© 'doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (ENGLISH)

ALKYNES

Illustrations

1. Give Structural formula for the following compounds:
a. Z-Pent-3-en-1-yne
b. E-Hept-5-en-1, 3-diyne
c. E-1-Ethynl-2-methyl cyclopropane
d. Progargyl cyclobutene or (2-Propynyl) cyclo-but-1-ene
2. What is the smallest ring that can accommodate a triple bond?

D Watch Video Solution

3. what is chiral center?

- Watch Video Solution

4. Give the structural formula of an unsaturated hydrocarbon with the lowest number of C atoms (or with lowest molecular mass) which shows:

a. Optical isomers

b. Geometrical isomers
c. Both optical and geometrical isomers

- Watch Video Solution

5. Give the structural formula of a cyclic alkyne with the lowest number of C atoms and showing:
a. Both geometrical and optical isomerisms.
b. Geometrical isomerism with meso stereoisomers.

6.a.

Identify B

- Watch Video Solution

7. Which of the following acid-base reactions will occur?
f. $\mathrm{H}-\mathrm{C} \equiv \mathrm{CNa}+\mathrm{CH}_{3} \mathrm{OH}$
g. $\mathrm{H}-\mathrm{C} \equiv \mathrm{CH}+\mathrm{CH}_{3} \mathrm{Li}$
h. $H-C \equiv C H+N a H$
i. $H-C \equiv C H+N a C N$
j. $\mathrm{H}-\mathrm{C} \equiv \mathrm{CNa}+\mathrm{CH}_{3} \mathrm{COOH}$
8. Explain which path is feasible for the preparaation of compound 4, 4-Dimethyl pent-2-yne (E).

(D) Watch Video Solution

9. How are terminal alkynes distinguished and separated from internal alkynes?

- Watch Video Solution

10. Complete the following reactions: a.

$$
H-\underset{(A)}{C} \equiv C-H \underset{N a N H_{2}}{1 \mathrm{~mol}}(B) \xrightarrow{C H_{3} B r}(C)
$$

a. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \xrightarrow[\mathrm{Imal}_{\mathrm{mal}}]{\mathrm{NaN}}(\mathrm{B}) \xrightarrow{\mathrm{CH}_{3} \mathrm{Br}}(\mathrm{C})$
f. $\left.\right|_{\substack{2 \text { mol of } \\ \mathrm{NaNH}_{2}}}$ (A)
(B_{1}) $\underset{\mathrm{H}}{\stackrel{\mathrm{H}}{2} \mathrm{O}}$
c. $\xrightarrow[\text { Allyl- }]{\mathrm{Me}^{2}} \mathrm{E}_{\mathrm{A}}+\mathrm{E}_{\mathrm{B}}$
d. $\xrightarrow{\text { bromide }} \mathrm{F}$
e. $\xrightarrow[\mathrm{D}_{2} \mathrm{O}]{ } \mathrm{G}$
g. $\mathrm{H}-\mathrm{C} \underset{(\mathrm{A})}{\equiv} \mathrm{C}-H \xrightarrow[\mathrm{NaNH}_{2}]{1 \mathrm{~mol}}(B) \xrightarrow{\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Br}}(C)$

(A)

- Watch Video Solution

11. Explain the formation of products (B), (C), and (D) in the following reaction.

(D) Watch Video Solution

12. Convert:

13. Complete the following reactions:
a. Prop - $1-$ yne $\xrightarrow[\text { liq. } \mathrm{NH}_{2}]{\mathrm{NaNH}_{2}}(B)$
I. $\underset{(\mathrm{G})}{?}+\underset{(\mathrm{H})}{?} \longrightarrow \mathrm{Me}-\frac{1}{2} \equiv \frac{3}{{\underset{\mathrm{Me}}{ }}_{4}^{5}}{ }_{\mathrm{Me}}^{6}$
(I)

4-Methylhex-2-ync
II. $\underset{(\mathrm{J})}{?}+\underset{(\mathrm{K})}{?} \longrightarrow \mathrm{Me}-\frac{1}{2} \equiv \underbrace{4} \quad 6 \mathrm{Me}$
(L) Me

5-Methylhex-2-yne

2,2-Dimethylhex-3-yne
(O)
IV. $\underset{(\mathrm{P})}{?}+\underset{(\mathrm{Q})}{?} \longrightarrow \stackrel{?}{\square}=\underbrace{2}_{\text {1-Cyclopentylpent-1-yne }} \stackrel{3}{2} \mathrm{Me}$
(R)

- Watch Video Solution

14. Complete the following reactions:
a. Me
 (A)
b.

Dicyclobutyl ethyne (A)
c. $\mathrm{HOOC}-\stackrel{2}{\mathrm{C}} \equiv \stackrel{3}{\mathrm{C}} \mathrm{H} \xrightarrow[+\mathrm{Hg}^{2+}]{\stackrel{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{+}}{\longrightarrow}}$

Prop-2-yne-1-oic acid (A)

$$
\xrightarrow[\mathrm{HgSO}_{4}]{\mathrm{D}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}}(\mathrm{C})
$$

d. $\overbrace{4}^{3 \quad 2}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{NO}_{2}} \xrightarrow{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HgSO}_{4}}(\mathrm{~B})$
(2-Nitrocyclohexyl)-ethyne (A)
e. (A) $\xrightarrow{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Hg}^{2+}}$
e. (A) $\xrightarrow{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{+}+\mathrm{Hg}^{2+}} \mathrm{B} \mathrm{Me}_{\mathrm{Me}}^{4} \mathrm{M}_{2} \mathrm{Me}_{\mathrm{Me}}$

3-Methyl butan-2-one
(B)
f. (A) $\xrightarrow{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{+}+\mathrm{Hg}^{2+}} \mathrm{Me}_{\substack{\text { Hexan-3-one }}}^{\mathrm{Me}_{3}^{\mathrm{O}} \underbrace{5}_{4}} \mathrm{Me}_{\mathrm{C}}^{6}$
(B)

- Watch Video Solution

15. Define chromatography

Watch Video Solution

16. Complete the following reaction

- Watch Video Solution

Me

17. 2-Methyl oxirane

Give the products (B) and (C) in the above reaction.

D Watch Video Solution
18. Compound (A) is an important consituent of hormone that is found in beetles and gives the following reactions. Identify compounds (A) to (G).

- Watch Video Solution

19. Identify (A) to (F).
i. Compound $\mathrm{A}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right) \xrightarrow{\mathrm{H}_{2} / \mathrm{Pt}}$

> No precipitate
> Butyl cyclohexane
> $(\mathrm{E}) \xrightarrow{\mathrm{O}_{3} / \mathrm{Oxid}^{\mathrm{n}}}(\mathrm{F})\left[\mathrm{C}_{5} \mathrm{H}_{9}(\mathrm{COOH})_{3}\right]$
ii. What would be the structure of (A) if (F) is resolvable?

- Watch Video Solution

20. The displacement of electrons in a multiple bond in the presence of attacking reagent is called
21. which element is estimated by carius method?

- Watch Video Solution

22. Complete the following reactions:
a. Me^{4}

(D)
b. Me^{4}
${ }_{3}^{2} \equiv-\frac{1}{\mathrm{e}} \xrightarrow{\mathrm{Sia}_{2} \mathrm{BD}}$
(A)

But-1-yne
$\xrightarrow[\substack{\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}}]{\mathrm{BH} \xrightarrow{\mathrm{CH}_{3} \mathrm{COOH}}(\mathrm{C})}$
(D)
c. $\mathrm{Me} \xrightarrow[\substack{\text { But-2-yne } \\ \text { (A) }}]{2} \equiv \stackrel{34}{\mathrm{Me}} \xrightarrow{\mathrm{Sia}_{2} \mathrm{BH}}(\mathrm{B}) \xrightarrow{\mathrm{CH}_{3} \mathrm{COOD}}(\mathrm{C})$

$$
\begin{aligned}
& \downarrow_{\mathrm{Sia}_{2} \mathrm{BD}} \\
& (\mathrm{E}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{O} \mathrm{H}}(\mathrm{~F})
\end{aligned}
$$

d. $(\mathrm{B})+(\mathrm{C})$

Pent-2-yne

(A)

- Watch Video Solution

23. a. Give the structure of lowest molecular mass and optically active alkyne.
b. Give the structure of unsaturated hydrocarbon with lowest
molecular mass showing diastereomers.
c. Give the structure of alkyne that gives the same product on reaction with either $\mathrm{H}_{2}+\mathrm{Ni}_{2} \mathrm{~B}$ or $\mathrm{K}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
d. Give the structure of alkyne that gives the same single product on reaction with either $\left(B_{2} H_{6} / T H F+H_{2} O_{2} / \stackrel{\ominus}{H}\right)$ or dil. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Hg}^{2+} / H^{\oplus}$.
e. Give the structure of alkyne that gives the same two products with either of the reagents in (d).

- Watch Video Solution

24. Complete the following reactions:
$H C \equiv C H \xrightarrow{?}(B) \xrightarrow{?}(C) \xrightarrow{?}(D)$

The compounds (E) to (F) can be obtained by four different reagents. Give the names of the reagents.
25. Complete the following reactions:

$$
\begin{align*}
& \underset{(\mathrm{A})}{\mathrm{HC}} \mathrm{CH} \xrightarrow{\mathrm{HBr}}(\mathrm{~B}) \xrightarrow{\mathrm{H}_{2} / \mathrm{Pt}}(\mathrm{C}) \xrightarrow[\text { ether }]{\mathrm{Mg}}(\mathrm{D}) \\
& 2 \mathrm{~mol} \text { of D } \\
& \xrightarrow[{(\mathrm{E}) \xrightarrow{\downarrow} \xrightarrow{2 \mathrm{~mol} \mathrm{of} \mathrm{C}}(\mathrm{~F}) \longrightarrow \xrightarrow{\mathrm{H}_{2} / \mathrm{Pt}+\mathrm{Pd}+\mathrm{BaSO}_{4}}(\mathrm{G})},]{ } \\
& \mathrm{K}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \tag{H}
\end{align*}
$$

- Watch Video Solution

Solved Examples

1. Identify A to C .
$\mathrm{HC} \equiv \mathrm{CH} \xrightarrow[2 \mathrm{CO}_{2} / \mathrm{H}_{3} \mathrm{O}^{\oplus}]{2 \mathrm{Na}}(\mathrm{A}) \xrightarrow{\mathrm{Na}+\mathrm{NH}_{3}+\mathrm{EtOH}}$ (B)
$\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{CaCO}_{3}$
2. Identify B to G.

- Watch Video Solution

3. $H C \equiv C H \underset{\text { under pressure }}{\text { Heated }}(A) \xrightarrow{O_{3} / \text { Red. }}$ Glyoxalonly.

On catalytic hydrogenation, 0.2 gm of (A) consumed 172 ml of H_{2} at STP. What is the structure of (A)?

