©゙’ doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT Maths(Tamil)

REAL NUMBERS

Example

1. Show that every positive even integer is of the
form 2q, and that every positive odd integer is of
the form $2 \mathrm{q}+1$, where q is some integer.
2. Show that any positive odd integer is of the form $4 q+1$ or $4 q+3$, where q is some integer.

- Watch Video Solution

3. Consider the numbers of the form 4^{n} where n is a natural number. Check whether there is any value of n for which 4^{n} ends with zero?

D Watch Video Solution

4. Find the HCF and LCM of 12 and 18 by the prime factorization method.

- Watch Video Solution

5. Using the above theorems, without actual division, state whether decimal form of the following rational numbers are terminating or nonterminating, repeating decimals.
(i) $\frac{6}{125}$ (ii) $\frac{25}{32}$ (iii) $\frac{100}{81}$ (iv) $\frac{41}{75}$

- Watch Video Solution

6. Write the decimal form of the following rational numbers without actual division.
(i) $\frac{35}{50}$ (ii) $\frac{21}{25}$ (iii) $\frac{7}{8}$

- Watch Video Solution

7. Show that $\sqrt{2}$ is irrational.

- Watch Video Solution

8. Show that $5-\sqrt{3}$ is irrational.
9. Show that $3 \sqrt{2}$ is irrational.

- Watch Video Solution

10. Prove that $\sqrt{2}+\sqrt{2}$ is irrational.

- Watch Video Solution

11. Expand $\log \frac{343}{125}$

- Watch Video Solution

12. Write $2 \log 3+3 \log 5-5 \log 2$ as a single logarithm.

- Watch Video Solution

13. Solve $3^{x}=5^{x-2}$

- Watch Video Solution

14. Find x if $2 \log 5+\frac{1}{2} \log 9-\log 3=\log x$

- Watch Video Solution

1. Find q and r for the following pairs of positive integers a and b, satisfying $a=b q+r$. $a=13, b=3$

- Watch Video Solution

2. Find q and r for the following pairs of positive integers a and b, satisfying $a=b q+r$.
$a=80, b=8$
3. Find q and r for the following pairs of positive integers a and b, satisfying $a=b q+r$.
$a=125, b=5$

- Watch Video Solution

4. Find q and r for the following pairs of positive
integers a and b, satisfying $a=b q+r$.
$a=132, b=11$
5. Find the HCF of the following by using Euclid algorithm.

50 and 70

- Watch Video Solution

6. Find the HCF of the following by using Euclid algorithm.

96 and 72

- Watch Video Solution

7. Find the HCF of the following by using Euclid algorithm.

300 and 550

- Watch Video Solution

8. Find the HCF of the following by using Euclid algorithm.

1860 and 2015

9.

Express 2310 as a product of prime factors. Also see how your friends have factorized the number. Have they done it same as you? Verify your final product with your friend's result. Try this for 3 or 4 more numbers. What do you conclude?

- Watch Video Solution

10. Find the HCF and LCM of the following given pairs of numbers by prime factorisation method. 120,90
11. Find the HCF and LCM of the following given pairs of numbers by prime factorisation method. 50,60

- Watch Video Solution

12. Find the HCF and LCM of the following given pairs of numbers by prime factorisation method.

37,49
13. Write the following terminating decimals in the
form of $\frac{p}{q}, \neq 0$ and p, q are co primes
15.265

Write the denominators in $2^{n} 5^{m}$ form

- Watch Video Solution

14. Write the following terminating decimals in the
form of $\frac{p}{q}, \neq 0$ and p, q are co primes
0.1255

Write the denominators in $2^{n} 5^{m}$ form
15. Write the following terminating decimals in the
form of $\frac{p}{q}, \neq 0$ and p, q are co primes
0.4

Write the denominators in $2^{n} 5^{m}$ form

- Watch Video Solution

16. Write the following terminating decimals in the form of $\frac{p}{q}, \neq 0$ and p, q are co primes 23.34

Write the denominators in $2^{n} 5^{m}$ form
17. Write the following terminating decimals in the
form of $\frac{p}{q}, \neq 0$ and p, q are co primes
1215.8

