

CHEMISTRY

RESONANCE ENGLISH

IONIC EQUILIBRIUM

Physical Chemitry Ionic Equilibrium

1. 100mL of 0.1 M NaOH solution is titrated with 100mL of 0.5 M H_2SO_4 solution. The pH of the resulting solution is : (For $H_2SO_4, K_{a1} = 10^{-2}$)

A. 7

B. 7.2

C. 7.4

D. 6.8

Answer: 2

2. Find the pH of $0.1 \text{ M NaHCO}_{(3)}$.

Use data $\left(K_1 = 4 imes 10^{-7}, K_2 = 4 imes 10^{-11}$ for $H_2 CO_3, \log 4 = 0.6
ight)$:

A. 3.7

B. 8.4

C. 9.6

D. None of these

Answer: 2

3. If a solution contains $10^{-6}M$ each of X^-, Y^{-2} and Z^{3-} ions, than

upon addition of $AgNO_3(s)$ slowly to the above solution with striing : (

Given

$$:K_{sp}(AgX)=9 imes 10^{-14}, K_{sp}(Ag_2Y)=4.9 imes 10^{-21}, K_{sp}(Ag_3Z)=5.12$$
 :

A. Ag_3Z will be the first one to precipitate out.

B. Ag_2Y will be the first one to precipitate out.

C. AgX will be the first one to precipitate out.

D. Nothing can be said with certainity.

Answer: 2

Watch Video Solution

4. The indicator constant for an acidic indicator, HIn is $5 \times 10^{-6}M$. This indicator appears only in the colour of acidic form when $\frac{[In]}{[HIn]} \leq \frac{1}{20}$ and it appears only in the colour of basic form when $\frac{[HIn]}{[In]} \leq \frac{1}{40}$. The pH range of indicator is [Given : $\log 5 = 0.7$]

A. 4.3 - 6.3

B.4.0 - 6.6

C.4.0 - 6.9

 $\mathsf{D.}\,3.7-6.6$

Answer: 3

Watch Video Solution

5. Which solution is not a buffer solution ?

A. NaCN (2 mole) +HCl (1 mole) in 5L

B. NaCN (1 mole) +HCl (1 molde) in 5L

C. NH_3 (2 mole) +HCl (1 mole) in 5L

D. CH_3COOH (2 mole) +KOH (1 mole) in 5L

Answer: 2

6. The pH of blood is 7.4 . What is the ratio of

$$f\left[rac{HPO_4^{2-}}{H_2PO_4^{-}}
ight]$$
 in the blood.

 $pK_aig(H_2PO_4^{\,-}ig)=7.1$

A. 2:1

B. 1:2

C. 3:1

D.1:3

Answer: 1

7. How much water must be added to 300mL of a 0.2M solution of CH_3COOH for the degree of dissociation of the acid to double ? (Assume K_a of acetic is of order of $10^{-5}M$)

A. 900ml

 $\mathsf{B.}\,300ml$

 $C.\,600ml$

 $\mathsf{D}.\,1200ml$

Answer: 1

Watch Video Solution

8. 10^{-2} mole of NaOH was added to 10 litres of water. The pH will change by

A. 4 B. 3 C. 11

D. 7

Answer: 1

9. Given $HF + H_2O \Leftrightarrow H_3O^+ + F^-$: K_a

$$F^{-} + H_2O \Leftrightarrow HF + OH^{-}, K_b$$

Which of the following relations is correct ?

A.
$$K_b = K_w$$

B. $K_b = rac{1}{K_w}$
C. $K_a imes K_b = K_w$
D. $rac{K_a}{K_b} = K_w$

Answer: 3

Watch Video Solution

10. When salt NH_4Cl is hydrolysed at $25^{\,\circ}C$, the pH is

A. 7

- ${\rm B.}\ <7$
- $\mathsf{C.}\ >7$

Answer: 2

11. A weak acid HA and a weak base BOH are having same value of dissociation constants . If pH of 0.01MHA is 4, then pH of 0.01MBOH will be

