© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

PARABOLA

Illustration

1. The equation of conic section whose focus is at
$(-1,0)$, directrix is the $4 x-3 y+2=0$ and eccentricity
$1 / \sqrt{2} 1$, is
A. $34 x^{2}+41 y^{2}+24 x y+84 x+12 y+46=0$
B. $34 x^{2}+41 y^{2}-24 x y+84 x+12 y+46=0$
C. $34 x^{2}+41 y^{2}-24 x y-84 x-12 y+46=0$
D. none of these.

Answer: A

D Watch Video Solution

2. The conic represented by the equation $x^{2}+y^{2}-2 x y+20 x+10=0$, is
A. Pair of straight lines
B. Circle

C. Paraabola

D. Ellipse

Answer: C

- Watch Video Solution

3. The curve described parametrically by $x=t^{2}+t+1$, and $y=t^{2}-t+1$ represents. (a)
a pair of straight lines (b) an ellipse (c) a parabola
(d) a hyperbola
A. a circle
B. a parabola
C. an ellipse
D. a pair of straight lines

Answer: B

- Watch Video Solution

4.

The
equation
$16 x^{2}+y^{2}+8 x y-74 x-78 y+212=0$
represents a. a circle b. a parabola c. an ellipse d. a hyperbola
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: B

- Watch Video Solution

5. Find the centre of the conic

$$
14 x^{2}-4 x y+11 y^{2}-44 x-58 y+71=0
$$

A. $(2,3)$
B. $(-2,3)$
C. $(3,2)$
D. none of these

Answer: A

- Watch Video Solution

6. If the focus of a parabola is $(0,-3)$ and its directrix is $y=3$, then its equation is
A. $x^{2}=-12 y$
B. $x^{2}=12 y$
C. $y^{2}=-12 x$
D. $y^{2}=112 x$

Answer: A

- Watch Video Solution

7. The equation of the parabola with focus $(3,0)$ and directrix $y=-3$ is
A. $y^{2}=12 x$
B. $y^{2}=-12 x$
C. $x^{2}=12 y$
D. $x^{2}=-12 y$

Answer: A

- Watch Video Solution

8. The equation of the directrix of the parabola
$25\left\{(x-2)^{2}+(y+5)^{2}\right\}=(3 x+4 y-1)^{2}$, is
A. $3 x+4 y=0$
B. $3 x+4 y-1=0$
C. $4 x-3 y=0$
D. $3 x+4 y+1=0$

- Watch Video Solution

9. The length of the latusrectum of the parabola
$2\left\{(x-a)^{2}+(y-a)^{2}\right\}=(x+y)^{2}$, is
A. 2 a
B. $2 \sqrt{2} a$
C. $4 a$
D. $\sqrt{2} a$

- Watch Video Solution

10. The vertex of the parabola $x^{2}+y^{2}-2 x y-4 x-4 y+4=0$ is at

A. $(1,1)$
B. $(-1,-1)$
C. $\left(\frac{1}{2}, \frac{1}{2}\right)$
D. none of these

Answer: C
11. The vertex of a parabola is the point (a, b) and latusrectum is of length l. If the axis of the parabola is along the positive direction of y-axis, then its equation is:

$$
\begin{aligned}
& \text { A. }(x+a)^{2}=\frac{l}{2}(2 y-2 b) \\
& \text { B. }(x-a)^{2}=\frac{l}{2}(2 y-2 b) \\
& \text { C. }(x+a)^{2}=\frac{l}{4}(2 y-2 b) \\
& \text { D. }(x-a)^{2}=\frac{l}{8}(2 y-2 b)
\end{aligned}
$$

Answer: B

12. The equation of the parabola whose vertex and
focus lie on the axis of x at distances a and a_{1}
from the origin, respectively, is (a) $y^{2}-4\left(a_{1}-a\right) x$
(b) $\quad y^{2}-4\left(a_{1}-a\right)(x-a)$
$y^{2}-4\left(a_{1}-a\right)(x-a)$ (d) none
A. $y^{2}=4\left(a_{1}-a\right) x$
B. $y^{2}=4\left(a_{1}-a\right)(x-a)$
C. $y^{2}=4\left(a_{1}-a\right)\left(x-a_{1}\right)$
D. none of these

Answer: B
13. If the parabola of $y^{2}=4 a x$ passes through the
point (3,2), find the length of its latus rectum.

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \\
& \text { B. } \frac{4}{3} \\
& \text { C. } \frac{1}{3} \\
& \text { D. } 4
\end{aligned}
$$

Answer: B
14. The locus of the vertices of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ is:

$$
\begin{aligned}
& \text { A. } x y=\frac{105}{64} \\
& \text { B. } x y=\frac{3}{4} \\
& \text { C. } x y=\frac{35}{16} \\
& \text { D. } x y=\frac{64}{105}
\end{aligned}
$$

Answer: A
15. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $\quad y^{2}=4 a x \quad$ and $\quad x^{2}=4 a y, \quad$ then $d^{2}+(2 b+3 c)^{2}=0$ $d^{2}+(3 b+2 c)^{2}=0$
$d^{2}+(2 b-3 c)^{2}=0$ none of these
A. $d^{2}+(2 b-3 c)^{2}=0$
B. $d^{2}+(3 b+2 c)^{2}=0$
C. $d^{2}+(3 b-2 c)^{2}=0$
D. $d^{2}+(3 b+2 c)^{2}=0$

Answer: D

16. about to only mathematics

$$
\text { A. } x^{2}=y
$$

B. $x^{2}=2 y$
C. $y^{2}=x$
D. $x^{2}=2 y$

Answer: C

- Watch Video Solution

17. Find the coordinates of any point on the parabola whose focus is $(0,1)$ and directrix is

$$
x+2=0
$$

A. $\left(t^{2}+1,2 t-1\right)$
B. $\left(t^{2}+1,2 t+1\right)$
C. $\left(t^{2}, 2 t\right)$
D. $\left(t^{2}-1,2 t+1\right)$

Answer: D
18. The vertex of the parabola
$x^{2}+8 x+12 y+4=0$ is (i) $(-4,1)$ (ii) $(4,-1)$
(iii) $(-4,-1)$
A. $(-4,1)$
B. $(4,-1)$
C. $(-4,-1)$
D. $(4,1)$

Answer: A
(Watch Video Solution

19. The focus of the parabola
 $y^{2}-4 y-8 x+4=0$ is,

A. $(1,1)$
B. $(1,2)$
C. $(2,1)$
D. $(2,2)$

Answer: D

- Watch Video Solution

> 20. The axis of the parabola $9 y^{2}-16 x-12 y-57=0$ is
A. $3 y=2$
B. $x+3 y=3$
C. $2 x=3$
D. $y=3$

Answer: A
21. Prove that the equation of the parabola whose focus is $(0,0)$ and tangent at the vertex is

$$
\begin{aligned}
& x-y+1=0 \\
& x^{2}+y^{2}+2 x y-4 x+4 y-4=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-2 x y-4 x+4 y-4=0 \\
& \text { B. } x^{2}+y^{2}-2 x y+4 x-4 y-4=0 \\
& \text { C. } x^{2}+y^{2}+2 x y-4 x+4 y-4=0 \\
& \text { D. } x^{2}+y^{2}+2 x y-4 x-4 y+4=0
\end{aligned}
$$

Answer: C

22. The equation of the parabola with its vertex at $(1,1)$ and focus at $(3,1)$ is

$$
\begin{aligned}
& \text { А. }(x-3)^{2}=8(y-1) \\
& \text { В. }(y-1)^{2}=8(x-1) \\
& \text { C. }(y-1)^{2}=8(x-3) \\
& \text { D. }(x-1)^{2}=8(y-1)
\end{aligned}
$$

Answer: B

- Watch Video Solution

23. The focus of the parabola $y^{2}-x-2 y+2=0$ is
A. $(1 / 4,0)$
B. $(1 / 2)$
C. $(3 / 4,1)$
D. $(5 / 4,1)$

Answer: D

24. about to only mathematics

A. 4
B. 6
C. 8
D. 10

Answer: C
25. If the length of the latus rectum rectum of the parabola
$169\left\{(x-1)^{2}+(y-3)^{2}\right\}=(5 x-12 y+17)^{2}$ is
L then the value of $13 \mathrm{~L} / 4$ is \qquad .
A. $\frac{14}{13}$
B. $\frac{28}{13}$
C. $\frac{12}{13}$
D. $\frac{48}{13}$

Answer: D
26. If $(0,3)$ and $(0,2)$ are respectively the vertex and focus of a parabola, then its equation, is

D Watch Video Solution

27. If V and S are respectively the vertex and focus
of the parabola $y^{2}+6 y+2 x+5=0, \quad$ then
$S V=$ a. $2 \mathrm{~b} .1 / 2 \mathrm{c} .1 \mathrm{~d}$. none of these
A. 2
B. 43467
C. 1

D. none of these

Answer: B

- Watch Video Solution

28. about to only mathematics
A. $y=0$
B. $x=1$
C. $y=-1$
D. $x=-1$

Answer: C

- Watch Video Solution

29. The equation of the directrix of the parabola whose vertex and focus are $(1,4)$ and $(2,6)$ respectively is $x+2 y=4 \quad$ b. $\quad x-y=3 \quad$ c. $2 x+y=5$ d. $x+3 y=8$
A. $x+2 y=4$
B. $x-y=3$
C. $2 x+y=5$
D. $x+3 y=8$

- Watch Video Solution

30. If a parabola has the origin as its focus and the line $x=2$ as the directrix, then the coordinates of the vertex of the parabola are
A. $(0,1)$
B. $(2,0)$
C. $(0,2)$
D. $(1,0)$

- Watch Video Solution

31. The length of the chord of the parabola
$x^{2}=4 a y$ passing through the vertex and having slope $\tan \alpha i s(a>0)$:
A. $2 \mathrm{a} \operatorname{cosec} \alpha \cot \alpha$
B. $4 a \tan \alpha \sec \alpha$
C. $4 a \cos \alpha \cot \alpha$
D. $4 a \sin \alpha \tan \alpha$

Answer: A

- Watch Video Solution

32. Write the length of het chord of the parabola
$y^{2}=4 a x$ which passes through the vertex and in
inclined to the axis at $\frac{\pi}{4}$.
A. $4 \sqrt{2} a$
B. $2 \sqrt{2} a$
C. $\sqrt{2} a$
D. none of these

- Watch Video Solution

33. Area of the triangle formed by the threepoints
' t_{1} '. ' t_{2} ' and ' t_{3} ' on $\quad y^{2}=4 a x \quad$ is
$K\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right|$ then $K=$
A. a
B. $a^{\wedge}(2)$
C. ${ }^{\wedge}{ }^{\wedge}(2) / 2$
D. $1 / 4 a^{\wedge}(2)$

- Watch Video Solution

34. The point $(a, 2 a)$ is an interior point of the region bounded by the parabola $y^{2}=16 x$ and the double ordinate through the focus. then find the values of a.

$$
\text { A. } a \in(-\infty, 4)
$$

B. $a \in(0,4)$
C. $a \in(0,2)$
D. $a \in(4, \infty)$

- Watch Video Solution

35. Find the set of values of α in the interval [
$\left.\frac{\pi}{2}, 3 \frac{\pi}{2}\right]$, for which the point $(\sin \alpha, \cos \alpha)$ does not exist outside the parabola $2 y^{2}+x-2=0$
A. $[\pi / 2,5 \pi / 6]$
B. $[\pi, 3 \pi / 2]$
C. $[\pi / 2,5 \pi / 6] \cup[\pi, 3 \pi / 2]$
D. $[5 \pi / 6,3 \pi / 2]$

Answer: C

- Watch Video Solution

36. If $\left(a^{2}, a-2\right)$ be a point interior to the region of the parabola $y^{2}=2 x$ bounded by the chord joining the points $(2,2)$ and $(8,-4)$, then the set of all possible real values of a is
A. $(-2, \sqrt{2})$
B. $(-3,2)$
C. $(-2,2 \sqrt{2})$
D. $(-2,-2+\sqrt{2})$

- Watch Video Solution

37. If $(-2 a, a+1)$ lies in the interior (smaller region) bounded by the circle $x^{2}+y^{2}=4$ and the parabola $y^{2}=4 a x$, then
A. $(-1,3 / 5)$
B. $(-1,-5+2 \sqrt{6})$
C. $(-5-2 \sqrt{6},-5+2 \sqrt{6})$
D. none of these

- Watch Video Solution

38. If the chord joining the points t_{1} and t_{2} on the parabola $y^{2}=4 a x$ subtends a right angle at its vertex then $t_{1} t_{2}=$
A. 0
B. -4
C. -1
D. 2

- Watch Video Solution

39. If $(2,-8)$ is at an end of a focal chord of the parabola $y^{2}=32 x$, then find the other end of the chord.
A. $(32,32)$
B. $(32,-32)$
C. $(-2,8)$
D. none of these

