© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

FUNCTIONS

Illustration

1. Let $A=\{1,2,3\}, B=\{2,3,4)$ be two sets, which one of the following subsets of $A \times B$ defines a funciton from A to B ?
A. $f_{1}=\{(1,2),(2,3),(3,4)\}$
B. $f_{2}=\{(1,2),(1,3),(2,3),(3,4)\}$
C. $f_{3}=\{(1,3),(2,4)$,
D. $f_{4}=\{(1,4),(2,4),(3,4),(2,3)\}$

D Watch Video Solution

2. If $A=(1,2,3,4)\}$, then which of the following are functions from A to itself?
A. $f_{1}=\{(x, y),: y=x+1\}$
B. $f_{2}=\{(x, y), x+y>4\}$
C. $f_{3}=\{(x, y): y<x\}$
D. $f_{4}=\{(x, y): x+y=5\}$

Answer: D

3. If a function $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is described by $g(x)=\alpha x+\beta$, find the values of $\alpha a n d \beta$.
A. $2 \mathrm{x}-1$
B. $2 x+1$
C. $x+2$
D. $x-2$

Answer: A

- Watch Video Solution

4. Given $A=\left\{x: \frac{\pi}{6} \leq x \leq \frac{\pi}{3}\right\}$ and $f(x)=\cos x-x(1+x)$. Find $f(A)$.
A. $[\pi / 6, \pi / 3]$
B. $[-\pi / 3, \pi-6]$
C. $\left[\frac{1}{2}-\frac{\pi}{3}\left(1+\frac{\pi}{3}\right), \frac{\sqrt{3}}{2}-\frac{\pi}{6}\left(1+\frac{\pi}{6}\right)\right]$
D. $\left[\frac{1}{2}+\frac{\pi}{3}\left(1-\frac{\pi}{3}\right), \frac{\sqrt{3}}{2}+\frac{\pi}{6}\left(1-\frac{\pi}{6}\right)\right]$

Answer: C

- Watch Video Solution

5. If $f(x)=\cos (\log x)$ then $f(x) f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]$ has the value
A. 0
B. $\frac{1}{2} f(x) f(y)$
C. $f(x+y)$
D. none of these

Answer: A
6. Let a, b, c be rational numbers and $f: Z \rightarrow Z$ be a function given by $f(x)=a x^{2}+b x+c$. Then, $a+b$ is
A. a negative integer
B. an integer
C. non-integral rational number
D. none of these

Answer: B

- Watch Video Solution

7. If $f: Z \rightarrow Z$ be given by $f(x)=x^{2}+a x+b$, Then,
A. $a \in Z$ and $b \in Q-Z$
B. $a, b, \in Z$
C. $b \in Z$ and $a \in Q-Z$
D. $a, b \in Q-Z$

Answer: B

(D) Watch Video Solution

8. Find the image of interval $[-1,3]$ under the mapping specified by the function $f(x)=4 x^{3}-12 x$.
A. $[8,72]$
B. $[-8,72]$
C. $[0,8]$
D. $[8,-72]$

Answer: B
9. If $f(x)=a x^{2}+b x+c$ and $g(x)=p x^{2}+q x$ with $g(1)=f(1)$, $g(2)-f(2)=1$ and $g(3)-f(3)=4$ then $g(4)-f(4)$ is
A. 0
B. 5
C. 6
D. none of these

Answer: D

- Watch Video Solution

10. For which Domain, the functions $f(x)=2 x^{2}-1$ and $g(x)=1-3 x$ are equal to
A. $[2,-1 / 2]$
B. $[-2,1 / 2]$
C. $[1,2]$
D. $[-2,-1 / 2]$

Answer: B

(D) Watch Video Solution

11. Find for what values of x the following functions would be identical.

$$
f(x)=\log (x-1)-\log (x-2) \text { and } g(x)=\log \left(\frac{x-1}{x-2}\right)
$$

A. [1,2]
B. $[2, \infty]$
C. $[2, \infty]$
D. $[-\infty, \infty]$

- Watch Video Solution

12. If $A=\{1,2,3\}, B=\{x, y\}$, then the number of functions that can be defined from A into B is 12 b. 8 c. 6 d. 3
A. 12
B. 8
C. 6
D. 3

Answer: B
13. Let A be a set containing 10 distinct elements. Then the total number of distinct functions from A to A is:
A. 10 !
B. 10^{10}
C. 2^{10}
D. $2^{10}-1$

Answer: B

- Watch Video Solution

14. If $P=(a, b, c)$ and $Q=(1,2)$, then the total number of relations P to Q are not functions is
A. 56
B. 8
C. 9
D. 55

Answer: A

- Watch Video Solution

15. A mapping $f: X \rightarrow Y$ is one-one, if
A. $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in X$
B. $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$ for all $x_{1}, x_{2} \in X$
C. $x_{1}=x_{2} \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in X$
D. none of these

Answer: B

16. Which of the following functions is one-one?
A. $f R \rightarrow R$ is given by $f(x)=2 x^{1}+1$ For all $x \in R$
B. $g: Z \rightarrow Z$ given $\operatorname{by} g(x)=x^{4}$ For all $x \in Z$
C. $h: R \rightarrow R$ given $\mathrm{h}(x)=x^{3}+4$ For all $x \in R$
D. $\phi: C \rightarrow C$ given by $\phi(z)=z^{3}+4$ For all $z \in C$

Answer: C

D Watch Video Solution

17. Which one of the following functions is one-one?
A. $f: R \rightarrow R$ given by $f(x)|x-1|$ for all $x \in R$
B. $g:[-\pi / 2, \pi / 2] \in R$ is given by:

$$
g(x)=|\sin x| \text { for all } x \in[-\pi / 2, \pi / 2]
$$

C. $h:[-\pi / 2, \pi / 2] \in R$ is given by

$$
h=(x)=\sin x \text { for all } x \in[-\pi / 2, \pi / 2]
$$

D. $\phi: R \rightarrow R$ given by $f(x)=x^{2}-4$ for all $\mathrm{x} \quad \in R$

Answer: C

Watch Video Solution

18. Which one of the following functions is not one-one?
A. $f:(-1, \infty) \rightarrow R$ given by $f(x)=x^{2}+2 x$
B. $g:(1, \infty) \rightarrow R$ given by $g(x)=e^{x^{3}-3 x+2}$
C. $h: R \rightarrow \operatorname{Rgivenbyh}(x)=2^{x^{x-1}}$
D. $\phi,(-\infty, 0) \rightarrow R$ given $\operatorname{by} \phi(x)=\frac{x^{2}}{x^{2}+1}$

Answer: C

19. If $f: R \rightarrow R$ is given by
$f(x)=x^{3}+(a+2) x^{2}+3 a x+5 a$ if $\mathrm{f}(\mathrm{x})$ is one-one function, then a belong to

- Watch Video Solution

20. Set A has three elements and set B has four elements. The number of injections that can be defined from A to B is
A. 144
B. 12
C. 24
D. 64

Answer: C
21. Which of the following functions is a surjection?
A. $f: R \rightarrow R$ given by $f(x)=x^{3}+2$ for all $\mathrm{x} \in R$
B. $g: R \rightarrow R$ given by $g(x)=x^{2}+2$ for all $\mathrm{x} \in R$
C. $h: Z \rightarrow Z$ given by $h(x)=3 x+2$ for all $\mathrm{x} \in Z$
D. $\phi: R \rightarrow R$ given by $f(x)=x^{2}-3 x+2$ for all $\mathrm{x} \in R$

