

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (ENGLISH)

CHEMICAL BONDING AND MOLECULAR STRUCTURE

Illustration

- 1. Which statement is correct for ionic bond?
- (a) It is non-directional.
- (b) It is not formed by overlapping of orbitals
- (b) It is formed by overlapping of orbitals.
- (c) it is formed by the elements with same EN
- (d) Both (a) and (b) are correct.

- **2.** Which one is having high hydration energy?
- (a) *K* [⊕]
- (b) *Li* [⊕]
- (c) Na [⊕]
- (e) Cs [⊕] .
 - 0

Watch Video Solution

- **3.** Which statement is/are correct(more than one correct)?
- (a) In aqueous solution A1 gives hydrated ions $\left[A1\left(H_2O\right)_6\right]^{3+}$
- (b) Most of aluminium compounds are covalent because formation of
- $A1^{3+}$ requires much more energy $\left(=5138kJmo1^{-1}\right)$ which is not available ordinarily
- (c) In aqueous solution A1 forms hydrated ions becase og high (negative) heat of hydration of $A1^{3+}$ compensates the high IE_3 of A1
- (d) Magnitude of hydration energy of $A1^{3+} < IE_3$ of A1.

4. Which statement is/are correct

(a) Formation of anions with unit charge (e.g $CI^{\Theta}Br^{\Theta}$, Br^{Θ} , I^{Θ} are very common because the EA of these atoms is positive and quite high or $\Delta_{ea} H^{\,\Theta}$ of these atoms are negative and quite high

(b) $\mathit{EA'}$ or $\Delta_{\mathit{eq}} H^\Theta$ of these atoms is positive and quite high (c) Formation of anions with -23 charge $(e. g. S^{2-}, O^2)$ is not so easy as their second EA are negative i.e energy is needed to add second electron (d) Formation of anions with -3 charge $\left(e.\,g.\,N^{3\, ext{-}},p^{3\, ext{-}}
ight)$ is almost rare as the third $\Delta_{eq} H^{\Theta}$ are positive i,e energy in needed to add third electron .

Watch Video Solution

5. Which statement is/are correct?

- (a) Ionic compounds like sulphate and phosphates of Ba and Sr
- $\left[e.\,gBaSO_4,SrSO_4,Ba_3\left(PO_4\right)_2\right]$ and $Sr_3\left(PO_4\right)_2$ are insoluble in water
- (b) The above compounds are soluble in water
- (c) Magnitude of lattice energy $\left(\Delta_U\!H^\Theta
 ight)$ of the above compounds is greater than their hydration energy $\left(\Delta_{hyd}\!H^\Theta\right)$ High $\Delta_U\!H^\Theta$ of these

compounds is due to polyvalent nature of both the cations and the anions (d) In these cases, hydration of ions fails to liberate sufficient energy to offset the lattice energy. **Watch Video Solution** 6. Draw the Lewis structure of CO molecule **Watch Video Solution 7.** Draw the Lewis structure of NO_2^- (Nitrite ion). **Watch Video Solution 8.** Write the Lewis dot structure of CO_3^{2-} ion . **Watch Video Solution**

9. Write the Lewis structure for CN^{Θ} ion .
Watch Video Solution
10. Write the Lewis structure for SO_5^{2-} (Per oxodisulphate ion).
Watch Video Solution
11. Calculate the formal charge on atoms in carbonate $\left(CO_3^{2-}\right)$.
Watch Video Solution
12. Calculate the formal charge on each atoms in nitrite ion .
Watch Video Solution

13. Calcuate the formal charge on each atom in SO_5^{2-} (per -oxosulphate ion).

14. Calculate the formal charge on each atoms in CO_4^{2-} (per oxocarbonate ion).

15. Explain the structure of CO_3^{2-} ion in terms of resonance

?

Watch Video Solution

16. Which of the following pairs do not constitute resonanting structures

a. Me
$$-N = 0$$
 and Me $-O - N = 0$

a. Me
$$-\stackrel{\oplus}{N} \stackrel{O}{\bigcirc}$$
 and Me $-\stackrel{O}{N} = 0$
b. Me $-\stackrel{\bullet}{C} \stackrel{\circ}{C} \stackrel{\circ}{H_2}$ and Me $-\stackrel{\circ}{C} \stackrel{\circ}{H_2}$

Me
$$\rightarrow$$
 and Me \rightarrow CH \rightarrow CH

17. A arrange the following resonating structures in the order of decreasing stability

18. Write the resonating structures of phenol in order of decreasing stabilities.

19. Write the resonating structures of NO_2^{Θ} (nitrite ion) and NO_3^{Θ} (nitrate ion) .

20. Which of the following is the most stable resonance structure

c.
$$H_2C$$
 $\ddot{O}H$ H_2C $\ddot{N}H_2$ $\ddot{N}H_2$

21. Give the stability of the following resonance structures

(a)
$$H_2C = N = C$$

$$\bigoplus \Theta$$
 (b) $H_2C - N = N$

$$\mathbf{D}) H_2 \mathbf{C} - \mathbf{N} - \mathbf{N}$$

(c)
$$H_2C - N = N$$

(d)
$$H_2C - N = N$$
.

22. Explain :

(i)
$$\mu of NH_3 > NF_3$$

- 23. Arrange the following compounds in decreasing order of dipole moment values Explain the order
- (a) CBr_4 , (b) $CHBr_3$, (c) CH_2Br_2 , (d) CH_3Br .

24. (a) Assign orientation to the three chlorotoluenes with μ = 1.3, 1.78 and 1.9 D

25. The dipole moment of CH_3F is greater than that of CH_3Cl .

26. Calculate the dipole moment of the following compound

27. Calculate the number of σ , π and non-bonding (i.e lone pair) electrons

in the following compounds

(a)
$$H_2C = CH - CH = CH_2$$

(b)
$$H_3C - C \equiv C - CH = CH - CH_3$$

28. Discuss the hybridisation of carbon atoms in allene $\left(C_3H_4\right)$ and show the π -orbital overlap.

Watch Video Solution

29. Out of the following species, group them having similar structures

$$CH_4,CO_3^{2-},CO_2,NH_4,NO_3^{\Theta},N_3^{\Theta},BF_4^{\Theta},SO_2,NO_2^{\Theta}.$$

Watch Video Solution

30. Determine the hybridisation, geometry, number of lone pairs (lps's) and bond pairs (bp's) excluding pi bonds in the following compounds

- (a) PF_6^{Θ}
- (b) I_3^{Θ}
- (c) *CIF*₃
- (d) $XeOF_4$
- (e) SO₂

(g) IF_4^{\oplus}

 \oplus

(h) NH_{Λ} .

Watch Video Solution

31. In which of the following molecules, p and d orbitals of central atoms are involved in the hybridisation

- (a) $\left[PtCI_4 \right]^{2}$
- (b) AsF_3

Watch Video Solution

32. Explain why boilling point of n-alkanes increases regularly with the increase in the number of carbon atoms.

33. Which of the following intermolecular forces have a potential energy

distance function as $E \propto \frac{1}{r^2}$ (i) Ion -dipole (ii) Dipole -dipole (iii) Ion -induced dipole (iv) London

dispersion forces.

34. Ethyl alcohol (C_2H_5OH) has higher boiling point than dimethyl ether $(CH_3 - O - CH_3)$ although the molecular weight of both are same due to

35. Explain unusual stabillity of chorohybrate thugh a compound with two or more -OH groups present on one carbon atom is usually unstabel

36. o-Hydroxybenzaldehyde is a liquid at room temperature while p-hydroxybenzaldehyde is a high milting solid because of

37. (a) Nitrogen and chlorine have almost same EN' s but N forms H-bonding

38. (I) Arrange the compounds (a0 in the order of decreasing boilling points and (b) in the order of decreasing solubility in water

(A) (1) Ethanol (2) Propane, (3) Pentanol

39. Give the decreasing order of boiling points of H_2O , $N\!H_3$ and $H\!F$

40. Compare the bond lenth of *O* - *O* in the following molecules

- (a) KO_2 , (b) $O_2 \left[AsF_6 \right]$
 - Watch Video Solution

41. Which diatomic molecule of second period basides ${\cal O}_2$ should be paramagnetic ? .

42. Write the molecular orbital electron distribution of oxygen $\left(O_2\right)$ Specify its bond order and magnetic property

43. Which of the two peroxide ion or superoxide ion has larger bond length?

44. How the bond energy varies from N_2^{Θ} and N_2^{\oplus} and why?

45. Select from the following molecular orbitals which are gerade ungerade

(a)
$$\sigma(2s)$$
 (b) $\pi * (2p_x)$ (c) $\pi * (2p_y)$

(d)
$$\sigma^*(1s)$$
 (e) $\pi(2p_x)$ (f) $\pi(2p_x)$.

Watch Video Solution

Solved Examples

- 1. Construct a table comparing metals with non-metals in terms of
- (a) The sign of the charges possible on monoatomic ions
- (b) The possibility of reaction with other elements of the same class
- (c) The range of the possible number of valence electrons
- (d) The ability of the elecments to conduct electricity in the elementary state .

2. Write the formula for a compound of CI which contains Ionic bonds only

3. Pure liquid H_2SO_4 solidifies below 10.4 ° C Neither the pure liquid nor the solid conducts electricity however, aqueous solution of H_2SO_4 conducts electricity Solid Na_2SO_4 which melts at 884 $^{\circ}C$ does not conduct electricity, but molten Na_2SO_4 as well as aqueous solutions of Na_2SO_4 conduct electricity Explain the difference in properties between pure Na_2SO_4 and H_2SO_A .

- 4. Write electron dot and line structure for
- (a) SeO_3^{2-} , (b) Li_3PO_4 (c) ClO_2^{Θ} (d) $COCl_2$

- (e) H_2CO
- (f) C_2H_2 (g) HCO_2H .

Watch Video Solution

- **5.** By completing the following structures, adding unshared e^- pairs when necessary calculate the charges
- (a) $N \equiv C \equiv N$

 $CI - C \equiv N$

a. $N \equiv C - C \equiv N$

c. $\frac{Cl}{Cl}$ C-O

b. $Cl - C \equiv N$

 $\mathbf{d} \cdot \begin{bmatrix} \mathbf{O} - \mathbf{C} \mathbf{I} - \mathbf{O} \end{bmatrix}$

Watch Video Solution

6. (a) In each of the following parts select the species having the greater resonance stabilisation

$$H_2C = O$$
 and $H \mid O^{\Theta}C = O$

(ii) HNO_3 and NO_3^{Θ}

(b) Draw all possible octet structural formulas for N_3^Θ Which ones are possible resonance forms ? .

7. Arrange in decreasing polarity of bonds SbH_3 , AsH_3 , PH_3 , NH_3

8. The dipole moment of HBr is $2.60 \times 10^{-30}Cm$ and the interatomic spacing is 1.41A What is the percentage of ionic character of HBr?

9. The single and multiple bond radii of some elements given in the following table Calculate the bond lengths in

(b) *NH*₃

(a) SCI_2

- (c) CH_2CI_2
- (d) HOCI
- (e) HCN
- $(f)H_3PO_4$
- (g) CH_3NH_2

ſ	Single bond radii (Å)						
t	— Н	0.28	P	1.10	Те	1.37	
10	7	0.77	As	1.21	F	0.64	
Is	i	1.77	Sb	1.41	C1	0.99	
10	ie	1.22	0	0.66	Br	1.14	
Si	n	1.40	S	1.04	I	1.33	
N	7	0.70	Se	117			

Watch Video Solution

- **10.** Arrange C C, C = C and C \equiv C in order of
- (i) Decreasing bond dissociation energy
- (ii) Decreasing bond lengths

11. The Pt - Cl distance is 2.32A in several crystalline compounds

What is the Cl - Cl distance in structure (i) and in structure (ii)

- **12.** The averge (C_C) bond energy is $343kJmo1^{-1}$. What do you predict for the Si -Si single bond energy
- (b) Carbrundum (SiC) and corundun $\left(A1_2O_3\right)$ are important abrasives Comment on the structures for these compounds to explain why they have such hardness .

13. What is the hybridisation state of each C-atom in the following molecule?

Benzene

Watch Video Solution

14. How many σ and π bonds are present in a benzene molecule?.

Watch Video Solution

15. (a) What is the number of molecular orbitals obtained by mixing of two atomic orbitals?

(b) Out of F_2 and OF which of these molecules is (are) paramagnetic

16. Compare and contrast the concepts of hybrid orbitals and molecular orbitals with respect to

- (i) The number of atoms involved
- (ii) The number of orbitals produced from a given number of ground state orbitals
- (iii) The energies of the resulting orbitals with respect to one another

17. Which of the following molecules has the highest *IE*

(i) Ne (ii) F

18. Select the species with the largest *IE* in each

(i)Na, K, Rb (ii) F, Ne

19. Select from following gropus, the one which has the largest radius

Li, Na, Rb

- 20. Distinguish using the property mentioned in brackets
- (e) NF₃, NH₃ (dipole moment)

21. Which of the following alkali metal chlorides is expected to have the highest melting point

(i) LiCl (ii) KCl (iii) RbCl (iv) NaCl.

22. Explain

Why H_2O is liquid while H_2S is gas

Watch Video Solution

23. How do you account for the difference in melting points between (a) and (b) between (c) and (d) and between these two differences?

Watch Video Solution

24. A plant virus was found to consist of uniform cylindrical particles 100A in diameter and 4000A long The virus has a specific volume $0.314cm^3g^{-1}$ If

the virus particle is considered to be one molecule, what is its molecular weight ? .

Watch Video Solution

25. Calculate the I-I distance in each of the isomeric compounds $C_2H_2I_2$ as shown below

Give Bond length of $C - I \Rightarrow 210 \text{ pm}$

Bond length of $C = C \Rightarrow 133 \text{ pm}$

Watch Video Solution

26. Calculate the I-I distance in each of the three isomeric diiodobenzenes Assume that the ring is a regular hexagon and that each C - I bonds lies on a line through the centre of the hexagon .