A. 3 B. 4 C. 10 D. 11

Answer: 2

12. At $900\,^\circ C$, pK_w is 13. At this temperature an aqueous solution with pH=7 will be

A. Acid

B. Basic

C. Neutral

D. None of these

Answer: 2

Watch Video Solution

13. Which relation is wrong

A.
$$10^{-pH} + 10^{-pOH} = 10^{-14}$$

B.
$$pHlpharac{1}{[H^+]}$$

$$\mathsf{C}.\,K_w\propto T$$

D. dissociation constant of water $K=1.8 imes 10^{-16}$

Answer: 1

Watch Video Solution

14. Ph of an aqueous solution of HCl is 5. If 1c. c. of this solution is dilution to 1000 times. The pH will become

A. 8 B. 5 C. 6.9

D. None

Answer: 3

15. Dissociation constant of a weak acid is 10^{-6} . What is the value of

equilibrium constant for its reaction with strong base

A. 10^{-5}

B. 6.9

C. None

 $D.\,10^{9}$

Answer: 4

Watch Video Solution

16. Which of the following solutions will have pH close to 1.0?

A. $100~\mathrm{ml}N/10HCl+100~\mathrm{ml}N/10NaOH$

B.
$$55mlrac{N}{10}HCl+45mlN/10NaOH$$

C. 10mlN/10HCl+90mlN/10NaOH

D. 75mlN/5HCl+25mlN/5NaOH

Answer: 4

17. What is ΔpH (final - initial) for 1/3&2/3 stages of neutralization of $0.1MCH_3COOH$ with 0.1MNaOH

 $\mathsf{A.} + 2\log 2$

 $\mathsf{B.}-2\log 3$

 $\mathsf{C.}\, 2\log 1 \,/\, 4$

D. $2 \log 2 / 3$

Answer: A

Watch Video Solution

18. A weak acid (HA) is titrated with N/100NaOH. What will be the pH when 50 $\%\,$ of titration is completed. Given $K_a=1^{-4}$ & concentration of HA=0.1M

B. 8

C. 6.9

D. 10

Answer: 1

Watch Video Solution

19. An acid indicator is represented by Hl_n . $\left(K_a=10^{-5}
ight)$. The range of

change of colour for the indicator is

- A.3 5
- $\mathsf{B.4}-6$
- $\mathsf{C.}\,5-7$
- D.6-8

Answer: 2

20. Which will act as a buffer solution

A. 200 molN/10 NaOH + 100 mlN/20 HCl

 $\texttt{B.}\ 100ml 0.1NNaOH + 100ml 0.1NHCl$

 ${\sf C.}\ 100 mol 0.1 NNaOH+50 ml 0.2 NCH_3 COOH$

 $\mathsf{D.}\,100ml0.1NNaOH+150ml0.1NHCN$

Answer: 4

Watch Video Solution

21. $0.1 \text{ M}NH_4\text{OH} \& 0.01 \text{M}$ NH_4OH are taken. Which is a stronger base

A. $0.1MNH_4OH$

 $\mathsf{B.0.01} \ \mathsf{M} \quad NH_4OH$

C. Both equal

D. None

Answer: B

22. How many moles of NaOH must be removed from 1 litre of aqueous

solution to change its pH from 12 to 11

A. 0.009

 $B.\,0.01$

C.0.02

 $\mathsf{D}.\,0.1$

Answer: 1

Watch Video Solution

23. Let the solubilities of AgBr in water and in $0.01MCaBr_2, 0.01MKBr$, and $0.05MAgNO_3$ be S_1, S_2, S_3 and S_4 ,

respectively. Give the decreasing order of the solubilities.

A.
$$S_1 > S_2 > S_3 > S_4$$

B. $S_1 > S_2 = S_3 > S_4$
C. $S_4 > S_3 > S_2 > S_1$
D. $S_1 > S_3 > S_2 > S_4$

Answer: 4

Watch Video Solution

24. $0.1MH_2S$ has $K_1=10^{-5}\&K_2=1.5 imes10^{-12}$. What will be the concentration of S^{-2} in the solution.

A. $\approx 10^{-8}$ B. $\approx 10^{-9}$ C. $\approx 1.5 \times 10^{-12}$ D. 1.2×10^{-13}

Answer: 3

25. Which has maximum solubility AB, AB_2 , AB_3 and AB_4 if K_{SP} for all the salts are 10^{-10} :

A. AB

 $\mathsf{B.}\,AB_2$

 $\mathsf{C}.AB_3$

D. AB_4

Answer: 4

Watch Video Solution

26. Four acids HA, HB, HC and HD form salts with NaOH of Ph 7,8,9

and 10 respectively when each solution was 0.1M, the strongest acid is $\,:\,$

A. HA

 $\mathsf{B}.\,HB$

 $\mathsf{C}.\,HC$

D. HD

Answer: 1

Watch Video Solution

27. Three bases XOH, YOH&ZOH has pK_b values 2, 3, &4 reespectively the strongest conjugate acid is :

A. XOH_2^{+}

 $\mathrm{B.}\,YOH_2^{\,+}$

 $\mathsf{C.}\,ZOH_2^{\,+}$

D. All same

Answer: 3

28. Four solution of NH_4Cl are taken with concentration 1M, 0.1M, 0.01M&0.001M. Their degree of hydrolysis are $h_1, h_2\&h_3, h_4$. What is the gradation of degree of hydrolysis

- A. $h_1>h_2>h_3>h_4$
- B. $h_1 = h_2 = h_3 = h_4$
- ${\sf C}.\,h_4>h_3>h_2>h_1$

D. None of these

Answer: 3

Watch Video Solution

29. Ph of $3 imes 10^{-3}M$ solution of H_3X will be Assuming $lpha_1=1, lpha_2=1/3, lpha_3=$ negligible

A. 2.40

 $\mathsf{B.}\,3.0$

C. 3.4771

D. 4.0

Answer: 1

Watch Video Solution

30. Degree of hydrolysis of $0.25MCH_3COOHNa$ is 10% what will be the degree of hydrolysis if concentration of CH_3COONa is made 0.01M