Write the denominators in $2^{n} 5^{m}$ form

- Watch Video Solution

18. Write the denominator of the following rational numbers in $2^{n} 5^{m}$ form where n and m are nonnegative integers and then write them in their decimal form 3
$\overline{4}$
19. Write the denominator of the following rational numbers in $2^{n} 5^{m}$ form where n and m are nonnegative integers and then write them in their decimal form $\frac{7}{25}$

- Watch Video Solution

20. Write the denominator of the following rational numbers in $2^{n} 5^{m}$ form where n and m are nonnegative integers and then write them in their
decimal form
51
$\overline{64}$

- Watch Video Solution

21. Write the denominator of the following rational numbers in $2^{n} 5^{m}$ form where n and m are nonnegative integers and then write them in their decimal form
$\frac{14}{25}$

- Watch Video Solution

22. Write the denominator of the following rational numbers in $2^{n} 5^{m}$ form where n and m are nonnegative integers and then write them in their decimal form

80
 100

- Watch Video Solution

23. Write the following rational numbers in the decimal form and find out the block of repeating
digits in the quotient.
$\frac{1}{3}$
24. Write the following rational numbers in the decimal form and find out the block of repeating digits in the quotient. $\frac{2}{7}$

- Watch Video Solution

25. Write the following rational numbers in the decimal form and find out the block of repeating digits in the quotient.
$\frac{5}{11}$
26. Write the following rational numbers in the decimal form and find out the block of repeating digits in the quotient.

10
$\overline{13}$

- Watch Video Solution

27. Verify the theorem proved above for $p=2, p=5$ and for $a^{2}=1,4,9,25,36,49,64$ and 81.
28. Evaluate 2^{1}

- Watch Video Solution

29. Evaluate
$(4.73)^{0}$

- Watch Video Solution

30. Evaluate
0^{3}

31. Evaluate

$(-1)^{4}$

- Watch Video Solution

32. Evaluate
$(0.25)^{-1}$

- Watch Video Solution

33. Evaluate
$\left(\frac{5}{4}\right)^{2}$

- Watch Video Solution

34. Evaluate
$\left(1 \frac{1}{4}\right)^{2}$

- Watch Video Solution

35. (a) Express 10, 100, 1000, 10000, is exponential
form
(b) Express in simplest exponential form
(i) 16×64 (ii) 25×125 (iii) $128 \div 32$

- Watch Video Solution

36. Write the following in logarithmic form.
$7=2^{x}$

- Watch Video Solution

37. Write the following in logarithmic form.

$$
10=5^{b}
$$

38. Write the following in logarithmic form.
$\frac{1}{81}=3^{c}$

- Watch Video Solution

39. Write the following in logarithmic form.
$100=10^{z}$

- Watch Video Solution

40. Write the following in logarithmic form.
$\frac{1}{257}=4^{a}$

- Watch Video Solution

41. Write the following in exponential form.
$\log _{10} 100=2$

- Watch Video Solution

42. Write the following in exponential form.
$\log _{5} 25=2$
43. Write the following in exponential form.
$\log _{2} 2=1$

- Watch Video Solution

44. Express the logarithms of the following as the
sum of the logarithm
35×46

- Watch Video Solution

45. Express the logarithms of the following as the sum of the logarithm
235×437

- Watch Video Solution

46. Express the logarithms of the following as the
sum of the logarithm
2437×3568

- Watch Video Solution

47. Express the logarithms of the following as the difference of logarithms

23
$\overline{34}$

- Watch Video Solution

48. Express the logarithms of the following as the
difference of logarithms
$\frac{373}{275}$

- Watch Video Solution

49. Express the logarithms of the following as the difference of logarithms
$4325 \div 3734$

- Watch Video Solution

50. Express the logarithms of the following as the difference of logarithms
$5055 \div 3303$

- Watch Video Solution

51. Using $\log _{a} x^{n}=n \log _{a} x$, expand the following
$\log _{2} 7^{25}$
Note: $\log x=\log _{10} x$

- Watch Video Solution

52. Using $\log _{a} x^{n}=n \log _{a} x$, expand the following $\log _{5} 8^{50}$

Note: $\log x=\log _{10} x$
53. Using $\log _{a} x^{n}=n \log _{a} x$, expand the following $\log 5^{23}$

Note: $\log x=\log _{10} x$

- Watch Video Solution

54. Using $\log _{a} x^{n}=n \log _{a} x$, expand the following $\log 1024$

Note: $\log x=\log _{10} x$

- Watch Video Solution

1.