Given C - I bond length = 210 pm

The distance between two adjacent C-atom (i.e C-C)

27. Enthalpic of hydrogenation of ethene $\left(C_2H_4\right)$ and benzene $\left(C_6H_6\right)$ are -136.68 and 205.65 $kJmo1^{-1}$ respectively

Calculate the resonance energy of benzene

- (a) $C_2 H_{4(g)} + H_{2(g)} \rightarrow C_2 H_6$, $\Delta H_1 = -136.68 \text{kJ mo1}^{-1}$
- (b) $C_6 H_{6_{(1)}} + 3H_{2(g)} \rightarrow C_6 H_{12}$, $\Delta H_2 = -205.65 \text{kJ mo1}^{-1}$.

28. Select the species which is best described

CI, Ar, K (has the smallest IE)

Watch Video Solution

29. (a)The CI - O bond distance in CIO_4^{Θ} is 144pm What do you conclude about the structure of this ion ?

the P atom located centrally The CI - P - CI angle is found to be 1035 $^{\circ}$

(b) The POCI₃ molecule has the shape of an irregular tetrahedron with

Give a qualitative explanation for the deviation of this structure from a regular tetrahedron .

30. Draw all geometrical isomers of PBr_2Cl_3 molecule State which isomer (s) have no dipole moment .

31. Write structures and describe the geometry of the following molecules

- (a) NH₂OH (Hydroxylamine)
- (b) NH_2NH_2 (Hybrazine)
- (c) CH₃COCI (Acety1 chloride)
- (d) $CH_2 = NH$ (methylenamine).

32. Reduce the hybridisation, geometry and shape of the following

(i) Br_3^{Θ} (ii) CIO_3^{\oplus} (iii) $IO_2F_2^{\Theta}$

Either of the hybridisation (i) sp^2 and (ii) sp^3d^2 of a central atom can lead to a squar planar molecule Give one example of each .

Watch Video Solution

33. State the bond order and indicate whether the species is paramagnetic

 CN^{\oplus} (b) CN (c) CN^{Θ} (d) No .

34. If the internuclear axis in the diatomic molecule AB is designated as the z-axis what are the varoius pairs of s,p or d atomic orbitals that can be combined to from (a) $\pi_{_{X}}$ and (b) $\pi_{_{Y}}$ orbitals ? .

35. Make a table giving (i) number of orbitals with a given energy (ii) maximum number of electrons per orbital and (iii) maximum number of electrons per orbital and (iii) maximum number of electrons at a given energu for the following types of orbitals

- (a) s
- (b) p (c) sp^2 (d) sp^3
- (e) σ (f) σ^* (g) π^* .

Watch Video Solution

36. When 2s orbital overlaps with $2p_x$ or $2p_y$ orbital (assuming Z -axis as the internuclear axis) threr is a partical overlap and they do not form any MO Explain why?

Watch Video Solution

Ex 2 2 Subjective Intermolecular Forces And H Bonding

1. Write a Lewis structure for ${\rm CC}l_2F_2$ one of the compounds indicated in the depletion of stratoshpheric ozone .

- 2. Write Lewis structure for the following
- (a) Ethene (C_2H_4) the most important reactant in polymer manufacture
- (b) Nitrogen (N_2) the most abundant atmosheric gas
- (c) Methanol $\left(CH_4O\right)$ an important industrial alcohol that is begin used as a gasoline alternative in car engines .

3. The dipole moment of LiH is $1.964 \times 10^{-29}Cm$ and interatomic distance between Li and H in this molecule is 1.6A What is the per cent ionic character in LiH?

4. Predict whether each of the following molecule has a dipole momnet

(a) BF_3 (b) IBr (c) CH_2CI_2 .

5. The dipole moment of KCI is $3.36 \times 10^{-29}Cm$ The interatomic distance between K^{\oplus} and CI^{Θ} in this unit of KCI is $2.3 \times 10^{-10}m$ Calculate the percentage ionic character of KCI.

- 6. Account of the following observations
- (a) Ammonium salts are more soluble in water than the corresponding sodium salts
- (b) $BeCI_2$ is linear but $SnCI_2$ is angular
- (c) \boldsymbol{F}_2 gas is more reactive than $\boldsymbol{C}\!\boldsymbol{I}_2$ gas
- (d) The bond lengths of both O O bonds in ozone are equal .

Water video Solution

7. State whether the following are ionic or covalent

- (a) CaH_2 (b) MgO (c) Na_2CO_3 (d) NH_4CI
- (e) HCl (f) $CaCl_2$ (g) $Na_2S(h) SnCl_2$
- (i) Diamond (j) CaC_2 (k) NaH (i) C_2H_2 .
 - Watch Video Solution

Ex 2 2 Subjective Molecular Orbital Theory

- 1. Identify which of them are polar and non-polar
- (a) HF (b) $BeCI_2$ (c) $HgCI_2$ (d) NH_3
- (e) H_2O (f) N_2 (g) $AICI_3$ (h) CCI_4
- (i) CI_2 (j) $SiCI_4$.
 - Watch Video Solution

- 2. Give reasons for the following
- (a) PF_5 is know but NF_3 is not
- (b) H_2O is a good solvent
- (c) BF₃ is non-polar but planar
- (e) Carbon -oxygen (C O) bond lengths are equal in Na_2CO_3
- (f) MgF_2 is more soluble in water than $MgCI_2$.

Watch Video Solution

3. Give reason for the following

tetravalent in organic compound

Watch Video Solution

4. Indicate wheter the following pairs of elements form ionic or covalent compounds Also write their molecular formula

Carbon has two unpaired electrons in the outermost orbit, but it is

(a) C and S (b) Na and CI (c) S and O (d) Ca and H.

Ex 2 2 Objective

- 1. Arrange the following as directed
- (a) N_2 , O_2 , F_2 , CI_2 (Decreasing order of bond energey)
- (b) S O, N CIMg O, As -F (Decreasing polarity of bonds)
- (c) sp, sp^2, sp (Decreasing order of energy of orbitals)
- (d) HF, HCI, HBr, HI (Decreasing order of dipole moments)

Watch Video Solution

- 2. Expalin the following
- (a) The central C C bond in Buta 1,3 diene is shorter than that of n-
- butane
- (b) Why the dipole moment of cis 1, 2 dichloroethene is greater than
- that of trans -1,2 -dichloroethene
- (c) CIF_2^{Θ} is linear, but CIF_2^{Θ} is bent

(d)Two different bond lengths are observed in PF_5 but only one bond length is observed in SF_6 .

- 3. Arrange the following in decreasing order of dipole moment
- (1) m-Dichlorobenzene
- (2) o-Dichlorobenzene (3) p-Dichlorobenzene

- **4.** Predict the shape of the following Xenon compounds
- (a) XeO_3 (b) $XeOF_4$ (c) XeO_2F_2 .

5. Considering x-axis as the internuclear axis which out of the following will not form a sigma bond and why? (a) 1s and 1s (b) 1s and $2p_x$ (c) $2p_y$

and $2p_v$ (d) 1s and 2s.

Watch Video Solution

- 6. Arrange the following types of interaction in order of decreasing stability
- (a) Covalent bond (b) van ber Waals force
- (c) H-bonding (d) Dipole interaction
- (e) Ionic bond.

- 7. Arrange the following types of intermolecular forces in order of decreasing their strength
- (a) Ion dipole
- (b) Keesom forces
- (C) Dispersion or London forces
- (d) Dipole-induced dipole
- (e) lon-induced dipole (Debye forces).

8. Name the types of interaction or intermolecular forces of which potential energy-distance function are given below

(a)
$$E \propto \frac{1}{r}$$
 (b) $E \propto \frac{1}{r^2}$ (c) $E \propto \frac{1}{r^3}$
(d) $E \propto \frac{1}{r^4}$ (e) $E \propto \frac{1}{r^6}$.

9. List properties of water that stem from H-bonding

10. Predict the order of decreasing boiling points of the following

 H_2 , He, Ne, Xe, CH_4 .

11. Which of the following pairs is expected to exhibit H-bonding

- (a) CH_3CH_2OH and CH_3OCH_3
- (b) CH_3NH_2 and CH_3SH
- (c) CH_3OH and $(CH_3)_3N$.

12. (a) Give the decreasing order of melting points of the following NH_3 , PH_3 , $(CH_3)_3N$ Explain

(b) In which molecule is the van der Waals force likely to be the most

important in determining the m.pt and b.pt for $\mathit{ICI}, \mathit{Br}_2, \mathit{HCI}, \mathit{H}_2\mathit{S}, \mathit{CO}$.

13. Give the number of electrons which occupy the bonding orbitals in $H_2^{\oplus}H_2$ and O_2^{\oplus}

14. Compare the relative stabilities and magnetic behaviour of the following species

(a) O_2^{Θ} and N_2^{\oplus} (b) O_2^{2-} and N_2^{Θ} (c) O_2^{2-} and N_2^{2-} .

Watch Video Solution

15. Expalin

(a) H_2^{\oplus} and H_2^{Θ} ions have same bond order but H_2^{\oplus} ions are more stable

than H_2^{Θ}

(b) It is possible to have a diatomic molecule with its ground sate MO s full with electrons

(c) Why $2p_{x0}$ or $2p_y$ orbitals do not combine with 2s orbitals to form MO

(Taking Z-axis as the internuclear axis).

Watch Video Solution

16. Which of the following species have same bond order and same shape

(a) N_3^{Θ} (b) O_3 (c) CO_2 (d) NO_2^{Θ} .

17. Which	of the following	g is soluble	in water
------------------	------------------	--------------	----------

- **A.** *CS*₂
- B. CHCl₃
- C. CCl₄
- D. *CH*₃*OH*

Answer:

18. Which one among the following does not have the hybrogen bond?

- A. Liquid *NH*₃
- B. Liquid *HCl*

C. Water

D. Phenol			
Answer:			
Watch Video Solution			
19. The molecule having one unpaired electrons is .			
A. O ₂			
B. CN^{Θ}			
C. NO			
D. CO			
Answer:			
Watch Video Solution			
20. The hydrogen bond is strongest in			

A. F - H.... O B. C - H.... O C. O - H.... S D. F - H.... F **Answer:** Watch Video Solution 21. Hydrogen bond is maximum in . A. Propanol B. Propyl chloride C. Tripropylamine D. Dipropyl ether Answer: Watch Video Solution

22. How many hydrogen bonds can be formed by a water molecule?		
A. 1		
B. 2		
C. 3		
D. 4		
Answer: Watch Video Solution		
23. Number of paired electrons in O_2 molecule is .		
A. 16		
B. 14		
C. 8		

Answer:

Watch Video Solution

- **24.** Among KO_2 , AlO_2^+ , BaO_2 and NO_2^+ unpaired electron is present in
 - A. KO2 only
 - B. NO_2^{\oplus} and BaO_2
 - C. KO_2 and AIO_2^{Θ}
 - D. BaO₂ only

Answer:

Watch Video Solution

25. The correct order of decreasing bond lengths of CO, CO_2 and CO_3^{2-} is

A.I > III > II

B.I > II > III

C.III > II > I

D.II > III > I

Answer:

Watch Video Solution

26. Which of the following statement is correct among the species CN^{Θ} , CO and NO^{\oplus} .

A. Isolelectronic and weak field ligands

B. Isolelectronic with three bond order

C. Bond order three and weak field ligands

D. Bond order two and pi-acceptor

Answer:

27. Which of the following species has unpaired electrons?

- A. O_2^{2-}
- $B.F_2$
- $\mathsf{C}.\,N_2$
- D. O_2^{Θ}

Answer:

28. Which of the following are iso-electronic as well as iso-structural?

 NO_3 , CO_3^2 , ClO_3 , SO_3

- A. CO_3^{2-} , CIO_3^{Θ}
- B. CO_3^{2} , NO_3^{Θ}

 $C.SO_3, CO_3^{2}$

D. SO_3 , NO_3^{Θ}

Answer:

Watch Video Solution

29. According to MO theory which of the following statement about the magnetic character and bond order is correct regarding O_2^+ ?

A. paramagnetic and $BO > O_2$

B. paramagnetic and $BO < O_2$

C. Diamagnetic and $BO > O_2$

D. Diamagnetic and $BO < O_2$

Answer:

Watch Video Solution

30. Which of the following compound is paramagnetic?. $A. K_2O_2$ $B.O_3$ $C.KO_2$ D. N_2O **Answer:** Watch Video Solution **31.** The species having bond order differnet from that in CO is . A. N_2 B. NO^{Θ} C. NO [⊕] D. CN^{Θ}

Answer:

Watch Video Solution

32. In forming $(i)N_2 \rightarrow N_2^{\oplus}$ and $O_2 \rightarrow O_2^{\oplus}$ the electrons respectively removed from.

A.
$$\left(\pi * 2p_y \text{ or } \pi * 2p_x\right)$$
 and $\left(\pi 2p_y \text{ or } \pi 2p_x\right)$

B.
$$\left(\pi. * 2p_y \text{ or } \pi. * 2p_x\right)$$
 and $\left(\pi. * 2p_y \text{ or } \pi. * 2p_x\right)$

C.
$$\left(\pi 2p_y \text{ or } \pi 2p_x\right)$$
 and $\left(\pi 2p_y \text{ or } \pi 2p_x\right)$

D.
$$\left(\pi 2p_y \text{ or } \pi 2p_x\right)$$
 and $\left(\pi. p_y \text{ or } \pi p_y \text{ and } \pi 2p_x\right)$

Answer:

Watch Video Solution

33. Using MO theory predict which of the following species has the shortest bond length?

- A. $O_2^{2 \oplus}$
- B. O_2^{Θ}
- $C.O_2^{2-}$ D. O_2^{\oplus}

Answer:

Watch Video Solution

- 34. Which of the following have identical bond order?
 - A. O_2^{Θ}
 - B. CN^{Θ}
 - C. NO [⊕]
 - D. O_2^{\oplus}

Answer:

Watch Video Solution

Exercises Linked Comprehension

1. The shape of a moleculs is determined by electron pair repulsions in the valence shell A.lp occupies a larger space than a bp because it is not shared by two nuclei The the lp lp repulsion is greater than the lp-bp repulsion, which in trun is greater the bp-bp repulsion. The presence of lp causes distortion of bond angles hence, a daviation from an ideal shape THe extent of distortion depends upon the orientation of the lp's around the central atom In a trigonal bipyramid, the lp's occupy equatorial positions than the apical ones In AB_n type molecules, as the EN of A increases, the bp's come closer and the repulsion between them increases. On the other hand, as EN of B increases, the lp s get farther and repulsion decreases

In which of the following molecules is the bond angle largest?.

