©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

MATRICES

Illustration

1. Let A be the set of all 3×3 matrices of whose entries are either 0 or 1 .

The number of elements is set A, is
A. 2^{3}
B. 2^{6}
C. 18
D. 2^{9}
2. Let A be the set of all 3×3 symetric matrices whose entries are either 0 or 1 . The number of elements is set A , is
A. 2^{3}
B. 2^{6}
C. 2^{9}
D. 18

Answer: B

- Watch Video Solution

3. The number of elements that a square matrix of order n has below its leading diagonal, is
A. $\frac{n(n+1)}{2}$
B. $\frac{n(n-1)}{2}$
C. $\frac{(n-1)(n-1)}{2}$
D. $\frac{(n+1)(n+1)}{2}$

Answer: B

- Watch Video Solution

4. If $A=\left[\begin{array}{cc}0 & 2 \\ 3 & -4\end{array}\right]$ and $k A=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$, then the values of $\mathrm{k}, \mathrm{a}, \mathrm{b}$ are respectively.
A. $-6,-12,-18$
B. $-6,4,9$
C. $-6,-4,-9$
D. $-6,12,18$

Answer: C

5. Find the value of x for which the matrix product [2070101-21][$-x 14 x 7 x 010 x-4 x-2 x]$ equal to an identity matrix.
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. $1 / 5$

Answer: D

- Watch Video Solution

6. Let M be a 3×3 matrix satisfying $M[010]=M[1-10]=[11-1]$, and $M[111]=[0012]$ Then the sum of the diagonal entries of M is \qquad .
A. 7
B. 8
C. 9
D. 6

Answer: C

D Watch Video Solution

7. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$ then A^{2} is equal to
A. a null matrix
B. a unit matrix
C. $-A$
D. A

Answer: B

8. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $A . A^{\prime}$ is
A. I
B. A
C. $-A$
D. A^{2}

Answer: A

- Watch Video Solution

9. If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}$, the value of $a+b$ is
A. $a=4, b=1$
B. $a=1 b=4$
C. $a=0, b=4$
D. $a=2, b=4$

Answer: B

- Watch Video Solution

10. The matrix $A=\left[\begin{array}{ccc}1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4\end{array}\right]$ is nilpotent of index
A. 2
B. 3
C. 4
D. 6

Answer: A

- Watch Video Solution

11. If $A=\left[\begin{array}{cc}-4 & -1 \\ 3 & 1\end{array}\right]$, then the determinant of the matrix $\left(A^{2016}-2 A^{2015}-A^{2014}\right)$ is :
A. 2014
B. 2016
C. -175
D. -25

Answer: B

- Watch Video Solution

12. Let $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1\end{array}\right]$ and $Q=\left[q_{i j}\right]$ be two 3×3 matrices such that
$Q-P^{5}=I_{3}$. Then $\frac{q_{21}+q_{31}}{q_{32}}$ is equal to
A. 52
B. 103
C. 201
D. 205

Answer: B

- Watch Video Solution

13. Let ω be a complex cube root of unity with $\omega \neq 1$ and $P=\left[p_{i j}\right]$ be a $n \times n$ matrix withe $p_{i j}=\omega^{i+j}$. Then $p^{2} \neq O, w h e n=\mathrm{a} .57 \mathrm{~b} .55 \mathrm{c} .58 \mathrm{~d}$. 56
A. 57
B. 55
C. 58
D. 56

Answer: A
14. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right), a, b \in N$. Then,
A. there connot exist any B such that $A B=B A$.
B. there exist more than one but finite number of B ' s such that $A B=B A$
C. there exists exactly one B such that $A B=B A$.
D. there exist infinitely many B 's such that $A B=B A$.

Answer: D

- Watch Video Solution

15. Which of the following is (are) NOT the square of a 3×3 matrix with real entries? [10001000-1] (b) [$-1000-1000-1]$ [100010001]
$[1000-1000-1]$
A. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
B. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
C. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
D. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$

Answer: A: B

Watch Video Solution

16. If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then find the values of θ satisfying the equation $A^{T}+A=I_{2}$.
A. $\theta=n p, n \in Z$
B. $0=(2 n+1) \frac{\pi}{2}, n \in Z$
C. $\theta=2 n p+\frac{\pi}{3}, n \in Z$
D. none of these
17. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or
18. Five of these entries are 1 and four of them are 0 .

The number of matrices in A is
A. 12
B. 6
C. 9
D. 3

Answer: A

- Watch Video Solution

18. The square matrix $A=\left[a_{i j}\right.$ given by $a_{i j}=(i-j)^{3}$, is a
A. symmetric matrix
B. skew-symmetric matrix
C. diagonal matrix
D. hermitian matrix

Answer: B

- Watch Video Solution

19. $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix and $A A^{T}=9 I$, then the ordered pair (a, b) is equal to
A. $(2,1)$
B. $(-2,-1)$
C. $(2,-1)$
D. $(-2,1)$

Answer: B

20.

$P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $Q=P A P^{T}, \quad \operatorname{then} P^{T} Q^{2015} P$, is
A. $\left[\begin{array}{cc}2015 & 1 \\ 1 & 2015\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 2015 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}0 & 2015 \\ 0 & 0\end{array}\right]$
D. $\left[\begin{array}{cc}2015 & 0 \\ 1 & 2015\end{array}\right]$

Answer: B

Watch Video Solution

21. If A is a 3×3 non-singular matrix such that $A A^{\prime}=A^{\prime} A$ and $B=A^{-1} A^{\prime}$ then $B B^{\prime}$ equals to
A. B^{-1}
B. $\left(B^{-1}\right)^{T}$
C. $I+B$
D. $\left[\begin{array}{cc}2015 & 0 \\ 1 & 2015\end{array}\right]$

Answer: D

- Watch Video Solution

22. An $n \times n$ matrix is formed using 0,1 and -1 as its elements. The number of such matrices which are skew-symmetric, is
A. $\frac{n(n+1)}{2}$
B. $(n-1)^{2}$
C. $2^{\frac{n(n-1)}{2}}$
D. $3^{\frac{n(n-1)}{2}}$

Answer: D

23. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then which one of the following holds for all $n \geq 1$ by the principle of mathematica induction?
$A^{n}=2^{n-1} A+(n-1) I$
(B) $\quad A^{n}=n A+(n-1) I$
$A^{n}=2^{n-1} A-(n-1) I$ (D) $A^{n}=n A-(n-1) A I$
A. $A^{n}=n^{n-1} A+(n-1) I$
B. $A=n A+(n-1) I$
C. $A^{n}=2^{n-1} A-(n-1) I$
D. $A=n A-(n-1) I$

Answer: D

- Watch Video Solution

24. For how many values of ' x ' in the closed interval $[-4,-1$] is the matrix $\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]$ singular ? (A) 2 (B) 0 (C) 3 (D) 1
A. 0
B. 2
C. 1
D. 3

Answer: C

D Watch Video Solution

25. If $S=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then adj S is equal to
A. $\left[\begin{array}{cc}-d & -b \\ -c & a\end{array}\right]$
B. $\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
C. $\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
D. $\left[\begin{array}{ll}d & c \\ b & a\end{array}\right]$

Answer: B
26. If $A=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]$, then $\operatorname{adj}\left(3 A^{2}+12 A\right)$ is equal to
A. $\left[\begin{array}{cc}72 & -84 \\ -63 & 51\end{array}\right]$
B. $\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]$
C. $\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]$
D. $\left[\begin{array}{cc}72 & -63 \\ -84 & 51\end{array}\right]$

Answer: B

Watch Video Solution

27. If $A=[5 a-b 32]$ and $A(a d j A)=A A^{T}$, then $5 a+b$ is equal to: (1)
$-1(2) 5(3) 4(4) 13$
A. -1
B. 5
C. 4
D. 13

Answer: B

- Watch Video Solution

28. If for the matrix $A, A^{3}=I$, then $A^{-1}=$ (a) A^{2} (b) A^{3} (c) A (d) none of these
A. A^{2}
B. A^{3}
C. A
D. none of these

Answer: A

29. If A and B are two square matrices such that $A B=l$, then which of the following is not true?
A. $B A=1$
B. $A^{-1}=B$
C. $B^{-1}=A$
D. $A^{2}=B$