D Watch Video Solution

4. Identify (A) to (J), showing all reactions.

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{C}_{9} \mathrm{H}_{10}\right) \xrightarrow[\text { of } \mathrm{H}_{2} / \mathrm{Pt}]{4 \mathrm{~mol}} \mathrm{C}_{9} \mathrm{H}_{18} \text { (B) }
\end{aligned}
$$

Glyoxal + HCOOH

(H)
(I)

(J)

D Watch Video Solution

5. Identify A to D.

- Watch Video Solution

6. Assertion : Alkynes are less reactive than alkenes towards electrophilic reagents

Reason : General formula of alkenes is $\mathrm{CnH} 2 \mathrm{n}-2$
a.If both Assertion and Reason are CORRECT and Reason is the CORRECT explanation of the Assertion.
b.If both Assertion and Reason are CORRECT but Reason is not
the CORRECT explanation of the Assertion.
c. Assertion is CORRECT but Reason is INCORRECT.
d.If Assertion is INCORRECT but Reason is CORRECT.

- Watch Video Solution

7. There are two paths (a) and (b) for the preparation of a compound

methylpent-1-en-3-yne), which path is correct and why? Also
name the path (a) and (b).

D Watch Video Solution
8. Complete the following missing reagents:
i.

(A)

(B)
(b) \downarrow ?

(C)
(c) \downarrow ?

(D)
(d) \downarrow ?

(F)
(E)
i.
ii. There are two disastereomers of (D). Name the stereoisomers of (E) obtained from two diastereomers of (D). Name the stereoisomers of (E) obtained from two diastereomers of (D).
9. A carbon atom having four different groups is known as

- Watch Video Solution

10. Homologous compound have same:

D Watch Video Solution

11. Convert propyne $(M e-\equiv-H) \quad(\mathrm{A}) \quad$ to

- Watch Video Solution

12. i. 27.8 gm mixture of alkyne and alkane (both containing
same number of carbon atoms) is dissolved in 1000 gm of benzene. The solution freezes at $2.45^{\circ} \mathrm{C}$ (lower than that of benzene). Another 27.8 gm mixture requires 0.6 mol of H_{2} for complete hydrogenation. Calculate the chemical formula of alkyne and alkane (K_{f} for $C_{6} H_{6}=4.9$).
ii. Alkyne on hydrogenation with $H_{2}+P t$ gives the same alkane.

Alkyne does not react with ammoniacal AgNO_{3} solution. Give the structures of both alkyne and alkane.

D Watch Video Solution

13. Identify A, B, and C .
A, B, and $\mathrm{C}\left(C_{6} H_{10}\right) \xrightarrow{B r_{2} / C C I_{2}}$ All decolourises
Cold conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
$(A) \xrightarrow[\mathrm{AgNO}_{3}]{\text { Ammoniacal }}$ White precipitate
$(A$ and $B) \xrightarrow[\text { of } H_{2} / P t]{\text { excess }}$ Hexane
$(C) \xrightarrow[H_{2} / P t]{1 \mathrm{~mol}} D\left(C_{6} H_{12}\right)$
(A) $\xrightarrow[\mathrm{KMnO}_{4}]{\text { Hotalk. }}$ Pent anoic acid only
(B) $\xrightarrow[\mathrm{KMnO}_{4}]{\text { Hotalk. }}$ Propanoic acid only
$(C) \xrightarrow[\mathrm{KMnO}_{4}]{\text { Hotalk. }}$ Adipic acid only

- Watch Video Solution

14. Convert:

D Watch Video Solution

15. Propane, with the molecular formula $C_{3} H_{8}$ contains how many Covalent Bond

D Watch Video Solution

16. $(A) \xrightarrow[\text { Catalyst }]{\mathrm{H}_{2}+P-2}$
(B) cis-Jasmone

$$
\begin{gathered}
c i s-3-M e t h y l-2-(\text { pent }-2-e n y l) \\
\text { Cyclopent-2-en-1-one }
\end{gathered}
$$

cis-Jasmone is an important perfume consituent.
Write the structures of (A) and (B).

(D) Watch Video Solution

17. Terminal alkynes $(R C \equiv C H)$ are not reduced by alkali metals (e.g., Na, K, or Li) in liq. NH_{3}, but reduction takes place
when $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is added in the reaction mixture. Explain why.

- Watch Video Solution

18. .Classify the hydrocarbons according to the carbon carbon bond

(D) Watch Video Solution

19. Convert the following:

1-Bromopropane (A)
20. Complete the following:

Give the major and minor products (C and D).

D Watch Video Solution

21. Complete the following:

$$
\underset{\substack{\text { Ethyne } \\ \text { (A) }}}{\mathrm{HC}} \mathrm{CH} \xrightarrow[\mathrm{NaNH}_{2}]{1 \mathrm{~mol}^{\text {(A) }}} \mathrm{B} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}} \mathrm{C} \xrightarrow{\mathrm{NaNH}_{2}} \mathrm{D}
$$

22. (A)

In the conversion of (B) to (C), how many moles of NaNH_{2} are used?

- Watch Video Solution

23. Give the products of the following reactions.

E-2,3-Dibromo but-2-ene
But-2-yne (A)
24. Complete the following reactions:
a. $(\mathrm{A})+(\mathrm{B})$

(C)
b. (D) $+(\mathrm{E}) \xrightarrow[\mathrm{NaNH}_{2}+\mathrm{H}_{2} \mathrm{O}]{ }$

c. $(\mathrm{G})+(\mathrm{H})$

(I)

- Watch Video Solution

Exercises Subjective Type

1. Why are electrons easily available to the attacking reagents in π - bonds?
2. Identify the products.

$$
\begin{aligned}
& \mathrm{Me}^{3}-2=1-\mathrm{H} \xrightarrow[\text { (ii) } \mathrm{SO}_{2} / \mathrm{H}_{3} \mathrm{O}]{\text { (i) } \mathrm{NaNH}_{2}}(\mathrm{~B}) \xrightarrow{\mathrm{H}_{2}+\mathrm{Pt}} \text { (C) } \\
& \text { Prop-1-yne } \\
& \text { (A) } \\
& \text { (i) } \mathrm{NaNH}_{2} \\
& \text { (ii) } \mathrm{SO}_{3} / \mathrm{H}_{3} \mathrm{O} \\
& \text { (D) } \xrightarrow[\mathrm{H}_{2}+\mathrm{Pt}]{ } \text { (E) }
\end{aligned}
$$

- Watch Video Solution

3. Oleic acid and eladic acid are naturally occuring compounds which are isolated from various oils and fats.

Both diastereomers have one double bond at $C-9$. Oleic acid is cis and eladic acid is a trans isomer at $C-9$. Both have
molecular formula $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{COOH}$. Synthesise both from ethyne.

- Watch Video Solution

4. Give the products formed from the reactions of each of the
following compounds with: i. KMnO_{4} in warm acid
ii. $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}$
a. Pent-1-yne
b. Nona-2, 6-diyne
c. Hex-3-yne
d. 2-Methylhept-3-yne

