©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

MEAN VALUE THEOREMS

Illustration

1. Rolle's theorem is not applicable to the function
$f(x)=|x|$ for $-2 \leq x \leq 2$ becase
A. f is continuus on [$-2,2$]

B. f is not derivable at $x=0$

C. $f(-2)=f(x)$
D. f is not a constant function

Answer: B

D Watch Video Solution

2. A function is defined by
$f(x)=2+(x-1)^{2 / 3}$ on $[0,2]$. Which of the following is not correct?
A. f is not derivable in $(0,2)$
B. f is not continuous in $[0,2]$
C. $f(0)=f(2)$
D. Rolle's theorem is applicable on $[0,2]$

Answer: D

- Watch Video Solution

3. A function f is defined by $f(x)=e^{x} \sin x$ in
$[0, \pi]$. Which of the following is not correct?
A. f is continuous in $[0, \pi]$
B. f is defferebtiable in $(0, \pi)$
C. $f(0)=f(\pi)$
D. Rolle's theorme is not applicable to $f x$ on

$$
[0, \pi]
$$

Answer: D

- Watch Video Solution

$$
\text { 4. } f(x)=x(x+3) e^{-x / 2} \text { in }[-3,0]
$$

A. 0
B. -1
C. -2
D. -3

Answer: C

- Watch Video Solution

5. If $f(x)$ satisfies the condition for Rolle's heorem
on $[3,5]$ then $\int_{3}^{5} f(x) \mathrm{dx}$ equals
A. 2
B. -1
C. 0
D. $-4 / 3$

Answer: D

D Watch Video Solution

6. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval (0,1).
A. at least one root
B. at most one root
C. no root
D. none of these

Answer: A

D Watch Video Solution

7. Let $f(x)=e^{x}, x \in[0,1]$, then a number c of the Largrange's mean value theorem is
A. $\log _{e}(e-1)$
B. $\log _{e}(e+1)$
C. $\log _{e} e$
D. none of these

(D) Watch Video Solution

8. If $0<a<b<\frac{\pi}{2}$ and $f(a, b)=\frac{\tan b-\tan a}{b-a}$, then
A. $f(a, b) \geq 2$
B. $f(a, b)>2$
C. $f(a, b) \leq 2$
D. none of these

Answer: D

D Watch Video Solution

Section I Solved Mcqs

1. The value of c prescribed by Largrange's mean

$$
\begin{aligned}
& \text { value } \\
& f(x)=\sqrt{x^{2}-4}, a=2 \text { and } b=3 \text { is }
\end{aligned}
$$

A. 2.5
B. $\sqrt{5}$
C. $\sqrt{3}$
D. $\sqrt{3}+1$

- Watch Video Solution

2. The value of c in Rolle's theorem when

$$
f(x)=2 x^{3}-5 x^{2}-4 x+3, x \in[1 / 2,3] \text { is }
$$

A. 2
B. $-\frac{1}{3}$
C. -2
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

3. If $a+b+c=0$, then, the equation $3 a x^{2}+2 b x+c=0$ has , in the interval (0,1).
A. at least one root
B. at most one root
C. no root
D. none of these

Answer: A

- Watch Video Solution

4. Let a, b, c be nonzero real numbers such that
$\int_{0}^{1}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$
$=\int_{0}^{2}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x=0 \quad$ Then
show that the equation $a x^{2}+b x+c=0$ will have one root between 0 and 1 and other root between 1 and 2.
A. one root between 0 and 1 and other root between 1 and 2
B. both roots between 0 and 1
C. both the roots between 1 and 2
D. none of these

Answer: A

D Watch Video Solution

5. If $27 a+9 b+3 c+d=0$ then the equation
$4 a x^{3}+3 b x^{2}+2 c x+d$ has at leat one real root
lying between
A. 0 and 1
B. 1 and 3
C. 0 and 3
D. none of these