A. 10~%

 $\mathsf{B.1}\,\%$

 $\mathsf{C.}\:50\:\%$

D. 75~%

Answer: 3

31. The strengths of acids and bases are directly related to their strengths as electrolytes. The electrical conductivity of 0.1MHCl:

A. is higher than $0.1MCH_3COOH$

B. is lower than $0.1MCH_3COOH$

C. equal to $0.1MCH_3COOH$

D. None

Answer: 1

Watch Video Solution

32. Calculate the pH of resulting solution obtained by mixing 50mL of

0.6 NHCl and 50ml of 0.3NNaOH

 $B.\,0.8$

C. 2.1

D. 4

Answer: 2

Watch Video Solution

33. 50mlN/10NaOH solution is mixed with 50mlN/20HCl solution.

The resulting solution will

(a) Turns phenolphthalein solution pink (b) Turns blue litmus red

(c) Turns methyl orange red $(d) [H^+] \& [OH^-]$

A. only (a) is correct

B. (a)&(b) are correct

C. (a)&(d) are correct

D. all are correct

Answer: C

Watch Video Solution

34. To prepare a buffer of pH 8.26, amount of $(NH_4)_2SO_4$ to be added into 500mL of $0.01MNH_4OH$ solution $[pK_a(NH_4^+) = 9.26]$ is:

A. 0.05 mole

B. 0.025 mole

C. 0.10 mole

D. 0.0005 mole

Answer: 2

35. A solution containing 0.2 mole of dicholoracetice acid $\left(K_a=5 imes10^{-2}
ight)$ and 0.1 mole sodium dicholoroacetate in one litre

solution has $\left[H^{\,+}
ight]$:

 ${\rm A.}~0.05M$

 $\mathrm{B.}\,0.025M$

 $\mathsf{C.}\,0.10M$

 ${\rm D.}\, 0.005M$

Answer: 1

Watch Video Solution

36. The volume of 0.2MNaOH needed to prepare a buffer of pH4.74with 50mL fo 0.2M sodium dicholoroacetate acid (pK_b of $CH_3COO^- = 9.26$) is :

A. 50mL

 $\mathrm{B.}\,25mL$

C.20mL

 $\mathsf{D}.\,10mL$

Answer: 2

37. The ratio of pH of solution (1) containing 1 mole of CH_3COONa and 1 mole of HCl and solution (II) containing 1 mole of CH_3COONa and 1 mole of acetic acid in one litre is :

A. 1:2

 $\mathsf{B.}\,2\!:\!1$

C. 1: 3

D.3:1

Answer: A

38. Equal volumes of two HCl solutions of pH = 3 and pH = 5 were mixed. What is the Ph of the resulting solution ?

A. 3.5

 $\mathsf{B.}\,4.0$

C. 4.5

D. 3.3

Answer: 4

Watch Video Solution

39. pOH of 0.002 M HNO_3 is:

A. $11 + \log 2$

 $\mathsf{B}.\,11-\log 2$

 $\mathsf{C}.-3+\log 2$

D. none of these

Answer: 1

40. To a 10 mL of $10^{-3}NH_2SO_4$ solution water has been added to make the total volume of one litre.Its pOH would be :

A. 3 B. 12 C. 9 D. 5

Answer: 3

41. A weak base MOH of 0.1 N concentration shows a pH value of 9. What

is the precentage degree of dissociation of the base?

A. 0.01~%

 $\mathbf{B.0.001~\%}$

 $\mathsf{C}.\,0.1\,\%$

D. 0.02~%

Answer: 3

Watch Video Solution

42. Calculate the $[OH^{-}]$ in 0.01*M* aqueous solution of $NaOCN(K_{b}$ for $OCN^{-} = 10^{-10}$): (a) 10^{-6} M (b) 10^{-7} M (c) 10^{-8} M (d)None of these A. $10^{-6}M$

 $\mathsf{B}.\,10^{\,-\,7}M$

 $C. 10^{-8} M$

D. none of these

Answer: 1

Watch Video Solution

43. What will be the *pH* and % α (degree of hydrolysis) respectively for the salt *BA* of 0.1*M* concentration ? Given : K_a for $HA = 10^{-6}$ and K_b for *BOH* = 10^{-6} (a)5, 1% (b)7, 10% (c)9, 0.01% (d)7, 0.01% B. 7, 10%

C.9, 0.01%

D. 7, 0.01 %

Answer: 2

Watch Video Solution

44. 50 mL of a solution containing 10^{-3} mole of Ag^+ is mixed with 50 mL of a 0.1 M HCl solution. How much Ag^+ remains in solution? $\left(K_{sp}ofAgCl=1.0 imes10^{-10}
ight)$

A. $2.5 imes10^{-9}$

B. $2.5 imes10^{-7}$

C. $2.5 imes10^{-8}$

D. $2.5 imes10^{-8}$

Answer: 1

45. The solubility product of AgCl is $10^{-10}~M^2$. The minimum volume $ig(\in m^3ig)$ of water required to dissolve 14.35mg of AgCl is approximately :

A. 0.01

 $\mathsf{B.}\,0.1$

C. 100

D. 10

Answer: A

Watch Video Solution

46. What is the molar solubility of $Ag_2CO_3~ig(K_{sp}=4 imes10^{-13}ig)$ in 0.1 M

 $NaCO_3$ solution?

