びdoubtnut

India's Number 1 Education App

PHYSICS

RESONANCE ENGLISH

ELECTROSTATICS

Exercise

1. On moving a charge of 20 C by $2 \mathrm{~cm}, 2 \mathrm{~J}$ of
work is done, then the potential differ rence
between the point is :
A. 0.1 V
B. 8 V
C. 2V
D. 0.5 V

Answer: A

D Watch Video Solution

2. A charged particle q is placed at the centre

O of cube of length $\mathrm{L}(\mathrm{ABCDEFGH})$. Another same charge q is placed at a distance L from
O.Then, the electric flux through $A B C D$ is :

A. $q / 4 \pi \varepsilon_{0} L$
B. zero
C. $q / 2 \pi \varepsilon_{0} L$
D. $q / 3 \pi \varepsilon_{0} L$

Answer: B

D Watch Video Solution

3. If the electric flux entering and leaving an enclosed surface respectively, is ϕ_{1} and ϕ_{2}, then the electric charge inside the surface will be
A. $\left(\phi_{2}-\phi_{1}\right) \varepsilon_{0}$
B. $\left(\phi_{1}+\phi_{2}\right) / \varepsilon_{0}$
C. $\left(\phi_{2}-\phi_{1}\right) / \varepsilon_{0}$

D. $\left(\phi_{1}+\phi_{2}\right) \varepsilon_{0}$

Answer: A

D Watch Video Solution

4. The number of electrons to be put on a spherical conductor of radius $0.1 m$ to produce an electric field of $0.036 N / C$ just above its surface is
A. 2.4×10^{5}
B. 2.5×10^{5}
C. 2.6×10^{5}
D. 2.7×10^{5}

Answer: B

D View Text Solution

5. A charged particle is shot with speed V towards another ifxed charged particle Q .lt approaches Q up to a closest distnce r and then returns.If q were given a speed 2 V , the
closest distance of approach would be

A. r
B. $2 r$
C. $r / 2$
D. $r / 4$

Answer: D

D Watch Video Solution
6. A point charge $+Q$ is placed at the centroid of an equilateral triangle. When a second charge $+Q$ is placed at a vertex of the triangle, the magnitude of the electrostatic force on
the central charge is 8 N . The magnitude of the net force on the central charge when a third charge $+Q$ is placed at another vertex of the triangle is
A. zero
B. 4 N
C. $4 \sqrt{2} N$
D. 8 N

Answer: D

D Watch Video Solution

7. Four positive charges $(2 \sqrt{2}-1) Q$ are arranged at the four corners of a square.

Another charge q is placed at the centre of the square. Resulting force acting on each corner charge is zero if q is

$$
\text { A. }-7 Q / 4
$$

$$
\text { B. }-4 Q / 7
$$

C. $-Q$
D. none of these

Answer: A

D Watch Video Solution

8. Point charges $+4 q,-q$ and $+4 q$ are kept on the x-axis at points $x=0, x=a$ and $x=2 a$ respectively, then
A. all the charges are in stable equilibrium
B.all the charge are in unstable equilibrium
C. only the middle charge is in stable
equilibrium
D. only middle charge is in unstable
equilibrium

Answer: B
9. A simple pendulum of mass m and charge
+q is suspended vertically by a massless
thread of length I. At the point of suspension, a point charge $+q$ is also fixed. If the pendulum is displaced slightly from equilibrium position, its time period will be
A. $T=2 \pi \sqrt{\frac{l}{g+\frac{k q^{2}}{m l^{2}}}}$
B. $T=2 \pi$
C. $T=2 \pi \sqrt{\frac{l}{g}}$
D. will be greater then $2 \pi \sqrt{\frac{l}{g}}$

Answer: C

D View Text Solution

10. The diagram shows the arrangement of
three small unifromly charged spheres A, B and C. The arrows indicate the direction of the electrostatic force acting between the spheres
(for example, the left arrow on sphere A indicates the electrostatic force on shphere A due to sphere B). At least two of the spheres are positively charged. Which sphere, if any,
could be negatively charged?