5. Identify (A) to (C).

```
(A) \(\left(\mathrm{C}_{8} \mathrm{H}_{10}\right) \xrightarrow[\text { or }]{\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}} \operatorname{Acid}(\mathrm{B})\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)\)
    acidic \(\mathrm{KMnO}_{4}\)
    4 mol
    of \(\mathrm{H}_{2}+\mathrm{Pt}\)

\section*{D Watch Video Solution}
6. Complete the following reactions:
i.

ii. \(\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+(\mathrm{Gas})(\mathrm{D}) \xrightarrow{\mathrm{H}_{2}+\mathrm{Pt}}\) (C) (gas)
\[
\mathrm{Cl}_{2}+h v
\]
(E)
\[
\downarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CuLi}
\]
iii. \(\mathrm{Mg}_{2} \mathrm{C}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Mg}(\mathrm{OH})_{2}+(\mathrm{Gas})(\mathrm{G}) \xrightarrow[\mathrm{H}_{2}+\mathrm{Pt}]{ }\) (F) (gas)
7. Identify the products.


\section*{- Watch Video Solution}
8. Identify (A) to (D).
(A) \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \xrightarrow{\mathrm{O}_{3} \mathrm{H}_{2} \mathrm{O}}\) Succinic acid (B) \(\left(\left[\begin{array}{r}\mathrm{COOH} \\ \mathrm{COOH}\end{array}\right)\right.\)
\(\underset{2 \mathrm{CH}_{3} \mathrm{MgBr}}{ } 2 \mathrm{CH}_{4}+(\mathrm{C}) \xrightarrow{2 \mathrm{D}_{2} \mathrm{O}}\) (D)

\section*{- Watch Video Solution}
9. Convert the following:

\section*{\(\mathrm{HC} \equiv \mathrm{CH}\)}


\section*{(D) Watch Video Solution}
10. Convert the following:
\(\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}\)

11. Identify the products:


\section*{- Watch Video Solution}
12. Identify the three alkynes \(\mathrm{A}, \mathrm{B}\left(\mathrm{CH}_{10} H_{18}\right)\), and \(\mathrm{C}\left(\mathrm{C}_{10} H_{16}\right)\) which give the following reactions.
i.

\[
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr} \\
& (\mathrm{~B})+\mathrm{C}_{2} \mathrm{H}_{6} \text { (gas) }
\end{aligned}
\]
ii.

iii.
\[
\begin{gathered}
\xrightarrow[\left(\mathrm{C}_{10} \mathrm{H}_{16}\right)]{\text { Alkyne }(\mathrm{C})} \xrightarrow[\mathrm{H}_{2}+\mathrm{Pt}]{2 \mathrm{~mol}} \text { (D) }\left(\mathrm{C}_{10} \mathrm{H}_{20}\right) \\
\text { Hot alk. } \mathrm{KMnO}_{4} \underset{\substack{ \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}}}{\text { No reaction }} \text { Decan-1,10-dioic acid }
\end{gathered}
\]

\section*{- Watch Video Solution}
13. Deduce the structural fomula of a compound \(\mathrm{A}\left(C_{6} H_{10}\right)\)
i. Adds 2 mol of \(\mathrm{H}_{2}\) to form 2-methyl pentate.
ii. Reacts with aqueous \(\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HgSO}_{4}\) solution to give a carbonyl compound.
iii. Does not react with ammoniacal \(\mathrm{AgNO}_{3}\) solution.

\section*{- Watch Video Solution}
14. Identify (A) to (E).
(A) \(\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \xrightarrow[\text { (ii) } \mathrm{PrBr}]{\text { (i) } \mathrm{Na}+\text { liq. } \mathrm{NH}_{3}} \xrightarrow{(\mathrm{~B})\left(\mathrm{C}_{8} \mathrm{H}_{14}\right) \xrightarrow[+\mathrm{HgSO}_{4}]{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}(\mathrm{C})} \begin{gathered}\text { Ketone }\end{gathered}\)
\([\mathrm{O}] \left\lvert\, \begin{aligned} & \text { Hot alk. } \\ & \mathrm{KMnO}_{4}\end{aligned}\right.\)
Two isomeric
acids D and E
\(\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)\)

\section*{- Watch Video Solution}
15. Write the structures of isomeric hexynes and also give their IUPAC names.

\section*{( Watch Video Solution}
16. What are the geometrices of:
i. Prop-1-yne
ii. But-2-yne
iii. Hept-2-en-5-yne

\section*{- Watch Video Solution}
17. Expand the following condensed formulas into their complete structural formulas.
\(\mathrm{CH}_{3} \mathrm{COOH}\)

\section*{Watch Video Solution}
18. Identify \(\mathrm{A}, \mathrm{B}\) and C .

Alkyne (A) \(\left(\mathrm{C}_{11} \mathrm{H}_{14}\right) \xrightarrow{\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}}\) Hexane-1,3,6- \(+\mathrm{Me}-\mathrm{COOH}\)
\[
\overbrace{\text { No reaction }}^{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}^{\oplus}\right)_{2}\right]}
\]
(B)
(C)

\section*{- Watch Video Solution}
19. Identify the products.

20. Conversion of Pent-1-ene to Pent-2-yne

\section*{D Watch Video Solution}
21. Complete the following


\section*{- Watch Video Solution}
22. Identify the products.


\section*{(D) Watch Video Solution}
23.

Complete
the following
reaction

- Watch Video Solution
24. There are two paths to prepare compound (C).


Which path is feasible and why?
Path (I) \(\mathrm{HCC} \underset{\text { (A) }}{\equiv} \mathrm{CH} \xrightarrow[\text { (ii) } \mathrm{BuBr}]{\text { (i) } \mathrm{NaNH}_{2}}\) (B) \(\xrightarrow[\text { (ii) } \mathrm{L}-\mathrm{BuBr}]{\text { (i) } \mathrm{NaNH}_{2}}\) (C)
Path (II) \(\mathrm{HC} \equiv \mathrm{CH} \xrightarrow[\text { (ii) } \mathrm{t} \text { - } \mathrm{BuBr}]{\text { (i) } \mathrm{NaNH}_{2}}\) (D) \(\xrightarrow[\text { (ii) } \mathrm{BuBr}]{\text { (i) } \mathrm{NaNH}_{2}}\)

\section*{- Watch Video Solution}
25. Give the structures of reactants:
a. (A) \(\xrightarrow[+\mathrm{Hg}^{2+}]{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{O}_{2} \mathrm{~N}\)

b. (C) \(\xrightarrow[+\mathrm{Hg}^{2+}]{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}}\)

(D)
c. \(\left.(\mathrm{E}) \xrightarrow[+\mathrm{Hg}^{2+}]{\substack{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}}} \begin{array}{c}\mathrm{Me} \\ \mathrm{Me} \\ \mathrm{Me}\end{array}\right)\)
(F)

\section*{- Watch Video Solution}
26. Give the structure of reactants:
a. \((\mathrm{A})+(\mathrm{B}) \xrightarrow{\mathrm{NaNH}_{2}+\text { liq. } \mathrm{NH}_{3}} \mathrm{HC} \equiv \mathrm{C} \longrightarrow \mathrm{Ph}^{\mathrm{Ph}}\)
(C) OH
b. (D) + (E) \(\xrightarrow{\mathrm{NaNH}_{2}+\text { liq. } \mathrm{NH}_{3}} \mathrm{Ph} \longrightarrow \underset{\text { (F) } \mathrm{OH}}{\overline{=}}{\underset{\mathrm{OH}}{\mathrm{Me}}}_{\mathrm{Ph}}^{\mathrm{Me}}\)

\section*{- Watch Video Solution}
27. Complete the following equations:

28. With alcoholic potash, \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}\) (A) gives \(\mathrm{C}_{4} \mathrm{H}_{6}\) (B), which reacts with ammoniacal cuprous chloride. Identify the compounds (A) and (B).

\section*{- Watch Video Solution}
29. Three compounds \(A, B\) and \(C\) all have molecular formula \(C_{5} H_{8}\) All the compound rapidly decolourise \(B r_{2}\) in \(C C l_{4}\). All three give a position test with Baeyer's reagent. And all the three are soluble in cold conc. \(\mathrm{H}_{2} \mathrm{SO}_{4}\). Compound A gives a precipitate when treated with ammonical \(\mathrm{AgNO}_{3}\) solution. but compounds \(B\) and \(C\) do not compounds \(A\) and \(B\) both yield pentane \(\left(C_{5} H_{12}\right)\) when they are treated with excess \(H_{2}\) in the presence of Pt catalyst. Under these conditions, compound C absorbs only one mole of \(H_{2}\) and gives a product with the
formula \(C_{5} H_{10}\) On oxidation with hot acidified KMnO_4, B gave acetic acid and \(\mathrm{CH}_{3} 3 \mathrm{CH}_{2} 2 \mathrm{COOH}\). Identify compounds \(\mathrm{A}, \mathrm{B}\), and C .

\section*{- Watch Video Solution}
30. A dihalogen derivative (A) of a hydrocarbon having two
carbon atoms reacts with alcoholic potash and forms another hydrocarbon which gives a red precipitate with ammoniacal cuprous chloride. Compound A gives an aldehyde when treated with aqueous KOH . Write down the name and formula for the organic compound.
31. An unsaturated hydrocarbon (A), \(C_{6} H_{10}\), readily gives on treatment with \(\mathrm{NaNH}_{2}\) in liquid \(\mathrm{NH}_{3}\). When (B) is allowed to react with 1-chloropropane, a compound (C) is obtained. On partial hydrogenation in the presence of Lindar's catalyst,
gives (D), \(\quad C_{9} H_{18}\). On ozonolysis, (D) gives 2, 2- dimethylpropanal and 1-butanal. Identify compounds A, B, C and \(D\).

\section*{- Watch Video Solution}

\section*{Exercises Linked Comprehension Type}
1. In the following sequence of reactions, products \(A, B, C, D\), and \(E\) are formed:


The structure of product ( \(A\) ) is:
A. \(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\)
B. \(H C \equiv C H\)
C. \(M e-\equiv-H\)
D. \(M e-\equiv-M e\)

\section*{Answer: C}

\section*{- Watch Video Solution}
2. In the following sequence of reactions, products \(A, B, C, D\), and \(E\) are formed:


The structure of product ( \(B\) ) is:

\section*{a. Me /}
A.
b. Me
B.
C. \(\quad \mathrm{Me}-\equiv-\mathrm{Me}\)
D. \(\mathrm{Me}-\equiv \mathrm{Me}^{\mathrm{Me}}\)

Answer: D
(D) Watch Video Solution
3. In the following sequence of reactions, products \(A, B, C, D\), and \(E\) are formed:
\[
\begin{aligned}
& \mathrm{Mg}_{2} \mathrm{C}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow(\mathrm{~A}) \text { (gas) }+2 \mathrm{Mg}(\mathrm{OH})_{2}
\end{aligned}
\]

The structure of product \((\mathrm{C})\) is:
A. \({ }^{\text {a. }} \mathrm{Me} \wedge{ }^{\mathrm{Me}}\)
b. \(\mathrm{Me}=\)
B.
C.

D.
d. Me

\section*{Answer: C}
4. In the following sequence of reactions, products \(A, B, C, D\), and \(E\) are formed:
\[
\begin{aligned}
& \mathrm{Mg}_{2} \mathrm{C}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow(\mathrm{~A})(\text { gas })+2 \mathrm{Mg}(\mathrm{OH})_{2}
\end{aligned}
