

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

MATRICES

Illustration

1. Let A be the set of all 3 imes 3 matrices of whose entries are either 0 or 1.

The number of elements is set A, is

A. 2^{3}

 $B.2^6$

C. 18

 $D. 2^9$

Answer: D

2. Let A be the set of all 3 imes 3 symetric matrices whose entries are either

0 or 1. The number of elements is set A, is

- A. 2³ B. 2⁶ C. 2⁹
- D. 18

Answer: B

Watch Video Solution

3. The number of elements that a square matrix of order n has below its leading diagonal, is

A.
$$rac{n(n+1)}{2}$$

B.
$$\frac{n(n-1)}{2}$$

C. $\frac{(n-1)(n-1)}{2}$
D. $\frac{(n+1)(n+1)}{2}$

Answer: B

Watch Video Solution

4. If
$$A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$$
 and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k,a,b are

respectively.

A. -6, -12, -18B. -6, 4, 9 C. -6, -4, -9

D. - 6, 12, 18

Answer: C

5. Find the value of x for which the matrix product [2070101 - 21][-x14x7x010x - 4x - 2x] equal to an identity matrix.

A. 1/2

- B. 1/3
- C.1/4

D. 1/5

Answer: D

Β.	8

C. 9

D. 6

Answer: C

Watch Video Solution

7. If
$$A=egin{bmatrix} 1&0&0\0&1&0\a&b&-1 \end{bmatrix}$$
 then A^2 is equal to

A. a null matrix

B. a unit matrix

C. - A

D. A

Answer: B

8. If
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, then A. A' is
A. I
B. A
C. $-A$
D. A^2

Answer: A

Watch Video Solution

9. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, the

value of a + b is

A. a = 4, b = 1

B. a = 1b = 4

C. a = 0, b = 4

D.
$$a = 2, b = 4$$

Answer: B

Watch Video Solution

10. The matrix
$$A = \begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$
 is nilpotent of index
A. 2
B. 3
C. 4

D. 6

Answer: A

11. If $A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$, then the determinant of the matrix $(A^{2016} - 2A^{2015} - A^{2014})$ is : A. 2014

B. 2016

C. - 175

D.-25

Answer: B

Watch Video Solution

12. Let
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1 \end{bmatrix}$$
 and Q = $[q_{ij}]$ be two 3×3 matrices such that $Q - P^5 = I_3$. Then $\frac{q_{21} + q_{31}}{q_{32}}$ is equal to

A. 52

B. 103

C. 201

D. 205

Answer: B

Watch Video Solution

13. Let ω be a complex cube root of unity with $\omega \neq 1 and P = \begin{bmatrix} p_{ij} \end{bmatrix}$ be a $n \times n$ matrix withe $p_{ij} = \omega^{i+j}$. Then $p^2 \neq O, when =$ a.57 b. 55 c. 58 d. 56

A. 57

B. 55

C. 58

D. 56

Answer: A

14. Let
$$A=egin{pmatrix} 1&2\3&4 \end{pmatrix}$$
 and $B=egin{pmatrix} a&0\0&b \end{pmatrix}, a,b\in N.$ Then,

A. there connot exist any B such that AB=BA.

B. there exist more than one but finite number of B's such that AB=BA

C. there exists exactly one B such that AB=BA.

D. there exist infinitely many B's such that AB=BA.

Answer: D

Watch Video Solution

15. Which of the following is (are) NOT the square of a 3×3 matrix with real entries? [10001000 - 1] (b) [-1000 - 1000 - 1] [100010001] (d) [1000 - 1000 - 1]

$$A. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$B.\begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}$$
$$C.\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$D.\begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}$$

Answer: A::B

Watch Video Solution

16. If
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
, then find the values of θ satisfying the equation $A^T + A = I_2$.

A.
$$heta=np, n\in Z$$

B. $0=(2n+1)rac{\pi}{2}, n\in Z$
C. $heta=2np+rac{\pi}{3}, n\in Z$

D. none of these

Answer: C

1. Five of these entries are 1 and four of them are 0.

The number of matrices in A is

A. 12 B. 6 C. 9 D. 3

Answer: A

Watch Video Solution

18. The square matrix $A = \left[a_{ij} \; ext{ given by } \; a_{ij} = (i-j)^3 ext{, is a}
ight.$

A. symmetric matrix

- B. skew-symmetric matrix
- C. diagonal matrix
- D. hermitian matrix

Answer: B

Watch Video Solution

19.
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$$
 is a matrix and $AA^T = 9I$, then the ordered pair

(a,b) is equal to

- A. (2,1)
- B. (-2,-1)
- C. (2,-1)
- D. (-2,1)

Answer: B

20.

 $P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}, A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } Q = PAP^{T}, \text{ then}P^{T}Q^{2015}P, \text{ is}$ A. $\begin{bmatrix} 2015 & 1 \\ 1 & 2015 \end{bmatrix}$ B. $\begin{bmatrix} 1 & 2015 \\ 0 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 0 & 2015 \\ 0 & 0 \end{bmatrix}$ D. $\begin{bmatrix} 2015 & 0 \\ 1 & 2015 \end{bmatrix}$

If

Answer: B

Watch Video Solution

21. If A is a 3 imes 3 non-singular matrix such that AA' = A'A

and $B = A^{-1}A'$ then BB' equals to

A. B^{-1}

B.
$$(B^{-1})^T$$

C. $I + B$
D. $\begin{bmatrix} 2015 & 0 \\ 1 & 2015 \end{bmatrix}$

Answer: D

Watch Video Solution

22. An n imes n matrix is formed using 0,1 and -1 as its elements. The number

of such matrices which are skew-symmetric, is

A. $\frac{n(n+1)}{2}$ B. $(n-1)^2$ C. $2^{\frac{n(n-1)}{2}}$ D. $3^{\frac{n(n-1)}{2}}$

Answer: D

23. If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then which one of the following holds for all $n \ge 1$ by the principle of mathematica induction? (A) $A^n = 2^{n-1}A + (n-1)I$ (B) $A^n = nA + (n-1)I$ (C) $A^n = 2^{n-1}A - (n-1)I$ (D) $A^n = nA - (n-1)AI$ A. $A^n = n^{n-1}A + (n-1)I$ B. A = nA + (n-1)IC. $A^n = 2^{n-1}A - (n-1)I$ D. A = nA - (n-1)I

Answer: D

Watch Video Solution

24. For how many values of 'x' in the closed interval $\begin{bmatrix} -4, -1 \end{bmatrix}$ is the matrix $\begin{bmatrix} 3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2 \end{bmatrix}$ singular ? (A) 2 (B) 0 (C) 3 (D) 1

A. 0		
B. 2		
C. 1		
D. 3		

Answer: C

Watch Video Solution

25. If
$$S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then adj S is equal to
A. $\begin{bmatrix} -d & -b \\ -c & a \end{bmatrix}$
B. $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
C. $\begin{bmatrix} d & b \\ c & a \end{bmatrix}$
D. $\begin{bmatrix} d & c \\ b & a \end{bmatrix}$

Answer: B

26. If
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$
, then adj $(3A^2 + 12A)$ is equal to
A. $\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$
B. $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$
C. $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$
D. $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$

Answer: B

Watch Video Solution

27. If A = [5a - b32] and $A(adjA) = AA^T$, then 5a + b is equal to: (1) -1 (2) 5 (3) 4 (4) 13

A. -1

B. 5

C. 4

D. 13

Answer: B

Watch Video Solution

28. If for the matrix $A,\;A^3=I$, then $A^{-1}= ext{(a)}A^2$ (b) A^3 (c) A (d) none

of these

A. A^2

 $\mathsf{B}.\,A^3$

C. A

D. none of these

Answer: A

29. If A and B are two square matrices such that AB=I, then which of the following is not true?

A. BA=I

 $\mathsf{B}.\,A^{\,-\,1}=B$

 $\mathsf{C}.\,B^{-1}=A$

 $\mathsf{D}.\,A^2=B$

Answer: D

Watch Video Solution

30. A square non-singular matrix A satisfies the equation $x^2 - x + 2 = 0$, then A^{-1} is equal to

A. I-A

B.
$$\frac{1}{2}(I-A)$$

$$\mathsf{D}.\,\frac{1}{2}(I+A)$$

Answer: B

Watch Video Solution

31. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 such that $ad - bc \neq 0$, then A^{-1} , is
A. $\frac{1}{ad - bc} \begin{bmatrix} a & -b \\ -c & a \end{bmatrix}$
B. $\frac{1}{ad - bc} \begin{bmatrix} a & -b \\ -c & a \end{bmatrix}$
C. $\begin{bmatrix} d & b \\ -c & a \end{bmatrix}$

D. none of these

Answer: A

32. Let A be a square matrix all of whose entries are integers.

Which one of the following it true?