Answer: C

- Watch Video Solution

6. Which of the following is/are correct? Between
any two roots of $e^{x} \cos x=1$, there exists at least one root of $\tan x=1$. Between any two roots of $e^{x} \sin x=1$, there exists at least one root of $\tan x=-1$. Between any two roots of $e^{x} \cos x=1$, there exists at least one root of $e^{x} \sin x=1$. Between any two roots of $e^{x} \sin x=1$, there exists at least one root of $e^{x} \cos x=1$.
A. at least one root
B. at most one root
C. exuctly one root
D. no root

Answer: A

D Watch Video Solution

7. If the functions $f(x)$ and $g(x)$ are continuous on [a, b] and differentiable on (a, b) then in the interval
(a, b) the equation

$$
\left|\begin{array}{ll}
f^{\prime}(x) & f(a) \\
g^{\prime}(x) & g(a)
\end{array}\right|=\frac{1}{a-b}=\left|\begin{array}{ll}
f(a) & f(b) \\
g(a) & g(b)
\end{array}\right|
$$

A. has at least one root
B. has exactly one root
C. has at most one root
D. no root

Answer: A

- Watch Video Solution

8. Let f be a function which is continuous and
differentiable for all real \quad x. If
$f(2)=-4$ and $f^{\prime}(x) \geq 6$ for all $x \in[2,4]$,
then
A. $f(4)<8$
B. $f(4) \geq 8$
C. $f(4) \geq 2$
D. none of these

Answer: B
9. The value of C (if exists) in Lagrange's theorem
for the function $|x|$ in the interval $[-1,1]$ is
A. 0
B. $1 / 2$
C. $-1 / 2$
D. non-existent in the internal

Answer: D

- Watch Video Solution

10. The equation $\sin x+x \cos x=0$ has at least

 one root in$$
\begin{aligned}
& \text { A. }(-\pi / 2,0) \\
& \text { B. }(0, \pi) \\
& \text { C. }(-\pi / 2, \pi / 2)
\end{aligned}
$$

D. none of these

Answer: B

- Watch Video Solution

11. Let $f(x)=a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$ in R and $f(x)=0$ has a positive root. α. Then,
A. $\mathrm{f}^{\prime}(\mathrm{x})=0$ has a root α_{1} such that $0 \leq \alpha_{1} \leq \alpha_{0}$
B. $f^{\prime}(x)=0$ has at leat one real root
C. $f^{\prime}(x)=0$ has at least two real roots
D. all of the above

Answer: D

- Watch Video Solution

12. If $f^{\prime \prime}(x) \leq 0$ for all $x \in(a, b)$ then $\mathrm{f}^{\prime}(\mathrm{x})=0$
A. exactly once in (a,b)
B. at most once in (a,b)
C. at leat once
D. none of these

Answer: B

D Watch Video Solution

13. In $[0,1]$ Lagrange's mean value theorem is not applicable to
A. $f(x) \begin{cases}\frac{1}{2}-x & x<\frac{1}{2} \\ \left(\frac{1}{2}-x\right)^{2} & x \geq \frac{1}{2}\end{cases}$
B. $f(x)=\left\{\left(\frac{\sin x}{x}, x \neq 0\right),(1, x=0):\right\}$
C. $f(x)=x|x|$
D. $f(x)=|x|$

Answer: A

- Watch Video Solution

14. It is given that the Rolles theorem holds for the function $f(x)=x^{3}+b x^{2}+c x, \quad x \in[1,2]$ at the point $x=\frac{4}{3}$. Find the values of b and c.
A. $b=8, c=-5$
B. $b=-5, c=8$
C. $b=5, c=-8$
D. $b=-5, c=-8$

Answer:

- Watch Video Solution

15. Let (x) satisfy the required of Largrange's

Meahn value theorem in $[0,3]$. If $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq \frac{1}{2}$ for all $x \in[0,2]$ then
A. $f(x) \leq 2$
B. $|f(x)| \leq 1$
C. $f(x)=2 x$
D. $f(x)=3$ for at least one ' x in [0.2]