A. sphere A
B. sphere B
C. sphere C
D. no sphere

Answer: A

- Watch Video Solution

11. Figure, shown above, shows three situations involving a charged particle and a uniformly charged spherical shell. The charges and radii of the shells are indicated in the
figure. If F_{1}, F_{2} and F_{3} are the magnitudes of the force on the particle due to the shell in
situations (I),(II) and (III) then

A. $F_{3}>F_{2}>F_{1}$
B. $F_{2}>F_{2}=F_{3}$
C. $F_{3}=F_{2}>F_{1}$
D. $F_{1}>F_{2}>F_{3}$

Answer: C
12. There are three concentric thin spheres of radius $a, b, c(a>b>c)$. The total surface charge densities on their surfaces are $\sigma,-\sigma, \sigma$ respectively. The magnitude of the electric field at r (distance from centre) such that $a>r>b$ is:
A. 0
B. $\frac{\sigma}{\varepsilon_{0} r^{2}}\left(b^{2}-c^{2}\right)$
C. $\frac{\sigma}{\varepsilon_{0} r}\left(a^{2}+b^{2}\right)$
D. none of these
A. 0
B. $\frac{\sigma}{\varepsilon_{0} r^{2}}\left(b^{2}-c^{2}\right) r^{3}$
C. $\frac{\sigma}{\varepsilon_{0} r}\left(a^{2}+b^{2}\right)$
D. none of these

Answer: B

D Watch Video Solution

13. A particle of charge $-q$ and mass m moves
in a circle of radius r around an infinitely long
line charge of linear charge density $+\lambda$. Then,
time period will be

where

$$
\left.k=\frac{1}{4} \pi \varepsilon_{0}\right)
$$

A. $T=2 \pi r \sqrt{\frac{m}{2 k \lambda q}}$
B. $T^{2}=\frac{4 \pi^{2} m}{2 k \lambda q}$
C. $T=\frac{1}{2 \pi r} \sqrt{\frac{2 k \lambda q}{m}}$
D. $T=\frac{1}{2 \pi r} \sqrt{\frac{m}{2 k \lambda q}}$

Answer: A

D Watch Video Solution

14. The figure shown represents the electric
field between two large metal plates. Which of
the graphs given in figure represents the force
on a positve charge as it moves from point P
towards plate B ?

(3)

C.
D.

Answer: D

D View Text Solution

15. The variation of electric field on the y-axis as a function of ' y ' is best represented by [for the given figure]:

(3)

 C.

(4)

A.

Answer: B

D Watch Video Solution

16. A ring carries a uniform linear charge density on one half and the linear charge density of same magnitude but opposite sign on the other half.
A. The component of electric field along the axis at all points on the axis is zero
B. the electric field along the axis and on
the axis is zero only at the centre
C. the resultant field at the centre is zero
D. the resultant field at all points on the
axis is zero

Answer: A

D View Text Solution
17. Two very large thin conducting plates having same cross sectional area are placed as shown in figure. They are carrying chaerges Q and $3 Q$, respectivley. The variation of electric field as as function at $\mathrm{x}($ for $x=0$ to $x=3 d$) will be best represented as by

A.
(2)

B.
C.
(3)

A.

(2)

Answer: C

D Watch Video Solution

18. Two semicircular rings lying in same plane, of uniform linear charge density λ have radius
r and $2 r$. They are joined using two straight
uniformly charged wires of linear charge density λ and length r as shown in figure. The magnitude of electric field at common centre of semi circular rings is -

A. $\frac{1}{4 \pi \varepsilon_{0}} \frac{3 \lambda}{2 r}$
B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda}{2 r}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \lambda}{r}$
D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda}{r}$

Answer: D

D Watch Video Solution

19. A nonuniformly charged ring is kept near an uncharged conducting solid sphere. The distance between their centres (which are on
the same line normal to the plane of the ring)
is 3 m and their radius is 4 m . If total charge on
the ring is $1 \mu C$, then the potential of the sphere will be

> А. $\frac{K Q}{R}$
> B. $\frac{K Q}{l}$
> С. $\frac{K Q}{\sqrt{R^{2}+l^{2}}}$
D. cannot determined

Answer: C

- Watch Video Solution

20. A mercury drop of water has potential ' V '
on its surface. 1000 such drops combine to
form a new drop. Find the potential on the surface of the new drop.
A. V
B. 10 V
C. 100 V
D. 1000 V

Answer: C
21. A point charge of $5 C$ is placed at point P (as
shown in figure). A unit positive charge is
taken from A to B along the circular path
shown, then the net work done by
electrostatic force is : [O is the centre of the
circular path] [Where $k=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$]

A. $+400 K$
B. $+4 K$
C. $-400 K$
D. $-4 K$

Answer: C

D Watch Video Solution

22. An electron is revolving around a proton.

The total work done in one revolution by electric force on the electron will be zero if the trajectory of the electron is
A. circular only
B. elliptical only
C. any closed curve