- Watch Video Solution

40. PQ is any focal chord of the parabola $y^{2}=8 \mathrm{x}$.

Then the length of $P Q$ can never be less than
A. 8 units
B. 16 units
C. 32 units
D. 48 units

Answer: C

- Watch Video Solution

41. If a focal chord of $y^{2}=4 a x$ makes an angle $\alpha \in\left[0, \frac{\pi}{4}\right]$ with the positive direction of the x axis, then find the minimum length of this focal chord.
A. $4 a \sec ^{2} \alpha$
B. $2 a \operatorname{cosec}^{2} \alpha$
C. $4 a \operatorname{cosec}^{2} \alpha$
D. $4 a \cot ^{2} \alpha$

Answer: C

- Watch Video Solution

42. If the length of a focal chord of the parabola
$y^{2}=4 a x$ at a distance b from the vertex is c, then prove that $b^{2} c=4 a^{3}$.
A. $2 a^{2}=b c$
B. $a^{3}=b^{2} c$
C. $a c=b^{2}$
D. $b^{2} c=4 a^{3}$

- Watch Video Solution

43. If \mid denotes the semi-latusrectum of the parabolay ${ }^{2}=4 a x$, and SP and SQ denote the segments of and focal chord PQ, S being the focus then $S P, I, S Q$ are in the relation
A. A.P.
B. G.P.
C. H.P.
D. $l^{2}=S P^{2}+S Q^{2}$

Answer: C

- Watch Video Solution

44. The latus rectum of a parabola whose focal chord is PSQ such that $\mathrm{SP}=3$ and $\mathrm{SQ}=2$
A. $24 / 5$
B. 43804
C. 43621
D. none of these
45. The harmonic mean of the segments of a focal chord of the parabola $y^{2}=16 a x$, is
A. 2 a
B. 4 a
C. 8 a
D. 16a

Answer: C

- Watch Video Solution

46. If b and k are segments of a focal chord of the
parabola $y^{2}=4 a x$, then $\mathrm{k}=$

$$
\begin{aligned}
& \text { A. } \frac{a b}{b-a} \\
& \text { B. } \frac{b}{b-a} \\
& \text { C. } \frac{a}{b-a} \\
& \text { D. } \frac{a b}{a-b}
\end{aligned}
$$

Answer: A

- Watch Video Solution

47. If $P S Q$ is a focal chord of the parabola $y^{2}=8 x$ such that $S P=6$, then the length of $S Q$ is (a) 6 (b) 4 (c) 3 (d) none of these
A. 6
B. 4
C. 3
D. 8

Answer: C
48. The locus of the midpoint of the segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix (a) $y=0$ (b) $x=-a$ (c) $x=0$ (d) none of these
A. $x=-a$
B. $x=-\frac{a}{2}$
C. $x=0$
D. $x=\frac{a}{2}$

Answer: C
49. Let P be the point $(1,0)$ and Q be a point on the locus $y^{2}=8 x$. The locus of the midpoint of $P Q$ is

$$
\text { A. } x^{2}-4 y=2=0
$$

$$
\text { B. } x^{2}+4 y+2-0
$$

C. $y^{2}+4 x+2=0$
D. $y^{2}-4 x+2=0$

Answer: D
50. Let O be the vertex and Q be any point on the parabola $x^{2}=8 y$. IF the point P divides the line segment $O Q$ internally in the ratio 1:3, then the locus of P is

$$
\begin{aligned}
& \text { A. } y^{2}=2 x \\
& \text { B. } x^{2}=2 y \\
& \text { C. } x^{2}=y \\
& \text { D. } y^{2}=x
\end{aligned}
$$

Answer: B

51. If the line $y=m x+c$ touches the parabola $y^{2}=4 a(x+a)$, then
A. $c=a+\frac{a}{m}$
B. $c=a m+\frac{a}{m}$
C. $c=a m+a$
D. none of these

Answer: B
52. If $\mathrm{Ix}+\mathrm{my}+\mathrm{n}=0$ is tangent to the parabola $x^{2}=y$, them
A. $t^{2}=2 m n$
B. $i=4 m^{2} n^{2}$
C. $m^{2}=\frac{4}{n}$
D. $l^{2}=4 m n$

Answer: D

- Watch Video Solution

53. If the line $x+y=1$ touches the parabola $y^{2}=k x$, then the value of k is
A. 4
B. -4
C. 2
D. -2

Answer: B
54. If the line $y=m x+1$ is tangent to the parabola $y^{2}=4 x$, then find the value of m.
A. 1
B. 2
C. 4
D. 3

Answer: A

- Watch Video Solution

55. about to only mathematics
A. $(6,7)$
B. $(-6,7)$
C. $(6,-7)$
D. $(-6,-7)$

Answer: D

- Watch Video Solution

56. Consider two curves $C 1: y^{2}=4 x \quad$;
$C 2=x^{2}+y^{2}-6 x+1=0$. Then, a. C1 and C2
touch each other at one point b. C1 and C2 touch each other exactly at two point c. C1 and C2 intersect(but do not touch) at exactly two point d.

C1 and C2 neither intersect nor touch each other
A. C_{1} and C_{2} touch each other at one point
B. C_{1} and C_{2} touch eacth other exactly at two point
C. C_{1} and C_{2} intersect (but do not touch) at exactly two points
D. C_{1} and C_{2} neither intersect not touch

each other

Answer: B

- Watch Video Solution

57. The tangent to the parabola $y^{2}=4 a x$ at
$P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\mathrm{Q}\left(a t_{2}^{2}, 2 a t_{2}\right)$ intersect on its axis, them

$$
\text { A. } t_{1}=t_{2}
$$

$$
\text { B. } t_{1}=-t_{2}
$$

C. $t_{1} t_{2}=2$
D. $t_{1} t_{2}=-1$

Answer: B

- Watch Video Solution

58. If $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ are two points on the parabola at $y^{2}=4 a x$, then that area of the triangle formed by the tangents at P and Q and the chord $P Q$, is

$$
\text { A. } \frac{1}{2} a^{2}\left|t_{1}-t_{2}\right|^{3}
$$

B. $\frac{1}{2} a^{2}\left|t_{1}-t_{2}\right|^{2}$
C. $a^{2}\left|t_{1}-t_{2}\right|^{3}$
D. none of these

Answer: A

D Watch Video Solution

59. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three points on the parabola $y^{2}=4 a x$ such that tangents at these points taken in pairs form a triangle $P Q R$. Then, area $(\triangle A B C)$:
$(\triangle P Q R)=$
A. $1: 1$
B. 2: 1
C. 1:2
D. 2:3

Answer: B

- Watch Video Solution

60. about to only mathematics
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

61. If the tangents at the points $P a n d Q$ on the parabola $y^{2}=4 a x$ meet at $T, a n d S$ is its focus, the prove that $S P, S T$, and $S Q$ are in GP.
A. A. P.
B. G. P.
C. H. P.
D. none of these

Answer: B

- Watch Video Solution

62. If the distances of two points P and Q from the focus of a parabola $y^{2}=4 x$ are 4 and 9,respectively, then the distance of the point of intersection of tangents at P and Q from the focus is
B. 6
C. 5
D. 13

Answer: B

- Watch Video Solution

63. AB, AC are tangents to a parabola $y^{2}=4 a x$. If
l_{1}, l_{2}, l_{3} are the lengths of perpendiculars from A ,
B, C on any tangent to the parabola, then
A. l_{1}, l_{2}, l_{3} are in GP
B. l_{2}, l_{1}, l_{3} are in GP
C. l_{3}, l_{1}, l_{2} are in GP
D. l_{3}, l_{2}, l_{1} are in GP

Answer: B::C

- Watch Video Solution

64. Find the locus of the point of intersection of the normals at the end of the focal chord of the parabola $y^{2}=4 a x$.
A. tangent at the vertex
B. its derectrix
C. its latusrectum
D. a parabola

Answer: B

- Watch Video Solution

65. If two tangents drawn from a point P to the
parabola $y 2=4 x$ are at right angles, then the locus
of P is (1) $2 x+1=0$ (2) $x=-1$ (3) $2 x 1=0$ (4)
$x=1$
A. $x=-1$
B. $2 x-1=0$
C. $x=1$
D. $2 x+1=0$

Answer: A

(D) Watch Video Solution

66. The tangents to the parabola $y^{2}=4 a x$ at the vertex V and any point P meet at Q. If S is the focus, then prove that $S P \dot{S} Q$, and $S V$ are in GP.
A. $A . P$.
B. G. P.
C. H. P.
D. none of these

Answer: B

- Watch Video Solution

67.

Parabolas
$y^{2}=4 a\left(x-c_{1}\right)$ and $x^{2}=4 a\left(y-c_{2}\right)$, where c_{1}
and c_{2} are variable, are such that they touch each
other. The locus of their point of contact is
A. straight line
B. Circle
C. Parabola
D. hyperbola

Answer: D

- Watch Video Solution

68. The focal chord to $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$. Then the possible value of the slope of this chord is $\{-1,1\}$ (b) $\{-2,2\}$ $\left\{-2, \frac{1}{2}\right\}(\mathrm{d})\left\{2,-\frac{1}{2}\right\}$
A. $(-1,1)$
B. $(-2,2)$
C. $(-2,1 / 2)$
D. $(2,-1 / 2)$

Answer: A

D Watch Video Solution

69. The circle $x^{2}+y^{2}-2 x-6 y+2=0$ intersects the parabola $y^{2}=8 x$ orthogonally at
the point P. The equation of the tangent to the parabola at P can be
A. $x-y-4=0$
B. $2 x+y-2=0$
C. $x+y-4=0$
D. $2 x-y+1=0$

Answer: D

- Watch Video Solution

70. Let $P Q$ be a focal chord of the parabola $y^{2}=4 a x$. The tangents to the parabola at P and Q meet at point lying on the line
$y=2 x+a, a<0$.

The length of chord $P Q$ is
A. 7 a
B. 5 a
C. 2a
D. 3a

Answer: B
(-) Watch Video Solution
71. Mutually perpendicular tangents T AandTB are drawn to $y^{2}=4 a x$. Then find the minimum length of $A B$.
A. a
B. 2a
C. 4 a
D. 8 a

Answer: C
72. The equation of a tangent to the parabola $y^{2}=8 x i s y=x+2$. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is (1) $(-1,1)$
(2) $(0,2)(3)(2,4)(4)(-2,0)$
A. $(2,4)$
B. $(-2,0)$
C. (-1, 1)
D. $(0,2)$

Answer: B
73. The triangle formed by the tangents to a parabola $y^{2}=4 a x$ at the ends of the latus rectum and the double ordinate through the focus is
A. equilateral
B. isosceles
C. right-angled isosceles
D. dependent on the velue of a for its classification.

Answer: C
74. The tangents at the end points of any chord through $(1,0)$ to the parabola $y^{2}+4 x=8$ intersect
A. at 45° on $x-3=0$
B. at 45° on $x+3=0$
C. at 90° on $x+3=0$
D. at 90° on $x-3=0$

Answer: D
75. Find the equation of common tangent of

$$
y^{2}=4 a x \text { and } x^{2}=4 b y .
$$

A. $a^{1 / 3} x+b^{1 / 3} y=(a b)^{1 / 3}$
B. $a^{1 / 3} x+b^{1 / 3} y=(a b)^{1 / 3}=0$
C. $a^{2 / 3} x+b^{2 / 3} y=(a b)^{2 / 3}$
D. $a^{2 / 3} x+b^{2 / 3} y=(a b)^{2 / 3}=0$

Answer: B

D Watch Video Solution
76. Two common tangents to $x^{2}+y^{2}=2 a^{2}$ and $y^{2}=8 a x$ are
A. $x= \pm(y+2 a)$
B. $y= \pm(y+2 a)$
C. $x= \pm(y+a)$
D. $x= \pm(x+a)$

Answer: B
77. Two equal parabolas have the same vertex and their axes are at right angles. The length of the common tangent to them, is
A. 3 a
B. $3 \sqrt{2} a$
C. 6a
D. 2 a

Answer: B
78. about to only mathematics
A. $y=0, y=4(x-1)$
B. $y=0, y=-4(x-1)$
C. $y=0, y=-30 x-50$
D. none of these

Answer: A

- Watch Video Solution

79. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola
$y^{2}=4 x$ above the x-axis is $\sqrt{3} y=3 x+1$ (b)

$$
\begin{array}{ll}
\sqrt{3} y=-(x+3) & \sqrt{2} y=x+3 \tag{d}\\
\sqrt{3} y & =-(3 x-1)
\end{array}
$$

A. $\sqrt{3} y=3 x+1$
B. $\sqrt{3} y=-(x+1)$
C. $\sqrt{3} y=(x+1)$
D. $\sqrt{3} y=-(3 x+1)$

Answer: C

- Watch Video Solution

80. The common tangent of the parabolas
$y^{2}=4 x$ and $x^{2}=-8 y$, is
A. $y=x+2$
B. $y=x-2$
C. $y=2 x+3$
D. none of these

Answer: D

81. about to only mathematics

A. $3 y=9 y+2$
B. $y=2 x+1$
C. $2 \mathrm{y}=\mathrm{x}+8$
D. $y=x+2$

Answer: D

- Watch Video Solution

82. Equation of line touching both the parabolas
$y^{2}=4 x \& x^{2}=-32 y$
A. $x+2 y+4=0$
B. $2 x+y+4=0$
C. $x-2 y-4=0$
D. $x-2 y+4=0$

Answer: D
83. The slope of the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is
A. 43473
B. 43499
C. 43467
D. 43526

Answer: C
84. If m be the slope of common tangent of $y=x^{2}-x+1$ and $y=x^{2}-3 x+1$. Then m is equal to
A. 16
B. 7
C. 9
D. none of these

Answer: D
85. If $\left(\frac{a}{b}\right)^{\frac{1}{3}}+\left(\frac{b}{a}\right)^{\frac{1}{3}}=\frac{\sqrt{3}}{2}$, then the angle of
$y^{2}=4 a x$ and $x^{2}=4 b y$ at the point other than the origin is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. none of these

Answer: C

86. The normals at the ends of the latusrectum of
the parabola $y^{2}=4 a x$ are ($\mathrm{a}, 2 \mathrm{a}$) and ($\mathrm{a},-2 \mathrm{a}$).