\]

The structure of product (D) is:
A. meso-Pentan-2, 3-diol
B. meso-Butan-2, 3-diol
C. ( \(\pm\) ) or rac-Butan-2, 3-diol
D. ( \(\pm\) ) or race-Pentan-2, 3-diol

\section*{Answer: D}
5. In the following sequence of reactions, products \(A, B, C, D\), and \(E\) are formed:
\[
\begin{aligned}
\mathrm{Mg}_{2} \mathrm{C}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \longrightarrow
\end{aligned}(\mathrm{~A})(\mathrm{gas})+2 \mathrm{Mg}(\mathrm{OH})_{2} \mathrm{l}
\]
A. meso-Pentan-2, 3-diol
B. meso-Butan-2, 3-diol
C. ( \(\pm\) ) or rac-Butan-2, 3-diol
D. ( \(\pm\) ) or rac-Pentan-2, 3-diol

\section*{Answer: D}
6. In the following sequence of reactions, products \(A, B, C, D\), and \(E\) are formed:
\[
\begin{aligned}
& \mathrm{Mg}_{2} \mathrm{C}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow(\mathrm{~A}) \text { (gas) }+2 \mathrm{Mg}(\mathrm{OH})_{2}
\end{aligned}
\]

\section*{- Watch Video Solution}
7. In the following sequence of reactions, products \(A, B, C, D\), and \(E\) are formed:
\[
\begin{aligned}
& \mathrm{Mg}_{2} \mathrm{C}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow(\mathrm{~A}) \text { (gas) }+2 \mathrm{Mg}(\mathrm{OH})_{2} \\
& \text { (1) } \mathrm{MeMgI} \\
& \text { (2) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I} \\
& \text { (E) } \underset{(2) \mathrm{PhCO}_{3} \mathrm{H}^{\oplus}}{\left.\stackrel{(1) \mathrm{K}+\mathrm{EtOH}}{(\mathrm{~B})} \xrightarrow{\downarrow} \xrightarrow{\mathrm{H}_{2}+\mathrm{Ni}_{2} \mathrm{~B}}(\mathrm{C}) \xrightarrow{\mathrm{PhCO}_{3} \mathrm{H} / \mathrm{H}^{\oplus}}(\mathrm{D})\right)}
\end{aligned}
\]

The structure of product (C) is:
A. It is stereospecific but not stereoselective reaction.
B. It is stereoselective but not stereospecific reaction.
C. It is both stereospecific and stereoselective reaction.
D. It is neither stereospecific nor stereoselective reaction.

\section*{Answer: C}

\section*{( Watch Video Solution}
8. In the following sequence of reactions, products \(A, B, C, D\), and \(E\) are formed:
\[
\begin{aligned}
& \mathrm{Mg}_{2} \mathrm{C}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow(\mathrm{~A})(\text { gas })+2 \mathrm{Mg}(\mathrm{OH})_{2} \\
& \text { (1) } \mathrm{MeMgI} \\
& \text { (2) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}
\end{aligned}
\]

The structure of product (D) is:
A. It is stereospecific but not stereoselective reaction.
B. It is stereoselective but not stereospecific reaction.
C. It is both stereospecific and stereoselective reaction.
D. It is neither stereospecific nor stereoselective reaction.

\section*{Answer: A}

\section*{- Watch Video Solution}
9. In the following reaction sequence, products (A) to (G) are formed.

Ethyne +2 mol of Methanal


Product ( \(A\) ) is:
A.
a. \(\stackrel{\mathrm{OH}}{\cong} \stackrel{\mathrm{OH}}{ }\)
b. \(\mathrm{OH}-\equiv-\mathrm{OH}\)
B.
C.

d. \(\mathrm{HO}^{-}\)

D.

\section*{Answer: A}
10. In the following reaction sequence, products (A) to (G) are formed.

Ethyne +2 mol of Methanal
 (A) \(\downarrow{ }^{\mathrm{H}_{2}+\mathrm{Ni}}\)
\[
\begin{gathered}
(\mathrm{D})+(\mathrm{E}) \underset{+\mathrm{ROOR}}{\stackrel{\mathrm{RrCCl}_{3}}{\leftarrow}}(\mathrm{C}) \stackrel{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}{\longleftarrow} \\
(\mathrm{G}) \underset{\text { Hexane }}{\stackrel{\mathrm{Br}_{2} \text { in }}{\longleftarrow}} \downarrow \downarrow_{\mathrm{Br}}^{2} \text { in } \mathrm{CH}_{3} \mathrm{COOH}
\end{gathered}
\]
(F)

\section*{Product (B) is:}
a.

A.
B.

C. \({ }^{\text {c. }} \mathrm{HO} \simeq \mathrm{OH}\)
d.

D.

\section*{D Watch Video Solution}
11. In the following reaction sequence, products \((A)\) to \((G)\) are formed.

Ethyne +2 mol of Methanal

\((\mathrm{D})+(\mathrm{E}) \underset{+\mathrm{ROOR}}{\mathrm{BrCCl}_{3}}(\mathrm{C}) \stackrel{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}{\leftarrow}(\mathrm{~B})\)
\((\mathrm{G}) \underset{\text { Hexane }}{\underset{\mathrm{Br}_{2} \text { in }}{\leftarrow} \downarrow \mathrm{Br}_{2} \text { in } \mathrm{CH}_{3} \mathrm{COOH}}\)
(F)

\section*{Product (C) is:}
A. \({ }^{\text {a. }}\) ——三-H
B. b. \(\mathrm{Me} \wedge\) —— H
C. c. \(\mathrm{Me}-\equiv-\mathrm{Me}\)

D.

\section*{Answer: D}

\section*{- Watch Video Solution}
12. In the following reaction sequence, products (A) to (G) are formed.

Ethyne +2 mol of Methanal
\(\xrightarrow[\substack{\text { (1) } \mathrm{CH}_{3} \mathrm{ONa} \\ \text { (2) } \mathrm{H}_{3} \mathrm{O}^{\oplus}}]{ }(\mathrm{A})\)
\(\downarrow^{\mathrm{H}_{2}+\mathrm{Ni}}\)

(F)

Product (D) and (E) is:



D.
d. Br


\section*{Answer: D}

\section*{D Watch Video Solution}
13. In the following reaction sequence, products (A) to (G) are formed.

Ethyne +2 mol of Methanal


(F)

\section*{Product ( \(F\) ) is:}
a. Br Br
A.

B.

b.


Br
c. Br
Br
C.

D.

\section*{(D) Watch Video Solution}
14. In the following reaction sequence, products (A) to (G) are formed.

Ethyne +2 mol of Methanal


\((\mathrm{D})+(\mathrm{E}) \leftarrow \frac{\mathrm{BrCCl}_{3}}{+\mathrm{ROOR}}\) (C) \(\stackrel{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}{\longleftarrow}\) (B) (F)

Product (G) is:
a. \(\mathrm{Br} \sim \mathrm{Br}\)
A.



\section*{Answer: B}

\section*{- Watch Video Solution}
15. In the following sequence of reactions, products \((A)\) to \((H)\) are formed:


The gases (B), (C), and (D), respectively, are:
A. \((a) \mathrm{HC} \equiv \mathrm{CH} \quad \mathrm{CO}_{2} \quad \mathrm{H}_{2}\)
B.
(B)
(C)
(D)
(a) \(\mathrm{HC} \equiv \mathrm{CH} \quad \mathrm{H}_{2} \quad \mathrm{CO}_{2}\)
(B)
(C)
(D)
C.
(a) \(\mathrm{Me}-\equiv-\mathrm{Me} \quad \mathrm{CO}_{2} \quad \mathrm{H}_{2}\)
D. \(\frac{(\mathrm{B})}{(a) M e-\equiv-H}\)\begin{tabular}{lll}
\((\mathrm{C})\) & \((\mathrm{D})\) \\
\hline & \(\mathrm{CO}_{2}\)
\end{tabular}

Answer: C
(D) Watch Video Solution
16. In the following sequence of reactions, products \((A)\) to \((H)\) are formed:


The gases (B), (C), and (D), respectively, are:

\section*{- Watch Video Solution}
17. In the following sequence of reactions, products \((A)\) to \((H)\) are formed:


The gases (B), (C), and (D), respectively, are:
A. 11.2 litres
B. 11.35 litres
C. 22.4 litres
D. 22.7 litres

\section*{Answer: B}
- Watch Video Solution
18. In the following sequence of reactions, products \((A)\) to \((H)\) are formed:


The gases (B), (C), and (D), respectively, are:
A. \(\mathrm{CH}_{4}\)
B. \(C_{2} H_{6}\)
C. Ethene
D. Ethyne
19. Insulin contains 3.2 \% sulphur. The minimum molecular weight of insulin is

\section*{D Watch Video Solution}
20. In the following sequence of reactions, products (A) to (H)
are formed:


The gases (B), (C), and (D), respectively, are:
A. 1
B. 13
C. 2
D. 12

\section*{Answer: B}

\section*{- Watch Video Solution}
21. In the following sequence of reactions, products \((A)\) to \((H)\) are formed:


The volume of gases obtained at the anode at STP (1 bar and 298 K ) when 2 faraday of electricity is passed is:
A. \(M e-\equiv-B r\)
B. \(H-\equiv-B r\)
C. \(B r-\equiv-B r\)
D. \({ }^{\text {d. }} \stackrel{\mathrm{Br}}{ } \equiv-\mathrm{H}\)

\section*{Answer: D}

\section*{( Watch Video Solution}
22. In the following sequence of reactions, products (A) to (H) are formed:


The volume of gases obtained at the anode at STP (1 bar and 298 K ) when 2 faraday of electricity is passed is:

B. b. \(\mathrm{H}-1 \cong^{2}-3{ }^{45}-67{ }^{8}-\mathrm{H}\)
C. c. \(\mathrm{Me}^{6}-\underline{\underline{5}}_{\underline{4}} \underline{3}^{3} \stackrel{2}{\equiv}-\mathrm{H}\)
D. d. \(\mathrm{Me}^{5}-{ }^{4} \equiv^{3}-{ }^{2} \equiv-\mathrm{H}\)

\section*{Answer: C}
23. i. (A), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and is optically active.
ii. (B), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and shows diastereomerism.
iii. (C), a compound with lowest number of \(C\) atoms and unsaturated hydrocarbon, shows both optical and geometrical isomerism.

Following is the reaction sequence of \(A, B\), and \(C\).


The structure of compound (A) is:
A.
a.

b. Me

c.

C. Me
d. \(\mathrm{H}-\mathrm{T}=-\mathrm{H}\)

\section*{Answer: C}

\section*{- Watch Video Solution}
24. i. (A), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and is optically active.
ii. (B), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and shows diastereomerism.
iii. (C), a compound with lowest number of \(C\) atoms and unsaturated hydrocarbon, shows both optical and geometrical isomerism.

Following is the reaction sequence of \(A, B\), and \(C\).


The structure of compound \((B)\) is:
A. \({ }^{\text {a. }} \stackrel{\mathrm{Me}}{=}=-\mathrm{H}\)
B. \(H-\equiv-\equiv-H\)
c. \(\quad \stackrel{\mathrm{Me}}{=}=\)
D. \(=-=\)

Answer: A
25. i. (A), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and is optically active.
ii. (B), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and shows diastereomerism.
iii. (C), a compound with lowest number of \(C\) atoms and unsaturated hydrocarbon, shows both optical and geometrical isomerism.

Following is the reaction sequence of \(A, B\), and \(C\).


The structure of compound (C) is:
A.
a.

B.
b. Me
c. Me
C.
D.
d. Me


\section*{Answer: B}

\section*{- Watch Video Solution}
26. i. (A), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and is optically active.