A. If det (A) $= \pm 1$, then A^{-1} exists but all its entries are not

necessarily integers.

B. If det $(A) = \pm 1$, then A^1 exists and all its entries are non-

integers

C. If det $(A) = \pm 1$, then A^{-1} exsts and all its entries are integers

D. If det `(A) =pm1," then "need not exist

Answer: C

Watch Video Solution

33. If P=[1lpha 3133244] is the adjoint of a 3 imes 3 matrix A and |A|=4 , then a is equal to (1) 11 (2) 5 (3) 0 (4) 4

B. 11

C. 5

D. 10

Answer: B

Watch Video Solution

34. If for a matrix A, |A| = 6 and $adjA = \{:[(1,-2,4),(4,1,1),(-1,k,0)]:\}$, then k

is equal to

A. -1

B. 0

C. 1

D. 2

Answer: B

35. Let A be a 3 imes 3 matrix such that $A^2-5A+7I=0$ then which of the statements is true

A. statement -1 is false, but statement -2 is true,

B. Both statement are false.

C. Both statement are ture.

D. Statement -1 is true, but statement -2 is false.

Answer: A

36. The matrix
$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$
 is 1) orthogonal 2) involutory 3)

idempotent 4) nilpotent

A. orthogonal

B. involutory

C. idempotent

D. nilpotent

Answer: A

37. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, then the value of $|A^4 - 18A^2 - 32A|$ is
A. 1
B. 2
C. 3
D. none of these

Answer: B

	Γ1	2	3]	
38. The rank of the matrix $A=$	4	5	6	is
	3	4	5	
A. 1				
B. 2				
C. 3				
D. none of these				

Answer: B

Watch Video Solution

39. The rank of the matrix $A = egin{bmatrix} 1 & 2 & 3 & 4 \ 4 & 3 & 2 & 1 \end{bmatrix}$, is

A. 1

B. 2

C. 3

D. 4

Answer: B

	1	2	3	
40. The rank of the matrix $A=$	3	6	9	, is
	1	2	3	

A. 1

B. 2

C. 3

D. none of these

Answer: A

41. The existence of the unique solution of the system $x+y+z=\lambda,\,5x-y+\mu z=10,\,2x+3y-z=6$ depends on

A. μ only

B. λ only

C. λ and μ both

D. neither λ nor μ

Answer: A

Watch Video Solution

42.Thesystemofequations $x + y + z = 6, x + 2y + 3z = 10, x + 2y + \lambda z = k$ is inconsistent if $\lambda = \dots, k \neq \dots$ A = 1 $B. \lambda = 1$ $B. \lambda = 2$ $C. \lambda = -2$ $D. \lambda = 3$

Answer: D

43. Determine for that values of λ and μ the following system of equations

x + y + xz = 6, x + 2y + 43z = 10 and x+2y+lambdaz=mu`have (i) no solution (iii) a unique solution ? (iii) an infine number of solution?

A. $\lambda
eq 3, \mu = 10$

B.
$$\lambda=3, \mu
eq 10$$

C. $\lambda
eq 3, \mu
eq 10$

D. none of these

Answer: B

44. The number of values of k, for which the system of equations $(k+1)x + 8y = 4k \ kx + (k+3)y = 3k - 1$ has no solution, is (1) 1 (2) 2 (3) 3 (4) infinite

A. infinte

B. 1

C. 2

D. 3

Answer: B

Watch Video Solution

45. Let $lpha, \lambda, \mu \in R$.Consider the system of linear equations

 $lpha x + 2y = \lambda$

 $3x-2y=\mu$

Which of the following statement(s) is (are) correct ?

A. (a) If a = -3, then the system has infinitely many solutions for all

value of λ and μ .

- B. If $a \neq -3$, then the system has a unique solution fopor all values of λ and μ .
- C. If $\lambda + u = 0$, then the system has infinitely many solutions for a =

-3`.

D. If $\lambda + \mu \neq 0$, then the system has no solutions for a = -3.

Answer: A

Watch Video Solution

46. For a real number a, if the system $\begin{bmatrix} 1 & a & a^2 \\ a & 1 & a \\ a^2 & a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

of the linear equations, has infinitely many solutions, then $1+a+a^2=$

B. 0

C. -1

D. 2

Answer: A

47. If $x=cy+bz, y=az+cx, z=x+ay, where. \, x,y,z$ are not all zeros, then find the value of $a^2+b^2+c^2+2abc$

A. 2

B. -1

C. 0

D. 1

Answer: D

48. The system of linear equations $x + \lambda y - z = 0$, $\lambda x - y - z = 0$, $x + y - \lambda z = 0$ has a non-trivial solution for : (1) infinitely many values of λ . (2) exactly one value of λ . (3) exactly two values of λ . (4) exactly three values of λ .

A. infinitely many value of λ

B. exactly one value of λ

C. exactly two values λ

D. exactly three values of λ

Answer: D

Watch Video Solution

49. The number of possible value of θ lies in $(0, \pi)$, such that system of equation x + 3y + 7z = 0, -x + 4y + 7z = 0, $x \sin 3\theta + y \cos 2\theta + 2z = 0$ has non trivial solution is/are equal to (a) 2 (b) 3 (c) 5 (d) 4 A. one

B. two

C. three

D. none of these

Answer: D

Watch Video Solution

50. If S is the set of distinct values of 'b' for which the following system of

linear equations

x + y + z = 1

x + ay + z = 1

ax + by + z = 0

has no solution then S is

A. an empty set

B. an infinite set

C. a finite set containing two or more elements

D. a singleton set

Answer: D

Watch Video Solution

Section I Solved Mcqs

1. If A and B are two matrices such that AB = A and BA = B , then B^2 is equal to B (b) A (c) 1 (d) 0

A. BA=I

B. A

C. 1

D. 0

Answer: A

2. If A and B are square matrices of same order such that AB = A and BA =B, then

A.
$$B^2 = B$$
 and $A^2 = A$
B. $B^2 \neq B$ and $A^2 = A$
C. $A^2 \neq A, B^2 = B$

D. $A^2
eq A, B^2
eq B$

Answer: A

Watch Video Solution

3. about to only mathematics

A. 2 AB

B. 2 BA
C. A + B

D. AB

Answer: C

Watch Video Solution

4. If $A = [a_{ij}]$ is a square matrix of even order such that $a_{ij} = i^2 - j^2$, then (a) A is a skew-symmetric matrix and |A| = 0 (b) A is symmetric matrix and |A| is a square (c) A is symmetric matrix and |A| = 0 (d) none of these

A. A is a skew-symmetric matrix and $\left|A
ight|=0$

B. A is symmetric matrix and |A| is a square

C. A is symmetric matrix and |A|=0

D. none of these

Answer: D

5. If
$$\left[\frac{\cos(2\pi)}{7} - \frac{\sin(2\pi)}{7}\frac{\sin(2\pi)}{7}\frac{\cos(2\pi)}{7}\right] = [1001]$$
 , then the least

positive integral value of k is (a) 3 (b) 4 (c) 6 (d) 7

A. 3

B. 4

C. 6

D. 7

Answer: D

6. If
$$A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$$
, $n \in N$, then A^{4n} equals $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$
A. $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$

