©゙doubtnut

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

SEQUENCES AND SERIES

Illustration

1. Let T be the r th term of an A.P. whose first term is a and conmon difference is d. If for some positive integers $m, n, T_{n}=\frac{1}{m}, T_{m}=\frac{1}{n}$ then $(a-d)$ equals
A. $\frac{1}{m n}$
B. $\frac{1}{m}+\frac{1}{n}$
C. 1
D. 0

Answer: C

- Watch Video Solution

2. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n+1}$ are in A.P., then $\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}} \ldots .+\frac{1}{a_{n} a_{n+1}}$ is
A. $\frac{n-1}{a_{1} a_{n+1}}$
B. $\frac{1}{a_{1} a_{n+1}}$
C. $\frac{n+1}{a_{1} a_{n+1}}$
D. $\frac{n}{a_{1} a_{n+1}}$

Answer: D

- Watch Video Solution

3. If $a_{1}, a_{2}, \ldots a_{n}$ are in arthimatic progression, where $a_{i}>0$ for all I, then show that

$$
\begin{aligned}
& \frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}} \\
& \frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}
\end{aligned}
$$

A. $\frac{1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
B. $\frac{1}{\sqrt{a_{1}}-\sqrt{a_{n}}}$
C. $\frac{n}{\sqrt{a_{1}}-\sqrt{a_{n}}}$
D. $\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$

Answer: D
4. If the numbers a, b, c, d, e form an A.P., then find the value of $a-4 b+6 c-4 d+e$.
A. 1
B. 2
C. 0
D. none of these

Answer: C

- Watch Video Solution

5. Let T be the r th term of an A.P. whose first term is a and conmon difference is d. If for some positive integers $m, n, T_{n}=\frac{1}{m}, T_{m}=\frac{1}{n}$ then $(a-d)$ equals
A. $\frac{1}{m}+\frac{1}{n}$
B. 1
C. $\frac{1}{n m}$
D. 0

Answer: D

- Watch Video Solution

6. If a_{n} be the term of an A.P. and if $a_{7}=15$, then the value of the common difference that could makes $a_{2} a_{7} a_{12}$ greatest is:
A. 9
B. $9 / 4$
C. 0
D. 18

Answer: C

- Watch Video Solution

7. Let a_{n} be the nth term of an AP, if $\sum_{r=1}^{100} a_{2 r}=\alpha$ and $\sum_{r=1}^{100} a_{2 r-1}=\beta$, then the common difference of the AP is
A. $\frac{\alpha-\beta}{100}$
B. $\beta-\alpha$
C. $\frac{\alpha-\beta}{200}$
D. $\alpha-\beta$

Answer: A

- Watch Video Solution

8. The 10th common terms between the series $3+7+11+\ldots .$. And $1+6+11+\ldots .$. is
(i) 191
(ii) 193
(iii) 211
(iv) None of these
A. 191
B. 193
C. 211
D. none of these

Answer: A

9. For any three positve real numbers a, b and c , $9\left(25 a^{+} b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ then
A. a, b and c are in A.P.
B. a, b and c are in G.P.
C. b,c and a are in G.P.
D. b,c and a are in A.P.

Answer: D

- Watch Video Solution

10. Find the number of common terms to the two sequences $17,21,25,417$ and $16,21,26, . ., 466$.
A. 21
B. 19
C. 20
D. 91

Answer: C

- Watch Video Solution

11. Which of the following sequenes is an A.P. with common difference 3 ?
A. $a_{n}=2 n^{2}+3 n, n \in N$
B. $a_{n}=3 n+5$
C. $a_{n}=3 n^{2}+1$
D. $a_{n}=2 n^{2}+3$

Answer: B

12. Let $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ be an AP. then:
$\frac{1}{a_{1} a_{n}}+\frac{1}{a_{2} a_{n-1}}+\frac{1}{a_{3} a_{n-2}}+\ldots \ldots+\frac{1}{a_{n} a_{1}}=$
A. 2
B. $a_{1}+a_{n}$
C. $2\left(a_{1}+a_{n 1}\right)$
D. $\frac{n}{a_{1} a_{n 1}}$

Answer: D

Watch Video Solution

13. If $\log 2, \log \left(2^{x}-1\right)$ and $\log 2 \log \left(2^{x}+3\right)$ are in A.P., write the value of x.
A. $5 / 2$
B. $\log _{2} 5$
C. $\log _{3} 5$
D. $\log _{5} 3$

Answer: B

- Watch Video Solution

14. If $\log _{5} 2, \log _{5}\left(2^{x}-3\right)$ and $\log _{5}\left(\frac{17}{2}+2^{x-1}\right)$ are in $A P$, then the value of x is
A. 0
B. -1
C. 3
D. none of these

Answer: C

15. If $\log _{10} 2, \log _{10}\left(2^{x}-1\right)$ and $\log _{10}\left(2^{x}+3\right)$ are in A.P then the value of x is
A. more than two real x
B. no real x
C. exactly one real x
D. exactly two real x

Answer: C

- Watch Video Solution

16. The least value of a for which $5^{1+x}+5^{1-x}, a / 2,25^{x}+25^{-x}$ are three consecutive terms of an A.P., is
A. 10
B. 5
C. 12
D. none of these

Answer: C

- Watch Video Solution

17. let $f(x)$ be a polynomial function of second degree. If $f(1)=f(-1)$ and a_{1}, a_{2}, a_{3} are in AP, then show that $f^{\prime}\left(a_{1}\right), f^{\prime}\left(a_{2}\right), f^{\prime}\left(a_{3}\right)$ are in AP.
A. A.G.P
B. A.P.
C. G.P.
D. H.P.

Answer: B

- Watch Video Solution

18. . If $1, \log _{y} x, \log _{z} y,-15 \log _{x} z$ are in AP, then
A. $x=z^{3}$
B. $x=y^{-1}$
C. $y=z^{-3}$
D. $y=z^{3}$

Answer: D

- Watch Video Solution

19. about to only mathematics
A. an even integer
B. an odd integer
C. the square of an integer
D. the cube of an integer

Answer: C

- Watch Video Solution

20. Three number are in A.P, such that their sum is 18 and sum of there square is 158 . The greatest among them is
A. 10
B. 11
C. 12
D. none of these

Answer: B

D Watch Video Solution

21. The sides of a right angled triangle are in arithmetic progression .If the triangle has aera 24 , then what is the length of its smallest side ?
A. 3
B. 6
C. 4
D. 8

Answer: B

- Watch Video Solution

22. If three positive real numbers a, b, c are in A.P such that $a b c=4$, then the minimum value of b is a) $2^{1 / 3}$ b) $2^{2 / 3}$ c) $2^{1 / 2}$ d) $2^{3 / 23}$
A. $2^{1 / 3}$
B. $2^{2 / 3}$
C. $2^{1 / 2}$
D. $2^{3 / 2}$
23. $7^{\text {th }}$ term of an A.P. is 40 . Then, the sum of first 13 terms is
A. 520
B. 53
C. 2080
D. 1040

Answer: A

Watch Video Solution

24. If the sum of the first $2 n$ terms of the A.P. $2,5,8, \ldots$, is equal to the sum of the first n terms of A.P. $57,59,61, \ldots$, then n equals 10 b .12 c .11 d .13
A. 10
B. 12
C. 11
D. 13

Answer: C

- Watch Video Solution

25. If $S_{n}=n P+\frac{n(n-1)}{2} Q$, where S_{n} denotes the sum of the first n terms of an A.P., then find the common difference.
A. $P+Q$
B. $2 P+3 Q$
C. $2 Q$
D. Q

Answer: D

26. The first and last term of an A.P. are a and I respectively. If S be the sum of all the terms of the A.P., them the common difference is
A. $\frac{l^{2}-a^{2}}{2 S-(l+a)}$
B. $\frac{l^{2}-a^{2}}{2 S-(l-a)}$
C. $\frac{l^{2}+a^{2}}{2 S+(l+a)}$
D. $\frac{l^{2}+a^{2}}{2 S-(l+a)}$

Answer: A

- Watch Video Solution

27. Let S_{n} denote the sum of first n terms of an A.P. If $S_{2 n}=3 S_{n}$, then find the ratio $S_{3 n} / S_{n}$.
A. $4: 1$
B. 6:1
C. 8:1
D. $10: 1$

Answer: B

- Watch Video Solution

28. Let the sequence $a_{1}, a_{2}, a_{3},, a_{n}$ from an A.P. Then the value of
$a 12-a 22+a 32-+a 2 n-12-a 2 n 2$ is $\frac{2 n}{n-1}(a 2 n 2-a 12)$
$\frac{n}{2 n-1}(a 12-a 2 n 2) \frac{n}{n+1}(a 12-a 2 n 2)$ (d) $\frac{n}{n-1}(a 12+a 2 n 2)$
A. $\frac{n}{2 n+1}\left(a_{1}^{2}+a_{2 n}^{2}\right)$
B. $\frac{2 n}{n+1}\left(a_{2 n}^{2}+a_{1}^{2}\right)$
C. $\frac{n}{n+1}\left(a_{1}^{2}+a_{2 n}^{2}\right)$
D. none of these

Answer: C

- Watch Video Solution

29. If the first, second and the last terms of an A.P. are a, b, c respectively, then the sum of the A.P. is
A. $\frac{(a+b)(a+c-2 b)}{2(b-a)}$
B. $\frac{(b+c)(a+b-2 c)}{2(b-a)}$
C. $\frac{(a+c)(b+c-2 a)}{2(b-a)}$
D. none of these

Answer: C

D Watch Video Solution

30. If $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots$
are in
A.P. such
that
$a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$, then
$a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{23}+a_{24}$ is equal to
A. 909
B. 75
C. 750
D. 900

Answer: D

- Watch Video Solution

31. Let $a_{1}, a_{2}, a_{3}, \ldots . a_{n}, \ldots \ldots$. .be in A.P. If $a_{3}+a_{7}+a_{11}+a_{15}=72$, then the sum of itsfirst 17 terms is equal to :
A. 153
B. 306
C. 612
D. 204

Answer: B

32. Consider an A.P. with first term a and common difference d. Let S_{k} denote the sum of the first k terms. If $\frac{S_{k x}}{S_{x}}$ is independent of x , then
A. $a=2 d$
B. $a=d$
C. $2 \mathrm{a}=\mathrm{d}$
D. none of these

Answer: C

- Watch Video Solution

33. Consider an A.P. with first term 'a'. Let S_{n} denote the sum its terms. If $\frac{S_{k x}}{S_{x}}$ is independent of x , then $S_{n}=$
A. $n^{2} a$
B. na
C. $2 n^{2} a$
D. $\left(n^{2}+n\right) a$

Answer: A

- Watch Video Solution

34. The ratio of the sum of n terms of two A.P. s is $(7 n+1):(4 n+27)$. Find the ratio of their mth terms.
A. $(14 \mathrm{n}+6):(8 \mathrm{n}-23)$
B. $(14 n-6):(8 n+23)$
C. $7 \mathrm{n}-1: 4 \mathrm{n}-27$
D. $(8 n+23):(14 n-6)$

Answer: B

35. The sum of n terms of two arithmetic progressions are in the ratio $(3 n+8):(7 n+15)$. Find the ratio of their $12^{t h}$ terms.
A. $16: 7$
B. $7: 16$
C. $74: 169$
D. none of these

Answer: B

- Watch Video Solution

36. If the ratio of $n^{t h}$ terms of two A.P.'s is $(2 n+8):(5 n-3)$ then the ratio of the sum of their n terms is
A. $(2 n+18):(5 n+1)$
B. $(5 n-1):(2 n+18)$
C. $(2 n+18):(5 n-1)$
D. none of these

Answer: C

- Watch Video Solution

37. If a_{1}, a_{2}, a_{3}, be terms of an A.P. and $\frac{a_{1}+a_{2}+\ldots .+a_{p}}{a_{1}+a_{2}+\ldots .+a_{q}}=\frac{p^{2}}{q^{2}}, p \neq q, \operatorname{then} \frac{a_{6}}{a_{21}}$ equals to (a).41/11 (b). 7/2 (c). 2/7 (d). 11/41
A. $\frac{41}{11}$
B. $\frac{7}{2}$
C. $\frac{2}{7}$
D. $\frac{11}{41}$

Answer: D

38. Suppose that all terms of an arithmetic progression (A.P) are natural numbers.If the reation of the sum of the first sece terms to the sum of the firest eleven terms is $6: 11$ and the seventh term lies in between 130 and 140 , then the common difference of this A.P is
A. 5
B. 6
C. 8
D. 9

Answer: C

- Watch Video Solution

39. A person is to count 4500 currency notes. Let an denote the number of notes he counts in the nth minute. If $a_{1}=a_{2}=\ldots \ldots=a_{10}=150$ and $a_{10}, a_{11}, \ldots \ldots$ are in A.P. with common difference -2 , then the time
taken by him to count all notes is (1) 34 minutes (2) 125 minutes (3) 135 minutes (4) 24 minutes
A. 125 minutes
B. 135 minutes
C. 24 mintutes
D. 34 minutes

Answer: D

- Watch Video Solution

40. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after how many months
A. 18 months
B. 19 months
C. 20 months
D. 21 months

Answer: D

- Watch Video Solution

41. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b , then find the value of n .
A. 0
B. 1
C. -1
D. none of these

Answer: B

42. The arithmetic mean between two numbers is A and the geometric mean is G . Then these numbers are:
A. $S=n A$
B. $A=n S$
C. $A=S$
D. none of these

Answer: A

- Watch Video Solution

43. The third term of a geometric progression is 4 . Then the product of the first five terms is $\mathrm{a} .4^{3}$ b. 4^{5} c. 4^{4} d. none of these
A. 4^{3}
B. 4^{5}
C. 4^{4}
D. none of these

Answer: B

(Watch Video Solution

44. If a, b, c are respectively the $p^{t h}, q^{t h} a n d r^{t h}$ terms of a G.P. show that
$(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.
A. 1
B. 0
C. -1
D. none of these

Answer: B

- Watch Video Solution

45. The first and second term of a G.P. are x^{-4} and x^{n} respectively. If x^{52} is the $8^{\text {th }}$ term, then find the value of n.
A. 13
B. 4
C. 5
D. 3

Answer: B

- Watch Video Solution

46. Let $\left\{a_{n}\right\}$ bc a G.P. such that $\frac{a_{4}}{a_{6}}=\frac{1}{4}$ and $a_{2}+a_{5}=216$. Then $a_{1}=$
A. 12 or,$\frac{108}{7}$
B. 10
C. 7 or,$\frac{54}{7}$
D. none of these

- Watch Video Solution

47. If a, b, c, d and p are distinct real numbers such that (1987, 2M) $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) P+\left(b^{2}+c^{2}+d^{2}\right) \geq 0$, then a, b, c, d are in $\mathrm{AP}(\mathrm{b})$ are in GP are in HP (d) satisfy $a b=c d$
A. A.P
B. G.P
C. H.P
D. $a b=c d$

Answer: B

48. In a G.P. of positive terms if any terms is equal to the sum of next tow terms, find the common ratio of the G.P.
A. $\frac{\sqrt{5}-1}{2}$
B. $\frac{\sqrt{5}+1}{2}$
C. $-\frac{\sqrt{5}+1}{2}$
D. $\frac{1-\sqrt{5}}{2}$

Answer: A

- Watch Video Solution

49. If every term of a G.P with positive terms is the sum of its two previous terms, then the common ratio of the G.P is
A. $\frac{1-\sqrt{5}}{2}$
B. $\frac{\sqrt{5}+1}{2}$
C. $\frac{\sqrt{5}-1}{2}$

Answer: B

- Watch Video Solution

50. The first two terms of a geometric progression add up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is (1) $4(2) 12(3) 12(4) 4$
A. 12
B. 4
C. -4
D. -12

Answer: D

51. If a, b, c are in geometric progression and $a, 2 b, 3 c$ are in arithmetic progression, then what is the common ratio r such that $0<r<1$?
A. $1 / 2$
B. $1 / 3$
C. $2 / 3$
D. none of these

Answer: B

- Watch Video Solution

52. If $a_{1}, a_{2}, a_{3}\left(a_{1}>0\right)$ are three successive terms of a GP with common ratio r, the value of r for which $a_{3}>4 a_{2}-3 a_{1}$ holds is given by
A. $1<r<3$
B. $-3<r<-1$
C. $r>3$ or $r<1$
D. none of these

Answer: C

- Watch Video Solution

53. If the first and the $n^{\text {th }}$ term of a GP are a and b, respectively, and if P is the product of n terms, prove that $P^{2}=(a b)^{n}$.
A. $a b$
B. $(a b)^{n}$
C. $(a b)^{n / 2}$
D. $(a b)^{2 n}$

Answer: B

- Watch Video Solution

54. If Three number form an increasin G.P. If the middle term is doubled, then the numbers are in A.P. The common ratio of the G.P. is
A. $2-\sqrt{3}$
B. $2+\sqrt{3}$
C. $\sqrt{2}+\sqrt{3}$
D. $3+\sqrt{2}$

Answer: B

- Watch Video Solution

55. Three positive numbers form an increasing GP. If the middle terms in this GP is doubled, the new numbers are in AP. Then, the common ratio of the GP is
A. $2-\sqrt{3}$
B. $2+\sqrt{3}$
C. $\sqrt{3}-2$
D. $3+\sqrt{2}$

Answer: B

- Watch Video Solution

56. If the roots of the cubic equation $a x^{3}+b x^{2}+c x+d=0$ are in G.P then
A. $c^{3} a=b^{3} d$
B. $c a^{2}=b d^{3}$
C. $a^{3} b=c^{3} d$
D. $a b^{3}=c d^{3}$

Answer: A

57. If $x, 2 x+2,3 x+3$ are in $G . P$., then the fourth term is
A. 27
B. -27
C. 13.5
D. -13.5

Answer: D

Watch Video Solution
58. If second third and sixth terms of an A.P. are consecutive terms o a G.P.
write the common ratio of the G.P.
A. 1
B. -1
C. 3
D. -3

Answer: C

- Watch Video Solution

59. If 5th, 8th, and 11 th terms of a G.P. are p, q and s respectively, prove that $q^{2}=p s$.
A. $p^{2}=q^{2}+r^{2}$
B. $q^{2}=p r$
C. $p^{2}=q r$
D. $p q r+p q+1=0$

Answer: B

- Watch Video Solution

60. There are 6 books on mathematics, 4 books on physics annd 5 books on chemistry in a book shop. The number of ways can a student purchase either a book on mathematics or a book on chemistry, is
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

61. If the 2nd , 5th and 9th terms of a non-constant A.P are in G.P then the common ratio of this G.P is
A. $\frac{8}{5}$
B. $\frac{4}{3}$
C. 1
D. $\frac{7}{4}$

Answer: B

- Watch Video Solution

62. If a, b, c are in A.P. b, c, d are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that a, c, e are in G.P.?
A. a,c,e are in G.P.
B. a,b,e are in G.P.
C. a,b,e are in G.P.
D. a,c,e are in G.P.