Can you find the HCF of 1.2 and 0.12 ? Justify your answer.

- Watch Video Solution

2. If $r=0$, then what is the relationship between a, b and q in $a=b q+r$?

- Watch Video Solution

3. Let us observe the scale factor in the graph of
$y=2^{x}$
On X - axis (Refer Ratio - proportion)
If 10 places $=1$ unit
20 places $=2$ units
40 places $=4$ units, then
Can you imagine the corresponding value on X -axis,
with reference to the 5 on Y-axis?

- Watch Video Solution

4. Does $\log _{2} 0$ exist? Give reason .

5. Prove

$\log _{b} b=1$

- Watch Video Solution

6. Prove
$\log _{b} 1=0$

D Watch Video Solution

7. Prove

$\log _{x} b^{x}=x$

- Watch Video Solution

8. If $y=\frac{x}{\sin x}$, then find $\frac{d y}{d x}$ using quotient rule.

- Watch Video Solution

9. We can write $\log \frac{x}{y}=\log \left(x . y^{-1}\right)$ Can you prove that $\log \frac{x}{y}=\log x-\log y$ using product and power rules.

© Watch Video Solution

10. We know that, if $7=2^{x}$ then $x=\log _{2} 7$. Then, what is the value of $2^{\log _{2} 7}$? Justify your answer.

Generalise the above by taking some more examples for $a^{\log _{a} N}$

- Watch Video Solution

Try This

1. Show that $3^{n} \times 4^{m}$ cannot end with the digit 0 or

5 for any natural numbers 'n'and 'm'
2. Solve the following
$\log _{2} 32=x$

- Watch Video Solution

3. Solve the following
$\log _{5} 625=y$

- Watch Video Solution

4. Solve the following
$\log _{10} 10000=z$

- Watch Video Solution

5. Solve the following
$\log _{x} 16=2 \therefore x^{2}=16 \Rightarrow x= \pm 4$, Is is correct or not?
6. We know that $\log _{10} 100000=5$

Show that you get the same answer by writing $100000=1000 \times 100$ and then using the product rule. Verify the answer.

- Watch Video Solution

7. We know $\log _{2} 32=5$. Show that we get the
same answer by writing 32 as $\frac{64}{2}$ and then using the product rule. Verify your answer .
8. We have $\log _{2} 32=5$. Show that we get the same result by writing $32=2^{5}$ and then using power rules. Verify the answer.

- Watch Video Solution

9. Find the value of $\log _{2} 32$

- Watch Video Solution

10. Find the value of $\log _{c} \sqrt{c}$
11. Find the value of $\log _{10} 0.001$

- Watch Video Solution

12. Find the value of $\log _{\frac{2}{3}} \frac{8}{27}$

- Watch Video Solution

Exercise 11

1. Use Euclid's algorithm to find the HCF of

900 and 270

- Watch Video Solution

2. Use Euclid's algorithm to find the HCF of

196 and 38220

- Watch Video Solution

3. Use Euclid's algorithm to find the HCF of

1651 and 2032

(D)
Watch Video Solution
4. Use division algorithm to show that any positive odd integer is of the form $6 q+1$, or $6 q+3$ or $6 q+$ 5 , where q is some integer

- Watch Video Solution

5. Use division algorithm to show that the cube of any positive integer is of the form $9 \mathrm{~m}, 9 \mathrm{~m}+1$ or $9 m+8$.
6. Use division algorithm to show that the cube of any positive integer is of the form $9 \mathrm{~m}, 9 \mathrm{~m}+1$ or $9 m+8$.

- Watch Video Solution

7. Show that one and only one out of $n, n+2$ or $n+$

4 is divisible by 3 , where n is any positive integer

- Watch Video Solution

1. Express each of the following numbers as a product of its prime factors.

140

- Watch Video Solution

2. Express each of the following numbers as a product of its prime factors.

156

- Watch Video Solution

3. Express each of the following numbers as a product of its prime factors. 3825

- Watch Video Solution

4. Express each of the following numbers as a product of its prime factors.

5005
5. Express each of the following numbers as a product of its prime factors.