Answer: D

- Watch Video Solution

30. A square non-singular matrix A satisfies the equation $x^{2}-x+2=0$, then A^{-1} is equal to
A. I-A
B. $\frac{1}{2}(I-A)$
C. $I+A$
D. $\frac{1}{2}(I+A)$

Answer: B

- Watch Video Solution

31. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a d-b c \neq 0$, then A^{-1}, is
A. $\frac{1}{a d-b c}\left[\begin{array}{cc}a & -b \\ -c & a\end{array}\right]$
B. $\frac{1}{a d-b c}\left[\begin{array}{cc}a & -b \\ -c & a\end{array}\right]$
C. $\left[\begin{array}{cc}d & b \\ -c & a\end{array}\right]$
D. none of these

Answer: A

- Watch Video Solution

32. Let A be a square matrix all of whose entries are integers.

Which one of the following it true?
A. If $\operatorname{det}(\mathrm{A})= \pm 1$, then A^{-1} exists but all its entries are not necessarily integers.
B. If $\operatorname{det}(A)= \pm 1$, then A^{1} exists and all its entries are nonintegers
C. If $\operatorname{det}(A)= \pm 1, \quad$ then A^{-1} exsts and all its entries are integers
D. If det ${ }^{`}(A)=p m 1$," then "need not exist

Answer: C

- Watch Video Solution

33. If $P=[1 \alpha 3133244]$ is the adjoint of a 3×3 matrix A and $|A|=4$, then a is equal to (1) 11 (2) 5 (3) 0 (4) 4
A. 4
B. 11
C. 5
D. 10

Answer: B

D Watch Video Solution

34. If for a matrix $\mathrm{A},|A|=6$ and $\operatorname{adj} A=\{:[(1,-2,4),(4,1,1),(-1, \mathrm{k}, 0)]$: $\}$, then k is equal to
A. -1
B. 0
C. 1
D. 2

Answer: B

35. Let A be a 3×3 matrix such that $A^{2}-5 A+7 I=0$ then which of the statements is true
A. statement -1 is false, but statement -2 is true,
B. Both statement are false.
C. Both statement are ture.
D. Statement -1 is true, but statement -2 is false.

Answer: A

- Watch Video Solution

36. The matrix $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ is 1) orthogonal 2) involutory 3)
idempotent 4) nilpotent
A. orthogonal
B. involutory
C. idempotent
D. nilpotent

Answer: A

- Watch Video Solution

37. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then the value of $\left|A^{4}-18 A^{2}-32 A\right|$ is
A. 1
B. 2
C. 3
D. none of these

Answer: B

38. The rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 4 & 5\end{array}\right]$ is
A. 1
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

39. The rank of the matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right]$, is
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

40. The rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 6 & 9 \\ 1 & 2 & 3\end{array}\right]$, is
A. 1
B. 2
C. 3
D. none of these

Answer: A

- Watch Video Solution

41. The existence of the unique solution of the system $x+y+z=\lambda, 5 x-y+\mu z=10,2 x+3 y-z=6$ depends on
A. μ only
B. λ only
C. λ and μ both
D. neither λ nor μ

Answer: A

- Watch Video Solution

42.

$x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=k$ is inconsistent if $\lambda=\ldots \ldots \ldots, k \neq \ldots \ldots \ldots$
A. $\lambda=1$
B. $\lambda=2$
C. $\lambda=-2$
D. $\lambda=3$

Answer: D

D Watch Video Solution

43. Determine for that values of λ and μ the following system of equations
$x+y+x z=6, x+2 y+43 z=10$ and $\mathrm{x}+2 \mathrm{y}+$ lambdaz=mu` have (i) no solution (iii) a unique solution ? (iii) an infine number of solution?
A. $\lambda \neq 3, \mu=10$
B. $\lambda=3, \mu \neq 10$
C. $\lambda \neq 3, \mu \neq 10$
D. none of these

Answer: B

44. The number of values of k, for which the system of equations $(k+1) x+8 y=4 k k x+(k+3) y=3 k-1$ has no solution, is (1) 1 (2) 2 (3) 3 (4) infinite
A. infinte
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

45. Let $\alpha, \lambda, \mu \in R$.Consider the system of linear equations

$$
\alpha x+2 y=\lambda
$$

$3 x-2 y=\mu$
Which of the following statement(s) is (are) correct ?
A. (a) If $a=-3$, then the system has infinitely many solutions for all value of λ and μ.
B. If $a \neq-3$, then the system has a unique solution fopor all values of λ and μ.
C. If $\lambda+u=0$, then the system has infinitely many solutions for $\mathrm{a}=$ $-3 `$.
D. If $\lambda+\mu \neq 0$, then the system has no solutions for $\mathrm{a}=-3$.

Answer: A

D Watch Video Solution

46. For a real number a, if the system $\left[\begin{array}{ccc}1 & a & a^{2} \\ a & 1 & a \\ a^{2} & a & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
of the linear equations, has infinitely many solutions, then $1+a+a^{2}=$
A. 1
B. 0
C. -1
D. 2

Answer: A

- Watch Video Solution

47. If $x=c y+b z, y=a z+c x, z=x+a y$, where. x, y, z are not all zeros, then find the value of $a^{2}+b^{2}+c^{2}+2 a b c$.
A. 2
B. -1
C. 0
D. 1

Answer: D

48. The system of linear equations $x+\lambda y-z=0, \lambda x-y-z=0$, $x+y-\lambda z=0$ has a non-trivial solution for : (1) infinitely many values of λ. (2) exactly one value of λ. (3) exactly two values of λ. (4) exactly three values of λ.
A. infinitely many value of λ
B. exactly one value of λ
C. exactly two values λ
D. exactly three values of λ

Answer: D

- Watch Video Solution

49. The number of possible value of θ lies in $(0, \pi)$, such that system of equation

$$
x+3 y+7 z=0,
$$

$$
-x+4 y+7 z=0
$$

$x \sin 3 \theta+y \cos 2 \theta+2 z=0$ has non trivial solution is/are equal to (a) 2
(b) 3 (c) 5 (d) 4
A. one
B. two
C. three
D. none of these

Answer: D

- Watch Video Solution

50. If S is the set of distinct values of ' b ' for which the following system of linear equations
$x+y+z=1$
$x+a y+z=1$
$a x+b y+z=0$
has no solution then S is
A. an empty set
B. an infinite set
C. a finite set containing two or more elements
D. a singleton set

Answer: D

- Watch Video Solution

Section I Solved Mcqs

1. If A and B are two matrices such that $A B=A$ and $B A=B$, then B^{2} is equal to B (b) A (c) 1 (d) 0
A. $B A=1$
B. A
C. 1
D. 0
2. If A and B arę square matrices of same order such that $A B=A$ and $B A=$ B, then
A. $B^{2}=B$ and $A^{2}=A$
B. $B^{2} \neq B$ and $A^{2}=A$
C. $A^{2} \neq A, B^{2}=B$
D. $A^{2} \neq A, B^{2} \neq B$

Answer: A

- Watch Video Solution

3. about to only mathematics
A. 2 AB
B. 2 BA
C. $A+B$
D. $A B$

Answer: C

D Watch Video Solution

4. If $A=\left[a_{i j}\right]$ is a square matrix of even order such that $a_{i j}=i^{2}-j^{2}$, then (a) A is a skew-symmetric matrix and $|A|=0$ (b) A is symmetric matrix and $|A|$ is a square (c) A is symmetric matrix and $|A|=0$ (d) none of these
A. A is a skew-symmetric matrix and $|A|=0$
B. A is symmetric matrix and $|A|$ is a square
C. A is symmetric matrix and $|A|=0$
D. none of these

Answer: D

5. If $\left[\frac{\cos (2 \pi)}{7}-\frac{\sin (2 \pi)}{7} \frac{\sin (2 \pi)}{7} \frac{\cos (2 \pi)}{7}\right]=[1001]$, then the least positive integral value of k is (a) 3 (b) 4 (c) 6 (d) 7
A. 3
B. 4
C. 6
D. 7

Answer: D

- Watch Video Solution

6. If $A=\left[\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right], n \in N$, then $A^{4 n}$ equals $\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 0 \tag{c}\\
0 & 1
\end{array}\right] \text { (d) }\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
$$