A. 10^{-6}

B. 10^{-7}

 $\text{C.}\,2\times10^{-6}$

D. $2 imes 10^{-7}$

Answer: 1

47. A solution saturated in lime water has a pH fo 12.4. Then the Ksp for $Ca(OH)_2$ is -A. 3.2×10^{-3} B. 7.8×10^{-6} C. 7.8×10^{-28} D. 3.2×10^{-4}

Answer: 2

48. Find ΔpH when 100 ml of 0.01 M HCl is added in a solution containing 0.1 m moles of $NaHCO_3$ solution of negligible volume. $(Ka_1 = 10^{-7}, Ka_2 = 10^{-11} \text{ for } H_2CO_3)$ A. 6 + 2 log 3 B. 3 - 2 log 3 C. 3 + 2 log 2 D. 6 - 2 log 3

Answer: 1

Watch Video Solution

49. If the solubility of Ag_2SO_4 in $10^{-2}MNa_2SO_4$ solution be $2 imes10^{-8}M$ then K_{sp} of Ag_2SO_4 will be

A. $32 imes10^{-24}$

B. 16×10^{-18}

C. $32 imes 10^{-18}$

D. $16 imes 10^{-24}$

Answer: 2

Watch Video Solution

50. 10mL of a strong acid solution of pH = 2.000 are mixed with 990mL of another strong acid solution of pH = 4.000. The pH of the resulting solution will be :

A. 4.002

B.4.000

C. 4.200

 $\mathsf{D}.\,3.7$

Answer: 4

51. At infinite dilution, the percentage dissociation of both weak acid and

weak base is:

A. 1~%

 $\mathsf{B.}\,20~\%$

 $\mathsf{C.}\:50\:\%$

D. 100~%

Answer: 4

Watch Video Solution

Inorganic Chemistry D F Block Elments

1. If a solution contains $10^{-6}M$ each of X^-, Y^{-2} and Z^{3-} ions, than upon addition of $AgNO_3(s)$ slowly to the above solution with striing : (

Given

$$:K_{sp}(AgX)=9 imes 10^{-14}, K_{sp}(Ag_2Y)=4.9 imes 10^{-21}, K_{sp}(Ag_3Z)=5.12$$

A. Mischmetal

B. Brass

C. Bronze

D. Ziggler-Natta

Answer: 1

Watch Video Solution

2. The indicator constant for an acidic indicator, HIn is $5 \times 10^{-6}M$. This indicator appears only in the colour of acidic form when $\frac{[In]}{[HIn]} \leq \frac{1}{20}$ and it appears only in the colour of basic form when $\frac{[HIn]}{[In]} \leq \frac{1}{40}$. The pH range of indicator is [Given : $\log 5 = 0.7$]

A. Among V, Cr, Mn and Fe, Mn is expected to have the highest

third ionization enthalpy.
- B. Eu(II) acts as a strong reducing agent.
- C. The ionic sizes of lanthanoids decrease in general with increasing

atomic number.

D. $VOCl_2$ and $FeCl_2$ are expected to have the same magnetic

moment ('spin only')

Answer: 4

Watch Video Solution

3. Which solution is not a buffer solution ?

A. Curium

B. Califormium

C. Uranium

D. Europium

5. How much water must be added to 300mL of a 0.2M solution of CH_3COOH for the degree of dissociation of the acid to double ? (Assume K_a of acetic is of order of $10^{-5}M$)

A.
$$Ti^{+3}, V^{+2}, Cr^{+3}, Mn^{+4}$$

B. $Ti^{+2}, V^{+3}, Cr^{+4}, Mn^{+5}$
C. $Ti^+, V^{+4}, Cr^{+6}, Mn^{+7}$
D. $Ti^{+2}, V^{+3}, Cr^{+2}, Mn^{+3}$

6. 10^{-2} mole of NaOH was added to 10 litres of water. The pH will change by

A. (i) and (ii) only

 $\mathbf{B}.\left(i
ight),\left(ii
ight)$ and $\left(iii
ight)$

C. (iii) and (iv) only

D. (ii) and (iii) only

7. Given
$$HF + H_2O \Leftrightarrow H_3O^+ + F^-\!:\!K_a$$

 $F^{\,-} + H_2 O \Leftrightarrow HF + OH^{\,-}, K_b$

Which of the following relations is correct ?