Answer: A

63. Let $a_{1}, a_{2}, a_{3} \ldots .$. .be in A.P. and a_{p}, a_{q}, a_{r} be in G.P. Then a_{q} : a_{p} is equal to :
A. $\frac{q-p}{r-p}$
B. $\frac{r-q}{q-p}$
C. $\frac{q-p}{r-q}$
D. none of thses

Answer: C

- Watch Video Solution

64. A G.P. consists of $2 n$ terms. If the sum of the terms occupying the odd places is S_{1}, and that of the terms in the even places is S_{2}, then $\frac{S_{2}}{S_{1}}$, is
A. independent of a
B. independent of r
C. independent of a and r
D. dependent on r

Answer: A:D

- Watch Video Solution

65. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $3 / 4$, then (a) $a=\frac{4}{7}, r=\frac{3}{7}$
(b). $a=2, r=\frac{3}{8}$ (c). $a=\frac{3}{2}, r=\frac{1}{2}$ (d). $a=3, r=\frac{1}{4}$
A. $a=\frac{4}{7}, r=\frac{3}{7}$
B. $a=2, r=\frac{3}{8}$
C. $a=\frac{3}{2}, r=\frac{1}{2}$
D. $a=3, r=\frac{1}{4}$

Answer: D

- Watch Video Solution

66. If $a>0$, then $\sum_{n=1}^{\infty}\left(\frac{a}{a+1}\right)^{n}$ equals
A. $\frac{a+1}{2 a+1}$
B. $\frac{a}{2 a+1}$
C. $a+1$
D. a

Answer: D

- Watch Video Solution

67. If $|\alpha|<1,|\beta|<1 \quad 1-\alpha+\alpha^{2}-\alpha^{3}+\ldots$. to $\infty=s_{1}$
$1-\beta+\beta^{2}-\beta^{3}+\ldots$ to $\infty=s_{2}$,
$1-\alpha \beta+\alpha^{2} \beta^{2}+\ldots$ to ∞ equals
A. $s_{1} s_{2}$
B. $\frac{s_{1} s_{2}}{1+s_{1} s_{2}}$
C. $\frac{s_{1} s_{2}}{1-s_{1}-s_{2}+2 s_{1} s_{2}}$
D. $\frac{1}{1+s_{1} s_{2}}$

Answer: C

- Watch Video Solution

68. If f is a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in X$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, find the value of n.
A. 4
B. 5
C. 6
D. none of these

Answer: A

- Watch Video Solution

69. If S is the sum to infinite terms of a G.P whose first term is 'a', then the sum of the first n terms is
A. $S\left(1-\frac{a}{S}\right)^{n}$
B. $S\left\{1-\left(1-\frac{a}{S}\right)^{n}\right\}$
C. $a\left\{1-\left(1-\frac{a}{S}\right)^{n}\right\}$
D. none of these

Answer: B

- Watch Video Solution

70. Let a_{n} be the nth term of a G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2 n}=\alpha$ and $\sum_{n=1}^{100} a_{2 n-1}=\beta$, such that $\alpha \neq \beta$, then the common ratio is
(a) α / β b. β / α c. $\sqrt{\alpha / \beta}$ d. $\sqrt{\beta / \alpha}$
A. α / β
B. β / α
C. $\sqrt{\alpha / \beta}$
D. $\sqrt{\beta / \alpha}$

Answer: A

- Watch Video Solution

71. An infinite G.P. has first term as a and sum 5 , then a belongs to a)
$|a|<10$ b) $-10<a<0$ c) $0<a<10$ d) $a>10$
A. $x<-10$
B. $-10<x<0$
C. $0<x<10$
D. $x>0$

Answer: C

72. If $-\pi / 2<x<\pi / 2$, and the sum to infinite terms of the series $\cos x+\frac{2}{3} \cos x \sin ^{2} x+\frac{4}{9} \cos x \sin ^{4} x+\ldots$ if finite then
A. $x \in(-\pi / 3, \pi / 3)$
B. $x \in(-\pi / 2, \pi / 2)$
C. $x \in(-\pi / 4, \pi / 4)$
D. none of these

Answer: B

- Watch Video Solution

73. Let $S \subset(0, \pi)$ denote the set of values of x satisfying the equation $8^{1}+|\cos x|+\cos ^{2} x+\mid \cos ^{3 x \mid \rightarrow \infty}=4^{3}$. Then, $S=\{\pi / 3\} \quad \mathrm{b}$.
$\{\pi / 3,2 \pi / 3\}$ c. $\{-\pi / 3,2 \pi / 3\}$ d. $\{\pi / 3,2 \pi / 3\}$
A. $[\pi / 3]$
B. $[\pi / 3,-2 \pi / 3]$
C. $[-\pi / 3,-2 \pi / 3]$
D. $[\pi / 3,2 \pi / 3]$

Answer: D

- Watch Video Solution

74. If $S=1+a+a^{2}+a^{3}+a^{4}+\ldots \ldots \ldots \rightarrow \infty$ then $a=$
A. $\frac{S}{S-1}$
B. $\frac{S}{1-S}$
C. $\frac{S-1}{S}$
D. $\frac{1-S}{S}$

Answer: C

75. If $A=1+r^{a}+r^{2 a}+\ldots \infty=a$ and $B=1+r^{b}+r^{2 b}+\ldots \infty=b$ then $\frac{a}{b}$ is equal to
A. $\log _{1-B}(1-A)$
B. $\log _{\left(\frac{B-1}{B}\right)}\left(\frac{A-1}{A}\right)$
C. $\log _{B} A$
D. none of these

Answer: B

- Watch Video Solution

76. For $0<\theta<\frac{\pi}{2}$, if
$x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \phi, z=\sum_{n=0}^{\infty} \cos ^{2 n} \theta \sin ^{2 n} \phi$, then
A. $x y=z x+z y+z$
B. $x y=z x+z y-z$
C. $x y+y z+z x=z$
D. none of these

Answer: B

- Watch Video Solution

77. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty}(a b)^{n}$, where $a, b<1$, then
A. $x y z=x+y+z$
B. $x z+y z=x y+z$
C. $x y+y z=x z+y$
D. $x y+x z=y z+x$

Answer: B

- Watch Video Solution

78. If $|a|<1 a n d|b|<1$, then the sum of the series

$$
\begin{aligned}
& 1+(1+a) b+\left(1+a+a^{2}\right)+\left(1+a+a^{2}+a^{3}\right) b^{3}+\ldots \\
& \frac{1}{(1-a)(1-b)} \quad \text { b. } \quad \frac{1}{(1-a)(1-a b)} \quad \text { c. } \frac{1}{(1-b)(1-a b)} \\
& \frac{1}{(1-a)(1-b)(1-a b)}
\end{aligned}
$$

A. $\frac{1}{(1-a)(1-b)}$
B. $\left.\frac{1}{\left(\begin{array}{lll}1 & a\end{array}\right)(1 \quad a b}\right)$
C. $\frac{1}{(1-b)(1-a b)}$
D. $\frac{1}{(1-a)(1-b)(1-a b)}$

Answer: C

- Watch Video Solution

79. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the GM between a and b , then the value of n is
A. 0
B. 1
C. $1 / 2$
D. none of these

Answer: C

- Watch Video Solution

80. one $A M, a$ and two $G M$ ' s, p and q be inserted between any two given numbers then show that $p^{3}+q^{3}=2 a p q$
A. $\frac{2 p q}{a}$
B. 2 apq
C. $2 a p^{2} q^{2}$
D. none of these

Answer: B

81. If a is the A.M. of b and c and the two geometric means are G_{1} and G_{2}, then prove that $G_{1}^{3}+G_{2}^{3}$
A. 1
B. 2
C. $\frac{1}{2}$
D. 3

Answer: B

- Watch Video Solution

82. If one geometric mean G and two arithmetic means $A_{1} a n d A_{2}$ be inserted between two given quantities, prove that $G^{2}=\left(2 A_{1}-A_{2}\right)\left(2 A_{2}-A_{1}\right)$.
A. 2 G
B. G
C. G^{2}
D. G^{3}

Answer: C

- Watch Video Solution

83. If A_{1}, A_{2} are two A.M.'s and G_{1}, G_{2} be two G.M.'s between two positive numbers a and b , then $\frac{A_{1}+A_{2}}{G_{1} G_{2}}$ is equal to
(i) $\frac{a+b}{a b}$
(ii) $\frac{a+b}{2}$
(iii) $\frac{a+}{a-b}$
(iv) None of these
A. $\frac{a+b}{2 a b}$
B. $\frac{2 a b}{a+b}$
C. $\frac{a+b}{a b}$
D. $\frac{a+b}{\sqrt{a b}}$

Answer: C

- Watch Video Solution

84. Let two humbers have arithmatic mean 9 and geometric mean 4. Then these numbers are roots of the equation :
A. $x^{2}-18 x-16=0$
B. $x^{2}-18 x+16=0$
C. $x^{2}+18 x \quad 16=0$
D. $x^{2}+18 x+16=0$

Answer: B

D Watch Video Solution

85. If the arithmetic mean of two numbers a and $\mathrm{b}, a>b>0$, is five times their geometric mean, then $\frac{a+b}{a-b}$ is equal to:
A. $2+\sqrt{3}: 2-\sqrt{3}$
B. $7+4 \sqrt{3}: 7-4 \sqrt{3}$
C. $2: 7+4 \sqrt{3}$
D. $2: \sqrt{3}$

Answer: A

- Watch Video Solution

86. If the first two terms of a H.P are $2 / 5$ and 12 / 13 , respectively . Then find the largest term.
A. 5th term
B. 6th term
C. 4th term
D. 6th term
87. If the first two terms of a H.P are $2 / 5$ and $12 / 13$, respectively . Then find the largest term.
A. 6
B. 12
C. 5
D. 7

Answer: A

- Watch Video Solution

88. Let, $a_{1}, a_{2}-a, a_{3}, \ldots$ be in harmonic progression with $a_{1}=5$ and $a_{20}=25$ The least positive integer n for which $a_{n}<0$
B. 23
C. 24
D. 25

Answer: D

- Watch Video Solution

89. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$, are in AP and $|a|,|b|,|c|<1$ and $x=1+a+a^{2}+\ldots \ldots .+\infty, y=1+b+b^{2}+\ldots \ldots . .+\infty, z=1+c+$ Then, x, y, z will be in
A. AP
B. GP
C. HP
D. none of these
90. If $x>1, y>1$, and $z>1$ are in G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}$ and $\frac{1}{1+\ln z}$ are in a. $A \dot{P}$. b. $H \dot{P}$. c. $G \dot{P}$. d. none of these
A. AP
B. HP
C. GP
D. none of these

Answer: B

- Watch Video Solution

91. If $\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{y-1}}+\frac{1}{\sqrt{z-1}}>0$ and x, y, z, are in G.P., then $\left(\log x^{2}\right)^{-1},(\log x z)^{-1},\left(\log z^{2}\right)^{-1}$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

92. Let the positive numbers $a, b, c a d n d$ be in the A.P. Then $a b c, a b d, a c d, a n d b c d$ are a. not in A.P. /G.P./H.P. b. in A.P. c. in G.P. d. in H.P.
A. not in A.P./G.P./H.P.
B. in A.P.
C. in G.P.
D. in H.P.
93.

a1,a2,a3.....an
are in
H.P.
$\frac{a_{1}}{a_{2}+a_{3}+\ldots+a_{n}}, \frac{a_{2}}{a_{1}+a_{3}+\ldots+a_{n}}, \frac{a_{3}}{a_{1}+a_{2}+a_{4}+\ldots+a_{n}}, \ldots$,
are in
A. A.P.
B. G.P.
C. H.P.
D. A.G.P.

Answer: C

Watch Video Solution
94. If $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots a_{n}$ are in HP, then the expression $a_{1} a_{2}+a_{2} a_{3}+\ldots \ldots+a_{n-1} a_{n}$ is equal to
A. $n\left(a_{1}-a_{n}\right)$
B. $(n-1)\left(a_{1}-a_{n}\right)$
C. $n a_{1} a_{n}$
D. $(n-1) a_{1} a_{n}$

Answer: D

- Watch Video Solution

95. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{x}+\frac{5}{y}+\frac{3}{z}\right)$, then $x, y, a n d z$ are in a. H.P. b. A.P. c. G.P.d. None of These
A. A.P.
B. G.P.
C. A.G.P.
D. H.P.