 $B.\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$ $C.\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ $D.\begin{bmatrix} 0 & i\\ i & 0 \end{bmatrix}$

Answer: C

Watch Video Solution

7. If A is a singular amtrix, then adj A is

A. non-sigular

B. singular

C. symmetric

D. not defined

Answer: B

8. If A, B are two $n \times n$ non-singular matrices, then AB is non-singular (b) AB is singular (c) $(AB)^{-1} = A^{-1}B^{-1}$ (d) $(AB)^{-1}$ does not exist

A. AB is non-singylar

B. AB is singular

 $C.(AB)^{-1} = A^{-1}B^{-1}$

D. $(AB)^{-1}$ does not exist

Answer: A

Watch Video Solution

9. Let A be an inbertible matrix. Which of the following is not true?

A.
$$(A^T)^{-1} = (A^{-1})^T$$

B. $A^{-1} = |A|^{-1}$
C. $(A^2)^{-1} = (A^{-1})^2$
D. $|A^{-1}| = |A|^{-1}$

Answer: B

10. If the matrix AB is zero, then It is not necessary that either A=O or,

B=O (b) A=O or B=O (c) A=O and B=0 (d) all the above

statements are wrong

A. It is not necessary that either A=O or B=O

B. A=O or B=O

C. A=O and B=O

D. all the above statements are wrong

Answer: A

11. If
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$
, $a \neq 0$ then | adj A| is equal to
A. a^{27}
B. a^9
C. a^6
D. a^2

Answer: C

12. If
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$
, then det (adj (adjA)) is
A. 14^4
B. 14^3
C. 14^2

Answer: A

13. If B is a non-singular matrix and A is a square matrix, then $det(B^{-1}AB)$ is equal to (A) $det(A^{-1})$ (B) $det(B^{-1})$ (C) det(A) (D) det(B)

A. $\det\left(A^{\,-1}
ight)$

 $\mathsf{B.det}(B^{-1})$

 $\mathsf{C}.\det(A)$

 $D.\det(B)$

Answer: C

14. For any 2 × 2 matrix, if $A (adj A) = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then |A| is equal to (a) 20 (b) 100 (c) 10 (d) 0 A. 20 B. 100 C. 10 D. 0

Answer: C

Watch Video Solution

15. If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a (a) null matrix (b) singular matrix (c) unit matrix (d) non-singular matrix

A. null matrix

B. singular matrix

C. unit matrix

D. non-singular matrix.

Answer: A

Watch Video Solution

16. If A=[n000n000n] and $B=[a_1a_2a_3b_1b_2b_3c_1c_2c_3]$, then AB is equal to B (b) nB (c) B^n (d) A+B

A. BA=I

B.nB

 $\mathsf{C}.\,B^n$

D. A + B

Answer: B

17. If
$$A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$
, then A^n (where $n \in N$) equals (a) $\begin{bmatrix} 1 & na \\ 0 & 1 \end{bmatrix}$ (b)
 $\begin{bmatrix} 1 & n^2a \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & na \\ 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} n & na \\ 0 & n \end{bmatrix}$
A. $A = \begin{bmatrix} 1 & na \\ 0 & 1 \end{bmatrix}$
B. $A = \begin{bmatrix} 1 & n^2a \\ 0 & 1 \end{bmatrix}$
C. $A = \begin{bmatrix} 1 & na \\ 0 & 0 \end{bmatrix}$
D. $A = \begin{bmatrix} 1 & 2a \\ 0 & n \end{bmatrix}$

Answer: B

Watch Video Solution

18. If $A^5=0$ such that $A^n
eq I$ for $1\leq n\leq 4,\,\,$ then $\left(I-A
ight)^{-1}$ is

equal to

A. A^4

 $\mathsf{B}.\,A^3$

 $\mathsf{C}.\,I+A$

D. none of these

Answer: D

19. If A satisfies the equation $x^3-5x^2+4x+\lambda=0$, then A^{-1} exists if (a) $\lambda
eq 1$ (b) $\lambda
eq 2$ (c) $\lambda
eq -1$ (d) $\lambda
eq 0$

A. $\lambda
eq 1$

- B. $\lambda
 eq 3$
- $\mathsf{C}.\,\lambda\,\neq\,-1$
- D. $\lambda
 eq 0$

Answer: D

20. The system of equations: x + y + z = 5, x + 2y + 3z = 9 and $x+3y+\lambda z=\mu$ has a unique solution, if (a) $\lambda=5, \mu=13$ (b) $\lambda
eq 5$ (c) $\lambda=5,\,\mu
eq13$ (d) $\mu
eq 13$ A. $\lambda=5, \mu=13$ B. $\lambda
eq 5$ C. $\lambda=5, \mu
eq 13$ D. $\mu
eq 13$ Answer: B Watch Video Solution

21. the matrix
$$A = egin{bmatrix} I & 1-2i \ -1-2i & 0 \end{bmatrix}, where I = \sqrt{-1}, ext{ is }$$

A. symmetric matrix

B. skew-symmetric

C. hermitian

D. skew-hermitian

Answer: D

Watch Video Solution

22. If
$$A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, find the values of α for which $A^2 = B$.
A. 1
B. -1

C. 4

D. no real values

Answer: D

23. If A and B are two square matrices such that $B = -A^{-1}BA$, then $(A+B)^2$ is equal to

A. O

 $\mathsf{B.}\,A^2+B^2$

 $\mathsf{C}.\,A^2 + 2AB + B^2$

D. A + B

Answer: B

Watch Video Solution

24. The elemant in the first row and third coumn of the inverse of the

 $\mathsf{matrix} \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \mathsf{is}$

A. -2

B. 0

C. 1

D. none of these

Answer: C

Watch Video Solution

25. about to only mathematics

A. the sum of a symmetric and a skew-symmetric matrix.

B. the sum of a diagonal matrix and a symmetric matrix

C. a skew-symmetric matrix

D. a skew-matrix

Answer: A

26. If
$$\begin{bmatrix} a & b^3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ 2 & 0 \end{bmatrix}$$
, then $\begin{bmatrix} a & b \\ 2 & 0 \end{bmatrix}^{-1} =$
A. $\begin{bmatrix} 0 & -2 \\ -2 & 1 \end{bmatrix}$
B. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
C. $\begin{bmatrix} 0 & -8 \\ -2 & 1 \end{bmatrix}$
D. $\begin{bmatrix} 0 & 1/2 \\ 1/2 & -1/4 \end{bmatrix}$

Answer: D

Watch Video Solution

27. If A is a square matrix such that $A^2 - A + I = 0$, then the inverse of

A is

A. I-A

B. A-I

C. A

D. A+I

Answer: A

28. If A a 3 imes 3 amtrix and B is its adjoint such that |B|=64, then |A| is equal to A. 64 B. $p\pm 64$

 $C.\pm 8$

D. 18

Answer: C

29. If
$$A = \frac{1}{3} \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{vmatrix}$$
 is an orthogonal matrix, then $a = -2$ b.
 $a = 2, b = 1$ c. $b = -1$ d. $b = 1$
A. $a = 2, b = 1$
B. $a = -2, b = -1$
C. $a = 2, b = -1$
D. $a = -2, b = 1$

Answer: B

30. If
$$A = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$$
, where ω is cube root of unity, then what is A^{100} equal to ?