Answer: B

- Watch Video Solution

16. If $f(x)$ satisfies the condition of Rolles theorem in [1, 2] then $\int_{1}^{2} f^{\prime}(x) d x$ is equal to (A) 1 (B) 3 (C) 0 (D) none of these
A. 3
B. 0
C. 1
D. 2

Answer: B

- Watch Video Solution

17. If the function $f(x)=x^{3}-6 x^{2}+a x+b$
satisfies Rolle's theorem in the interval $[1,3]$ and
$f^{\prime}\left(\frac{2 \sqrt{3}+1}{\sqrt{3}}\right)=0$, then
A. $a=-11$
B. $b=-6$
C. $a=6$
D. $a=11$

Answer: D

- Watch Video Solution

18. If $f(x)=x^{\alpha} \log x$ and $f(0)=0$, then the value of ' α ' for which Roole's theorem can be applied in $[0,1]$, is
A. -2
B. -1
C. 0
D. $\frac{1}{2}$

Answer: D

D Watch Video Solution

19. A value of C for which the coclusion of mean value theorem holds for the function $\mathrm{f}(\mathrm{x}) \log _{e} x$ on the interval $[1,3]$ is
A. $2 \log _{3} e$
B. $\frac{1}{2} \log _{3}$
C. $\log _{3} e$
D. $\log _{e} 3$

Answer: A

- Watch Video Solution

20. For a twice differentiable function $f(x), g(x)$ is defined as $g(x)=f^{\prime}(x)^{2}+f^{\prime}(x) f(x) o n[a, e]$.

If for `a
A. 7
B. 4
C. 6
D. 3

Answer: C

- Watch Video Solution

21. Let f be two differentiable function satisfying
$f(1)=1, f(2)=4, f(3)=9$, then
A. $f^{\prime \prime}(x)=2$ for all x in R
B. $f^{\prime}(x) 5=f^{\prime \prime}(x)$,$f or some \mathrm{x}$ in $[1,3]^{`}$
C. there exists at least one $x \in(1,3)$ such that

$$
f^{\prime \prime}(x)=2
$$

D. none of these

Answer: C

- Watch Video Solution

22. Let $f:[0,4] \in R$ be acontinuous function such that $|f(x)| \leq 2$ for all $x \in[0,4]$ and $\int_{0}^{4} f(t)=2$.

Then, for all $x \in[0,4]$, the value of $\int_{0}^{k} f(t) \mathrm{dt}$ lies in the in the interval

$$
\begin{aligned}
& \text { A. }[-6+2 x, 10-2 x] \\
& \text { B. }[-12+2 x,-7+2 x] \\
& \text { C. }[11-2 x, 17+2 x] \\
& \text { D. }[-8-2 x, 6-2 x]
\end{aligned}
$$

Answer: A

- Watch Video Solution

23. If $f(x)=(x-p)(x-q)(x-r) \quad$ where $p<q \ll r$, are real numbers, then the application, of Rolle's theorem on fleasds to
A. $(p+q+r)(p q+q r+r p)=3$
B. $(p+q+r)^{2}=3(p q+q r+r p)$
C. $(p+q+r)^{2}>3(p q+q r+r p)$
D. $(p+q+r)^{2}<3(p q+q r+r p)$

Answer: C

24. Let $f, g:[-1,2] \vec{R}$ be continuous functions which are twice differentiable on the interval ($-1,2$). Let the values of $f a n d g$ at the points
$-1,0 a n d 2$ be as given in the following table: , $x=-1, x=0, x=2 f(x), 3,6,0 g(x), 0,1$,
-1 In each of the intervals $(-1,0)$ and $(0,2)$ the
function $(f-3 g)^{\prime}$ ' never vanishes. Then the correct statement(s) is (are) $f^{\prime}(x)-3 g^{\prime}(x)=0$
has exactly three solutions in $(-1,0) \cup(0,2)$.
$f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solutions in
$(-1,0) \cdot f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solutions in $(-1,2) \cdot f^{\prime}(x)-3 g^{\prime}(x)=0$ has
exactly two solutions in $(-1,0)$ and exactly two solutions in (0,2).
A. $f^{\prime}(x)-3 g,(x)=0$ has exctly three
solution in $(-1,0) \cup(0,2)$
B. $f(x)-3 g^{\prime}(x)=0$ has exactly one solution in
$(-1,0)$
C. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(0,2)$
D. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$ and exactly one solution in $(0,2)$