A. PF_3

 $B.PCl_3$

 $C.PBr_3$

 $D.PI_3$

Answer: D

Watch Video Solution

2. The shape of a moleculs is determined by electron pair repulsions in the valence shell A.lp occupies a larger space than a bp because it is not shared by two nuclei The the lp lp repulsion is greater than the lp-bp repulsion, which in trun is greater the bp-bp repulsion. The presence of lp causes distortion of bond angles hence, a daviation from an ideal shape THe extent of distortion depends upon the orientation of the lp's around the central atom In a trigonal bipyramid, the lp's occupy equatorial positions than the apical ones In AB_n type molecules, as the EN of A increases, the bp's come closer and the repulsion between them increases. On the other hand, as EN of B increases, the lp s get farther and repulsion decreases

The shape of which of the following molecules will not be distored?

- A. BrF₃
- B. ClF_3
- $C. XeF_4$
- D. XeF_6

Answer: C

Watch Video Solution

3. The shape of a moleculs is determined by electron pair repulsions in the valence shell. A lp occupies a larger space than a bp because it is not shared by two nuclei The the lp lp repulsion is greater than the lp-bp repulsion, which in turn is greater the bp-bp repulsion. The presence of lp causes distortion of bond angles hence, a daviation from an ideal shape. The extent of distortion depends upon the orientation of the lp's around the central atom In a trigonal bipyramid, The lp's occupy equatorial positions than the apical ones In AB_n type molecules, as the EN of A increases, the bp's come closer and the repulsion between them

increases. On the other hand, as EN of B increases, the lp s get farther and repulsion decreases

Which of the following statements is true?

A. F - N - F angle in $N\!F_3$ is greater than H - N - H angle in $N\!H_3$.

B. F - N - F angle in $N\!F_3$ is smaller than H - N - H angle in $N\!H_3$.

C. H - O - H angle in H_2O is greater than H - N - H angle in NH_3 .

D. F - O - F angle in F_2O is greater than H - O - H angle in H_2O ..

Answer: B

4. The shape of a moleculs is determined by electron pair repulsions in the valence shell Ip occupies a larger space than a bp because it is not shared by two nuclei The the Ip Ip repulsion is greater than the bp-bp repulsion. The presence of Ip causes distortion of bond angles hence, a daviation from an ideal shape THe extent of distortion depends upon orientation of the Ip's around the central atom In a trigonal bipyramid,

the lp's occupy equatorial positions than the apical ones In AB_n type molecules, as the EN of A increases, the bp's come closer and the repulsion between them increases. On the other hand, as EN of Bincreases, the lp s get farther and repulsion decreases

Which of the following species will have the lone pair effects cancelled?.

B. CIF₃

 $C.PCI_3$

D. BrF_5

Answer: A

Watch Video Solution

5. In MO energy diagram for heteronuclear diatomic molecule is similar However, the energies of the AO s of the atom having higher atomic number being lower, the diagram will be unsymmetrical, but that will not make a difference in the electron count The bond order is half the difference in the number of electrns of the bonding (σ and π) and antibonding (σ and π) MOs For a bond to have been formed the bond order the shorter is the bond distance and the greater is the bond dissociation energey But if the bond order is smae in the above two cases, then the bond distance will be greater and the bond dissociation energy smaller in the case which has more populated anti-bonding orbitals The presence of unpaired electron(s) in a molecular orbital will make the system paramagnetic

Which among the following will have a triple bond order?.

A. CO

B. CN^{Θ}

C. NO [⊕]

D. All of these

Answer: D

Watch Video Solution

6. In MO energy diagram for heteronuclear diatomic molecule is similar However, the energies of the AO s of the atom having higher atomic number being lower, the diagram will be unsymmetrical, but that will not make a difference in the electron count The bond order is half the difference in the number of electrns of the bonding (σ and π) and antibonding (σ and π) MOs For a bond to have been formed the bond order the shorter is the bond distance and the greater is the bond dissociation energey But if the bond order is smae in the above two cases, then the bond distance will be greater and the bond dissocation energy smaller in the case which has more populated anti-bonding orbitals The presence of unpaired electron(s) in a molecualr orbital will make the system paramagnetic

Which of the following species is not expected to exist?.

A.
$$He_2^{\oplus}$$

$$B.H_2^{\oplus}$$

$$C.Be_2$$

D.
$$Be_2^{\oplus}$$

Watch Video Solution

7. In MO energy diagram for heteronuclear diatomic molecule is similar However, the energies of the AO s of the atom having higher atomic number being lower, the diagram will be unsymmetrical, but that will not make a difference in the electron count The bond order is half the difference in the number of electrns of the bonding (σ and π) and antibonding (σ and π) MOs For a bond to have been formed the bond order the shorter is the bond distance and the greater is the bond dissociation energey But if the bond order is smae in the above two cases, then the bond distance will be greater and the bond dissocation energy smaller in the case which has more populated anti-bonding orbitals The presence of unpaired electron(s) in a molecualr orbital will make the system paramagnetic Which of the following species is expected to be paramagnetic?.

 $B.O_2^{\Theta}$

 $C. O_2^+$

D. All of these

Answer: D

Watch Video Solution

8. In MO energy diagram for heteronuclear diatomic molecule is similar However, the energies of the AO s of the atom having higher atomic number being lower, the diagram will be unsymmetrical, but that will not make a difference in the electron count The bond order is half the difference in the number of electrns of the bonding (σ and π) and antibonding (σ and π) MOs For a bond to have been formed the bond order the shorter is the bond distance and the greater is the bond dissociation energey But if the bond order is smae in the above two cases, then the bond distance will be greater and the bond dissociation energy smaller in the case which has more populated anti-bonding orbitals The presence of

unpaired electron(s) in a molecualr orbital will make the system paramagnetic

Which of the following orders is correct in respect of bond dissociation energey?.

A.
$$N_2^{\oplus} > N_2^{\Theta}$$

$$B. O_2 > O_2^{\Theta}$$

$$C. NO^{\oplus} > NO$$

D. All of these

Answer: D

- **9.** Which is correct statement?.
 - A. Keto form of acetoacetic ester involves hydrogen bonding
 - B. In water vapour, hydrogen bonding exists

C. For first ionisation, maleic acid is stronger acid than fumaric acid

This can be explained on the basis of concept of hydrogen bonding

D. Boiling point of HCI is higher than that of HF

Answer: C

Watch Video Solution

10. Hydrogen bond is formed between hydrogen atoms and highly electronegative elements. It is of two types -intermolecular and intramolecular It is a weaker bond than ionic, covalent and metallic bonds

In a suitable slovent such as benzene, benzoic acid associates and exists as a .

A. dimer

B. trimer

C. tetramer

D. hexamer

Answer: A

Watch Video Solution

11. Hydrogen bond is formed between hydrogen atoms and highly electronegative elements It is of two types -intermolecular and intramolecular It is a weaker bond than ionic, covalent and metallic bonds

The number of hydrogen bonds in $H_9O_4^{\,\oplus}$ species is .

- **A.** 2
- **B**. 3
- C. 4
- **D.** 1

Answer: B

- 12. Hydrogen bond between two atoms is formed due to
 - A. Paranitophenol is steam volatile but not orthonitrophenol
 - B. Ethyl alcohol is more viscous than glycerol
 - C. If a dry paper is torn, sound is heard due to breaking of hydrogen bonds one after another in a rhythmatic manner .
 - D. In fermic salt, bonds present are covalent, metallic and hydrogen bond.

Answer: C

13. in an ionic bond the cation tends to polarise the electron cloud of the anion by pulling electron density towards itself This causes development

of covalent character in the ionic bond because the electron density gets localised in between the nuclei The tendency of the cation to bring about the polarisation of the anion is expressed as its polasising power The ability of ion to undergo polarisation is called its polarisability The polarising power of a cation or an anion is decided on the basis of F ajans' rules as follows .

(i) The smaller the cation, the higher is its polarising power

(ii) Cations with pseudo-noble gas configuration $\left(ns^2np^6nd^{10}\right)$ have relatively high polarising power than those with noble gas configuration $\left(ns^2np^6\right)$

(iii) The larger the size of the anion, the higher is its polarisability

The ionic conductance of which of the following is the highest?.

A.
$$Li_{(aq)}^{\oplus}$$

B. $Na_{(ag)}^{\oplus}$

 $\mathsf{C.}\,K_{(\mathit{aq})}^{\,\oplus}$

D. *Cs* ⊕ (*aq*)

14. Among the following which will have the lowest melting point and the highest solubility LiCI, $BeCI_2$, BCI_3 , CCI_4 .

A. CCI₄, LiCI

B. LIiCI, CCI_4

 $\mathsf{C}.\,\mathit{BeCI}_2,\mathit{BCI}_3$

 $D. BCI_3, BeCI_2$

Answer: A

Watch Video Solution

15. in an ionic bond the cation tends to polarise the electron cloud of the anion by pulling electron density towards itself This causes development of covalent character in the ionic bond because the electron density gets localised in between the nuclei The tendency of the cation to bring about

the polarisation of the anion is expressed as its polasising power The ability of ion to undergo polarisation is called its polarisability The polarising power of a cation or an anion is decided on the basis of Fajans' rules as follows.

(i) The smaller the cation, the higher is its polarising power

(ii) Cations with pseudo-noble gas configuration $\left(ns^2np^6nd^{10}\right)$ have relatively high polarising power than those with noble gas configuration $\left(ns^2np^6\right)$

(iii) The larger the size of the anion, the higher is its polarisability

Choose the correct order of polarisability for the following I^{Θ} , Br^{Θ} , $CI^{\Theta}F^{\Theta}$.

$$A.I^{\Theta} > Br^{\Theta} > Cl^{\Theta}F^{\Theta}$$

$$B.I^{\Theta} > Br^{\Theta} = Cl^{\Theta} > F^{\Theta}$$

$$C.I^{\Theta} = Br^{\Theta} = Cl^{\Theta} > F^{\Theta}$$

$$D.I^{\Theta} = Br^{\Theta} < Cl^{\Theta} = F^{\Theta}$$

Answer: A

Watch Video Solution

16. in an ionic bond the cation tends to polarise the electron cloud of the anion by pulling electron density towards itself This causes development of covalent character in the ionic bond because the electron density gets localised in between the nuclei The tendency of the cation to bring about the polarisation of the anion is expressed as its polasising power The ability of ion to undergo polarisation is called its polarisability The polarising power of a cation or an anion is decided on the basis of F ajans' rules as follows .

- (i) The smaller the cation, the higher is its polarising power
- (ii) Cations with pseudo-noble gas configuration $\left(ns^2np^6nd^{10}\right)$ have relatively high polarising power than those with noble gas configuration $\left(ns^2np^6\right)$
- (iii) The larger the size of the anion, the higher is its polarisability Arranfe of the following species in dereasing order of polarising powers Ag^{\oplus} , TI^{\oplus} , Na^{\oplus} .

A.
$$TI^{\oplus} > Ag^{\oplus} > Na^{\oplus}$$

B.
$$TI^{\oplus} > Ag^{\oplus} > Ag^{\oplus}$$

$$C.Ag^{\oplus} > TI^{\oplus} > Na^{\oplus}$$

D.
$$Na^{\oplus} > TI^{\oplus} > Ag^{\oplus}$$

Answer: C

Watch Video Solution

17. The Pt - Cl distance is 2.32A in several crystalline compounds

What is the Cl - Cl distance in structure (i) and in structure (ii)

A. 4.32Å

B. 4.32Å

C. 1.16Å

D. 9.28Å

Answer: B

Watch Video Solution

18. The Pt - Cl distance is 2.32A in several crystalline compounds

What is the Cl - Cl distance in structure (i) and in structure (ii)

A. 2.32Å

B. 1.52Å

C. 2.15Å

Answer: D

Watch Video Solution

19. The Pt - CI distance is 2.32A in several crystaline compounds

What is the CI - CI distance in structure (i) and in structure (ii)

Watch Video Solution

20. The platinum-chlorine distance has been found to be $2.32 \mbox{\normalfont\AA}$ in several crystalline compounds This value applies to both compounds A

and B given here

Based on the above structures, answer the following questions

Structure B is .

A. cis-isomer

B. trans-isomer

C. nuclear isomer

D. co-ordinate isomer

Answer: A

21. The platinum-chlorine distance has been found to be 2.32\AA in several crystalline compounds This value applies to both compounds A and B given here

Based on the above structures, answer the following questions

The C - C single-bond distnaance is 1.54 Å What is the distance between the terminal carbons is propose? Assume that the four bonds of any carbon atoms arre pointed towards the corners of a regular tetrahedron .

A. 3.08Å

B. 1.54Å

C. 2.52Å

D. 1.26Å

Answer: C

Watch Video Solution

22. The $H\!F_2^\Theta$ ion solid state and in liquid $H\!F$ but not in the dilute aqueous solution

 HF_2^Θ exists in solid state and in liquid HF because HF_2^Θ ions are held together by .

- A. hydrogen bonding
- B. van der Waals force
- C. London force
- D. All of these

Answer: A

23. The HF_2^{Θ} ion solid state and in liquid HF but not in the dilute aqueous solution

In aqueous solution

A. HF forms H_2F^{\oplus} and H, H_2O being a stronger acid than HF Θ $H_2O + HF \Leftrightarrow H_2F^{\oplus} + OH$

B. $H\!F$ forms $H_3O^{\,\oplus}$ and $F^{\,\Theta}$, H_2O being a weaker acid than $H\!F$

$$H_2O + HF \Leftrightarrow H_2O^{\,\oplus} + F^{\,\Theta} \; .$$

C. H-bonding between $H\!F$ and H_2O is observed

D. No change is observed

Answer: B

Watch Video Solution

24. The HF_2^{Θ} ion solid state and in liquid HF but not in the dilute aqueous solution

At 300K and 1.00 atm, the density of HF is $3.17gL^{-1}$ We conclude that there is a .