A. $Mn^{2\,+}$

B. Fe^{2+}

 $\mathsf{C.}\, Co^{2\,+}$

D. Cr^{2+}

Answer: 1

Watch Video Solution

8. When salt NH_4Cl is hydrolysed at $25^{\,\circ}C$, the pH is

A. $3d^34s^2$

 $\mathsf{B.}\, 3d^54s^1$

 $\mathsf{C.}\, 3d^54s^2$

D. $3d^64s^2$

Answer: 3

Watch Video Solution

9. A weak acid HA and a weak base BOH are having same value of dissociation constants . If pH of 0.01MHA is 4, then pH of 0.01MBOH will be

- A. +5, +5, +3, +2B. +5, +6, +3, +3

C.+5, +4, +5, +2

$$\mathsf{D}.+5, +3, +2, +1$$

10. At 900 $^{\circ}C$, pK_w is 13. At this temperature an aqueous solution with

pH=7 will be

A. of high ionic charge

B. of variable oxidation state

C. large surface area of reactants

D. of their specific nature

Answer: 2

Watch Video Solution

11. Which relation is wrong

A. Cr^{3+}

 $\mathsf{B.}\, Cr_2O_3$

C. $Cr_2O_7^{2-}$

D. CrO_4^-

Answer: 3

Watch Video Solution

12. Ph of an aqueous solution of HCl is 5. If 1c. c. of this solution is dilution to 1000 times. The pH will become

A. 3/5

B. 2/5

 $\mathsf{C.}\,4/5$

D. 1

Answer: 1

Watch Video Solution

13. Dissociation constant of a weak acid is 10^{-6} . What is the value of equilibrium constant for its reaction with strong base

A. Suluphur dioxide

B. Ferric chloride

 $\mathsf{C}. H_2 O_2$

D. $FeSO_4$

Answer: 2

Watch Video Solution

14. Which of the following solutions will have pH close to 1.0?

A. $k_2 MnO_4$, green

B. Mn_2O_3 brown

C. Mn_2O_4 , black

D. $KMnO_4$, purple

15. What is ΔpH (final - initial) for 1/3&2/3 stages of neutralization

of $0.1MCH_3COOH$ with 0.1MNaOH

A. VO > CrO > TiO > FeO

 ${\rm B.}\, CrO > VO > FeO > TiO$

 ${\rm C.}\,TiO>FeO>VO>CrO$

 $\mathsf{D}.\,TiO > VO > CrO > FeO$

Answer: 4

16. A weak acid (HA) is titrated with N/100NaOH. What will be the pH

when 50~% of titration is completed. Given $K_a = 1^{-4}$ & concentration of

HA = 0.1M

A. $AgNO_3 + NaBr
ightarrow AgBr + NaNO_3$ B. $AgNO_3 + 2Na_2S_2O +_3
ightarrow Na_3[Ag(S_2O_3)_2 + NaBr$ C. $C_6H_4(OH)_2 + 2AgBr^*
ightarrow C_6H_4O_2 + 2HBr + 2Ag$ D. $AgBr + 2NH_3
ightarrow [Ag(NH_3)_2]Br$

Answer: 3

Watch Video Solution

17. An acid indicator is represented by Hl_n . $\left(K_a=10^{-5}
ight)$. The range of change of colour for the indicator is

A.
$$La^{3+}$$
 and Lu^{3+}
B. Nd^{3+} and Pm^{3+}
C. Ce^{3+} and Pt^{3+}
D. Sm^{3+} and Eu^{3+}

- 18. Which will act as a buffer solution
 - A. Poor shielding of one of the $4f-\,$ electrons by anoher in the sub-

shell.

B. Effective shielding of one of the 4f – electrons by another in the

sub-shell

- C. Poorer shielding of 5d electron by 4f electrons.
- D. Greater shielding of 5d electron by 4f electron.

Answer: 1

Watch Video Solution

19. $0.1 \text{ M}NH_4\text{OH} \& 0.01 \text{M}$ NH_4OH are taken. Which is a stronger base

A. d - d transition

B. C - T spectra

C. Higher polarisation caused by Zn^{2+} ion

D. F - centres

Answer: 4

Watch Video Solution

20. How many moles of NaOH must be removed from 1 litre of aqueous solution to change its pH from 12 to 11

A. Zn < Cu < Ni < Fe

B. Fe < Ni < Cu < Zn

C. Ni < Fe < Zn < Cu

D. Cu < Zn < Fe < Ni

A. ZnO

 $\mathsf{B.}\,BaO$

 $\mathsf{C}.\,HgCl$

D. Hg_2Cl_2

Answer: 1

Watch Video Solution

22. $0.1MH_2S$ has $K_1 = 10^{-5}\&K_2 = 1.5 \times 10^{-12}$. What will be the concentration of S^{-2} in the solution.