A. A

 $\mathsf{B.}-A$

C. O

D. none of these

Answer: A

Watch Video Solution

31. If
$$A^3 = O$$
, then prove that $(I - A)^{-1} = I + A + A^2$.

A. I - A

- $\mathsf{B.}\left(I-A\right){}^{-1}$
- $\mathsf{C.}\left(I+A\right)^{-1}$

D. none of these

Answer: B

32. if
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$
 then (A(adjA) A^{-1})A is equal to
A. $2 \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
B. $\begin{bmatrix} -6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -6 \end{bmatrix}$
C. $\begin{bmatrix} 0 & 1/6 & -1/6 \\ 2/6 & 1/6 & 3/6 \\ 3/6 & 2/6 & 1/6 \end{bmatrix}$

D. none of these

Answer: A

Watch Video Solution

33. If A is non-singular and (A - 2I)(A - 4I) = 0, then, $\frac{1}{6}A + \frac{4}{3}A^{-1}$

is equal to a.0I b. 2I c. 6I d. I

A. I

B. O

C. 2I

D. 6I

Answer: A

Watch Video Solution

34. If A is an invertible matrix of order 3 imes 3 such that |A|=2 . Then, find $adj\,(adj\,A)$.

A. |A|A

 $\mathsf{B.}\left|A\right|^{2}\!A$

 $\mathsf{C.}\left|A\right|^{-1}\!A$

D. none of these

Answer: A

35. If A and B are squre 3×3 such that A is an orthogonal matrix and B is a skew- symmetrix matrix , then which of the following statement is true?

A. |AB| = 1

- $\mathsf{B.}\left|AB\right|=0$
- C. |AB| = -1

D. none of these

Answer: B

Watch Video Solution

36. If $A = \begin{vmatrix} \alpha & 2 \\ 2 & \alpha \end{vmatrix}$ and $|A|^3 = 125$, then the value of α is a. ± 1 b. ± 2 c. ± 3 d. ± 5 A. ± 1

 $\mathsf{B.}\pm 2$

 $\mathsf{C}.\pm 3$

D. ± 5

Answer: C

37. about to only mathematics

A.
$$\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$$

B. $\begin{bmatrix} 1 & 2005 \\ 2005 & 1 \end{bmatrix}$
C. $\begin{bmatrix} 1 & 0 \\ 2005 & 1 \end{bmatrix}$
D. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Answer: A

38. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$$
, $6A^{-1} = A^2 + cA + dI$, then (c,d) is :

A. (-6,11)

B. (-11,6)

C. (11,6)

D. (6,11)

Answer: A

Watch Video Solution

39. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
 and U_1, U_2, U_3 be column matrices satisfying $AU_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, AU_2 = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}, AU_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$. If U is 3×3 matrix whose

columns are $U_1, U_2, U_3, \hspace{0.2cm} ext{then} \hspace{0.2cm} |U| =$

A. 3

B. -3

 $\mathsf{C.}\,3/2$

Answer: A

40. If `U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse of U is

A. -1

- B. 0
- C. 1

D. 3

Answer: B

A. 5

B. 5/2

C. 4

D. 3/2

Answer: A

Watch Video Solution

42. If A and B f are square matrices of size n imes n such that $A^2 - B^2 = (A - B)(A + B)$ which of the following will be always true?

A. A = B

B. AB =BA

C. either A or B is a zero matrix

D. either A or B is an identity matrix

Answer: B

43. If A and B are any two different square matrices of order n with $A^3 = B^3$ and A(AB) = B(BA) then

- A. $A^2+B^2=O$
- $\mathsf{B}.\,A^2+B^2=I$
- $\mathsf{C}.\,A^3+B^3=I$

D. none of these

Answer: D

44. Let $A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ Then only correct statement about the matrix A is (A) A is a zero matrix (B) $A^2 = 1$ (C) A^{-1} does not exist (D)

 $A=(\,-\,1)$ l where l is a unit matrix

A. A^{-1} does not exist

B. A = (-1)I is a unit matrix

C. A is a zero matrix

 $\mathsf{D}.\,A^2=I$

Answer: D

Watch Video Solution

45. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$.

If B is the inverse of A, then find the value α .

A. 2

B. -1

C. 3

D. 5

Answer: D

46. Let
$$A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$$
. $If|A^2| = 25$, then α equals to:
A. $\frac{1}{5}$
B. 5
C. 5^2
D. 1

Answer: A

47. If
$$A = \alpha \begin{bmatrix} 1 & 1+i\\ 1-i & -1 \end{bmatrix} a \in R$$
, is a unitary matrix then α^2 is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{2}{9}$

Answer: B

48. The value of a,b,c when
$$\begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$$
 is orthogonal, are :
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{6}$

Answer: C

49. If
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n imes n}$$
, where $a_{ij} = i^{100} + j^{100}$, then $\lim_{n o \infty} \left(rac{\sum a_{ij}}{n!} rac{1}{n!} \right)$

equals

A.
$$\frac{1}{50}$$

B. $\frac{1}{101}$
C. $\frac{2}{101}$
D. $\frac{3}{101}$

Answer: C

50. If A and B are two non-singular matrices which commute, then $(A(A + B)^{-1}B)^{-1}(AB) =$ A. A + B B. $A^{-1} + B$ C. $A^{-1} + B^{-1}$ D. none of these

Answer: C

Watch Video Solution

51. Find the inverse of
$$[01 - 14 - 343 - 34]$$

A. 2A

B.
$$\frac{1}{2}A^{-1}$$

C. $\frac{1}{2}A$

 $\mathsf{D}.\,A^2$

Answer: A

Watch Video Solution

52. In a 4×4 matrix the sum of each row, column and both the main diagonals is α . Then the sum of the four corner elements

A. is also lpha

B. may not be α

C. is never equal to α

D. none of these

Answer: A

53. If
$$A = ([a_{ij}])_{4 \times 4}$$
, such that $a_{ij} = \left\{2, wheni = j0, wheni \neq j, then\left\{\frac{\det(adj(adjA))}{7}\right\}$ is (where

{.} represents fractional part function) 1/7 b. 2/7 c. 3/7 d. none of these

A.
$$\frac{1}{7}$$

B. $\frac{2}{7}$
C. $\frac{3}{7}$

D. none of these

Answer: A

54. If A is skew-symmetric matrix of order
2 and
$$B = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}$$
 and $c \begin{bmatrix} 9 & -4 \\ -2 & 1 \end{bmatrix}$ respectively. Then
 $A^{3}BC + A^{5}B^{2}C^{2} + A^{7}B^{3}C^{3} + \dots + A^{2n+1}B^{n}C^{n}$ where $n \in N$ is

A. a symmetric matrix

B. a skew-symmetric matrix

C. an identity matrix

D. none of these

Answer: B

Watch Video Solution

55. Let
$$p = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$$
, where $\alpha \in \mathbb{R}$. Suppose $Q = \begin{bmatrix} q_{ij} \end{bmatrix}$ is a matrix such that $PQ = kI$, where $k \in \mathbb{R}, k \neq 0$ and I is the identity matrix of order 3. If $q_{23} = -\frac{k}{8}$ and $\det(Q) = \frac{k^2}{2}$, then
A. $\alpha 0, k = 8$

B. 4lpha-k+8=0

- $\mathsf{C.det}(PadjQ)=2^9$
- $\mathsf{D}.\det(QadjP)2^{13}$

Answer: B::C

56. Let $z = \frac{-1 + \sqrt{3}i}{2}$, where $i = \sqrt{-1}$, and $r, s \in \{1, 2, 3\}$. Let $P = \begin{bmatrix} (-z)^r & z^{2s} \\ z^{2s} & z^r \end{bmatrix}$ and I be the identity matrix of order 2. Then the

total number of ordered pairs (r, s) for which $P^2=\ -I$ is _____.

Answer: A

Watch Video Solution

57. How many 3×3 matrices M with entries from $\{0, 1, 2\}$ are there, for which the sum of the diagonal entries of $M^T M$ is 5 ?

A. 126

B. 198
C. 162

D. 135

Answer: B

Watch Video Solution

Section I Assertion Reason Type

1. If A; B are non singular square matrices of same order; then adj(AB) = (adjB)(adjA)

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: A

2. Let A be a square matrix of order n.

Statement - 1 : $|adj(adjA)| = |A|^{n-1} \hat{2}$

Statement -2 : $adj(adjA) = |A|^{n-2}A$

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

- C. Statement -1 is True, Statement -2 is False.
- D. Statement -1 is False, Statement -2 is True.

