©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT Maths(Tamil)

SIMILAR TRIANGLES

Example

1. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ and $\frac{A D}{D B}=\frac{3}{5}$.
$A C=5.6$ Find $A E$.

- Watch Video Solution

2. In the given figure $L M \| A B$
$A L=x-3, A C=2 x, B M=x-2$
and $B C=2 x+3$ find the value of x

- Watch Video Solution

3. The diagonals of a quadrilateral $A B C D$ intersect each other at point 'O' such that $\frac{A O}{B O}=\frac{C O}{D O}$. Prove that ABCD is a trapezium

- Watch Video Solution

4. In trapezium $A B C D, A B| | D C$. E and F are points on non-parallel sides $A D$ and $B C$ respectively such that $E F \| A B$. Show that $\frac{A E}{E D}=\frac{B F}{F C}$

- Watch Video Solution

5. A person 1.65 m tall casts 1.8 m shadow. At the same instance, a lamp post casts a shadow of 5.4 m . Find the height of the lamppost.

- Watch Video Solution

6. A man sees the top of a tower in a mirror which is at a distance of 87.6 m from the tower. The mirror is on the ground, facing upward. The man is 0.4 m away from the mirror and the distance of his eye level from the ground is 1.5 m . How tall is the tower ?
(The foot of man, the mirror and the foot of the tower lie along a
straight line)

- Watch Video Solution

7. Gopal is worrying that his neighbour can peep into his living room from the top floor of his house. He has decided raise the height of the fence that is high enough to block the view from his neighbour's top floor window. What should be the height of the
fence? The measurements are given in the figure.

- Watch Video Solution

8. Prove that if the areas of two similar triangles are equal, then they are congruent

- Watch Video Solution

9. $\triangle A B C \sim \triangle D E F$ and their areas are respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$., then find BC .
10. Diagonals of a trapezium $A B C D$ with $A B|\mid D C$, intersect each other at the point ' O '. If $A B=2 C D$, find the ratio of areas of triangles AOB and COD.

- Watch Video Solution

11. A ladder 25 m long reaches a window of building 20 m above the ground. Determine the distance from the foot of the ladder to the building.

- Watch Video Solution

12. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A.

Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$
13. In figure O is any point inside a rectangle $A B C D$. Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.

- Watch Video Solution

14. The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle ?

- Watch Video Solution

15. $A B C$ is a right triangle right angled at C. Let $B C=a, C A=b, A B=$ c and let p be the length of perpendicular from C on $A B$. Prove that (i) $\mathrm{pc}=\mathrm{ab}$ (ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

D Watch Video Solution

Do This Fill In The Blanks

1. All squares are (similar/congruent).

- Watch Video Solution

2. All equilateral triangles are

- Watch Video Solution

3. Two polygons with same number of sides are if their corresponding angles are equal and corresponding sides are equal.

4. Rhombus and squares are to each other.

- Watch Video Solution

Do This True False

1. All similar triangles are congruent - True/False

- Watch Video Solution

2. Any two congruent figures are similar.

- Watch Video Solution

3. Two polygons with same number of sides are if their corresponding angles are equal and corresponding sides are equal.

- Watch Video Solution

4. Give two different examples of pair of

Similar figures

- Watch Video Solution

5. Give two different examples of pair of

Non Similar figures

- Watch Video Solution

Do This

1. What value(s) of x will make $D E \| A B$, in the given figure ?
$A D=8 x+9, C D=x+3$,
$B E=3 x+4, C E=x$.

D Watch Video Solution

2. In $\triangle A C B, \angle C=90^{\circ}$ and $\mathrm{CD} \perp \mathrm{AB}$

Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$.

D Watch Video Solution

3. A ladder 15 m long reaches a window which is 9 m above the ground on one side of a street. Keeping its foot at the same
point, the ladder is turned to other side of the street to reach a window 12 m high. Find the width of the street.

D Watch Video Solution

4. In the given fig. if $A D \perp B C$

Prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.

- Watch Video Solution

Exercise 81

1. In $\triangle P Q R$, $S T$ is a line such that $\frac{P S}{S Q}=\frac{P T}{T R}$ and also $\angle P S T=\triangle P R Q$.