A. $Cr_2O_7^{2\,-}$

B. $CrO_4^{2\,-}$

 $\mathsf{C.}\, Cr(OH)_3^{2\,-}$

 $\mathsf{D.}\, Cr(OH)_2$

Answer: 2

Watch Video Solution

23. Which has maximum solubility AB, AB_2, AB_3 and AB_4 if K_{SP} for all

the salts are 10^{-10} :

A. $Hg(NO_3)_2$

 $\mathsf{B}.\,HgCl$

 $\mathsf{C}.\,Hg(NO_2)_2$

D. Hg_2Cl_2

24. Four acids HA, HB, HC and HD form salts with NaOH of Ph 7,8,9 and 10 respectively when each solution was 0.1M, the strongest acid is :

A. $CuCO_3$. $Cu(OH)_2$

B. $2CuCO_3$. $Cu(OH)_2$

 $\mathsf{C.}\, CuCO_3.2Cu(OH)_2$

D. $CuSO_4$. $Cu(OH)_2$

Answer: 2

Watch Video Solution

25. Three bases XOH, YOH&ZOH has pK_b values 2, 3, &4 reespectively the strongest conjugate acid is :

A.
$$Al^{3\,+}$$

B. Cr^{3+}

C. Fe^{3+}

D. Zn^{2+}

Answer: 3

Watch Video Solution

26. Four solution of NH_4Cl are taken with concentration 1M, 0.1M, 0.01M&0.001M. Their degree of hydrolysis are $h_1, h_2\&h_3, h_4$. What is the gradation of degree of hydrolysis

A. is greater than one

B. is less than one

C. is equal to one

D. cannot be predicted

27. Ph of $3 imes 10^{-3}M$ solution of H_3X will be Assuming $lpha_1=1, lpha_2=1/3, lpha_3=$ negligible

A. 6, 8

 $B.\,6,\,5$

C. 8, 6

D.7,7

Answer: 1

Watch Video Solution

28. Degree of hydrolysis of $0.25MCH_3COOHNa$ is 10~% what will be the degree of hydrolysis if concentration of CH_3COONa is made 0.01M

A. CuS_2O_3

 $\mathsf{B.}\, Cu_2S_2O_3$

 $\mathsf{C.}\, Na_2\big[Cu(S_2O_3)_2\big]$

D.
$$Na_4 [Cu_6(S_2O_3)_5]$$

Answer: 4

Watch Video Solution

29. The strengths of acids and bases are directly related to their strengths as electrolytes. The electrical conductivity of 0.1MHCl:

A.
$$3d_{xy}^1$$
, $3d_{yz}^1$, $3d_{xx}^1$
B. $3d_{xy}^1$, $3d_{yx}^1$, $3d_{z^2}^1$
C. $3d_{(x^2-y^2)}^1$, $3d_{z^2}^1$, $3d_{zx}^1$
D. $3d_{xy}^1$, $3d_{(x^2-y^2)}^1$, $3d_{yz}^1$

Answer: 1

Watch Video Solution

30. Calculate the pH of resulting solution obtained by mixing 50mL of 0.6NHCl and 50ml of 0.3NNaOH

A. Cl_2 is passed into an aqueous solution of $KMnO_4$

B. MnO_2 is fuesed with KOH

C. Formaldehyde reacts with $KMnO_4$ in the presence of strong alkali

D. $KMnO_4$ reacts with conc. H_2SO_4

Answer: 3

Watch Video Solution

31. 50mlN/10NaOH solution is mixed with 50mlN/20HCl solution.

The resulting solution will

(a) Turns phenolphthalein solution pink (b) Turns blue litmus red

(c) Turns methyl orange red $(d) \left[H^+
ight] \& \left[OH^-
ight]$

A. 102

B. 108

C. 110

D. 112

Answer: D

Watch Video Solution

32. To prepare a buffer of pH 8.26, amount of $(NH_4)_2SO_4$ to be added into 500mL of $0.01MNH_4OH$ solution $[pK_a(NH_4^+) = 9.26]$ is:

A. $Cr_2O_7^{-2}$

 $\mathsf{B.}\,MnO_4^-$

 $C. CrO_5$

D. CrO_4^{-2}

33. A solution containing 0.2 mole of dicholoracetice acid $\left(K_a=5 imes10^{-2}
ight)$ and 0.1 mole sodium dicholoroacetate in one litre solution has $\left[H^+
ight]$:

A.	$I-\mathrm{step}$	$II-\mathrm{step}$	$III-\mathrm{step}$
	Na_2CO_3 / air, Δ	C	C
B.	$I-\mathrm{step}$	$II-\mathrm{step}$	$III-\mathrm{step}$
	$NaOH/{ m air},\Delta$	C,Δ	At,Δ
C.	$I-\mathrm{step}$	$II-\mathrm{step}$	$III-\mathrm{step}$
	$NaOH/{ m air},\Delta$	C,Δ	C,Δ
D.	$I-\mathrm{step}$	$II-\mathrm{step}$	$III-\mathrm{step}$
	$\mathrm{conc.}H_2SO_4,\Delta$	NH_4Cl,Δ	C,Δ

Answer: 2

34. The volume of 0.2MNaOH needed to prepare a buffer of pH4.74with 50mL fo 0.2M sodium dicholoroacetate acid (pK_b of $CH_3COO^- = 9.26$) is : A. 1:1