Answer: A

3. Statement -1 : if
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, then adj(adj A)=A
Statement -2 If A is a square matrix of order

 $adj(adjA) = \left|A
ight|^{n-2}A$

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.

n. then

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: A

4. If nth-order square matrix A is a orthogonal, then $\left|\mathrm{adj}\;(\mathrm{adj}\;A)\right|$ is

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

- C. Statement -1 is True, Statement -2 is False.
- D. Statement -1 is False, Statement -2 is True.

Answer: C

Watch Video Solution

5. Let A be a non-singular square matrix of order n. Then; `|adjA| =

6. Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be a square matrix of order n such that $a_{ij} = egin{cases} 0 & ext{if} & i
eq j \\ i & ext{if} & i=j \end{bmatrix}$

Statement -2 : The inverse of A is the matrix $B = \left \lceil b_{ij}
ight
ceil$ such that

$$b_{ij} = egin{cases} 0 & ext{ if } i
eq j \ rac{1}{i} & ext{ if } i = j \end{cases}$$

Statement -2 : The inverse of a diagonal matrix is a scalar matrix.

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: C

Watch Video Solution

7. Let A be 2 x 2 matrix.Statement I adj(adjA) = A Statement II|adjA| = |A|

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: B

Watch Video Solution

8. Let A be a 2 imes 2 matrix with real entries. Let I be the 2 imes 2

identity matrix. Denote by tr(A), the sum of diagonal

entries of A. Assume that $A^2 = I$.

Statement -1 If $A
eq I \, \, {
m and} \, \, A
eq -I$ then det A = -I

Statement-2 If $A \neq I$ and $A \neq -1$, then $tr(A) \neq 0$.

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: C

Watch Video Solution

9. Let A be an orthogonal square matrix.

Statement -1 : A^{-1} is an orthogonal matrix.

Statement -2: $(A^{-1})^{T} = (A^{T})^{-1}$ and $(AB)^{-1} = B^{-1}A^{-1}$

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: A

Watch Video Solution

10. Let AX = B be a system of n smultaneous linear equations with n unknowns.

Statement -1 : If |A|=0 and (adjA)B
eq 0, the system is consistent

with infinitely many solutions.

Statement -2 : A (adjA) = |A|I

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: D

Watch Video Solution

11. Let a be a 2×2 matrix with non-zero entries and let $A^2 = I$, where I is a 2×2 identity matrix. Define Tr(A)= sum of diagonal elements of A and |A| = determinant of matrix A.

Statement 1 : Tr (A) = 0

Statement 2 : |A| = 1

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: C

Watch Video Solution

12. Let A and B two symmetric matrices of order 3.

Statement 1: A(BA) and (AB)A are symmetric matrices.

Statement 2 : AB is symmetric matrix if matrix multiplication of A with B is commutative.

A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement -2 is True, Statement -2 is not a

correct explanation for Statement -1.

C. Statement -1 is True, Statement -2 is False.

D. Statement -1 is False, Statement -2 is True.

Answer: B

Watch Video Solution

Exercise

1. If an upper triangular matrix $A=\left[a
ight]_{n imes n}$ the elements $a_{1}=0$ for

A. it is a square matrix and $a_{ij} = 0, \, i < j$

B. it is a square matrix and $a_{ij}=0,\,i>j$

C. it is not a square matrix and $a_{ij}=0,\,i>j$

D. it is not a square matrix and $a_{ij} = 0, \, i < j$

Answer: B

2. If A is any mxn matrix and B is a matrix such that AB and BA are both defined, then B is a matrix of order

A. m imes n

 $\mathsf{B.}\,n\times m$

 $\mathsf{C}.\,n imes n$

D. m imes m

Answer: B

3. If
$$E(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 then $E(\alpha)E(\beta) =$
A. $E(0^{\circ})$
B. $E(\alpha\beta)$
C. $E(\alpha + \beta)$

D.
$$E(\alpha - \beta)$$

Answer: C

Watch Video Solution

4. If
$$E(\theta) = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$
, and θ and ϕ differ by an odd multiple of $\pi/2$, then $E(\theta)E(\phi)$ is a

A. null matrix

B. unit matrix

C. diagonal matrix

D. none of these

Answer: A

5. If $A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$ and $B = \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$ are two matrices such that AB is the null matrix, then

A. 0

B. multiple of π

C. an odd multiple of $\pi/2$

D. none of these

Answer: C

6. The matrix X in the equation AX=B, such that

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \text{ is given by}$$

$$A \cdot \begin{bmatrix} 1 & 4 \\ -1 & 0 \end{bmatrix}$$

$$B \cdot \begin{bmatrix} 1 & -4 \\ 1 & 0 \end{bmatrix}$$

$$\mathsf{C}. \begin{bmatrix} 1 & -4 \\ 0 & -1 \end{bmatrix}$$

D. none of these

Answer: C

Watch Video Solution

7. If I=[1001] , J=[01-10] and $B=[\cos heta\sin heta-\sin heta\cos heta]$, then

B equals $I\cos\theta + J\sin\theta$ (b) $I\sin\theta + J\cos\theta$ (c) $I\cos\theta - J\sin\theta$ (d)

 $I\cos heta+J\sin heta$

A. $I\cos heta+j\sin heta$

B. $I\sin\theta + j\cos\theta$

C. I cos theta-jsintheta`

 $\mathsf{D}. - I\cos heta + j\sin heta$

Answer: A

8. If A is a square matrix such that $AA^T = I = A^T A$, then A is

A. a symmetric matrix

B. a skew-symmetric matrix

C. a diagonal matrix

D. an orthogonal matrix.

Answer: D

Watch Video Solution

9. If A is an orthogonal matrix then A^{-1} equals

 $\mathsf{a}.A^T$

 $\mathsf{b.}\,A$

 $\mathsf{c.}\,A^2$

d. none of these

A. A

 $\mathsf{B}.\,A^T$

 $\mathsf{C}.\,A^2$

D. none of these

Answer: B

Watch Video Solution

lf

 $D=diag(d_1,d_2,d_3,\ldots,d_n) \hspace{0.2cm} ext{where} \hspace{0.2cm} d
eq 0 \hspace{0.2cm} ext{for all} \hspace{0.2cm} I=1,2,\ldots,n, \hspace{0.2cm} ext{then}$

is equal to

10.

A. D

B.
$$diag(d_1^{-1}d_2^{-1},...,d_n^{-1})$$

C. In

D. none of these

Answer: B

11. If
$$A = egin{bmatrix} ab & b^2 \ -a^2 & -ab \end{bmatrix}$$
 , then A is

A. Idempotent

B. involutory

C. nilpotent

D. scalar

Answer: C

Watch Video Solution

12. If A is a 3×3 matrix and B is a matrix such that $A^T B$ and $B A^T$ are both defined, then order of B is

A. 3 imes 4

 ${\rm B.3\times3}$

 $\mathsf{C.4} imes 4$

 ${\rm D.}\,4\times3$

Answer: A

13. Let
$$A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$$
 and $A^{-1} = xA + yI$, then the values of x and y

are

A.
$$x = -\frac{1}{11}, y = \frac{2}{11}$$

B. $x = -\frac{1}{11}, y = -\frac{2}{11}$
C. $x = \frac{1}{11}, y = \frac{2}{11}$
D. $x = \frac{1}{11}, y = -\frac{2}{11}$

Answer: A

14. If A and B are square matrices of same order such that AB = A and BA =

B, then

A. A, B are idempotent

B. only A is idempotent

C. only B is idempotent

D. none of these

Answer: A

Watch Video Solution

15. The inverse of an invertible symmetric matrix is a symmetric matrix.

A. symmetric

B. skew-symmetric

C. diagonal matrix

D. none of these

Answer: A

16. The inverse of a diagonal matrix is a. a diagonal matrix b. a skew symmetric matrix c. a symmetric matrix d. none of these