Answer: A

- Watch Video Solution

22. Let $E=(1,2,3,4)$ and $F-(1,2)$. Then the number of onto
functions from E to F is:
A. 14
B. 16
C. 12
D. 8

Answer: A

- Watch Video Solution

23. Let $A=\{1,2, \ldots, n\}$ and $B=\{a, b\}$. Then number of surjections from A into B is nP2 (b) $2^{n}-2$ (c) $2^{n}-1$ (d) nC2
A. ${ }^{\wedge}(n) P_{2}$
B. $2^{n}-2$
C. $2^{n}-1$
D. none of these

Watch Video Solution

24. If $X=\{1,2,3,4\}$, then one-one onto mappings $f: X \rightarrow X$ such that $f(1)=1, f(2) \neq 2 f(4) \neq 4$ are given by
A. $\{(1,1),(2,3),(3,4),(4,2)\}$
B. $\{(1,1),(2,4),(3,3),(4,2)\}$
C. $\{(1,1),(2,4),(3,2),(4,3)\}$
D. none of these

Answer: A,B,C

D Watch Video Solution

25. The function of $f: R \rightarrow R$ defined by
$f(x)=2^{x}+x^{|x|}$, is
A. one-one and onto
B. many-one and onto
C. one-one and into
D. many-one and into

Answer: C

D Watch Video Solution

26. The total number of onto functions from the set $\{1,2,3,4)$ to the set $(3,4,7)$ is
A. 18
B. 36
C. 64
D. none of these

D Watch Video Solution

27. $f: R \rightarrow R$ given by $f(x)=x+\sqrt{x^{2}}$, is
A. injective
B. surjective
C. bijective
D. none of these

Answer: D

- Watch Video Solution

28. The set of parameter 'a' for which the functions $f: R \rightarrow R$ defined by $f(x)=a x+\sin x$ is bijective, is
A. $[-1,1]$
B. $R-[-1,1]$
C. $\mathrm{R}-[-1,1]$
D. $[-1,1]$

Answer: C

- Watch Video Solution

29. Let f be an injective map. with domain (x, y, z and range (1, 2, 3), such that exactly one following statements is correct and the remaining are false : $f(x)=1, f(y) \neq 1, f(z) \neq 2$ The value of $f^{-1}(1)$ is
A. x
B. y
C. z
D. none of these

Answer: B

- Watch Video Solution

30.

$f(x)=\sin ^{2} x+\sin ^{2}\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right)=1$, then $(g o f)(x)$ is \qquad
A. a polynomial of first degree in $\sin x$ and $\cos x$
B. a constant function
C. a polynomial of second degree in $\sin x$ and $\cos x$
D. none of these

Answer: B
31. If $g(x)=x^{2}+x-2 a n d \frac{1}{2} g o f(x)=2 x^{2}-5 x+2$, then which is not a possible $f(x) ? 2 x-3$ (b) $-2 x+2 x-3$ (d) None of these
A. $2 x-3$
B. $2 x+3$
C. $2 x^{2}+3 x+1$
D. $2 x^{2}-3 x-1$

Answer: A

- Watch Video Solution

32. If $f(x)=\sin ^{2} x$ and the composite function $g(f(x))=|\sin x|$,
then $g(x)$ is equal to (a) $\sqrt{x-1}$ (b) \sqrt{x} (c) $\sqrt{x+1}$ (d) $-\sqrt{x}$
A. $\sqrt{x-1}$
B. \sqrt{x}
C. $\sqrt{x+1}$
D. $-\sqrt{x}$

Answer: B

- Watch Video Solution

33. If $f: R \rightarrow R$ is given by $f(x)=3 x-5$ then $f^{-1}(x)$
A. is given by $\frac{1}{3 x-5}$
B. is given by $\frac{x+5}{3}$
C. does not exist because f is not one-one
D. does not exist because is not onto

Answer: B
34. Let $f:[4, \infty) \rightarrow[4, \infty)$ be defined by $f(x)=5^{x^{(x-4)}}$. Then $f^{-1}(x)$ is
A. $2-\sqrt{4-\log s x}$
B. $2+\sqrt{4+\log s x}$
C. $\left(\frac{1}{5}\right)^{x^{x+4}}$
D. not defined

Answer: B

- Watch Video Solution

35. $f(x)=\frac{1-x}{1+x}, x=-1$ then $f^{-1}(x)$ relation to
A. $f(x)$
B. $\frac{1}{f(x)}$
C. $-f(x)$
D. $-\frac{1}{f(x)}$

Answer: A

D Watch Video Solution

Section I Solved Mcqs

1. Let $A=\{x \in R:-1 \leq x \leq 1\}=B$ and $C=\{x \in R: x \geq 0\}$ and let $S=\left\{(x, y) \in A \times B: x^{2}+y^{2}=1\right\} \quad$ and $S_{0}=\left\{(x, y) \in A \times C: x^{2}+y^{2}=1\right\}$. Then S defines a function from A to B (b) S_{0} defines a function from A to C (c) S_{0} defines a function from A to B (d) S defines a function from A to C
A. S defines a function from A to B
B. S_{0} defines a function from A to C
C. S_{0} defines a function from A to b
D. S defines a function from A to c

Answer: B

- Watch Video Solution

2. $f: R \rightarrow R$ given by $f(x)=2 x+|\cos x|$, is
A. one-one and into
B. one-one and onto
C. many-one and into
D. many-one and onto

Answer: B

3. Show that the function $f: N \rightarrow N$ given by, $f(n)=n-(-1)^{n}$ for all $n \in N$ is a bijection.
A. one-one and into
B. one-one and onto
C. many-one and into
D. many-one and onto

Answer: A

- Watch Video Solution

4. If $f: A \rightarrow B$ given by $3^{f(x)}+2^{-x}=4$ is a bijection, then A
A. $A=(x \in R:-1<x<\infty), B=(x \in R: 2<x<4)$
B. $A=(x \in R:-3<x<\infty), B=(x \in R: 0<x<4)$
C. $A=(x \in R:-2<x<\infty), B=(x \in R: 0<x<4)$
D. None of these

Answer: D

D Watch Video Solution

5. Let $A=\{x: 0 \leq x<\pi / 2\}$ and $f: R \rightarrow A$ be an onto function given by $f(x)=\tan ^{-1}\left(x^{2}+x+\lambda\right)$, where λ is a constant. Then,
A. $\lambda>0$
B. $\lambda \geq 1 / 4$
C. $\lambda<1 / 4$
D. $0 \leq \lambda \leq 1$

Answer: B

6. Let $f(x)=x^{2}$ and $g(x)=2^{x}$. Then the solution set of the equation $f \circ g(x)=g \circ f(x)$ is $(a) R$ (b) $\{0\}$ (c) $\{0,2\}$ (d) none of these
A. R
B. $\{0\}$
C. $\{0,2\}$
D. None of these

Answer: C

(D) Watch Video Solution

7. If $f(x)=\log _{x^{2}} 25$ and $g(x)=\log _{x} 5$, then $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ holds, now find the interval for x .
A. R
B. $\{x: 0<x<\infty, x \neq 1\}$
C. ϕ
D. None of these

Answer: B

D Watch Video Solution

8. If $g(f(x))=|\sin x| \operatorname{andf}(g(x))=(\sin \sqrt{x})^{2} \quad$, then (a).
$f(x)=\sin ^{2} x, g(x)=\sqrt{x} \quad$ (b). $\quad f(x)=\sin x, g(x)=|x|$
$f\left(x=x^{2}, g(x)=\sin \sqrt{x}(\mathrm{~d}) . f\right.$ and g cannot be determined
A. $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$
B. $f(x)=\sin x, g(x)=|x|$
C. $f(x)=x^{2}, g(x)=\sin \sqrt{x}$
D. f and g cannot be determined
9. The inverse of the function $f: R \overrightarrow{x \in R: x<1}$ given by $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}, \quad$ is $\quad \frac{1}{2} \frac{\log (1+x)}{1-x}$
(b) $\frac{1}{2} \frac{\log (2+x)}{2-x}$
$1 \log (1-x)$
(d) None of these
A. $\frac{1}{2} \log \frac{1+x}{1-x}$
B. $\frac{1}{2} \log \frac{2+x}{2-x}$
C. $\frac{1}{2} \log \frac{1-x}{1+x}$
D. None of these