A. $\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$
B. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$

Answer: C

- Watch Video Solution

7. If A is a singular amtrix, then $\operatorname{adj} A$ is
A. non-sigular
B. singular
C. symmetric
D. not defined

Answer: B

8. If A, B are two $n \times n$ non-singular matrices, then $A B$ is non-singular
(b) $A B$ is singular (c) $(A B)^{-1}=A^{-1} B^{-1}$ (d) $(A B)^{-1}$ does not exist
A. $A B$ is non-singylar
B. $A B$ is singular
C. $(A B)^{-1}=A^{-1} B^{-1}$
D. $(A B)^{-1}$ does not exist

Answer: A

- Watch Video Solution

9. Let A be an inbertible matrix. Which of the following is not true?
A. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
B. $A^{-1}=|A|^{-1}$
C. $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$
D. $\left|A^{-1}\right|=|A|^{-1}$

- Watch Video Solution

10. If the matrix $A B$ is zero, then It is not necessary that either $A=O$ or,
$B=O$
(b) $A=O$ or $B=O$
(c) $A=O$ and $B=0$
(d) all the above
statements are wrong
A. It is not necessary that either $\mathrm{A}=\mathrm{O}$ or $\mathrm{B}=\mathrm{O}$
B. $\mathrm{A}=\mathrm{O}$ or $\mathrm{B}=\mathrm{O}$
C. $A=O$ and $B=O$
D. all the above statements are wrong

Answer: A

- Watch Video Solution

11. If $A=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right], a \neq 0$ then $|\operatorname{adj} \mathrm{A}|$ is equal to
A. a^{27}
B. a^{9}
C. a^{6}
D. a^{2}

Answer: C

- Watch Video Solution

12. If $A=\left[\begin{array}{lll}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$, then $\operatorname{det}(\operatorname{adj}(\operatorname{adjA))}$ is
A. 14^{4}
B. 14^{3}
C. 14^{2}
D. 14

Answer: A

- Watch Video Solution

13. If B is a non-singular matrix and A is a square matrix, then $\operatorname{det}\left(B^{-1} A B\right)$ is equal to (A) $\operatorname{det}\left(A^{-1}\right)$
(B) $\operatorname{det}\left(B^{-1}\right)$
(C) $\operatorname{det}(A)$
(D)
$\operatorname{det}(B)$
A. $\operatorname{det}\left(A^{-1}\right)$
B. $\operatorname{det}\left(B^{-1}\right)$
C. $\operatorname{det}(A)$
D. $\operatorname{det}(B)$

Answer: C

- Watch Video Solution

14. For any 2×2 matrix, if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|A|$ is equal to
(a) 20 (b) 100 (c) 10 (d) 0
A. 20
B. 100
C. 10
D. 0

Answer: C

- Watch Video Solution

15. If A, B are square matrices of order $3, A$ is non-singular and $A B=O$, then B is a (a) null matrix (b) singular matrix (c) unit matrix (d) non-singular matrix
A. null matrix
B. singular matrix
C. unit matrix
D. non-singular matrix.

Answer: A

- Watch Video Solution

16. If $A=[n 000 n 000 n]$ and $B=\left[a_{1} a_{2} a_{3} b_{1} b_{2} b_{3} c_{1} c_{2} c_{3}\right]$, then $A B$ is equal to B (b) $n B$ (c) B^{n} (d) $A+B$
A. $B A=1$
B. nB
C. B^{n}
D. $A+B$

Answer: B

17. If $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$, then A^{n} (where $n \in N$) equals (a) $\left[\begin{array}{cc}1 & n a \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{cc}1 & n^{2} a \\ 0 & 1\end{array}\right]$ (c) $\left[\begin{array}{cc}1 & n a \\ 0 & 0\end{array}\right]$ (d) $\left[\begin{array}{cc}n & n a \\ 0 & n\end{array}\right]$
A. $A=\left[\begin{array}{cc}1 & n a \\ 0 & 1\end{array}\right]$
B. $A=\left[\begin{array}{cc}1 & n^{2} a \\ 0 & 1\end{array}\right]$
C. $A=\left[\begin{array}{cc}1 & n a \\ 0 & 0\end{array}\right]$
D. $A=\left[\begin{array}{cc}1 & 2 a \\ 0 & n\end{array}\right]$

Answer: B

- Watch Video Solution

18. If $A^{5}=0$ such that $A^{n} \neq I$ for $1 \leq n \leq 4$, then $(I-A)^{-1}$ is equal to
A. A^{4}
B. A^{3}
C. $I+A$
D. none of these

Answer: D

(Watch Video Solution

19. If A satisfies the equation $x^{3}-5 x^{2}+4 x+\lambda=0$, then A^{-1} exists if (a) $\lambda \neq 1$ (b) $\lambda \neq 2$ (c) $\lambda \neq-1$ (d) $\lambda \neq 0$
A. $\lambda \neq 1$
B. $\lambda \neq 3$
C. $\lambda \neq-1$
D. $\lambda \neq 0$

Answer: D

- Watch Video Solution

20. The system of equations: $x+y+z=5, x+2 y+3 z=9$ and $x+3 y+\lambda z=\mu$ has a unique solution, if
(a) $\lambda=5, \mu=13$
(b) $\lambda \neq 5$
(c) $\lambda=5, \mu \neq 13$
(d) $\mu \neq 13$
A. $\lambda=5, \mu=13$
B. $\lambda \neq 5$
C. $\lambda=5, \mu \neq 13$
D. $\mu \neq 13$

Answer: B

21. the matrix $A=\left[\begin{array}{cc}I & 1-2 i \\ -1-2 i & 0\end{array}\right]$, where $I=\sqrt{-1}$, is
A. symmetric matrix
B. skew-symmetric
C. hermitian
D. skew-hermitian

Answer: D

- Watch Video Solution

22. If $A=\left[\begin{array}{cc}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, find the values of α for which $A^{2}=B$.
A. 1
B. -1
C. 4
D. no real values

Watch Video Solution

23. If A and B are two square matrices such that $B=-A^{-1} B A$, then $(A+B)^{2}$ is equal to
A. 0
B. $A^{2}+B^{2}$
C. $A^{2}+2 A B+B^{2}$
D. $A+B$

Answer: B

- Watch Video Solution

24. The elemant in the first row and third coumn of the inverse of the matrix $\left[\begin{array}{lll}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$ is
A. -2
B. 0
C. 1
D. none of these

Answer: C

- Watch Video Solution

25. about to only mathematics
A. the sum of a symmetric and a skew-symmetric matrix.
B. the sum of a diagonal matrix and a symmetric matrix
C. a skew-symmetric matrix
D. a skew-matrix

Answer: A

26. If $\left[\begin{array}{cc}a & b^{3} \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 8 \\ 2 & 0\end{array}\right], \quad$ then $\left[\begin{array}{ll}a & b \\ 2 & 0\end{array}\right]^{-1}=$
A. $\left[\begin{array}{cc}0 & -2 \\ -2 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}0 & -8 \\ -2 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}0 & 1 / 2 \\ 1 / 2 & -1 / 4\end{array}\right]$

Answer: D

27. If A is a square matrix such that $A^{2}-A+I=0$, then the inverse of
A is
A. I-A
B. A-I
C. A

D. $A+1$

Answer: A

- Watch Video Solution

28. If A a 3×3 amtrix and B is its adjoint such that $|B|=64$, then $|A|$ is equal to
A. 64
B. $p \pm 64$
C. ± 8
D. 18

Answer: C

29. If $A=\frac{1}{3}\left|\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right|$ is an orthogonal matrix, then $a=-2 b$.
$a=2, b=1 \mathrm{c} . b=-1 \mathrm{~d} . b=1$
A. $a=2, b=1$
B. $a=-2, b=-1$
C. $a=2, b=-1$
D. $a=-2, b=1$

Answer: B

- Watch Video Solution

30. If $A=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]$, where ω is cube root of unity, then what is A^{100} equal to ?
A. A
B. $-A$
C. 0
D. none of these