> A. $\frac{\pi}{6}$
> B. $\frac{\pi}{4}$
> C. $\frac{\pi}{3}$
> D. $\frac{\pi}{2}$

Answer: D
87. If the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{2}+(y+2)^{2}=r^{2}$ then the value of r^{2} is \qquad
A. 4
B. 2
C. 6
D. 9

Answer: B
88. Find the equation of the normal to the parabola $y^{2}=4 x$ which is parallel to the line $\mathrm{y}=2 \mathrm{x}-5$.
A. $y=2 x+12$
B. $y=2 x-12$
C. $y=2 x+8$
D. $y=-2 x+12$

Answer: B
89. The value of $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the line $y=x \cos \theta+4 \cos ^{3} \quad \theta-14 \cos \theta-1$ is a normal to the parabola $y^{2}=16 x$, is
A. $\pi / 3$
B. $\pi / 6$
C. $\pi / 9$
D. $\pi / 4$

Answer: C
90. The line $l x+m y+n=0$ is a normal to the parabola $y^{2}=4 a x$ if
A. $a l\left(l^{2}+2 m^{2}\right)+m^{2} n=0$
B. $a l\left(l^{2}+2 m^{2}\right)+m^{2} n$
C. $a l\left(2 l^{2}+2 m^{2}\right)+m^{2} n=0$
D. $a l\left(2 l^{2}+2 m^{2}\right)+m^{2} n$

Answer: A
91. If $2 x+y+\lambda=0$ is a normal to the parabola
$y^{2}=-8 x$, then λ is
A. 12
B. -12
C. 24
D. -24

Answer: C
92. The normal to the parabola $y^{2}=4 x$ at $\mathrm{P}(1,2)$ meets the parabola again in Q , then coordinates of

Q are
A. $(-6,9)$
B. $(9,-6)$
C. $(-9,-6)$
D. $(-6,-9)$

Answer: B
93. The normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on the parabola $y^{2}=4 b x$ meets the parabola again in the point $\left(b t_{2}^{2}, 2 b t_{2},\right)$ then

$$
\begin{aligned}
& \text { A. } t_{2}=t_{1}+\frac{2}{t_{1}} \\
& \text { B. } t_{2}=t_{1}-\frac{2}{t_{1}} \\
& \text { C. } t_{2}=-t_{1}+\frac{2}{t_{1}} \\
& \text { D. } t_{2}=t_{1}-\frac{2}{t_{1}}
\end{aligned}
$$

Answer: B
94. A normal drawn at a point P on the parabola
$y^{2}=4 a x$ meets the curve again at Q . The least distance of Q from the axis of the parabola, is
A. $2 \sqrt{2} a$
B. $3 \sqrt{2} a$
C. $4 \sqrt{a}$
D. none of these

Answer: C
95. The area between the parabola $y^{2}=4 x$, normal at one end of latusrectum and X -axis in sq.units is
A. 60°
B. less then 60°
C. more then 60°
D. less then 45°

Answer: C

- Watch Video Solution

96. If $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ and $R\left(x_{3}, y_{3}\right)$ are three points on $y^{2}=4 a x$ and the normal at PQ and R meet at a point, then the value of $\frac{x_{1}-x_{2}}{y_{3}}+\frac{x_{2}-x_{3}}{y_{1}}+\frac{x_{3}-x_{1}}{y_{2}}=$
A. 4 a
B. 2a
C. a
D. 0

Answer: D
97. If three distinct normals are drawn from $(2 k, 0)$
to the parabola $y^{2}=4 x$ such that one of them is
x -axis and other two are perpendicular, then $k=$
A. $k<1$
B. $k>1$
C. $k \leq 1$
D. $k \geq 1$

Answer: B
98. If three distinct normals are drawn from $(2 k, 0)$
to the parabola $y^{2}=4 x$ such that one of them is x -axis and other two are perpendicular, then $k=$
A. 1
B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. none of these

Answer: C

- Watch Video Solution

99. Find the point where the line $x+y=6$ is a normal to the parabola $y^{2}=8 x$.
A. $(18,-12)$
B. $(4,2)$
C. $(2,4)$
D. $(3,3)$

Answer: C
100. Normals at P, Q, R are drawn to $y^{2}=4 x$ which intersect at $(3,0)$. Then, area of $\triangle P Q R$, is
A. $2 / 5$
B. $1 / 2$
C. $5 / 2$
D. 2

Answer: D
101. Normals at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are drawn to $y^{2}=4 x$ which intersect at $(3,0)$. Then, area of $\triangle P Q R$, is
A. 4
B. 2
C. 1
D. none of these

Answer: B
102. Normals at P, Q, R are drawn to $y^{2}=4 x$ which intersect at $(3,0)$. Then, area of $\triangle P Q R$, is
A. $(2,0)$
B. $(1,0)$
C. $(2 / 3,0)$
D. $(5 / 2,0)$

Answer: B
103. If the parabolas $y^{2}=4 a x$ and $y^{2}=4 c(x-b)$
have a common normal other than the x-axis
(a, b, c being distinct positive real numbers), then
prove that $\frac{b}{a-c}>2$.

$$
\text { A. } 0<\frac{b}{a-c}<1
$$

B. $\frac{b}{a-c}>2$
C. $\frac{b}{a-c}<0$
D. $1<\frac{b}{a-c}<2$

Answer: B

104. If from a point A, two tangents are drawn to parabola $y^{2}=4 a x$ are normal to parabola $x^{2}=4 b y$, then
A. $a^{2} \geq b^{2}$
B. $a^{2} \geq 4 b^{2}$
C. $a^{2} \geq 8 b^{2}$
D. $8 a^{2} \geq b^{2}$

Answer: C
105. Three normals drawn from a point (h k) to parabola $y^{2}=4 a x$
A. $h>a$ and $k^{2}>\frac{4}{27 a}(h-2 a)^{2}$
B. $h>2 a$ and $k^{2}>\frac{4}{27 a}(h-2 a)^{2}$
C. $h>2 a$ and $k^{2}<\frac{4}{27 a}(h-2 a)^{2}$
D. $h>2 a$

Answer: C

- Watch Video Solution

106. The set of points on the axis of the parabola $y^{2}=4 x+8$ from which the three normals to the parabola are all real and different is
$\{(k, 0) \mid k \leq-2\}$
(b)
$\{(k, 0) \mid$
$k\rangle-2\}$
$\{(0, k) \mid k \succ 2\}$ (d) none of these
A. $\{(x, 0): x \leq-2)\}$
B. $\{(x, 0): x>-2)\}$
C. $\{(0, y): y>-2)\}$
D. none of these

Answer: D
107. Set of values of ' h ' for which the number of
distinct common normals of $(x-2)^{2}=4(y-3)$
and
$x^{2}+y^{2}-2 x-h y-c=0(c>0)$ is 3 , is
A. $(2, \infty)$
B. $(4, \infty)$
C. $(2,4)$
D. $(10, \infty)$

Answer: D
108. The set of points on the axis of the parabola $y^{2}=4 a x$, from which three distinct normals can be drawn to theparabola $y^{2}=4 a x$, is
A. $\{(x, 0): x>a\}$
B. $\{(x, 0): x>2 a\}$
C. $\{(x, x>4 a\}$
D. $\{x: a<x<2 a\}$

Answer: B
109. A normal drawn at a point P on the parabola
$y^{2}=4 a x$ meets the curve again at Q . The least distance of Q from the axis of the parabola, is
A. $4 \sqrt{6} a$
B. $2 \sqrt{6} a$
C. $3 \sqrt{6} a$
D. none of these

Answer: A

110. Find the number of distinct normals that can be drawn from $(-2,1)$ to the parabola $y^{2}-4 x-2 y-3=0$
A. 1
B. 2
C. 3
D. 0

Answer: A
111. If the normal chord of the parabola $y^{2}=4 x$ makes an angle 45° with the axis of the parabola, then its length, is
A. 8
B. $8 \sqrt{2}$
C. 4
D. $4 \sqrt{2}$

Answer: B

- Watch Video Solution

112. The slopes of tangents drawn from a point
$(4,10)$ to parabola $y^{2}=9 x$ are
A. $1 / 4,3 / 4$
B. $1 / 4,9 / 4$
C. $1 / 4,1 / 3$
D. none of these

Answer: B
113. The angle between the tangents drawn from the point $(1,4)$ to the parabola $y^{2}=4 x$ is $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: C
114. Two tangent are drawn from the point $(-2,-1)$ to parabola $y^{2}=4 x$. if α is the angle between these tangents, then find the value of $\tan \alpha$.
A. 3
B. 43468
C. 2
D. 43467

Answer: A
115. Prove that the locus of the point of intersection of tangents to the parabola $y^{2}=4 a x$

$$
\begin{aligned}
& \text { which meet at an angle } \alpha \text { is } \\
& (x+a)^{2} \tan ^{2} a=y^{2}-4 a x .
\end{aligned}
$$

$$
\text { A. }(x+a)^{2} \tan ^{2} \alpha=y^{2}-4 a x
$$

$$
\text { B. }(x+a) \tan ^{2} \alpha=y^{2}-4 a x
$$

$$
\text { C. }(x-a)^{2} \tan ^{2} \alpha=y^{2}-4 a x
$$

D. none of these

Answer: A

- Watch Video Solution

116. The locus of the point of intersection of tangents drawn at the extremities of a focal chord to the parabola $y^{2}=4 a x$ is the curve
A. $x=a$
B. $x=-a$
C. $y=a$
D. $y=-a$

Answer: B

- Watch Video Solution

117. The locus of point of intersection of tangents inclined at angle 45° to the parabola $y^{2}=4 x$ is
A. $y^{2}-4 a x=(a+x)^{2}$
B. $y^{2}+4 a x=(a+x)^{2}$
C. $y^{2}-4 a x=(a-x)^{2}$
D. $y^{2}+4 a x=(a-x)^{2}$

Answer: A
118. The equation of the chord of contact of tangents from $(2,5)$ to the parabola $y^{2}=8 x$, is

$$
\begin{aligned}
& \text { А. } 4 x+5 y+8=0 \\
& \text { B. } 4 x-5 y+8=0 \\
& \text { C. } 4 x-5 y-9=0 \\
& \text { D. } 4 x+5 y-8=0
\end{aligned}
$$

Answer: B
119. Tangents are drawn to the parabola $y^{2}=4 a x$ at the point where the line $l x+m y+n=0$ meets this parabola. Find the point of intersection of these tangents.
A. $(n, / 1,-2 a m / 1)$
B. $(l / n,-2 a m / n)$
C. $(n / m,-2 a l / m)$
D. none of these

Answer: A

120. The chords of contact of the pairs of tangents

drawn from each point on the line $2 x+y=4$ to
the parabola $y^{2}=-4 x$ pass through the point

$$
\begin{aligned}
& \text { A. }(2,-1) \\
& \text { B. }(1 / 2,1 / 4) \\
& \text { C. }(-1 / 2,-1 / 4) \\
& \text { D. }(-2,1)
\end{aligned}
$$

Answer: D
121. Tangents are drawn from the point $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ show that the length of their chord of contact is

$$
\frac{1}{|a|} \sqrt{\left(y_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)}
$$

A. $\frac{1}{a} \sqrt{\left(y_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)}$
B. $\sqrt{\left(y_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)}$
C. $\frac{1}{a} \sqrt{\left(y_{1}^{2}+4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)}$
D. none of these

