© ${ }^{\prime}$ doubtnut

MATHS

BOOKS - RESONANCE DPP ENGLISH

STRAIGHT LINES

Others

1. Let the straight line $L: x-2 y=8$, be rotated, through an angle ' θ ' (where $\tan \theta=\frac{1}{3}$), about the point $P(0,-4)$ in anticlockwise sence. After rotation the line becomes tangent to the circle
which lies in $4^{\text {th }}$ quadrant and also touches coordinate axes. Which of the following is/are correct
A. Radii of all the possible circles are the roots of
the equation $r^{2}-8 r+8=0$
B. After rotation equation of new line is $x-y-4=$

0
C. Difference of the radii of the possible circles is
$4 \sqrt{ } 2$
D. Area of one of the possible circle is $8 \pi(3+$
$2 \sqrt{ } 2$) sq. units

- Watch Video Solution

2. The centre of circle inscribed in a square formed by lines $x^{2}-8 x+12=0$ and $y^{2}-14 y+45=0$ is $(4,7)(7,4)(9,4)(4,9)$

D Watch Video Solution

3. If $(0,1),(1,1) \operatorname{and}(1,0)$ be the middle points of the sides of a triangle, its incentre is

$$
\begin{aligned}
& (2+\sqrt{2}, 2+\sqrt{2} \quad \text {) } \quad \text { (b) } \quad[2+\sqrt{2},-(2+\sqrt{2})] \\
& (2-\sqrt{2}, 2-\sqrt{2}) \text { (d) }[2-\sqrt{2},(2+\sqrt{2})]
\end{aligned}
$$

4. BandC are fixed points having coordinates $(3,0)$ and $(-3,0)$, respectively. If the vertical angle $B A C$ is 90°, then the locus of the centroid of $A B C$ has equation. $\quad x^{2}+y^{2}=1 \quad$ (b) $\quad x^{2}+y^{2}=2$ $9\left(x^{2}+y^{2}\right)=1$ (d) $9\left(x^{2}+y^{2}\right)=4$

- Watch Video Solution

5. The point $(11,10)$ divides the line segment joining the points ($5,-2$) and (9,6) in the ratio:
6. If the coordinates of the vertices of triangle $A B C$ are $(-1,6),(-3,-9)$, and ($5,-8$), respectively, then find the equation of the median through C.

- Watch Video Solution

7. If $A \& B$ are the points $(-3,4) \operatorname{and}(2,1)$, then the co-ordinates of the point $C o n A B$ produced such that $A C=2 B C$ are: a. $(2,4) b .(3,7) c .(7,-2) d$.
(1/2,5/2)

D Watch Video Solution

8. One end of a thin straight elastic string is fixed at
$A(4,-1)$ and the other end B is at $(1,2)$ in the unstretched condition. If the string is stretched to triple its length to the point C, then find the coordinates of this point.

- Watch Video Solution

9. An equilateral triangle has each of its sides of length 6 cm . If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \&\left(x_{3}, y_{3}\right)$ are the vertices, then the value of the determinant $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|^{2}$ is equal to :
10.

the
$a x+2 y+1=0, b x+3 y+1=0 a n d c x+4 y+1=0$
are concurrent, then a, b, c are a. A.P. b. G.P. c. H.P. d.
none of these

- Watch Video Solution