Answer: A

- Watch Video Solution

31. If $A^{3}=O$, then prove that $(I-A)^{-1}=I+A+A^{2}$.
A. $I-A$
B. $(I-A)^{-1}$
C. $(I+A)^{-1}$
D. none of these

Answer: B

32. if $A=\left[\begin{array}{lll}0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1\end{array}\right]$ then $\left(\mathrm{A}(\operatorname{adj} \mathrm{A}) A^{-1}\right) \mathrm{A}$ is equal to
A. $2\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$
B. $\left[\begin{array}{ccc}-6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -6\end{array}\right]$
C. $\left[\begin{array}{ccc}0 & 1 / 6 & -1 / 6 \\ 2 / 6 & 1 / 6 & 3 / 6 \\ 3 / 6 & 2 / 6 & 1 / 6\end{array}\right]$
D. none of these

Answer: A

- Watch Video Solution

33. If A is non-singular and $(A-2 I)(A-4 I)=0$, then, $\frac{1}{6} A+\frac{4}{3} A^{-1}$ is equal to a. $0 I \mathrm{~b} .2 I \mathrm{c} .6 I \mathrm{~d} . I$
A. I
B. 0
C. 21
D. 61

Answer: A

- Watch Video Solution

34. If A is an invertible matrix of order 3×3 such that $|A|=2$. Then, find $\operatorname{adj}(a d j A)$.
A. $|A| A$
B. $|A|^{2} A$
C. $|A|^{-1} A$
D. none of these

Answer: A

35. If A and B are squre 3×3 such that A is an orthogonal matrix and B is a skew- symmetrix matrix, then which of the following statement is true?
A. $|A B|=1$
B. $|A B|=0$
C. $|A B|=-1$
D. none of these

Answer: B

- Watch Video Solution

36. If $A=\left|\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right|$ and $|A|^{3}=125$, then the value of α is a. $\pm 1 \mathrm{~b} . \pm 2 \mathrm{c}$. $\pm 3 \mathrm{~d} . \pm 5$
A. ± 1
B. ± 2
C. ± 3
D. ± 5

Answer: C

(Watch Video Solution

37. about to only mathematics
A. $\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 2005 \\ 2005 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 0 \\ 2005 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Answer: A

- Watch Video Solution

38. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], 6 A^{-1}=A^{2}+c A+d I$, then ($\left.\mathrm{c}, \mathrm{d}\right)$ is :
A. $(-6,11)$
B. $(-11,6)$
C. $(11,6)$
D. $(6,11)$

Answer: A

- Watch Video Solution

39. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$ and U_{1}, U_{2}, U_{3} be column matrices satisfying
$A U_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A U_{2}=\left[\begin{array}{l}2 \\ 3 \\ 6\end{array}\right], A U_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$.f U is 3×3 matrix whose columns are U_{1}, U_{2}, U_{3}, then $|U|=$
A. 3
B. -3
C. $3 / 2$

D. 2

Answer: A

- Watch Video Solution

40. If ' $U=\{:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:\}^{\prime}$, sum of elements of inverse of U is
A. -1
B. 0
C. 1
D. 3

Answer: B

- Watch Video Solution

41. If U is same as in Example 50, then the value of $\left[\begin{array}{lll}3 & 2 & 0\end{array}\right] U\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]=$
A. 5
B. $5 / 2$
C. 4
D. $3 / 2$

Answer: A

- Watch Video Solution

42. If A and B f are square matrices of size $n \times n$ such that $A^{2}-B^{2}=(A-B)(A+B)$ which of the following will be always true?
A. $A=B$
B. $A B=B A$
C. either A or B is a zero matrix
D. either A or B is an identity matrix

- Watch Video Solution

43. If A and B are any two different square matrices of order n with $A^{3}=B^{3}$ and $A(A B)=B(B A)$ then
A. $A^{2}+B^{2}=O$
B. $A^{2}+B^{2}=I$
C. $A^{3}+B^{3}=I$
D. none of these

Answer: D

44. Let $A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$ Then only correct statement about the matrix A is (A) A is a zero matrix (B) $A^{2}=1$ (C) A^{-1} does not exist (D) $A=(-1) \mathrm{I}$ where I is a unit matrix
A. A^{-1} does not exist
B. $A=(-1) I$ is a unit matrix
C. A is a zero matrix
D. $A^{2}=I$

Answer: D

- Watch Video Solution

45. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$.

If B is the inverse of A , then find the value α.
A. 2
B. -1
C. 3
D. 5

Answer: D

- Watch Video Solution

46. Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right] . I f\left|A^{2}\right|=25$, then α equals to:
A. $\frac{1}{5}$
B. 5
C. 5^{2}
D. 1

Answer: A

47. If $A=\alpha\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right] a \in R$, is a unitary matrix then α^{2} is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{2}{9}$

Answer: B

- Watch Video Solution

48. The value of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ when $\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ is orthogonal , are :
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. 1

Answer: C

- Watch Video Solution

49. If $A=\left[a_{i j}\right]_{n \times n}$, where $a_{i j}=i^{100}+j^{100}$, then $\lim _{n \rightarrow \infty}\left(\frac{\sum_{i}^{n} a_{i j}}{i^{101}}\right)$ equals
A. $\frac{1}{50}$
B. $\frac{1}{101}$
C. $\frac{2}{101}$
D. $\frac{3}{101}$

Answer: C

50. If A and B are two non-singular matrices which commute, then $\left(A(A+B)^{-1} B\right)^{-1}(A B)=$
A. $A+B$
B. $A^{-1}+B$
C. $A^{-1}+B^{-1}$
D. none of these

Answer: C

51. Find the inverse of [$01-14-343-34$]
A. 2 A
B. $\frac{1}{2} A^{-1}$
C. $\frac{1}{2} A$
D. A^{2}

- Watch Video Solution

52. In a 4×4 matrix the sum of each row, column and both the main diagonals is α. Then the sum of the four corner elements
A. is also α
B. may not be α
C. is never equal to α
D. none of these

Answer: A

D Watch Video Solution

\{.\} represents fractional part function) $1 / 7 \mathrm{~b} .2 / 7 \mathrm{c} .3 / 7 \mathrm{~d}$. none of these
A. $\frac{1}{7}$
B. $\frac{2}{7}$
C. $\frac{3}{7}$
D. none of these

Answer: A

- Watch Video Solution

54. If A is skew-symmetric matrix of order

2 and $B=\left[\begin{array}{ll}1 & 4 \\ 2 & 9\end{array}\right]$ and $c\left[\begin{array}{cc}9 & -4 \\ -2 & 1\end{array}\right] \quad$ respectively. Then
$A^{3} B C+A^{5} B^{2} C^{2}+A^{7} B^{3} C^{3}+\ldots .+A^{2 n+1} B^{n} C^{n}$ where $n \in N$ is
A. a symmetric matrix
B. a skew-symmetric matrix
C. an identity matrix
D. none of these

Answer: B

- Watch Video Solution

55. Let $p=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose $Q=\left[q_{i j}\right]$ is a
matrix such that $P Q=k I$, where $k \in \mathbb{R}, k \neq 0$ and I is the identity matrix of order 3. If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then
A. $\alpha 0, k=8$
B. $4 \alpha-k+8=0$
C. $\operatorname{det}(\operatorname{Padj} Q)=2^{9}$
D. $\operatorname{det}(Q a d j P) 2^{13}$

Answer: B::C

56. Let $z=\frac{-1+\sqrt{3} i}{2}$, where $i=\sqrt{-1}$, and $r, s \in\{1,2,3\}$. Let $P=\left[\begin{array}{cc}(-z)^{r} & z^{2 s} \\ z^{2 s} & z^{r}\end{array}\right]$ and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which $P^{2}=-I$ is \qquad .
A. 1
B. 2
C. 3
D. 5

Answer: A

D Watch Video Solution

57. How many 3×3 matrices M with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of $M^{T} M$ is 5 ?
A. 126
B. 198
C. 162
D. 135

Answer: B

- Watch Video Solution

Section I Assertion Reason Type

1. If A ; B are non singular square matrices of same order; then

$$
\operatorname{adj}(A B)=(a d j B)(a d j A)
$$

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

D Watch Video Solution

2. Let A be a square matrix of order n .

Statement - $1:|\operatorname{adj}(\operatorname{adj} A)|=|A|^{n-1}{ }^{\wedge} 2$
Statement -2: $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

3. Statement -1 : if $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then $\operatorname{adj}(\operatorname{adj} \mathrm{A})=\mathrm{A}$

Statement -2 If A is a square matrix of order n, then $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