Answer: A

- Watch Video Solution

122. Prove that the area of the traingle formed by
the tangents drawn from $\left(x_{1}, y_{1}\right)$ to $y^{2}=4 a x$ and their chord of contact is $\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2} / 2 a$.

$$
\begin{aligned}
& \text { A. } \frac{\left(y_{1}^{2}+4 a x_{1}\right)^{3 / 2}}{2 a} \\
& \text { B. } \frac{\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2}}{2 a} \\
& \text { C. } \frac{\left(y_{1}^{2}+4 a x_{1}\right)^{3 / 2}}{a}
\end{aligned}
$$

D. none of these

Answer: B

123. Equation of the chord of the parabola $y^{2}=8 x$ which is bisected at the point $(2,-3)$ is
A. $4 x+3 y+1=0$
B. $2 x+3 y+5=0$
C. $3 x+4 y+6=0$
D. $2 x-3 y-12=0$

Answer: A

- Watch Video Solution

124. if the line $4 x+3 y+1=0$ meets the parabola $y^{2}=8 x$ then the mid point of the chord is
A. $(2,-3)$
B. $(2,4)$
C. $(5 / 2,14 / 3)$
D. $(5,8)$

Answer: A
125. The locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which pass through the focus, is

> A. $y^{2}+2 a x+2 a^{2}=0$
> B. $y^{2}-a x+2 a^{2}=0$
> C. $y^{2}-2 a x+2 a^{2}=0$
> D. $y^{2}-2 a x+a^{2}=0$

Answer: C
126. Find the locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola.
A. $y^{2}-2 a x+2 a^{2}=0$
B. $y^{2}-2 a x+8 a^{2}=0$
C. $y^{2}+2 a x-8 a^{2}=0$
D. $y^{2}-2 a x-8 a^{2}=0$

Answer: B
127. If the tangent at the point $P(2,4)$ to the parabola $y^{2}=8 x$ meets the parabola $y^{2}=8 x+5$ at $Q a n d R$, then find the midpoint of chord $Q R$.
A. $(2,4)$
B. $(4,2)$
C. $(7,9)$
D. none of these

Answer: A
128. The tangent at the point $P\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=4 a(x+b)$ at Q and R , the coordinates of the mid-point of $Q R$ are :
A. $\left(x_{1}, y_{1}\right)$
B. $\left(x_{1}+b, y_{1}\right)$
C. $\left(x_{1}+b, y_{1}+b\right)$
D. $\left(x_{1}-b, y_{1}-b\right)$

Answer: A
129. about to only mathematics
A. circle with center at origin and radius $|2 \mathrm{pm}|$
B. line parallel to x-axis at a distance | $2 \mathrm{pm} \mid$
from it
C. line parallel to y-axis a distance | 2 pm | from
it
D. line parallel to $\mathrm{y}=\mathrm{mx}, m \neq 0$ at a distance $\mid 2$
pm | from it

Answer: C
130. The polar of line point $(2,1)$ with respect to the parabola $y^{2}=6 x$, is
A. $y=3 x+2$
B. $y=3 x+6$
C. $3 y=x+6$
D. $y=3 x+4$

Answer: B
131. The pole of the line $\operatorname{lx}+\mathrm{my}+\mathrm{n}=0$ with respect to the parabola $y^{2}=4 a x$, is

$$
\begin{aligned}
& \text { А. }\left(\frac{n}{l},-\frac{2 a m}{l}\right) \\
& \text { В. }\left(\frac{n}{m},-\frac{2 a m}{m}\right) \\
& \text { С. }\left(\frac{n}{m},-\frac{2 a l}{m}\right)
\end{aligned}
$$

D. none of these

Answer: A

- Watch Video Solution

132. The locus of the poles of tangents to the parabola $y^{2}=4 a x$ with respect to the parabola $y^{2}=4 a x$ is
A. a circle
B. a parabola
C. a straight line
D. an ellipse

Answer: B
1.
If
the
equation
$\lambda x^{2}+4 x y+y^{2}+\lambda x+3 y+2=0$ represent a parabola then find λ.
A. -4
B. 4
C. 0
D. none of these

Answer: B
2.
$x^{2}+4 x y+4 y^{2}-3 x-6 y-4=0$ represents a
A. circle
B. parabola
C. a pair of straght lines
D. none of these

Answer: C

- Watch Video Solution

3. The number of chords drawn from point (a, a) on the circle $x^{2}+y^{2}=2 a^{2}$, which are bisected by the parabola $y^{2}=4 a x$, is
A. 1
B. 4
C. 2
D. 0

Answer: C
4. The length of the latusrectum of the parabola

$$
x=a y^{2}+b y+c, \text { is }
$$

A. $a / 4$
B. $a / 3$
C. $1 / a$
D. $1 /(4 a)$

Answer: C
5. If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$, then one of the values of k is (a) $\frac{1}{8}$ (b) 8 (c) 4 (d) $\frac{1}{4}$
A. $1 / 8$
B. 8
C. 4
D. 43469

Answer: C
6. The number of parabolas that can be drawn, if two ends of the latus rectum are given, is
A. 1
B. 2
C. 0
D. infinite

Answer: B

- Watch Video Solution

7. The number of points with integral coordinates
that lie in the interior of the region common to the
circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=4 x$, is
A. 8
B. 10
C. 16
D. none of these

Answer: A
8. Find the range of values of λ for which the point
$(\lambda,-1)$ is exterior to both the parabolas $y^{2}=|x|$.
A. $a \in(0,1)$
B. $a \in(-1,1)$
C. $a \in(-1,0)$
D. none of these

Answer: B
9. $A B$ is a chord of the parabola $y^{2}=4 a x$ with vertex $A \dot{B} C$ is drawn perpendicular to $A B$ meeting the axis at C. The projection of $B C$ on the axis of the parabola is a (b) $2 a$ (c) $4 a$ (d) $8 a$
A. a
B. 2a
C. 4 a
D. $8 a$

Answer: C
10. The coordinates of an end-point of the
latusrectum of the parabola $(y-1)^{2}=4(x+1)$, are
A. $(0,-3)$
B. $(0,-1)$
C. $(0,1)$
D. $(1,3)$

Answer: B
11. M is the foot of the perpendicular from a point
P on a parabola $y^{2}=4 a x$ to its directrix and $S P M$ is an equilateral triangle, where S is the focus. Then find $S P$.
A. a
B. 2a
C. 3a
D. $4 a$

Answer: D
12. The equation of the parabola, whose vertex and focus are on the x-axis at distances a and b from the origin respectively, is :

$$
\begin{aligned}
& \text { A. } y^{2}=4(b-a)(x-a) \\
& \text { B. } y^{2}=4(b-b)(x-b) \\
& \text { C. } y^{2}=4(b-a)(x-a) \\
& \text { D. none of these }
\end{aligned}
$$

13. If parabolas $y^{2}=\lambda x \quad$ and $25\left[(x-3)^{2}+(y+2)^{2}\right]=(3 x-4 y-2)^{2} \quad$ are

 equal, then the value of λ is (a) 9 (b) 3 (c) 7 (d) 6A. 1
B. 2
C. 4
D. 6

Answer: D
14. The point on $y^{2}=4 a x$ nearest to the focus has to abscissa equal to
A. $-a$
B. a
C. $a / 2$
D. 0

Answer: D

- Watch Video Solution

15. The focal chord of the parabola $y^{2}=a x$ is $2 x-y-8=0$. Then find the equation of the directrix.
A. $x+4=0$
B. $X-4=0$
C. $Y-4=0$
D. $Y++4=0$

Answer: A
16. Number of common chords of a parabola \& a circle can be
A. 2
B. 4
C. 6
D. 8

Answer: C
(Watch Video Solution
17. A ray of light moving parallel to the x-axis gets reflected from parabolic mirror whose equation is
$(y-3)^{2}=8(x+2)$. After reflection, the ray must pass through
A. $(0,3)$
B. $(3,0)$
C. $(0,0)$
D. none of these

Answer: A
18. If $y+b=m_{1}(x+a)$ and $y+b=m_{2}(x+a)$ are two tangents to the parabola $y^{2}=4 a x$, then
A. $m_{1}+m_{2}=0$
B. $m_{1} m_{2}=1$
C. $m_{1} m_{2}=-1$
D. none of these

Answer: C
19. If normals at the ends of the double ordinate x
$=4$ of parabola $y^{2}=4 x$ meet the curve again in P
and P^{\prime} respectively, then $\mathrm{PP}^{\prime}=$
A. 6
B. 12
C. 10
D. none of these

Answer: B
20. Radius of the largest circle which passes through the focus of the parabola $y^{2}=4 x$ and contained in it, is
A. 8
B. 4
C. 2
D. 5

Answer: B

- Watch Video Solution

21. If the tangents and normals at the extremities of a focal chord of a parabola intersect at $\left(x_{1}, y_{1}\right)$
and $\left(x_{2}, y_{2}\right)$, respectively, then (a) $x_{1}=y_{2}$

$$
\begin{equation*}
x_{1}=y_{1}(\mathrm{c}) y_{1}=y_{2}(\mathrm{~d}) x_{2}=y_{1} \tag{b}
\end{equation*}
$$

A. $x_{1}=x_{2}$
B. $x_{1}=y_{2}$
C. $y_{1}=y_{2}$
D. $x_{2}=y_{1}$

Answer: C
22. The axis of a parabola is along the line $y=x$ and its vertex and focus are in the first quadrant at distances $\sqrt{2}, 2 \sqrt{2}$ respectively, from the origin. The equation of the parabola, is

$$
\begin{aligned}
& \text { А. }(x+y)^{2}=x-y-2 \\
& \text { В. }(x-y)^{2}=x-y-2 \\
& \text { С. }(x-y)^{2}=(x-y-2) \\
& \text { D. }(x-y)^{2}=8(x+y-2)
\end{aligned}
$$

Answer: D

23. If the normals from any point on the parabola
$x^{2}=4 y$ cut the line $y=2$ in points whose abscissa are in A.P., then the slopes of tangents at the 3 conormal points are :
A. AP
B. GP
C. HP
D. none of these

Answer: B
24. ABCD is a square of side length 2 units. C_{1} is
the circle touching all the sides of the square $A B C D$
and C_{2} is the circumcircle of square $A B C D . L$ is a
fixed line in the same plane and R is fixed point. If a
circle is such that it touches the line L and the
circle C_{1} externally, such that both the circles are
on the same side of the line, then the locus of centre of the circle is
A. an ellipse
B. a hyperbola
C. a parabola
D. a pair of straight lines

Answer: C

- Watch Video Solution

25. Minimum distance between the parabola $y^{2}-4 x-8 y+40=0$ and $x^{2}-8 x-4 y+40=0$
is
A. 0
B. $\sqrt{3}$
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer: D

- Watch Video Solution

26. $A B C D$ is a square with side $A B=2$. A point P moves such that its distance from A equals its distance from the line BD. The locus of P meets the line AC at T_{1} and the line through A parallel to BD at T_{2} and T_{3}. The area of the triangle $T_{1} T_{2} T_{3}$ is:
A. $\frac{1}{2}$ sq. unit
B. $\frac{2}{3}$ sq. unit
C. 1sq. unit
D. 2sq. unit

Answer: C

- Watch Video Solution

27. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in first and fourth quadrant respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S .
A. $1: \sqrt{2}$
B. $1: 2$
C. 1: 4
D. 1:8

Answer: C

- Watch Video Solution

28. If $P(1,2 \sqrt{2}), R(9,0), S(-1,0)$, then radius of the circumcircle of $\triangle P R S$, is
A. 5
B. $3 \sqrt{3}$
C. $3 \sqrt{2}$
D. $2 \sqrt{3}$

Answer: B

- Watch Video Solution

29. In exampla 27, the radius of the incircle of
$\triangle P Q R$, is
A. 4
B. 3
C. 43680
D. 2

Answer: D

- Watch Video Solution

30. Circle described on the focal chord as diameter

touches

A. the axis
B. the tangent at the vertex
C. the directrix
D. none of these

Answer: C

- Watch Video Solution

31. If a normal chord subtends a right at the vertex
of the parabola $\grave{y}^{\wedge}(2)=4 a x$, then find its inclination
to the axis.
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. 2
D. none of these

- Watch Video Solution

32. If the circle $x^{2}+y^{2}+2 a x=0, a \in R$ touches
the parabola $y^{2}=4 x$, them
A. $a \in(-\infty, 0)$
B. $a \in(0, \infty)$
C. $a \in(2, \infty)$
D. none of these
33. about to only mathematics
A. $\frac{75}{4}$
B. $\frac{625}{16}$
C. $\frac{25}{4}$
D. $\frac{25}{8}$