A. dimer formation by H-bonding

B. trimer formation by H-bonding

C. tetramer formation by H-bonding

D. ionisation formation $H\!F_2^{\,\Theta}$ and $H^{\,\oplus}$

Answer: C

Watch Video Solution

25. The HF_2^{Θ} ion solid state and liquid HF but not in the dilute aqueous solution

Energy of H-bond is maximum in .

D. O - H - - - F

Answer: B

Watch Video Solution

- **26.** Consider the following molecules .
- A:Anti -pyridine -2-carboxaldoxime
- B:syn pyridine -2-carboaxaldoxime
- C: nickel -dimethyl glyoximate
- D : o-nitrophenol
- E : p-nitrophenol

F : p-salicylaldehyde

- In which case chelate formation occurs?.
- A. A, B
 - B. *B*, *C*
 - C. *C*, *F*
 - D. C only

Answer: D

Watch Video Solution

27. Consider the following molecules .

A:Anti -pyridine -2-carboxaldoxime

B:syn pyridine -2-carboaxaldoxime

C: nickel -dimethyl glyoximate

D: o-nitrophenol

intermolecular hydrogen bonding (inQ.5) is observed in .

A. A, B, C, D

B.A, B, E, F

C. B, C, D

D. A, C, D

Answer: D

28. Valence-bond theory is one of the two quantum mechanical approaches that explains bonding in molecules In some cases, valence bond theroy cannot cannot satisfactorily account for observed properties of molecules

Consider the following molecular geometries

$$NO$$
 CO O_2

Select correct statement(s) about these (More than one correct).

- A. NO is paramagnetic CO and O_2 are diamagnetic
- $\operatorname{B.}{\it NO}$ and O_2 are paramagnetic ${\it CO}$ is diamagentic
- C. Bond order is in order $O_2 < NO < CO$
- D. Number of unpaired electrons are

NO 1

CO 0

 O_2 0

Answer: B::C

29. Valence-bond theory is one of the two quantum mechanical approaches that explains bonding in molecules In some cases, valence bond theroy cannot cannot satisfactorily account for observed properties of molecules Valnce-bond theroy can explain molecular geometries .

A. predicated by VSEPR model

B. predicated by MO theory

C. predicated by both (a) and (b)

D. predicated by none of these

Answer: A

Watch Video Solution

30. Valence-bond theory is one of the two quantum mechanical approaches that explains bonding in molecules In some cases, valence bond theroy cannot cannot satisfactorily account for observed properties of molecules

Bond order and magnetic behaviour shown by different species have been matched Which is the incorrect matching.

	Species	Bond order	Magentic behaviour		
A.	<i>CN</i> ⁽¹⁴⁾	3.0	dimagnetic		
В.	Species	Bond order	Magentic behaviour		
	BN(14)	2.0	dimagnetic		
C.	Species	Bond order	Magentic behaviour		
	$C_2(12)$	2.0	dimagnetic		
D.	Species	Bond order	Magentic behaviour		
	$B_{2}(10)$	3.0	paramagnetic		

Answer: D

31. Valence-bond theory is one of the two quantum mechanical approaches that explains bonding in molecules In some cases, valence bond theroy cannot cannot satisfactorily account for observed properties of molecules

 ${\it MO}$ electronic configuration of superoxide ion is .

A.
$$KK * (\sigma 2s)^2$$
, $(\sigma * 2s)^2$, $(\sigma 2p_z)^2 (\pi 2p_y)^2 (\pi * 2p)^2 (\pi * 2p_x)^1$

B. $KK * (\sigma 2s)^2$, $(\sigma * 2s)^2$, $(\sigma 2p_z)^2 (\pi 2p_y)^2 (\pi * 2p)^2 (\pi * 2p_x)^2$

C. $KK * (\sigma 2s)^2$, $(\sigma * 2s)^2$, $(\sigma 2p_z)^2 (\pi 2p_y)^2 (\pi * 2p)^2 (\pi * 2p_x)^2$

D. none of these

Answer: A

Watch Video Solution

32. Which of the following statements is correct about O_2 , O_2^{Θ} , O_2^{2-} species?.

A. KO_2 and K_2O_2 are diamagnetic while O_2 is paramagnetic.

B. KO_2 and O_2 are paramagnetic while K_2O_2 is diamagnetic.

C. Bond length increase in the order $O_2 < O_2^{\Theta} < O_2^{2-}$

D. Bond enthalpy increases in the order $O_2^{2^-} < O_2^{\Theta} < O_2$.

Answer: A

33. $O_2^{2^-}$ will have .

A. bond order equal to H_2 and diamagnetic

B. bond order equal to H_2 but diamagnetic

C. bond order equal to N_2 and diamagnetic

D. bond order higher than O_2

Answer: A

Watch Video Solution

34. According to the moleular orbital theory, all atomic orbitals combine to form molecular orbital by LCAO (linear combination of atomic orbitals) method When two atomic orbitals have additive (constructive) method When two atomic orbitals have additive (constructive) overlapping they form bonding molecular orbitals (BMO) which have lower energy than atomic orbitals whereas when atomic orbitals overlap

subtractive higher energy antibonding molecular orbitals (ABMO) are formed Each MO occupies two electrons with opposite spin Distribution of electrons in MO follows Aufbau principle as well as Hund's rule MO theory can successfully explain the magnetic behaviour of molecules Which of the following is/are not paramagnetic?.

A. NO

 $B.B_2$

C. CO

 $D.O_2$

Answer: C

Watch Video Solution

35. According to the moleular orbital theory, all atomic orbitals combine to form molecular orbital by LCAO (linear combination of atomic orbitals) method When two atomic orbitals have additive (constructive) method When two atomic orbitals have additive (constructive)

overlapping they form bonding molecular orbitals (BMO) which have lower energy than atomic orbitals whereas when atomic orbitals overlap subtractive higher energy antibonding molecular orbitals (ABMO) are formed Each MO occupies two electrons with opposite spin Distribution of electrons in MO follows Aufbau principle as well as Hund's rule MO theory can successfully explain the magnetic behaviour of molecules Bond strength increases when

- A. bond order increases
- B. bond length increases
- C. antibonding electrons increases
- D. bond angle increases

Answer: A

Watch Video Solution

36. Most of the polyatomic molecules except a few such as CO_2 and CS_2 are linear or angular with a bond angle generally somewhat greater than 90° A bond angle is defined as the angle between the direction of two covalent bonds Since the atoms in molecules are in constant motion with respect to each other they are not expected to have a fixed value of bond angle Repulsion between non-bonded atoms alone does not provide an adequate explanation Hybridisation of bonding orbitals an adequate explanation Hybridisation of bonding orbitals also plays a very important role in detrmining the value of bond angle It has been observed that in hybridisation as the s-character of hybrid orbital increases the bond angle increases

In P_4 molecule phosphorous atoms are tetrahedrally arranged The angle P - P - P in the molecule is .

A. 108 °

B. 120°

C. 60 $^{\circ}$

D. 180°

Answer: C

$A.H_2S$						
$B.H_2Te$						
$C.H_2Se$						
D. All have same bond angle						
Answer: A						
Watch Video Solution						
38. Which of the following hybridisation may have more than one type of						
bond angle ? .						
A. sp^2						
B. sp^3						
$C. sp^3d$						

37. Which of the following have highest bond angle?.

D. sp^3d^2

Answer: C

Watch Video Solution

39. Which one of the following statements is correct .

A. BMO is lowered by the same amount of energy by which ABMO is raised .

B. BMO is lowered by a greater amount of energy than the amount by

which ABMO is raised .

C. BMO is lowered by less amount of energy than the amount by which ABMO is raised .

D. Any one of the above is possible .

Answer: C

40. MO's are formed by the overlap of A'Os Two AO's combine to form two MO's called bonding molecular orbital (BMO) and antibonding molecular orbital (ABMO) Differnet AO's of one atom combine with these AO's of the second atom which have comparable energies and proper orienation Further, If the overlapping is head on, the MO is called 'pi' The MO's are filled with electrons following the same rules as followed for filling of atomic orbitals However the order of filling is not the same for all molecules or their ions Bond order is one of the most important parameter to compare a number of their characteristics

$$H_2$$
, Li_2B_2 each has bond order equal to 1 The order of their stability is .

A.
$$H_2 = Li_2 = B_2$$

$$B. H_2 > Li_2 > B_2$$

$$C. H_2 > B_2 > Li_2$$

$$D. B_2 > Li_2 > H_2$$

41. MO's are formed by the overlap of A'Os Two AO's combine to form two MO's called bonding molecular orbital (BMO) and antibonding molecular orbital (ABMO) Differnet AO's of one atom combine with these AO's of the second atom which have comparable energies and proper orienation Further, If the overlapping is head on, the MO is called 'pi' The MO's are filled with electrons following the same rules as followed for filling of atomic orbitals However the order of filling is not the same for all molecules or their ions Bond order is one of the most important parameter to compare a number of their characteristics

In which of the following pair both to MO's are gerade or ungerade?.

A.
$$\sigma 2s$$
, $\pi 2p_y$

B.
$$\sigma * 2s$$
, $\pi * 2p_x$

C.
$$\sigma$$
 * 2s, π 2 p_x

D.
$$\pi 2p_{x}$$
, $\pi * 2p_{x}$

42. Which one of the following has maximum number of nodal planes?.

A.
$$\sigma$$
 * 1s

B.
$$\sigma * 2p_z$$

$$\mathsf{C}.\,\pi 2p_{_X}$$

D.
$$\pi * 2p_y$$

Answer: D

43. MO's are formed by the overlap of A'Os Two AO's combine to form two MO's called bonding molecular orbital (BMO) and antibonding molecular orbital (ABMO) Different AO's of one atom combine with these AO's of the second atom which have comparable energies and proper orienation Further, If the overlapping is head on, the MO is called 'pi' The

MO's are filled with electrons following the same rules as followed for filling of atomic orbitals However the order of filling is not the same for all molecules or their ions Bond order is one of the most important parameter to compare a number of their characteristics

Which of the following has pair is expected to have the same bond order ? .

- A. O_2 , N_2
- $\mathsf{B}.\,N_2^{\,\oplus}\,,N_2^{\,\Theta}$
- $\mathsf{C}.\,O_2^{\Theta}\,,N_2^{\oplus}$
- D. O_2^{Θ} , N_2^{Θ}

Answer: B

Exercises Multiple Correct Chemical Bonding

1. The type of bond s present in ammonium chloride is (are) :

A. Ionic B. Covalent C. Coordinate D. Singlet Answer: A::B::C **Watch Video Solution 2.** Which of the following statement (s) is (are) true?. A. CuCI is more covalent than NaCI B. HFis more polar than HBr C. HF is less polar than HBr D. Chemical bond formation takes plane when forces of attraction overcome the forces of repulsion . Answer: A::B::D

 ${\bf 3.}$ Which is (are) correct among the following ? .

A. The radius of CI^Θ ion is 1.56 Å while that of $Na^{\,\oplus}$ ion is 0.95 Å .

B. The radius of CI atom is 0.99 while that of Na atom is 1.54

C. The radius of CI atom is 0.99 while that of CI^{Θ} ion is 0.81

D. The radius of Na atom is 0.95 while that of Na^{\oplus} ion is 1.54 .

Answer: A::B

- **4.** Which of the following is (are) correct? .
 - A. A double bond is shorter than a single bond .
 - B. A sigma- vbond is weaker than a pi-bond.
 - C. Adouble bond is stronger than a single bond .

D. A covalent bond is stronger than a hydrogen bond .

Answer: A::C::D

Watch Video Solution

- **5.** The non-metallic cation is persent in .
 - A. CrO_2CI_2
 - B. VOCI
 - $\mathsf{C.}\mathit{OF}_2$
 - D. *PF* ₃

Answer: C::D

Watch Video Solution

6. Peroxo bond (- O - O -) is present in

Exercises Multiple Correct Dipole Moment

1	Which among	the fellowing	malaculas ha	va minimum	dinala maman	+ 2
ı.	Which among	the following	molecules na	ve millimum (aipoie momen	l:

- A. CH_4
- B. CCl_4
- $C. CHI_3$
- D. CHCl₃

Answer: A::B

Watch Video Solution

2. Which among the following pairs of molecules have zero dipole moment?.

A. SiF_4 and CO_2

- $B. SiF_4$ and NO_2
- $C.O_2$ and CO_2
- D . NO_2 and O_3

Answer: A::C::D

- 3. Which of the following satements are false?.
 - A. Dipole-dipole interations between molecules are greatest if the molecules possess possess only temporary dipole moments .
 - B. All compounds containing hydrogen atoms can participate in hydrogen bonding .
 - C. Dispersion forces exist between all atoms, molecules and ions
 - D. The extent of ion-induced dipole interaction depends only on the charge of the ion .

Answer: A::B::D

Watch Video Solution

Exercises Multiple Correct Hybridisation

- **1.** Which of the following are tetrahedral structures?.
 - A. $\left[Ni(CN)_4\right]^{2}$
 - B. $\left[Ni(CO)_4\right]$
 - C. $\left[NiCI_4\right]^{2}$
 - D. CrO_4^{2}

Answer: B::C::D

Watch Video Solution

 ${\bf 2.}$ Which among the following are isostructural ? .

 $c. SO_3^{2-}, CO_3^{2-}$

D. CIF_3 , XeF_2

A. XeO_2F_2 , SF_4

B. CO_2 , I_3^{Θ}

Answer: A::B

3. In which of the following molecules all the atoms lie in one plane?.

.