4. If n th-order square matrix A is a orthogonal, then $|\operatorname{adj}(\operatorname{adj} A)|$ is
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: C

- Watch Video Solution

5. Let A be a non-singular square matrix of order n . Then; $||\operatorname{adj} \mathrm{A}|=$

(Watch Video Solution

6. Let $A=\left[a_{i j}\right]$ be a square matrix of order n such that
$a_{i j}= \begin{cases}0 & \text { if } \quad i \neq j \\ i & \text { if } \quad i=j\end{cases}$

Statement -2 : The inverse of A is the matrix $B=\left[b_{i j}\right]$ such that
$b_{i j}=\left\{\begin{array}{lll}0 & \text { if } & i \neq j \\ \frac{1}{i} & \text { if } & i=j\end{array}\right.$
Statement -2 : The inverse of a diagonal matrix is a scalar matrix.
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: C

- Watch Video Solution

7. Let A be 2×2 matrix.Statement । $\operatorname{adj}(\operatorname{adj} A)=A$ Statement ॥ $|a d j A|=|A|$
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: B

D Watch Video Solution

8. Let A be a 2×2 matrix with real entries. Let I be the 2×2
identity matrix. Denote by $\operatorname{tr}(A)$, the sum of diagonal entries of A. Assume that $A^{2}=I$.

Statement -1 If $A \neq I$ and $A \neq-I$ then $\operatorname{det} A=-I$
Statement-2 If $A \neq I$ and $A \neq-1$, then $\operatorname{tr}(A) \neq 0$.
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: C

- Watch Video Solution

9. Let A be an orthogonal square matrix.

Statement -1: A^{-1} is an orthogonal matrix.
Statement -2 : $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$ and $(A B)^{-1}=B^{-1} A^{-1}$
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

10. Let $A X=B$ be a system of n smultaneous linear equations with n unknowns.

Statement -1 : If $|A|=0$ and $(\operatorname{adj} A) B \neq 0$, the system is consistent with infinitely many solutions.

Statement -2: A (adjA) $=|A| I$
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: D

- Watch Video Solution

11. Let a be a 2×2 matrix with non-zero entries and let $A^{2}=I$, where I is a 2×2 identity matrix. Define $\operatorname{Tr}(A)=$ sum of diagonal elements of A and $|A|=$ determinant of matrix A.

Statement 1: $\operatorname{Tr}(A)=0$
Statement 2 : $|A|=1$
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1.
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: C

- Watch Video Solution

12. Let A and B two symmetric matrices of order 3 .

Statement 1: $A(B A)$ and $(A B) A$ are symmetric matrices.
Statement $2: A B$ is symmetric matrix if matrix multiplication of A with B is commutative.
A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1 .
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: B

- Watch Video Solution

Exercise

1. If an upper triangular matrix $A=[a]_{n \times n}$ the elements $a_{1}=0$ for
A. it is a square matrix and $a_{i j}=0, i<j$
B. it is a square matrix and $a_{i j}=0, i>j$
C. it is not a square matrix and $a_{i j}=0, i>j$
D. it is not a square matrix and $a_{i j}=0, i<j$

Answer: B

2. If A is any mxn matrix and B is a matrix such that $A B$ and $B A$ are both defined, then B is a matrix of order
A. $m \times n$
B. $n \times m$
C. $n \times n$
D. $m \times m$

Answer: B

3. If $E(\theta)=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then $E(\alpha) E(\beta)=$
A. $E\left(0^{\circ}\right)$
B. $E(\alpha \beta)$
C. $E(\alpha+\beta)$
D. $E(\alpha-\beta)$

Answer: C

- Watch Video Solution

4. If $E(\theta)=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$, and θ and ϕ differ by an odd multiple of $\pi / 2$, then $E(\theta) E(\phi)$ is a
A. null matrix
B. unit matrix
C. diagonal matrix
D. none of these

Answer: A

5. If $A=\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin ^{2} \beta\end{array}\right]$ are two matrices such that $A B$ is the null matrix, then
A. 0
B. multiple of π
C. an odd multiple of $\pi / 2$
D. none of these

Answer: C

- Watch Video Solution

6. The matrix X in the equation $A X=B$, such that $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ is given by
A. $\left[\begin{array}{cc}1 & 4 \\ -1 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}1 & -4 \\ 1 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}1 & -4 \\ 0 & -1\end{array}\right]$
D. none of these

Answer: C

- Watch Video Solution

7. If $I=[1001], J=[01-10]$ and $B=[\cos \theta \sin \theta-\sin \theta \cos \theta]$, then
B equals $I \cos \theta+J \sin \theta$
(b) $I \sin \theta+J \cos \theta$
(c) $I \cos \theta-J \sin \theta$
$I \cos \theta+J \sin \theta$
A. $I \cos \theta+j \sin \theta$
B. $I \sin \theta+j \cos \theta$
C. I cos theta-jsintheta`
D. $-I \cos \theta+j \sin \theta$

Answer: A

8. If A is a square matrix such that $A A^{T}=I=A^{T} A$, then A is
A. a symmetric matrix
B. a skew-symmetric matrix
C. a diagonal matrix
D. an orthogonal matrix.

Answer: D

- Watch Video Solution

9. If A is an orthogonal matrix then A^{-1} equals
a. A^{T}
b. A
c. A^{2}
d. none of these
A. A
B. A^{T}
C. A^{2}
D. none of these

Answer: B

- Watch Video Solution

10.

If
$D=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$ where $d \neq 0$ for all $I=1,2, \ldots, n$, then is equal to
A. D
B. $\operatorname{diag}\left(d_{1}^{-1} d_{2}^{-1}, \ldots, d_{n}^{-1}\right)$
C. In
D. none of these
11. If $A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$, then A is
A. Idempotent
B. involutory
C. nilpotent
D. scalar

Answer: C

- Watch Video Solution

12. If A is a 3×3 matrix and B is a matrix such that $A^{T} B$ and $B A^{T}$ are both defined, then order of B is
A. 3×4
B. 3×3
C. 4×4
D. 4×3

Answer: A

- Watch Video Solution

13. Let $A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $A^{-1}=x A+y I$, then the values of x and y are
A. $x=-\frac{1}{11}, y=\frac{2}{11}$
B. $x=-\frac{1}{11}, y=-\frac{2}{11}$
C. $x=\frac{1}{11}, y=\frac{2}{11}$
D. $x=\frac{1}{11}, y=-\frac{2}{11}$

Answer: A

14. If A and B arę square matrices of same order such that $A B=A$ and $B A=$ B, then
A. A, B are idempotent
B. only A is idempotent
C. only B is idempotent
D. none of these

Answer: A

- Watch Video Solution

15. The inverse of an invertible symmetric matrix is a symmetric matrix.
A. symmetric
B. skew-symmetric
C. diagonal matrix
D. none of these

D Watch Video Solution

16. The inverse of a diagonal matrix is a. a diagonal matrix b. a skew symmetric matrix c. a symmetric matrix d. none of these
A. a symmetric matrix
B. a skew-symmetric matrix
C. a diagonal matrix
D. none of these

Answer: C

D Watch Video Solution

17. If A is a symmetric matrixfand $n \in N$, then A^{n} is
A. symmetric
B. skew-symmetric
C. a diagonal matrix
D. none of these

Answer: A

D Watch Video Solution

18. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these
A. a symmetric matrix
B. skew-symmetric matrix
C. diagonal matrix
D. none of these

Answer: D

- Watch Video Solution

19. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these
A. a symmetric matrix
B. a skew-symmetric matrix
C. a diagonal matrix
D. none of these

Answer: B

20. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these
A. a symmetric matrix
B. a skew-symmetric matrix
C. a diagonal matrix
D. none of these

Answer: A

- Watch Video Solution

21. If $A=\left[a_{i j}\right]$ is a skew-symmetric matrix of order n , then $a_{i j}=$
A. 0 for some i
B. 0 for all I $=1,2, . . ., n$
C. 1 for some i
D. 1 for all I $=1,2, \ldots$, n

Answer: B

- Watch Video Solution

22. If A and B are symmetric matrices of the same order, write whether
$A B-B A$ is symmetric or skew-symmetric or neither of the two.
A. symmetric matrix
B. skew-symmetric matrix
C. null matrix
D. unit matrix