Prove that $\triangle P Q R$ is an isosceles triangle .
2. In the given figure, $L M \| C B$ and $L N \| C D$ Prove that $\frac{A M}{A B}=\frac{A N}{A D}$

- Watch Video Solution

3. In the given figure, $D E \| A C$ and $D F \| A E$ Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

- Watch Video Solution

4. Prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side (Using
basic proportionality theorem).

- Watch Video Solution

5. Prove that a line joining the midpoints of any two sides of a triangle is parallel to the third side. (Using converse of basic proportionality theorem)

- Watch Video Solution

6. In the given figure, $D E \| O Q$ and $D F|\mid O R$. Show that $E F \| Q R$.

- Watch Video Solution

7. In the adjacent figure, A, B and C are points on OP, OQ and OR respectively such that $A B$ || $P Q$ and $A C|\mid P R$. Show that $B C| \mid Q R$.

(Watch Video Solution

8. The diagonals of a quadrilateral $A B C D$ intersect each other at point 'o' such that $\frac{A O}{B O}=\frac{C O}{D O}$. Prove that ABCD is a trapezium

- Watch Video Solution

9. A line perpendicular to the line segment joining the points (1,
$0)$ and $(2,3)$ divides it in the ratio 1: n. Find the equation of the line.
$\triangle A B C, \angle A B C=90^{\circ}, A D=D C, A B=12 \mathrm{~cm}$ and $B C=6.5$ cm . Find the area of $\triangle A D B$.

- Watch Video Solution

2. The perimeters of two similar triangles are 30 cm and 20 cm respectively. If one side of the first triangle is 12 cm , determine the corresponding side of the second triangle.

- Watch Video Solution

3. In the given figure, $A B\|C D\| E F$. given that $A B=7.5 \mathrm{~cm}, D C=y \mathrm{~cm}$ $E F=4.5 \mathrm{~cm}$ and $B C=x \mathrm{~cm}$, find the values of x and y.

D Watch Video Solution

4. A girl of height 120 cm is walking away from the base of a lamp post at a speed of $0.6 \mathrm{~m} / \mathrm{sec}$. . If the lamp is 3.6 m above the ground level, then find the length of her shadow after 4 seconds.

D Watch Video Solution

5. In right triangle $A B C$, right angle is at C, M is the mid-point of hypotenuse $A B . C$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see figure). Show that :
(i) $\Delta A M C \cong \triangle B M D$
(ii) $\angle D B C$ is a right angle
$(i i i) \Delta D B C \cong \triangle A C B$ (iv) $C M=\frac{1}{2} A B$.

- Watch Video Solution

6. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point ' O '. Using the criterion of similarity for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

(Watch Video Solution

7. In the given figure, $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \| \mathrm{CD}$ Prove that
$\frac{A M}{A B}=\frac{A N}{A D}$
8. A flag pole 4 m tall casts a 6 m shadow. At the same time, a nearby building casts a shadow of 24 m . How tall is the building ?

- Watch Video Solution

9. Given that $\triangle A B C \sim \triangle P Q R, \mathrm{CM}$ and RN are respectively the medians of $\triangle A B C$ and $\triangle P Q R$. Prove that
(i) $\triangle A M C \sim \triangle P N R$
(ii) $\frac{C M}{R N}=\frac{A B}{P Q}$
(iii) $\Delta C M B \sim \Delta R N Q$

D Watch Video Solution

10. The perimeter of two similar triangles $\triangle A B C$ and $\triangle D E F$ are 36 cm and 24 cm respectively. If $D E=10 \mathrm{~cm}$, then $A B$ is

(Watch Video Solution

11. Construct a triangle similar to the given $\triangle A B C$, with its sides equal to $\frac{5}{3}$ of the corresponding sides of the triangle $A B C$.

- Watch Video Solution

Exercise 83

1. In trigle $A B C$, the points D, E, F are the midpoints of the sides
$B C, C A$, and $A B$ respee. Tively. Using vector methed ,show that the area of $\Delta D E F$ is equal to $\frac{1}{4}$ (area of $A B C$).
2. In figure the line segment xy is parallel to side AC of $\triangle A B C$ and it divides the triangle into two parts of equal areas. Find the ratio $\frac{A X}{A B}$

- Watch Video Solution

3. Prove that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

- Watch Video Solution

4. If $\triangle A B C$ is similar to $\triangle D E F$ such that $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and area of $\triangle A B C=54 \mathrm{~cm}^{2}$. Find the area of $\triangle D E F$.
5. $A B C$ is a triangle and $P Q$ is a straight line meeting $A B$ in P and $A C$ in Q. If $A P=1 \mathrm{~cm}, B P=3 \mathrm{~cm}, A Q=1.5 \mathrm{~cm}$ and $C Q=4.5 \mathrm{~cm}$, prove that area of $\triangle A P Q=\frac{1}{16}($ area of $\triangle A B C)$.