A. a symmetric matrix

B. a skew-symmetric matrix

C. a diagonal matrix

D. none of these

Answer: C

Watch Video Solution

17. If A is a symmetric matrixfand $n \in N$, then A^n is

A. symmetric

B. skew-symmetric

C. a diagonal matrix

D. none of these

Answer: A

Watch Video Solution

18. If A is a skew-symmetric matrix and n is odd positive integer, then A^n is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of

these

A. a symmetric matrix

B. skew-symmetric matrix

C. diagonal matrix

D. none of these

Answer: D

Watch Video Solution

19. If A is a skew-symmetric matrix and n is odd positive integer, then A^n is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

A. a symmetric matrix

B. a skew-symmetric matrix

C. a diagonal matrix

D. none of these

Answer: B

20. If A is a skew-symmetric matrix and n is odd positive integer, then A^n is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

A. a symmetric matrix

B. a skew-symmetric matrix

C. a diagonal matrix

D. none of these

Answer: A

Watch Video Solution

21. If $A = ig[a_{ij}ig]$ is a skew-symmetric matrix of order n, then $a_{ij} =$

A. 0 for some i

B. 0 for all I = 1,2,...,n

C. 1 for some i

D. 1 for all I = 1,2,...,n

Answer: B

22. If A and B are symmetric matrices of the same order, write whether

AB - BA is symmetric or skew-symmetric or neither of the two.

A. symmetric matrix

B. skew-symmetric matrix

C. null matrix

D. unit matrix

Answer: B

23. If A and B are square matrices of the same order such that AB=BA , then show that $(A+B)^2=A^2+2AB+B^2$.

A. AB = I

 $\mathsf{B.}\,BA=I$

 $\mathsf{C}.\,AB=BA$

D. none of these

Answer: C

Watch Video Solution

24. The trace of the matrix A = [1 - 570791189] is (a) 17 (b) 25 (c) 3 (d) 12

A. 17

B. 25

C. 3

D. 12

Answer: A

25. If A is a skew- symmetric matrix, then trace of A is: 1.) 1 2.) -1 3.) 04.)none of these

A. 1

B. -1

C. 0

D. none of these

Answer: C

26. If
$$A = \begin{bmatrix} 1 & x \\ x^7 & 4y \end{bmatrix}$$
, $B = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}$ and $adjA + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then

the values of x and y are respectively

A. (1,1)

B. (-1,1)

C. (1,0)

D. none of these

Answer: A

Watch Video Solution

27. If A is a square matrix of order n imes n and k is a scalar, then adj(kA) is equal to (1) kadjA (2) k^nadjA (3) $k^{n-1}adjA$ (4) $k^{n+1}adjA$

A. k adj A

 $\mathsf{B}.\,k^nadjA$

 $\mathsf{C}.\,k^{n\,-\,1}adjA$

D. $k^{n+1}adjA$

Answer: C

28. If A is a singular amtrix, then adj A is

A. singular

B. non-singular

C. symmetric

D. not defined

Answer: A

Watch Video Solution

29. If A is a non singular square matrix; then $adj(adjA) = |A|^{n-2}A$

30. If A is a singular amtrix, then adj A is

A. identity matrix

B. null matrix

C. scalar matrix

D. none of these

Answer: B

Watch Video Solution

31. If
$$A = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$$
 and $A. (adjA) = k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then the value

of k is

A. $\sin x \cos x$

B. 1

C. 2

Answer: B

Watch Video Solution

32. If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, prove that $A^n = \begin{bmatrix} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{bmatrix}$, for all positive integers n.
A. $2^n A$
B. $2^{n-1} A$
C. nA
D. none of these

Answer: B

33. If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$ then A. $\alpha = a^2 + b^2, \beta = ab$ B. $\alpha = a^2 + b^2, \beta = 2ab$ C. $\alpha = a^2 + b^2, \beta = a^2 - b^2$ D. $\alpha = 2ab, \beta = a^2 + b^2$

Answer: B

Watch Video Solution

34. If A is an invertible square matrix; then $adjA^T = \left(adjA
ight)^T$

- A. 2|A|
- $\mathsf{B}.\,2|A|I$
- C. null matrix
- D. unit matrix

Answer: C

35. If
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$$
 and $A^2 - kA - 5I_2 = 0$ then $k =$
A. 3
B. 5
C. 7
D. -7

Answer: B

36. If $A = \left[a_{ij}
ight]$ is a scalar matrix, then trace of A is

A.
$$\sum_i \sum_j a_{ij}$$

B.
$$\sum_{i} a_{ij}$$

C. $\sum_{j} a_{ij}$
D. $\sum_{i} a_{ij}$

Answer: D

Watch Video Solution

37. If $A = ig[a_{ij}ig]$ is a scalar matrix of order n imes n such that $a_{ii} = k$ for all i

, then trace of A is equal to nk (b) n+k (c) $\displaystyle rac{n}{k}$ (d) none of these

A. nk

B. n+k

C. n/k

D. none of these

Answer: A

38. If $A=ig[a_{ij}ig]$ is a scalar matrix of order n imes n such that $a_{ii}=k$ for all i , then trace of A is equal to nk (b) n+k (c) $rac{n}{k}$ (d) none of these

A. nk

B. n+k

C. nk

D. kn

Answer: D

39. If $A = ig[a_{ij}ig]$ is a scalar matrix of order n imes n and k is a scalar, then |kA| =

A. $k^n |A|$

 $\mathsf{B}.\,k|A|$

$$\mathsf{C}.\,k^{n-1}|A|$$

D. 0

Answer: A

Watch Video Solution

40. If
$$f(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$
, then prove that
 $[F(\alpha)]^{-1} = F(-\alpha)$.
A. $F(-\alpha)$
B. $F(\alpha^{-1})$
C. $F(2\alpha)$

D. none of these

Answer: A
41. If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $G(y) = \begin{bmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{bmatrix}$, then $[F(x)G(y)]^{-1}$ is equal to

A.
$$F(-x)G(-y)$$

B. $F(x^{-1})_G(y^{-1})$
C. $G(-y)F(-x)$
D. $G(y^{-1})F(x^{-1})$

Answer: C

D Watch Video Solution

42. Find the matrix A satisfying the matrix equation

$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix}$$

$$\begin{array}{c} \mathsf{C} \cdot \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \\ \mathsf{D} \cdot \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Answer: A

43. If
$$\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
, then $a = 1, \ b = 0$ (b) $a = \cos 2\theta, \ b = \sin 2\theta$ (c) $a = \sin 2\theta, \ b = \cos 2\theta$ (d) none of these

A. a = 1, b = 1

B. $a = \cos 2 heta, b = \sin 2 heta$

C. $a=\sin 2 heta, b=\cos 2 heta$

D. none of these

Answer: B

44. If A and B are two matrices such that A+B and AB are both defind, then

A. A and B can be any two matrices

B. A and B are square matrices not necessarily of the same order

C. A, B are square matries of the same order

D. number of columns of A is same as the number of rows of B

Answer: C

Watch Video Solution

45. If a matrix A is such that $3A^3 + 2A^2 + 5A + I = 0$, then A^{-1} is equal to $-(3A^2 + 2A + 5)$ (b) $3A^2 + 2A + 5$ (c) $3A^2 - 2A - 5$ (d) none of these

A.
$$-\left(3A^2+2A+5
ight)$$

B. $3A^2 + 2A + 5$

 $C. 3A^2 - 2A - 5$

D. none of these

Answer: A

Watch Video Solution

46. Let A and B be matrices of order 3 imes 3. If AB = 0, then which of the

following can be concluded?