Answer: A

(D) Watch Video Solution

10. Let $A=(x \in R: x \geq 1)$. The inverse of the function of $f: A \rightarrow A$ given by $f(x)=2^{x^{(x-1)}}$. Is
A. $\left(\frac{1}{2}\right)^{x^{(x-1)}}$
B. $\frac{1}{2}\left\{1+\sqrt{1+4 \log _{2} x}\right\}$
C. $\frac{1}{2}\left\{1-\sqrt{1+4 \log _{2} x}\right\}$
D. None of these

Answer: B

- Watch Video Solution

11. Let $f(x)=\frac{1}{1-x}$. Then $(f o(f o f))(x)$
A. x for all $x \in R$
B. x for all $x \in R-\{1\}$
C. x for all $x \in R-\{0,1\}$
D. None of these
12. Let $A=\left\{x \in R: x \geq \frac{1}{2}\right\}$ and $B=\left\{x \in R: x \geq \frac{3}{4}\right\}$. If $f: A \rightarrow B$ is defined as $f(x)=x^{2}-x=1$, then the solution set of the equation $f(x)=f^{-1}(x)$ is
A. $\{1\}$
B. $\{2\}$
C. $\{1 / / 2\}$
D. None of these

Answer: A

13. Let the function $f: R-\{-b\} \rightarrow R-\{1\}$ be defined by $f(x)=\frac{x+a}{x+b}, a \neq b$, then f is one-one but not onto (b) f is onto but not one-one (c) f is both one-one and onto (d) none of these
A. f is one-one but not onto
B. f is onto but not one-one
C. f is both one-one and onto
D. None of these

Answer: C

- Watch Video Solution

14.

$f:[1, \infty) \rightarrow[2, \infty)$ is given by $f(x)=x+\frac{1}{x}$, then $f^{-1}(x)$ equals
A. $\frac{x+\sqrt{x^{2}-4}}{2}$
B. $\frac{x}{1+x^{2}}$
C. $\frac{x-\sqrt{x^{2}-4}}{2}$
D. $1+\sqrt{x^{2}-4}$

Answer: A

D Watch Video Solution

15.

$g(x)=1+x-[x]$ and $f(x)=\{-1, x<00, x=01, x>0$.
Then for all $x, f(g(x))$ is equal to (where [.] represents the greatest integer function). (a) x (b) 1 (c) $f(x)$ (d) $g(x)$
A. x
B. 1
C. $f(x)$
D. $g(x)$

Answer: B

- Watch Video Solution

16. Let $f(x)=\frac{\alpha x}{(x+1)}, x \neq-1$. for what value of α is $f(f(x))=x ?$ (a) $\sqrt{2}$ (b) $-\sqrt{2}$ (c) 1 (d) -1
A. $\sqrt{2}$
B. $-\sqrt{2}$
C. 1
D. -1

Answer: D
17. Let the funciton $f: R \rightarrow R$ be defined by $f(x)=2 x+\sin x$. Then, f is
A. one-to-one and into
B. one-to-one but not onto
C. onto but not one-to-one
D. neither one-to-one nor onto

Answer: A

D Watch Video Solution

18. Suppose $f(x)=(x+1)^{2}$ for $x \geq-1$. If $\mathrm{g}(\mathrm{x})$ is the function whose graph is the reflection of the graph of $f(x)$ with respect to the line $y=x$, then $g(x)$ equals
A. $-\sqrt{x}-1, x \geq 0$
B. $\frac{1}{(x+1)^{2}}, x>-1$
C. $\sqrt{x+1}, x \geq-1$
D. $\sqrt{x}-1, x \geq 0$

Answer: D

D Watch Video Solution

19. Let $f: R \rightarrow R$ be a function defined by $f(x)=\mid x]$ for all $x \in R$ and let $A=[0,1)$, then $f^{-1}(A)$ equals
A. $(-1,1)$
B. $(0,1)$
C. $(-1,0)$
D. None of these
$f(x)=e^{x} \wedge(3-3 x+2)$ is many one and onto many one and into one-one and onto one-one and into
A. one-one and into
B. one-one and into
C. many-one and into
D. many-one and onto

Answer: B

21. If the functions f, g and h are defined from the set of real numbers R to R such that

$$
\begin{aligned}
& f(x)=x^{2}-1, g(x)=\sqrt{\left(x^{2}+1\right)}, \\
& h(x)= \begin{cases}0, & \text { if } \quad x<0 \\
\mathrm{x}, & \text { if } \quad x \geq 0\end{cases}
\end{aligned}
$$

Then find the composite function ho(fog)(x).
A. $\begin{cases}-x^{2} & x<0 \\ 0 & x=0 \\ x^{2} & x>0\end{cases}$
B. $\begin{cases}x^{2} & x \neq 0 \\ 0 & x=0\end{cases}$
C. $\begin{cases}x^{2} & x>0 \\ 0 & x \leq 0\end{cases}$
D. None of these

Answer: B

22. The distinct linear functions which map $[-1,1]$ onto $[0,2]$ are $f(x)=x+1, g(x)=-x+1$ (b) $f(x)=x-1, g(x)=x+1$ (c) $f(x)=-x-1, g(x)=x-1$ (d) none of these
A. $f(x)=x+1, g(x)=-x+1$
B. $f(x)=x-1, g(x)=x+1$
C. $f(x)=-x-1, g(x)=x+1$
D. None of these

Answer: A

- Watch Video Solution

23. The values of a and b for which the map $f: R \rightarrow R$, given by $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}(a, b \in R)$ is a bijection with fof as indentity function, are
A. $a=1, b \in R$
B. $(a=1, b=0)$ or,$(a=-1, b \in R)$
C. $a= \pm 1, b \in R$
D. $a= \pm 1, b=0$

Answer: B

Watch Video Solution

24. Find the value of parameter α for which the function $f(x)=1+\alpha x, \alpha \neq 0$ is the inverse of itself.
A. -2
B. -1
C. 1
D. 2
25. Let $f:(2, \infty) \rightarrow X$ be defined by $\mathrm{f}(\mathrm{x})=4 x-x^{2}$. Then f is invertible, if $X=$
A. $[2, \infty]$
B. $(-\infty, 2]$
C. $(-\infty, 4)$
D. $[4, \infty)$

Answer: C

D Watch Video Solution

26. If $f: R \rightarrow S$ defined by $f(x)=\sin x-\sqrt{3} \cos x+1$ is onto, then the interval of S is :
A. $[0,1]$
B. $[-1,1]$
C. $[0,3]$
D. $[-1,3]$

Answer: D

D Watch Video Solution

27. If $f(x)=\left\{\begin{array}{ll}|x| & x \leq 1 \\ 2-x & x>1\end{array}\right.$, then fof (x) is equal to
A. $f(x)= \begin{cases}2-x & x<-1 \\ |x| & -1 \leq x \leq 1 \\ |2-x| & x>1\end{cases}$
B. $f(x)= \begin{cases}|x| & x<-1 \\ 2-|x| & -1 \leq x \leq 1 \\ |2-x| & x>1\end{cases}$
C. $f(x)= \begin{cases}|2-x| & x<-1 \\ |x| & -1 \leq x \leq 1 \\ 2-|x| & x>1\end{cases}$
D. None of these

- Watch Video Solution

28. Let $A=\{x-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ such that $f(x)=x|x|$ then f is:
A. injective but not surjective
B. surjective but not injective
C. bijective
D. None of these