Answer: A

- Watch Video Solution

34. If (h, k) is a point on the axis of the parabola

$$
2(x-1)^{2}+2(y-1)^{2}=(x+y+2)^{2}
$$

where three distinct normals can be drawn, then prove that $h>2$.
A. $h>2$
B. $h<4$
C. $h>8$
D. $h<8$

Answer: A

35. The radius of the circle whose centre is $(-4,0)$ and which cuts the parabola $y^{2}=8 x$ at A and B such that the common chord $A B$ subtends a right angle at the vertex of the parabola is equal to
A. 4
B. 3
C. $\sqrt{18}$
D. 5

Answer: A
36. PSQ is a focal chord of a parabola whose focus is S and vertex is A . PA and QA are produced to meet the directrix in R and T, respectively. Then $\angle R S T=`$
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

37. about to only mathematics

A. vertex is $(2 a / 3,0)$
B. Directri is $\mathrm{x}=0$
C. Latusrectum is $\frac{2 a}{3}$
D. Focus is $(-a, 0)$

Answer: A
38. The vertex of the parabola $y^{2}=8 x$ is at the centre of a circle and the parabola cuts the circle of the ends of the latus rectum. Then the equation of the circle is
A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}=20$
C. $x^{2}+y^{2}=80$
D. none of these

Answer: B
39. Let A, B and C be three points taken on the parabola $\quad y^{2}=4 a x \quad$ with coordinates $\left(a t_{i}^{2}, 2 a t_{i}\right), i=1,2,3$, where t_{1}, t_{2} and t_{3} are in
A.P. If $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are focal chords and coordinates of A^{\prime}, B^{\prime} and C^{\prime} are
$\left(a t^{\prime 2}, 2 a t_{i}{ }_{i}\right), i=1,2,3, \quad$ them $t^{\prime}{ }_{1}, t^{\prime}{ }_{2}$ and $t^{\prime}{ }_{3}$ are in
A. AP
B. GP
C. HP
D. none of these

Answer: C

- Watch Video Solution

40. Let there be two parabolas with the same axis, focus of each being exterior to the other and the latus rectam being 4 a and 4 b . The locus of the middle points of the intercepts between the parabolas made on the lines parallel to the common axis is a:
A. straight line if a $>b$
B. parabola if $\mathrm{a} \in b$
C. parabola for all a, b
D. ellipse, if $b>a$

Answer: B

- Watch Video Solution

41. Let A and B be two points on $y^{2}=4 a x$ such that normals to the curve at A and B meet at point
C, on the curve, then chord $A B$ will always pass
through a fixed point whose co-ordinates, are
A. $(2 a, 0)$
B. $(-a, 0)$
C. (-2a, 0)
D. $(a, 0)$

Answer: B

D Watch Video Solution

42. The set of real values of 'a' for which at least one tangent to $y^{2}=4 a x$ becomes normal to the circle
$x^{2}+y^{2}-2 a x-4 a y+3 a^{2}-0$, is
A. $[1,2]$
B. $[\sqrt{2}, 3]$
C. R
D. none of these

Answer: C

D Watch Video Solution

43. The locus of the mid-point of the line segment joining a point on the parabola $Y^{2}=4 a x$ and the point of contact of circle drawn on focal distance
of the point as diameter with the tangent at the vertex, is
A. $y^{2}=9 a x$
B. $9 y^{2}=2 a x$
C. $2 x^{2}=9 a y$
D. $2 y^{2}=9 a x$

Answer: D

- Watch Video Solution

44. The tangent and normal at the point $p(18,12)$
of the parabola $y^{2}=8 x$ intersects the x-axis at the point A and B respectively. The equation of the circle through P, A and B is given by

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}+4 x-540=0 \\
& \text { B. } x^{2}+y^{2}-6 x-360=0 \\
& \text { C. } x^{2}+y^{2}-4 x-396=0 \\
& \text { D. } x^{2}+y^{2}-2 x-444=0
\end{aligned}
$$

Answer: C

45. Tangent and normal at any point P of the parabola $y^{2}=4 a x(a>0)$ meet the x-axis at T and N respectively. If the lengths of sub-tangent and sub-normal at this point are equal, then the area of $\triangle P T N$ is given by
A. $4 a^{2}$
B. $6 \sqrt{2} a^{2}$
C. $4 \sqrt{2} a^{2}$
D. none of these

Answer: D
46. The points of the intersection of the curves whose parametric equations are $x=t^{2}+1, y=2 t$ and $x=2 s, y=\frac{s}{2} \quad$ is given by
A. $(1,-3)$
B. $(2,2)$
C. $(-2,4)$
D. $(1,2)$

Answer: B
47. The locus of the midpoint of the segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix (a) $y=0$ (b) $x=-a$ (c) $x=0$ (d) none of these
A. $x=-a$
B. $x=a$
C. $x=0$
D. $x=a / 2$

Answer: C

- Watch Video Solution

48. The radical centre of the circles drawn on the focal chords of $y^{2}=4 a x$ as diameters, is
A. $(-a, 0)$
B. $(a, 0)$
C. $(0,0)$
D. (a, a)
49. For each parabola $y=x^{2}+p x+q$, meeting coordinate axes at 3-distinct points, if circles are drawn through these points, then the family of circles must pass through
A. $(1,0)$
B. $(0,1)$
C. $(1,1)$
D. (p, q)
50. Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two points on the parabola $y^{2}=4 a x$. If the circle with chord $A B$ as a dimater touches the parabola, then $\left|y_{1}-y_{2}\right|$ is equal to
A. $4 a$
B. 8 a
C. $6 \sqrt{2} a$
D. none of these

- Watch Video Solution

51. Let A and B be two distinct points on the parabola $y^{2}=4 x$. If the axis of the parabola touches a circle of radius r having $A B$ as its diameter, then find the slope of the line joining A and B.
A. $\pm \frac{1}{r}$
B. $\pm \frac{2}{r}$
C. $\pm \frac{3}{r}$
D. $\pm \frac{1}{2} r$

Answer: B

- Watch Video Solution

52. the shortest distance between the line
$y-x=1$ and the curve $x=y^{2}$ is
A. $\frac{\sqrt{3}}{4}$
B. $\frac{3 \sqrt{2}}{8}$
C. $\frac{8}{3 \sqrt{2}}$
D. $\frac{4}{\sqrt{3}}$

Answer: B
53. about to only mathematics
A. 4
B. 3
C. 2
D. 8

Answer: A

- Watch Video Solution

54. Let $P Q$ be a focal chord of the parabola $y^{2}=4 a x$. The tangents to the parabola at P and Q meet at point lying on the line

$$
y=2 x+a, a<0
$$

If chord PQ subtends an angle θ at the vertex of
$y^{2}=4 a x$, then $\tan \theta=$
A. $\frac{2 \sqrt{7}}{3}$
B. $-\frac{2 \sqrt{7}}{3}$
C. $\frac{2 \sqrt{3}}{3}$
D. $-\frac{2 \sqrt{5}}{3}$
55. Let $\mathrm{a}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ be non-zero real numbers. Let $P\left(a t^{2}, 2 a t\right), Q\left(a r^{2}, 2 a r\right)$ and $S\left(a s^{2}, 2 a s\right) \quad$ be distinct points on the parabola $y^{2}=4 a x$. Suppose that $P Q$ is the focal chord and lines $Q R$ and $P K$ are parallel, where K the point $(2 a, 0)$.

The value of r is
A. $-\frac{1}{t}$
B. $\frac{t^{2}+1}{t}$
C. $\frac{1}{t}$
D. $\frac{t^{2}-1}{t}$

Answer: D

- Watch Video Solution

56. Let $\mathrm{a}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ be non-zero real numbers. Let $P\left(a t^{2}, 2 a t\right), Q\left(a r^{2}, 2 a r\right)$ and $S\left(a s^{2}, 2 a s\right) \quad$ be distinct points on the parabola $y^{2}=4 a x$. Suppose that $P Q$ is the focal chord and lines $Q R$ and $P K$ are parallel, where K the point $(2 a, 0)$.

If $s t=1$, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

$$
\text { A. } \frac{(t+1)^{2}}{2 t^{3}}
$$

B. $\frac{a(t+1)^{2}}{2 t^{3}}$
C. $\frac{a\left(t^{2}+1\right)^{2}}{t^{3}}$
D. $\frac{a\left(t^{2}+2\right)^{2}}{t^{3}}$

Answer: B

- Watch Video Solution

57. Let P and Q be distinct points on the parabola
$y^{2}=2 x$ such that a circle with PQ as diameter passes through the vertex O of the parabola. If P
lies in the first quadrant and the area of the
triangle $\triangle O P Q$ is $3 \sqrt{2}$, then which of the following is (are) the coordinates of P ?
A. $(4,2 \sqrt{2})$
B. $(9,3 \sqrt{2})$
C. $(1 / 4,1 / \sqrt{2})$
D. $(1, \sqrt{2})$

Answer: A::D

- Watch Video Solution

58. about to only mathematics
A. 3
B. 6
C. 8
D. 4

Answer: D

- Watch Video Solution

59. PSQ is a focal chord of a parabola whose focus is S and vertex is A. PA and QA are produced to meet the directrix in R and T , respectively. Then
$\angle R S T=`$
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

- Watch Video Solution

60. Let P be the point on the parabola $y^{2} 4 x$ which is at the shortest distance from the center S of the circle $x^{2}+y^{2}-4 x-16 y+64=0$. Let Q be the
point on the circle dividing the line segment SP internally. Then
A. $S P=2 \sqrt{5}$
B. $S P: Q P=\sqrt{5}+1): 2$
C. the x-intercept of the normal to the parabola at P is 6
D. the slope of the tangent to the circle at Q is

1/2

Answer: B
61. Let P be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the center C of the circle , $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through C and having its canter at P is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-x+4 y-12=0 \\
& \text { В. } x^{2}+y^{2}=\frac{1}{4} x+2 y-24=0 \\
& \text { C. } x^{2}+y^{2}-4 x+9 y+12=0 \\
& \text { D. } x^{2}+y^{2}-4 x+8 y+12=0
\end{aligned}
$$

Answer: D

62. P and Q are two distinct points on the parabola, $y^{2}=4 x$ with parameters t and t_{1} respectively. If the normal at P passes through Q,
then the minimum value of t_{1}^{2} is
A. 4
B. 6
C. 8
D. 2

Answer: C
63. Let PQ be a focal chord of the parabola $y^{2}=4 x$
. If the centre of a circle having PQ as its diameter
lies on the line $\sqrt{5} y+4=0$, then length of the chord PQ , is
A. $\frac{36}{5}$
B. $\frac{26}{5}$
C. $\frac{36 \sqrt{5}}{5}$
D. $\frac{26 \sqrt{5}}{5}$
64. The centres of those circles which touch the
circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally and also touch the x-axis, lie on
A. an ellipe which is not a circle
B. a hyperbola
C. a parabola
D. a circle

Answer: C
65. The radius of a circle, having minimum area, which touches the curve $y=4-x^{2}$ and the lines $y=|x|$ is :
A. $2(\sqrt{2}+2)$
B. $2(\sqrt{2}-1)$
C. $4(\sqrt{2}-1)$
D. $4(\sqrt{2}+1)$

Answer: C
66. If a chord, which is not a tangent of the
parabola $y^{2}=16 x$ has the equation $2 \mathrm{x}+\mathrm{y}=\mathrm{p}$, and mid-point (h, k), then which of the following is (are) possible values (s) of p, h and k ?

$$
\begin{aligned}
& \text { A. } p=5, h=4, k=-3 \\
& \text { B. } p=-1, h=1, k=-3 \\
& \text { С. } p=-2, h=2, k=-4 \\
& \text { D. } p=2, h=3, k=-4
\end{aligned}
$$

Answer: D

Section I Solved Mcqs Example

1. Three points A, B and C are considered on a parabola. The tangents to the parabola at these points from a triangle MNP (NP being tangent at A,
$P M$ at B and $M N$ at C). If the line through B and parallel to axis of parabola intersects $A C$ at L. then the quadrilateral LMNP
A. is always a parallelogram
B. can never be parallelogram
C. is parallelogram only when ordinates of A, B, C are in A.P.
D. has exactly sides parallel to each always.

Answer: A

D View Text Solution

Section li Assertion Reason Type

1. Statement I The curve $y=\frac{x^{2}}{2}+x+1$ is symmetric with respect to the line $x=1$. because

Statement II A parabola is symmetric about its axis.
A. Statement-1 is True, Statement - 2 is true, Statement-2 is a correct explanation for Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation for Statement-1
C. Statement- 1 is True, Statement - 2 is False.
D. Statement- 1 is True, Statement -2 is True.

Answer: A

2. Statement-1: The tangents at the extremities of a focal chord of the parabola $y^{2}=4 a x$ intersect on the line $\mathrm{x}+\mathrm{a}=0$.