- A. A = O and B = O
- $\mathsf{B}.\,|A|=O \text{ and } |B|=O$
- C. either absA=Oor absB=O`

 $\mathsf{D}.\, A = O \text{ or } B = O$

Answer: C

47. If A is an invertible matrix, then which of the following is correct

A. A^{-1} is multivalued B. A^{-1} is singular C. $\left(A^{-1}
ight)^T
eq \left(A^T
ight)^{-1}$ D. |A|
eq 0

Answer: D

Watch Video Solution

48. Which of the following is/are incorrect?

(i) adjoint of a symmetric matrix is symmetric

(ii) adjoint of a unit matrix is a unit matrix

(iii) A(adjA)=(adjA)A=|A|I

(iv) adjoint of a diagonal matrix is a diagonal matrix

A. (i)

B. (ii)

C. (iii) and (iv)

D. none of these

Answer: D

Watch Video Solution

49. If $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is to be square root of two-rowed unit matrix, then α , β and γ should satisfy the relation. a. $1 - \alpha^2 + \beta\gamma = 0$ b. $\alpha^2 + \beta\gamma = 0$ c. $1 + \alpha^2 + \beta\gamma = 0$ d. $1 - \alpha^2 - \beta\gamma = 0$ A. $1 + \alpha^2 + \beta\gamma = 0$

- B. $1-lpha^2-eta\gamma=0$
- C. $1-lpha^2+eta\gamma=0$
- D. $lpha^2-eta\gamma-1=0$

Answer: D

50. If for matrix $A, A^2 + l = 0$, where I is the identity matrix, then A equals

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Answer: B

51. If $A = \left[a_{ij}
ight]_{m imes n}$ is a matrix of rank r then (A) $r = \min\left\{m,n
ight\}$ (B) $r \leq \min\left\{m,n
ight\}$ (C) $r < \min\left\{m,n
ight\}$ (D) none of these

A. $r = \min(m, n)$

- $\texttt{B}.\,r<\,\min\,(m,n)$
- $\mathsf{C}.\,r<\,\min\,(m,n)$

D. none of these

Answer: C

Watch Video Solution

52. If I_n is the identity matrix of order n, then rank of I_n is

A. 1

B. n

C. 0

D. none of these

Answer: B

53.
$$A = ig[a_{ij}ig]_{m imes n}$$
 is a square matrix, if
A. $m < n$
B. $m > n$
C. $m = n$

D. None of these

Answer: C

Watch Video Solution

54. The rank of a null matrix is

A. 0

B. 1

C. does not exist

D. none of these

Answer: C

55. If A is a matrix such that there exists a square submatrix of order r which is non-singular and eveny square submatrix or order r + 1 or more is singular, then

A. rank of A is r

B. rank of A is greater than r

C. rank of A is less than r

D. none of these

Answer: B

56. Which of the following is correct?

A. Determinant is a sqaure matrix

Β.

C. Determinnant is a number associated to a square matrix

D. none of these

Answer: C

Watch Video Solution

57. If a square matrix A is orthogonal as well as symmetric, then

A. A is involutory matrix

B. A is idempotent matrix

C. A is a diagonal matrix

D. none of these

Answer: A Watch Video Solution **58.** Let A be a skew-symmetric of odd order, then |A| is equal to A. 0 B. 1 C. -1 D. none of these Answer: A

59. Let A be a skew-symmetric matrix of even order, then |A|

A. is a square

B. is not a square

C. is always zero

D. none of these

Answer: A

Watch Video Solution

60. If A is an orthogonal matrix, then

- A. |A|=0
- $\mathsf{B.}\left|A\right| = \ \pm 1$
- $\mathsf{C.}\left|A\right| = \ \pm \ 2$

D. none of these

Answer: B

61. Let A be a non-singular square matrix of order n. Then; `|adjA| =

A. $\left|A
ight|^{n}$

- $\mathsf{B.}\left|A\right|^{n-1}$
- $\mathsf{C.}\left|A\right|^{n-2}$
- D. none of these

Answer: B

62. Let $A=ig[a_{ij}ig]_{n imes n}$ be a square matrix and let c_{ij} be cofactor of a_{ij} in A. If C= $ig[C_{ij}ig]$, then

- A. |C| = |A|
- $\mathsf{B.}\left|C\right|=\left|A\right|^{n-1}$
- $\mathsf{C}.\left|C\right|=\left|A\right|^{n-2}$

D. none of these

Answer: B Watch Video Solution 63. If A is a non-singlular square matrix of order n, then the rank of A is A. equal to n B. less than n

Answer: A

Watch Video Solution

C. greater than n

D. none of these

64. If A is a matrix such that there exists a square submatrix of order r which is non-singular and eveny square submatrix or order r + 1 or more

is singular, then

A. rank (A) = r + 1

B. rank (A) = r

C. rank (A) gt r

 $\mathsf{D.\,rank} \ \ (A) < r+1$

Answer: B

Watch Video Solution

65. Let A be a matrix of rank r. Then,

A.
$$\mathrm{rank}~\left(A^{T}
ight)=r$$

 ${\sf B.\,rank} \ \left(A^T\right) < r$

 $\mathsf{C.\,rank} \hspace{.1in} \left(A^T \right) > r$

D. none of these

Answer: A

66. Let $A = ig[a_{ij}ig]_{m imes n}$ be a matrix such that $a_{ij} = 1$ for all I,j. Then ,

A. rank (A) gt 1

B. rank (A) = 1

C. rank (A) = m

D. rank (A) = n

Answer: B

Watch Video Solution

67. If A is a non-zero column matrix of order m imes 1 and B is a non-zero row matrix order 1 imes n, then rank of AB equals

A. m

B. n

C. 1

D. none of these

Answer: C

Watch Video Solution

Answer: C

69. If A is an invertible matrix, then $\det(A-1)$ is equal to

A. det (A)

$$\mathsf{B.}\,\frac{1}{\det(A)}$$

C. 1

D. none of these

Answer: B

Watch Video Solution

70. If A and B are two matrices such that rank of A = m and rank of B = n,

then

A. rank (AB)= mn

B. rank $(AB) > \operatorname{rank} (A)$

C. rank $(AB) > \operatorname{rank} (B)$

D. rank (AB) < min (rank A, rank B)

Answer: D

71. If A = [3424] , B = [-2-20-1] , then $(A+B)^{-1}$ (a) is a skew-symmetric matrix (b) $A^{-1} + B^{-1}$ (c) does not exist (d) none of these

A. is a skew-symmetric matrix

B. $A^{-1} + B^{-1}$

C. does not exist

D. none of these

Answer: D

72. Let $A = \left[a000a000a
ight]$, then A^n is equal to $\left[a^n000a^n000a
ight]$ (b)

 $[a^n 000a 000a]$ (c) $[a^n 000a^n 000a^n]$ (d) [na 000na 000na]

Answer: C

Watch Video Solution

73.
$$IfA = egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix}, then \lim_{x_> \infty} \; rac{1}{n} A^n$$
 is

A. a null matrix

B. an identity matrix

$$\mathsf{C}. \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

D. none of these

Answer: A

74. If
$$A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $AB = I_3$, then

x+y equals (a) 0 (b) -1 (c) 2 (d) none of these

A. 0

B. -1

C. 2

D. none of these

Answer: A

75. If
$$A = egin{bmatrix} 1 & a \ 0 & 1 \end{bmatrix}$$
 then find $\lim_{n - \infty} \; rac{1}{n} A^n$

$$A. \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$$
$$B. \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$C. \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

D. none of these

Answer: A

Watch Video Solution

76. If the matrix
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is commutative with matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then
A. $a = 0, b = c$
B. $b = 0, c = d$
C. $c = 0, d = a$
D. $d = 0, a = b$

Answer: C

77. If
$$A = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 \\ k & 0 \end{bmatrix}$ such that
 $A^{100} - I = \lambda B$, then $\lambda =$
A 99
B. 100
C. 10
D. 49
Answer: B
Watch Video Solution