ii. (B), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and shows diastereomerism.
iii. (C), a compound with lowest number of C atoms and unsaturated hydrocarbon, shows both optical and geometrical isomerism.

Following is the reaction sequence of \(A, B\), and \(C\).


The structure of compound (D) is:
A.

B.
b.


C.
c. \(\underbrace{\mathrm{C}}_{\mathrm{Me}} \equiv-\mathrm{H}\)
d.

D. Me

Answer: A
27. i. (A), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and is optically active.
ii. (B), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and shows diastereomerism.
iii. (C), a compound with lowest number of \(C\) atoms and unsaturated hydrocarbon, shows both optical and geometrical isomerism.

Following is the reaction sequence of \(A, B\), and \(C\).


The structure of compound \((E)\) is:
a.
\({\underset{\mathrm{Cl}}{\mathrm{Cl}}}_{\mathrm{Me}} \equiv-\mathrm{H}\)
A.
.
B.
b.
Me
c. Me

C.

Cl
D.
d. \(\mathrm{Me}=\ldots{ }^{\mathrm{Cl}}\)

\section*{Answer: C}

\section*{D Watch Video Solution}
28. i. (A), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and is optically active.
ii. (B), a compound with lowest number of \(C\) atoms, is unsaturated hydrocarbon and shows diastereomerism.
iii. (C), a compound with lowest number of C atoms and unsaturated hydrocarbon, shows both optical and geometrical isomerism.

Following is the reaction sequence of \(\mathrm{A}, \mathrm{B}\), and C .


The structure of compound \((F)\) is:
A.
a. Me

B.

C.
c.

d. Me
D.


\section*{- Watch Video Solution}
29. In the following sequence of reactions, products \((B)\) to \((E)\)
are formed:


Product (B) is:
A. \(H \equiv-M g B r\)
B. \(B r M g-\equiv-M g B r\)
C.
D.

\section*{Answer: C}

\section*{- Watch Video Solution}
30. In the following sequence of reactions, products (B) to (E)
are formed:

\section*{Product (C) is:}
A.

B.
b. H
B.
c. \(=\searrow_{\mathrm{Me}}^{\mathrm{Me}}\)
C.
D. Both (b) and (c)

\section*{Answer: D}

\section*{(D) Watch Video Solution}
31. In the following sequence of reactions, products \((B)\) to \((E)\)
are formed:

(A)
(2)
 \(\longrightarrow(\) Product \()+\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})\)
(1) EtMgl
(C)
(2)

(2)

(D) \(\xrightarrow[\text { (2) }]{\text { (1) } \mathrm{NaNH}_{2}+\text { liq. } \mathrm{NH}_{3}}(\mathrm{E})\)

\section*{Product (D) is:}
A. \(H-C \equiv \stackrel{\ominus}{C} N a\)
B. \(\stackrel{\oplus}{N} a \stackrel{\ominus}{C} \equiv \stackrel{\ominus}{C} \stackrel{\oplus}{N} a\)
C.

D.


\section*{Answer: C}
32. In the following sequence of reactions, products (B) to (E) are formed:
\(\mathrm{H}=\equiv-\mathrm{H} \xrightarrow[\text { Memgl }]{\text { (1) } 1 \mathrm{~mol} \text { of }}(\mathrm{B})+\mathrm{CH}_{4}(\mathrm{~g})\)
(A)
(2)


(i) \(1 \mathrm{~mol} \mathrm{NaNH}+\) liq. \(\mathrm{NH}_{3}\)
(2)

(2)

(D) \(\xrightarrow[\text { (2) }]{\text { (1) } \mathrm{NaNH}_{2}+\text { liq. } \mathrm{NH}_{3}}(\mathrm{E})\)

\section*{Product (E) is:}
A.

B.

b.
a.


\section*{(D) Watch Video Solution}
33. In the following sequence of reactions, products (B) to (E) are formed:


Product ( \(B\) ) is:
A. Both proceed via \(S N^{2}\) mechanism
B. Both proceed via E2 mechanism
C. B to C proceeds via E2 and D to E via \(S N^{2}\) mechanism
D. B to C proceeds via \(S N^{2}\) and D to E via E2 mechanism.

\section*{D Watch Video Solution}
34. Select the correct statements:
B. I is more basic than II.
C. II is more basic than I.
D. In E2 elemination reaction, \(\beta\)-proton is abstracted by base

Answer: B
35. In the following sequence of reactions, the products \((A)\) to
(G) are formed:
i. \(2 C H_{4}(g) \xrightarrow[1773 K]{\Delta}(A)(g)+B(g)\)
ii. 4 molof \((A) \xrightarrow[N i(C N)_{4}+T H F]{\Delta}(C) \xrightarrow{O_{3} / \text { oxid. }}(D)\) only
iii. \((A) \xrightarrow[(2) C_{2} H_{5} I]{(1) 1 \text { molofNaNH2 }}(E) \xrightarrow[\text { Redhottube }]{\text { 3molofE }} \underset{\downarrow O_{3} / \text { Red } .}{F}\) (G) only

Compounds (A) and (B), respectively, are:
A. Ethane and \(O_{2}\)
B. Ethene and \(\mathrm{H}_{2}\)
C. Ethyne and \(O_{2}\)
D. Ethyne and \(\mathrm{H}_{2}\)

\section*{Answer: D}
36. In the following sequence of reactions, the products \((A)\) to
(G) are formed:
i. \(2 C H_{4}(g) \xrightarrow[1773 K]{\Delta}(A)(g)+B(g)\)
ii. 4 molof \((A) \xrightarrow[N i(C N)_{4}+T H F]{\Delta}(C) \xrightarrow{O_{3} / \text { oxid. }}(D)\) only
iii. \((A) \xrightarrow[(2) C_{2} H_{5} I]{(1) 1 \text { molof } \mathrm{CaNH}_{2}}(E) \xrightarrow[\text { Redhottube }]{\text { 3molof } E} \underset{O_{3} / \text { Red } \text {. }}{F} \underset{ }{F}\) (G) only

Compounds (A) and (B), respectively, are:
A. Benzene
B. Mesitylene
C. Cycloocta-1,3,5-triene
D. Cycloocta-1,3,5,7-tetraene

\section*{Answer: D}
37. In the following sequence of reactions, the products \((A)\) to
(G) are formed:
i. \(2 C H_{4}(g) \xrightarrow[1773 K]{\Delta}(A)(g)+B(g)\)
ii. 4 molof \((A) \xrightarrow[N i(C N)_{4}+T H F]{\Delta}(C) \xrightarrow{O_{3} / \text { oxid. }}(D)\) only
iii. \((A) \xrightarrow[(2) C_{2} H_{5} I]{(1) 1 \text { molofNaN } H_{2}}(E) \xrightarrow[\text { Redhottube }]{\text { 3molofE }} \underset{\downarrow O_{3} / \text { Red. }}{F}\) (G) only

Compound D is:
A. Glyoxal
B. Glycol
C. Oxalic acid
D. Methylglyoxal

\section*{Answer: C}
38. In the following sequence of reactions, the products \((A)\) to
(G) are formed:
i. \(2 C H_{4}(g) \xrightarrow[1773 K]{\Delta}(A)(g)+B(g)\)
ii. 4 molof \((A) \xrightarrow[N i(C N)_{4}+T H F]{\Delta}(C) \xrightarrow{O_{3} / \text { oxid. }}(D)\) only
iii. \((A) \xrightarrow[(2) C_{2} H_{5} I]{(1) 1 \text { molofNaN } H_{2}}(E) \xrightarrow[\text { Redhottube }]{\text { 3molofE }} \underset{\downarrow O_{3} / \text { Red. }}{F}\) (G) only

Compound (E) is
A. Propyne
B. Butyne
C. But-2-yne
D. none of these

\section*{Answer: B}
39. In the following sequence of reactions, the products (A) to
(G) are formed:
i. \(2 C H_{4}(g) \xrightarrow[1773 K]{\Delta}(A)(g)+B(g)\)
ii. 4 molof \((A) \xrightarrow[N i(C N)_{4}+T H F]{\Delta}(C) \xrightarrow{O_{3} / \text { oxid. }}(D)\) only
iii. \((A) \xrightarrow[(2) C_{2} H_{5} I]{(1) 1 \text { molofNaNH} H_{2}}(E) \xrightarrow[\text { Redhottube }]{\text { 3molofE }} \underset{\downarrow O_{3} / \text { Red } .}{F}\) (G) only

Compound F is
A. Mesitylene
B. 1,2,3-Triethylbenzene
C. 1,2,3-Trimethylbenzene
D. 1,3,5-Triethylbenzene

\section*{Answer: D}
40. In the following sequence of reactions, the products \((A)\) to
(G) are formed:
i. \(2 C H_{4}(g) \xrightarrow[1773 K]{\Delta}(A)(g)+B(g)\)
ii. 4 molof \((A) \xrightarrow[N i(C N)_{4}+T H F]{\Delta}(C) \xrightarrow{O_{3} / \text { oxid. }}(D)\) only
iii. \((A) \xrightarrow[(2) C_{2} H_{5} I]{(1) 1 \text { molofNaNH2 }}(E) \xrightarrow[\text { Redhottube }]{\text { 3molofE }} \underset{\downarrow O_{3} / \text { Red } .}{F}\) (G) only

Compounds G is
A. 2-Oxobutanal
B. 2-Oxobutanoic acid
C. Methylglyoxal
D. 2-Oxopropanoic acid

\section*{Answer: A}
41. Draw Organic Structure of ethane

\section*{- Watch Video Solution}
42. Draw the Structure of Propane Which is 3rd member of alkane family

\section*{(D) Watch Video Solution}
43. Draw the Structure of butane Which is 4 th member of alkane family

\section*{( Watch Video Solution}

\section*{- Watch Video Solution}
45. Draw the Structure for Ethanol

\section*{- Watch Video Solution}
46. The suffix in ethanol is used to Define Which functional

Group
- Watch Video Solution
47. In the following sequence of reactions, products \(A\) to \(D\) are formed:


The structure of product ( \(B\) ) is:
a.

B.

c.

c.
d.

D.

\section*{- Watch Video Solution}
48. In the following sequence of reactions, products \(A\) to \(D\) are formed:


The structure of product (C) is:
A.

B.
b.

C.

D.


\section*{Answer: A}

\section*{D Watch Video Solution}
49. In the following sequence of reactions, products \(A\) to \(D\) are formed:


The structure of product (D) is:
A.
a.


B.

c.

D.


\section*{- Watch Video Solution}
50. In the following sequence of reactions, products \(B\) to \(E\) are formed:


\section*{The structure of product (E) is:}
a.

A.
B.

c. \(\sim_{\mathrm{Me}}^{\mathrm{C}}=\sim \mathrm{Me}\)

C.

D.


\section*{Answer: D}

\section*{(D) Watch Video Solution}
51. In the following sequence of reactions, products \(B\) to \(E\) are formed:


The structure of ozonalysed product \(P\) is
A.

b.

B.

O
c.

C.

D.

\section*{- Watch Video Solution}

\section*{Exercises Multiple Correct Answers Type}
1. Which of the statements are correct?
A. (a) Alkenes are more reactive than alkynes towards electrophilic addition reaction.
B. (b) Alkynes are more reactive than alkenes towards nucleophilic addition reaction.
C. (c) Catalytic hydrogenation of alkynes is more reactive than alkenes.
D. (d) Catalytic hydrogenation of alkenes is more reactive than alkynes.

\section*{Answer: A::B::C}

\section*{- Watch Video Solution}
2. \(\mathrm{HC} \equiv \mathrm{CH} \xrightarrow[+\mathrm{Hg}^{2+}]{\mathrm{Dil} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CH}=0\)

Which statement(s) is/are correct about the given reaction?
A. (a) C atom accepting the H is reduced, and the C atom forming a bond with OH is oxidised.
B. (b) Given reaction is a redox reaction.
C. (c) The average oxidation number of the two \(C\) atoms in each compound is same \((-1)\).