B.1:2

C.2:1

D.9:4

Answer: 1

Watch Video Solution

35. The ratio of pH of solution (1) containing 1 mole of CH_3COONa and 1 mole of HCl and solution (II) containing 1 mole of CH_3COONa and 1 mole of acetic acid in one litre is :

36. Equal volumes of two HCl solutions of pH = 3 and pH = 5 were mixed. What is the Ph of the resulting solution ?

A. Zero

B. $\sqrt{3}$

 $\mathsf{C.}\,\sqrt{24}$

D. $\sqrt{35}$

Watch Video Solution			
37. pOH of 0.002 M HNO_3 is:			
A. Na			
B. Sn			
C. Ni			
D. Hg			
Answer: 3			

Watch Video Solution

38. To a 10 mL of $10^{-3}NH_2SO_4$ solution water has been added to make the total volume of one litre.Its pOH would be :

A.
$$\begin{bmatrix} a & b & c & d \\ II & I & IV & III \\ a & b & c & d \\ III & I & II & IV \\ C. & \begin{bmatrix} a & b & c & d \\ IV & II & III & I \\ a & b & c & d \\ I & I & III & IV \\ \end{bmatrix}$$

39. A weak base MOH of 0.1 N concentration shows a pH value of 9. What

is the precentage degree of dissociation of the base?

Answer: A

40. Calculate the $[OH^-]$ in 0.01M aqueous solution of $NaOCN(K_b$ for $OCN^- = 10^{-10}$): (a) 10^{-6} M (b) 10^{-7} M

(c) 10^{-8} M

(d)None of these

A. $Cr^{+2}(aq)$ is more stable than $Cr^{+3}(aq)$

B. $Mn^{\,+\,3}(aq)$ is more stalbe than $Mn^{\,+\,2}(aq)$

C. $Cr^{\,+\,2}$ acts as a reducing agent and $Mn^{\,+\,2}$ acts as an oxidising

agent in their aqueous solutions

D. None of these

1. 100mL of $0.1 \,\mathrm{M\,NaOH}$ solution is titrated with 100mL of $0.5 \,\mathrm{M}$ H_2SO_4 solution. The pH of the resulting solution is : (For $H_2SO_4, K_{a1} = 10^{-2}$)

A. CH_3NH_2

B. CH_3CN

 $C. CH_3 CH_2 OH$

D. CH_3CHO

Answer: 1

Watch Video Solution

2. Find the pH of $0.1 \text{ M NaHCO}_{(3)}$.

Use data $\left(K_1 = 4 imes 10^{-7}, K_2 = 4 imes 10^{-11}$ for $H_2 CO_3, \log 4 = 0.6
ight)$:

A. Mendius reaction

B. Oxo process

C. Sandmeyer reaction

D. Stephen's reaction

Answer: B

Watch Video Solution

3. If a solution contains $10^{-6}M$ each of X^- , Y^{-2} and Z^{3-} ions, than upon addition of $AgNO_3(s)$ slowly to the above solution with striing : (Given

$$:K_{sp}(AgX)=9 imes 10^{-14}, K_{sp}(Ag_2Y)=4.9 imes 10^{-21}, K_{sp}(Ag_3Z)=5.12 imes 10^{-21}, K_{sp}(Ag_3Z)=5.12 imes 10^{-14}, K_{sp}(Ag_2Y)=1.12 imes 10^{-21}, K_{sp}(Ag_3Z)=5.12 imes 10^{-21}, K_{sp}(Ag$$

A. H_2/Ni

B. $NaBH_4$

C. $K_2 C r_2 O_7 \,/\, H^{\,+}$

D. Both (1) and (2)

Watch Video Solution

4. The indicator constant for an acidic indicator, HIn is $5 \times 10^{-6}M$. This indicator appears only in the colour of acidic form when $\frac{[In]}{[HIn]} \leq \frac{1}{20}$ and it appears only in the colour of basic form when $\frac{[HIn]}{[In]} \leq \frac{1}{40}$. The pH range of indicator is [Given : $\log 5 = 0.7$]

Watch Video Solution

5. Which solution is not a buffer solution ?

B.

D.

Answer: 3

Watch Video Solution

6. The pH of blood is 7.4 . What is the ratio of

$$\left[rac{HPO_4^{2\,-}}{H_2PO_4^{-}}
ight]$$
 i

in the blood.