Statement-2: The locus of the point of intersection of perpendicular tangents to the parabola is its directrix
A. Statement-1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation for

Statement-2
C. Statement- 1 is True, Statement -2 is False.
D. Statement-1 is True, Statement - 2 is True.

Answer: A

- Watch Video Solution

3. Consider two curves $C 1: y^{2}=4 x$;
$C 2=x^{2}+y^{2}-6 x+1=0$. Then, a. C1 and C2
touch each other at one point b. C1 and C2 touch each other exactly at two point c. C1 and C2
intersect(but do not touch) at exactly two point d.

C1 and C2 neither intersect nor touch each other

A. Statement-1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation for Statement-3
C. Statement-1 is True, Statement - 2 is False.
D. Statement-1 is True, Statement - 2 is True.
4. Statement-1: Three normals can be drawn to the parabola $y^{2}=4 a x$ through the point $(\mathrm{a}, \mathrm{a}+1)$, if $a<2$.

Statement-2: The point ($a, a+1$) lies outside the parabola $y^{2}=4 x$ for all $a \neq 1$.
A. Statement-1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement- 1 is True, Statement - 2 is true, Statement-2 is not a correct explanation for Statement-4
C. Statement-1 is True, Statement - 2 is False.
D. Statement-1 is False, Statement -2 is True.

Answer: D

(D) Watch Video Solution

5. Statement-1: Length of the common chord of the parabola $y^{2}=8 x$ and the circle $x^{2}+y^{2}=9$ is less
than the length of the latusrectum of the parabola.
Statement-2: If vertex of a parabola lies at the point (a. 0) and the directrix is $x+a=0$, then the focus of the parabola is at the point $(2 a, 0)$.
A. Statement-1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation for

Statement-5
C. Statement-1 is True, Statement - 2 is False.
D. Statement- 1 is True, Statement -2 is True.

Answer: C

- Watch Video Solution

6. Statement-1: $\quad y+b=m_{1}(x+a) \quad$ and
$y+b=m_{2}(x+a)$ are perpendicular tangents to
the parabola $y^{2}=4 a x$.
Statement-2: The locus of the point of intersection of perpendicular tangents to a parabola is its directrix.
A. Statement-1 is True, Statement - 2 is true, Statement-2 is a correct explanation for Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation for Statement-6
C. Statement- 1 is True, Statement - 2 is False.
D. Statement- 1 is True, Statement -2 is True.

Answer: A

7. Given a circle, $2 x^{2}+2 y^{2}=5$ and a parabola,
$y^{2}=4 \sqrt{5} x$.
Statement 1: An equation of a common tangent to
these curves is $y=x+\sqrt{5}$.
Statement 2 if the line, $y=m x+\frac{\sqrt{5}}{m}(m \neq 0)$ is the common tangent, then m satisfies $m^{4}-3 m^{2}+2=0$.
A. Statement-1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement-1 is True, Statement - 2 is true, Statement-2 is not a correct explanation for Statement-7
C. Statement-1 is True, Statement - 2 is False.
D. Statement-1 is True, Statement - 2 is True.

Answer: B

- Watch Video Solution

1. If the focus and vertex of a parabola are the points (0,2) and (0,4), respectively, then find the equation

$$
\text { A. } y^{2}=8 x+32
$$

B. $y^{2}=-8 x+32$
C. $x^{2}+8 x=32$
D. $x^{2}-8 y=32$

Answer: C
2. Find the equation of the directrix of the parabola $x^{2}-4 x-3 y+10=0$.

$$
\begin{aligned}
& \text { A. } y=-\frac{5}{4} \\
& \text { B. } y=\frac{5}{4} \\
& \text { C. } y=-\frac{3}{4} \\
& \text { D. } x=\frac{5}{4}
\end{aligned}
$$

Answer: B

D Watch Video Solution
3. If the vertex of a parabola is the point $(-3,0)$
and the directrix is the line $x+5=0$, then find its equation.

$$
\begin{aligned}
& \text { А. } y^{2}=8(x+3) \\
& \text { В. } x^{2}=8(x+3) \\
& \text { C. } y^{2}=-8(x+3) \\
& \text { D. } y^{2}=8(x+5)
\end{aligned}
$$

Answer: A
4. Find the angle made by a double ordinate of length $8 a$ at the vertex of the parabola $y^{2}=4 a x$.
A. $\pi / 3$
B. $\pi / 2$
C. $\pi / 4$
D. $\pi / 6$

Answer: B

- Watch Video Solution

5. Find the coordinates of points on the parabola $y^{2}=8 x$ whose focal distance is 4 .
A. $(1 / 2, \pm 2)$
B. $(1, \pm 2 \sqrt{2})$
C. $(2, \pm 4)$
D. none of these

Answer: C
6. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose vertex is at of the parabola. Find the length of its side.
A. $4 a \sqrt{3}$
B. $2 a \sqrt{3}$
C. $16 a \sqrt{3}$
D. $8 a \sqrt{3}$

Answer: D
7. The coordinates of the focus of the parabola $x^{2}-4 x-8 y-4=0$
A. $(0,2)$
B. $(2,1)$
C. $(1,2)$
D. $(-2,-1)$

Answer: B

D Watch Video Solution
8. If y_{1}, y_{2}, y_{3} be the ordinates of a vertices of the triangle inscribed in a parabola $y^{3}=4 a x$, then show that the area of the triangle is

$$
\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
$$

$$
\begin{aligned}
& \text { A. } \frac{1}{2 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right| \\
& \text { B. } \frac{1}{4 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right| \\
& \text { C. } \frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
\end{aligned}
$$

D. none of these

Answer: C

9. The area of the triangle inscribed in the parabola

 $y^{2}=4 x$ the ordinates of whose vertices are 1,2 and 4 square units, is> A. $\frac{7}{2}$
> B. $\frac{5}{2}$
> C. $\frac{3}{2}$
> D. $\frac{3}{4}$

Answer: D
10. The length of the latusrectum of the parbola whose focus is $(3,3)$ and directrix $3 x-4 y-2=0$, is
A. 2
B. 1
C. 4
D. none of these

Answer: A

- Watch Video Solution

11. The length of the latus rectum of the parabola whose focus is $\left(\frac{u^{2}}{2 g} \sin 2 \alpha,-\frac{u^{2}}{2 g} \cos 2 \alpha\right)$ and directrix is $y=\frac{u^{2}}{2 g}$ is (a) $\frac{u^{2}}{g} \cos ^{2} \alpha$ (b) $\frac{u^{2}}{g} \cos ^{2} 2 \alpha$
(c) $\frac{2 u^{2}}{g} \cos ^{2} 2 \alpha$ (d) $\frac{2 u^{2}}{g} \cos ^{2} \alpha$
A. $\frac{u^{2}}{g} \cos ^{2} \alpha$
B. $\frac{u^{2}}{g} \cos 2 \alpha$
C. $\frac{2 u^{2}}{g} \cos 2 \alpha$
D. $\frac{2 u^{2}}{g} \cos ^{2} \alpha$

Answer: D
12. PQ is a double ordinate of a parabola $y^{2}=4 a x$.

Find the locus of its points of trisection.

$$
\begin{aligned}
& \text { A. } y^{2}=a x \\
& \text { B. } 9 y^{2}=4 a x \\
& \text { C. } 9 y^{2}=a x \\
& \text { D. } y^{2}=9 a x
\end{aligned}
$$

Answer: B

- Watch Video Solution

13. If the segment intercepted by the parabola $y=4 a x$ with the line $l x+m y+n=0$ subtends a right angle at the vertex, then $4 a l+n=0$ (b)

$$
4 a l+4 a m+n=04 a m+n=0 \text { (d) } a l+n=0
$$

A. $4 \mathrm{al}+\mathrm{n}=0$
B. $4 \mathrm{al}+4 \mathrm{am}+\mathrm{n}=0$
C. $4 a \mathrm{~m}+\mathrm{n}=0$
D. $\mathrm{al}+\mathrm{n}=0$

Answer: A

14. The length of a focal chord of the parabola $y^{2}=4 a x$ making an angle θ with the axis of the parabola is $(a>0)$ is:
A. $4 a \operatorname{cosec}^{2} \theta$
B. $4 a \cos \theta \operatorname{cosec}^{2} \theta$
C. $4 a \cot \theta \operatorname{cosec}^{2} \theta$
D. $2 a \operatorname{cosec}^{2} \theta$

Answer: B
15. Show that the parametric point $\left(2+t^{2}, 2 t+1\right)$ represents a parabola. Show that its vertex is (2,1).
A. a parabola with focus at $(2,1)$
B. a parabola with vertex at $(2,1)$
C. an ellipse with centre at $(2,1)$
D. none of these

Answer: B

- Watch Video Solution

16. The ratio in which the line segment joining the point (4, -6) and (3,1) si divided by the parabola $y^{2}=4 a x$ is

$$
\begin{aligned}
& \text { A. } \frac{-20 \pm \sqrt{155}}{11}: 1 \\
& \text { B. } \frac{-2 \pm \sqrt{155}}{11}: 1 \\
& \text { C. }-20 \pm 2 \sqrt{155}: 11 \\
& \text { D. }-20 \pm \sqrt{155}: 11
\end{aligned}
$$

Answer: C
17. If (a, b) is the midpoint of a chord passing through the vertex of the parabola $y^{2}=4 x$, then (a) $a=2 b$ (b) $a^{2}=2 b$ (c) $a^{2}=2 b$ (d) $2 a=b^{2}$
A. $a=a b$
B. $2 \mathrm{a}=\mathrm{b}$
C. $a^{2}=a b$
D. $2 a=b^{2}$

Answer: D
18. If the vertex and focus of a parabola are $(3,3)$ and $(-3,3)$ respectively, then its equation is

$$
\text { A. } x^{2}+6 x-24 y+63=0
$$

$$
\text { B. } x^{2}-6 x+24 y-63=0
$$

$$
\text { C. } y^{2}-6 y+24 x-63=0
$$

$$
\text { D. } y^{2}+6 y-24 x+63=0
$$

Answer: C
19. about to only mathematics
A. $y^{2}=a(x-a)$
B. $y^{2}=2 a(x-a)$
C. $y^{2}=4 a(x-a)$
D. none of these

Answer: B

- Watch Video Solution

20. If y_{1}, y_{2} are the ordinates of two points P and Q on the parabola and y_{3} is the ordinate of the intersection of tangents at P and Q, then
A. y_{1}, y_{2}, y_{3} are in AP
B. y_{1}, y_{3}, y_{2} are in AP
C. y_{1}, y_{2}, y_{3} are in GP
D. y_{1}, y_{3}, y_{2} are in GP

Answer: B
21. If the line $x+y=1$ touches the parabola $y^{2}-y+x=0$, then the coordinates of the point of contact are:
A. $(1,1)$
B. $(1 / 2,1 / 2)$
C. $(0,1)$
D. $(1,0)$

Answer: C

- Watch Video Solution

22. Find the locus of the foot of the perpendiculars drawn from the vertex on a variable tangent to the parabola $y^{2}=4 a x$.
A. the directrix
B. tangent at the vertex
C. $x=a$
D. none of these

Answer: B
23. Equation of line touching both the parabolas

$$
y^{2}=4 x \& x^{2}=-32 y
$$

A. $x+2 y+4=0$
B. $2 x+y-4=0$
C. $x-2 y-4=0$
D. $x-2 y+4=0$

Answer: D

D Watch Video Solution
24. If t is the parameter for one end of a focal chord of the parabola $y^{2}=4 a x$, then its length is
A. $a\left(t+\frac{1}{t}\right)^{2}$
B. $a\left(t-\frac{1}{t}\right)^{2}$
C. $a\left(t+\frac{1}{t}\right)$
D. $a\left(t-\frac{1}{t}\right)$

Answer: A
25. Find the equation of normal to the parabola $y^{2}=4 a x$ at point $\left(a t^{2}, 2 a t\right)$

- Watch Video Solution

26. Normal at the point $P\left(a p^{2}, 2 a p\right)$ meets the parabola $y^{2}=4 a x$ again at $Q\left(a q^{2}, 2 a q\right)$ such that the lines joining the origin to $P a n d Q$ are at right angle. Then, $P^{2}=2$ (b) $q^{2}=2 p=2 q$ (d) $q=2 p$

> A. $p^{2}+p q+2=0$
> В. $p^{2}-p q+2=0$
> С. $q^{2}+p q+2=0$
D. $p^{2}+p q+1=0$

Answer: A

- Watch Video Solution

27. The length of the subnormal to the parabola
$y^{2}=4 a x$ at any point is equal to
A. $a \sqrt{2}$
B. $2 \sqrt{2} a$
C. $\frac{a}{\sqrt{2}}$
D. $2 a$