(D) Watch Video Solution

96. If a, b, candd are in H.P., then prove that $(b+c+d) / a,(c+d+a) / b,(d+a+b) / c$ and $(a+b+c) / d$, are in A.P.
A. $a+b>c+d$
B. $a+c>b+d$
C. $a+d>b+c$
D. $b+c>a+d$

Answer: C

- Watch Video Solution

97. If a, b, candd are in H.P., then prove that $(b+c+d) / a,(c+d+a) / b,(d+a+b) / c$ and $(a+b+c) / d$, are in A.P.
A. $a b>c d$
B. $a c>b d$
C. $a d>b c$
D. $b c>a d$

Answer: C

- Watch Video Solution

98. (i) $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P. , show that $\frac{b+a}{b-a}+\frac{b+c}{b-c}=2$
(ii) If a^{2}, b^{2}, c^{2} are A.P. then $\mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}, \mathrm{a}+\mathrm{b}$ are in H.P. .
A. $a^{n}+c^{n}>b^{n}$
B. $a^{n}+c^{n}>2 b^{n}$
C. $a^{n}+b^{n}>2 c^{n}$
D. $b^{n}+c^{n}>2 a^{n}$
$\begin{array}{llll}\text { 99. If } a, a_{1}, a_{2}-\cdots--a_{2 n-1}, b & \text { are } & \text { in } \\ \text { A. } P \text { and } a, b_{1}, b_{2}-\cdots-\cdots-b_{2 n-1}, b & \text { are } & \text { in }\end{array}$
$G . P$ and $a, c_{1}, c_{2}---c_{2 n-1}, b$ are in $H . P$ (which are non-zero and a, b are positive real numbers), then the roots of the equation $a_{n} x^{2}-b_{n} x+c_{n}=0$ are
A. $a_{n}^{2}=b_{n} c_{n}$
B. $b_{n}^{2}=c_{n} a_{n}$
C. $c_{n}^{2}=a_{n} b_{n}$
D. none of these

Answer: B

- Watch Video Solution

100. If the ratio of $H . M$. and $G . M$. between two numbers a and b is $4: 5$, then find the ratio of the two number?
A. $4: 1$
B. $3: 2$
C. $3: 4$
D. 2: 3

Answer: A

- Watch Video Solution

101. Let A_{1}, G_{1}, H_{1} denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n>2$, let A_{n-1}, G_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_{n}, G_{N}, H_{N}, respectively.
A. $G_{1}>G_{2}>G_{3}>\ldots$
B. $G_{1}<G_{2}<G_{3}<\ldots$
C. $G_{1}=G_{2}=G_{3}=\ldots$
D. $G_{1}<G_{3}<G_{5}=\ldots$ and $G_{2}>G_{4}>G_{6}>\ldots$

Answer: C

D Watch Video Solution

102. In Illustration 6 , which one of the following statement is correct ?
A. $A_{1}>A_{2}>A_{3}>\ldots$
B. $A_{1}<A_{2}<A_{3} \ldots$
C. $A_{1}>A_{3}>A_{5}>\ldots$ and $A_{2}<A_{4}<A_{6}<$
D. $A_{1}<A_{3}<A_{5}<\ldots$ and $A_{2}>A_{4}>A_{6}>\ldots$

Answer: A

103. In Illustration 6 , which one of the following statement is correct ?
A. $H_{1}>H_{2}>H_{3}>\ldots$.
B. $H_{1}<H_{2}<H_{3}<\ldots$.
C. $H_{1}>H_{3}>H_{5}>\ldots$ and $H_{2}<H_{4}<H_{6}<\ldots$
D. $H_{1}<H_{3}<H_{5}<\ldots$ and $H_{2}>H_{4}>H_{6}>\ldots$

Answer: B

- Watch Video Solution

104. The sum to infinity of the series
$1+2\left(1-\frac{1}{n}\right)+3\left(1-\frac{1}{n}\right)^{2}+\ldots \ldots$, is (A) $n^{2} \quad$ (B) $n(n+1)$
$n\left(1+\frac{1}{n}\right)^{2}$ (D)None of these
A. n^{2}
B. $n(n+1)$
C. $n\left(1+\frac{1}{n}\right)^{2}$
D. none of these

Answer: A

- Watch Video Solution

105. about to only mathematics
A. 1
B. 2
C. $3 / 2$
D. $5 / 2$

Answer: B

- Watch Video Solution

106. If the sum to infinity of the series
$3+(3+d) \frac{1}{4}+(3+2 d) \frac{1}{4^{2}}+\ldots \infty$ is $\frac{44}{9}$, then find d.
A. 9
B. 5
C. 1
D. none of these

Answer: A

- Watch Video Solution

107. The sum to infinity of the series $1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{14}{3^{4}}+\ldots i s$
A. 2
B. 3
C. 4
D. 6

Answer: B

- Watch Video Solution

108. Evaluate : $1+3 x+6 x^{2}+10 x^{3}+\ldots \ldots$. upto infinite term, whre $|x|<1$.
A. $\frac{1}{(1-x)^{2}}$
B. $\frac{1}{1-x}$
C. $\frac{1}{(1+x)^{2}}$
D. $\frac{1}{(1-x)^{3}}$

Answer: D

109. The sum of first nine terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots \ldots$. Is
A. 142
B. 192
C. 71
D. 96

Answer: D

- Watch Video Solution

110. The sum of the n terms of the series $1+(1+3)+(1+3+5)+\ldots$ is
A. n^{2}
B. $\left\{\frac{n(n+1)}{2}\right\}^{2}$
C. $\frac{n(n+1)(2 n+1)}{6}$
D. none of these

Answer: C

- Watch Video Solution

111. Sum of n terms the series : $1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots$.
A. $-\frac{n(n+1)}{2}$
B. $\frac{n(n+1)}{2}$
C. $-n(n+1)$
D. none of these

Answer: A

- Watch Video Solution

112. Sum of n terms the series : $1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots$.
A. $\frac{n(n+1)}{2}$
B. $\frac{-n(n+1)}{2}$
C. $\frac{n(n-1)}{2}$
D. $\frac{-n(n-1)}{2}$

Answer: A

- Watch Video Solution

113. Fill in the blanks The coefficient of x^{99} in the polynomial $(x-10(x-2)(x-100)$ is \qquad
A. 5050
B. 5000
C. -5050
D. -5000

Answer: C

114. Let $f(1)=1$ and $f(n)=2 \sum_{r=1}^{n-1} f(r)$. Then, $\sum_{n=1}^{m} f(n)$ is equal to
A. $\frac{7 n(n+1)}{2}$
B. $\frac{7 n}{2}$
C. $\frac{7(n+1)}{2}$
D. $7 \mathrm{n}(\mathrm{n}+1)$

Answer: A

- Watch Video Solution

115. Find the sum of all possible products of the first n natural numbers taken two by two.
A. $\frac{1}{24} n(n+1)(n-1)(3 n+2)$
B. $\frac{n(n+1)(2 n+1)}{6}$
C. $\frac{n(n+1)(n-1)(2 n+3)}{24}$
D. none of these

Answer: A

- Watch Video Solution

116. if T_{N} denotes the nth term of the series $2+3+6+11+18+^{* * *}$, then t_{50} is
A. $49^{2}-1$
B. 49^{2}
C. $50^{2}+1$
D. $49^{2}+2$

Answer: D

- Watch Video Solution

117. Find the value of the expression $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$.
A. $\sum n$
B. $\sum n^{2}$
C. $\sum n^{3}$
D. none of these

Answer: D

Watch Video Solution

118. let S_{n} denote the sum of the cubes of the first n natureal numbers and S_{n} denote the sum of the fisrt n natural numbers, then $\sum_{r=1}^{n} \frac{S_{r}}{S_{4}}$ equals to
A. $\sum_{r=1}^{n} r$
B. $\frac{1}{3} \sum_{r=1}^{n+1} r$
C. $\left(\frac{n+2}{3}\right) \sum_{r=1}^{n} r$
D. none of these

Answer: C

- Watch Video Solution

119. If the sum of first n terms of an A.P. is cn^{2} then the sum of squares of these n terms is
A. $\frac{n\left(4 n^{2}-1\right)}{6} c^{2}$
B. $\frac{n\left(4 n^{2}+1\right)}{3} c^{2}$
C. $\frac{n\left(4 n^{2}-1\right)}{3} c^{2}$
D. $\frac{n\left(4 n^{2}+1\right)}{6} c^{2}$

Answer: C

120. If the sum of the first terms of the series

$$
\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)+\ldots . i s \frac{16}{5} m
$$

then m is equal to
A. 102
B. 101
C. 100
D. 99

Answer: B

121. The sum of series
$\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\ldots .$. is
A. $\frac{1}{n+1}$
B. $1-\frac{1}{n+1}$
C. $\frac{1}{n+1}-1$
D. $1+\frac{1}{n+1}$

Answer: B

Watch Video Solution
122. Find the sum to n terms of the series: $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+$
A. $\frac{1}{2 n+1}$
B. $\frac{2 n}{2 n+1}$
C. $\frac{n}{2 n+1}$
D. $\frac{2 n}{n+1}$

Answer: C

123. If $t_{n}=\frac{1}{4}(n+2)(n+3) f$ or $n=1,2,3, \quad$ then $\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{1}{t_{3}}++\frac{1}{t_{2003}}=\frac{4006}{3006}$ b. $\frac{3006}{3007}$ c. $\frac{4006}{3008}$ d. $\frac{4006}{3009}$
A. $\frac{4040}{6063}$
B. $\frac{4040}{6069}$
C. $\frac{8080}{6065}$
D. $\frac{8080}{6069}$

Answer: D

- Watch Video Solution

124. Find the sum to n terms of the series:

$$
\frac{3}{1^{2} .2^{2}}+\frac{5}{2^{2} .3^{2}}+\frac{7}{3^{2} .4^{2}}+\ldots \ldots
$$

A. 0
B. 2
C. $\frac{1}{2}$

- Watch Video Solution

Section I - Solved Mcqs

1. If $(\log)_{2}\left(5 \times 2^{1-x}+1\right), \log _{4}\left(2^{1-x}+1\right)$ and 1 are in A.P., then x equals a. $\log _{2} 5 \mathrm{~b} .1-\log _{5} 2 \mathrm{c} . \log _{5} 2 \mathrm{~d}$. none of these
A. $\log _{2} 5$
B. $1-\log _{2} 5$
C. $\log _{5} 2$
D. none of these

Answer: B

2. If $1, \log _{9}\left(3^{1-x}+2\right)$ and $\log _{3}\left(4.3^{x}-1\right)$ are A.P. then x is
A. $\log _{4} 3$
B. $\log _{3} 4$
C. $1-\log _{3} 4$
D. $\log _{3} 0.25$

Answer: C

- Watch Video Solution

3. If $\sin \alpha, \sin ^{2} \alpha, 1, \sin ^{4} \alpha$ and $\sin ^{6} \alpha$ are in A.P., where $-\pi<\alpha<\pi$, then α lies in the interval
A. $(-\pi / 2, \pi / 2)$
B. $(-\pi / 3, \pi / 3)$
C. $(-\pi / 6, \pi / 6)$
D. none of these

Answer: D

- Watch Video Solution

4. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in A.P. and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are also in A.P. then show that $x=y=z$ and $y \neq 0$
A. $x=y=z$
B. $x y=y z$
C. $x^{2}=y z$
D. $z^{2}=x y$

Answer: A

- Watch Video Solution

5. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in A.P. and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are also in A.P. then show that $x=y=z$ and $y \neq 0$
A. $x=y=z$ or $y \neq 1$
B. $x=1 / z$
C. $x=y=z$, but their common value is not necessarily zero
D. $x=y=z=0$

Answer: C

- Watch Video Solution

6. If $\left|\begin{array}{lll}a & b & a \alpha-b \\ b & c & b \alpha-c \\ 2 & 1 & 0\end{array}\right|=0$, then
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

7. Let $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} be such that a_{1}, a_{2} and a_{3} are in A.P., a_{2}, a_{3} and a_{4} are in G.P., and a_{3}, a_{4} and a_{5} are in H.P. Then, a_{1}, a_{3} and a_{5} are in
A. G.P.
B. A.P.
C. H.P.
D. none of these

Answer: A

- Watch Video Solution

8.

If the
expression
$\left.\left\{1+|\cos x|+\cos ^{2} x+\left|\cos ^{3} x\right|+\ldots \infty\right) \log _{e} 4\right\}$ satisfies the equation $y^{2}-20 y+64=0$ for $0<x<\pi$, then the set of value of x is
A. $\{\pi / 3,2 \pi / 3\}$
B. $\{\pi / 2, \pi / 2\}$
C. $\{\pi / 2,0,2 \pi / 3\}$
D. $\{\pi / 3, \pi / 2,2 \pi / 3\}$

Answer: D

- Watch Video Solution

9. If the sides of a triangle are in GP and its largest angle is twice tha smallset then the common ratio r satisfies the inequality
A. $0<r<\sqrt{2}$
B. $1<r<\sqrt{2}$
C. $1<r<2$
D. none of these
10. The first, second and the last terms of an A.P. are a, b, c respectively. Prove that the sum is $\frac{(a+c)(b+c)(c-2 a)}{2(b-a)}$.
A. $\frac{2(c-a)}{b-a}$
B. $\frac{2 c(c-a)}{b-a}+c$
c. $\frac{2 c(b-a)}{c-a}$
D. $\frac{2 b(c-a)}{b-a}$

Answer: B

- Watch Video Solution

11. If the sides of a right angled triangle are in A.P then the sines of the acute angles are

$$
\text { A. } 3 / 5,4 / 5
$$

B. $\sqrt{3}, 1 / \sqrt{3}$
C. $\sqrt{\frac{\sqrt{5}-1}{2}}, \sqrt{\frac{\sqrt{5}+1}{2}}$
D. $\sqrt{\frac{\sqrt{3}-1}{2}}, \sqrt{\frac{\sqrt{3}+1}{2}}$

Answer: A

- Watch Video Solution

12. If the lengths of the sides of a triangle are in A.P. and the greatest angle is double the smallest, then a ratio of lengths of the sides of this triangle is:
A. 3: 4: 5
B. 4:5:6
C. 5:6:7
D. 7: 8:9

Answer: B

13. If $\mathrm{b}-\mathrm{c}, 2 \mathrm{~b}-\mathrm{x}$ and $\mathrm{b}-\mathrm{a}$ are in H.P., then $\mathrm{a}-\left(\frac{x}{2}\right), \mathrm{b}-\left(\frac{x}{2}\right)$ and $\mathrm{c}-\left(\frac{x}{2}\right)$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

14. The sixth term of an AP is 2 , and its common difference is greater than one. The value of the common difference of the progression so that the product of the first, fourth and fifth terms is greatest is
A. $8 / 5$
B. $2 / 3$
C. $5 / 8$
D. $3 / 2$

Answer: A

- Watch Video Solution

15. If $a x^{3}+b x^{2}+c x+d$ is divisible by $a x^{2}+c$, thena, b, c, d are in a. A.P. b. G.P. c. H.P. d. none of these
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

16. The sum of the series $a-(a+d)+(a+2 d)-(a+3 d)+\ldots$ up to
$(2 n+1)$ terms is: a. $-n d$. b. $a+2 n d$. c. $a+n d$. d. $2 n d$
A. $-n d$
B. $a+2 n d$
C. $a+n d$
D. 2nd

Answer: C

- Watch Video Solution

17. The sum of the series $1+2\left(1+\frac{1}{n}\right)+3\left(1+\frac{1}{n}\right)^{2}+\ldots \infty$ is given by
A. n^{2}
B. $\mathrm{n}(\mathrm{n}+1)$
C. $n(1+1 / n)^{2}$
D. none of these

Answer: A

- Watch Video Solution

18. The sum to 50 terms of the series

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{+} 2^{2}+3^{2}}+\ldots .+\ldots i s
$$

A. $\frac{6 n}{n+1}$
B. $\frac{9 n}{n+1}$
C. $\frac{12 n}{n+1}$
D. $\frac{3 n}{n+1}$

Answer: A

19. The sum of n terms of the series $\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\ldots$ is
A. $\sqrt{2 n+1}$
B. $\frac{1}{2} \sqrt{2 n+1}$
C. $\sqrt{2 n+1}-1$
D. $\frac{1}{2}(\sqrt{2 n+1}-1)$

Answer: D

Watch Video Solution

20. If $\cos (x-y), \cos x$ and $\cos (x+y)$ are in HP, then $\cos x \sec \left(\frac{y}{2}\right)=$
A. $\pm \sqrt{2}$
B. $\pm 1 / \sqrt{2}$
C. ± 2
D. none of these

D Watch Video Solution

21. Let $a_{1}, a_{2}, \ldots ., a_{10}$ be in A.P. and $h_{1}, h_{2} \ldots . h_{10}$ be in H.P. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, then $a_{4} h_{7}$ is:
A. 2
B. 3
C. 5
D. 6

Answer: D

- Watch Video Solution

22. Let S_{1}, S_{2}, \ldots. be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the lengh of a diagonal of S_{n+1}. If the length of a side
of S_{1} is 10 cm and the area of S_{n} less than 1 sq cm . Then, find the value of
n.
A. 7
B. 8
C. 5
D. 6

Answer: B

- Watch Video Solution

23. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be in an AP and a^{2}, b^{2}, c^{2} be in GP. If $\mathrm{a}<\mathrm{b}<\mathrm{c}$ and $a+b+c=\frac{3}{2}$ then the value of a is
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{2 \sqrt{3}}$
C. $\frac{1}{2}-\frac{1}{\sqrt{3}}$
D. $\frac{1}{2}-\frac{1}{\sqrt{2}}$

Answer: D

- Watch Video Solution

24. Let $S_{k}=\sum_{i=0}^{\infty} \frac{1}{(k+1)^{t}}$, then $\sum_{k=1}^{n} k S_{k}$ equal :
A. $\frac{n(n+1)}{2}$
B. $\frac{n(n-1)}{2}$
C. $\frac{n(n+2)}{2}$
D. $\frac{n(n+3)}{2}$

Answer: D

- Watch Video Solution

25. If $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{128}\right)=\sum_{r=0}^{n} x^{r}$ then n is equal to 256 b. 255 c. 254 d. none of these
A. 255
B. 127
C. 63
D. none of these