Section li Assertion Reason Type

1. Prove that the equation $3 x^{5}+15 x-18=0$
has exactly one real root.

- Watch Video Solution

2. Statement-1 : If f is differentiable on an open interval (a,b) such that
$\mid f^{\prime}(x) \leq M$ for all $x \in(a, b)$, then
$|f(x)-f(y)| \leq M|x-y|$ for all $\in(a, b)$

Satement-2: If $f(x)$ is a continuous function defined on [a,b] such that it is differentiable on (a, b) then exists $c \in(\mathrm{a}, \mathrm{b})$ such that
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
A. Statement-1 is True, Statement-2 is Ture,

Statement-2 is a correct explanation for statement-1
B. Statement-1 is True, Statement-2 is Ture,

Statement-2 is not a correct explanation for statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 True.

Answer: A

D Watch Video Solution

3. Statement-1 : There is no value ofb k for which the equaiton $x^{3}-3 x+k=0$ has two distinct roots between 0 and 1 .

Statement-2: $x>\sin x$ for all $x>0$
A. Statement-1 is True, Statement-2 is Ture,

Statement-2 is a correct explanation for

statement-1

B. Statement-1 is True, Statement-2 is Ture,

Statement-2 is not a correct explanation for statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 True.

Answer: B
4. Statement-1: The equation $e^{x-1}+x-2=0$ has only one real root.

Statement-2 : Between any two root of an equation $f(x)=0$ there is a root of its derivative $f^{\prime}(x)=0$
A. Statement-1 is True, Statement-2 is Ture,

Statement-2 is a correct explanation for statement-1
B. Statement-1 is True, Statement-2 is Ture,

Statement-2 is not a correct explanation for statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 True.

Answer: A

D Watch Video Solution

Exercise

1. Let a and b be two distinct roots of a polynomial
equation $f(x)=0$ Then there exist at least one root
lying between a and b of the polynomial equation
A. $f(x)$
B. $f^{\prime}(x)$
C. $f^{\prime \prime}(x)$
D. none of these

Answer: B

- Watch Video Solution

2. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval (0,1).
A. $(0,1)$
B. $(1,2)$
C. $(2,3)$
D. none of these

Answer: A

- Watch Video Solution

3. Let $f(x) \operatorname{and} g(x)$ be two functions which are defined and differentiable for all $x \geq x_{0}$. If $f\left(x_{0}\right)=g\left(x_{0}\right)$ and $f^{\prime}(x)>g^{\prime}(x)$ for all $x>x_{0}$,
then prove that $f(x)>g(x)$ for all $x>x_{0}$.
A. $f(x)<g(x)$ for some $x>x_{0}$
B. $f(x)=g(x)$ for some $x>x_{0}$
C. $f(x)>g(x)$ for some $x>x_{0}$
D. none of these

Answer: C

- Watch Video Solution

4. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.
A. $f(6)=5$
B. $f(6)<5$
C. $f(6)<5$
D. $f(6)>8$

Answer: D

- Watch Video Solution

5. If the function $f(x)=x^{3}-6 x^{2}+a x+b$ defined on $[1,3]$ satisfies Rolles theorem for $c=\frac{2 \sqrt{3}+1}{\sqrt{3}}$ then find the value of $a a n d b$
A. $a=11, b=6$
B. $a=-11, b=6$
C. $a=11, b \in R$
D. none of these