Answer: B

- Watch Video Solution

23. If A and B are square matrices of the same order such that $A B=B A$, then show that $(A+B)^{2}=A^{2}+2 A B+B^{2}$.
A. $A B=I$
B. $B A=I$
C. $A B=B A$
D. none of these

Answer: C

- Watch Video Solution

24. The trace of the matrix $A=[1-570791189]$ is (a) 17 (b) 25 (c) 3 (d) 12
A. 17
B. 25
C. 3
D. 12

- Watch Video Solution

25. If A is a skew- symmetric matrix, then trace of A is: 1.) 12 .) -1 3.) 0
4.) none of these
A. 1
B. -1
C. 0
D. none of these

Answer: C

- Watch Video Solution

26. If $A=\left[\begin{array}{cc}1 & x \\ x^{7} & 4 y\end{array}\right], B=\left[\begin{array}{cc}-3 & 1 \\ 1 & 0\end{array}\right]$ and $\operatorname{adj} A+B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the values of x and y are respectively
A. $(1,1)$
B. $(-1,1)$
C. $(1,0)$
D. none of these

Answer: A

- Watch Video Solution

27. If A is a square matrix of order $n \times n$ and k is a scalar, then $\operatorname{adj}(k A)$ is equal to (1) $k a d j A$ (2) $k^{n} a d j A$ (3) $k^{n-1} a d j A$ (4) $k^{n+1} a d j A$
A. $k \operatorname{adj} \mathrm{~A}$
B. $k^{n} a d j A$
C. $k^{n-1} a d j A$
D. $k^{n+1} a d j A$

Answer: C

28. If A is a singular amtrix, then $\operatorname{adj} A$ is
A. singular
B. non-singular
C. symmetric
D. not defined

Answer: A

- Watch Video Solution

29. If A is a non singular square matrix; then $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
30. If A is a singular amtrix, then $\operatorname{adj} A$ is
A. identity matrix
B. null matrix
C. scalar matrix
D. none of these

Answer: B

- Watch Video Solution

31. If $A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$ and $A .(\operatorname{adj} A)=k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then the value of k is
A. $\sin x \cos x$
B. 1
C. 2

D. 3

Answer: B

- Watch Video Solution

32. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, prove that $A^{n}=\left[\begin{array}{ll}2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1}\end{array}\right]$, for all positive integers n .
A. $2^{n} A$
B. $2^{n-1} A$
C. nA
D. none of these

Answer: B

33. If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$ then
A. $\alpha=a^{2}+b^{2}, \beta=a b$
B. $\alpha=a^{2}+b^{2}, \beta=2 a b$
C. $\alpha=a^{2}+b^{2}, \beta=a^{2}-b^{2}$
D. $\alpha=2 a b, \beta=a^{2}+b^{2}$

Answer: B

- Watch Video Solution

34. If A is an invertible square matrix; then $a d j A^{T}=(a d j A)^{T}$
A. $2|A|$
B. $2|A| I$
C. null matrix
D. unit matrix

Answer: C

- Watch Video Solution

35. If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$ and $A^{2}-k A-5 I_{2}=0$ then $k=$
A. 3
B. 5
C. 7
D. -7

Answer: B

- Watch Video Solution

36. If $A=\left[a_{i j}\right]$ is a scalar matrix, then trace of A is
A. $\sum_{i} \sum_{j} a_{i j}$
B. $\sum_{i} a_{i j}$
C. $\sum_{j} a_{i j}$
D. $\sum_{i} a_{i j}$

Answer: D

- Watch Video Solution

37. If $A=\left[a_{i j}\right]$ is a scalar matrix of order $n \times n$ such that $a_{i i}=k$ for all i , then trace of A is equal to $n k$ (b) $n+k$ (c) $\frac{n}{k}$ (d) none of these
A. nk
B. $\mathrm{n}+\mathrm{k}$
C. n/k
D. none of these

Answer: A

38. If $A=\left[a_{i j}\right]$ is a scalar matrix of order $n \times n$ such that $a_{i i}=k$ for all i, then trace of A is equal to $n k$ (b) $n+k$ (c) $\frac{n}{k}$ (d) none of these
A. nk
B. $\mathrm{n}+\mathrm{k}$
C. nk
D. kn

Answer: D

- Watch Video Solution

39. If $A=\left[a_{i j}\right]$ is a scalar matrix of order $n \times n$ and k is a scalar, then $|k A|=$
A. $k^{n}|A|$
B. $k|A|$
C. $k^{n-1}|A|$
D. 0

Answer: A

- Watch Video Solution

40. If $f(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, then prove that

$$
[F(\alpha)]^{-1}=F(-\alpha) .
$$

A. $F(-\alpha)$
B. $F\left(\alpha^{-1}\right)$
C. $F(2 \alpha)$
D. none of these

Answer: A

41. If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ and $G(y)=\left[\begin{array}{ccc}\cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y\end{array}\right]$, then $[F(x) G(y)]^{-1}$ is equal to
A. $F(-x) G(-y)$
B. $F\left(x^{-1}\right)_{G}\left(y^{-1}\right)$
C. $G(-y) F(-x)$
D. $G\left(y^{-1}\right) F\left(x^{-1}\right)$

Answer: C

- Watch Video Solution

42. Find the matrix A satisfying the matrix equation
$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{ll}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}-i & 0 \\ 0 & -i\end{array}\right]$
C. $\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

Answer: A

- Watch Video Solution

43. If $\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, then $a=1, b=0$ (b) $a=\cos 2 \theta, b=\sin 2 \theta$ (c) $a=\sin 2 \theta, b=\cos 2 \theta$ (d) none of these
A. $a=1, b=1$
B. $a=\cos 2 \theta, b=\sin 2 \theta$
C. $a=\sin 2 \theta, b=\cos 2 \theta$
D. none of these

Answer: B

44. If A and B are two matrices such that $A+B$ and $A B$ are both defind, then
A. A and B can be any two matrices
$B . A$ and B are square matrices not necessarily of the same order
C. A, B are square matries of the same order
D. number of columns of A is same as the number of rows of B

Answer: C

- Watch Video Solution

45. If a matrix A is such that $3 A^{3}+2 A^{2}+5 A+I=0$, then A^{-1} is equal to $-\left(3 A^{2}+2 A+5\right)$ (b) $3 A^{2}+2 A+5$ (c) $3 A^{2}-2 A-5$ (d) none of these

$$
\text { A. }-\left(3 A^{2}+2 A+5\right)
$$

B. $3 A^{2}+2 A+5$
C. $3 A^{2}-2 A-5$
D. none of these

Answer: A

- Watch Video Solution

46. Let A and B be matrices of order 3×3. If $A B=0$, then which of the following can be concluded?
A. $A=O$ and $B=O$
B. $|A|=O$ and $|B|=O$
C. either absA=Oor absB=O`
D. $A=O$ or $B=O$

Answer: C

47. If A is an invertible matrix, then which of the following is correct
A. A^{-1} is multivalued
B. A^{-1} is singular
c. $\left(A^{-1}\right)^{T} \neq\left(A^{T}\right)^{-1}$
D. $|A| \neq 0$

Answer: D

- Watch Video Solution

48. Which of the following is/are incorrect?
(i) adjoint of a symmetric matrix is symmetric
(ii) adjoint of a unit matrix is a unit matrix
(iii) $A(\operatorname{adj} A)=(a d j A) A=|A| I$
(iv) adjoint of a diagonal matrix is a diagonal matrix
A. (i)
B. (ii)
C. (iii) and (iv)
D. none of these

Answer: D

- Watch Video Solution

49. If $\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is to be square root of two-rowed unit matrix, then α, β and γ should satisfy the relation. a. $1-\alpha^{2}+\beta \gamma=0$ b. $\alpha^{2}+\beta \gamma=0$ c. $1+\alpha^{2}+\beta \gamma=0 \mathrm{~d} .1-\alpha^{2}-\beta \gamma=0$
A. $1+\alpha^{2}+\beta \gamma=0$
B. $1-\alpha^{2}-\beta \gamma=0$
C. $1-\alpha^{2}+\beta \gamma=0$
D. $\alpha^{2}-\beta \gamma-1=0$