Answer: A

- Watch Video Solution

26. The largest value of the positive integer k for which $n^{k}+1$ divides $1+n+n^{2}+\ldots+n^{127}$, is
A. 8
B. 16
C. 32
D. 64

Answer: D

- Watch Video Solution

27. If S_{n} denotes the sum of first n terms of an A.P. and $\frac{S_{3 n}-S_{n-1}}{S_{2 n}-S_{2 n-1}}=31$, then the value of n is a. 21 b .15 c .16 d .19
A. $2 \mathrm{n}-1$
B. $2 n+1$
C. $4 n+1$
D. $2 n+3$

Answer: B

28. Find the sum of $2 n$ terms of the series whose every even term is ' a ' times the term before it and every od term is ' c ' times the term before it, the first term being unity.
A. $\frac{(1-a)\left(1-c^{n} a^{n}\right)}{1-c a}$
B. $\frac{(1-a)\left(1-c^{n-1} a^{n-1}\right)}{1-c a}$
C. $\frac{(1-a)\left(1-c^{n-2} a^{n-2}\right)}{1-c a}$
D. none of these

Answer: D

- Watch Video Solution

29. The numbers $3^{2 \sin 2 \alpha-1}, 14$ and $3^{4-2 \sin 2 \alpha}$ form first three terms of A.P., its fifth term is
A. -25
B. -12
C. 40
D. 53

Answer: D

- Watch Video Solution

30. If $\sum_{r=1}^{n} T_{r}=\frac{n(n+1)(n+2)(n+3)}{8}$, then
$\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{T_{r}}=$
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer: B

31. If $\sum_{r=1}^{n} r \frac{\sqrt{10}}{3} \sum_{r=1}^{n} r^{2}, \sum_{r=1}^{n} r^{3}$ are in G.P., then the value of n , is
A. 2
B. 3
C. 4
D. non-existent

Answer: C

- Watch Video Solution

32. The number of terms common between series $1+2+4+8+\ldots$ to 100 terms and $1+4+7+10+\ldots$ to 100 terms is
A. 6
B. 4
C. 5
D. none of these

Answer: C

- Watch Video Solution

33. If $a_{1}, a_{2}, a_{3}, a_{2 n+1}$ are in A.P., then

$$
\begin{aligned}
& \frac{a_{2 n+1}-a_{1}}{a_{2 n+1}+a_{1}}+\frac{a_{2 n}-a_{2}}{a_{2 n}+a_{2}}+\frac{a_{n+2}-a_{n}}{a_{n+2}+a_{n}} \text { is equal to a. } \\
& \frac{n(n+1)}{2} \times \frac{a_{2}-a_{1}}{a_{n+1}} \text { b. } \frac{n(n+1)}{2} \text { c. }(n+1)\left(a_{2}-a_{1}\right) \text { d. none of these }
\end{aligned}
$$

A. $\frac{n(n+1)}{2} \cdot \frac{a_{2}-a_{1}}{a_{n+1}}$
B. $\frac{n(n+1)}{2}$
C. $(n+1)\left(a_{2}-a_{1}\right)$
D. none of these

Answer: A

34. If $a, a_{1}, a_{2}, a_{3}, a_{2 n}, b$ are in A.P. and $a, g_{1}, g_{2}, g_{3}, g_{2 n}, b$. are in G.P. and $h \quad s$ the H.M. of aandb, then prove that $\frac{a_{1}+a_{2 n}}{g_{1} g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{1} g_{2 n-1}}++\frac{a_{n}+a_{n+1}}{g_{n} g_{n+1}}=\frac{2 n}{h}$
A. $\frac{2 n}{h}$
B. 2 nh
C. nh
D. $\frac{n}{h}$

Answer: A

- Watch Video Solution

35. If $\frac{a_{2} a_{3}}{a_{1} a_{4}}=\frac{a_{2}+a_{3}}{a_{1}+a_{4}}=3\left(\frac{a_{2}-a_{3}}{a_{1}-a_{4}}\right)$, then $a_{1}, a_{2}, a_{3}, a_{4}$ are in
A. AP
B. GP
C. HP
D. none of these

Answer: C

- Watch Video Solution

36. If $A, G \& H$ are respectively the A.M., G.M. \& H.M. of three positive numbers $a, b, \& c$, then equation whose roots are $a, b, \& c$ is given by
A. $a^{2}=A H$
B. A is an integer if $a<b<c<4$
C. $A=H$ iff $a=b=c$
D. $A>G>H, \quad$ if $\quad a \neq b \neq c$

Answer: A

- Watch Video Solution

37. If $a_{r}>0, r \in N$ and $a_{1} . a_{2}, \ldots . a_{2 n}$ are in A.P then $\frac{a_{1}+a_{2}}{\sqrt{a}_{1}+\sqrt{a}_{2}}+\frac{a_{2}+a_{2 n-1}}{\sqrt{a}_{2}+\sqrt{a}_{3}}+\ldots .+\frac{a_{n}+a_{n+1}}{\sqrt{a}_{n}+\sqrt{a}_{n+1}}=$
A. $\mathrm{n}-1$
B. $\frac{n\left(a_{1}+a_{2 n}\right)}{\sqrt{a_{1}}+\sqrt{a_{n+1}}}$
C. $\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n+1}}}$
D. none of these

Answer: B

Watch Video Solution

38. If $a_{a}, a_{2}, a_{3}, \ldots, a_{n}$ are in H.P. and $f(k)=\sum_{r=1}^{n} a_{r}-a_{k}$ then $\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(2)}, \frac{a_{3}}{f(n)}$ are in :
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

39. Let $\sum_{r=1}^{n} r^{6}=f(n)$, then $\sum_{n=1}^{n}(2 r-1)^{6}$ is equal to
A. $f(n)-64 f\left(\frac{n+1}{2}\right) \mathrm{n}$ is odd
B. $f(n)-64 f\left(\frac{n-1}{2}\right) \mathrm{n}$ is odd
C. $f(n)-64 f\left(\frac{n}{2}\right), \mathrm{n}$ is even
D. none of these

Answer: D

- Watch Video Solution

40. There are $(4 n+1)$ terms in a certain sequence of which the first ($2 n+1$) terms form an A.P of common difference 2 and the last $(2 n+1)$ terms are in G.P. of common ratio $1 / 2$. If the middle term of both A.P and G.P. are the same, then find the mid-term of this sequence.
A. $\frac{n \cdot 2^{n+1}}{2^{n}-1}$
B. $\frac{n \cdot 2^{n+1}}{2^{2 n}-1}$
C. $n \cdot 2^{n}$
D. none of these

Answer: A

- Watch Video Solution

41. If 3 arithmetic means, 3 geometric means and 3 harmonic means are inserted between 1 and 5, then the cubic equation whose roots are first A.M., second G.M. and third H.M. between 1 and 5, is
A. $x^{3}-\left(\frac{9}{2}+\sqrt{5}\right) x^{2}+\left(\frac{9 \sqrt{5}}{2}+5\right) x-5 \sqrt{5}=0$
B. $x^{3}+\left(\frac{9}{2}+\sqrt{5}\right) x^{2}-\left(\frac{9 \sqrt{5}}{2}+5\right) x-5 \sqrt{5}=0$
C. $x^{3}+\left(\frac{9}{2}-\sqrt{5}\right) x^{2}-\left(\frac{9 \sqrt{5}}{2}-5\right) x+5 \sqrt{5}=0$
D. none of these

Answer: A

- Watch Video Solution

42. If sum of x terms of a series is $S_{x}=\frac{1}{(2 x+3)(2 x+1)}$
whose $r^{\text {th }}$ term is T_{r}. Then, $\sum_{r=1}^{n} \frac{1}{T_{r}}$ is equal to
A. $\frac{1}{4} \sum(2 r+1)(2 r-1)(2 r+3)$
B. $-\frac{1}{4} \sum(2 r+1)(2 r-1)(2 r+3)$
C. $\sum(2 r+1)(2 r-1)(2 r+3)$
D. none of these

- Watch Video Solution

43. If $f(n)=\sum_{r=1}^{n} r^{4}$, then the value of $\sum_{r=1}^{n} r(n-r)^{3}$ is equal to
A. $\frac{1}{4}\left\{n^{2}(n+1)^{3}-4 f(n)\right\}$
B. $\frac{1}{4}\left\{n^{3}(n+1)^{2}-4 f(n)\right\}$
C. $\frac{1}{4}\left\{n^{2}(n+1)^{2}-4 f(n)\right\}$
D. none of these

Answer: B

D Watch Video Solution

44. Number of G.P's having 5,9 and 11 as its three terms is equal to
B. almost two
C. at least one
D. none of these

Answer: D

- Watch Video Solution

45. The largest term common to the sequence $1,11,21,31, \ldots .$. to 100 terms and
$31,36,41,46$,...... to 100 tetms is
A. 381
B. 471
C. 281
D. none of these

Answer: D

46. If S_{k} denotes the sum of first k terms of a G.P. Then, $S_{n}, S_{2 n}-S_{n}, S_{3 n}-S_{2 n}$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

47. Four different integers form an increasing $A . P$ One of these numbers is equal to the sum of the squares of the other three numbers.

Then The smallest number is

$$
\text { A. }-2,-1,0,1
$$

B. $0,1,2,3$
C. $-1,0,1,2$
D. none of these

Answer: C

- Watch Video Solution

48. Let there be a GP whose first term is a and the common ratio is r. If A and H are the arithmetic mean and harmonic mean respectively for the first n terms of the GP, AH is equal to
A. $a^{2} r^{n-1}$
B. $a r^{n}$
C. $a^{2} r^{n}$
D. none of these

Answer: A

49. - If $\log \left(5 \frac{c}{a}\right), \log \left(\frac{3 b}{5 c}\right)$ and $\log \left(\frac{a}{3 b}\right)$ are in AP, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, then a, b, c are the lengths ofsides of(A) an isosceles triangle (B) an equilateral triangle(D) none of these(C) a scalene triangle
A. an isosceles triangle
B. an equilateral triangle
C. a scalene triangle
D. none of these

Answer: D

- Watch Video Solution

50. If a, x, b are in A.P.,a,y,b are in G.P. and a, z, b are in H.P. such that $x=9 z$ and $a>0, b>0$, then
A. $|y|=3 z$ and $x=3|y|$
B. $y=3|z|$ and $|x|=3 y$
C. $2 y=x+z$
D. none of these

Answer: A

- Watch Video Solution

51. In the sequence $1,2,2,3,3,3,4,4,4,4, \ldots .$. , where n consecutive terms have the value n, the 150 term is
A. 17
B. 16
C. 18
D. none of these
52. If the sequence $1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, \ldots$ where n consecutive terms has value n then $1025^{t} h$ term is
A. 2^{9}
B. 2^{10}
C. 2^{11}
D. 2^{8}

Answer: B

- Watch Video Solution

53. $\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} \sum_{r=1}^{n}$ is equal to
A. 0
B. $\frac{1}{2}\left(\sum_{r=1}^{n} r^{2}+\sum_{r=1}^{n} r\right)$
C. $\frac{1}{2}\left\{\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r\right\}$
D. none of these

Answer: C

- Watch Video Solution

54. The sum of the products of $2 n$ numbers $\pm 1, \pm 2, \pm 3, \ldots, n$ taking two at time is
A. $-\sum_{r=1}^{n} r$
B. $\sum_{r=1}^{n} r^{2}$
C. $-\sum_{r=1}^{n} r^{2}$
D. none of these

Answer: C

55. If n is an odd integer greater than or equal to 1 , the value of $=n^{3}-(n-1)^{3}+(n-2)^{3}-\ldots+(-1)^{n-1} 1^{3}$ is
A. $\frac{(n+1)^{2}(2 n-1)}{4}$
B. $\frac{(n-1)^{2}(2 n-1)}{4}$
C. $\frac{(n+1)^{2}(2 n+1)}{4}$
D. none of these

Answer: A

- Watch Video Solution

56. If $\sum_{k=1}^{n}\left(\sum_{m=1}^{k} m^{2}\right)=a n^{4}+b n^{3}+c n^{2}+d n+e$, then
A. $a=\frac{1}{12}$
B. $b=\frac{1}{6}$
C. $d=\frac{1}{4}$
D. $e=0$

Answer: A

- Watch Video Solution

57. If a, b and c are three distinct real numbers in G.P. and $a+b+c=x b$, then
x cannot be
A. $x<-1$ or,$x>3$
B. $x<-3$ or,$x>2$
C. $x<-4$ or,$x>3$
D. none of these

Answer: A

D Watch Video Solution

58. Let $a_{1}=0$ and $a_{1}, a_{2}, a_{3} \ldots, a_{n}$ be real numbers such that $\left|a_{i}\right|=\left|a_{i-1}+1\right|$ for all I then the A.M. Of the number $a_{1}, a_{2}, a_{3} \ldots, a_{n}$ has the value A where : (a) $A<-\frac{1}{2}$ (b) $A<-1$ (c) $A \geq-\frac{1}{2}$ (d) $\mathrm{A}=-2$
A. $A<-\frac{1}{2}$
B. $A<-1$
C. $A \geq-\frac{1}{2}$
D. $A=-\frac{1}{2}$

Answer: C

- Watch Video Solution

59. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are non-zero real numbers such that
$\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n-1} \cdot{ }^{2}\right)\left(a_{2}^{2}+a_{3}^{2}+\ldots+a_{n}^{2}\right) \leq\left(a_{1} a_{2}+a_{2} a_{3}+\ldots+\right.$ are in
A. H.P.
B. G.P
C. A.P.
D. none of these

Answer: B

D Watch Video Solution

60. Three successive terms of a G.P. will form the sides of a triangle if the common ratio r satisfies the inequality
A. $\frac{\sqrt{3}-1}{2}<r<\frac{\sqrt{3}+1}{2}$
B. $\frac{\sqrt{5}-1}{2}<r<\frac{\sqrt{5}+1}{2}$
C. $\frac{\sqrt{2}-1}{2}<r<\frac{\sqrt{2}+1}{2}$
D. none of these

Answer: B

61. Find the sum of the following series to n terms $5+7+13+31+85+$
A. $4 n+\frac{1}{2}\left(3^{n}-1\right)$
B. $8 n+\frac{1}{2}\left(3^{n}-1\right)$
C. $2 n+\frac{1}{2}\left(3^{n}-1\right)$
D. none of these

Answer: A

- Watch Video Solution

62. If three successive terms of as G.P. with commonratio $r>1$ form the sides of a triangle and $[r]$ denotes the integral part of x the $[r]+[-r]=(\mathrm{A}) 0$ (B) 1 (C) -1 (D) none of these
A. 0
B. 1
C. -1
D. none of these

Answer: C

- Watch Video Solution

63. If the sum of an infinite G.P. is equal to the maximum value of $f(x)=x^{3}+2 x-8$ in the interval $[-1,4]$ and the sum of first two terms is 8. Then, the common ratio of the G.P. is
A. $\frac{1}{8}$
B. $\frac{\sqrt{3}}{8}$
C. $\sqrt{\frac{7}{8}}$
D. none of these

Answer: C

64. Let V_{r} denotes the sum of the first r terms of an arithmetic progression whose first term is r and the common difference is $(2 r-1)$.

Let $T_{r}=V_{r+1}-V_{r}-2$ and $Q_{r}=T_{r+1}-T_{r}$ for $r=1,2, \ldots$.
T_{r} is always
A. $\frac{1}{12} n(n+1)\left(3 n^{2}-n+1\right)$
B. $\frac{1}{12} n(n+1)\left(3 n^{2}-n+2\right)$
C. $\frac{1}{2}\left(2 n^{2}-n+1\right)$
D. $\frac{1}{3}\left(2 n^{2}-2 n+3\right)$

Answer: B

- Watch Video Solution

65. Let V_{r} denotes the sum of the first r terms of an arithmetic progression whose first term is r and the common difference is $(2 r-1)$.

Let $T_{r}=V_{r+1}-V_{r}-2$ and $Q_{r}=T_{r+1}-T_{r}$ for $r=1,2, \ldots$.

T_{r} is always

A. an odd number
B. an even number
C. a prime number
D. a composite number

Answer: D

- Watch Video Solution

66. Let V_{r} denotes the sum of the first r terms of an arithmetic progression whose first term is r and the common difference is $(2 r-1)$.

Let $T_{r}=V_{r+1}-V_{r}-2$ and $Q_{r}=T_{r+1}-T_{r}$ for $r=1,2, \ldots$.
T_{r} is always
A. $Q_{1}, Q_{2}, Q_{3}, \ldots$ are in A.P. with common difference 5
B. $Q_{1}, Q_{2}, Q_{3}, \ldots$ are in A.P. with common difference 6
C. $Q_{1}, Q_{2}, Q_{3}, \ldots$ are in A.P. with common difference 11
D. $Q_{1}=Q_{2}=Q_{3}=\ldots$.