 $pK_aig(H_2PO_4^{\,-}ig)=7.1$

A. $CH_3CH(Br)CH_3$

- $\mathsf{B.}\,CH_3-CH_2-CH_2-Br$
- $\mathsf{C}.\,CH_2=CH-Br$
- $\mathsf{D}. Br CH = CH CH_3$

Answer: 1

Watch Video Solution

7. How much water must be added to 300mL of a 0.2M solution of CH_3COOH for the degree of dissociation of the acid to double ? (Assume K_a of acetic is of order of $10^{-5}M$)

 $\textbf{A.} CH_{3}COCH_{3} \xrightarrow{NaBH_{4}}$

 $\mathsf{B.}\,CH_3COCl \xrightarrow[]{\text{Rosenmund reduction}}$

 $\mathsf{C.}\,CH_3CH_2COCH_2CH_3 \xrightarrow{Sn\,.\,HCl}$

 $\mathsf{D}. CH_3CH_2COCH_3 \xrightarrow{LiAlH_4}$

Answer: D

Watch Video Solution

8. 10^{-2} mole of NaOH was added to 10 litres of water. The pH will change by

A. Reaction I: P and Reaction II: P

B. Reaction I: U, acetone and Reaction II: Q, acetone

C. Reaction I:T, U, acetone and Reaction II:P

D. Reaction I: R, acetone and Reaction II: S, acetone

Answer: 3

Watch Video Solution

9. Given
$$HF + H_2O \Leftrightarrow H_3O^+ + F^-: K_a$$

$$F^{\,-} + H_2 O \Leftrightarrow HF + OH^{\,-}, K_b$$

Which of the following relations is correct?

A.
$$CH_3 - \underset{CH_2}{CH} CH - CH_2 CHO$$
 & $CH_3 - \overset{CI}{\overset{}{\overset{}{CH}}} H - CH - \underset{B_r}{CHO}$

Β.

$$CH_3-CH=CH-\overset{OH}{\overset{}_{CH}}-CH_3$$
 & $CH_3-\overset{Br}{\overset{}_{CH}}-CH-CHO$
 $C.CH_3-\overset{CH_2}{\underset{CH_3}{\overset{}_{CH_2}}-CHO}$ & $CH_3-\overset{Br}{\overset{}_{CH}}-CH-CHO$

D.

$$CH_3-CH=CH-\overset{OH}{\overset{}{\overset{}_{ightarrow}CH}}-CH_3$$
 & $CH_3-\overset{CI}{\overset{}{\overset{}_{ightarrow}CH}}-CH-CHO$

Answer: 4

Watch Video Solution

10. When salt NH_4Cl is hydrolysed at $25\,^\circ C$, the pH is

D.

Answer: 2

Watch Video Solution

11. A weak acid HA and a weak base BOH are having same value of dissociation constants . If pH of 0.01MHA is 4, then pH of 0.01MBOH will be

A. P is 2 - phenylethanamin

B. Q is anilin, process is Hofmann's bromamide

C. R is benzene carbonitrile, process is dehydration

D. formation of P, involves reduction

Answer: 1

Watch Video Solution

12. At $900\,^\circ C$, pK_w is 13. At this temperature an aqueous solution with

pH=7 will be

A. The product is a mixture of two compounds

B. The product is optically active

C. The product is a mixture of two chiral and one achiral

stereoisomers

D. The product is a mixture of four stereoisomers.

Answer: 3

Watch Video Solution

13. Which relation is wrong

$$\begin{array}{l} \mathsf{A.} (CH_{3} - CH_{2}COO)_{2}Ca \xrightarrow{\Delta} \\ \mathsf{B.} CH_{3} - CH_{2} - CH - CH - CH_{3} \xrightarrow{dil.AgNO_{3}} \\ \stackrel{O}{\underset{O_{H}}{\overset{O}{\underset{B_{r}}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\overset{O}{\underset{B_{r}}{\underset{B_{R}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{R}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{r}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{r}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B_{R}}{\underset{B}{R}{I}}{\underset{B_{R}}{I}}{\underset{B_{R}}{I}{I}}{I}}}}}}}}}}}}}}}}}}}$$

Answer: 3

Watch Video Solution
14. Ph of an aqueous solution of HCl is 5. If 1c. c. of this solution is dilution to 1000 times. The pH will become

A.
$$CH_2 - \overset{o}{C} - O - H$$

 \downarrow_{Br}
B. $H - \overset{o}{C} - \overset{o}{C} - O - H$
C. $CH_3 - \overset{o}{C} - O - H$

D. $(CH_3CO)_2O$

Answer: 4

Watch Video Solution

15. Dissociation constant of a weak acid is 10^{-6} . What is the value of equilibrium constant for its reaction with strong base

A. I > IV > II > III

 ${\rm B.}\,I>II>III>IV$

 $\mathsf{C}.\,I > III > II > IV$

 $\mathsf{D}.\,IV > III > II > I$

Answer: A

Watch Video Solution

16. Which of the following solutions will have pH close to 1.0?

A. $(i)PBr_{3}(ii)NH_{3}$

 $B.(i) \operatorname{red} P / Br_2(ii) NH_3(\operatorname{excess})$

 $C.(i)PBr_3, NaCN(ii)LiAlH_4$

D. None of the above

Answer: B

Watch Video Solution

17. What is ΔpH (final - initial) for 1/3&2/3 stages of neutralization

of $0.1MCH_3COOH$ with 0.1MNaOH

A. Aldol condensation

B. Tischenko reaction

C. Cannizaro reaction

D. Reimer Tiemann reaction

Answer: 3

Watch Video Solution