Answer: C
29. If $f: R \rightarrow(-1,1)$ is defined by $f(x)=\frac{-x|x|}{1+x^{2}}$, then $f^{-1}(x)$ equals $\sqrt{\frac{|x|}{1-|x|}}$ (b) $\operatorname{Sgn}(x) \sqrt{\frac{|x|}{1-|x|}}$ (c) $-\sqrt{\frac{x}{1-x}}$ (d) none of these
A. $\sqrt{\frac{x}{1-|x|}}$
B. $-\operatorname{sign}(x) \sqrt{\frac{|x|}{1-|x|}}$
C. $\sqrt{\frac{x}{1-x}}$
D. None of these

Answer: B

D Watch Video Solution

30. Let $f: R \rightarrow R$ be given by $f(x)=[x]^{2}+[x+1]-3$, where $[x]$ denotes the greatest integer less than or equal to x. Then, $f(x)$ is
(a) many-one and onto (b) many-one and into (c) one-one and into
(d) one-one and onto
A. many-one and onto
B. many-one and into
C. one-one and into
D. one-one and onto

Answer: B

- Watch Video Solution

31. Let M be the set of all 2×2 matrices with entries from the set R of real numbers. Then the function $f: M \rightarrow R$ defined by $f(A)=|A|$ for every $A \in M$, is (a) one-one and onto (b) neither one-one nor onto (c) one-one but not onto (d) onto but not one-one
A. one-one and into
B. neither one-one nor onto
C. one-one but-not onto
D. onto but not one-one

Answer: D

- Watch Video Solution

32. The function $f:[0, \infty) \rightarrow R$ given by $f(x)=\frac{x}{x+1}$ is (a) oneone and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto
A. one-one and into
B. one-one but not onto
C. onto but not one-one
D. neither one-one nor onto

D Watch Video Solution

33. Two functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined as follows:
$f(x)=\left\{\begin{array}{ll}0 & x \in Q \\ 1 & x \neq Q\end{array}, g(x)= \begin{cases}-1 & x \in Q \\ 0 & x \in Q\end{cases}\right.$
Then, fof (e) $+\mathrm{fog}(\pi)$
A. -1
B. 0
C. 1
D. 2

Answer: A

34. The range of the function $f(x)={ }^{7-x} P_{x-3}$ is (a) $\{1,2,3,4,5\}$ (b) $\{1,2,3,4,5,6\}$ (c) $\{1,2,3,4\}$ (d) $\{1,2,3\}$
A. $\{1,2,3,4,5\}$
B. $\{1,2,3,4,5,6\}$
C. $\{1,2,3,4\}$
D. $\{1,2,3\}$

Answer: D

- Watch Video Solution

35. A function f from the set of natural numbers to the set of integers defined by
$f(n)=\left\{\frac{n-1}{2}\right.$, when n is odd $-\frac{n}{2}$, when n is even (a) neither one-one nor onto (b) one-one but not onto (c) onto but not one-one
(d) one-one and onto both
A. neither one-one nor onto
B. one-one but not onto
C. one but not one-one
D. one-one and onto both

Answer: D

D Watch Video Solution

36. Let $f:(-1,1) \vec{B}$ be a function defined by $f(x)=\frac{\tan ^{-1}(2 x)}{1-x^{2}}$. Then f is both one-one and onto when B is the interval. $\left[0, \frac{\pi}{2}\right)$ (b)
$\left(0, \frac{\pi}{2}\right)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
A. $(-\pi / 2, \pi / 2)$
B. $[-\pi / 2, \pi / 2]$
C. $[0, \pi / 2]$
D. $(0, \pi / 2)$

Answer: A

D Watch Video Solution

37. Let $f: N \rightarrow Y$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible. Find its inverse.
A. $g(y)=\frac{y+3}{4}$
B. $g(y)=\frac{y-3}{4}$
C. $g(y)=\frac{3 y+4}{3}$
D. $g(y)=4+\frac{y+3}{4}$

Answer: B
38. If $f(x)=\{x$, when x is rational and 0 , when x is irrational $g(x)=\{0$, when x is rational and x, when x is irrational then $(f-g)$ is
A. one-one and into
B. neither one-one nor onto
C. many one and onto
D. one-one and onto
A. one-one and into
B. neither one-one nor onto
C. many-one and onto
D. one-one and onto

Answer: D

39. If X and Y are two non-empty sets, where $f: X \rightarrow Y$, is function is defined such that
$f(c)=\{f(x): x \in C\}$ for $C \subseteq X$ and
$f^{-1}(D)=\{x: f(x) \in D\}$ for $D \subseteq Y$,
for any $A \subseteq Y$ and $B \subseteq Y$, then
A. $f^{-1}(f(A))=A$
B. $f^{-1}(f(A))=A$ only if $\mathrm{f}(X)=Y$
C. $f\left(f^{-1}(B)\right)=B$ only if $\mathrm{B} \subseteq f(X)$
D. $f\left(f^{-1}(B)\right)=B$

Answer: C

D Watch Video Solution

40. For real x , let $f(x)=x^{3}+5 x+1$, then
A. f is one-one but not onto
B. f is onto but not one-one
C. f is one-one and onto R
D. is niether one-one nor onto R

Answer: C

D Watch Video Solution

41. Let $f:(0,1) \rightarrow R$ be defined by $f(x)=\frac{b-x}{1-b x}$, where b is a constant such that $0<b<1$. Then,
A. f is not invertible on $(0,1)$
B. $f \neq f^{-1}$ on $(0,1)$ and $f^{\prime}(b)=\frac{1}{f^{\prime}(0)}$
C. $f=f^{-1}$ on $(0,1)$ and $f^{\prime}(b)=\frac{1}{f^{\prime}(0)}$
D. f^{-1} is differentiable on $(0,1)$

D Watch Video Solution

42. The function $f:[0,3] \overrightarrow{1,29}$, defined by $f(x)=2 x^{3}-15 x^{2}+36 x+1$, is one-one and onto onto but not one-one one-one but not onto neither one-one nor onto
A. one-one and onto
B. onto but not one-one
C. one-one but not onto
D. neither one-one nor onto

Answer: B

43. For a real number x let $[x]$ denoutes the greatest interger less than or equal to x , let $f: R \rightarrow R$ be defined by $f(x)=2 x+[x]+\sin \cos x$, then f is :
A. one-one but not onto
B. onto but not one-one
C. both one-one and onto
D. neither one-one nor onto

Answer: C

D Watch Video Solution

44. If $P(S)$ denotes the set of all subsets of a given set S , then the number of one-to-one functions from the set $S=\{1,2,3\}$ to the set $P(S)$ is
A. 8
B. 320
C. 336
D. 24

Answer: C

D Watch Video Solution

45.

$f:\{1,2,3,4\} \rightarrow\{1,4,9,16\}$ and $g:\{1,4.9,16) \rightarrow\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$ are two bijective functions such that $x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right), g\left(x_{1}\right)>g\left(x_{2}\right)$ then $f^{-1}\left(g^{-1}\left(\frac{1}{2}\right)\right)$ is equal to
A. 1
B. 4
C. 16
D. 2

Answer: D

- Watch Video Solution

46. In the above example $(g o f)^{-1}\left(\frac{1}{4}\right)$ is equa to
A. 16
B. $\frac{1}{4}$
C. 4
D. $\frac{1}{16}$

Answer: C

47. If a real polynomial of degree n satisfies the relation $f(x)=f(x) f^{\prime \prime}(x)$ for all $x \in R$ Then $f R \rightarrow R$
A. an onto function
B. an into function
C. always a one function
D. always a many one function.