Answer: C

- Watch Video Solution

6. Let
$\frac{a_{0}}{n+1}+\frac{a_{1}}{n}+\frac{a_{2}}{n-1}++\frac{a_{n-1}}{2}+a_{n}=0$.
Show that there exists at least real x between 0

$$
a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}++a_{n}=0
$$

A. at least one zero
B. at most one zero
C. only 3 zeros
D. only 2 zeros

Answer: A

- Watch Video Solution

7. The number of values of k for which the equation $x^{3}-3 x+k=0$ has two distinct roots
lying in the interval $(0,1)$ is (a) three (b) two (c) infinitely many (d) zero
A. three
B. two
C. infinitely many
D. no value of k satifies the requirement

Answer: D

8. if $f(x)=(x-4)(x-5)(x-6)(x-7)$ then, (A) $f^{\prime}(x)=0$ has four roots (B) three roots $f^{\prime}(x)=0$ lie in $(4,5)$
$\cup(5,6) \cup(6,7)$ (C) the equation $f^{\prime}(x)=0$ has only one real root. (D) three roots of $f^{\prime}(x)=0$ lie in $(3,4) \cup(4,5) \cup(5,6)$
A. $f^{\prime}(x)=0$ has four roots
B. three roots of $f^{\prime}(x)=0$ line in $(4,5)$

$$
\cup(5,6) \cup(6,7)
$$

C. the equation $f^{\prime}(x)=0$ hs only one root
D. three roots of $f^{\prime}(x)=0$ line

$$
\in(3,4) \cup(4,5) \cup(5,6)
$$

(D) Watch Video Solution

9. Let $f a n d g$ be differentiable on $[0,1]$ such that $f(0)=2, g(0), f(1)=6 \operatorname{and} g(1)=2$. Show that there exists $c \in(0,1)$ such that $f^{\prime}(c)=2 g^{\prime}(c)$.
A. 1
B. 2
C. -2
D. -1

Answer: B

D Watch Video Solution

10.

If
the
equation
$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x=0, a_{1} \neq 0, n \geq 2$
, has a positive root $x=\alpha$ then the equation $n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\ldots . .+a_{1}=0$
has a positive root which is
A. a positive root less than α
B. a positive root larger than α
C. a negative root
D. no positive root

Answer: A

- Watch Video Solution

11. The equation $x \log x=3-x$ has, in the interval (1,3) :
A. exactly one root
B. at most one root
C. at least one root
D. no root

Answer: C

D Watch Video Solution

12. If $f(x)$ and $g(x)$ ar edifferentiable function for
$0 \leq x \leq 1$
such
that
$f(0)=2, g(0)=0, f(1)=6, g(1)=2$, then in the interval $(0,1)$
A. $f^{\prime}(x)=0$ for all x
B. $f^{\prime}(x)=2 g^{\prime}(x)$ for at leaset one x
C. $f^{\prime}(x)=2 g^{\prime}(x)$ for at most one x
D. none of these

Answer: B

D Watch Video Solution

13. If $\alpha \beta(\alpha<\beta)$ are two distinct roots of the equation. $a x^{2}+b x+c=0$, then

$$
\begin{aligned}
& \text { A. } \alpha>-\frac{b}{2 a} \\
& \text { B. } \beta<-\frac{b}{2 a} \\
& \text { C. } \alpha<-\frac{b}{2 a}<\beta \\
& \text { D. } \beta<-\frac{b}{2 a}<\alpha
\end{aligned}
$$

- Watch Video Solution

14. If (x) is a function given by
$f(x)=\left|\begin{array}{lll}\sin x & \sin a & \sin b \\ \cos x & \cos a & \cos b \\ \tan x & \tan a & \tan b\end{array}\right| \quad$ where $0<a<b<\frac{\pi}{2}$
Then the equation $f^{\prime}(x)=0$
A. has at least one root in (a,b)
B. has at most one root in (a,b)
C. has exactly one root in (a,b)
D. has no root in (a,b)
15. The value of c in Lagrange's theorem for the functin $f(x)=\log \sin x$ in the interval $[\pi / 6,5 \pi / 6]$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. none of these