A. *NH*₃

B. *PF* ₅

C. *BF*₃

D. XeF_4

Answer: C::D

4. Which of the following have sp^3 d hyberidisation of the central atom?.

A. XeF_{Λ}

B. XeO_2F_2

C. CIO_3^{Θ}

D. BrF_3

Answer: B::D

- **5.** Which are the species in which central atom undergoes sp^3 hybridisation?.
 - A. SF_4
 - $B.SCI_2$
 - $C. SO_4^{2-}$

Answer: B::C::D

Watch Video Solution

6. The pair od species having identical shapes for molecules of both species is ? .

A. BF_3 , PCI_3

 $\mathsf{B.}\mathit{XeF}_2, \mathit{CO}_2$

 $C. CF_4, SIF_4$

D. PF_5 , IF_5

Answer: B::C

7. Which among the following is (are) having two lone pair of electrons on central atom? .

- A. CO_2
- B. *CIF* ₃
- $C. SO_3^{2-}$
- D. XeF_4

Answer: B::D

- **8.** The state of hybridisation of atoms in boric acid (H_3BO_3) is .
 - A. *sp*³
 - $B. sp^2$
 - C. sp

D. None of these

Answer: A::B

Watch Video Solution

- **9.** Which of the following have sp^3 d hybridisation ? .
 - A. SF_4
 - B. $BrCI_3$
 - C. XeOF 2
 - D. H_3O^{\oplus}

Answer: A::B::C

Watch Video Solution

10. The hybridisation number of lone pair of electron and shape of I_3^Θ is .

A. sp³ d hybridisation

B. It has trigonal bipyramidal shape

C. It is linear

D. It has three lone pair of electrons

Answer: A::C::D

Watch Video Solution

11. Which of following is (are) correct for B and N in NH_3 . BF_3 adduct ? .

A. Both have sp^3 hybrid orbitals

B. Both have tetrahedral structures

C. N is sp^3 hybridised while B is sp^2 hybridised.

D. N in NH_3 is pyramidal, while B in BF_3 is planar.

Answer: A::B

C. Polar nature of halogen acid D. High viscosity of H_3PO_4 Answer: A::B::C **Watch Video Solution** 2. Hybrogen bonds are present in A. Ice B. Solid CO₂ C. HF D. Water Answer: A::C::D **Watch Video Solution**

3. Which of the following gem-diol is stable?.

D. none of these

Answer: B::C

Watch Video Solution

Exercises Multiple Correct Bond Angle

1. Bond angle in PH_3 is

B. Much less than PF_3

A. Much less than NH_3

C. More than NH_3

D. More than PF_3

Answer: A::B

Watch Video Solution

2. Which statement (s) is (are) wrong for bond angle?

 $B.NF_3 > NCI_3$

 $A. NH_3 > NF_3$

 $C.NO_2^{\oplus} > NO_2$

 $D.NO_3^{\Theta} > NO_2^{\Theta}$

Answer: A::C::D

3. Which statement (s) is (are) wrong for bond angle?

$$A. CH = CH > BF_3 > CH_4$$

$$B.H_2O > NCl_3$$

 \oplus

C. $NH_4 > NH_3 > PCl_5$

 $D.CO_2 > NH_3 > CH_4$

Answer: B::D

Watch Video Solution

4. Bond angle in I_3^{Θ} is .

A. More than CIO₂

B. 180°

C. Less than CIO₂

D. > 109.5°

Answer: A::B

Watch Video Solution

- **5.** Which statements (s) is (are) correct for AB_2 type molecule?.
 - A. If the EN of central atom decreases, the bond angle decreases .
 - B. If the size of central atom increases the bond angle decreases.
 - C. If the EN of atom B decreases the bond angle increases
 - D. If the EN of atom B decreases that bond angle decreases .

Answer: A::B::C

Watch Video Solution

Exercises Multiple Correct Molecular Orbitaltheory Mot

1. Which of the following have identical bond orders?.
A. O_2^{Θ}
B. CN^{Θ}
C. NO [⊕]
D. CN^{\oplus}
Answer: B::C
Watch Video Solution
2. Which of the following diatomic molecule //ions have same bond order
2. Which of the following diatomic molecule //ions have same bond order?.
?.
?. A.O ₂
? . $\label{eq:alpha} \text{A.}O_2$ $\label{eq:block} \text{B.}CN^\Theta$

Answer: B::C

Watch Video Solution

- 3. Which of the following species exhibits the diamagnetic behaviour?
 - $A.O_2$
 - $B.O_2^{\oplus}$
 - C. NO
 - D. O_2^{2-}

Answer: A::B::C

Watch Video Solution

4. Which of the following molecules has one unpiared electron in antibonding orbitals?.

6. Which of the following is (are) correct statements?.

A. Probability of finding the electron in bonding MO is more than combining atomic orbitals .

B. Bonding MO's are formed when same sign of orbitals overlap

C. d-d combination of atomic orbitals gives delta and delta^(**) MO' s .

D. None of these

Answer: A::B::C

Watch Video Solution

7. Which of the following is (are) gerade (g) MO's?.

A. σ2s

B. $\sigma 2pz$

$$C. \pi * (2px)$$

D.
$$\sigma$$
 * 2s

Answer: A::B::C

Watch Video Solution

8. MO's are formed by the overlap of A'Os Two AO's combine to form two MO's called bonding molecular orbital (BMO) and antibonding molecular orbital (ABMO) Differnet AO's of one atom combine with these AO's of the second atom which have comparable energies and proper orienation Further, If the overlapping is head on, the MO is called 'pi' The MO's are filled with electrons following the same rules as followed for filling of atomic orbitals However the order of filling is not the same for all molecules or their ions Bond order is one of the most important parameter to compare a number of their characteristics

In which of the following pair both to MO's are gerade or ungerade?.

A. $\sigma^*(2pz)$

B.
$$\pi (2p_x)$$

B.
$$\pi \left(2p_x \right)$$
C. $\pi \left(2p_y \right)$

D.
$$\pi * (2py)$$

Answer: A::B::C

Watch Video Solution

- **9.** Which of the following MO s have one nodal plane?.
 - **A**. σ1s
 - B. σ * 1s
 - $C. \sigma 2p_z$
 - D. $\sigma * 2p_{\tau}$

Answer: B::D

10. Which of the following `MO's have two nodal plane?.

A.
$$\sigma 2p_z$$

 $B.\pi*2p_{_X}$

 $C. \pi * 2p_y$

D. $\sigma * 2p_z$

Answer: A::B::C

Watch Video Solution

Exercises Multiple Correct Miscellaneous

1. Select corrcet orders for corresponding property as indicated in bracket for the following .

A. $NH_3 > BiH_3 > SbH_3 > AsH_3 > PH_3$ (Boiling point)

 $B.H_2O > H_2Te > H_2Se > H_S(2)$ (Boiling point)

 $C. NH_3 > PH_3 > AsH_3 > SbH_3$ (Basic character)

D. $H_2O < H_2S < H_2Se < H_2$ Te (Acidic character)

Answer: B::C::D

Watch Video Solution

- 2. Which one or more among the following involve (s) (pi -dpi) bonding?.
 - A. $\left(SiH_3\right)_3 N$:
 - B. $(CH_3)_3N$:

 $C.: CCI_3$

D. : CF_3

Answer: A::C

3. Paramagnetic pairs (s) among the following is (are) .

A.
$$\left[BaO_2, NO_2\right]$$

B. $\left[KO_2, NO\right]$

$$\mathsf{C.}\left[H_2O_2,NO\right]$$

D. $K_3[Fe(CN)_6]$, $CuCI_2$

Answer: B::D

4. Which of the following orders are correct for property indicated in brackets?.

A.
$$NH_3 > NF_3 > BF_3$$
 (dipole moment)

B. CI > S > O > N (electron affinity)

C. Si > Mg > A1 > Na (first ionisation enthalpy)

D. $HCIO_4 > HBrO_4 > HIO_4(pK_a \text{values})$

Answer: A::B::C

- **5.** The first element of groups 13 16 differ rest of the elements This is due to .
 - A. Small size and high electronegativity
 - B. Inability to expand the octet
 - C. Ability to form strong $p\pi$ $p\pi$ multiple bonds
 - D. Due to greater abundance

Answer: A::B::C

Watch Video Solution

6. Select the correct statements .

A. The heat of hydration of the dipositive earth metal ions increases

with an increase in their ionic size

B. Hydration of alkali metal ions is less than that of group 2

C. Alkaline earth metal ions because of their much larger charge to size ratio exert a much stronger electrostatic attaction on the oxygen of water molecule surrounding them.

D. Melting point of sodium halides follows is as NaF > NaCl > NaBr > NaI.

Answer: B::C::D

7. White vitriol is not isomorphous with.

A. K_2SO_4

B. $MgSO_{\Lambda}$

C. $CaSO_4$

 $D.H_2SO_4$

Answer: A::B::C::D

Watch Video Solution

8. The stability of ions of Ge Sn and Pb will be in the order .

A.
$$Ge^{2+} < Sn^{2+} < Pb^{2+}$$

B.
$$Pb^{2+} > Pb^{4+}$$

$$C. Sn^{4+} > Pb^{2+}$$

D.
$$Ge^{4+} < Sn^{4+} < Pb^{4+}$$

Answer: A::B

- 9. Select the correct satements (s) .
 - A. NF_3 is weaker base than NH_3
 - B. $NO^{\,\oplus}$ is more stable than O_2
 - ${\it C.AlCl}_3$ has higher melting point than ${\it AlF}_3$
 - D. $SbCl_3$ is more covalent than $SbCl_5$

Answer: A::B

- **10.** Which of the following are true?.
 - A. PH_5 and $BiCI_5$ do not exist
 - B. There are two $p\pi$ $d\pi$ bond is SO_3
 - C. SeF_4 and CH_4 are tetrahedral ion
 - $\operatorname{D}.I_3^\Theta$ is a linear molecule with sp^3 d hybridisation

Answer: A::B::D

Watch Video Solution

Exercises Single Correct Chemical Bonding

1. Which of the following is the most ionic?.

A. P_4O_{10}

B. MnO

 $C. CrO_3$

 $D. Mn_2O_7$

Answer: B

2. Among LiCl, $BeCl_2$, BCl_3 and CCl_4 the covalent bond character varies

as.

A. $LiCI < BeCI_2 < BCI_3 > CCI_4$

 $B.LiCI < BeCI_2 > BCI_3 > CCI_4$

 $C. LiCI < BeCI_2 > BCI_3 > CCI_4$

 $D.LiCI < BeCI_2 > BCI_3 > CCI_4$

Answer: C::D

Watch Video Solution

3. In a matallic crystal the .

A. Valence electrons remain within the fields of influence of their own

kernels

B. Valence electrons constitute a sea of mobile electrons

C. Valence electrons are localised between the two kernels

D. Kernal as well as the electrons move rapidly

Answer: B

Watch Video Solution

- **4.** Polarization involves the distortion of the shape of an anion by an adjacently placed cation. In this context, which of the following statements is correct?
 - A. Maximum polarisation is brought about by a cation of high charge
 - B. Maximum polarisation is brought about by a cation of high charge
 - $\ensuremath{\mathsf{C}}.\,\ensuremath{\mathsf{A}}$ large cation is likely to bring about a high degree of polarisation .
 - D. The polarising power of a cation is less than that of an anion

Answer: A

5. Which of the following is required for the formation of an ionic bond?

A. An electron from the more electronegative element should be transferred to the less electronegative .

B. The total energy of the resulting molecule should be less than the total energy of the reactants .

C. The lattice energy of the resultants molecule should be as low as possible .

D. The ionic potential of the reactants should be identical .

Answer: B

Watch Video Solution

6. $AICI_3$ is covalent while AIF_3 is ionic This can be justified on the basic of

- A. The valence bond theory
- B. Fajans rules
 - C. The molecuar orbital theory
- D. Hydration energy

Answer: B

Watch Video Solution

- 7. Which of the following oxyacids of phosphorous are monoprotic (mono basic)?.
 - $A. H_3PO_3$
 - $B.H_3PO_4$
 - $C.H_3PO_2$
 - $D.H_4P_2O_7$

Answer: C::D

 $\boldsymbol{8.}$ Which of the following has greater bond length ? .

$$A.P-O$$

 $\mathsf{B.}\,S - O$

C. CI - O

D. O = O

Answer: A

9. Which of the following has been arranged order of increasing covalent character?

$$A. KCI < CaCI_2 < AICI_3 < SnCI_4$$

 $B. SnCI_4 < AICI_3 < CaCI_2 < KCI$

 $\mathsf{C.}\,\mathit{AICI}_3 < \mathit{CaCI}_2 < \mathit{KCI} < \mathit{SnCI}_4$

D. $CaCI_2 < SnCI_4 < KCI < AICI_3$

Answer: A

Watch Video Solution

10. Which of the following pairs have nearly identical values of bond energy?.

A. O_2 and H_2

 $B.N_2$ and CO

 $\mathsf{C.}\,F_2$ and I_2

 $D. O_2$ and Cl_2

Answer: D

11. The ion which has the lowest ionic mobility is

A. Li [⊕]

B. *Na* [⊕]

 $\mathsf{C}.\,K^{\,\oplus}$

D. *Cs* [⊕]

Answer: D

Watch Video Solution

12. In PO_4^{3-} , P - O bond order is .

A. 1.25

B. 2

C. -0.75

D. -3

Answer: A

Watch Video Solution

13. Which of the following has least covalent P - H bond?.

- A. PH_3
- $B.P_2H_6$
- $C.P_2H_4$
- $D.PH_6^{\oplus}$

Answer: D

Watch Video Solution

14. Which of the following molecule stabilizes by removal of electron?

 $A.O_2$

16. Which contains both polar and non-polar bonds?. A. NH_4CI B. HCN $C.H_2O_2$ D. CH_{Λ} **Answer: C Watch Video Solution** 17. The bond angle between two hybrid orbitals is $180\,^\circ$ The percentage s-character of hybrid orbital is between . A. 50 and 55 % B. 9 and 12 % C. 22 and 23 % D. 11 and 12 %

Answer: A

Watch Video Solution

18. Which type of bond is not present in HNO_2 molecule?.

- A. Covalent
- B. Coordinate
- C. Ionic
- D. Both ionic and coordinate

Answer: D

Watch Video Solution

19. $K\!F$ combines with $H\!F$ to form $K\!H\!F_2$ The compound contains the species .