Answer: A

D Watch Video Solution

48. If the function $f:[1, \infty) \rightarrow[1, \infty)$ defined by $f(x)=2^{x(x-1)}$ is invertible, find $f^{-1}(x)$.
A. $\left(\frac{1}{3}\right)^{x^{(x-1)}}$
B. $\frac{1}{2}\left\{1-\sqrt{1+4 \log _{3} x}\right\}$
C. $\frac{1}{2}\left\{1+\sqrt{1+4 \log _{3} x}\right\}$
D. not defined

Answer: C

- Watch Video Solution

49. The function $f: R \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]$ defined as $f(x)=\frac{x}{1+x^{2}}$, is
A. surejective but not injective
B. neither injective nor surjective
C. invertible
D. injective but not surjective

Answer: A

Section li Assertion Reason Type

1. Statement-1: If A and B are two sets having 3 and 5 elements respectively, then the total number of functions that can be defined from A to B is 5^{3}.

Statement-2: A function from set A to set B relates elements of set A to elements of set B.
A. 1
B. 2
C. 3
D. 4

Answer: C

2. Statement-1: If two sets X and Y contain 3 and 5 elements respectively, then $.{ }^{5} C_{3} \times 3$! one-one functions can be defined from X to Y.

Statement:2: A one-one function from X to Y relates different element of set X to different elements of set Y.
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

3. Statement-1: Let A and B be two sets having m and n elements

Number of surjections from A to $\mathrm{B}=\sum_{r=1}^{n}{ }^{n} C_{r}(-1)^{n-r} r^{m}$
Statement-2: If $f: A \rightarrow B$ is a surjection, then every element in B has a pre-image in A.
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

4. Statement-1: The function $f: R \rightarrow R$ defined by
$f(x)=x^{3}+4 x-5$ is a bijection.
Statement-2: Every odd degree has at least one real root.
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

5. Statement-1: If $f: R \rightarrow R$ and $g: R \rightarrow R$ be two functions such that $f(x)=x^{2}$ and $g(x)=x^{3}$, then fog $(\mathrm{x})=\operatorname{gof}(\mathrm{x})$.

Statement-2: The composition of functions is commulative.
A. 1
B. 2
C. 3
D. 4

D Watch Video Solution

6. Let $f: A \rightarrow A$ and $g: A \rightarrow A$ be two functions such that fog $(\mathrm{x})=\mathrm{gof}(\mathrm{x})=\mathrm{x}$ for all $x \in A$

Statement-1:

$\{x \in A: f(x)=g(x)\}=\{x \in A: f(x)=x\}=\{x \in A: g(x)=x\}$
Statement-2: $f: A \rightarrow A$ is bijection.
A. 1
B. 2
C. 3
D. 4

Answer: A
7. Let $f(x)=(x+1)^{2}-1, x \geq-1$

Statement 1: The set $\left\{x: f(x)=f^{-1}(x)\right\}=\{0,-1\}$.
Statement 2: f is a bijection,
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

8. The funciton $f: N \rightarrow N$ given by $f(n)=n-(-1)^{n}$ for all $n \in N$ is
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

9. The image of $[-1,3]$ under f is not the interval $[f(-1), f(3)]$

Statement-2: f is not an injective map.
A. 1
B. 2
C. 3
D. 4

(D) Watch Video Solution

10. Let f be a function defined by $f(x)=(x-1)^{2}+1,(x \geq 1)$.

Statement 1: The set $\left(x: f(x)=f^{-1}(x)\right\}=\{1,2\}$
Statement 2: f is a bijection and $f^{-1}(x)=1+\sqrt{x-1}, x \geq 1$.
A. 1
B. 2
C. 3
D. 4

Answer: A

1. If $f(x)=\left(a-x^{n}\right)^{\frac{1}{n}}$ then $f o f(x)$ is (A) x (B) a-x (C) x^{2} (D) $-\frac{1}{x^{n}}$
A. a
B. x
C. x^{n}
D. a^{n}

Answer: B

- Watch Video Solution

2. Let $f(x)$ be defined on $[-2,2]$ and be given by $f(x)=\left\{\begin{array}{ll}-1, & -2 \leq x \leq 0 \\ x-1, & 1<x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$.

Then find $g(x)$.
A. $\begin{cases}-x & -2 \leq x<0 \\ 0 & 0 \leq x<1 \\ x-1 & 1 \leq x \leq 2\end{cases}$
B. $\begin{cases}-x & -2 \leq x<0 \\ 0 & 0 \leq x<1 \\ 2(x-1) & 1 \leq x \leq 2\end{cases}$
C. $\begin{cases}-x & -2 \leq x<0 \\ x-1 & 0 \leq x \leq 2\end{cases}$
D. none of these

Answer: B

D Watch Video Solution

3. Which of the following function from Z to itself are bijections?

$$
f(x)=x^{3} \text { (b) } f(x)=x+2 f(x)=2 x+1 \text { (d) } f(x)=x^{2}+x
$$

A. $f(x)=x^{3}$
B. $f(x)=x+2$
C. $f(x)=2 x+1$
D. $f(x)=x^{2}+x$

D Watch Video Solution

4. Which of the following functions from $A=\{x \in R:-1 \leq x \leq 1\}$ to itself are bijections? $f(x)=|x|$
$f(x)=\frac{\sin (\pi x)}{2}$ (c) $f(x)=\frac{\sin (\pi x)}{4}$ (d) none of these
A. $f(x)=\frac{|x|}{2}$
B. $g(x)=\sin \left(\frac{\pi x}{2}\right)$
C. $h(x)=|x|$
D. $k(x)=x^{2}$

Answer: B

5. If $f: R \rightarrow R$ is a function defined by $f(x)=x^{3}+5$ then $f^{-1}(x)$ is
A. $(x+5)^{1 / 3}$
B. $(x-5)^{1 / 3}$
C. $(5-x)^{1 / 3}$
D. $5-x$

Answer: B

- Watch Video Solution

6. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be the bijective functions. Then $(g o f)^{-1}$ is
A. $f^{-1} o g^{-1}$
B. fog
C. $g^{-1} o f^{-1}$
D. gof

Answer: C

D Watch Video Solution

7. Let $f: R \rightarrow R, g: R \rightarrow R$ be two functions given by $f(x)=2 x-3$, $\mathrm{g}(\mathrm{x})=x^{3}+5$. Then, $(f \circ g)^{-1}(\mathrm{x})$ is equal to
A. $\left(\frac{x+7}{2}\right)^{1 / 3}$
B. $\left(x-\frac{7}{2}\right)^{1 / 3}$
C. $\left(\frac{x-2}{7}\right)^{1 / 3}$
D. $\left(\frac{x-7}{2}\right)^{1 / 3}$

Answer: D

8. Let $f: R \rightarrow R$ be a function defined $\mathrm{b} \mathrm{f}(\mathrm{x})=\cos (5 \mathrm{x}+2)$. Then, f is
A. injective
B. surjective
C. bijective
D. none of these

Answer: D

D Watch Video Solution

9. Let $f: N \rightarrow N$ be defined by $f(x)=x^{2}+x+1, x \in N$. Then $f(x)$ is
A. one-one onto
B. many one onto
C. one-one but not onto
D. none of these

Answer: C

- Watch Video Solution

10. Let $A=\{-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ such that $f(x)=x|x|$ then f is:
A. a bijection
B. injective but not surjective
C. surjective but not injective
D. neither injective nor surjective

Answer: A

11. Let $f: R-\left\{\frac{3}{5}\right\} \rightarrow R$ be defined by $f(x)=\frac{3 x+2}{5 x-3}$. Then (a). $f^{\wedge}-1(x)=f(x) \cdot(b) \cdot f-1(x)=-f(x) \cdot(c) \cdot(f o f)=x(d) \cdot f-1(x)=(1 / 19) f(x)$
A. $f^{-1}(x)=f(x)$
B. $f^{-1}(x)=-f(x)$
C. $(f o f)(x)=-x$
D. $f^{-1}(x)=-\frac{1}{19} f(x)$