- Watch Video Solution

28. The two parabolas $y^{2}=4 x$ and $x^{2}=4 y$ intersect at a point P, whose abscissas is not zero, such that
A. they both touch each other at P
B. they cut at right angles at P
C. the tangents to each curvs at P make complementary angles with the x-axis

D. none of these

Answer: C

- Watch Video Solution

29. A set of parallel chords of the parabola
$y^{2}=4 a x$ have their midpoint on any straight line through the vertex any straight line through the focus a straight line parallel to the axis another parabola
A. any straight line through the vertex
B. any straight line through the focus
C. a straight line parallel to the axis
D. another parabola

Answer: C

D Watch Video Solution

30. Find the point on the curve $y^{2}=a x$ the tangent at which makes an angle of 45° with the x axis.
A. $(a / 2, a / 4)$
B. $(-a / 2, a / 4)$
C. $(a / 4, a / 2)$
D. $(-a / 4, a / 2)$

Answer: C

- Watch Video Solution

31. If $2 x+y+\lambda=0$ is a normal to the parabola
$y^{2}=-8 x$, then λ is
A. -16
B. -8
C. -24
D. 24

Answer: D

- Watch Video Solution

32. Find the angle at which the parabolas $y^{2}=4 x$
and $x^{2}=32 y$ intersect.
A. $\tan ^{-1}(3 / 5)$
B. $\tan ^{-2}(4 / 5)$
C. π
D. $\pi / 2$

- Watch Video Solution

33. The normal at $(a, 2 a)$ on $y^{2}=4 a x$ meets the curve again at $\left(a t^{2}, 2 a t\right)$. Then the value of $t=$
A. 1
B. 3
C. -1
D. -3

- Watch Video Solution

34. If a chord which is normal to the parabola at one end subtend a right angle at the vertex, then angle to the axis is

D Watch Video Solution

35. Find the equations of the normals at the ends
of the latus- rectum of the parabola $y^{2}=4 a x$.
Also prove that they are at right angles on the axis of the parabola.
A. $x^{2}-y^{2}-6 a x+9 a^{2}=0$
B. $x^{2}-y^{2}-6 a x-6 a y+9 a^{2}=0$
C. $x^{2}-y^{2}-6 x y+9 a^{2}=0$
D. none of these

Answer: A

- Watch Video Solution

36. Normal at the point $P\left(a p^{2}, 2 a p\right)$ meets the parabola $y^{2}=4 a x$ again at $Q\left(a q^{2}, 2 a q\right)$ such that the lines joining the origin to PandQ are at right angle. Then, $P^{2}=2$ (b) $q^{2}=2 p=2 q$ (d) $q=2 p$
A. $p^{2}=2$
B. $q^{2}=2$
C. $p=2 q$
D. $q=2 p$

Answer: A

D Watch Video Solution

37. If the normals at points t_{1} and t_{2} meet on the parabola, then
(a) $t_{1} t_{2}=1$ (b) $t_{2}=-t_{1}-\frac{2}{t_{1}}$ (c) $t_{1} t_{2}=2$
none of these
A. $t_{1} t_{2}=-1$
B. $t_{2}=-t_{1}-\frac{2}{t_{1}}$
C. $t_{1} t_{2}=2$
D. none of these

Answer: C

D Watch Video Solution

38. If the normals at two points P and Q of a parabola $y^{2}=4 a x$ intersect at a third point R on the curve, then the product of ordinates of P and Q is
A. $4 a^{2}$
B. $2 a^{2}$
C. $-4 a^{2}$
D. $8 a^{2}$

Answer: D

- Watch Video Solution

39. Find the angle between the tangents drawn
from the origin to the parabolas $y^{2}=4 a(x-a)$
A. 90°
B. 30°
C. $\tan ^{-1}(1 / 2)$
D. 45°

Answer: A

- Watch Video Solution

40. The angle between the tangents drawn from
the point $(-\mathrm{a}, 2 \mathrm{a})$ to $y^{2}=4 \mathrm{ax}$ is
A. $\pi / 4$
B. $\pi / 2$
C. $\pi / 3$
D. $\pi / 6$

Answer: B

- Watch Video Solution

41. The angle between the tangents to the parabola $y^{2}=4 a x$ at the points where it intersects with the line $x-y-a=0$ is (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) π (d) $\frac{\pi}{2}$

$$
\text { А. } \pi / 3
$$

B. $\pi / 4$
C. $\pi / 6$
D. $\pi / 2$

Answer: D

- Watch Video Solution

42. $P(-3,2)$ is one end of focal chord $P Q$ of the parabola $y^{2}+4 x+4 y=0$. Then the slope of the normal at Q is

$$
\text { A. }-1 / 2
$$

B. 2
C. $1 / 2$
D. -2

Answer: A

- Watch Video Solution

43. If $x=m y+c$ is a normal to the parabola
$x^{2}=4 a y$, then the value of c , is
A. $-2 a m-a m^{3}$
B. $2 a m+a m^{3}$

$$
\begin{aligned}
& \text { C. }-\frac{2 a}{m}-\frac{a}{m^{3}} \\
& \text { D. } \frac{2 a}{m}+\frac{a}{m^{3}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

44. Find the equations of the tangent to the given curve at the indicated point :

$$
y^{2}=4 a x \quad \text { at } \quad\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)
$$

$$
\text { A. } y=m x-2 a m-a m^{3}
$$

$$
\text { B. } m^{3} y=m^{2} x-2 a m^{2}-a
$$

$$
\text { C. } m^{3} y=2 a m^{2}-m^{2} x+a
$$

D. none of these

Answer: C

- Watch Video Solution

45. The tangents at the points
$\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right)$ on the parabola $y^{2}=4 a x$
are at right angles if
A. -1
B. -2
C. -3
D. -4

Answer: D

- Watch Video Solution

46. If the vertex of the parabola $y=x^{2}-8 x+c$
lies on x-axis, then the value of c, is
A. -16
B. -4
C. 4

D. 16

Answer: D

- Watch Video Solution

47. If the chord $y=m x+c$ subtends a right angle at the vertex of the parabola $y^{2}=4 a x$, thenthe value of c is
A. $-4 a m$
B. $4 a m$
C. $-2 a m$
D. $2 a m$

Answer: A

- Watch Video Solution

48. The equation of the tangent at the vertex of
the parabola $x^{2}+4 x+2 y=0$, is
A. $x=-2$
B. $x=2$
C. $y=2$
D. $x=-a$

Answer: C

- Watch Video Solution

49. The locus of the point of intersection of the perpendicular tangents to the parabola $x^{2}=4 a y$ is .
A. $y=a$
B. $y=-a$
C. $x=a$
D. $x=-a$

- Watch Video Solution

50. If $y=2 x+3$ is a tangent to the parabola $y^{2}=24 x$, then find its distance from the parallel normal.
A. $5 \sqrt{5}$
B. $10 \sqrt{5}$
C. $15 \sqrt{5}$
D. $3 \sqrt{5}$

- Watch Video Solution

51. If the normal at $(1,2)$ on the parabola $y^{2}=4 x$ meets the parabola again at the point $\left(t^{2}, 2 t\right)$ then the value of t, is
A. 1
B. 3
C. -3
D. -1

Answer: C

- Watch Video Solution

52. The normals at three points P, Q, R of the parabola $y^{2}=4 a x$ meet in (h.k). The centroid of $\triangle P Q R$ lies on
A. $x=0$
B. $y=0$
C. $x=-a$
D. $y=a$

Answer: B

- Watch Video Solution

53. If the point $P(4,-2)$ is one ends of the focal $P Q$ of
$y^{2}=x$, then the slope of the tangent at Q is
A. $-1 / 4$
B. $1 / 4$
C. 4
D. -4

Answer: C

- Watch Video Solution

54. If $P S Q$ is a focal chord of the parabola
$y^{2}=8 x$ such that $S P=6$, then the length of $S Q$
is (a)6 (b) 4 (c) 3 (d) none of these
A. 6
B. 4
C. 3
D. none of these

- Watch Video Solution

55. The angle between the normals to the parabola
$y^{2}=24 x$ at points $(6,12)$ and $(6,-12)$, is
A. 30°
B. 45°
C. 60°
D. 90°
56. Find the equation of the common tangent of $y^{2}=4 a x$ and $x^{2}=4 a y$.
A. $x+y+a=0$
B. $x+y-a=0$
C. $x-y+a=0$
D. $x-y-a=0$

Answer: A

- Watch Video Solution

57. The equation of the common tangent touching
the circle $(x-3)^{2}+y^{2}=9$ and the parabola
$y^{2}=4 x$ above the x-axis is $\sqrt{3} y=3 x+1$ (b)

$$
\begin{array}{ll}
\sqrt{3} y=-(x+3) & \sqrt{2} y=x+3 \\
\sqrt{3} y & =-(3 x-1)
\end{array}
$$

A. $\sqrt{3} y=3 x+1$
B. $\sqrt{3} y=-x-3$
C. $\sqrt{3} y=(x+3)$
D. $\operatorname{sqrt} 3 y=-3 x-1$

Answer: C

58. The length of the subtangent to the parabola
$y^{2}=16 x$ at the point whose abscissa is 4 , is
A. 2
B. 4
C. 8
D. none of these

Answer: C
59. if P is a point on parabola $y^{2}=4 a x$ such that subtangents and subnormals at P are equal, then the coordinates of P are:
A. $(a, 2 a)$ or $(a,-2 a)$
B. $(2 a, 2 \sqrt{2} a)$ or $(2 a,-2 \sqrt{2} a)$
C. $(4 a,-4 a)$ or $(4 a, 4 a)$
D. none of these

Answer: A

- Watch Video Solution

60. The normal to the parabola $y^{2}=8 a x$ at the point $(2,4)$ meets the parabola again at the point
A. $(-18,-12)$
B. $(-28,12)$
C. $(18,12)$
D. $(18,-12)$

Answer: D

61. The graph represented

$x=\sin ^{2} t, y=2 \cos t$ is
A. a protion of a parabola
B. a part of a hyperbola
C. a part of a sing graph
D. a part of a circle

Answer: B
62. The subtangent, ordinate and subnormal to the
parabola $y^{2}=4 a x$ are in
A. AP
B. GP
C. HP
D. none of these

Answer: B
63. f the normal at the point $P\left(a t_{1}, 2 a t_{1}\right)$ meets
the parabola $y^{2}=4 a x$ aguin at $\left(a t_{2}, 2 a t_{2}\right)$, then
A. $t_{1} t_{2}=-1$
B. $t_{1} t_{2}=1$
C. $t_{1} t_{2}=2$
D. $t_{2} t_{2}=-2$

Answer: A
64. The equation of the parabola whose vertex is at $(2,-1)$ and focus at $(2,-3)$, is

$$
\begin{aligned}
& \text { A. } x^{2}+4 x-8 y-12=0 \\
& \text { B. } x^{2}-4 x+8 y+12=0 \\
& \text { C. } x^{2}+8 y=12 \\
& \text { D. } x^{2}-4 x+12=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

65. The ends of a line segment are $P(1,3)$ and $Q(1,1), \mathrm{R}$ is a point on the line segment PQ such that $P R: Q R=1: \lambda$.ff R is an interior point of the parabola $y^{2}=4 x$ then
A. $(0,1)$
B. $(-3 / 5,1)$
C. $(1 / 2,3 / 5)$
D. none of these

Answer: A

66. The vertex of the parabola $y^{2}+6 x-2 y+13=0$ is

A. $(1,-1)$
B. $(-2,1)$
C. $(3 / 2,1)$
D. $(-7 / 2,1)$

Answer: B
67. The Cartesian equation of the directrix of the parabola whose parametrix equations are $x=2 t+1, y=t^{2}+2$ is
A. $y=2$
B. $y=1$
C. $y=-1$
D. $y=-2$

Answer: B
68. If the vertex of a parabola is $(0,2)$ and the extremities of latusrectum are $(-6,4)$ and $(6,4)$
then, its equation, is
A. $x^{2}-4 y+8=0$
B. $x^{2}+4 y-8=0$
C. $x^{2}-8 y+16=0$
D. $x^{2}+8 y-16=0$

Answer: C
69. A line L passing through the focus of the parabola $(y-2)^{2}=4(x+1)$ intersects the two distinct point. If m be the slope of the line I, then
A. $\min (-\infty,-1) \cup(1, \infty)$
B. $m \in(-\infty, 0) \cup(0, \infty)$
C. $\min (-\infty, 0) \cup(0, \infty)$
D. none of these

Answer: C
70. Let $y=f(x)$ be a parabola, having its axis parallel to the y-axis, which is touched by the line

$$
\begin{equation*}
y=x \text { at } x=1 . \quad \text { Then, } 2 f(0)=1-f^{\prime}(0) \tag{b}
\end{equation*}
$$