D. (d) The average oxidation number of the two \(C\) atoms in each compound is same \((-2)\). The net effect is no change in average oxidation state.

\section*{Answer: A::C}

\section*{( Watch Video Solution}
3. Which statement(s) is/are WRONG?
A. (a) Acetylene is insoluble in conc. \(\mathrm{H}_{2} \mathrm{SO}_{4}\) due to not
formation of vinyl carbocation
\(\left(\mathrm{CH}_{2}=\stackrel{\oplus}{C} H\right)\left(\mathrm{HSO}_{4}^{-}\right)\).
B. (b) Ethylene is soluble in conc. \(\mathrm{H}_{2} \mathrm{SO}_{4}\) due to the
\(\left(\mathrm{H}_{3} \mathrm{C}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}\right)\left(\mathrm{HSO}_{4}^{-}\right)\)
C. (c) But-2-yne dissolves in conc. \(\mathrm{H}_{2} \mathrm{SO}_{4}\) due to the formation of vinyl
carbocation
\((M e-\stackrel{\oplus}{C}=C H-M e)\left(\mathrm{HSO}_{4}^{-}\right)\), but it is stabilised
by electron-donating methyl group and is more stable than the vinyl carbocation formed from acetylene.
D. (d) More the s character in the positively charged C, the more stable is the carbocation and more likely is its formation.

\section*{Answer: D}

\section*{- Watch Video Solution}
\[
\begin{align*}
& \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \longrightarrow \square_{\mathrm{Br}}^{7}  \tag{B}\\
& 4 . \\
& \oplus
\end{align*}
\]

Which of the statements are correct about the reactivities of alkene, alkynes, and arenes?
A. (a) Ring (A) is more strained due to full double bond and is less stable than ring (B). Moreover, \(C\) atoms in ring (A)
have more \(s\) character than those in ring (B), further making it less stable than ring (B). Hence, alkenes are more reactive towards EA reaction.
B. (b) EN of sp-hybridised C atom of alkynes is greater than
\(s p^{2}\)-hybridised C atom of alkenes, which holds the \(\pi\) electrons of alkynes more tightly. Moreover, there is a
greater delocalisation of \(\pi\) electrons (due to cylindrical
nature) in alkynes than in alkenes. In alkenes, \(\pi \bar{e}\) 's are
less easily available for EA reactions than those in
alkynes. So alkynes are less reactive than alkenes
towards EA reactions.
C. (c) In alkynes, because of the cylindrical nature of their \(\pi\) -bonds, approach by hydrogen along the axis of cylinder is more effective. Thus the transition state in alkynes is
less strained. So alkynes react faster than alkenes with
\[
H_{2} .
\]
D. (d) Arenes are more reactive towards EA reaction than
alkenes and alkynes due to delocalisation of their \(\pi \bar{e}\) ' \(s\).

\section*{- Watch Video Solution}
5. Which of the statements are WRONG about the nucleophilic addition reaction of alkenes and alkynes?
A. Addition of nucleophile \(\binom{\ominus}{R O}\) to alkene gives an alkyl
carbanion

whose negative charge is on
the \(s p^{3}\)-hydridised C atom.
B. Addition of nucleophile \(\binom{\ominus}{R O}\) ot an alkyne gives a vinyl
carbanion
\((-\underset{O}{-\dot{O}}=\underset{ }{\mathrm{C}} \mathrm{C}-)\)
whose negative charge is on
the \(s p^{2}\)-hybridised C atom. Due to more s character, it is
readily formed and more stable than alkyl carbanion
formed with alkenes. So alkynes are more reactive than
alkenes towards NA reaction.
C. Strong electron-withdrawing inductive effect ( \(-I\) )
further stabilises both vinyl and alkyl carbanion.
D. Strong electron-donating inductive effect \((+I)\) further stabilises both vinyl and alkyl carbanion.

\section*{Answer: D}

\section*{- Watch Video Solution}
6. In the following sequence of reactions,


Which of the statements are correct about the compound (D)?

b. Me

B.
C.
c.
Me
D. IN E2 elimination, the most acidic H atom is removed.

The inductive effect \((-I)\) of Br atom increases the acidity of H atoms to which Br atoms are bonded.

Decreasing acidity of H atom in (B) is as follows:
\[
\mathrm{H} \text { at } C-1>H \text { at } C-2>H \text { at } C-3
\]

\section*{Answer: A::D}

\section*{( Watch Video Solution}
7. Acetylene is thermodynamically unstable and readily explodes, therefore it is stored in commercial cylinders used for oxy-acetylene torch for welding. These cylinders contain:
A. (a) Pumice stone saturated with acetone.
B. (b) Charcoal powder saturated with acetone.
C. (c) Dissolved in water to give \(0.5 M\) solution.
D. (d) Dissolved in turpentine oil.

\section*{(D) Watch Video Solution}
8. Which of the statements are correct for alkyne with molecular formula \(C_{6} H_{10}\) ?
A. (a) It shows 7 structural isomers.
B. (b) It shows 4 terminal and 3 internal alkynes.
C. (c) It shows 3 terminal and 4 internal alkynes.
D. (d) Only one isomer is chiral.

\section*{Answer: A::B::D}
9. For the conversion of alkyne to cis-alkene, \(H_{2}+\) Lindlar's catalyst is used:
\[
\mathrm{R}-\equiv-\mathrm{R} \xrightarrow[\text { Sior quinoline }+ \text { boiling } \times y l e n e]{\mathrm{H}_{2}+\mathrm{Pd}+\mathrm{BaSO}_{4} \text { or } \mathrm{CaCO}_{3}} \overbrace{\mathrm{H}}^{\mathrm{R}}
\]

Which of the statements are wrong:
A. (a) The function of \(\mathrm{BaSO}_{4}\) or \(\mathrm{CaCO}_{3}\) is to reduce the surface area of finely divided catalyst Pd so that adsorption of \(H_{2}\) on \(P d\) is reduced.
B. (b) The function of \(S\) or quinoline is to remove excess of \(H_{2}\). It is done through the formation of \(H_{2} S(g)\) with S or by absorption of excess \(H_{2}\) by quinoline to form (I) or (II).

C. (c) Boiling xylene acts as a solvent to dissolve the reactant (alkyne).
D. (d) Boiling xylene acts as inhibitor, decreasing the asborption of \(H_{2}\) on finely divided catalyst \(P d\) or \(P t\).

\section*{Answer: D}

\section*{- Watch Video Solution}
10. i. \(M e-\equiv-H \xrightarrow[\ominus]{(i) S i a_{2} B H} A\)
(ii) \(\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}\)
ii. \(M e-\equiv-H \xrightarrow[\ominus]{(i) B H_{3}+T H F} B\)
(ii) \(\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{H}\)
iii. \(\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}} \mathrm{C}\)
(iii) iv. \(\mathrm{Me}-\equiv-\mathrm{H} \xrightarrow{\text { Dil. } \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Hg}^{2+}} \mathrm{D}\)
iv. \(\mathrm{Me}-\equiv-H \xrightarrow{\mathrm{Dil} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Hg}^{2+}} D\)

\section*{Which of the statements are correct?}
A. (a) In all, acetone is the major product.
B. (b) In all, propanal is the major product.
C. (c) C and D are acetone, whereas \(A\) and \(B\) are propanal as
the major product.
D. (d) C and D are propanal, whereas A and B are acetone as
the major product.

\section*{Answer: C}

\section*{- Watch Video Solution}
11. Which of the following statements are correct?
A. (a) \(\Delta H_{c}^{\circ}\) of cis-pent-2-ene is greater than trans-pent-2ene
B. (b) \(\Delta H_{c}^{\circ}\) of hex-1-ene is greater than trans-hex-2-ene
C. (c) \(\Delta H_{c}^{\circ}\) of 2,5-dimethyl hexane is greater than octane
D. (d) \(\Delta H_{c}^{\circ}\) of 2-methyl-pent-2-ene is greater than trans-hex-2-ene
\(\Delta H_{c}^{\circ}=\) Heat of combusion

\section*{Answer: A::B::D}

\section*{( Watch Video Solution}
12. Which of the following statement(s) is/are correct:
A. (a) Hydrogenation of but-2-yne in the presence of

Lindlar's catalyst yields cis-but-2-ene.
B. (b) Hydrogenation of pent-2-yne in the presence of P-2
catalyst yields trans-pent-2-ene.
C. (c) Hydrogenation of pent-2-yne in the presence of K
(potassium) and liquid \(\mathrm{NH}_{3}\) yields trans-pent-2-ene.
D. (d) Hydrogenation of but-2-yne in the presence of
\(\mathrm{LiAlH}_{4}\) yields cis-but-2-ene.

\section*{Answer: A::C}
- Watch Video Solution

\section*{Dil. \(\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Hg}^{2+}\)}

(i) \(\mathrm{BH}_{3} / \mathrm{THF}\)
(ii) \(\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}\)

\section*{13.}

Compound (B) is same when (A) is:
A. (a) \(M e-\equiv-M e\)
b. Me
B.三-H
C. (c) \(H-\equiv-H\)
D. \({ }^{\text {d. }} \stackrel{\mathrm{Me}}{ } \equiv-^{\mathrm{Me}}\)

\section*{D Watch Video Solution}
14. Which of the statements are correct?
\[
R-\equiv-R^{\prime} \xrightarrow[+E t O H]{N a+l i q \cdot N H_{3}}(A) \xrightarrow{B r_{2} / C C l_{4}} B+C
\]
where (B) and (C) are:
A. (a) Enantiomers if \(R \neq R^{\prime}\).
B. (b) Diastereomers if \(R \neq R^{\prime}\).
C. (c) Both are meso and hence the same compound if
\[
R=R^{\prime}
\]
D. (d) An equimolar mixture of (B) and (C) is a racemic mixture if \(R \neq R^{\prime}\).

\section*{( Watch Video Solution}
15. Which of the statements are correct?
\[
\begin{aligned}
& R-\equiv \equiv R \xrightarrow[\text { Catalyst }]{\mathrm{H}_{2}+P-2}(A) \xrightarrow{\text { MMPP }}(B) \xrightarrow{\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}}+(C) \\
& \mathrm{R}- \equiv-\mathrm{R} \xrightarrow[\text { catalyst }]{\mathrm{H}_{2}+\mathrm{P}-2}(\mathrm{~A}) \xrightarrow{\text { MMPP }}(\mathrm{B}) \xrightarrow{\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}}+(\mathrm{C}) \\
& \downarrow \\
&(\mathrm{D}) \xrightarrow{\text { LiAlH } / \text { MIOH }} \\
&(D) \xrightarrow{\text { MMPP }}(\mathrm{E}) \xrightarrow{\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}}(\mathrm{~F}) \\
&(E) \xrightarrow{H^{+} / \mathrm{H}_{2} \mathrm{O}}(F)
\end{aligned}
\]
A. (a):- (C) is an equimolar mixture of two enantiomeric compounds.