- Watch Video Solution

50. If for matrix $A, A^{2}+l=0$, where I is the identity matrix, then A equals
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}-i & 0 \\ 0 & -i\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

Answer: B

- Watch Video Solution

51. If $A=\left[a_{i j}\right]_{m \times n}$ is a matrix of rank r then (A) $r=\min \{m, n\}$ $r \leq \min \{m, n\}$ (C) $r<\min \{m, n\}$ (D) none of these
A. $r=\min (m, n)$
B. $r<\min (m, n)$
C. $r<\min (m, n)$
D. none of these

Answer: C

D Watch Video Solution

52. If I_{n} is the identity matrix of order n , then rank of I_{n} is
A. 1
B. n
C. 0
D. none of these

Answer: B

53. $A=\left[a_{i j}\right]_{m \times n}$ is a square matrix, if
A. $m<n$
B. $m>n$
C. $m=n$
D. None of these

Answer: C

- Watch Video Solution

54. The rank of a null matrix is
A. 0
B. 1
C. does not exist
D. none of these

Answer: C

- Watch Video Solution

55. If A is a matrix such that there exists a square submatrix of order r which is non-singular and eveny square submatrix or order $r+1$ or more is singular, then
A. rank of A is r
B. rank of A is greater than r
C. rank of A is less than r
D. none of these

Answer: B

D Watch Video Solution

56. Which of the following is correct ?
A. Determinant is a sqaure matrix
B.
C. Determinnant is a number associated to a square matrix
D. none of these

Answer: C

- Watch Video Solution

57. If a square matrix A is orthogonal as well as symmetric, then
A. A is involutory matrix
B. A is idempotent matrix
C. A is a diagonal matrix
D. none of these

- Watch Video Solution

58. Let A be a skew-symmetric of odd order, then $|A|$ is equal to
A. 0
B. 1
C. -1
D. none of these

Answer: A

Watch Video Solution
59. Let A be a skew-symmetric matrix of even order, then $|A|$
A. is a square
B. is not a square
C. is always zero
D. none of these

Answer: A

- Watch Video Solution

60. If A is an orthogonal matrix, then
A. $|A|=0$
B. $|A|= \pm 1$
C. $|A|= \pm 2$
D. none of these

Answer: B

61. Let A be a non-singular square matrix of order n . Then; '|adjA|=
A. $|A|^{n}$
B. $|A|^{n-1}$
C. $|A|^{n-2}$
D. none of these

Answer: B

- Watch Video Solution

62. Let $A=\left[a_{i j}\right]_{n \times n}$ be a square matrix and let $c_{i j}$ be cofactor of $a_{i j}$ in A. If $\mathrm{C}=\left[C_{i j}\right]$, then
A. $|C|=|A|$
B. $|C|=|A|^{n-1}$
C. $|C|=|A|^{n-2}$
D. none of these

Answer: B

- Watch Video Solution

63. If A is a non-singlular square matrix of order n, then the rank of A is
A. equal to n
B. less than n
C. greater than n
D. none of these

Answer: A

D Watch Video Solution

64. If A is a matrix such that there exists a square submatrix of order r which is non-singular and eveny square submatrix or order $r+1$ or more is singular, then
A. $\operatorname{rank}(A)=r+1$
B. $\operatorname{rank}(A)=r$
C. $\operatorname{rank}(A) g t r$
D. $\operatorname{rank}(A)<r+1$

Answer: B

- Watch Video Solution

65. Let A be a matrix of rank r. Then,
A. $\operatorname{rank}\left(A^{T}\right)=r$
B. $\operatorname{rank}\left(A^{T}\right)<r$
C. $\operatorname{rank}\left(A^{T}\right)>r$
D. none of these

Answer: A

66. Let $A=\left[a_{i j}\right]_{m \times n}$ be a matrix such that $a_{i j}=1$ for all l, j. Then,
A. $\operatorname{rank}(\mathrm{A}) \mathrm{gt} 1$
B. $\operatorname{rank}(\mathrm{A})=1$
C. $\operatorname{rank}(A)=m$
D. $\operatorname{rank}(A)=n$

Answer: B

- Watch Video Solution

67. If A is a non-zero column matrix of order $m \times 1$ and B is a non-zero row matrix order $1 \times n$, then rank of $A B$ equals
A. m
B. n
C. 1
D. none of these

Answer: C

- Watch Video Solution

68. The rank of the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$, is
A. 1
B. 2
C. 3
D. 4

Answer: C

69. If A is an invertible matrix, then $\operatorname{det}(A-1)$ is equal to
A. $\operatorname{det}(A)$
B. $\frac{1}{\operatorname{det}(A)}$
C. 1
D. none of these

Answer: B

- Watch Video Solution

70. If A and B are two matrices such that rank of $A=m$ and rank of $B=n$, then
A. $\operatorname{rank}(A B)=m n$
B. $\operatorname{rank}(A B)>\operatorname{rank}(A)$
C. $\operatorname{rank}(A B)>\operatorname{rank}(B)$
D. $\operatorname{rank}(A B)<\min (\operatorname{rank} \mathrm{A}, \operatorname{rank} \mathrm{B})$

Answer: D

D Watch Video Solution

71. If $A=[3424], B=[-2-20-1]$, then $(A+B)^{-1}(\mathrm{a})$ is a skewsymmetric matrix (b) $A^{-1}+B^{-1}$ (c) does not exist (d) none of these
A. is a skew-symmetric matrix
B. $A^{-1}+B^{-1}$
C. does not exist
D. none of these

Answer: D

- Watch Video Solution

72. Let $A=[a 000 a 000 a]$, then A^{n} is equal to $\left[a^{n} 000 a^{n} 000 a\right]$
A. $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a^{n} & 0 \\ 0 & 0 & a\end{array}\right]$
B. $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$
C. $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a^{n} & 0 \\ 0 & 0 & a^{n}\end{array}\right]$
D. $\left[\begin{array}{ccc}n a & 0 & 0 \\ 0 & n a & 0 \\ 0 & 0 & n a\end{array}\right]$

Answer: C

Watch Video Solution

73. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $\operatorname{Lim}_{x>\infty} \frac{1}{n} A^{n}$ is
A. a null matrix
B. an identity matrix
C. $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
D. none of these

- Watch Video Solution

74. If $A=\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A B=I_{3}$, then
$x+y$ equals (a) 0 (b) -1 (c) 2 (d) none of these
A. 0
B. -1
C. 2
D. none of these

Answer: A

75. If $A=\left[\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right]$ then find $\lim _{n-\infty} \frac{1}{n} A^{n}$
A. $\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]$
B. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
D. none of these

Answer: A

- Watch Video Solution

76. If the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is commutative with matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, then
A. $a=0, b=c$
B. $b=0, c=d$
C. $c=0, d=a$
D. $d=0, a=b$

Answer: C

77. If $A=\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ k & 0\end{array}\right] \quad$ such that
$A^{100}-I=\lambda B, \quad$ then $\lambda=$
A. 99
B. 100
C. 10
D. 49

Answer: B

- Watch Video Solution

78. If matrix A has 180 elements, then the number of possible orders of A is
A. 18
B. 10
C. 36
D. 35

Answer: A

D Watch Video Solution

79. A 3×3 matrix A, with 1st row elements as $2,-1,-1$ respectively, is modified as below to get another matrix B.
R_{1} elements of A go to R_{3} of matrix C
R_{2} elements of A go to R_{1} of matrix C
R_{2} elements of A to R_{1} of matrix C
R_{3} elements of A go to R_{2} fo matrix C

Now, below operations are done on C as follow,
C_{1} elements of C go to C_{3} of B
C_{2} elements of C go to C_{1} of B
C_{3} elements of C go to C_{2} of B
It is found that $A=B$, then
A. A is symmetric matrix
B. A is an upper triangular matrix
C. A is singular matrix
D. none of these

Answer: C

D Watch Video Solution

Chapter Test

1. If A is an invertible matrix and B is a matrix, then
A. $\operatorname{rank}(A B)=\operatorname{rank}(A)$
B. $\operatorname{rank}(A B)=\operatorname{rank}(B)$
C. $\operatorname{rank}(A B)$ gt rank (A)
D. $\operatorname{rank}(A B)$ gt rank (B)