Answer: C

A. K^{\oplus} , F^{Θ} and H^{\oplus}

B. K^{\oplus} , F^{Θ} and HF

 $\mathrm{C.}\,K^{\,\oplus}$ and $\left[\mathit{HF}_{2}\right]^{\,\Theta}$

D. $[KHF]^{\oplus}$ and F_2

Watch Video Solution

20. There is no *S* - *S* bond in .

A. $S_2O_6^2$

B. $S_4O_6^2$

 $C. S_2 O_3^{2-}$

D. $S_2O_7^{2-}$

Answer: D

21. Angle between two hybridised orbital is $105\,^\circ$ and hence the percentage of s-character in the hybridised orbital would be in the range .

- **A.** 23 24 %
- $B.\,20$ $21\,\%$
- **C.** 50 55 %
- D. 11 12 %

Answer: A

Watch Video Solution

22. The octet rule is not valid for the molecule

- A. *CO*₂
- $\mathsf{B.}\,H_2O$
- $C.O_2$

_	co
υ.	CO

Answer: D

Watch Video Solution

23. The total number of electrons that take part in forming the bond in

 N_2 is .

A. 2

B. 4

C. 6

D. 10

Answer: C

- **24.** Bonds presents in $CuSO_4.5H_2O$ is
 - A. Electrovalent and covalent
 - B. Electrovalent, coordinate covalent .
 - C. Electrovalent, covalent and coordinate covalent.
 - D. Covalent and coordinate covalent .

Answer: C

- **25.** The bond between two identical non-metal atoms has a pair of electrons:
 - A. Unqually shared between the two
 - B. Transferred fully between the two
 - C. With identical spins
 - D. Equally shared between them

Answer: D

Watch Video Solution

26. The number and type of bonds between two C-atom in SrC_2 are .

- A. 1σ , 1π
- B. 1σ , 2π
- C. 1σ , 5π
- D. 1σ

Answer: B

Watch Video Solution

27. Which species has the maximum number of lone pair of electrons on the central atom ? .

B. XeF_4 C. N_2O D. $\left[I_3\right]^\Theta$ Answer: D

A. $\left[ClO_3\right]^{\Theta}$

ınswer: ı

28. Among the following the electron deficient compound is

A. CCI_4

B. *PCI*₅

C. *OF* ₂

 $\mathsf{D}.\mathit{BCI}_3$

Answer: D

 $B.H_3C - NC$

C. CO

D.	O ₃
	J

Answer: A

Watch Video Solution

- **31.** Which of the following bonds is the strongest?.
 - A. I I
 - B.F-F
 - C. H H
 - D. O O

Answer: C

Watch Video Solution

32. When two atoms combine to form a molecule

- A. Energy is released
- B. Energy is absorbed
- C. Energy is neither released nor absorbed
- D. Energy may either be absorbed or relesed

Answer: A

Watch Video Solution

- 33. Most favourable conditions for inoic bonding are.
 - A. Low charge on ions, large cations, small anions
 - B. Low charge on ions, large cations, large anions
 - C. High charge on ions, small cations, large anions
 - D. High charge on ions, small cations, small anions

Answer: A

34. Which of the following is not a correct statement?.

A. Ionic compounds are electrically netural.

B. Boilling point of an ionic compound is more than a covalent compound.

C. Melting point of a covalent compound is more than an ionic compound

D. Ionic compound are soluble in polar solvent .

Answer: C

Watch Video Solution

35. Element A has 3 electrons in the outermost orbit and element B has 6 electrons in the outermost orbit . The formula of the compound formed A and B would be

Answer: A Watch Video Solution **36.** The pair of elements which form ionic bond is . A. C + ClB.H + FC. Na + BrD.O+H**Answer: C** Watch Video Solution

 $A.A_2B_3$

 $B.A_{2}B_{6}$

 $C.A_2B$

 $\mathsf{D.}\,A_3B_2$

37. Lattice energy of an ionic compound depends on

- A. Charge on the ion and size of the ion
- B. Packing of ions only
- C. Size of the ion only
- D. Charge on the ion only

Answer: A

Watch Video Solution

38. The bonds present in $N_2{\cal O}_5$ are .

- A. Only ionic
- B. Covalent and coordinate
- C. Only covalent

D. Covalent and ionic

Answer: B

Watch Video Solution

- **39.** Which of the following statement is correct for *CO*?
 - A. A double bond between ${\it C}$ and ${\it O}$ atoms
 - B. 1σ , 1π and 1 coordinate bond between C and O atoms
 - C. One lone pair of electrons on each atom
 - D. 1σ , 2π bonds between C and O atoms

Answer: B

40. Which of the following statement regarding valence bond theory (VBT) is not true?

A. A molecule is considered to be a collection of atoms, and the interactions between different atoms is considered .

B. For a molecule to be stable the electrostatic attactions must predominate over the repulsion .

C. The potential energy of a diatomic molecule is less than the sum of potential energies of free atoms .

D. The net force of altration acting on the atoms in a molecule is not zero .

Answer: D

A. Each bond is formed by maximum overlap for its maximum stability

B. It represents localised electron modal of bonding.

C. Most of electrons retain the same orbital localisation as in a separate atom .

D. All are correct .

Answer: D

42. The strength of bonds formed by overlapping of atomic orbitals is in the order .

A.
$$s - s > s - p > p - p$$

B.
$$s - s > p - p > s - p$$

C.
$$s - p > s - s > p - p$$

D.
$$p - p > s - s > s - p$$

Answer: A

Watch Video Solution

- **43.** The nodal plane in the π -bond of ethene is located in :
 - A. The molecular plane
 - B. A plane parallel to the molecular plane

sigma-bond at a right angle.

- C. A plane perpendicular to molecular plane which bisects th (C C)
- D. A plane perpendicular to the molecular plane which contains the

(C - C) sigma-bond.

Answer: A

- **44.** Which of the following statement is wrong?.
 - A. A sigma bond is shorter than a pi-bond .
 - B. Bond energies of sigma and pi bonds are of the order of 264 and $347kJmo1^{-1}$.
 - C. Free rotation of atoms about sigma bond is allowed but not in case of a-pi bond .
 - D. A sigma-bond determines the direction between C-atoms but a pibond has no primary effect which leads to bonding .

Answer: B

45. Which of the following is a positive overlap which leads to bonding?.

A

В

C

D.

Answer: C

Watch Video Solution

46. Which of the following is a zero overlap which leads to non-bonding?

b. (+) (+)

D.

A.

В.

Answer: A

Watch Video Solution

Exercises Single Correct Dipole Moment

1. The H - O - H bond angle in the water molecule is $105\,^\circ$, the H - O bond distance being 0.94Å, The dipole moment for the moelcule is 1.85D. Calculate the charge on the oxygen atom .

A.
$$2 \times 10^{-10}$$
 esu

B.
$$3.28 \times 10^{-10}$$
 esu

C.
$$3.21 \times 10^{-10}$$
 esu

D.
$$1.602 \times 10^{-19}$$
 esu

Answer: C

- **2.** In a diatomic molecule the bond distance is 1×10^{-8} cm. Its dipole moment is 1.2.D. What is the fractional electronic charge each atom ?
 - **A.** 11 %
 - **B.** 20 %

C. 25 %

D. Noe of these

Answer: C

Watch Video Solution

3. The compound with no dipole moment is .

A. CH₃Cl

B. CCl_4

C. Methylene chloride (CH_2Cl_2)

D. chloroform $\left(CHCl_3\right)$

Answer: B

View Text Solution

4. The molecule which have zero dipole moments is . A. CH_2CI_2 $B.BF_3$ $C.NF_3$ D. CIO₂ **Answer: B View Text Solution** 5. The critical temperature of water is higher than that of O_2 because the H_2O molecule has A. A fewer electrons than O_2 B. A dipole momnent C. a V shape structure D. Two covalent bonds

Answer: B

Watch Video Solution

6. The correct order of dipole moment is :

A.
$$CH_4 < NF_3 < NH_3 < H_2O$$

B.
$$NF_3 < CH_4 < NH_3 < H_2O$$

$$C. NH_3 < NF_3 < CH_4 < H_2O$$

$$D.H_2O < NH_3 < NF_3 < CH_4$$

Answer: A

Watch Video Solution

 ${\bf 7.}\,{\rm Among}$ the following which is polar ? .

A. *CO*₂

 $B.SO_2$

C. BeCl₂

Answer: B

Watch Video Solution

- 8. Which of the following is polar?.
 - A. NF_3
 - $B.BF_3$
 - $C.SF_6$
 - D. SiF_4

Answer: A

- **9.** The resultant dipole moment (μ) of two compounds NOF and NO_2F is
- $1.81D~\mathrm{and}~0.47D~\mathrm{respectively}$ Which dipole momnet do you predict ? .
 - A. 1.81D for NO_2F and 0.47D for NOF .
 - B. 0.47D for NO_2F and 1.81D for NOF
 - C. For both NO_2F and NOF dipole moment (μ) is 1.81D
 - D. For both NO_2F and NOF dipole moment (μ) is 0.47D

Answer: B

- **10.** In terms of polar character the correct, the correct order is .
 - $A.H_2S > HF > H_2O > NH_3$
 - B. $HF > H_2O > NH_3 > H_2S$
 - $C. HF > H_2S > NH_3 > H_2O$

$$D.H_2S > NH_3 > H_2O > HF$$

Answer: B

Watch Video Solution

- **11.** How many sigma and pi bonds are there in the molecule of tetracyano ethylene?.
 - A. 4σ , 14π
 - B. 5σ , 13π
 - C. 8σ , 10π
 - D. 9σ, 9π

Answer: D

12. H_2O is dipolar, whereas BeF_2 is not. It is because:

A.
$$EN$$
 of $F > EN$ of O

 $B.\,H_2O$ involes H-bonding whereas BeF_2 is a discrete molecule .

 ${\sf C.}\,H_2o$ is linear and ${\it BeF}_2$ is angular

 $\operatorname{D.}H_2O$ is angular and BeF_2 is linear

Answer: D

Watch Video Solution

13. Which of the following hydrocarbons has the lowest dipole moment.

A.
$$^{\text{H}_3\text{C}}$$
C=C $^{\text{H}}$ CH2-CH3

$$\mathsf{B}.\,H_3C - C \equiv C - CH_3$$

$$C. H_3 C - CH = C = CH_2$$

$$D.H_3C - CH_2 - C = CH$$

Answer: B

Watch Video Solution

14. Which one of the following arrangements of molecules is correct on the basic of their dipole moments?

A.
$$NH_3 > BF_3 > NF_3$$

$$B.NH_3 > NF_3 > BF_3$$

$$C.BF_3 > NH_3 > NF_3$$

D.
$$BF_3 > NF_3 > NH_3$$

Answer: B

- 15. Which statement (s) is/are correct about dipole moment
- (I) Debye is equivalent to 3.33×10^{-30} Cm

(II) 1 Debye is equivalent to $10^{-18} esucm$

(III) SI unit of dipole moment is coulomb meter (Cm)

$$(1Cm = q \times d = 1.602 \times 10^{-19} \times 10^{-9}m)$$

(IV) Dipole moment of a molecule is useful to explain the shape of a molecule and also to predict other properties of the molecule.

A. *I*, *II*

 $\mathsf{B}.\,\mathit{I},\mathit{III},\mathit{IV}$

C. *I*, *II*, *III*

D. All are correct

Answer: D

Watch Video Solution

16. Which of the following molecule (s) have dipole moment

(I) Trans -pent -2-ene

(II) cis-hex -3-ene

(III) 2,2-Dimethy1 propane

(IV) 2, 2, 3, 3 tetramethy1 butane.

Watch Video Solution

Exercises Single Correct Hybridisation

- **1.** The shapes of ${PCI_4^{\oplus}}$, ${PCI_4^{\Theta}}$ and ${AsCI_5}$ and are respectively .
 - A. Squar planar, tetrahedral and see-saw
 - B. Tetrahedral, see-saw and trigonal bipyramidal
 - C. Tetrahedarl ,square planar and pentagonal bipyramidal
 - D. Trigonal bipyramidal, tetrahedral and square pyramidal

Answer: B

2. The I_3^{Θ} ion has .

A. Five equatorial lone pairs on the central I atom and two axial bonding pairs in a trigonal bipyramidal arrangement.

B. Five equatorial lone pairs on the central I atom and two axial bonding pairs in a pentagonal bipyramidal arrangement

C. Three equatorial lone pairs on the central I atom and two axial bonding pairs in a trigonal bipyramidal arrangement .

D. Two equatorial lone pairs on the central I atom and three axial bonding pairs in a trigonal bipyramidal arrangement .

Answer: C

Watch Video Solution

3. In the reaction $2PCI_5 \Leftrightarrow PCI_4^{\oplus} + PCI_6^{\ominus}$ change in hybridisation is from

4. There are four species CO_2 , $N_3\Theta$, NO_2^{\oplus} and I_3^{Θ} Which of the following statement is correct about these species ? .