- Watch Video Solution

6. The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is 4.5 cm . Find the corresponding altitude of the smaller triangle.

- Watch Video Solution

1. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals

- Watch Video Solution

2. $A B C$ is right - angled triangle at B. Let D and E be any two point on $A B$ and $B C$ respectively . Prove that $A E^{2}+C D^{2}=A C^{2}+D E^{2}$

- Watch Video Solution

3. Prove that three times the square of any side of an equilateral triangle is equal to four times the square of the altitude.

- Watch Video Solution

4. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $\mathrm{PM} \perp \mathrm{QR}$. Show that $P M^{2}=\mathrm{QM} . \mathrm{MR}$.

- Watch Video Solution

5. ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$ and $\angle D A B=\angle C B A$ Prove that
(i) $\Delta A B D \cong \triangle B A C$
(ii) $B D=A C$
(iii) $\angle A B D=\angle B A C$

D Watch Video Solution

6. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.
7. ' O ' is any point in the interior of a triangle $A B C$. If $O D \perp B C, O E \perp \mathrm{AC}$ and $\mathrm{OF} \perp \mathrm{AB}$, show that
(i)
$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B E^{2}$.

- Watch Video Solution

8. A wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
9. Two poles of heights 6 m and 11 stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops?

- Watch Video Solution

10. Solve the following sub question :

In an equilateral triangle $A B C$, the side $B C$ is trisected at D. prove that $9 A D^{2}=7 A B^{2}$

- Watch Video Solution

11. In the adjacent figure, $A B C$ is a right angled triangle with right angle at B and points D, E trisect $B C$. Prove that
$8 A E^{2}=3 A C^{2}+5 A D^{2}$.

- Watch Video Solution

12. $A B C$ is an isosceles triangle right angled at B. Similar triangles
$A C D$ and $A B E$ are constructed on sides $A C$ and $A B$. Find the ratio

- Watch Video Solution

13. Equilateral triangles are drawn on the three sides of a right angled triangle. Show that the area of the triangle on the hypotenuse is equal to the sum of the areas of triangles on the other two sides.

D Watch Video Solution

14. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangles described on its diagonal.
15. In the given figure,
$\frac{Q T}{P R}=\frac{Q R}{Q S}$ and $\angle 1=\angle 2$
Prove that $\triangle P Q S \sim \Delta T Q R$.

- Watch Video Solution

2. Ravi is 1.82 m tall. He wants to find the height of a tree in his backyard. From the tree's base he walked 12.20 m . along the tree's shadow to a position where the end of his shadow exactly overlaps the end of the tree's shadow. He is now 6.10 m from the end of the shadow. How tall is the tree?
3. The diagonal $A C$ of a parallelogram $A B C D$ intersects $D P$ at the point Q, where ' P ' is any point on side $A B$. Prove that $C Q \times P Q=Q A \times Q D$.

- Watch Video Solution

4. $\triangle A B C$ and $\triangle A M P$ are two right triangles right angled at B and M respectively.

Prove that (i) $\Delta A B C \sim \triangle A M P$ and
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$.
5. An aeroplane leaves an airport and flies due north at a speed of 1000 kmph. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 kmph . How far apart will the two planes be after $1 \frac{1}{2}$ hour ?

- Watch Video Solution

6. In a right triangle $A B C$ right angled at C, P and Q are points on sides $A C$ and $C B$ respectively which divide these sides in the ratio of $2: 1$.

Prove that (i) $9 A Q^{2}=9 A C^{2}+4 B C^{2}$
(ii) $9 B P^{2}=9 B C^{2}+4 A C^{2}$
(iii) $9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}$

- Watch Video Solution

1. In triangle $\triangle P Q R$, E and F are points on the sides PQ and PR respectively. State whether EF \|QR or not?
(i) $\mathrm{PE}=3.9 \mathrm{~cm} \mathrm{EQ}=3 \mathrm{~cm}$ PF $=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$

- Watch Video Solution

2. In triangle $\triangle P Q R, \mathrm{E}$ and F are points on the sides PQ and PR respectively. State whether EF \|QR or not?
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$.

- Watch Video Solution

3. In triangle $\Delta P Q R, \mathrm{E}$ and F are points on the sides PQ and PR respectively. State whether EF \|QR or not?
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}$ PR $=2.56 \mathrm{~cm} \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$

- Watch Video Solution

4. In the following figures $D E \| B C$.
(i) Find EC (ii) Find AD

0
5. Find the value of x in the given figure.