D Watch Video Solution

2. What is the order of the product $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$?
A. 3×1
B. 1×1
C. 1×3
D. 3×3

Answer: b

(Watch Video Solution

3. If $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$, then A^{-1}, is
A. $\left[\begin{array}{ccc}1 / a & 0 & 0 \\ 0 & 1 / b & 0 \\ 0 & 0 & 1 / c\end{array}\right]$
B. $\left[\begin{array}{ccc}-1 / a & 0 & 0 \\ 0 & -1 / b & 0 \\ 0 & 0 & -1 / c\end{array}\right]$
C. $\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 / c\end{array}\right]$
D. none of these

Answer: a

4. The inverse of the matrix $\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]$ is equal to
A. $\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]$
D. $\left[\begin{array}{cc}-1 & -3 \\ -3 & -10\end{array}\right]$

D Watch Video Solution

5. If $A=\left[\begin{array}{ll}5 & 2 \\ 3 & 1\end{array}\right], \quad$ then $A^{-1}=$
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Answer: a

- Watch Video Solution

6. If $X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, the value of X^{n} is equal to
A. $\left[\begin{array}{cc}3 n & -4 n \\ n & -n\end{array}\right]$
B. $\left[\begin{array}{cc}2+n & 5-n \\ n & -n\end{array}\right]$
C. $\left[\begin{array}{ll}3^{n} & (-4)^{n} \\ 1^{n} & (-1)^{n}\end{array}\right]$
D. none of these

Answer: d

- Watch Video Solution

7. If $A=\left[\begin{array}{ll}5 & 2 \\ 3 & 1\end{array}\right]$, then $A^{-1}=$
A. $\left[\begin{array}{cc}1 & -2 \\ -3 & 5\end{array}\right]$
B. $\left[\begin{array}{cc}-1 & 2 \\ 3 & -5\end{array}\right]$
C. $\left[\begin{array}{ll}-1 & -2 \\ -3 & -5\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$

Answer: b
8. For the system of equations:
$x+2 y+3 z=1$
$2 x+y+3 z=2$
$5 x+5 y+9 z=4$
A. there is only one solution
B. there exists infinitely many solution
C. there is no solution
D. none of these

Answer: a

D Watch Video Solution

9. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, then $A^{2}=$
A. $\left[\begin{array}{cc}8 & -5 \\ -5 & 3\end{array}\right]$
B. $\left[\begin{array}{cc}8 & -5 \\ 5 & 3\end{array}\right]$
C. $\left[\begin{array}{cc}8 & -5 \\ -5 & -3\end{array}\right]$
D. $\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$

Answer: d

- Watch Video Solution

10. if $A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]$ is symmetric, then x is equal to
A. 3
B. 5
C. 2
D. 4

Answer: b

Watch Video Solution
11. If $A+B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $A-2 B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$, then A is equal to
A. $\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}2 / 3 & 1 / 3 \\ 1 / 3 & 2 / 3\end{array}\right]$
C. $\left[\begin{array}{ll}1 / 3 & 1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]$
D. none of these

Answer: c

- Watch Video Solution

12. $\left[\begin{array}{ll}-6 & 5 \\ -7 & 6\end{array}\right]^{-1}=$
A. $\left[\begin{array}{ll}-6 & 5 \\ -7 & 6\end{array}\right]$
B. $\left[\begin{array}{cc}6 & -5 \\ -7 & 6\end{array}\right]$
C. $\left[\begin{array}{ll}6 & 5 \\ 7 & 6\end{array}\right]$
D. $\left[\begin{array}{ll}6 & -5 \\ 7 & -6\end{array}\right]$

D Watch Video Solution

13. From the matrix equation $A B=A C$, we conclude $B=C$ provided.
A. A is singular
B. A is non-singular
C. A is symmetric
D. A is square

Answer: b

D Watch Video Solution

14. If I_{3} is the identily matrix of order 3 , then $\left(I_{3}\right)^{-1}=$
A. 0
B. $3 I_{3}$
C. I_{3}
D. not necessarily exists.

Answer: c

- Watch Video Solution

15. Let a, b, c be real numbers. The following system of equations in x, y and
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{a^{2}}=1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1,-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1$ has
a. no solution
b. unique solution
c. infinitely many solutions d. finitely many solutions
A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions

- Watch Video Solution

16. If A and B are two matrices such that $A+B$ and $A B$ are both defind, then
A. A \& B are two matrices not necessarily of same order
$B . A$ and B are square matrices of same order
C. number of columns of $A=$ number of rows of B
D. none of these

Answer: b

- Watch Video Solution

17. A and B are tow square matrices of same order and A^{\prime} denotes the transpose of A , then
A. $(A B)^{\prime}=B^{\prime} A^{\prime}$
B. $(A B)^{\prime}=A^{\prime} B^{\prime}$
C. $A B=0 \Rightarrow|A|=0$ or $|B|=O$
D. $A B=0 \Rightarrow A=0$ or $B=0$

Answer: a

- Watch Video Solution

18.

$a_{1} x+b_{1} y+c_{1}=0 a_{2} x+b_{2} y+c_{2}=0, a_{3} x+b_{3} y+c_{2}=0 \quad$ are
concurrent if $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$.
STATEMENT-2: The area of the triangle formed by three concurrent lines is always zero.
A. more than two solutions
B. one trivial and one non-trivial solutions
C. no solution
D. only trivial solution ($0,0,0$)

Answer: a

D Watch Video Solution

19.

The
system
of
linear
equations
$x+y+z=2,2 x+y-z=3,3 x+2 y+k z=4 \quad$ has \quad a unique
solution if (A) $k \neq 0$ (B) $-1<k<1$ (C) $-2<k<2$ (D) $k=0$
A. $k \neq 0$
B. $-1<k<1$
C. $-2<k<2$
D. $k=0$

Answer: a

20. If A and B ar square matrices of order 3 such that $|A|=-1|B|=3$, then $|3 A B|$ is equal to
A. -9
B. -81
C. -27
D. 81

Answer: a

(D) Watch Video Solution

21. If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear, then the rank of the matrix $\left[\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right]$ will always be less than
A. 3
B. 2
C. 1
D. none of these

Answer: a

- Watch Video Solution

22. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$.

If B is the inverse of A , then find the value α.
A. 5
B. -1
C. 2
D. -2

Answer: a
23. Let $A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$ Then only correct statement about the matrix A is (A) A is a zero matrix (B) $A^{2}=1$ (C) A^{-1} does not exist (D) $A=(-1) \mathrm{I}$ where I is a unit matrix
A. $A^{2}=I$
B. $A=-I$, where I is a unit matrix
C. A^{-1} does not exist
D. A is a zero matrix

Answer: c

- Watch Video Solution

24. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2\end{array}\right]$ and $\operatorname{adj} A=\left[\begin{array}{ccc}6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1\end{array}\right]$,then $\mathrm{x}+\mathrm{y}=$
A. 6
B. -1
C. 3
D. 1

Answer: a

- Watch Video Solution

25. If A is a square matrix such that $A \cdot(\operatorname{Adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$, then
A. 4
B. 16
C. 64
D. 256

Answer: b

26. If n is a natural number. Then $\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right]^{n}$, is
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ if n is even
B. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ if n is odd
C. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ if n is a natural number
D. none of these

Answer: a

- Watch Video Solution

27. Given $\mathrm{x}=\mathrm{c} \mathrm{y}+\mathrm{bz}, \mathrm{y}=\mathrm{az}+\mathrm{cx}$ and that $a^{2}+b^{2}+c^{2}+2 \mathrm{abc}=1$.
A. 2
B. $a+b+c$
C. 1
D. $a b+b c+c a$

Answer: c

D Watch Video Solution

28. If A is a singular matrix, then $A(\operatorname{adj} A)$ is a
A. scalar matrix
B. zero matrix
C. identity matrix
D. orthogonal matrix

Answer: b

Watch Video Solution

29. If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, is the unit matrix of order 2 and a, b are arbitray constants, then $(a I+b A)^{2}$ is equal to
A. $a^{2} I-a b A$
B. $a^{2} I+2 a b A$
C. $a^{2} I+b^{2} A$
D. none of these

Answer: d

- Watch Video Solution

30. If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then which one of the following is not correct?
A. A is orthogonal matrix
B. A^{\prime} is orthogonal matrix
C. $|A|=1$
D. A is not invertible