A. All are linear and having sp hybridisation central atoms .

B. All are linear but only CO_2, N_3^Θ and I_3^Θ have sp hybridisation on their central atom .

C. All are linear but only CO_2, N_3^Θ and NO_2 have sp hybridisation on their cental atom .

D. ${CO}_2, N_3^\Theta$ and ${NO}_3^\oplus$ are linear but I_3^Θ is not .

Answer: C

5. On hybridization of one s and one p orbital we get

A. Two mutually perpendicualr orbitals B. Two orbitals at 180° . C. Two orbitals directed tetrahedrally D. Three orbitals in a plane **Answer: B Watch Video Solution** 6. Which moleucle is T-shaped? A. BeF_2 $B.BCI_3$ $C.NH_3$ D. CIF₃ **Answer: D Watch Video Solution**

D. SiO_2

Answer: A

Watch Video Solution

- **9.** The species which has pyramidal shape is
 - A. PCI_3
 - $B.SO_3$
 - $C.CO_3^{2-}$
 - D. NO_3^{Θ}

Answer: A

10. The compounds in which C uses its sp^3 - hybrid orbitals for bond formation are:

A. HCOOH

 $\mathsf{B.}\left(H_2N\right)_2\!CO$

 $C.(CH_3)_3COH$

D. CH₃CHO

Answer: C

Watch Video Solution

11. Which one of the following compounds has sp^2 hybridisation?.

A. CO_2

 $B.SO_2$

 $C. N_2O$

D. CO

Answer: B

Watch Video Solution

- **12.** CO_2 has same geometry as
 - A. $HgCI_2$
 - $B.NO_2$
 - $C. SnCI_2$
 - D. CH_4

Answer: A

- 13. In which pair of species both species do have the similar geometry?.
 - A. CO_2 , SO_2

 $B. NH_3, BH_3$

 $C. CO_3^{2-}, NO_2^{-}$

D. SO_4^{2-} , CIO_4^{Θ}

Answer: D

Watch Video Solution

14. The geometry and the type of hybrid orbitals present about the central atom in BF_3 is :

A. Linear sp

B. Trigonal planar, sp²

C. Tetrahedral, sp³

D. Pyramidal sp^3

Answer: B

15. SF_2 , SF_4 and SF_6 have the hybridisation at sulphur atom respectively as .

A. sp^2 , sp^3 , sp^2d^2

 $B. sp^3, sp^3, sp^3d^2$

C. sp^3 , sp^3d , sp^3d^2

D. sp^3 , spd^2 , sp^3

Answer: C

Watch Video Solution

16. Two types FXF angles are presnet in which of the following molecule (X = S, Xe, C)?

A. SF_4

 $\mathsf{B.}\mathit{XeF}_4$

C. SF ₆
D. <i>CF</i> ₄
Answer: A
Watch Video Solution
17. A sigma bonded molecule MX_3 is T-shaped The number of non-
bonding pairs of electrons is .
A. 2
B. 1
C. 0
D. Can be predicted only if atomic number of M is known
Answer: A
Watch Video Solution

18. In NH_4^+ and OF_2 th hybridisation of central atom respectively are .

- A. sp^3 , sp^2
- B. sp^3 , sp^3
- $C. sp^3d, sp^3d$
- D. sp^3d , sp^3

Answer: B

- 19. Hybridisation involves .
 - A. Orbitals of same atom with slightly different energies .
 - B. Orbitals of different atom but with equal energies .
 - C. Orbitals of different atoms with exactly equal energies .
 - D. Orbitals of same atoms with exactly equal energies .

Answer: A

Watch Video Solution

20. As PF_5 molecule is sp^3 d hybridised and is trigonal bipyramidal (TbP) shape Which d-orbital is involved in sp^3 d hyridisation .

A. $dx^2 - y^2$

B. dz^2

C. dxy

D. dzx

Answer: B

Watch Video Solution

21. If the geometry of $[PtCl_4]^{2-}$ -is square planar, which orbitals are involved in bonding?

22. SeF_6 is sp^3d^2 hybridised and is octahedral (*OH*) Which d orbitals are involved in hybridisation .

A.
$$dx^2$$
 - y^2 , dxy

$$B. dx^2 - y^2, dz^2$$

D.
$$dz^2$$
, dxy

Answer: B

Watch Video Solution

23. IF_7 is sp^3d^3 hybridised and is (pentagonal bipyramid) Which d orbitals are involved in hybridisation .

A. dxy, dyz, dxz

B. $dx^2 - y^2$, dxy, dz^2

C. $dx^2 - y^2$, dyz, dxz

D. $dx^2 - y^2$, dz^2 , dyz

Answer: A

Watch Video Solution

24. In a regular octahedral molecule SF_6 the number of F - S - F bonds at 180° is.

A. 2

B. 3

C. 4

D. 6

Answer: B

25. The maximum number of 90 $^{\circ}$ angles between bp-bp of electrons is observed in .

A. sp^3 d hybridisation

B. dsp^3 hybridisation

C. dsp^2 hybridisation

D. sp^3d^2 hybridisation

Answer: D

Watch Video Solution

26. Among the following ions the $p\pi$ - $d\pi$ overlap could be present in

A. NO_3^{Θ}

 $B.PO_3^{\Theta}$

C. CO_3^2

D. NO_3^{Θ}

Answer: B

Watch Video Solution

- 27. Which of the following have distored octahedral structure?.
 - A. SF_6
 - $B.PF_6^{\Theta}$
 - $C. SiF_6^2$
 - D. XeF_6

Answer: D

28. Sulphur reacts with chlorine in 1:2 ratio and forms X hydrolysis of X gives a sulphure compound Y. What is the hybridisation state od central atom in the compound?

- A. sp^3
- $B. sp^2$
- C. sp
- D. dsp^2

Answer: A

Watch Video Solution

29. Orthonitrophenol is steam volatile but paranitrophenol is not because .

A. Orhtonitrophenol has intramolecular hydrogen bonding while

paranitrophenol has intermolecular hydrogen bonding .

B. Both ortho and paranitropenol have intramolecular hydrogen bonding.

C. Orthonitrophenol has intermolecular hybrogen bonding and paranitrophenol has intramolecular hydrogen bonding.

D.

Answer: A

Watch Video Solution

30. Which of the following compounds has the least tendency to from Hbonds?.

A. HF

B. HCI

 $C.H_2O$

 $D.NH_3$

Watch Video Solution

31. Which of the following molecule forms linear polymeric structure due to H-bonding ?

A. HCl

B. HF

 $C.H_2O$

 $D.NH_3$

Answer: B

Watch Video Solution

32. Which one of the following hydrogen halides has the lowest boilling point?.

- A. Higher than that of I
- B. Lower than that of I
- C. Same as that of I
- D. Can be higher or lower depending upon the size of vessel .

Answer: A

Watch Video Solution

Exercises Single Correct Bond Angle

- **1.** The decreasing valuee of bond angles from $NH_3\Big(106\,^\circ\Big)$ to $SbH_3\Big(101\,^\circ\Big)$ down group -15 of the periodic table is due to .
 - A. Decreasing lp-lp repulsion
 - B. Decreasing electronegativity
 - C. Increasing bp-bp repulsion

D. Decreasing p-orbital character in sp^3 .

Watch Video Solution

- **2.** in compound X all the bond angles around central atom are $109 \circ 28'$ one of the following will be X?
 - A. Chloromethane
 - B. Carbon tetrachloride
 - C. lodoform
 - D. Chloroform

Answer: B

3. In which of the	following mo	lecules all the	atoms lie in	one plane?.

- A. CO_2
- $B.BF_3$
- $\mathsf{C.PF}_5$
- $D.NH_3$

Watch Video Solution

4. The bond angles of NH_3 , NH_4^{\oplus} and NH_2 are in the order .

A.
$$NH_2^{\Theta} > NH_3 > NH_4$$

B.
$$NH_4 > NH_3 > NH_2$$

$$\begin{array}{ccc} & & \oplus \\ \text{C. } NH_3 > NH_2 > NH_4 \end{array}$$

$$D. NH_3 > NH_4 > NH_2$$

Watch Video Solution

- **5.** For AB_2 type molecule which statement (s) si (are) correct about bond angle (B A B)
- (I) Bond angel $\propto EN$ of the central atom A
- (II) Bond angle $\propto 1/EN$ of the central atom A
- (III) Bond angle ∝ Size of central atom
- (IV) Bond angle prop 1/Size of central atom .
 - A. I,III,III
 - B. II,IV
 - C. I,IV
 - D. II,III

Answer: C

6. For AB_χ type molecule which statement (s) si (are) correct about bond

angle (B - A - B)

(I) Bond angel $\propto EN$ of atom B

(II) Bond angle $\propto EN$ of atom B

(III) Molecules or ions without non-bonding electrons on central atom

add having regular geometry the change in EN of A or B has no effect on

the bond angle

 $sp > sp^2 > sp^3$.

(IV) THe bond angle in compounds having sp, sp^2 and sp^3 hybridisation on

central atom decreases as follows

A. I,IV

B. II,IV

C. I,II,III

D. I,II,IV

Answer: B

valcii video Solution

7. Decreasing order of bond angle of $\left(NO_2^{\oplus}, NO_2, NO_2^{\Theta}\right)$ is

A. I gt II gt III

B. II gt I gt III

C. III gt II gt I

D. Illgt I gt II

Answer: B

Watch Video Solution

8. Decreasing order of bond angle of (NH_3, PH_3, AsH_3) is

A. I gtll gtlll

B. I gtIII gtII

C. II gtl gtlll

D. III gtll gtl

Answer: A

Watch Video Solution

- **9.** Which statement is correct about bond angle of NCl_3 , NF_3 and NH_3
- Bond angle of $NCl_3 > NF_3$
- Bond angle of $NCl_3 \le NF_3$
- Bond angle of $NH_3 > NF_3$
- Bond angle of $NH_3 \le NF_3$.
 - A. I,II
 - B. I,III
 - C. I,II,III
 - D. I,II,IV

Answer: B

10. Bond order of SO_2 is . A. 1.5

C. 2.0

D. 2.5

Answer: B

Watch Video Solution

Exercises Single Correct Resonance And Formal Charges

1. Which of the following conditions apply to resonating structrues?

A. The contributing structures must have the same number of unpaired electrons .

- B. The contributing structures should have similar energies .
 - C. The contributing structures should be so written that unlike charges reside on atoms that are far apart .
- D. The positive charge should be present on the electropositive element and the negative charge on the electrongative element .

Answer: C

- 2. Resonance structures can be written for .
 - **A.** *O*₃
 - B. *NH*₃
 - C. *CH*₄
 - D. *H*₂*O*

Answer: A

3. The bond length of C = O bond in CO is 1.20Å and in CO_2 it is 1.34Å

Then C = O bond length in CO_3^{2-} will be.

- **A.** 1.50Å
- B. 1.34Å
- C. 1.29Å
- D. 0.95Å

Answer: C

4. Maximum number of H-bonds that can be formed by a water molecule is .

A. 2

B. 3
C. 4
D. 6
Answer: C
Watch Video Solution
5. Which of the following resonating structures is not correct for ${\it CO}_2$?.
A. 🔁
В. 🔀
C. 🔁
D. 🔀
Answer: C
Watch Video Solution

6. In PO_4^{3-} the formal charge on each O-atom and P - O bond order respectively are .

- A. -0.75, 0.1
- B. -0.75, 1.25
- C. -0.75, 0.6
- D. -3, 1.25

Answer: B

- **7.** The formed charge of the O-atoms in the ion $\begin{bmatrix} \dots & \dots \\ : N = O : \end{bmatrix}$ is .
 - **A.** 0
 - B. + 1
 - **C.** 1

Answer: A

- **8.** Which of the following statements regarding the concept of resonance is not correct?
 - A. The different resonting structures of a molecule have fixed arrangement of atomic nuclei .
 - B. The differnet resonating structures differ in the arrangement of electrons .
 - C. None of the individual resonating structures explains the verious characteristics of the molecule .
 - D. The hybrid structures have equal contribution from all the resonating structures .

Watch Video Solution

- 9. Which of the following pairs do not constitute resonanting structures?
 - **a.** Me N = 0 and Me 0 N = 0

b. Me — $C \stackrel{\circ}{\underset{CH_2}{\circ}}$ and Me — $C \stackrel{\circ}{\underset{CH_2}{\circ}}$

c.
$$Me$$

d. Me CH = CH Me and Me CH₂ CH = CH₂

A. a.
$$H_3C - N = 0$$
 and $H_3C - O - N = 0$

$$\textbf{B.} \ \ \overset{\textbf{b.} \ H_3C-C \overset{"\circ}{\underset{CH_2}{\bigcirc}} \ and \ \ H_3C-C \overset{"\circ}{\underset{CH_2}{\bigcirc}} \ }{}$$

C.
$$H_3C-C-CH_3$$
 and $H_3C-C=CH_2$ O OH

- 10. Which of the following statement about resonance energy is wrong?.
 - A. The different in energy of the resonance hybrid and the most stable contributing structures (having least energy) is called resonance energy.
 - B. The differnet in energy of the resonane hybrid and the least stable contributing structures (having highest energy) is called resonance energy.
 - C. The differnece in the experimental and calculated enthalpies (bond enthalpy formation or combustion or hydrogenation) is called resonance enrgy.
 - D. Resonance energy is the amount of energy by which the compound is stable .