Answer: B

- Watch Video Solution

67. about to only mathematics
A. 5
B. 6
C. 7
D. none of these

Answer: B

- Watch Video Solution

68. if $(1+3+5+7+\ldots .(2 p-1))+(1+3+5+\ldots+(2 q-1))=$ $1+3+5+\ldots+(2 r-1)$, then least possible value of $p+q+r$ (Given $p>5)$ is:
A. 12
B. 24
C. 45
D. 54

Answer: B

- Watch Video Solution

69. Let $S_{k}, k=1,2,, 100$, denotes thesum of the infinite geometric series whose first term s $\frac{k-1}{k!}$ and the common ratio is $\frac{1}{k}$, then the value of $\frac{100^{2}}{100!}+\sum_{k=2}^{100}\left(k^{2}-3 k+1\right) S_{k}$ is \qquad
A. 3
B. 6
C. 8
D. 9

Answer: A

- Watch Video Solution

70. Let $a_{1}, a_{2}, a_{3},, a_{11}$ be real numbers satisfying
$a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2} \quad$ for $\quad k=3,4,, 11$. If $\frac{a 12+a 22+\ldots+a 112}{11}=90$, then the value of $\frac{a 1+a 2++a 11}{11}$ is equals to \qquad .
A. 1
B. 1
C. 2
D. 9

- Watch Video Solution

71. Let $a_{1}, a_{2}, a_{3}, a_{100}$ be an arithmetic progression with $a_{1}=3$ ands $_{p}=\sum_{i=1}^{p} a_{i}, 1 \leq p \leq 100$. For any integer n with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m}}{S_{n}}$ does not depend on n, then a_{2} is \qquad .
A. 9
B. 8
C. 7
D. 5

Answer: A

72. The sum of the series $1+\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+\ldots$. upto n terms is
A. $n-\frac{1}{3}+\frac{1}{3.2^{n-1}}$
B. $\frac{7}{6} n+\frac{1}{6}+\frac{1}{3.2^{n-1}}$
C. $\frac{5}{3} n-\frac{7}{6}+\frac{1}{2.3^{n-1}}$
D. $n+\frac{1}{2}-\frac{1}{2.3^{n-1}}$

Answer: D

- Watch Video Solution

73. The sum of first 20 terms of the sequence $0.7,0.77,0.777 \ldots$...., is
A. $\frac{7}{81}\left(179-10^{-20}\right)$
B. $\frac{7}{9}\left(99-10^{-20}\right)$
C. $\frac{7}{9}\left(99+10^{-20}\right)$
D. $\frac{7}{81}\left(179+10^{-20}\right)$

- Watch Video Solution

74. $\operatorname{Let} S_{n}=\sum_{k=1}^{4 n}(-1)^{\frac{k(k+1)}{2}} k^{2}$.Then S_{n} can take value (s)
A. 1056 and 1332
B. 1056 and 1088
C. 1120 and 1332
D. 1332 and 1432

Answer: A

- Watch Video Solution

75. If $(10)^{9}+2(11)^{2}(10)^{7}+\ldots+10(11)^{9}=k(10)^{9}$
A. 100
B. 110
C. $\frac{121}{10}$
D. $\frac{441}{100}$

Answer: A

- Watch Video Solution

76. If $\frac{48}{2.3}+\frac{47}{3.4}+\frac{46}{4.5}+\ldots+\frac{2}{48.49}+\frac{1}{49.50}$
$=\frac{51}{2}+k\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{50}\right)$, then k equals
A. 2
B. -1
C. $-\frac{1}{2}$
D. 1

Answer: B

77. Let the harmonic mean of two positive real numbers a and b be 4 , If q is a positive real number such that $\mathrm{a}, \mathrm{5}, \mathrm{q}, \mathrm{b}$ is an arithmetic progression, then the value(s) of $|\mathrm{q}-\mathrm{a}|$ is (are)
A. 3,4
B. 2,5
C. 3,6
D. 6,9

Answer: B

- Watch Video Solution

78. If m is the A.M of two distict real numbers I and $\mathrm{n}(l, n>1)$ and G_{1}, G_{2} and G_{3} are three geomatric means between I and n , then $\left(G_{1}\right)^{4}+2\left(G_{2}\right)^{4}+\left(G_{3}\right)^{4}$ equals
A. $4 l m n^{2}$
B. $4 l^{2} m^{2} n^{2}$
C. $4 l^{2} m n$
D. $4 l m^{2} n$

Answer: D

- Watch Video Solution

79. Let $b_{i}>1$ for $i=1,2 \ldots, 101$.Suppose loge b_{1} loge $b_{2} \ldots .$. , loge b_{101} are in arihtmetic progression (A.P) with the common difference $\log _{e} 2$. Suppose $a_{1}, a_{2}, \ldots, a_{101}$ are in A.P such that $a_{1}=b_{1}$ and a_{51}. Ift $=b_{1}+b_{2}+\ldots . .+b_{51}$ and $s=a_{1}+a_{2}+\ldots+a_{51}$ then
A. $s>t$ and $a_{101}>b_{101}$
B. $s>t$ and $a_{101}<b_{101}$
C. $s<t$ and $a_{101}>b_{101}$
D. $s<t$ and $a_{101}<b_{101}$

Answer: B

- Watch Video Solution

80. Let $a, b, c \in R$. If $f(x)=a x^{2}+b x+c$ is such that $a+B+c=3$ and $f(x+y)=f(x)+f(y)+x y, \forall x, y \in R, \quad$ then $\sum_{n=1}^{10}$ is equal to
A. 330
B. 165
C. 190
D. 225

Answer: A

1. Statement -1: If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ is an A.P. such that $a_{1}+a_{4}+a_{7}+\ldots+a_{16}=147$, then $a_{1}+a_{6}+a_{11}+a_{16}=98$

Statement -2: In an A.P., the sum of the terms equidistant from the beginning and the end is always same and is equal to the sum of first and last term.
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1 .
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1 .
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

2. Suppose four distinct positive numbers $a_{1}, a_{2}, a_{3}, a_{4}$ are in GP. Let
$b_{1}=a_{1}, b_{2}=b_{1}+a_{2}, b_{3}=b_{2}+a_{3}$ and $b_{4}=b_{3}+a_{4}$

Statement 1 The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are neither in AP nor in GP.

Statement 2 The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are in HP.
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct
explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: C

- Watch Video Solution

3. Stament -1: If for any real $x, 2^{1+x}+2^{1-x}, \lambda$ and $3^{x}+3^{-x}$ are three equidistant terms of an A.P., then $\lambda \geq 3$.

Statement -2: $A M \geq G M$

A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

D Watch Video Solution

4. Let $a_{1}+a_{2}+a_{3}, \ldots, a_{n-1}, a_{n}$ be an A.P.

Statement -1: $a_{1}+a_{2}+a_{3}+\ldots+a_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Statement $-2 a_{k}+a_{n-k+1}=a_{1}+a_{n}$ for $k=1,2,3, \ldots, \mathrm{n}$
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1 .
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

5. If three positive unequal quantities a, b, c be in HP , then prove that $a^{n}+c^{n}>2 b^{n}, n \in N$.
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

6. Let a, b, c be positive real numbers in H.P.

Statement -1: $\frac{a+b}{2 a-b}+\frac{c+b}{2 c-b} \geq 4$
Statement-2: $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 3$
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct
explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: B

- Watch Video Solution

7. Statement -1: If $x>1$, the sum to infinite series
$1+3\left(1-\frac{1}{x}\right)+5\left(1-\frac{1}{x}\right)^{2}+7\left(1-\frac{1}{x}\right)^{3}+\ldots$, is $2 x^{2}-x$
Statement -2: If $0<y<1$, the sum of the series
$1+3 y+5 y^{2}+7 y^{3}+\ldots$, is $\frac{1+y}{(1-y)^{2}}$
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1 .
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

8. Statement -1 : There exists no A.P. whose three terms are $\sqrt{3}, \sqrt{5}$ and $\sqrt{7}$.

Statement-2: If a_{p}, a_{q} and a_{r} are three distinct terms of an A.P., then $\frac{a_{p}-a_{q}}{a_{p}-q_{r}}$ is a rational number.
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1 .
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

D Watch Video Solution

9. Let $n \in N$ and k be an integer ≥ 0 such that
$S_{k}(n)=1^{k}+2^{k}+3^{k}+\ldots+n^{k}$
Statement-1: $S_{4}(n)=\frac{n}{30}(n+1)(2 n+1)\left(3 n^{2}+3 n+1\right)$
Statement
$.{ }^{k+1} C_{1} S_{k}(n)+.{ }^{k+1} C_{2} S_{k-1}(n)+\ldots+.{ }^{k+1} C_{k} S_{1}(n)+.{ }^{k+1} C_{k+1} S_{0}(n)$
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: D

- Watch Video Solution

$$
\begin{aligned}
& \text { 10. } \\
& \frac{1^{2}}{1.3}+\frac{2^{2}}{3.5}+\frac{3^{2}}{5.7}+\ldots+\frac{n^{2}}{(2 n-1)(2 n+1)}=\frac{n(n+1)}{2(2 n+1)}
\end{aligned}
$$

Statement

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2 n+1}
$$

A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1 .
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: C

11. Let S_{n} denote the sum of n terms of the series
$1^{2}+3 \times 2^{2}+3^{2}+3 \times 4^{2}+5^{2}+3 \times 6^{2}+7^{2}+\ldots$.
Statement -1: If n is odd, then $S_{n}=\frac{n(n+1)(4 n-1)}{6}$
Statement -2: If n is even, then $S_{n}=\frac{n(n+1)(4 n+5)}{6}$
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

12. Statement -1: 1.3.5.. $(2 n-1) \leq n^{n}$ for all $n \in N$ Statement -2 :
$G M \leq A M$
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1 .
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

13. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be an A.P.

Statement -1: $\frac{1}{a_{1} a_{n}}+\frac{1}{a_{2} a_{n-1}}+\frac{1}{a_{3} a_{n-1}}+\ldots+\frac{1}{a_{n} a_{1}}$ $=\frac{2}{a_{1}+a_{n}}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)$
Statement -2: $a_{r}+a_{n-r+1}=a_{1}+a_{n}$ for $1 \leq r \leq n$
A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
C. Statement -1 is true, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

Exercise

1. If $p^{t h}, q^{t h}$ and $r^{t h}$ terms of G.P. are x, y, z respectively then write the value of $x^{q-r} y^{r-p} z^{p-q}$.
A. 0
B. 1
C. -1
D. 2

Answer: B

- Watch Video Solution

2. If a, b, c are in AP, then $\frac{a}{b c}, \frac{1}{c}, \frac{2}{d}$ are in
A. A.P.
B. G.P.
C. H.P.
D. AGP

Answer: D

3. If x, y, and z are in G.P. and $x+3, y+3$, and $z+3$ are in H.P., then

$$
y=2 \text { b. } y=3 \text { c. } y=1 \text { d. } y=0
$$

A. $y=2$
B. $y=3$
C. $y=1$
D. $y=0$

Answer: B

- Watch Video Solution

4. If $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P., then
A. a,b,c are in A.P.
B. a^{2}, b^{2}, c^{2} are in A.P.
C. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
D. none of these

Answer: B

5. If a, b, c are in A.P. as well as in G.P. then
A. $a=b \neq c$
B. $a \neq b=c$
C. $a \neq b \neq c$
D. $a=b=c$

Answer: D

- Watch Video Solution

6. The value of $2 . \overline{357}$, is
A. $\frac{2355}{1001}$
B. $\frac{2355}{999}$
C. $\frac{2355}{1111}$
D. $\frac{2354}{1111}$

Answer: B

- Watch Video Solution

7. If $\frac{3+5+7+u p \rightarrow \text { nterms }}{5+8+11+u p \rightarrow 10 \text { terms }}=7$, then find the value of n.
A. 35
B. 36
C. 37
D. 40

Answer: A

- Watch Video Solution

8. If $x, 1, z$ are in AP and $x, 2, z$ are in GP, then $x, 4, z$ will be in
A. AP
B. G.P
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

9. The sum of three numbers in G.P. is 14 . If one is added to the first and second numbers and 1 is subtracted from the third, the new numbers are in ;A.P. The smallest of them is a. 2 b. 4 c. 6 d. 10
A. 2
B. 4
C. 6
D. 8

D Watch Video Solution

10. about to only mathematics
A. $a=b=c$
B. $a+c=b$
C. $a>b>c$ and $a c-b^{2}=0$
D. none of these

Answer: C

- Watch Video Solution

11. If the sum of first two terms of an infinite G.P is 1 and every term is twice the sum of all the successive terms then its first term is
A. $1 / 3$
B. $2 / 3$
C. 3/4
D. $1 / 4$

Answer: C

- Watch Video Solution

12. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P and $a^{x}=b^{y}=c^{z}$,then
A. $\log _{b} a=\log _{a} c$
B. $\log _{c} b=\log _{a} c$
C. $\log _{b} a=\log _{c} b$
D. none of these

Answer: C

13. If the sum of an infinite G.P. be 3 and the sum of the squares of its term is also 3, then its first term and common ratio are
A. $3 / 2,1 / 2$
B. $1 / 2,3 / 2$
C. $1,1 / 2$
D. none of these

Answer: A

Watch Video Solution

14. If a,b,c,d are in GP and $a^{x}=b^{y}=c^{z}=d^{u}$, then x, y, z, u are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

15. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in HP, then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

16. The sum of the first n terms of the series $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2} \ldots . i s \frac{n(n+1)^{2}}{2}$ when n is even .Then find the sum when n is odd.
A. $\frac{n(n+1)}{2}$
B. $\frac{n^{2}(n+1)}{2}$
C. $\frac{n(n+1)^{2}}{2}$
D. $\left\{\frac{n(n+1)}{2}\right\}^{2}$

Answer: B

- Watch Video Solution

17. If $x, y, a n d z$ are pth, qth, and rth terms, respectively, of an A.P. nd also of a G.P., then $x^{y-z} y^{z-x} z^{x-y}$ is equal to $x y z$ b. 0 c. 1 d . none of these
A. $x y z$
B. 0
C. 1
D. -1

Answer: C

- Watch Video Solution

18.

