) $a+2$
(c) $\frac{2}{a+2}$
(d) $\frac{2}{a}$
355. If one of the lines given by the equation $2 x^{2}+p x y+3 y^{2}=0$ coincide with one of those given by $2 x^{2}+q x y-3 y^{2}=0$ and the other lines represented by them are perpendicular, then (a) $p=5$ (b) $p=-5$ (c) $q=-1$ (d) $q=1$

- Watch Video Solution

356. If $x^{2}+2 h x y+y^{2}=0$ represents the equation of the straight lines through the origin which make an angle α with the straight line $y+x=0$
(a) $\sec 2 \alpha=h$
(b) $\cos \alpha=\sqrt{\frac{(1+h)}{(2 h)}}$
(c) $2 \sin \alpha=\sqrt{\frac{(1+h)}{h}}$
(d) $\cot \alpha=\sqrt{\frac{(1+h)}{(h-1)}}$

- Watch Video Solution

357. The equation to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}-6 y+5=0$. The equations to its diagonals are \quad (a) $x+4 y=13, y=4 x-7$
(b) $4 x+y=13,4 y=x-7$
$4 x+y=13, y=4 x-7$ (d) $y-4 x=13, y+4 x-7$

- Watch Video Solution

358. The equation $a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0 \quad$ and $a x^{2}+2 h x y+b y^{2}=0$ represent (a)two pairs of perpendicular straight lines (b)two pairs of parallel straight lines (c)two pairs of straight lines which are equally inclined to each other (d)none of these

- Watch Video Solution

359. The equation $x^{3}+x^{2} y-x y^{2}=y^{3}$ represents (a)three real straight lines (b)lines in which two of them are perpendicular to each other (c)lines in which two of them are coincident (d)none of these
360. The image of the pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$ by the line mirror $y=0$ is $a x^{2}-2 h x y-b y^{2}=0$ $b x^{2}-2 h x y+a y^{2}=0 b x^{2}+2 h x y+a y^{2}=0 a x^{2}-2 h x y+b y^{2}=0$

- Watch Video Solution

361. The combined equation of the lines $l_{1} a n d l_{2}$ is $2 x^{2}+6 x y+y^{2}=0$ and that of the lines m_{1} andm m_{2} is $4 x^{2}+18 x y+y^{2}=0$. If the angle between l_{1} and m_{2} is α then the angle between $l_{2} a n d m_{1}$ will be

- Watch Video Solution

362. If the equation $a x^{2}-6 x y+y^{2}+2 g x+2 f y+c=0$ represents a pair of lines whose slopes are m and m^{2}, then the value(s) of a is/are
363. The equation of a line which is parallel to the line common to the pair of lines given by $6 x^{2}-x y-12 y^{2}=0$ and $15 x^{2}+14 x y-8 y^{2}=0$ and at a distance of 7 units from it is
(a) $3 x-4 y=-35$
(b) $5 x-2 y=7$
(c) $3 x+4 y=35$
(d) $2 x-3 y=7$

Watch Video Solution

364. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then c has the value

- Watch Video Solution

365. Area of the triangle formed by the line $x+y=3$ and the angle bisectors of the pairs of straight lines $x^{2}-y^{2}+2 y=1$ is 2 squinits (b)

(D) Watch Video Solution

366. The equation $x^{2} y^{2}-9 y^{2}+6 x^{2} y+54 y=0$ represents a pair of straight lines and a circle a pair of straight lines and a parabola a set of four straight lines forming a square none of these

- Watch Video Solution

367. The straight lines represented by $(y-m x)^{2}=a^{2}\left(1+m^{2}\right)$ and $(y-n x)^{2}=a^{2}\left(1+n^{2}\right)$ from a rectangle (b) rhombus trapezium (d) none of these