Answer: A

(Watch Video Solution

12. If $f(x)=2^{x}$, then $f(0), f(1), f(2) \ldots$ are in
A. AP
B. GP
C. HP
D. arbitrary

Answer: B

- Watch Video Solution

13. If the function $f: R \vec{A}$ given by $f(x)=\frac{x^{2}}{x^{2}+1}$ is surjection, then find A.
A. R
B. $[0,1]$
C. [0,1]
D. $[0,1]$

Answer: D

14. Which of the following functions is the inverse of itself? (a)
$f(x)=\frac{1-x}{1+x}$
(b) $f(x)=5^{\log x}$
(c) $f(x)=2^{x(x-1)}$
(d) None of
these
A. $f(x)=\frac{1-x}{1+x}$
B. $g(x)=5^{\log \mathrm{x}}$
C. $h(x)=2^{x(x-1)}$
D. none of these

Answer: A

D Watch Video Solution

15. If $f(x)=\frac{x-1}{x+1}, \quad$ then $\mathrm{f}(2 \mathrm{x})$ is:
A. $\frac{f(x)+1}{f(x)+3}$
B. $\frac{3 f(x)+1}{f(x)+3}$
C. $\frac{f(x)+3}{f(x)+1}$
D. $\frac{f(x)+3}{3 f(x)+1}$

Answer: B

- Watch Video Solution

16. If $f(x)=\log \left(\frac{1+x}{1-x}\right) \operatorname{andg}(x)=\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right)$, then $f(g(x))$ is equal to (a) $f(3 x)$ (b) $\{f(x)\}^{3}$ (c) $3 f(x)$ (d) $-f(x)$
A. $-f(x)$
B. $3 f(x)$
C. $[f(x)]^{3}$
D. none of these

- Watch Video Solution

17. If $f(x)=a^{x}$, which of the following equalities do not hold ?
$f(x+2)-2 f(x+1)+f(x)=(a-1)^{2} f(x)$
$f(-x) f(x)-1=0$
(iii) $\quad f(x+y)=f(x) f(y)$
$f(x+3)-2 f(x+2)+f(x+1)=(a-2)^{2} f(x+1)$
A. $f(x+2)-2 f(x+1)+f(x)=(a-1)^{2} f(x)$
B. $f(-x) f(x)-1=0$
C. $f(x+y)=f(x) f(y)$
D. $f(x+3)-2(x+2)+f(x+1)=(a-2)^{2} f(x+1)$

Answer: D

D Watch Video Solution

18. The interval in which the function $y=f(x)=\frac{x-1}{x^{2}-3 x+3}$ transforms the real line is
A. $(0, \infty)$
B. $(-\infty, \infty)$
C. $[0,1]$
D. $[-1 / 3,1]$

Answer: D

- Watch Video Solution

19. If $f(x)=a x+b$ and $g(x)=c x+d$, then $f(g(x))=g(f(x))$ is equivalent to (A)

$$
f(a)=g(c)(B) f(b)=g(b)(C) f(d)=g(b)(D) f(c)=g(a)
$$

A. $f\left(x^{2}\right)=[f(x)]^{2}$
B. $f(|X|)=|f(x)|$
C. $f(x+y)=f(x)+f(y)$
D. none of these

Answer: D

D Watch Video Solution

20. If $f(x)=a x+b$ and $g(x)=c x+d$, then $f(g(x))=g(f(x))$ is equivalent to (A)

$$
f(a)=g(c)(B) f(b)=g(b)(C) f(d)=g(b)(D) f(c)=g(a)
$$

A. $f(a)=g(c)$
B. $f(b)=g(b)$
C. $f(d)=g(b)$
D. $f(c)=g(a)$

Answer: C

21. Which of the following functions is not an are not an injective map(s) ?
A. $f(x)=|x+1|, x \in[-1, \infty]$
B. $g(x)=x+\frac{1}{x}, x \in(0, \infty)$
C. $h(x)=x^{2}+4 x-5, x \in(0, \infty)$
D. $k(x)=e^{-x}, x \in[0, \infty]$

Answer: B

- Watch Video Solution

22. If $f(x)=\{x, \xi$ srational $1-x, \xi$ sirrational, then $f(f(x))$ is

$$
\begin{equation*}
x \forall x \in R \tag{b}
\end{equation*}
$$

$\{x, \xi$ sirrational $1-x, \xi$ srational
$\{x, \xi$ srational $1-x, \xi$ sirrational (d) none of these
A. constant
B. $1+x$
C. x
D. none of these

Answer: C

D Watch Video Solution

23. Let $f(x)=x$ and $g(x)=|x|$ for all. Then the function satisfying $[\phi(x)-f(x)]^{2}+[\phi(x)-g(x)]^{2}=0$ is
A. $\phi(x)=x, x \in[0, \infty]$
B. $\phi(x)=x, x \in R$
C. $\phi(x)=-x, x \in(-\infty, 0)$
D. $\phi(x)=-x+|x|, x \in R$

- Watch Video Solution

24. about to only mathematics
A. $d=-a$
B. $d=a$
C. $a=b=c=d=1$
D. $a=b=1$

Answer: A

- Watch Video Solution

25. If $f(x)=\left(a x^{2}+b\right)^{3}$, the function g such that
$f(g(x))=g(f(x))$, is given by
A. $g(x)=\left(\frac{b-x^{1 / 3}}{a}\right)^{1 / 2}$
B. $g(x)=\frac{1}{\left(a x^{2}+b\right)^{3}}$
C. $g(x)=\left(a x^{2}+b\right)^{1 / 3}$
D. $g(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$

Answer: D

- Watch Video Solution

26. If a function $f:[2, \infty) \rightarrow R$ is defined by $f(x)=x^{2}-4 x+5$, then the range of f is
A. R
B. $[1, \infty]$
C. $[4, \infty]$
D. $[5, \infty]$

- Watch Video Solution

27. The function $f: R \rightarrow R$ is defined by
$f(x)=(x-1)(x-2)(x-3)$ is
A. one-one but not onto
B. onto but not one-one
C. both one and onto
D. neither one-one nor onto

Answer: B
28. Let $A=\{x, y, z\}=B=\{u, v, w)$ and $f: A \rightarrow B$ be defined by $\mathrm{f}(x)=u, f(y)=v, f(z)=w$. Then, f is
A. surjective but not injective
B. injective but not surjective
C. bijective
D. none of these

Answer: C

- Watch Video Solution

29. If $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$, then find $f^{-1}(17)$ and $f^{-1}(-3)$.
A. $\phi,[4,-4]$
B. $[3-, 3], \phi$
C. $[4,-4], \phi$
D. $[4,-4],[2,-2]$

Answer: C

D Watch Video Solution

30. The function $f: N \vec{N}$ (N is the set of natural numbers) defined by $f(n)=2 n+3 i s$ (a) surjective only (b) injective only (c) bijective
(d) none of these
A. surjective
B. injective
C. bijective
D. none of these
31. The composite mapping fog of the maps $f: R \rightarrow R, f(x)=\sin x$ and $g: R \rightarrow R, g(x)=x^{2}$, is
A. $x^{2} \sin x$
B. $(\sin x)^{2}$
C. $\sin x^{2}$
D. $\frac{\sin x}{x^{2}}$

Answer: C

- Watch Video Solution

32. If function $f: R \rightarrow R$ is defined by $f(x)=3 x-4$ then $f^{-1}(x)$ is given by
A. $\frac{x+4}{3}$
B. $\frac{x}{3}-4$
C. $3 x+4$
D. none of these