D. not possible

Answer: C

D Watch Video Solution

23. Three equal charges Q are placed at the three vertices of an equilateral triangle. What should be the va,ue of a charge, that when placed at the centroid, reduces the interaction energy of the system to zero ?

$$
\text { A. } \frac{-Q}{2}
$$

B. $\frac{-Q}{3}$
C. $\frac{-Q}{2 \sqrt{3}}$
D. $\frac{-Q}{\sqrt{3}}$

Answer: D

- Watch Video Solution

24. Total electric force on an electric dipole placed in an electric field of a point charge is :
A. always zero
B. never zero
C. zero when mid point of dipole coincides
with the point charge
D. zero when dipole axis is along any
electric line of force

Answer: B

D View Text Solution
25. Electric potential due to a dipole at a position \vec{r} from its centre is: where $\left(K=\frac{1}{4 \pi \varepsilon_{0}}\right.$
A. $\frac{K \vec{p} \cdot \vec{r}}{r^{3}}$
B. $\frac{K \cdot \vec{p} \cdot \vec{r}}{r^{2}}$
C. $\frac{K . \vec{P} \times \vec{r}}{r^{3}}$
D. $\frac{K \cdot \vec{p} \times \vec{r}}{r^{2}}$

Answer: A

D Watch Video Solution
26. The magnitude of electric field intensity at point $B(2,0,0)$ due to a dipole of dipole moment $\vec{P}=\hat{i}+\sqrt{3} \hat{j}$ kept at origin is
(assum that the point B is at a large distance from the dipole end $K=\frac{1}{4 \pi \varepsilon_{0}}$)
A. $\frac{\sqrt{13} K}{8}$
B. $\frac{\sqrt{13} k}{4}$
C. $\frac{\sqrt{7} k}{8}$
D. $\frac{\sqrt{7} k}{4}$

Answer: C

- Watch Video Solution

27. Consider the four field patterns shown.

Assuming there are no charges in the regions
shown, which of the patterns represents a

A. a
B. b
C. c
D. d

Answer: B

- Watch Video Solution

28. If the net electric field flux passing through
a closed surface is zero, then the electric field at the surface will be
A. 0
B. same at all places
C. depends upon the location of points
D. infinite

Answer: C

D View Text Solution

29. Eight point charges (can be assumed as small spheres uniformly charged and their centres at the corner of the cube) having values q each are fixed at vertices of a cube.

The electric flux through square surface $A B C D$
of the cube is

A. $\frac{q}{24 \in_{0}}$
B. $\frac{q}{12 \in_{0}}$
C. $\frac{q}{6 \in_{0}}$
D. $\frac{q}{8 \epsilon_{0}}$

Answer: C

D Watch Video Solution

30. Figure above shows a closed Gaussian surface in the shape of a cube of edge length
3.0 m . There exists an electric field given by $\vec{E}=[(2.0 \times+4.0) i+8.0 j+3.0 k] N / C$,
where x is in metres in the region is which it
lies. The net charge in coulombs enclosed by
the cube is equal to

A. $-54 \in_{0}$
B. $6 \in_{0}$
C. $-6 \in_{0}$
D. $54 \epsilon_{0}$

Answer: D

D Watch Video Solution

31. Electrical potential V in space as a function of co-ordinates is given by
,$V=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$
then the electric field intensity at $(1,1,1)$ is
given by:
A. $\hat{i}+\hat{j}+\hat{k}$
B. $\hat{i}+\hat{j}-\hat{k}$
C. $\hat{i}-\hat{j}+\hat{k}$
D. $-\hat{i}+\hat{j}+\hat{k}$

Answer: B

D View Text Solution

32. S_{1} : In a metallic body total number of electrons is very large in comparison with non metallic solid body of same mass.
S_{2} : An uncharged conductor kept near a charged body is attracted by that body
whether the charge on the body is positve or negative.
S_{3} : The electric field produced by an infinitely large sheet is same on both sides.
A. TTF
B. FTF
C. TTT
D. FFF

Answer: B
33. S_{1} : When a positively charged particle is released in an electric field, in its subsequent motion, it may or may not move along the electric field line passing through the point it has been released.
S_{2} : In electrostatic, conductors are always equipotential surfaces.
S_{3} : The flux through a closed Gaussian surface is non-zero. The electric field at some point on the Gaussian surface may be zero.
B. FTF
C. TTT
D. FFF