B. (b):- (F) is a single compound and is optically inactive.
C. (c):- (C) is a single compound and is optically inactive.
D. (d):- (F) is an equimolar mixture of two enantiomeric compounds.

\section*{Answer: A::B}

\section*{( Watch Video Solution}
16. Hydroboration oxidation and acid hydration will yield the
same
product in case of:
A.

B. b. \(M e-\equiv-M e\)
C.
c. \(\mathrm{Me}={ }^{\mathrm{Me}}\)

\section*{D. \\ d. Ph Ph}

\section*{Answer: A::B::C::D}

\section*{- Watch Video Solution}
17. \(\mathrm{C}_{4} \mathrm{H}_{6} \xrightarrow[1 \mathrm{~mol}]{\mathrm{H}_{2}+\mathrm{Pt}} \mathrm{C}_{4} \mathrm{H}_{8} \xrightarrow{\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}}\) Acedic acid
(A) and (B), respectively, are:
A. \({ }^{\text {a. }}\)
B. \({ }^{\text {b. }} \square\);

C. c. \(\mathrm{Mc}-\equiv-\mathrm{Me}\);

D. \({ }^{\text {d. }} \stackrel{\mathrm{Me}}{=}=-\mathrm{H}\);


\section*{Answer: A::C}
18. All reagents, \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus},\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}\),
\(\mathrm{CH}_{3} \mathrm{MgBr}\), and \(\mathrm{NaNH}_{2}\) react with:
A. (a) Cyclooctyne
B. (b) Pent-1-yne
C. (c) Pent-2-yne
D. (d) Ethyne

\section*{Answer: B::D}

\section*{- Watch Video Solution}
19. Compound (A) does not react with Tollens or Grignard reagent, but after treatment with \(\mathrm{NaNH}_{2}\), it gives the above
test. The compound (A) is/are:
A. (a) \(M e-\equiv-M e\)
B.
b. \(\stackrel{\mathrm{Me}}{\equiv-\mathrm{H}}\)
c. \({ }^{\text {c. }} \stackrel{\mathrm{Me}}{ }=-\mathrm{Me}\)
D. (d) \(P h-\equiv-M e\)

\section*{Answer: A::C::D}

\section*{- Watch Video Solution}
20. Compound (A) reacts with \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}\)and Tollens reagent, but after with alc: KOH it does not give the above test. Compound (A) is:
A. (a) \(M e-\equiv-M e\)
B. (b) \(M e-\equiv-H\)
C. \({ }^{\text {c. }} \stackrel{\mathrm{Me}}{ } \equiv-\mathrm{H}\)
D. (d) \(P h-\equiv-H\)

\section*{Answer: C}

\section*{- Watch Video Solution}
21. Which of the statements are correct?
A. (a) \(\mathrm{Be}_{2} \mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightarrow\) Marsh gas
B. (b) \(\mathrm{Al}_{4} \mathrm{C}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow\) Gas is a content of CNG
C. (c) \(\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow\) Gas is used for welding purpose with \(O_{2}\) gas
D. (d) \(\mathrm{Ca}_{3} \mathrm{P}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow\) Gas is used in Holme signals with
\(C a C_{2}\)

\section*{Answer: A::B::C::D}

\section*{- Watch Video Solution}
22.


Reagents used in conversion from (A) to (B) are:
A. (a) \(\operatorname{Sn}(\mathrm{Hg}) / \mathrm{conc} . \mathrm{Hcl}\)
B. (b) \(H I+P\)
C. (c) \(\mathrm{Zn}(\mathrm{Hg}) /\) conc. HCl
D. (d) PhNHNH2, glycol \(\stackrel{\ominus}{O} H\)

\section*{- Watch Video Solution}
23. Which gas is in an antidote of Lewisite (a poisonous gas used in World War II):
A. (a) Sarin gas
B. (b) MIC
C. (c) BAL
D. (d) Mustard gas

\section*{Answer: C}
24. Which statements are correct:
A. (a) Heterogeneous catalyst used in polymerisation of
alkene is Ziegler Natta catalyst (for the synthesis of HDPE).
B. (b) Homogeneous catalyst used in the hydrogenation of
alkenes is Wilkinson's catalyst.
C. (c) Formula for Ziegler Natta catalyist is
\(\left[\operatorname{RhCl}\left(P P h_{3}\right)_{3}\right]\) and for Wilkinson's catalyst is
\(T i C l_{4}+E t_{3} A l\).
D. (d) Wilkinson's catalyst also reduces acid ( RCOOH ) to alcohol \(\left(\mathrm{RCH}_{2} \mathrm{OH}\right)\).

\section*{Answer: A::B::D}



25.


Which statements are correct for reagents A, B, C, and D?
\((A) \quad(B) \quad(C)\)
a. \(H_{2} / P t \quad M M P P\)
A.

Coldalk. 4
\(O_{2}+P d C l_{2}\)
\(\mathrm{KMnO}_{4} \quad+\mathrm{CuCl}_{2}\)
\(+\mathrm{H}_{2} \mathrm{O}\)
B.
(A)
\((B) \quad(C)\)
(D)
b. \(\quad \mathrm{H}_{2} / \mathrm{Pd}+\mathrm{BaSO}_{4} \quad \mathrm{HCO}_{3} \mathrm{H} \quad\) Hotalk. \(\quad\) Dil. \(\mathrm{H}_{2} \mathrm{SO}_{4}\) +quinoline \(\mathrm{KMnO}_{4}+\mathrm{Hg}^{2+}\)
C.
(A)
(B)
(C)
(D)
c. \(\mathrm{Sia}_{2} \mathrm{BH}\)
\(\mathrm{PhCO}_{3} \mathrm{H}\)
\(\mathrm{OsO}_{4}\) /
\(O_{2}+P d C l_{2}\)
\(+\mathrm{CH}_{3} \mathrm{COOH}\)
(A)
(B)
(C)
(D)
D. d. \(B H_{3}+T H F\) \(+\mathrm{CH}_{3} \mathrm{COOH}\)
\(\mathrm{MCPBA} \mathrm{OsO}_{4} /\) Wacker \(\mathrm{H}_{2} \mathrm{O}_{2}\) process

\section*{Answer: A::C::D}

\section*{- Watch Video Solution}

Exercises Single Correct Answers Type

1
\(\overleftrightarrow{\longrightarrow 23}+\mathrm{H} \xrightarrow{1 \mathrm{~mol} \mathrm{HCl}}(\mathrm{B})\)
But-1-en-3-yne

\section*{1.} (A)

The product ( \(B\) ) is:


B.
C. c. \(\mathrm{Cl}_{\mathrm{Mc}}^{\mathrm{Cl}} \equiv-\mathrm{H}\)
D. \({ }^{\text {d. } \mathrm{Cl}} \sim \equiv-\mathrm{H}\)

Answer: A
\(2 . \overbrace{}^{2} \overbrace{}^{4.5}-\mathrm{H} \xrightarrow{1 \mathrm{~mol} \mathrm{HBr}}(\mathrm{B})\)
2.
\[
\begin{gathered}
\text { (A) } \\
\text { Pent-1-en-4-yne } \\
\text { The product (B) is: }
\end{gathered}
\]

The product (B) is:
A.

B.

C.

D. d .


Answer: C
( Watch Video Solution

Me
3.

\section*{\(\equiv-\mathrm{H} \xrightarrow[-2 \mathrm{H}^{\oplus}]{2 \mathrm{BuLi}}\) Intermediate species}

The intermediate species formed in the above reaction is:

B.

c. c. \(\stackrel{\mathrm{H}_{2}}{\stackrel{\ddot{\theta}}{\mathrm{C}}} \equiv \mathrm{H}\)
D.
d.
Me

Answer: D

Me
\[
\begin{aligned}
& \Theta \\
& — \equiv-\mathrm{H} \xrightarrow[\text { (ii) } 1 \text { mol of } \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br} \text { (iii) } \mathrm{H}_{4} \mathrm{O}^{6}]{\text { (i) } \mathrm{BuL}} \text { (B) }
\end{aligned}
\]

\section*{4.}

\section*{\(\underset{(\mathrm{A})}{ }\) \\ (A)}

The product (B):

b.
Me
B. Me
C. \({ }^{\text {c. }}\)

d.


\section*{Answer: B}

\section*{(D) Watch Video Solution}
5. There are two paths (a) and (b) for the preparation of a compound

methylpent-1-en-3-yne), which path is correct and why? Also name the path (a) and (b).

A. Path I is feasible.
B. Path II is feasible
C. Both paths are feasible.
D. Both paths are not feasible.

\section*{Answer: B}

\section*{- Watch Video Solution}
6. Give the reactivity in the decreasing order of the following alkynes towards nucleophilic addition reaction with \(\mathrm{MeO}^{\Theta} / \mathrm{MeOH}\).
(I) \(\underset{\mathrm{Br}}{\mathrm{Br}} \stackrel{\mathrm{Br}^{\mathrm{Br}}}{\mathrm{Br}} \underset{\mathrm{Br}}{\mathrm{Br}}\)
(II) \(\mathrm{Me}-\equiv-\mathrm{Me}\)
(I) (III) \(\mathrm{Me}-\equiv-\mathrm{H} \quad\) (IV) \(\mathrm{H}-\equiv-\mathrm{H}\)
A. (a) \((I)>(I I)>(I I I)>(I V)\)
B. (b) \((I)>(I V)>(I I I)>(I I)\)
C. (c) \((I V)>(I I I)>(I I)>(I)\)
D. (d) \((I I)>(I I I)>(I V)>(I)\)

\section*{Answer: B}

\section*{- Watch Video Solution}
7. Give the reactivity in the decreasing order of the following nucleophiles towards nucleophilic addition reaction with compound \(A\left(F_{3} C-\equiv-C F_{3}\right)\).
(I) \(\mathrm{CH}_{3} \mathrm{O}^{\Theta}\) (II) \(\mathrm{C}_{3} H_{5}^{\Theta}\)
(III) \(\mathrm{CH}_{3} \mathrm{COO}\) (IV) \(\mathrm{CH}_{3} \mathrm{SO}_{3}^{\Theta}\)
A. (a) \((I I)>(I)>(I I I)>(I V)\)
B. (b) \((I V)>(I I I)>(I)>(I I)\)
C. (c) \((I)>(I I)>(I V)>(I I I)\)
D. (d) \((I I I)>(I V)>(I I)>(I)\)

\section*{- Watch Video Solution}


Vicinal dihalides undergo double dehydrohalogenation to give terminal alkyne. How many moles of \(\mathrm{NaNH}_{2}\) are used in the overall reaction?
A. One
B. Two
C. Three
D. Four

\section*{D Watch Video Solution}
9. The minimum number of \(C\) atoms an alkyne must have to show diastereomerism:
A. 4
B. 5
C. 6
D. 7

\section*{Answer: B}
10. Which of the following is propargyl group?
A. (a) \(-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}\)
B. (b) \(-C \equiv C-M e\)
C. (c) \(-C \equiv C H\)
D. (d) \(-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\)

\section*{Answer: A}

\section*{- Watch Video Solution}
11. What is the smallest ring that can accommodate a triple bond?
A. Cyclohexyne
B. Cycloheptyne
C. Cyclooctyne
D. Cyclononyne

\section*{Answer: C}

\section*{- Watch Video Solution}
12. In the conversion of alkyne to trans-alkene by Birch reduction using alkali metals (such as Na or K ) in liquid \(\mathrm{NH}_{3}\) and alcohol ( MeOH or EtOH ),
\[
R-\equiv-R \xrightarrow[+E t O H]{N a+l i q \cdot N H_{3}}
\]
\[
\left.\left.\mathrm{R}-\equiv \mathrm{R} \xrightarrow[+\mathrm{EtOH}]{\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}}\right\rangle_{\mathrm{H}}^{\mathrm{R}}\right\rangle=\left\langle_{\mathrm{R}}^{\mathrm{H}}\right.
\]
the mechanism takes place in the formation of intermediate species in the following sequence:
A. (a) Radical anion \(\rightarrow\) vinylic radical \(\rightarrow\) trans-vinylic anion \(\rightarrow\) trans-alkene
B. (b) Radical anion \(\rightarrow\) trans-vinylic anion \(\rightarrow\) vinylic radical \(\rightarrow\) trans-alkene
C. (c) Vinylic radial \(\rightarrow\) radical anion \(\rightarrow\) trans-vinylic anion \(\rightarrow\) trans-alkene
D. (d) Vinylic radical \(\rightarrow\) trans-vinylic anion \(\rightarrow\) radical anion \(\rightarrow\) trans-alkene

\section*{Answer: A}
- Watch Video Solution
13. In the reaction, \(R-\equiv-R \xrightarrow[\text { reduction }]{\text { Birch }}\)