7429

- Watch Video Solution

6. Find the LCM and HCF of the following integers
by the prime factorization method.

12,15 and 21

- Watch Video Solution

7. Find the LCM and HCF of the following integers by the prime factorization method.

17, 23 and 29

- Watch Video Solution

8. Find the LCM and HCF of the following integers
by the prime factorization method.

8,9 and 25

- Watch Video Solution

9. Find the LCM and HCF of the following integers by the prime factorization method.

72 and 108

- Watch Video Solution

10. Find the LCM and HCF of the following integers
by the prime factorization method.

306 and 657

- Watch Video Solution

11. Check whether 6^{n} can end with the digit 0 for any natural number n.

- Watch Video Solution

12.

Explain
why
$7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$
are composite numbers.

- Watch Video Solution

13. How will you show that
$(17 \times 11 \times 2)+(17 \times 11 \times 5)$ is a composite number? Explain.

- Watch Video Solution

14. What is the last digit of 6^{100}.

- Watch Video Solution

Exercise 13

1. Write the following rational numbers in their

 decimal form and also state which are terminating and which are non-terminating, repeating decimal. $\frac{3}{8}$
- Watch Video Solution

2. Write the following rational number in its decimal form and also state whether the number is terminating or non-terminating, repeating decimal. 229 $\overline{400}$
3. Write the following rational numbers in their decimal form and also state which are terminating and which are non-terminating, repeating decimal. $4 \frac{1}{5}$

- Watch Video Solution

4. Write the following rational numbers in their decimal form and also state which are terminating and which are non-terminating, repeating decimal.
2
$\overline{11}$
5. Write the following rational numbers in their decimal form and also state which are terminating and which are non-terminating, repeating decimal. $\frac{8}{125}$

- Watch Video Solution

6. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.
$\frac{13}{3125}$
7. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

11
$\overline{12}$

- Watch Video Solution

8. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating
decimal form.
64

455

- Watch Video Solution

9. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form. $\frac{15}{1600}$

- Watch Video Solution

10. Without performing division, state whether the
following rational numbers will have a terminating
decimal form or a non-terminating, repeating decimal form.

29
 343

- Watch Video Solution

11. Without performing division, state whether the
following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

$$
\frac{23}{2^{3} .5^{2}}
$$

12. Without performing division, state whether the
following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

129
$\overline{2^{2} .5^{7} .7^{5}}$

- Watch Video Solution

13. Without performing division, state whether the
following rational numbers will have a terminating
decimal form or a non-terminating, repeating decimal form.
$\frac{9}{15}$

- Watch Video Solution

14. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.
15. Without performing division, state whether the
following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

77

210

- Watch Video Solution

16. Write the following rationals in decimal form using

13
$\overline{25}$

- Watch Video Solution

17. Write the following rational in decimal form using the Fundamental Theorem of Arithmetic $\frac{15}{16}$

- Watch Video Solution

18. Write the following rationals in decimal form using

23
$\overline{2^{3} .5^{2}}$

- Watch Video Solution

19. Write the following rationals in decimal form using fundamental theorem of arithmetic.

7218
$\overline{3^{2} .5^{2}}$

- Watch Video Solution

20. Write the following rationals in decimal form
using
$\frac{143}{110}$

- Watch Video Solution

21. Express the following decimals in the form of $\frac{p}{q}$

, and write the prime factors of q . What do you observe?
4.123

- Watch Video Solution

22. Express the following decimals in the form of $\frac{p}{q}$
, and write the prime factors of q . What do you observe?
0.1201201

23. Express the following decimals in the form of $\frac{p}{q}$

, and write the prime factors of q . What do you observe?
4.123

D Watch Video Solution

24. Express the following decimals in the form of $\frac{p}{q}$
, and write the prime factors of q. What do you observe?
$0 . \overline{63}$
25. Prove that the following are irrational.

1
$\sqrt{2}$

- Watch Video Solution

2. Prove that the following are irrational.
$\sqrt{3}+\sqrt{5}$

- Watch Video Solution

3. Prove that the following are irrational.

$6+\sqrt{2}$

- Watch Video Solution

4. Prove that the following are irrational.
$\sqrt{5}$

- Watch Video Solution

5. Prove that the following are irrational.
$3+2 \sqrt{5}$
6. Prove that $\sqrt{p}+\sqrt{q}$ is an irrational, where p, q are primes.