Answer: C

D Watch Video Solution

34. A point charge q is located at the centre fo
a thin ring of radius R with uniformly
distributed charge $-q$, find the magnitude of
the electric field strength vectro at the point
lying on the axis of the ring at a distance x
from its centre, if $x \gg R$.
A. $\frac{Q R^{2}}{8 \pi \varepsilon_{0} x^{4}}$
B. $\frac{3 Q R^{2}}{8 \pi \varepsilon_{0} x^{4}}$
C. $\frac{5 Q R^{2}}{8 \pi \varepsilon_{0} x^{4}}$
D. $\frac{7 Q R^{2}}{8 \pi \varepsilon_{0} x^{4}}$

Answer: B

D Watch Video Solution

35. Two small balls having equal positive charge Q (coulumb) on each suspended by two insulating strings of equal length L (metre) from a hook fixed to a stand. The whole setup is taken in a satellite into space where there is no gravity (state of weightlessness). Then tension (newtons) in each string is:
A.
$\overline{4 \pi \in_{0} L^{2}}$
B. $\frac{Q^{2}}{8 \pi \in_{0} L^{2}}$
C. $\frac{Q^{2}}{12 \pi \in_{0} L^{2}}$
D. $\frac{Q^{2}}{16 \pi \in_{0} L^{2}}$

Answer: D

D Watch Video Solution

36. A point charge q moves from point P to pont S along the path PQRS (fig.) in a uniform electric field E pointing parallel to the poistive direction of the X-axis. The coordinates of the points P, Q, R and S are $(a, b, O),(2 a, O, O)(a,-b$,
\underline{O}) and ${ }^{(}(\mathrm{O}, \mathrm{O}, \mathrm{O})$ respectively. The work done by
the field in the above process is given by the expresison.

A. $q E \sqrt{a^{2}+b^{2}}$
B. qED
C. $-q E a$
D. qEa

Answer: C

- Watch Video Solution

37. A large nonconducting sheet M is given a uniform charge density. Two unchared small metal rods A and B are placed near the sheet
as shown in figure

B

A. M attracts A
B. A attract B
C. M attracts B
D. B repels A
38. At a distance of5 cm and 10 cm from surface of a uniformly charge solid sphere, te potentials are 100 V and 75 V respectivley. Then
A. $\left(\frac{1}{3}\right) \times 10^{-9} C$
B. $\left(\frac{2}{3}\right) \times 10^{-9} \mathrm{C}$
C. $\left(\frac{5}{3}\right) \times 10^{-9} \mathrm{C}$
D. $\left(\frac{7}{3}\right) \times 10^{-9} \mathrm{C}$

D Watch Video Solution

39. An electric dipole is kept in the electric field produced by a point charge
A. dipole will experience a force
B. dipole will experience a torque
C. it is impossible to find a path (not
closed) in the field on which work
required to move the dipole is zero.

D. dipole can be in stable equilibrium

Answer: A

D Watch Video Solution

40. The electric potential decreases uniformly from 180 V to 20 V as one moves on the X -axis
from $x=-2 c m$ to $x=+2 c m$. The electric field at the origin:
A. must be equal to $40 \mathrm{~V} / \mathrm{cm}$
B. may be equal to $40 \mathrm{~V} / \mathrm{cm}$
C. may be less than $30 \mathrm{~V} / \mathrm{m}$
D. may be less than $40 \mathrm{~V} / \mathrm{cm}$

Answer: B

D Watch Video Solution

41. Two positive point charges each of magnitude $10 C$ are fixed at positions $A \& B$ at a seperation $2 d=6 m$. A negatively charged
particle of mass $m=90 \mathrm{gm}$ and charge of magnitude $10 \times 10^{-6} C$ is revolving in a circular path of radius $4 m$ in the plane perpendicular to the line $A B$ and bisecting the line $A B$. Neglect the effect of gravity. Find the angular velocity of the particle

A. 100
B. 200

C. 300

D. 400

Answer: D

D Watch Video Solution

42. A square loop of side 'I' having uniform
linear charge density ' λ ' is placed in 'xy' plane as shown in the figure. There is a non uniform electric field $\vec{E}=\frac{a}{l}(x+l) \hat{i}$ where a is a constant. Then resultant electric force on the
loop if $l=10 \mathrm{~cm}, a=2 N / C$ and charge density $\lambda=2 \mu C / m$ is:

A. $4 \times 10^{-6} N$
B. $4 \times 10^{-5} N$
C. $3 \times 10^{-6} N$
D. $3 \times 10^{-5} N$

Answer: A

- Watch Video Solution

43. In the following figure an isolated charged

conductor is shown. The correct statement will

be -

$$
\text { A. } E_{A}>E_{B}>E_{C}>E_{D}
$$

B. $E_{A}<E_{B}<E_{C}<E_{D}$
C. $E_{A}=E_{B}=E_{C}=E_{D}$
D. $E_{B}=E_{C}$ and $E_{A}>E_{D}$

Answer: B

- Watch Video Solution

44. If the above question, the potential has
correct relations as given=
A. $V_{A}>V_{B}>V_{C}>V_{D}$
B. $V_{A}>V_{B} \geq V_{C}>V_{D}$
C. $V_{D}=V_{C}=V_{B}=V_{A}$
D. $V_{C}<V_{B}>V_{A}>V_{D}$
A. $V_{A}>V_{B}>V_{C}>V_{D}$
B. $V_{A}>V_{B} \geq V_{C}>V_{D}$
C. $V_{D}=V_{C}=V_{B}=V_{A}$
D. $V_{C}<V_{B}>V_{A}>V_{D}$

Answer: C

D Watch Video Solution
45. In the above question, the surface charge densities have the correct relation is-
A. $\sigma_{A}>\sigma_{B}>\sigma_{C}>\sigma_{D}$

$$
\text { B. } \sigma_{A}=\sigma_{B}=\sigma_{C}=\sigma_{D}
$$

C. $\sigma_{D}>\sigma_{C}>\sigma_{B}>\sigma_{A}$
D. $\sigma_{C}<\sigma_{B}>\sigma_{A}>\sigma_{D}$
A. $\sigma_{A}>\sigma_{B}>\sigma_{C}>\sigma_{D}$
B. $\sigma_{A}=\sigma_{B}=\sigma_{C}=\sigma_{D}$
C. $\sigma_{D}>\sigma_{C}>\sigma_{B}>\sigma_{A}$
D. $\sigma_{C}<\sigma_{B}>\sigma_{A}>\sigma_{D}$

Answer: A

(D) Watch Video Solution

46. A family of equipotential surface are
shown. The direction of the electric field at point A is along-

A. $A B$
B. AC
C. AD
D. $A F$

Answer: D

D Watch Video Solution

47. A and B are two concentric spherical shells.

If A is given a charge $+q$ while B is earthed as

A. A and B both will have the same charge densities
B. the potential inside A and outside B will
zero

C. the electric field between A and B is non

zero

D. the electric field inside A and outside B is

non zero

Answer: C

D Watch Video Solution
48. Mark the wrong statement-
A. Equipotential surface never cross each
other
B.for a uniformly charged nonconducting
sphere, the electric potential at the
centre of the sphere is 1.5 times that at
the surface
C. if potential in a certain region in non
zero constant, then the electric field in
that region will also be non zero
constant
D. Inside a spherical uniformly charged
shell, the electric field is zero but the
electric potential is the same as that at the surface.

Answer: C

- Watch Video Solution

49. A hollow conducting sphere is placed in an electric field produced by a point charge placed at P as shown in figure.

Let V_{A}, V_{B}, V_{C} be the potentials at points
A, B and C respectively. Then

A. $V_{C}>V_{B}$
B. $V_{B}>V_{C}$
C. $V_{A}>V_{B}$
D. $V_{A}=V_{B}$

Answer: D

D Watch Video Solution

50. A point charge is kept at the centre of a metallic insulated spherical shell. Then
A. Electric field out side the sphere is zero
B. electric field inside the sphere is zero
C. Net induced charge on the sphere is

D. Electric potential inside the sphere is

zero

Answer: C

D Watch Video Solution

51. STATEMENT 1: When a negative charge $-q$ is released at a distance R from the centre and along the axis of a uniformly and positvely charged fixed ring of radius R, the negative charge does oscillation but not SHM.

STATEMENT 2: The force on negative charge is always towards the centre of the ring but it is not proportional to the displacement from the centre of the ring.
A. Statement-1 is true, Statement-2: is true,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is true, Statement-2: is true,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is true but statement-2 is

false

D. Statement- 1 is false, Statement- 2 is true

Answer: A

D Watch Video Solution

52. Assertion: A positively charged rod is held near a neutral conducting solid sphere as
illustrated below. The sphere lies on a insulated stand. The potential of ground (or
earth) is zero. The potential at point A (point
A need not be centre of the sphere) is higher compared to potential of gound (earth).

Reason: In this situation of assertion, the potential at the centre of conducting sphere is positive. the solid sphere being conducting, potential at each point in the sphere is same.
A. Statement- 1 is true, Statement-2: is true,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is true, Statement-2: is true,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is true but statement-2 is
false
D. Statement- 1 is false, Statement- 2 is true

Watch Video Solution