$x=2+a+a^{2}+\infty$, where $|a|<1$ and $y=1+b+b^{2}+\infty$, where $|b|<1$ prove that: $1+a b+a^{2} b^{2}+\infty=\frac{x y}{x+y-1}$
A. $\frac{x y}{y+x-1}$
B. $\frac{x+y}{x-y}$
C. $\frac{x^{2}+y^{2}}{x-y}$
D. $\frac{x y}{y+x+1}$

Answer: A
19. a, b, c are positive real numbers forming a G.P. ILf $a x^{2}+2 b x+c=0 a n d d x^{2}+2 e x+f=0$ have a common root, then prove that $d / a, e / b, f / c$ are in A.P.
A. A.P.
B. G.P
C. H.P.
D. none of these

Answer: A

- Watch Video Solution

20. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q$, andcr are in G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to $\mathrm{a} / \mathrm{c}+\mathrm{c} / \mathrm{a}$
A. $\frac{a}{c}-\frac{c}{a}$
B. $\frac{a}{c}+\frac{c}{a}$
C. $\frac{b}{q}+\frac{q}{b}$
D. $\frac{b}{q}-\frac{q}{b}$

Answer: B

- Watch Video Solution

21. Find the sum of integers from 1 to 100 that are divisible by 2 or 5 .
A. 3000
B. 3010
C. 3150
D. 3050

Answer: D

22. Find the sum of n terms of the sequence $\left(x+\frac{1}{x}\right)^{2},\left(x^{2}+\frac{1}{x^{2}}\right)^{2},\left(x^{3}+\frac{1}{x^{3}}\right)^{2}$,
A. $\left(\frac{x^{20}-1}{x^{2}-1}\right)\left(\frac{x^{22}+1}{x^{20}}\right)+20$
B. $\left(\frac{x^{18}-1}{x^{2}-1}\right)\left(\frac{x^{11}+1}{x^{9}}\right)+20$
C. $\left(\frac{x^{18}-1}{x^{2}-1}\right)\left(\frac{x^{11}-1}{x^{9}}\right)+20$
D. none of these

Answer: A

- Watch Video Solution

23. The geometric mean between -9 and -16 is $12 \mathrm{~b} .-12 \mathrm{c} .-13 \mathrm{~d}$. none of these
A. 12
B. -12
C. -13
D. 13

Answer: B

- Watch Video Solution

24. The sum of n terms of an A.P. is $3 n^{2}+5$. The number of term which equals 159 , is
A. 13
B. 21
C. 27
D. none of these

Answer: C

- Watch Video Solution

25. If the pth, qth, and rth terms of an A.P. are in G.P., then the common ratio of the G.P. is $\frac{p r}{q^{2}}$ b. $\frac{r}{p}$ c. $\frac{q+r}{p+q}$ d. $\frac{q-r}{p-q}$
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

26. If $\log 2, \log \left(2^{x}-1\right)$ and $\log 2 \log \left(2^{x}+3\right)$ are in A.P., write the value of x.
A. A.P.
B. H.P.
C. G.P.
D. none of these

Answer: C

- Watch Video Solution

27. If S denotes the sum to infinity and S_{n} the sum of n terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+$, such that $S-S_{n}<\frac{1}{1000}$, then the least value of n is 8 b. 9 c. 10 d .11
A. 8
B. 9
C. 10
D. 11

Answer: D

D Watch Video Solution

28. If x, y, z are distinct positive numbers, then prove that $(x+y)(y+z)(z+x)>8 x y z$.
A. $=8 x y z$
B. $>8 x y z$
C. $<8 x y z$
D. $>6 x y z$

Answer: B

- Watch Video Solution

29. a, b, c are sides of a triangle and a, b, c are in GP If $\log a-\log 2 b, \log 2 b-\log 3 c$ and $\log 3 c-\log a$ are in AP then
A. acute angled
B. obtuse angled
C. right angled
D. none of these

Answer: B

- Watch Video Solution

30. about to only mathematics
A. $1: 2: 3$
B. 1:3:5
C. 2:3:4
D. 1:2:4

Answer: A

D Watch Video Solution

31. If $x^{a}=x^{b / 2} z^{b / 2}=z^{c}$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

32. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

33. The interior angles of a polygon are in A.P. the smallest angle is 120^{0} and the common difference is 5^{0}. Find the number of sides of the polygon.
A. 9 or 16
B. 9
C. 16
D. 13

Answer: B

34. For what value of b, will the roots of the equation $\cos x=b$, $-1 \leq g \leq 1$ when arranged in ascending order of their magnitudes, form an A.P. ?
A. -1
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $1 / 2$

Answer: A

- Watch Video Solution

35. about to only mathematics
A. $a=b=c$
B. $a \geq b \geq c$
C. $a+c=b$
D. $a+c=2 b$

Answer: B

- Watch Video Solution

36. Find the sum of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots .$.
(ii) to infinity.
A. $\frac{16}{35}$
B. $\frac{11}{8}$
C. $\frac{35}{16}$
D. $\frac{8}{6}$

Answer: C

- Watch Video Solution

37. about to only mathematics
A. 1012
B. 1201
C. 1212
D. 1210

Answer: D

- Watch Video Solution

38. the determinant $\left|\begin{array}{lll}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|=0$ is equal to zero if
A. a,b,c are in A.P.
B. a,b,c are in G.P.
C. a,b,c, are in H.P.
D. α is a root of $a x^{2}+b x+c=0$

Answer: B

- Watch Video Solution

39. Find the sum $1+(1+2)+\left(1+2+2^{2}\right)+\left(1+2+2^{2}+2^{3}\right)+\ldots$.

To n terms.
A. $2^{n+2}-n-4$
B. $2\left(2^{n}-1\right)-n$
C. $2^{n+1}-n$
D. $2^{n+1}-1$

Answer: A

40. If a, b, c are in H.P., then the value of

$$
\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right) \text { is }
$$

A. $\frac{2}{b c}-\frac{1}{b^{2}}$
B. $\frac{1}{4}\left(\frac{3}{c^{2}}+\frac{2}{c a}-\frac{1}{a^{2}}\right)$
C. $\left(\frac{2}{b^{2}}-\frac{2}{a b}\right)$
D. all of these

Answer: D

D Watch Video Solution

41. The 5 th term of the series $\frac{10}{9}, \frac{1}{3} \sqrt{\frac{20}{3}}, \frac{2}{3}, \ldots$ is
A. $\frac{1}{3}$
B. 1
C. $\frac{2}{5}$
D. $\sqrt{\frac{2}{3}}$

Answer: C

- Watch Video Solution

42. If $x^{18}=y^{21}=z^{28}$, then $3,3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: A

- Watch Video Solution

43. If d,e,f are G.P. and the two quadratic equations
$a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, then
A. $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in H.P.
B. $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in G.P.
C. dbf=aef+cde
D. $b^{2} d f=a c e^{2}$

Answer: A

- Watch Video Solution

44. The sum of n terms of the following series
$1+(1+x)+\left(1+x+x^{2}\right)+\ldots$ will be
A. $\frac{1-x^{n}}{1-x}$
B. $\frac{x\left(1-x^{n}\right)}{1-x}$
C. $\frac{n(1-x)-x\left(1-x^{n}\right)}{\left(1-x^{2}\right)}$
D. $\frac{1+x^{n}}{1-x}$

Answer: C

- Watch Video Solution

45. For a sequence $\left\{a_{n}\right\}, a_{1}=2$ and $\frac{a_{n+1}}{a_{n}}=\frac{1}{3}$, Then $\sum_{r=1}^{\infty} a_{r}$ is
A. $\frac{20}{2}\{4+19 \times 3\}$
B. $3\left(1-\frac{1}{3^{20}}\right)$
C. $2\left(1-3^{20}\right)$
D. none of these

Answer: B

- Watch Video Solution

46. In an arithmetic sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$,
$\Delta=\left|\begin{array}{lll}a_{m} & a_{n} & a_{p} \\ m & n & p \\ 1 & 1 & 1\end{array}\right|$ equals
A. 1
B. -1
C. 0
D. mnp

Answer: C

47. Prove that $(666 \ldots . \ldots)^{2}+(888 \ldots . \ldots)=4444 \ldots . .4$ n digits n digits $\quad 2 \mathrm{n}$ digits
A. $\frac{4}{9}\left(10^{n}-1\right)$
B. $\frac{4}{9}\left(10^{2 n}-1\right)$
C. $\frac{4}{9}\left(10^{n}-1\right)^{2}$
D. none of these

Answer: B

(Watch Video Solution

48. Thr ciefficient of x^{n-2} in the polynomial
$(x-1)(x-2)(x-3) \ldots(x-n)$, is
A. $\frac{1}{24} n(n+1)(n-1)(3 n+2)$
B. $\frac{1}{24} n\left(n^{2}-1\right)(3 n+2)$
C. $\frac{n(n+1)(2 n+2)}{6}$
D. none of these

Answer: B

- Watch Video Solution

49. The sum of the series $1^{2}+1+2^{2}+2+3^{2}+3+\ldots \ldots+n^{2}+n$, is
A. $\frac{n(n+1)}{2}$
B. $\left\{\frac{n(+1)}{2}\right\}^{2}$
C. $\frac{n(n+1)(n+2)}{3}$
D. $\frac{n(n+1)(n+2)(n+3)}{4}$

Answer: C

D Watch Video Solution

50. If $H_{1} . H_{2} \ldots, H_{n}$ are n harmonic means between a and $\mathrm{b}(\neq a)$, then the value of $\frac{H_{1}+a}{H_{1}-a}+\frac{H_{n}+b}{H_{n}-b}=$
A. 0
B. n
C. 2 n
D. 1

Answer: C

- Watch Video Solution

51. If a,b,c be respectively the $p^{t h}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a H.P., then
$\Delta=\left|\begin{array}{lll}b c & c a & a b \\ p & q & r \\ 1 & 1 & 1\end{array}\right|$ equals
A. 1
B. 0
C. -1
D. pqr

Answer: B

52. If a, b, c are in G.P. and $a-b, c-a, a n d b-c$ are in H.P., then prove that $a+4 b+c$ is equal to 0 .
A. -3
B. 0
C. 3
D. 1

Answer: B

- Watch Video Solution

53. The cubes of the natural numbers are grouped as $1^{3},\left(2^{3}, 3^{3}\right),\left(4^{3}, 5^{3}, 6^{3}\right), \ldots \ldots$, the the sum of the number in the $n^{\text {th }}$ group, is
A. $\frac{1}{8} n^{3}\left(n^{2}+1\right)\left(n^{2}+3\right)$
B. $\frac{1}{16} n^{3}\left(n^{2}+16\right)\left(n^{2}+12\right)$
C. $\frac{n^{3}}{12}\left(n^{2}+2\right)\left(n^{2}+4\right)$
D. none of these

Answer: C

- Watch Video Solution

54. If a and b are the roots of $x^{2}-3 x+p=0$ and c, d are the roots $x^{2}-12 x+q=0 \quad$ where $\quad a, b, c, d \quad$ form a G.P. Prove that $(q+p):(q-p)=17: 15$.
A. 8:7
B. 11: 10
C. 17: 15
D. none of these

Answer: C

55. Let the sum of $\mathrm{n}, 2 \mathrm{n}, 3 \mathrm{n}$ terms of an A.P. be S_{1}, S_{2} and S_{3}, respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$.
A. $S_{3}=S_{1}+S_{2}$
B. $S_{3}=2\left(S_{1}+S_{2}\right)$
C. $S_{3}=3\left(S_{2}-S_{1}\right)$
D. none of these

Answer: C

- Watch Video Solution

56. If a, b, c, d, e, f are A.M.s between 2 and 12 , then find the sum $a+b+c+d+e+f$.
A. 14
B. 42
C. 84
D. none of these

Answer: B

- Watch Video Solution

57. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P, then $\log _{a} x, \log _{b} x, \log _{c} x$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

58. If x, y, z are in H.P then the value of expression $\log (x+z)+\log (x-2 y+z)=$
A. $\log (x-z)$
B. $2 \log (x-z)$
C. $3 \log (x-z)$
D. $4 \log (x-z)$

Answer: B

- Watch Video Solution

59. If a, b, c, d are in H.P., then $a b+b c+c d$ is equal to
A. 3 ad
B. $(a+b)(c+d)$
C. 3ac
D. none of these

D Watch Video Solution

60. The sum of $i-2-3 i+4$ up to 100 terms, where $i=\sqrt{-1}$ is $50(1-i)$ b. $25 i$ c. $25(1+i)$ d. $100(1-i)$
A. 50 (1-i)
B. 25 i
C. $25(1+\mathrm{i})$
D. 100 (1-i)

Answer: A

- Watch Video Solution

61. (i) a , b, c are in H.P. , show that $\frac{b+a}{b-a}+\frac{b+c}{b-c}=2$
(ii) If a^{2}, b^{2}, c^{2} are A.P. then $\mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}, \mathrm{a}+\mathrm{b}$ are in H.P. .
A. 1
B. 2
C. 3
D. 0

Answer: B

D Watch Video Solution

62. If a, b, c are in H.P, then
A. $\frac{a-b}{b-c}=\frac{a}{c}$
B. $\frac{b-c}{c-a}=\frac{b}{a}$
C. $\frac{c-a}{a-b}=\frac{c}{b}$
D. $\frac{a-b}{b-c}=\frac{c}{a}$

Answer: A

63. If $a, b, c, b e$ in A.P. , b, c, d in G.P. and c.d.e.in H.P., then prove that a, c, e will be in GP .
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

64. If $\frac{a+b}{1-a b}, b, \frac{b+c}{1-b c}$ are in AP, then $a, \frac{1}{b}, c$ are in
A. A.P.
B. G.P.
C. H.P.
D. $\frac{a-b}{b-c}=\frac{c}{a}$

Answer: C

- Watch Video Solution

65. If the sum of n terms of an A.P is $\mathrm{cn}(\mathrm{n}-1)$ where $c \neq 0$ then the sum of the squares of these terms is
A. $a^{2} n^{2}(n-1)^{2}$
B. $\frac{a^{2}}{6} n(n-1)(2 n-1)$
C. $\frac{2 a^{2}}{3} n(n-1)(2 n-1)$
D. $\frac{2 a^{2}}{3} n(n+1)(2 n+1)$

Answer: C

- Watch Video Solution

66. Sum of the first p, q and r terms of an A.P are a, b and c, respectively.Prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
A. 0
B. 2
C. pqr
D. $\frac{8 x y z}{p q r}$

Answer: A

- Watch Video Solution

67. If $S_{n}=\frac{1}{1^{3}}+\frac{1+2}{1^{3}+2^{3}}+\ldots+\frac{1+2+3+\ldots+n}{1^{3}+2^{3}+3^{3}+\ldots+n^{3}}$ Then S_{n} is
not greater than
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

68. If a, b and c are in A.P. a, x, b are in G.P. whereas b, y and c are also in G.P. Show that : x^{2}, b^{2}, y^{2} are in A.P.
A. H.P.
B. G.P.
C. A.P.
D. none of these

Answer: C

- Watch Video Solution

69. If $\log (x+z)+\log (x-2 y+z)=2 \log (x-z)$, then x, y, z are in
A. H.P.
B. G.P.
C. A.P.
D. none of these

Answer: A

- Watch Video Solution

70. If $\frac{1}{a}+\frac{1}{c}+\frac{1}{a-b}+\frac{1}{c-b}=0$, than prove that a, b, c are in HP, unless $b=a+c$.
A. H.P.
B. G.P.
C. A.P.
D. none of these

- Watch Video Solution

71. If arithmetic mean of two positive numbers is A , their geometric mean is G and harmonic mean H , then H is equal to
A. $\frac{G^{2}}{A}$
B. $\frac{A^{2}}{G^{2}}$
C. $\frac{A}{G^{2}}$
D. $\frac{G}{A^{2}}$

Answer: A

- Watch Video Solution

72. If $(1-p)\left(1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}\right)=1-p^{6}, p \neq 1$, then the value of $\frac{p}{x}$ is
a. $\frac{1}{3}$ b. 3 c. $\frac{1}{2}$ d. 2
A. $1 / 2$
B. 2
C. $1 / 4$
D. 4

Answer: B

- Watch Video Solution

73. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P, then $\log _{a} x, \log _{b} x, \log _{c} x$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

74. If the sum of series $1+\frac{3}{x}+\frac{9}{x^{2}}+\frac{27}{x^{3}}+\ldots$ to ∞ is a finite number, then
A. $x<3$
B. $x>\frac{1}{3}$
C. $x<\frac{1}{3}$
D. $x>3$

Answer: D

- Watch Video Solution

75. If H be the H.M. between a and b , then the value of $\frac{H}{a}+\frac{H}{b}$ is
A. 2
B. $\frac{a b}{a+b}$
C. $\frac{a+b}{a b}$
D. none of these

Answer: A

D Watch Video Solution

76. The sum of n terms of two arithmetic progressions are in the ratio $2 n+3: 6 n+5$, then the ratio of their 13 th terms, is
A. $53: 155$
B. $27: 87$
C. 29:89
D. $31: 89$

Answer: A

77. If $x=\sum_{n-0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} C^{n}$ where a,b,c are in A.P. and $|a|<1,|b|<1,|c|<1$, then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in
A. A.P.
B. G.P
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

78. Show that $X^{\frac{1}{2}} \cdot X^{\frac{1}{4}} \cdot X^{\frac{1}{8}} .$. Upto $\infty=X$
A. 0
B. 1
C. x
D. ∞

Answer: C

- Watch Video Solution

79. If a, b, c be in arithmetic progession, then the value of $(a+2 b-c)(2 b+c-a)$ $(a+2 b+c)$, is
A. 16 abc
B. 4 abc
C. 8 abc
D. 3 abc

Answer: A

- Watch Video Solution

80. If a, b, c are distinct positive real numbers in G.P and $\log _{c} a, \log _{b} c, \log _{a} b$ are in A.P, then find the common difference of this A.P
A. 3
B. $3 / 2$
C. $1 / 2$
D. $2 / 3$

Answer: B

- Watch Video Solution

81. If $<a_{n}>$ and $<b_{n}>$ be two sequences given by $a_{n}=(x)^{\frac{1}{2^{n}}}+(y)^{\frac{1}{2^{n}}}$ and $b_{n}=(x)^{\frac{1}{2^{n}}}-(y)^{\frac{1}{2^{n}}} \quad$ for \quad all $\quad n \in N$. Then, $a_{1} a_{2} a_{3} \ldots a_{n}$ is equal to
A. $x-y$
B. $\frac{x+y}{b_{n}}$
C. $\frac{x-y}{b_{n}}$
D. $\frac{x y}{b_{n}}$