- Watch Video Solution

368. If the pairs of lines $x^{2}+2 x y+a y^{2}=0$ and $a x^{2}+2 x y+y^{2}=0$ have exactly one line in common, then the joint equation of the other two lines is given by (a) $3 x^{2}+8 x y-3 y^{2}=0$ (b) $3 x^{2}+10 x y+3 y^{2}=0$ (c) $y^{2}+2 x y-3 x^{2}=0$ (d) $x^{2}+2 x y-3 y^{2}=0$

- Watch Video Solution

369. The condition that one of the straight lines given by the equation $a x^{2}+2 h x y+b y^{2}=0$ may coincide with one of those given by the equation

$$
a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0 \quad \text { is }
$$

$\left(a b^{\prime}-a^{\prime} b\right)^{2}=4\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(a b^{\prime}-a^{\prime} b\right)^{2}=\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(h a^{\prime}-h^{\prime} a\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(b h^{\prime}-b^{\prime} h\right)$
$\left(b h^{\prime}-b^{\prime} h\right)^{2}=4\left(a b^{\prime}-a^{\prime} b\right)\left(h a^{\prime}-h^{\prime} a\right)$

- Watch Video Solution

370. If the represented by the equation $3 y^{2}-x^{2}+2 \sqrt{3} x-3=0$ are rotated about the point $(\sqrt{3}, 0)$ through an angle of 15^{0}, on in clockwise direction and the other in anticlockwise direction, so that they become perpendicular, then the equation of the pair of lines in the new position is $\begin{array}{ll}\text { is } \quad \text { (a) } y^{2}-x^{2}+2 \sqrt{3} x+3=0 & \text { (b) } y^{2}-x^{2}+2 \sqrt{3} x-3=0\end{array}$
$y^{2}-x^{2}-2 \sqrt{3} x+3=0$ (d) $y^{2}-x^{2}+3=0$

(Watch Video Solution

371. The angle between the pair of lines whose equation is $4 x^{2}+10 x y+m y^{2}+5 x+10 y=0 \quad$ is $\quad \tan ^{-1}\left(\frac{3}{8}\right) \quad \tan ^{-1}\left(\frac{3}{4}\right)$
$\tan ^{-1}\left\{2 \frac{\sqrt{25-4 m}}{m+4}\right\}, m \in R$ none of these

- Watch Video Solution

372. Find the point of intersection of the pair of straight lines represented by the equation $6 x^{2}+5 x y-21 y^{2}+13 x+38 y-5=0$.

- Watch Video Solution

373. Find the angle between the lines represented by $x^{2}+2 x y \sec \theta+y^{2}=0$

- Watch Video Solution

374. If the pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ is rotated about the origin by $\frac{\pi}{6}$ in the anticlockwise sense, then find the equation of the pair in the new position.

- Watch Video Solution

375. If the equation $2 x^{2}+k x y+2 y^{2}=0$ represents a pair of real and distinct lines, then find the values of k.

- Watch Video Solution

376. If the equation $x^{2}+(\lambda+\mu) x y+\lambda u y^{2}+x+\mu y=0$ represents two parallel straight lines, then prove that $\lambda=\mu$.

- Watch Video Solution

377. If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the positive direction of the axes. Then find the relation for a, b, h

- Watch Video Solution

378. Prove that the equation $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ represents a pair of straight lines. Find the coordinates of their point of intersection and also the angle between them.

- Watch Video Solution

379. A line L passing through the point $(2,1)$ intersects the curve $4 x^{2}+y^{2}-x+4 y-2=0$ at the point $A a n d B$. If the lines joining the origin and the points A, B are such that the coordinate axes are the bisectors between them, then find the equation of line L.
$A x+B y+C=0$ an equilateral triangle of area $\frac{C^{2}}{\sqrt{3\left(A^{2}+B^{2}\right)}}$.

- Watch Video Solution

381. Prove that one of the straight lines given by $a x^{2}+2 h x y+b y^{2}=0$ will bisect the angle between the co-ordinate axes if $(a+b)^{2}=4 h^{2}$.

- Watch Video Solution