- Watch Video Solution

Exercise 15

1. Determine the value of the following.
$\log _{25} 5$
2. Determine the value of the following.
$\log _{81} 3$

- Watch Video Solution

3. Determine the value of the following.
$\log _{2}\left(\frac{1}{16}\right)$

- Watch Video Solution

4. Determine the value of the following.
$\log _{7} 1$

- Watch Video Solution

5. Determine the value of the following.
$\log _{x} \sqrt{x}$

- Watch Video Solution

6. Determine the value of the following.
$\log _{2} 512$

- Watch Video Solution

7. Determine the value of the following.
$\log _{10} .0 .01$

- Watch Video Solution

8. Determine the value of the following.
$\log _{\frac{2}{3}}\left(\frac{8}{27}\right)$

- Watch Video Solution

9. Determine the value of the following.
$2^{2+\log _{2} 3}$
10. Write the following expressions as $\log N$ and find their values.
$\log 2+\log 5$

- Watch Video Solution

11. Write the following expressions as $\log \mathrm{N}$ and find their values.

$$
\log _{2} 16-\log _{2} 2
$$

12. Write the following expressions as $\log N$ and find their values. $3 \log _{64} 4$

- Watch Video Solution

13. Write the following expressions as $\log N$ and find their values.
$2 \log 3-3 \log 2$

- Watch Video Solution

14. Write the following expressions as $\log N$ and find their values. $\log 10+2 \log 3-\log 2$

- Watch Video Solution

15. Evaluate each of the following in terms of x and
y , if it is given that $x=\log _{2} 3$ and $y=\log _{2} 5$
$\log _{2} 15$

- Watch Video Solution

16. Evaluate each of the following in terms of x and
y , if it is given that $x=\log _{2} 3$ and $y=\log _{2} 5$
$\log _{2} 7.5$

- Watch Video Solution

17. Evaluate each of the following in terms of x and
y , if it is given that $x=\log _{2} 3$ and $y=\log _{2} 5$
$\log _{2} 60$

- Watch Video Solution

18. Evaluate each of the following in terms of x and
y , if it is given that $x=\log _{2} 3$ and $y=\log _{2} 5$
$\log _{2} 6750$

- Watch Video Solution

19. Expand the following.
$\log 1000$
20. Expand the following.
$\log \left(\frac{128}{625}\right)$

- Watch Video Solution

21. Expand the following.
$\log x^{2} y^{3} z^{4}$

- Watch Video Solution

22. Expand the following.
$\log \left(\frac{p^{2} q^{3}}{r^{4}}\right)$

- Watch Video Solution

23. Expand the following.
$\log \sqrt{\frac{x^{3}}{y^{2}}}$

- Watch Video Solution

24.f $x^{2}+y^{2}=25 x y$, then prove that $2 \log (x+y)=$ $3 \log 3+\log x+\log y$.

- Watch Video Solution

25. If $\log \left(\frac{x+y}{3}\right)=\frac{1}{2}(\log x+\log y)$ then find
the value of $\frac{x}{y}+\frac{y}{x}$

- Watch Video Solution

26. If $(2.3)^{x}=(0.23)^{y}=1000$, then find the value
of $\frac{1}{x}-\frac{1}{y}$

- Watch Video Solution

27. If $2^{x+1}=3^{1-x}$ then find the value of x .
28. Is (i) $\log 2$ rational or irrational? Justify your answer.
(ii) log 100 rational or irrational? Justify your answer.

- Watch Video Solution

Optional Exercise

1. Can the number 6^{n}, n being a natural number, end with the digit 5? Give reason.
2. Is $7 \times 5 \times 3 \times 2+3$ a composite number? Justify your answer.

- Watch Video Solution

3. Prove that $(2 \sqrt{3}+\sqrt{5})$ is an irrational number.

Also check whether $(2 \sqrt{3}+\sqrt{5})(2 \sqrt{3}-\sqrt{5})$ is rational or irrational.

- Watch Video Solution

4. If $x^{2}+y^{2}=6 x y$, prove that $2 \log (x+y)=\log x$ $+\log y+3 \log 2$

D Watch Video Solution

5. Find the number of digits in 4^{2013}, if $\log _{10} 2=0.3010$.

(Watch Video Solution