Answer: C

D Watch Video Solution

82. The sum of the squares of three distinct real numbers which are in GP is S^{2}, if their sum is αS, then
A. $1<\alpha^{2}<3$
B. $\frac{1}{3}<\alpha^{2}<3$
C. $1<\alpha<3$
D. $\frac{1}{3}<\alpha<3$

Answer: B

- Watch Video Solution

83. If there be n quantities in G.P., whose common ratio is r and S_{m} denotes the sum of the first m terms, then the sum of their products,
taken two by two, is
A. $S_{m} S_{m-1}$
B. $\frac{r}{r+1} S_{m} S_{m-1}$
C. $\frac{r}{r-1} S_{m} S_{m-1}$
D. $\frac{r+1}{r} S_{m} S_{m-1}$

Answer: B

- Watch Video Solution

84. The value of $\sum_{r=1}^{n} \log \left(\frac{a^{r}}{b^{r-1}}\right)$, is
A. $\frac{n}{2} \log \left(\frac{a^{n}}{b^{n}}\right)$
B. $\frac{n}{2} \log \left(\frac{a^{n+1}}{b^{n}}\right)$
C. $\frac{n}{2} \log \left(\frac{a^{n+1}}{b^{n-1}}\right)$
D. $\frac{n}{2} \log \left(\frac{a^{n+1}}{b^{n+1}}\right)$

Answer: C

- Watch Video Solution

85. If n arithmetic means are inserted between 2 and 38 , then the sum of the resulting series is obtained as 200 . Then find the value of n.
A. 10
B. 8
C. 9
D. none of these

Answer: B

- Watch Video Solution

86. An A.P., and a H.P. have the same first and last terms and the same odd number of terms. The middle terms of the three series are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

87. If $a, b, a n d c$ be in G.P. and $a+x, b+x$, and $c+x$ in H.P. then find the value of $x(a, b$ and c are distinct numbers).
A. C
B. b
C. a
D. none of these
88. The maximum sum of the series $20+19 \frac{1}{3}+18 \frac{2}{3}+$ is 310 b .300 c . 0320 d . none of these
A. 310
B. 300
C. 320
D. none of these

Answer: A

- Watch Video Solution

89. If $2(y-a)$ is the $H . M$. between $y-x$ and $y-z$ then $x-a, y-a, z-a$ are in (i) A.P (ii) G.P (iii) H.P (iv) none of these
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

90. If the roots of the equation $x^{3}-12 x^{2}+39 x-28=0$ are in AP, then their common difference is
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: C

91. If the sum of the first n natural numbers is $1 / 5$ times the sum of the their squares, the value of n is -
A. 5
B. 6
C. 7
D. 8

Answer: C

- Watch Video Solution

92. $\log _{3} 2, \log _{6} 2, \log _{12} 2$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

93. The value of $9^{1 / 3} \times 9^{1 / 9} \times 9^{1 / 27} \times \ldots \ldots$. to ∞ is
A. 9
B. 1
C. 3
D. none of these

Answer: C

- Watch Video Solution

94. The following consecutive terms $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}$ of a series are in :
A. H.P.
B. G.P.
C. A.P.
D. A.P., G.P.

Answer: C

- Watch Video Solution

95. The sum of all two digit odd numbers is
A. 2475
B. 2530
C. 4905
D. 5049

Answer: A

- Watch Video Solution

96. If the sum of the series $2,5,8,11, \ldots$ is 60100 , then find the value of n.
A. 100
B. 200
C. 150
D. 250

Answer: B

- Watch Video Solution

97. Given two numbers a and b. Let A denote the single A.M. and S denote the sum of n A.M.'s between a and b, then S / A depends on
A. n, a, b
B. n, b
C. n, a
D. n

Answer: D

- Watch Video Solution

98. If $\sum_{r=1}^{n} r^{4}=I(n)$, then $\sum_{r=1}^{n}(2 r-1)^{4}$ is equal to
A. $f(2 n)-16 f(n)$
B. $f(2 n)-7 f(n)$
C. $f(2 n-1)-8 f(n)$
D. none of these

- Watch Video Solution

99.0. 423 is equivalent to the fraction $\frac{94}{99}$ (b) $\frac{49}{99}$ (c) $\frac{491}{990}$ (d) $\frac{419}{990}$
A. $\frac{419}{999}$
B. $\frac{419}{990}$
C. $\frac{423}{1000}$
D. $\frac{409}{999}$

Answer: B

Watch Video Solution

100. If a, b, c are in A.P and a^{2}, b^{2}, c^{2} are in H.P then which is of the following is /are possible?
A. $a=b=c$
B. $2 b=3 a+c$
C. $b^{2}=\sqrt{(a c / 8)}$
D. none of these

Answer: A

- Watch Video Solution

101. The harmonic mean of two numbers is 4 . Their arithmetic mean A and the geometric mean G satisfy the relation $2 A+G^{2}=27$. Find two numbers.
A. 6,3
B. 5,4
C. $5,-2.5$
D. $-3,1$

- Watch Video Solution

102. The sixth term of an $A . P ., a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots ., a_{n}$ is 2 . If the quantity $a_{1} a_{4} a_{5}$, is minimum then then the common difference of the A. P.
A. $x=8 / 5$
B. $x=5 / 4$
C. $x=2 / 3$
D. $x=4 / 5$

Answer: C

103. If $\frac{x+y}{1-x y}, y, \frac{y+z}{1-y z}$ be in A.P., " then " $x, \frac{1}{y}, z$ will be in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

104. If a, b, c, be in A.P. , b, c, d in G.P. and c.d.e.in H.P., then prove that a, c, e will be in GP .
A. A.P.
B. G.P.
C. H.P.
D. none of these
105. Three non-zero real numbers from an A.P. and the squares of these numbers taken in same order from a G.P. Then, the number of all possible value of common ratio of the G.P. is
A. 1
B. 2
C. 3
D. none of these

Answer: C

- Watch Video Solution

106. If $p^{t h}, q^{t h}, r^{\text {th }}$ and $s^{\text {th }}$ terms of an A.P. are in G.P., then show that $(p-q),(q-r),(r-s)$ are also in G.P.
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

107. The $n^{\text {th }}$ term of the sequence $4,14,30,52,80,114, \ldots$, is
A. $n^{2}+n+2$
B. $3 n^{2}+n$
C. $3 n^{2}-5 n+2$
D. $(n+1)^{2}$

Answer: B

108. If $|x|<1$ and $|y|<1$, find the sum of infinity of the following series: $(x+y)+\left(x^{2}+x y+y^{2}\right)+(x+y)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+$
A. $\frac{x+y-x y}{1-x-y+x y}$
B. $\frac{x+y+x y}{1-x-y+x y}$
C. $\frac{x}{1-x}+\frac{y}{1-y}$
D. $\frac{(x-y)(x+y-x y)}{1-x-y+x y}$

Answer: A

- Watch Video Solution

109. If S_{1}, S_{2} and S_{3} denote the sum of first $n_{1} n_{2}$ and n_{3} terms respectively of an A.P., then
$\frac{S_{1}}{n_{1}}\left(n_{2}-n_{3}\right)+\frac{S_{2}}{n_{2}}+\left(n_{3}-n_{1}\right)+\frac{S_{3}}{n_{3}}\left(n_{1}-n_{2}\right)=$
A. 0
B. 1
C. $S_{1} S_{2} S_{3}$
D. $n_{1} n_{2} n_{3}$

Answer: A

D Watch Video Solution

110. If $|a|<1$ and $|b|<1$, then the sum of the series $a(a+b)+a^{2}\left(a^{2}+b^{2}\right)+a^{3}\left(a^{3}+b^{3}\right)+\ldots . . \infty$ is
A. $\frac{a}{1-a}+\frac{a b}{1-a b}$
B. $\frac{a^{2}}{1-a^{2}}+\frac{a b}{1-a b}$
C. $\frac{b}{1-b}+\frac{a}{1-a}$
D. $\frac{b^{2}}{1-b^{2}}+\frac{a b}{1-a b}$

Answer: B

111. If $\log _{x} a, a^{x / 2}, \log _{b} X$ are in G.P. then x is equal to
A. $\log _{a}\left(\log _{b} a\right)$
B. $\log _{a}\left(\log _{e} a\right)+\log _{a}\left(\log _{e} b\right)$
C. $-\log _{a}\left(\log _{a} b\right)$
D. $\log _{1}\left(\log _{e} b\right)-\log _{a}\left(\log _{e} a\right)$

Answer: A

Watch Video Solution

112. If a, b, c, d are in G.P., then prove that $\left(a^{3}+b^{3}\right)^{-1},\left(b^{3}+c^{3}\right)^{-1},\left(c^{3}+d^{3}\right)^{-1}$ are also in G.P.
A. A.P.
B. G.P.
C. H.P.

D. none of these

Answer: B

- Watch Video Solution

113. If $0<x<\frac{\pi}{2}$ exp $\left[\left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+{ }^{\prime} \ldots .+\infty\right) \log _{e} 2\right]$
satisfies the quadratic equation $x^{2}-9 x+8=0$, find the value of $\sin x-\cos x$
$\overline{\sin x+\cos x}$.
A. 0
B. $2+\sqrt{3}$
C. $2-\sqrt{3}$
D. none of these

Answer: B

- Watch Video Solution

114. The value of 0.2
A. 4
B. $\log 4$
C. $\log 2$
D. none of these

Answer: A

- Watch Video Solution

115. If the sum of an infinitely decreasing G.P. is 3 , and the sum of the squares of its terms is $9 / 2$, the sum of the cubes of the terms is
A. $\frac{105}{13}$
B. $\frac{108}{13}$
C. $\frac{729}{8}$
D. $\frac{128}{13}$

- Watch Video Solution

116. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$ to $\infty=\frac{\pi^{2}}{6}$, then $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$ equals
A. $\pi^{2} / 8$
B. $\pi^{2} / 12$
C. $\pi^{2} / 3$
D. $\pi^{2} / 2$

Answer: A

117. The value of $\left[(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots+\infty\right)}\right]^{\frac{1}{2}}$ is a) 1 b) 2 c) 3 d) -1
A. 2
B. 3
C. 4
D. 1

Answer: C

- Watch Video Solution

118. If the sum of the first n terms of series be $5 n^{2}+2 n$, then its second term is
A. $\frac{56}{15}$
B. $\frac{27}{14}$
C. 17
D. 16

Answer: C

119. If $x,|x+1|,|x-1|$ are first three terms of an A.P., then the sum of its first 20 terms is
A. 360,180
B. 180,350
C. 150, 100
D. 180,150

Answer: B

- Watch Video Solution

120. If $a_{1}, a_{2}, a_{3}, \ldots$ are in A.P. and $a_{i}>0$ for each i , then

$$
\begin{align*}
& \sum_{i=1}^{n} \frac{n}{a_{i+1}^{\frac{2}{3}}+a_{i+1}^{\frac{1}{3}} a_{i}^{\frac{1}{3}}+a_{i}^{\frac{2}{3}}} \text { is equal to (a) } \frac{n}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}} \tag{b}\\
& \frac{n(n+1)}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}} \text { (c) } \frac{n(n-1)}{a_{n}^{2 / 3}+a_{n}^{1 / 3} \cdot a_{1}^{1 / 3}+a_{1}^{2 / 3}} \text { (d) None of these }
\end{align*}
$$

A. $\frac{n+1}{a_{n-1}^{2 / 3}+a_{n-1}^{1 / 3} a_{1}^{1 / 3}+a_{1}^{2 / 3}}$
B. $\frac{n-1}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}}$
C. $\frac{n-1}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{1 / 3}+a_{1}^{2 / 3}}$
D. $\frac{n+1}{a_{n+1}^{2 / 3}+a_{n+1}^{1 / 3}+a_{1}^{1 / 3}+a_{1}^{2 / 3}}$

Answer: C

- Watch Video Solution

121. If $\frac{1}{b-a}+\frac{1}{b-c}=\frac{1}{a}+\frac{1}{c}$, then (A). $a, b, a n d c$ are in H.P. (B). $a, b, a n d c$ are in A.P. (C). $b=a+c$ (D). $3 a=b+c$
A. G.P.
B. H.P.
C. A.P.
D. none of these

Watch Video Solution

122. If,a,b and c are in H.P then the value of
$(a c+a b-b c) \frac{a b+b c-a c}{(a b c)^{2}}$ is
A. $\frac{(a+c)(3 a-c)}{4 a^{2} c^{2}}$
B. $\frac{2}{b c}+\frac{1}{b^{2}}$
C. $\frac{2}{b c}-\frac{1}{a^{2}}$
D. $\frac{(a-c)(3 a+c)}{4 a^{2} c^{2}}$

Answer: A

- Watch Video Solution

123. If $A M$ of the number 5^{1+x} and 5^{1-x} is 13 then the set of possible real values of x is -
A. $5, \frac{1}{5}$
B. $\{-1,1\}$
C. $\{0,1\}$
D. none of these

Answer: D

- Watch Video Solution

124. If a, b, c are in A.P then $a+\frac{1}{b c}, b+\frac{1}{c a}, c+\frac{1}{a b}$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: A

125. The coefficient of x^{49} in the product $(x-1)(x-3)(x-99) i s$ a. -99^{2} b. 1 c. -2500 d . none of these
A. -99^{2}
B. 1
C. -2500
D. none of these

Answer: C

- Watch Video Solution

126. The coefficient of x^{15} in the product
$(1-x)(1-2 x)\left(1-2^{2} x\right)\left(1-2^{3} x\right) \ldots\left(1-2^{15} x\right)$ is : (a) $2^{105}-2^{121}$
$2^{121}-2^{105}$ (c) $2^{104}-2^{120}$ (d) $2^{108}-2^{110}$
A. $2^{105}-2^{121}$
B. $2^{121}-2^{105}$
C. $2^{120}-2^{104}$
D. none of these

Answer: A

- Watch Video Solution

127. If $S_{n}=\sum_{r=1}^{n} a_{r}=\frac{1}{6} n\left(2 n^{2}+9 n+13\right)$, then $\sum_{r=1}^{n} \sqrt{a_{r}}$ equals
A. $\frac{n(n+1)}{2}$
B. $\frac{n(n+2)}{2}$
C. $\frac{n(n+3)}{2}$
D. $\frac{n(n+5)}{2}$

Answer: C

- Watch Video Solution

128. If $\sum_{r=1}^{n} a_{r}=\frac{1}{6} n(n+1)(n+2)$ for all $n \geq 1$, then $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{a_{r}}$, is
A. 2
B. 3
C. $3 / 2$
D. 6

Answer: A

(Watch Video Solution

129. Sum of n terms of the series $\frac{1}{1.2 .3 .4 .}+\frac{1}{2.3 .4 .5}+\frac{1}{3.4 .5 .6}+\ldots$.
A. $\frac{n^{3}}{2(n+1)(n+2)(n+3)}$
B. $\frac{n^{3}+6 n^{2}-3 n}{6(n+2)(n+3)(n+4)}$
C. $\frac{15 n^{2}+7 n}{4 n(n+1)(n+5)}$
D. $\frac{n^{3}+6 n^{2}+11 n}{(18 n+1)(n+2)(n+3)}$

D Watch Video Solution

Chapter Test

1. Let $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$, then the sum to n terms of the series
$\frac{1^{2}}{1^{3}}+\frac{1^{2}+2^{2}}{1^{3}+2^{3}}+\frac{1^{2}+2^{2}+3^{2}}{1^{3}+2^{3}+3^{3}}+\ldots$, is
A. $\frac{4}{3} H_{n}-1$
B. $\frac{4}{3} H_{n}+\frac{1}{n}$
C. $\frac{4}{3} H_{n}$
D. $\frac{4}{3} H_{n}+\frac{1}{n}$

Answer: D

2. Sum of the first n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots \ldots \ldots$ is equals to (a). $2^{n}-n-1$ (b). $1-2^{-n}$ (c). $n+2^{-n}-1$ (d). $2^{n}+1$
A. $2^{n}-n-1$
B. $1-2^{-n}$
C. $n+2^{-n}-1$
D. $2^{n}-1$

Answer: C

3. If A_{1}, A_{2} are between two numbers, then $\frac{A_{1}+A_{2}}{H_{1}+H_{2}}$ is equal to
A. $\frac{H_{1} H_{2}}{G_{1} G_{2}}$
B. $\frac{G_{1} G_{2}}{H_{1} H_{2}}$
C. $\frac{H_{1} H_{2}}{A_{1} A_{2}}$
D. $\frac{G_{1} G_{2}}{A_{1} A_{2}}$