Answer: B

D Watch Video Solution
16. n is a positive integer. If the value of c presecribed in Rolle's theorem for the function $f(x)=2 x(x-3)^{n}$ on the interaval $[0,3]$ is $3 / 4$, then the value of n, is
A. 5
B. 2
C. 3
D. 4

Answer: C
17. The distance travelled by a particle upto tiem x is given by $f(x)=x^{3}-2 x+1$. The time c at which at velocity of the particle is equal to its average velocity between times $x=-1$ and $x=2$ sec. is
A. 15 sec
B. $\sqrt{\frac{3}{2}} \mathrm{sec}$
C. $\sqrt{3} \mathrm{sec}$
D. $\sqrt{\frac{7}{3}} \mathrm{sec}$

Answer: C
18. The number of real roots of the equation $e^{x-1}+x-2=0$ is 1 (b) 2 (c) 3 (d) 4
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution
19. If the polynomial equation
$a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots .+a_{0}=0, n$
being a positive integer, has two different real
roots a and b. then between a and b the equation
$n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\ldots \ldots .+a_{1}=0$
has
A. exactly one root
B. almost one root
C. at least one root
D. no root

Answer: C

- Watch Video Solution

20. If $4 a+2 b+c=0$, then the equation $3 a x^{2}+2 b x+c=0$ has at least one real lying in the interval
A. $(0,1)$
B. $(1,2)$
C. $(0,2)$
D. none of these

Answer: C

21. For the function $f(x)=x+\frac{1}{x}, x \in[1,3]$,

 the value of c for mean value theorem isA. 1
B. $\sqrt{3}$
C. 2
D. none of these

Answer: B
22. If from Largrange's mean value theorem, we have $f^{\prime}(x(1))=\frac{f^{\prime}(b)-f(a)}{b-a}$ then,
A. $a<x_{1} \leq b$
B. $a \leq x_{1}<b$
C. $a<x_{1}<b$
D. $a \leq x_{1} \leq b$

Answer: C

- Watch Video Solution

23. Rolle's theorem is applicable in case of

$$
\phi(x)=a^{\sin x}, a>0 \text { in }
$$

A. any interval
B. the interval $[0, \pi]$
C. the interval $(0, \pi / 2)$
D. none of these

Answer: B

- Watch Video Solution

24. The value of c in Rolle's theorem when

$$
f(x)=2 x^{3}-5 x^{2}-4 x+3, x \in[1 / 2,3] \text { is }
$$

A. 2
B. $-1 / 3$
C. -2
D. $2 / 3$

Answer: A

- Watch Video Solution

25. When the tangent the curve $y=x \log (x)$ is parallel to the chord joining the points $(1,0)$ and (e, e) the value of x , is

$$
\begin{aligned}
& \text { A. } 1 / 1-e \\
& \text { B. } e^{(e-1)(2 e-1)} \\
& \text { C. } e^{\frac{2 e-1}{e-1}} \\
& \text { D. } \frac{e-1}{e}
\end{aligned}
$$

Answer: A

26. The value of c in Rolle's theorem for the
function $f(x)=\frac{x(x+1)}{e^{x}}$ defined on $[-1,0]$ is
A. 0.5
B. $\frac{1+\sqrt{5}}{2}$
C. $\frac{1-\sqrt{5}}{2}$
D. -0.5

Answer: C

27. The value of c in Lgrange's Mean Value theorem for the function $f(x)=x(x-2)$ in the interval $[1,2]$ is

A. 1

B. $1 / 2$
C. $2 / 3$
D. $3 / 2$

Answer: D

- Watch Video Solution

28. In Rolle's theorem the value of c for the function $f(x)=x^{3}-3 x$ in the interval $[0, \sqrt{3}]$ is
A. 1
B. -1
C. $3 / 2$
D. $1 / 3$

Answer: A

- Watch Video Solution