78. If matrix A has 180 elements, then the number of possible orders of A

is

A. 18

B. 10

C. 36

D. 35

Answer: A

Watch Video Solution

79. A 3×3 matrix A, with 1st row elements as 2,-1,-1 respectively, is modified as below to get another matrix B.

 R_1 elements of A go to R_3 of matrix C

 R_2 elements of A go to R_1 of matrix C

 R_2 elements of A to R_1 of matrix C

 R_3 elements of A go to R_2 fo matrix C

Now, below operations are done on C as follow,

 C_1 elements of C go to C_3 of B

 C_2 elements of C go to C_1 of B

 C_3 elements of C go to C_2 of B

It is found that A = B, then

A. A is symmetric matrix

B. A is an upper triangular matrix

C. A is singular matrix

D. none of these

Answer: C

Watch Video Solution

Chapter Test

1. If A is an invertible matrix and B is a matrix, then

A. rank (AB) = rank (A)

B. rank (AB) = rank (B)

C. rank (AB) gt rank (A)

D. rank (AB) gt rank (B)

Answer: b

- A. 3 imes 1
- $\textbf{B.1}\times 1$
- ${\rm C.1}\times3$
- ${\rm D.}\,3\times3$

Answer: b

3. If
$$A = egin{bmatrix} a & 0 & 0 \ 0 & b & 0 \ 0 & 0 & c \end{bmatrix}$$
, then A^{-1} , is

A.
$$\begin{bmatrix} 1/a & 0 & 0 \\ 0 & 1/b & 0 \\ 0 & 0 & 1/c \end{bmatrix}$$

B.
$$\begin{bmatrix} -1/a & 0 & 0 \\ 0 & -1/b & 0 \\ 0 & 0 & -1/c \end{bmatrix}$$

C.
$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1/c \end{bmatrix}$$

D. none of these

Answer: a

4. The inverse of the matrix
$$\begin{bmatrix} 1 & 3 \\ 3 & 10 \end{bmatrix}$$
 is equal to

A.
$$\begin{bmatrix} 10 & 3 \\ 3 & 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 10 & -3 \\ -3 & 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & 3 \\ 3 & 10 \end{bmatrix}$$

D.
$$\begin{bmatrix} -1 & -3 \\ -3 & -10 \end{bmatrix}$$

Answer: b

5. If
$$A = \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}$$
, then $A^{-1} =$
A. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
B. $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
C. $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$
D. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Answer: a

6. If
$$X=egin{bmatrix} 3&-4\ 1&-1 \end{bmatrix}$$
, the value of X^n is equal to A. $egin{bmatrix} 3n&-4n\ n&-n \end{bmatrix}$

$$\mathsf{B}. \begin{bmatrix} 2+n & 5-n \\ n & -n \end{bmatrix}$$
$$\mathsf{C}. \begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$$

D. none of these

Answer: d

7. If
$$A = \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}$$
, then $A^{-1} =$
A. $\begin{bmatrix} 1 & -2 \\ -3 & 5 \end{bmatrix}$
B. $\begin{bmatrix} -1 & 2 \\ 3 & -5 \end{bmatrix}$
C. $\begin{bmatrix} -1 & -2 \\ -3 & -5 \end{bmatrix}$
D. $\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$

Answer: b

8. For the system of equations:

x + 2y + 3z = 1

2x + y + 3z = 2

5x + 5y + 9z = 4

A. there is only one solution

B. there exists infinitely many solution

C. there is no solution

D. none of these

Answer: a

9. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, then $A^2 =$
A. $\begin{bmatrix} 8 & -5 \\ -5 & 3 \end{bmatrix}$
B. $\begin{bmatrix} 8 & -5 \\ 5 & 3 \end{bmatrix}$

$$C. \begin{bmatrix} 8 & -5 \\ -5 & -3 \end{bmatrix}$$
$$D. \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

Answer: d

10. if
$$A = \begin{bmatrix} 1 & x + 2 \\ 2x - 3 & x + 1 \end{bmatrix}$$
 is symmetric, then x is equal to
A. 3
B. 5
C. 2
D. 4
Answer: b

11. If $A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then A is equal to A. $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ B. $\begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$ C. $\begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 1/3 \end{bmatrix}$

D. none of these

Answer: c

$$12. \begin{bmatrix} -6 & 5 \\ -7 & 6 \end{bmatrix}^{-1} = \\
A. \begin{bmatrix} -6 & 5 \\ -7 & 6 \end{bmatrix} \\
B. \begin{bmatrix} 6 & -5 \\ -7 & 6 \end{bmatrix} \\
C. \begin{bmatrix} 6 & 5 \\ 7 & 6 \end{bmatrix} \\
D. \begin{bmatrix} 6 & -5 \\ 7 & -6 \end{bmatrix}$$

Answer: a

D. A is square

Answer: b

Watch Video Solution

14. If I_3 is the identily matrix of order 3, then $\left(I_3
ight)^{-1}=$

B. $3I_{3}$

 $\mathsf{C}.\,I_3$

D. not necessarily exists.

Answer: c

Watch Video Solution

15. Let a, b, c be real numbers. The following system of equations in x, yand $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1, -\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1$ has a. no solution b. unique solution c. infinitely many solutions d. finitely many solutions

A. no solution

B. unique solution

C. infinitely many solutions

D. finitely many solutions

Answer: b

16. If A and B are two matrices such that A+B and AB are both defind, then

A. A & B are two matrices not necessarily of same order

B. A and B are square matrices of same order

C. number of columns of A = number of rows of B

D. none of these

Answer: b

Watch Video Solution

17. A and B are tow square matrices of same order and A' denotes the transpose of A, then
A.
$$(AB)' = B'A'$$

B. $(AB)' = A'B'$
C. $AB = 0 \Rightarrow |A| = 0 \text{ or } |B| = O$
D. $AB = 0 \Rightarrow A = 0 \text{ or } B = 0$

Answer: a

Watch Video Solution

18. STATEMENT-1:
 The
 lines

 $a_1x + b_1y + c_1 = 0a_2x + b_2y + c_2 = 0, a_3x + b_3y + c_2 = 0$ are

 concurrent if
 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$ are

STATEMENT-2: The area of the triangle formed by three concurrent lines is

always zero.

A. more than two solutions

B. one trivial and one non-trivial solutions

C. no solution

D. only trivial solution (0,0,0)

Watch Video Solution

Answer: a

Answer: a

20. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |3AB| is equal to

A. -9

B. -81

C. -27

D. 81

Answer: a

Watch Video Solution

21. If the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are collinear, then the

rank of the matrix $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$ will always be less than

A. 3

C. 1

D. none of these

Answer: a

Watch Video Solution

22. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$.

If B is the inverse of A, then find the value α .

A. 5

B. -1

C. 2

D. -2

Answer: a

Watch Video Solution

23. Let $A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ Then only correct statement about the

matrix A is (A) A is a zero matrix (B) $A^2 = 1$ (C) A^{-1} does not exist (D) A = (-1) I where I is a unit matrix

A. $A^2 = I$

B. A = -I, where I is a unit matrix

C. A^{-1} does not exist

D. A is a zero matrix

Answer: c

Watch Video Solution

24. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $adjA = \begin{bmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{bmatrix}$, then x + y =

A. 6

B. -1

C. 3

D. 1

Answer: a

Watch Video Solution

Answer: b

Watch Video Solution

26. If n is a natural number. Then $\begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}^n$, is

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 if n is even
B. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ if n is odd
C. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ if n is a natural number

D. none of these

Answer: a

Watch Video Solution

27. Given x=cy+bz,y=az+cx and that $a^2 + b^2 + c^2$ +2abc =1.

A. 2

B.a + b + c

C. 1

D.ab + bc + ca

Answer: c

Answer: b

Watch Video Solution

29. If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, I is the unit matrix of order 2 and a, b are arbitray constants, then $(aI + bA)^2$ is equal to

A. a^2I-abA B. $a^2I+2abA$

 $\mathsf{C}.\,a^2I+b^2A$

D. none of these

Answer: d

Watch Video Solution

30. If
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
, then which one of the following is not

correct?

A. A is orthogonal matrix

B. A' is orthogonal matrix

 $\mathsf{C}.\left|A\right|=1$

D. A is not invertible

Answer: d