Answer: B

- Watch Video Solution

4. If the $(m+1) t h,(n+1) t h, a n d(r+1) t h$ terms of an A.P., are in G.P. and m, n, r are in H.P., then find the value of the ratio of the common difference to the first term of the A.P.
A. $n / 2$
B. $-n / 2$
C. $n / 3$
D. $-n / 3$

Answer: B

5. Given that n arithmetic means are inserted between two sets of numbers $\mathrm{a}, 2 \mathrm{~b}$, and $2 \mathrm{a}, \mathrm{b}$ where $\mathrm{a}, \mathrm{b}, \in R$. Suppose further that $m^{\text {th }}$ mean between these two sets of numbers are same, then the ratio a:b equals
A. $n-m+1: m$
B. $n-m+1: n$
C. $m: n-m+1$
D. $n: n-m+1$

Answer: C

- Watch Video Solution

6. If a, b, and c are in G.P then $a+b, 2 b$ and $b+c$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

7. If in a progression a_{1}, a_{2}, a_{3}, et $\cdot,\left(a_{r}-a_{r+1}\right)$ bears a constant atio with $a_{r} \times a_{r+1}$, then the terms of the progression are in a. A.P b. G.P. c. H.P. d. none of these
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

8. If in an $\mathrm{AP}, t_{1}=\log _{10} a, t_{n+1}=\log _{10} b$ and $t_{2 n+1}=\log _{10} c$ then a, b, c are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

D Watch Video Solution

9. Find the sum of the series: $1^{2}-2^{2}+3^{2}-4^{2}+\ldots .-2008^{2}+2009^{2}$.
A. 2019045
B. 1005004
C. 2000506
D. none of these

- Watch Video Solution

10. If $4 a^{2}+9 b^{2}+16 c^{2}=2(3 a b+6 b c+4 c a)$, where a, b, c are nonzero numbers, then a,b,c are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

11. If S_{n} denotes the sum of n terms of an A.P. whose common difference is d and first term is a, find $S_{n}-2 S_{n-1}+S_{n-2}$
A. $d=S_{n}-S_{n-1}+S_{n-1}$
B. $d=S_{n}-2 S_{n-1}-S_{n-2}$
C. $d=S_{n}-2 S_{n-1}+S_{n-2}$
D. none of these

Answer: C

- Watch Video Solution

12. The sides of a right angled triangle are in A.P., then they are in the ratio :
A. 2:3:4
B. 3: 4: 5
C. $4: 5: 6$
D. none of these
13. Find the sum of all the 11 terms of an AP whose middle most term is 30.
A. 320
B. 330
C. 340
D. 350

Answer: B

- Watch Video Solution

14. The maximum sum of the series $20+19 \frac{1}{3}+18 \frac{2}{3}+$ is 310 b .300 c . 0320 d . none of these
B. 290
C. 320
D. none of these

Answer: A

- Watch Video Solution

15. If three numbers are in G.P., then the numbers obtained by adding the middle number to each of these numbers are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

16. If p, q, r are in A.P., show that the p th, q th and r th terms of any G.P. are in G.P.
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

17. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three positive prime number. The progrrssion in which $\sqrt{a}, \sqrt{b}, \sqrt{c}$ can be three terms (not necessarily consecutive), is
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: D

- Watch Video Solution

18. If $\frac{1}{b-a}+\frac{1}{b-c}=\frac{1}{a}+\frac{1}{c}$, then (A). $a, b, a n d c$ are in H.P. (B).
$a, b, a n d c$ are in A.P. (C). $b=a+c$ (D). $3 a=b+c$
A. $\frac{1}{a}+\frac{1}{b}$
B. $\frac{1}{a}+\frac{1}{c}$
C. $\frac{1}{b}+\frac{1}{c}$
D. none of these

Answer: B

- Watch Video Solution

19. If three numbers are in H.P., then the numbers obtained by subtracting half of the middle number from each of them are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

20. The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 2 b .4 c .6 d .8
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B

- Watch Video Solution

21. In a G.P. of positive terms if any terms is equal to the sum of next tow terms, find the common ratio of the G.P.
A. -1
B. -3
C. -3
D. $-1 / 2$

Answer: C

22. If a, b, c are in H.P and $a b+b c+c a=15$ then $c a=$
A. ad
B. 2ad
C. 3ad
D. none of these

Answer: C

Watch Video Solution
23. If $\sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}=\frac{\pi^{2}}{8}$, then $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ is equal to
A. $\frac{\pi^{2}}{24}$
B. $\frac{\pi^{2}}{3}$
C. $\frac{\pi^{2}}{6}$
D. none of these

Answer: C

- Watch Video Solution

24. It is given that $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}} \ldots$ to $\infty=\frac{\pi^{4}}{90}$, then $\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}$to ∞ is equal to :
A. $\frac{\pi^{4}}{96}$
B. $\frac{\pi^{4}}{45}$
c. $\frac{89 \pi^{4}}{90}$
D. none of these

Answer: A

- Watch Video Solution

25. The minimum number of terms from the beginning of the series
$20+22 \frac{2}{3}+25 \frac{1}{3}+\ldots$, so that the sum may exceed 1568 , is
A. 25
B. 27
C. 28
D. 29

Answer: D

D Watch Video Solution

26. The sum of the series $1-3+5-7+9-11+\ldots$. To n terms is
A. $-n, \quad$ when n is even $G 373$
B. 2 n , when n is even
C. ' -n, " when n is odd"
D. 2 n , when n is odd

Answer: A

27. If three positive unequal numbers a, b, c are in H.P., then
A. $a^{3 / 2}+c^{3 / 2}>2 b^{1 / 2}$
B. $a^{5}+c^{5}>2 b^{5}$
C. $a^{2}+c^{2}>2 b^{3}$
D. none of these

Answer: B

- Watch Video Solution

28. If the fifth term of a G.P. is 2 , then write the product of its 9 terms.
A. 256
B. 512
C. 1024
D. none of these

Answer: B

- Watch Video Solution

29. $1^{3}-2^{3}+3^{3}-4^{3}+\ldots \ldots .+9^{3}$ is equal to
A. 425
B. -425
C. 475
D. -475

Answer: A

(Watch Video Solution

30. The sum of infinite number of terms in G.P. is 20 and the sum of their squares is 100 . Then find the common ratio of G.P.
A. 5
B. $3 / 5$
C. $8 / 5$
D. $1 / 5$

Answer: B

D Watch Video Solution

31. If $1, \log _{9}\left(3^{1-x}+2\right)$ and $\log _{3}\left(4.3^{x}-1\right)$ are A.P. then x is
A. $\log _{3} 4$
B. $1-\log _{4} 3$
C. $1-\log _{4} 3$
D. $\log _{4} 3$

D Watch Video Solution

32. Two sequences $<a_{n}>$ and $<b_{n}>$ are defined by
$a_{n}=\log \left(\frac{5^{n+1}}{3^{n-1}}\right), b_{n}=\left\{\log \left(\frac{5}{3}\right)\right\}^{n}$, then
A. $<a_{n}>$ is an A.P. and $<b_{n}>$ is a G.P
B. $<a_{n}>$ and $<b_{n}>$ both are G.P.
C. $\left\langle a_{n}\right\rangle$ and $<b_{n}>$ both are A.P.
D. $<a_{n}>$ is a G.P. and $<b_{n}>$ is neither an A.P. nor a G.P.

Answer: A

- Watch Video Solution

33. The sum of the series

$$
\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \ldots+\frac{1}{\sqrt{n^{2}-1}+\sqrt{n^{2}}}
$$

equals

A. $\frac{2 n+1}{\sqrt{n}}$
B. $\frac{\sqrt{n}+1}{\sqrt{n}+\sqrt{n-1}}$
C. $\frac{\sqrt{n}+\sqrt{n^{2}-1}}{2 \sqrt{n}}$
D. $n-1$

Answer: D

- Watch Video Solution

34. Natural numbers are written as $1,(2,3),(4,5,6)$.

Show that the sum of number in the nth group is $\frac{n}{2}(n+1)$.
A. 62525
B. 65255
C. 56255
D. 55625

D Watch Video Solution

35. If the first term of an A.P. is 2 and common difference is 4 , then the sum of its 40 terms is (a) 3200 (b) 1600 (c) 200 (d) 2800
A. 3200
B. 1600
C. 200
D. 2800

Answer: A

- Watch Video Solution

36. If $1+\frac{1+2}{2}+\frac{1+2+3}{3}+\xrightarrow{.} n$ terms is S. Then, S is equal to $\frac{n(n+3)}{4}$ b. $\frac{n(n+2)}{4}$ c. $\frac{n(n+1)(n+2)}{6}$ d. n^{2}
A. $\frac{n(n+3)}{4}$
B. $\frac{n(n+2)}{4}$
C. $\frac{n(n+1)(n+2)}{6}$
D. n^{2}

Answer: A

- Watch Video Solution

37. The sum of 10 terms of the series $\sqrt{2}+\sqrt{6}+\sqrt{18}+\ddot{i} s$
$11(\sqrt{6}+\sqrt{2})$ b. $243(\sqrt{3}+1)$ c. $\frac{11}{\sqrt{3}-1}$ d. $242(\sqrt{3}-1)$
A. $121(\sqrt{6}+\sqrt{2})$
B. $243(\sqrt{3}+1)$
C. $\frac{121}{\sqrt{3}-1}$
D. $242(\sqrt{3}-1)$
38. The $(m+n)$ th and $(m-n)$ th terms of a GP are p and q , respectively. Then, the mth term of the GP is
A. 0
B. pq
C. $\sqrt{p q}$
D. $\frac{1}{2}(p+q)$

Answer: C

- Watch Video Solution

39. The fourth, seventh and tenth terms of a G.P. are p,q,r respectively, then

$$
\text { A. } p^{2}=q^{2}+r^{2}
$$

B. $p^{2}=q r$
C. $q^{2}=p r$
D. $r^{2}=p^{2}+q^{2}$

Answer: B

- Watch Video Solution

40. The sum of the integers from 1 to 100 which are not divisible by 3 or 5 is
A. 2489
B. 4735
C. 2632
D. 2317

Answer: C

41. Let the harmonic mean and geometric mean of two positive numbers be in the ratio $4: 5$. Then the two numbers are in ratio
A. 1:1
B. 2: 1
C. 3:1
D. $4: 1$

Answer: A

- Watch Video Solution

42. The sum of the series
$1+2.2+3.2^{2}+4.2^{3}+5.2^{4}+\ldots . .+100.2^{99}$ is
A. 99×2^{100}
B. $99 \times 2^{100}+1$
C. 100×2^{100}
D. none of these

Answer: B

- Watch Video Solution

43. If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P. prove that a, b, c are in A.P.
A. a,b,c are in A.P.
B. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
C. a,b,c are in H.P
D. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P.

Answer: B

44. If the $m^{\text {th }}, n^{\text {th }}$ and $p^{\text {th }}$ terms of an A.P. and G.P. be equal and be respectively x, y, z, then
A. $x^{y} y^{z} z^{x}=x^{z} y^{x} z^{y}$
B. $(x-y)^{x}(y-z)^{x}=(z-x)^{z}$
C. $(x-y)^{z}(y-z)^{x}=(z-x)^{y}$
D. none of these

Answer: A

Watch Video Solution

45. The 7 th term of a H.P. is $\frac{1}{10}$ and 12 th term is $\frac{1}{25}$, find the 20th term of H.P.
A. $\frac{1}{37}$
B. $\frac{1}{41}$
C. $\frac{1}{45}$
D. $\frac{1}{49}$

Answer: D

- Watch Video Solution

46. The length of side of a square is 'a' metre. A second square is formed by joining the middle points of this square. Then a third square is formed by joining the middle points of the sides of the second square and so on.

Then, the sum of the areas of squares which carried upto infinity, is
A. a^{2}
B. $2 a^{2}$
C. $3 a^{2}$
D. $4 a^{2}$

Answer: C

47. The harmonic mean of the roots of the equation

$$
(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0 \text { is a. } 2 \text { b. } 4 \text { c. } 6 \text { d. } 8
$$

A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

48. If three positive real numbers $\mathrm{a}, \mathrm{b}, \mathrm{c},(c>a)$ are in H.P., then $\log (a+c)+\log (a-2 b+c)$ is equal to
A. $2 \log (c-b)$
B. $2 \log (a+c)$
C. $2 \log (c-a)$
D. $\log a+\log b+\log c$

Answer: B

- Watch Video Solution

49. In an A. P., the $p^{t h}$ term is $\frac{1}{q}$ and the $q^{\text {th }}$ term is $\frac{1}{p}$. find the $(p q)^{t h}$ term of the $A . P$.
A. $\frac{p+q}{p q}$
B. 0
C. $\frac{p q}{p+q}$
D. 1

Answer: A

- Watch Video Solution

50. The sum of the series $\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+\frac{80}{81}+$ to n terms is
(a) $n-\frac{1}{2}\left(3^{-n}-1\right)$
(b) $n-\frac{1}{2}\left(1-3^{-n}\right)$
(c) $n+\frac{1}{2}\left(3^{n}-1\right)$
$n-\frac{1}{2}\left(3^{n}-1\right)$
A. $n-\frac{1}{2}\left(3^{-n}-1\right)$
B. $n-\frac{1}{2}\left(1-3^{-n}\right)$
C. $n+\frac{1}{2}\left(3^{n}-1\right)$
D. $n-\frac{1}{2}\left(3^{n}-1\right)$

Answer: A

- Watch Video Solution

51. If a,b,c are in H.P. , then
A. $\frac{1}{a}, b, \frac{1}{c}$ are in A.P.
B. $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ are in H.P
C. ab,bc,ca are in H.P.
D. $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ are in H.P.'

Answer: B

- Watch Video Solution

52. The odd value of n for which $704+\frac{1}{2}(704)+\ldots$ upto n terms $=$ $1984-\frac{1}{2}(1984)+\frac{1}{4}(1984)-\ldots$ up to n terms is :
A. 5
B. 3
C. 4
D. 10

Answer: A

- Watch Video Solution

53. The positive interger n for which
$2 \times 2^{2}+3 \times 2^{3}+4 \times 2^{4}+\ldots .+n \times 2^{4}=2^{n+10}$ is
A. 510
B. 512
C. 513
D. 508

Answer: C

- Watch Video Solution

54. If

$$
1^{2}+2^{2}+3^{2}++2003^{2}=(2003)(4007)(334) \text { and }
$$

$(1)(2003)+(2)(2002)+(3)(2001)++(2003)(1)=(2003)(334)(x)$, then x is equal to a. 2005 b. 2004 c. 2003 d. 2001
A. 2005
B. 2004
C. 2003
D. 2001

Answer: A

- Watch Video Solution

55. The sum to n terms of the series
$\left(n^{2}-1^{2}\right)+2\left(n^{2}-2^{2}\right)+3\left(n^{2}-3^{2}\right)+\ldots$, is
A. $\frac{n^{2}}{4}\left(n^{2}-1\right)$
B. $\frac{n}{4}(n+1)^{2}$
C. 0
D. $2 n\left(n^{2}-1\right)$

Answer: A

56. The sum of the series $a-(a+d)+(a+2 d)-(a+3 d)+\ldots$ up to $(2 n+1)$ terms is: a. $-n d$. b. $a+2 n d . c . a+n d$. d. $2 n d$
A. $a^{2}+3 n d^{2}$
B. $a^{2}+2 n a d+n(n-1) d^{2}$
C. $a^{2}+n a d+n(n-1) d^{2}$
D. $a^{2}+2 n a d+n(2 n+1) d^{2}$

Answer: D

- Watch Video Solution

57. If $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$, then the value of $S_{n}=1+\frac{3}{2}+\frac{5}{3}+\ldots+\frac{99}{50}$ is a. $H_{50}+50$ b. $100-H_{50}$ c. $49+H_{50}$ d. $H_{50}+100$
A. $H_{n}+n$
B. $2 n-H_{n}$
C. $(n-1)+H_{n}$
D. $H_{n}+2 n$

Answer: B

- Watch Video Solution

58. Sum of the first n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots \ldots \ldots$ is equals to (a). $2^{n}-n-1$ (b). $1-2^{-n}$ (c). $n+2^{-n}-1$ (d). $2^{n}+1$
A. $2(n-1)+\frac{1}{2 n-1}$
B. $2 n-\frac{1}{2^{n}}$
C. $2+\frac{1}{2^{n}}$
D. $2 n-1+\frac{1}{2^{n}}$

Answer: A

- Watch Video Solution

59. If $a_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{2^{n}-1}$, then
A. $a_{100}<100$
B. $a_{100}>100$
C. $a_{200}<100$
D. none of these

Answer: A