source
of two H atoms which are added to alkyne to give trans-alkene is:
A. (a) \(\mathrm{NH}_{3}\)
B. (b) EtOH
C. (c) \(\mathrm{Et}-\mathrm{NH}_{2}\)
D. (d) Both (a) and (c)
14. In the reaction:

A. (a) \(\mathrm{Na}+\mathrm{NH}_{3}+E t O D\)
B. (b) \(N a+N D_{3}+E t O H\)
C. (c) \(N a+N D_{3}+E t O D\)
D. (d) Both (b) and (c)

\section*{Answer: D}
- Watch Video Solution
15. Interconversion of terminal to internal alkyne and vice versa takes place by the following reagents (A) and (B):
\(\mathrm{R}-\equiv-\mathrm{Me} \stackrel{(\mathrm{A})}{\underset{(\mathrm{B})}{\stackrel{R}{\rightleftharpoons}}} \underbrace{\square} \equiv-\mathrm{H}\)

Reagents (A) and (B) are:
A. (a) \(\mathrm{NaNH} \mathrm{H}_{2}\) and alc. KOH
B. (b) alc. KOH and \(\mathrm{NaNH}_{2}\)
C. (c) alc. \(K O H\) and \(P-2\) catalyst
D. (d) \(\mathrm{NaNH}_{2}\) and Lindlar's catalyst

\section*{Answer: A}
16. \(R-\underset{\overline{(A)}}{\bar{\equiv}}-\equiv-R \xrightarrow{\text { Lindlar's catalyst }+H_{2}}(B)\)

\section*{\(\mathrm{H}_{2}+\mathrm{P}-2\) catalyst \\ }

Compounds (B) and (C) are:
A. \({ }^{\text {a. Bothare }}{ }^{\mathrm{R}}=\backslash={ }^{\mathrm{R}}(\mathrm{I})\)
B. b. Botharc \({ }^{\mathrm{R}}==^{\mathrm{R}}\) (II)
C. Both art \({ }^{R}=\backslash=\backslash_{R}\) (III)
D. (B) is (II) and (C) is (III)

\section*{Answer: B}
- Watch Video Solution
17.

17.

Compounds (B) and (C) are:
A.

b. Both are

B.

D. B is (I) and C is (II)

\section*{Answer: C}

\section*{- Watch Video Solution}
18.
(B), (C), and (D), respectively, are

A.

B. (b) (I), (III), (II)
C. (c) (III), (II), (I)
D. (d) (III), (I), (II)

\section*{Answer: B}
19. Expand the following condensed formulas into their complete structural formulas.

\section*{\(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\)}

\section*{- Watch Video Solution}
\[
\begin{array}{r}
\mathrm{Me}-\equiv-\mathrm{Me} \xrightarrow{\mathrm{Cs}+\mathrm{EtOH}} \mathrm{~A} \xrightarrow{\mathrm{Br}_{2}} \mathrm{D} \\
\mathrm{~F} \stackrel{\mathrm{Br}_{2}}{\longleftrightarrow} \mathrm{C} \underset{\text { (ii) } \mathrm{CH}_{3} \mathrm{COOH}}{\stackrel{\text { (i) } \mathrm{Sia}_{2} \mathrm{BH}}{\rightleftarrows}} \underset{\text { (ii) } \mathrm{CH}_{3} \mathrm{COOH}}{\stackrel{\text { (i) } \mathrm{BH}_{3}+\mathrm{THF}}{\longrightarrow}} \mathrm{~B} \xrightarrow{\mathrm{Br}_{2}} \mathrm{E}
\end{array}
\]
20.
(I)

(II)

(III)

(IV)

A
B
C
D
E
F
A. (a) \(\begin{array}{ll}A & B \\ .(I) & (I I)\end{array}\)
\(C \quad D\)
\(E\)
\(F\)
\(\begin{array}{llllll} & \\ \text { B. (b) }\end{array} \begin{array}{lllll}A & B & C & D & E \\ & & F\end{array}\)
B. (b) \(\cdot(I) \quad(I) \quad(I I) \quad(I V) \quad(I V) \quad(I I I)\)
C. (c) \(\begin{array}{llllll}A & B & C & D & E & F\end{array}\)
(II) (I) (I) (IV) (III) (III)
\(\begin{array}{llllll}\text { D. (d) } & A & B & C & D & E \\ & F\end{array}\)

Answer: D
- Watch Video Solution
\[
\begin{aligned}
& . \mathrm{C} \stackrel{\mathrm{Dil}^{2} . \mathrm{H}_{2} \mathrm{SO}_{4}}{\stackrel{\mathrm{Hg}^{2+}}{ }} \mathrm{Ph} — — \mathrm{H} \xrightarrow[\mathrm{D}_{2} \mathrm{O}_{2} / \text { OD }]{\mathrm{BD}_{3} / \mathrm{THF}} \mathrm{~A} \\
& \mathrm{D}_{2} \mathrm{O}+\text { Dil. } \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Hg}^{2+} \\
& \text { B }
\end{aligned}
\]
A. B, and C are:
(I)


(III) \(\mathrm{Ph}^{-}\)

21.

D
A. (a) (I), (II), and (III)
B. (b) (II), (I), and (III)
C. (c) (II), (III), and (I)
D. (d) (I), (III), and (II)

\section*{(D) Watch Video Solution}

22.
\(A, B\), and C:
A.

B.
C.
D.

\section*{- Watch Video Solution}
23. Compound (X) on complete catalytic hydrogenation with
\(H_{2} / P t\) gives an alkane. The number of moles of \(H_{2}\) required per mole of compound \((X)\) is:
A. 2
B. 3
C. 4
D. 5

\section*{Answer: C}
24. \(C l_{3}-\underset{(X)}{\overline{\bar{X}}}-H \underset{D_{2}+P-2 \text { catalyst }}{ }(A) \xrightarrow{H C l}(B)\)

Compounds ( A ) and ( B ) are:
A.

B.
 \(\mathrm{Cl}_{3} \mathrm{C}{\underset{\mathrm{D}}{\mathrm{D}}}_{\stackrel{\mathrm{H}}{\mathrm{Cl}}<_{\mathrm{H}}^{\mathrm{D}}}^{\mathrm{H}}\)
C.


D.


\section*{Answer: B}

\section*{- Watch Video Solution}
25. \(\mathrm{H}-\equiv-H \underset{(i i)\left(\mathrm{H}_{2} \mathrm{O}\right) /(\mathrm{Zn})}{\left(\mathrm{i} \mathrm{O}_{3}\right.}(A) \xrightarrow{\mathrm{Zn} / \mathrm{CH}_{3} \mathrm{COOH}}(B)\)

Compound (B):
A.
a.

B. (b) \(\mathrm{Me}-\mathrm{COOH}\)
C. c. HO
D.d. \(\mathrm{Me}<_{\mathrm{OAC}}^{\mathrm{OAC}}\)

\section*{Answer: C}

\section*{(D) Watch Video Solution}
26. Which one of the following does not dissolve in conc. \(\mathrm{H}_{2} \mathrm{SO}_{4}\) ?
A. (a) \(H-\equiv-H\)
B. (b) \(M e-\equiv-M e\)
C. c. \({ }^{\mathrm{Me}} \simeq \equiv-\mathrm{H}\)
D. d. \(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\)

\section*{Answer: A}

\section*{- Watch Video Solution}
27. \(2 \mathrm{H}-\equiv-\mathrm{H} \xrightarrow[\mathrm{NH}_{4} \mathrm{Cl}]{\mathrm{CuCl}} A \xrightarrow{\mathrm{H}_{2}+\mathrm{Ni}_{2} \mathrm{~B}} B \xrightarrow[\text { (Major) }]{\mathrm{Br}_{2}} C\)

The major amount of \((C)\) is:

A. \(\quad \mathrm{Br}\)


D.
d.

\section*{Answer: D}

\section*{- Watch Video Solution}
28.2HC \(\equiv \mathrm{CH} \xrightarrow[+\mathrm{NH}_{4} \mathrm{Cl}]{\mathrm{CH}_{2} \mathrm{Cl}_{2}}(A) \xrightarrow[\mathrm{HCl}]{1 \mathrm{~mol}}(B)\)

Compounds (A) and (B) are:

\[
\text { b. } \mathrm{H}-\equiv-\equiv-\mathrm{H} \quad \mathrm{H}-\equiv \prod_{\mathrm{Cl}}^{\prime}
\]
B.
C.
c. \(-\equiv-\mathrm{H}\)
D.

\section*{Answer: A}

\section*{D Watch Video Solution}
29. \(2 \mathrm{HC} \equiv \mathrm{Ch} \xrightarrow{\mathrm{Cu}^{2+}+\mathrm{O}_{2}}(A) \xrightarrow[\mathrm{HCl}]{1 \mathrm{~mol}}(B)\)

Compound (A) and (B) are:
A.
a. \(\ — \equiv-\mathrm{H}\)
B.
b. \(\mathrm{H}-\equiv-\equiv-\mathrm{H} \quad \mathrm{H}-\equiv \prod_{\mathrm{Cl}}^{\prime}\)
C.
c. \(\ — \equiv 一 \mathrm{H}\)

D.
\[
\text { d. } \mathrm{H}-\equiv-\equiv-\mathrm{H}
\]

\[
\square{ }^{\mathrm{O}}-\equiv-\mathrm{H} \frac{(\mathrm{i}) \mathrm{Sia}_{2} \mathrm{BD}}{(\mathrm{ii}) \mathrm{CH}_{3} \mathrm{COOD}} \mathrm{~A} \xrightarrow{\mathrm{NH} \mathrm{H}_{2} \mathrm{OH}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}} \mathrm{~B}
\]
30.

Compounds (A) and (B) are:
A.


B.


C.


D.



\section*{Answer: A}

\section*{D Watch Video Solution}

Exercises Archives Single Correct Answer Type
1. When propyne is treated with aqueous \(\mathrm{H}_{2} \mathrm{SO}_{4}\) in the presence of \(\mathrm{HgSO}_{4}\), the major product is:
A. (a) Propanal
B. (b) Propyl hydrogen sulphate
C. (c) Acetone
D. (d) Propanol

\section*{Answer: C}

\section*{(D) Watch Video Solution}
2. Acidic hydrogen is present in:
A. (a) Ethyne
B. (b) Ethene
C. (c) Benzene
D. (d) Ethane

\section*{Answer: A}

\section*{( Watch Video Solution}
3. The number of structural and configurational isomers of a bromo compound, \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}\), formed by the additionn of HBr to 2-penthyne respectively are
A. (a) 1 and 2
B. (b) 2 and 4
C. (c) 4 and 2
D. (d) 2 and 1

\section*{Answer: B}

\section*{- Watch Video Solution}
4. Identify a reagent from the following list which can easily distinguish between 1-butyne and 2-butyne.
A. (a) Bromine, \(C C l_{4}\)
B. (b) \(H_{2}\), Lindlar's catalyst
C. (c) Dilute \(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HgSO}_{4}\)
D. (d) Ammoniacal \(C u_{2} C l_{2}\) solution

\section*{Answer: D}
5. The reagent(s) for the following conversion

Br

is/are:
A. (a) Alcoholic KOH
B. (b) Alcoholic KOH followed by \(\mathrm{NaNH}_{2}\)
C. (c) Aqueous KOH followed by \(\mathrm{NaNH}_{2}\)
D. (d) \(\mathrm{Zn} / \mathrm{CH}_{3} \mathrm{OH}\)

Answer: B
6. The synthesis of 3 -octyne is achieved by adding \(a\) bromoalkane into a mixture of sodium amide and alkyne. The bromoalkane and alkyne, respectively, are
A. (a) \(\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) and \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\)
B. (b) \(\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) and \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \equiv \mathrm{CH}\)
C. (c) \(\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) and \(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}\)
D. (d) \(\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) and \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\)

\section*{Answer: B}

\section*{- Watch Video Solution}

\section*{Exercises Archives Fill In The Blanks Type}

\section*{(D) Watch Video Solution}
2. Acetylene is treated with excess sodium in liquid ammonia.

The product is reacted with excess of methyl iodide. The final product is

\section*{- Watch Video Solution}
3. Addition of water to acetylene compound is catalysed by.................and.
- Watch Video Solution

Exercises Archives Analytical And Desriptive Type
1. Outline the reaction sequence of the conversion of ethene to ethyne (the number of steps should not be more than two).

\section*{- Watch Video Solution}
2. Identify a reagent from the following list which can easily distinguish between 1-butyne and 2-butyne.

\section*{- Watch Video Solution}
3. How would you convert acetylene to acetone?
4. Give reasons for the following:
\[
C H_{2}=C H^{\Theta} \text { is more basic than } H C \equiv C^{\Theta}
\]```