$f(0)+f^{\prime}(0)+f^{0}=1 \quad f^{\prime}(1)=1$
$f^{\prime}(0)=f^{\prime}(1)$

$$
\begin{aligned}
& \text { A. } f^{\prime}(0)={ }^{\prime}(1) \\
& \text { B. } 2 f(0)=1-f^{\prime}(0) \\
& \text { C. } f^{\prime}(1)=1 \\
& \text { D. } f(0)+f^{\prime}(0)+f^{\prime}(0)=1
\end{aligned}
$$

Answer: B

71. If two tangents drawn from the point (α, β) to the parabola $y^{2}=4 x$ are such that the slope of one tangent is double of the other, then prove that $\alpha=\frac{2}{9} \beta^{2}$.
A. $9 y=2 x^{2}$
B. $9 x=2 y^{2}$
C. $2 x=9 y^{2}$
D. none of these

Answer: B

72. The angle between the tangents drawn form the point $(3,4)$ to the parabola $y^{2}-2 y+4 x=0$, is
A. $\tan ^{-1}(8 \sqrt{5} / 7)$
B. $\tan ^{-1}(12 / \sqrt{5})$
C. $\tan ^{-1}(\sqrt{5} / 7)$
D. none of these

Answer: A
73. set of values of m for which a chord of slope m of the circle $x^{2}+y^{2}=4$ touches parabola $y^{2}=4 x$, may lie in intervel
A.

$$
\left(-\infty,-\sqrt{\frac{\sqrt{2}-1}{2}}\right) \cup\left(\sqrt{\frac{\sqrt{2}-1}{2}, \infty}\right)
$$

B. $(-\infty,-1) \cup(1, \infty)$
C. $(-1,1)$
D. R

Answer: A
74. The mid-point of the line joining the common points of the
line $2 x-3 y+8=0$ and $y^{2}=8 x$, is
A. $(3,2)$
B. $(5,6)$
C. $(4,-1)$
D. $(2,-3)$

Answer: B
75. Tangents PQ and PR are drawn to the parabola $y^{2}=20(x+5)$ and $y^{2}=60(x+15)$, respectively
such that $\angle R P Q=\frac{\pi}{2}$. Then the locus of point P is
A. $x+10=0$
B. $x+30=0$
C. $x+40=0$
D. none of these

Answer: D

76. $P C$ is the normal at P to the parabola $y^{2}=4 a x, C$ being on the axis. CP is produced outwards to Q so that $P Q=C P$. The locus of Q is a parabola which has focus
A. ellipse
B. parabola
C. hyperbola
D. ciacle

Answer: B

- Watch Video Solution

77. From a fixed point A three normals are drawn to
the parabola $y^{2}=4 a x$ at the points P, Q and R .
Two circles C_{1} and C_{2} are drawn on AP and AQ as diameter. If slope of the common chord of the circles C_{1} and C_{2} be m_{1} and the slope of the tangent to teh parabola at R be m_{2}, then $m_{1} \times m_{2}$, is equal to
A. $\frac{1}{2}$
B. 2
C. $-\frac{1}{2}$
D. -2

- Watch Video Solution

78. The tangent to the parabola $y=x^{2}$ has been drawn so that the abscissa x_{0} of the point of tangency belongs to the interval [1,2]. Find x_{0} for which the triangle bounded by the tangent, the axis of ordinates, and the straight line $y=x 02$ has the greatest area.
A. 0
B. 1
C. 2
D. $\frac{3}{2}$

Answer: C

- Watch Video Solution

79. A circle drawn on any focal AB of the parabola $y^{2}=4 a x$ as diameter cute the parabola again at C and D. If the parameters of the points A, B, C, D be t_{1}, t_{2}, t_{3} and t_{4} respectively, then the value of t_{3}, t_{4}, is
B. 2
C. 3
D. none of these

Answer: C

- Watch Video Solution

80. Let F be the focus of the parabola $y^{2}=4 a x$ and M be the foot of perpendicular form point $P\left(a t^{2}, 2 a t\right)$ on the tangent at the vertex. If N is a point on the tangent at P , then $\frac{M N}{F N}$ equals
A. $\frac{t^{2}}{t^{2}+1}$
B. $\frac{t^{2}+1}{t^{2}}$
C. 1
D. none of these

Answer: A

- Watch Video Solution

81. The focus of a parabola is $(0,0)$ and vertex $(1,1)$.

If two mutually perpendicular tangents can be drawn to a parabola from the circle
$(x-2)^{2}+(y-3)^{2}=r^{2}$,then

> A. $|r|>\frac{1}{\sqrt{2}}$
> B. $r>\frac{1}{\sqrt{2}}$
> C. $r=\frac{1}{\sqrt{2}}$
> D. $|r|<\frac{1}{\sqrt{2}}$

Answer: A

(D) Watch Video Solution

82. The point P on the parabola $y^{2}=4 a x$ for which | PR-PQ | is maximum, where $R(-a, 0)$ and $Q(0$,
a) are two points,
A. (a, 2a)
B. $(a,-2 a)$
C. (4a, 4a)
D. $(4 a,-4 a)$

Answer: A

D Watch Video Solution

Chapter Test

1. If $y=2 x+k$ is a tangent to the curve $x^{2}=4 y$, then k is equal to
A. 4
B. 43467
C. -4
D. $-1 / 2$

Answer: C
2. The normal drawn at a point $\left(a t 12,-2 a t_{1}\right)$ of the parabola $y^{2}=4 a x$ meets it again in the point (at22, 2at $)_{2}$, then $t_{2}=t_{1}+\frac{2}{t_{1}}$ (b) $t_{2}=t_{1}-\frac{2}{t_{1}}$
$t_{2}=-t_{1}+\frac{2}{t_{1}}(\mathrm{~d}) t_{2}=-t_{1}-\frac{2}{t_{1}}$
A. $t_{1}=2 t_{2}$
B. $t_{1}^{2}=2 t_{2}$
C. $t_{1} t_{2}=1$
D. none of these

Answer: D
3. The mid-point of the chord $2 x+y-4=0$ of the parabola $y^{2}=4 x$ is
A. $(5 / 2,-1)$
B. $(-1,5 / 2)$
C. $(3 / 2,-1)$
D. none of these

Answer: A

- Watch Video Solution

4. The two ends of latusrectum of a parabola are the points $(3,6)$ and $(-5,6)$. The focus, is
A. $(1,6)$
B. $(-1,6)$
C. (1, -6)
D. $(-1,-6)$

Answer: B

- Watch Video Solution

5. Prove that the locus of the middle points of all chords of the parabola $y^{2}=4 a x$ passing through the vertex is the parabola $y^{2}=2 a x$.

$$
\begin{aligned}
& \text { A. } y^{2}=8 x \\
& \text { B. } y^{2}=2 x \\
& \text { C. } x^{2}+4 y^{2}=16 \\
& \text { D. } x^{2}=2 y
\end{aligned}
$$

Answer: B
6. The focus of the parabola $x^{2}-8 x+2 y+7=0$ is
A. $(4,7 / 2)$
B. $(4,9 / 2)$
C. $(9 / 2,4)$
D. $(1,0)$

Answer: B

- Watch Video Solution

7. The point of contact of the line $x-2 y-1=0$ with the parabola $y^{2}=2(x-3)$, is
A. $(5,2)$
B. $(5,-2)$
C. $(2,5)$
D. $(5,3)$

Answer: A
8. Find the number of distinct normals that can be drawn from $(-2,1)$ to the parabola $y^{2}-4 x-2 y-3=0$
A. 3
B. 2
C. 1
D. 4

Answer: A
9. At what point on the parabola $y^{2}=4 x$ the normal makes equal angle with the axes? $(4,4)$ (b)

$$
(9,6)(\mathrm{d})(4,-4)(\mathrm{d})(1, \pm 2)
$$

A. $(4,4)$
B. $(9,6)$
C. $(4,-4)$
D. $(1,-2)$

Answer: D

- Watch Video Solution

10. Three normals to the parabola $y^{2}=x$ are drawn through a point (C, O) then $\mathrm{C}=$
A. $c=1 / 4$
B. $c=1 / 2$
C. $c>1 / 2$
D. none of these

Answer: C
11. The normal chord of a parabola $y^{2}=4 a x$ at the point $P\left(x_{1}, x_{1}\right)$ subtends a right angle at the
A. focus
B. vertex
C. end of the latusrectum
D. none of these

Answer: A
12. $A B, A C$ are tangents to a parabola $y^{2}=4 a x ; p_{1}, p_{2}, p_{3}$ are the lengths of the perpendiculars from A, B, C on any tangents to the curve, then p_{2}, p_{1}, p_{3} are in:
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B
13. The circles on the focal radii of a parabola as
diameter touch: A) the tangent at the vertex B) the axis C) the directrix D) latus rectum
A. the tangent at the vertex
B. the axis
C. the directrix
D. none of these

Answer: A
14. If the normals from any point to the parabola $y^{2}=4 x$ cut the line $x=2$ at points whose ordinates are in AP, then prove that the slopes of tangents at the co-normal points are in GP.
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B
15. about to only mathematics
A. $(p / 2, \pm p)$
B. $(p, p / 2)$
C. $(-p / 2, p)$
D. $(-p / 2,-p)$

Answer: A

- Watch Video Solution

16. The equation of the tangent to the parabola $y^{2}=8 x$ which is perpendicular to the line
$x-3 y+8=0$, is

- Watch Video Solution

17. the tangent drawn at any point P to the parabola $y^{2}=4 a x$ meets the directrix at the point
K. Then the angle which $K P$ subtends at the focus is
A. 30°
B. 45°
C. 60°
D. 90°

- Watch Video Solution

18. about to only mathematics

A. $\tan ^{-1}\left(t^{2}\right)$
B. $\left.\cot ^{-1}\right)\left(t^{2}\right)$
C. $\tan ^{-1}(t)$
D. $\cot ^{-1}(t)$

Answer: C
19. The parabola $y^{2}=4 a x$ passes through the point $(2,-6)$. Find the length of its latus rectum.
A. 18
B. 9
C. 6
D. 16

Answer: A

- Watch Video Solution

20. A variable circle passes through the fixed point
$(2,0)$ and touches y-axis Then, the locus of its
centre, is
A. a parabola
B. a circle
C. an ellipse
D. a hyperbola

Answer: A

- Watch Video Solution

21. The locus of the middle points of the focal chords of the parabola, $y^{2}=4 x$ is:
A. the axis
B. a focal chord
C. the parabola
D. the tangent at the vertex

Answer: C
22. If the Isope of the focal chord of $y^{2}=16 x$ is 2 , then the length of the chord, is
A. 22
B. 24
C. 20
D. 18

Answer: C
23. If $x-2 y-a=0$ is a chord of the parabola $y^{2}=4 a x$, then its langth, is
A. $4 a \sqrt{5}$
B. $40 a$
C. $20 a$
D. $15 a$

Answer: C
24. Equation of normal to the parabola $y^{2}=4 x$ which passes through $(3,0)$, is
A. $x+y=3$
B. $x+y+3=0$
C. $x-2 y=3$
D. none of these

Answer: A
25. Find the length of normal chord which subtends an angle of 90° at the vertex of the parabola $y^{2}=4 x$.
A. $6 \sqrt{3}$
B. $3 \sqrt{3}$
C. 2
D. 1

Answer: A
26. At what point on the parabola $y^{2}=4 x$ the normal makes equal angle with the axes? $(4,4)$ (b)

$$
(9,6) \text { (d) }(4,-4)(d)(1, \pm 2)
$$

A. $(4,4)$
B. $(9,0)$
C. $(4,-4)$
D. $(1,-2)$

Answer: D

- Watch Video Solution

27. The circles on focal radii of a parabola as

diameter touch

A. axis
B. directrix
C. tangent at the vertex
D. none of these

Answer: C
28. Tangents are drawn at the ends of any focal chord of the parabola $y^{2}=16 x$. Then which of the following statements about the point of intersection of tangents is true.
A. its abscissa is independent of the extremities of the focal chord
B. its ordinate is independent of the extremities
of the focal chord
C. it is at a distance of 8 units from the vertex
of the parabola

D. It is at a distance of 16 units from the focus

of the parabola

Answer: A

- Watch Video Solution

29. The angle between the pair of tangents drawn form $(1,3)$ to the parabola $y^{2}=8 x$, is
A. $\tan ^{-1} 2$
B. $\frac{\tan ^{-1} 1}{2}$
C. $\frac{\tan ^{-1} 1}{3}$
D. $\tan ^{-1} 3$

Answer: C

- Watch Video Solution

30. A variable tangent to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=-4 a x \mathrm{P}$ and Q . The locus of the mid-point of $P Q$, is

$$
\begin{aligned}
& \text { A. } y^{2}=-2 a x \\
& \text { B. } y^{2}=-a x \\
& \text { C. } y^{2}=-\frac{4}{3} a x
\end{aligned}
$$

D. $y^{2}=-4 a x$

Answer: C

- Watch Video Solution