Answer: A

(D) Watch Video Solution

33. $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a function defined by $\mathrm{f}(\mathrm{x})=10 \mathrm{x}-7$. If $\mathrm{g}=f^{-1}$, then
$g(x)$ equals
A. $\frac{1}{10 x-7}$
B. $\frac{1}{10 x+7}$
C. $\frac{x+7}{10}$
D. $\frac{x-7}{10}$

(D) Watch Video Solution

34. Let $A=\{x \in R: x \leq 1\}$ and $f: A \rightarrow A$ be defined as $f(x)=x(2-x)$. Then, $f^{-1}(x)$ is $1+\sqrt{1-x}$ (b) $1-\sqrt{1-x}$ (c) $\sqrt{1-x}$ (d) $1 \pm \sqrt{1-x}$
A. $1+\sqrt{1-x}$
B. $1-\sqrt{1-x}$
C. $\sqrt{1-x}$
D. $1 \pm \sqrt{1-x}$

Answer: B

35. If $f(x)=x^{n}, n \in N$ and $g o f(x)=n g(x)$ then $g(x)$ can be
A. $n|x|$
B. $3 x^{1 / 3}$
C. e^{x}
D. $\log |x|$

Answer: D

- Watch Video Solution

36. If the function $f: R \rightarrow R$ be such that $f(x)=x-[x]$, where $[x]$ denotes the greatest integer less than or equal to x, then $f^{-1}(x)$ is $\frac{1}{x-[x]}$ (b) $[x]-x$ (c) not defined (d) none of these
A. $\frac{1}{x-[x]}$
B. $[x]-x$
C. not defined
D. none of these

Answer: C

- Watch Video Solution

37. $f: R \rightarrow R$ given by $\mathrm{f}(\mathrm{x})=5-3 \sin \mathrm{x}$, is
A. one-one
B. onto
C. one-one and onto
D. none of these

Answer: D
38. Let $f: A \rightarrow B$ be a function defined by $f(x)=\sqrt{3} \sin x+\cos x+4$. If f is invertible, then
A. $A=[-2 \pi / 3, \pi / 3], B=[2,6]$
B. $A=[\pi / 6,5 \pi / 6], B=[-2,2]$
C. $A=[-\pi / 2, \pi / 2], B=[2,6]$
D. $A=[-\pi / 3, \pi / 3], B=[2,6]$

Answer: A

- Watch Video Solution

39. Let $f: A \rightarrow B ; g: B \rightarrow A$ be two functions such that $g o f=I_{A}$.

Then; f is an injection and g is a surjection.
A. f is an injection and g is a surjection
B. f is a surjection and g is an injection
C. f and g both are injections
D. f and g both are surjections

Answer: A

D Watch Video Solution

40. Let $f: A \rightarrow B ; g: B \rightarrow A$ be two functions such that $f o g=I_{B}$.

Then; f is a surjection and g is an injection.
A. f and g both are injections
B. f and both are surjections
C. f is and injection and g is a surjection
D. f is a injections and g is a surjection

Answer: D

41. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one functions, show that gof is one-one function.
A. f is onto
B. g is onto
C. f and g both are onto
D. none of these

Answer: B

- Watch Video Solution

42. If functions $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy $g o f=I_{A}$, then show that f is one-one and g is onto.
A. f is one-one
B. g is one-one
C. f and g both are one-one
D. none of these

Answer: A

- Watch Video Solution

43. Suppose $f: A \rightarrow B$ and $B \rightarrow C$.
(i) Prove that if f is onto and g is not one-one, then gof is not one-to-one
(ii) Prove that if f is not and g is one-one, then gof is not onto.
A. f is one-one
B. g is one-one
C. f and g both are one-one
D. none of these

D Watch Video Solution
44. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one functions, show that gof is one-one function.
A. one-one
B. onto
C. one-one and onto
D. none of these

Answer: A
45. Let $[x]$ denote the greatest integer less than or equal to x. If $f(x)=\sin ^{-1} x, g(x)=\left[x^{2}\right]$ and $h(x)=2 x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}$, then fogoh $(x)=\pi / 2$ (b) fogoh $(x)=\pi$ (c) hofog $=$ hogof (d) $h o f o g \neq h o g o f$
A. $\operatorname{fogoh}(x)=\pi / 2$
B. $\mathrm{fogoh}(\mathrm{x})=\pi$
C. hofog=hogof
D. $h o f o g \neq$ fogof

Answer: C

- Watch Video Solution

46. If $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$ and $h(x)=\cos ^{-1} x, 0 \leq x \leq 1$, then
A. hogof=fogoh
B. gofoh=fohog
C. fohog=hogof
D. none of these

Answer: D

D Watch Video Solution

47. If $f(x)=\left(25-x^{4}\right)^{1 / 4}$ for $0<x<\sqrt{5}$, then $f\left(f\left(\frac{1}{2}\right)\right)=$
A. 2^{-4}
B. 2^{-3}
C. 2^{-2}
D. 2^{-1}

Watch Video Solution

48. If $X=\{1,2,3,4\}$, then one-one onto mappings $f: X \rightarrow X$ such that $f(1)=1, f(2) \neq 2 f(4) \neq 4$ are given by
A. $f=\{(1,1),(2,3),(3,4),(4,2)\}$
B. $f=\{(1,2),(2,4),(3,3),(4,2)\}$
C. $f=\{(1,2),(2,4),(3,2),(4,3)\}$
D. none of these

Answer: A

- Watch Video Solution

1. The number of bijective functions from set A to itself when A contains 106 elements is
A. 106
B. $(106)^{2}$
C. 106!
D. 2^{106}

Answer: C

- Watch Video Solution

2. If $f(x)=|\sin x|$ then domain of f for the existence of inverse of
A. $[0, \pi]$
B. $[0, \pi / 2]$
C. $[-\pi / 4, \pi / 4]$
D. none of these

Answer: B

(D) Watch Video Solution

3. The function $f:[-1 / 2,1 / 2] \rightarrow[-\pi / 2, \pi / 2]$ defined by $f(x)=s \in^{-1}\left(3 x-4 x^{3}\right)$ is (a) bijection (b) injection but not a surjection (c) surjection but not an injection (d) neither an injection nor a surjection
A. bijection
B. injection but not a surjection
C. surjection but not and injection
D. neither an injection nor a surjection

D Watch Video Solution

4. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$. Then, f is a bijection (b) f is an injection only (c) f is surjection on only (d) f is neither an injection nor a surjection
A. f is a bijection
B. f is an injection only
C. f is surjection on only
D. f is niether an injection nor a surjection

Answer: D

- Watch Video Solution

5. If $f:(e, \infty) \rightarrow R \& f(x)=\log [\log (\log x)]$, then f is -
(a)f is one-one and onto
(b)f is one-one but onto
(c)f is onto but not one-one
(d)the range of f is equal to its domain
A. f is one-one but not onto
B. f is but not one-one
C. f is both one-one and onto
D. f is niether one-one nor onto

Answer: C

D Watch Video Solution

6. Let $f: R-\{n\} \rightarrow R$ be a function defined by $f(x)=\frac{x-m}{x-n}$, where $m \neq n$. Then, f is one-one onto (b) f is one-one into (c) f is
many one onto (d) f is many one into
A. f is one-one onto
B. f is one-one into
C. f is many one onto
D. f is many one into

Answer: B

D Watch Video Solution

7. Find the inverse of the function: $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+2$
A. $\log \left(\frac{x-1}{x+1}\right)^{-2}$
B. $\log \left(\frac{x-2}{x-1}\right)^{1 / 2}$
C. $\log \left(\frac{x}{2-x}\right)^{1 / 2}$
D. $\log \left(\frac{x-1}{3-x}\right)^{1 / 2}$

- Watch Video Solution

8. Find the inverse of the function : $y=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}+1$
A. $\frac{1}{2} \log _{10}\left(\frac{x}{2-}\right)$
B. $\log _{10}\left(\frac{x}{2-x}\right)$
C. $\frac{1}{2} \log _{10}\left(\frac{x}{1-x}\right)$
D. none of these

Answer: A

(D) Watch Video Solution

9. Let $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}},(x \neq 0)$ then $\mathrm{f}(\mathrm{x})$ equals
A. $x^{2}-$ for all x
B. $x^{2}-2$ for all $|x|>2$
C. $x^{2}-2$ for all $|x|<2$
D. none of these

Answer: B

D Watch Video Solution

10. Let $f: R \rightarrow R, g: R \rightarrow R$ be two functions given by $f(x)=2 x-3$, $\mathrm{g}(\mathrm{x})=x^{3}+5$. Then, $(f \circ g)^{-1}(\mathrm{x})$ is equal to
A. $\left(\frac{x-7}{2}\right)^{1 / 3}$
B. $\left(\frac{x+7}{2}\right)^{1 / 3}$
C. $\left(\left(x-\frac{7}{2}\right)\right)^{1 / 3}$
D. $\left(\frac{x-2}{7}\right)^{1 / 3}$

- Watch Video Solution

11. If $g(x)=1+\sqrt{x}$ and $f(g(x))=3+2 \sqrt{x}+x$ then $\mathrm{f}(\mathrm{x})$ is equal to
A. $1+2 x^{2}$
B. $2+x^{2}$
C. $1+x$
D. $2+x$

Answer: B
12. If $f(x)=\frac{1-x}{1+x}, x \neq 0,-1$ and $\alpha=f(f(x))+f\left(f\left(\frac{1}{x}\right)\right)$, then
A. $\alpha>2$
B. $\alpha<-2$
C. $|\alpha|>2$
D. $\alpha=2$

Answer: C

- Watch Video Solution

13. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{x^{2}-8}{x^{2}+2}$. Then f is
A. one-one but not onto
B. one-one and onto
C. one but not one-one
D. neither one-one nor onto

Answer: D

- Watch Video Solution

14. If $f:(-\infty, 2] \rightarrow(-\infty, 4]$ where $f(x)$, then $f^{-1}(x)$ is given by :
A. $2-\sqrt{4-x}$
B. $2+\sqrt{4-x}$
C. $2 \pm \sqrt{4-x}$
D. not defined

Answer: A
15. Find the inverse of the function, (assuming onto).

$$
y=\log _{a}\left(x+\sqrt{x^{2}+1}\right),(a>1)
$$

A. $\frac{1}{2}\left(a^{x}+a^{-x}\right)$
B. $\frac{1}{2}\left(a^{x}-a^{-x}\right)$
C. $\frac{1}{2}\left(\frac{a^{x}+a(-x)}{a^{x}-a^{-x}}\right)$
D. not defined

Answer: B

D Watch Video Solution

16. $f: R \rightarrow R$ is defined by $f(x)=\frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+e^{-x^{2}}}$ is :
A. one-one but not onto
B. many-one but onto
C. one-one and onto
D. neither one-one nor onto

Answer: A

D Watch Video Solution

17. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ andthen $f\left(\frac{2 x}{1+x^{2}}\right)$ is equal to $\{f(x)\}^{2}$
(b) $\{f(x)\}^{3}$ (c) $2 f(x)$ (d) $3 f(x)$
A. $\{f(x)\}^{2}$
B. $\{f(x)\}^{4}$
C. $2 f(x)$
D. $3 f(x)$

Answer: C

18. If $f(x)=\frac{2^{x}+2^{-x}}{2}$, then $f(x+y) f(x-y)$ is equals to $\frac{1}{2}\{f(2 x)+f(2 y)\}$ (b) $\frac{1}{2}\{f(2 x)-f(2 y)\}$ (c) $\frac{1}{4}\{f(2 x)+f(2 y)\}$ $\frac{1}{4}\{f(2 x)-f(2 y)\}$
A. $\frac{1}{2}\{f(2 x)+f(2 y)\}$
B. $\frac{1}{2}\{f(2 x)-f(2 y)\}$
C. $\frac{1}{4}\{f(2 x)+f(2 y)\}$
D. $\frac{1}{4}\{f(2 x)-f(2 y)\}$

Answer: A

D Watch Video Solution

19. The function $f: R \rightarrow R$ given by $f(x)=x^{2}+x$ is
A. one-one nad onto
B. one-one and into
C. many-one and onto
D. many one and into

Answer: D

- Watch Video Solution

20. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be given by $f(x)=3 x^{2}+2$ and $g(x)=3 x-1$ for all $x \rightarrow R$. Then,
A. $f \circ g(x)=27 x^{2}-18 x+5$
B. $f \circ g(x)=27 x^{2}+18 x-5$
C. $g \circ f(x)=9 x^{2}-5$
D. $g \circ f(x)=9 x^{2}+15$
21. The function of $f: R \rightarrow R$, defined by $f(x)=[x]$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x, is
A. one-one
B. onto
C. one-one and onto
D. neither one-one nor onto

Answer: D

D Watch Video Solution

22. Let $f(x)=x, g(x)=\frac{1}{x}$ and $h(x)=f(x) g(x)$. Then $h(x)=1$ for a. $x \in R$ b. $x \in Q$ c. $x \in R-Q$ d. $x \in R, x \neq 0$
A. x is any rational number
B. x is a non-zero real number
C. x is a real number
D. x is a rationa number

Answer: B

D Watch Video Solution

23. If the functions of f and g are defined by $f(x)=3 x-4$ and $g(x)=2+3 x$ then $g^{-1}\left(f^{-1}(5)\right)$
A. 1
B. $1 / 2$
C. $1 / 3$
D. $1 / 4$

- Watch Video Solution

24. If $f(x)=\frac{\sin ^{4} x+\cos ^{2} x}{\sin ^{2} x+\cos ^{4} x}$ for $x \in R$, then f (2010)
A. 1
B. 2
C. 3
D. 4

Answer: A

Watch Video Solution

25. The function $f: R \rightarrow R$ is defined by $f(x)=\cos ^{2} x+\sin ^{4} x$ for $x \in R$. Then the range of $f(x)$ is
A. $[3 / 4,1]$
B. $(3 / 4,1]$
C. $[3 / 4,1]$
D. $(3 / 4,1)$

Answer: C

D Watch Video Solution

26. $A=\{x / x \in R, x \neq 0,-4 \leq x \leq 4$ and $f: A \rightarrow R$ is defined by $f(x)=\frac{|x|}{x}$ for $x \in A$. Then the range of f is
A. $\{1,-1\}$
B. $\{x: 0 \leq x \leq 4\}$
C. \{1\}
D. $\{x:-4 \leq x \leq 0\}$

- Watch Video Solution

27. If $f: R \vec{R}$ and $g: R \vec{R}$ are defined by $f(x)=2 x+3 \operatorname{andg}(x)=x^{2}+7$, then the value of x such that $g(f(x))=8$ a,1, 2 b. $-1,2$ c. $-1,-2$ d.1, -2
A. 1,2
B. $-1,2$
C. $-1,-2$
D. $1,-2$

Answer: C

- Watch Video Solution

28. Let $f(x)$ be defined on $[-2,2]$ and be given by
$f(x)=\left\{\begin{array}{ll}-1, & -2 \leq x \leq 0 \\ x-1, & 1<x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$.
Then find $g(x)$.
A. $\{-1\}$
B. $\{0\}$
C. $\{-1 / 2\}$
D. ϕ

Answer: C

(D) Watch Video Solution

29. The function $f: R \rightarrow R$ defined by $f(x)=6^{x}+6^{|x|}$ is (a) oneone and onto (b) many one and onto (c) one-one and into (d) many one and into
A. one-one and onto
B. many one and onto
C. one-one and into
D. many one and into

Answer: C

D Watch Video Solution