Watch Video Solution

Exercises Single Correct Molecular Orbital Theory Mot

- **1.** During the formation of a molecular orbital from atomic orbital , the electron density is :
 - A. Minimum in the nodal plane
 - B. Maximum in the nodal plane
 - C. Zero in the nodal plane
 - D. Zero on the surface of the lobe

Answer: C

2. Which of the following have been arranged in increasing bond order as well as bond dissociation energy? .

A.
$$O_2^{-2} < O_2^{\Theta} < O_2^{\oplus} < O_2$$

B.
$$O_2^{-2} < O_2^{\Theta} < O_2 < O_2^{\Theta}$$

$$C. O_2 < O_2^{\oplus} < O_2^{2-} < O_2^{\Theta}$$

$$D. O_2^{\oplus} < O_2^{2-} < O_2^{\Theta} < O_2$$

Answer: B

3. In forming $(i)N_2 \to N_2^{\oplus}$ and $O_2 \to O_2^{\oplus}$ the electrons respectively removed from .

A.
$$\left(\pi^* 2p_y \text{ or } \pi^* 2p_x\right)$$
 and $\left(\pi^* 2p_y \text{ or } \pi^* 2p_x\right)$

B.
$$\left(\pi 2p_y \text{ or } \pi 2p_x\right)$$
 and $\left(\pi 2p_y \text{ or } \pi 2p_x\right)$

C.
$$\left(\pi 2p_y \text{ or } \pi 2p_x\right)$$
 and $\left(\pi * 2p_y \text{ or } \pi * 2p_x\right)$

D.
$$\left(\pi * 2p_y \text{ or } \pi * 2p_x\right)$$
 and $\left(\pi 2p_y \text{ or } \pi 2p_x\right)$

Answer: C

Watch Video Solution

- 4. The species which does not show paramagnetism is .
 - $A.O_2$
 - $B.O_2^{\oplus}$
 - $C. O_2^{2-}$
 - $D.H_2^{\oplus}$

Answer: C

Watch Video Solution

5. Which of the following cannot exist on the basic of *MO* theory?.

A. H_2^{\oplus}

7. The bond energies NO, NO^+ and NO^Θ ion follows the order

A.
$$NO^{\oplus} > NO > NO^{\Theta}$$

B.
$$NO > NO^{\oplus} > NO^{\Theta}$$

$$C. NO^{\Theta} > NO > NO^{\oplus}$$

D.
$$NO^{\oplus} > NO^{\Theta} > NO$$

Answer: A

Watch Video Solution

8. In the MO diagram for O_2^{Θ} ion the highest occupied orbital is .

A. πMO orbital

B. σMO orbital

C. π * MO orbital

D. σMO orbita

Answer: C

Watch Video Solution

- **9.** Which of the following is not diamagnetic?.
 - A. O_2^2
 - $B.Li_2$
 - $\mathsf{C}.\,N_2^{\,\oplus}$
 - D. C_{2}

Answer: C

Watch Video Solution

10. The bond order of CO and NO is .

A. 3 and 2

12. The possible molecular orbital formed when two d-orbitals overlap is .

Α. π

 $B.\pi*$

C. σ *

D. δ*

Answer: D

13. Which of the following species exhibits the diamagnetic behaviour?

A. NO

B. O_2^2

C. O₂ ⊕

Watch Video Solution

- **14.** Which of the following species is paramagnetic?.
 - A. *CO*₂
 - B. O_2^{2-}
 - C. CN^{Θ}
 - D. NO

Answer: D

15. The bond order in NO is 2.5 while that in NO^{\oplus} is 3 Which of the following statement is true for these two species?

- A. Bond length in $NO > inNO^{\oplus}$
- B. Bond length in $NO^{\oplus} = inNO$
- C. Bond length in $NO^{\oplus} = inNO$
- D. Bond length in $NO^{\oplus} > inNO$

Answer: A

16. When two AO s combine energy of bonding MO is lowered by x while of antibonding MO is raised by y Then .

- A. x = y
- B. x < y
- C. x > y

D. Can be any of these
Answer: B
Watch Video Solution
17. In Which of the following the double bond consist of the pi bonds .
A. <i>O</i> ₂
B. Be_2
C. C ₂
D. S ₂
Answer: C

A. $\pi 2p_y$

B. $\sigma 2s$

C. $\pi * 2p_y$ D. $\sigma * 2p_{\tau}$

Answer: C

Watch Video Solution

19. Which of the following MO's has zero nodal planes?.

A. σ * 1s

B. *σ*1*s*

D. $\pi * 2p_z$

 $C. \pi 2p_x$

Answer: B

20. The main axis of diatomic molecule is z. The orbitals $\boldsymbol{p}_{\boldsymbol{x}}$ and $\boldsymbol{p}_{\boldsymbol{y}}$ overlap

to form

(a) π -molecular orbital

(b) σ - molecular orbital

(c) δ -molecular orbital

(d)No bond will form

A. *π* **-** *MO*

B. *σ* - *MO*

 $C. \delta$ - MO

D. No bond will form

Answer: D

21. The paramagnetic property of the oxygen molecule is due to the presence of unpiared electrons present in .

A.
$$\left(\pi * 2p_y\right)^1$$
 and $\left(\pi * 2p_x\right)$

B.
$$(\sigma 2p_z)^1$$
 and $(\sigma * 2p_z)^1$

C.
$$(\pi 2p_y)^1$$
 and $(\pi * 2p_y)^1$

D.
$$(\sigma 2p_z)^1$$
 and $(\pi 2p_y)^1$

Answer: A

Watch Video Solution

22. Which of the following combination is not allowed in the *LCAO* method for the formation of molecular orbital (consider Z-axis as the molecular axis)?

A.
$$s + p_x$$

$$B.s + p_z$$

 $C. p_x + p_x$

 $D. p_z + p_z$

Answer: A

Watch Video Solution

23. The energy of σ_{2s} , is greater than that of σ_{1s}^* orbital because

A. $\sigma 2s$ is bigger than $\sigma * 1sMO$

B. $\sigma 2s$ is bonding whereas $\sigma * 1s$ is an ABMO

C. $\sigma 2s$ orbital has a greater value of than $\sigma * 1sMO$

D. $\sigma 2s$ orbital is formed only after $\sigma * 1s$.

Answer: C

- **1.** Which of the following statement is incorrect?.
 - A. NH_3 is more basic than PH_3
 - $B. NH_3$ has a higher boiling point than that of HF.
 - C. N_2 is less reactive than P_{Δ}
 - D. The dipole momnet of NH_3 is less than that of SO_2 .

Answer: B

- **2.** If one assume linear structure instead of bent structure for water then which on of the following properties cannot be explained? .
 - A. The formation of intermolecular hybrogen bond in water
 - B. The high boiling point of water.
 - C. Solubility of polar compounds in water

D. Ability of water to form coordinate covalent bond .

Answer: C

Watch Video Solution

- **3.** Which is the wrong order for the stated property?.
 - A. Ba > Sr > Mg atomic radius
 - B. F > O > N, first ionisation enthalpy
 - C. Cl > F > I, electron affinity
 - D. O > Se > Te, electronegativity

Answer: B

Watch Video Solution

4. Which is a correct statement about diborane structure?.

- A. All HBH bond angles are equal
- B. All H B bond lenghts are equal
- C. it has two three-center-2 electron bonds
- D. All hydrogen and boron atoms are in one plane

Answer: C

Watch Video Solution

5. For \widetilde{NH}_2 the best three-dimensional view is .

Α

C.

D.

Answer: C

Watch Video Solution

6. The set representing the correct order of ionic radius is

A.
$$Li^{\oplus} > Na^{\oplus} > Mq^{2+} > Be^{2+}$$

B.
$$Mg^{2+} > Be^{2+} > Li^{\oplus} > Na^{\oplus}$$

C.
$$Li^{\oplus} > Be^{2+} > Na^{\oplus} > Mg^{2+}$$

D.
$$Na^{\oplus} > Li^{\oplus} > Mq^{2+} > Be^{2+}$$

Answer: D

7. Which of the following are not isoelectronic speices?

A.
$$PO_4^{3}$$
-, SO_4^{2} -, CIO_4^{Θ}

B.
$$SO_3^{2-}$$
, CO_3^{2-} , NO_3^{Θ}

$$\mathsf{C.}\,BO_3^{3}$$
-, CO_3^{2} -, NO_3^{Θ}

D.
$$CN^{\Theta}$$
, N_2 , C_2^2

Answer: B

Watch Video Solution

8. The EN's of F, CI Br and I are 4.0 ,3.0, 2.8 and 2.5 respectively The hybrogen halide with a highest percentage of ionic character is .

A. HI

B. HBr

C. HCI

D. HF

Answer: D

Watch Video Solution

9. The C - C bond length is 1.54ÅC = C bond length is 1.33Å What is the circumference of benzene ring ? Bond length between single and double bonds = 1.4Å .

A.
$$(3 \times 1.54 + 3 \times 1.33)$$
Å

B.
$$(4 \times 1.54 + 2 \times 1.33)$$
Å

C.
$$(6 \times 1.4)$$
Å

D.
$$(4 \times 1.33 + 2 \times 1.54)$$
Å

Answer: C

10. The correct order of the thermal stability of hydrogen halides (H - X) is

A. HI > HCI < HF > HBr

B.HCI < HF > HBr < HI

C.HF > HCI > HBr > HI

D.HI > HBr > HCI > HF

Answer: C

- 11. Which of following statement is correct?.
 - A. The bond angle of NCI_3 is greater than that of NH_3
 - B. The bond angle of PH_3 is greater than that of PF_5
 - C. CIO_3^{Θ} and SO_3^{2-} are isostructural

D. It is not necessary that in Tbp structure the lone pairs always would occupy the equatorial positions .

Answer: C

Watch Video Solution

12. The values of EN of atoms A and B are 1.80 and 4.0 respectively The percentage of ionic character of A - B bond is .

A. 43 %

B. 50 %

C. 55.3 %

 $\mathsf{D.}\,65\,\%$

Answer: D

- **13.** The statement true for N_3^- is
 - A. It has a non-linear structure
 - B. It is called pseudo halogens
 - C. The formal oxidation state of N in this anion is-1
 - D. It is isoelectronic with NO_2

Answer: C

- **14.** The decreasing (O O) bonf length order in the following is .
 - A. $O_2 > H_2 O_2 > O_3$
 - $B. H_2 O_2 > O_3 > O_2$
 - $C. O_3 > H_2O_2 > O_2$
 - $D. O_3 > O_2 > H_2O_2$

Answer: B

15. Which of the following substance has the highest melting point? .

A. BaO

B.MgO

C. KCI

D. NaCI

Answer: B

Watch Video Solution

16. Which of the following statement is correct?.

A. $FeCI_2$ is more covalent than $FeCI_2$

 $B. FeCI_3$ is more covalent than $FeCI_2$

C. Both $FeCI_2$ and $FeCI_3$ are equally covalent

D. $FeCI_2$ and $FeCI_3$ do not have any covalent character

Answer: B

Watch Video Solution

17. Which of the following bonds is the strongest ? .

A. F - F

B. *I* - *I*

C. CI - CI

D. *O* - *O*

Answer: C

18. The molecule having highest bond enegy is
A. N - N
B. F - F
C. C - C
D. O - O
Answer: C
Watch Video Solution
19. Which set is expected to show the smallest difference in IE_1 ?
19. Which set is expected to show the smallest difference in IE_1 ? A. He, Ne, Ar
A. He, Ne, Ar
A. He, Ne, Ar B. B, N, O

Answer: D

Watch Video Solution

- **20.** Which of the following statement is wrong?.
 - A. Multiple bonds are always shorter the corresponding single bonds
 - B. The electron-deficient molecules act as Lewis acids
 - C. Every AB_5 molecule does in fact have square pyramidal structure
 - D. The canonical structure has no real existence

Answer: C

- 21. Which of the following is correct?
 - A. According to VSEPR theory SNCI2 in a linear molecule

B. The number of electrons present in the valence shell in $S\!F_6$ is 12

C. The rates of ionic reactions are very slow

D. The correct order of ability form ionic compounds among

$$Na^{\oplus}$$
, Mg^{2+} , and $A1^{+3}$ is $A1^{+3} > Mg^{+2} > Na^{\oplus}$.

Answer: B

Watch Video Solution

22. Lattice energy of $BeCO_3(I)$, $MgCO_3(II)$ and $CaCO_3(III)$ is in order.

A. I It II It III

B. I gt II gt III

C. I lt III lt II

D. II It I It III

Answer: B

23. Which of the following is a correct statement?.

A. Mobility of H^{\oplus} ions in ice is greater as compared to liquid water

B. Mobility of H^{\oplus} ions in ice is less as compared ti liquid water

C. Mobility of H^{\oplus} ions in ice is equal to that in liquid water .

D. Cannot be predicted

Answer: A

Watch Video Solution

Exercises Assetion Reasoning

1. Assertion SiF_6^{2-} anion exists but CF_6^{2-} does not

Reasoning Si atom vacnat d-orbital while C-atom has not .

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

Watch Video Solution

2. Assertion Boiling point of $SiH_4 > CH_4$ whereas boiling point of

 $SiCI_{\Delta} < \mathbb{C}I_{\Delta}$

Reasoning Chlorine possesses vacant d-orbitals but hydrogen does not .

A. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: B

Watch Video Solution

3. Assertion Sulfur forms SF_6 and also SCI_6

Reasoning Sulfur has vacant d-orbitals .

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

Watch Video Solution

4. Assertion Bond angles of NH_3 , PH_3 , AsH_3 and SbH_3 decrease in order as mentioned

Reasoning The central atom in each possesses a lone pair.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: B

(A)

5. Assertion : $(CH_3)_3N$ geometry is pyramidal but in case $(SiH_3)_3N$ it is planar.

Reason: The maximum covalency of Si is six but that of C is four.

A. If both (A) and (R) are correct and (R) is the correct explanation of

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: B

(A)

(*A*)

6. Assertion NCI_3 reacts with water but NF_3 I s inert towards hydrolysis

Reasoning Nitrogen des not possess vacant d-orbitals.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: B

Watch Video Solution

7. Assertion LiF is practically insoluble in water

Reasoning LiF has very high lattice energy .

A. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

Watch Video Solution

8. Assertion O_2 and N_2^{2-} have same number of electrons and same molecular orbital configuration

Reasoning O_2 and N_2^{2-} have the same bond order .

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: D

Watch Video Solution

9. Assertion $MgCl_2$ is more soluble as comared to $BeCl_2$

Reasoning BeCl_2 is covalent and MgCl_2 is ionic compound .

A. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

Watch Video Solution

10. Assertion : H_2 molecule is more stable than He - H molecule .

Reason: The antibonding electron in ${\it He-H}$ molecule decreases the bond order thereby the stability.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

(A)

11. Assertion Carbon tetrachloride dose not form a precipitate of AgCI

with $AgNO_3$ solution

Reasoning Carbon tetrachloride is a liquid.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

B. If both (A) and (R) are correct and (R) is not the correct explanation

of (A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: B

12. Assertion Both NO_3^{Θ} and CO_3^{2-} ions are triangular planar

Reasoning Hybridisation of central atom in both NO_3^Θ and $CO_3^{2^-}$ is $sp^(2)$.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

(A)

Watch Video Solution

13. Water has maximum density at 4°C.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

(*A*)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: D

Watch Video Solution

14. Assertion Boiling point of halogen acids are in the order

HF > HBr > HCl > HI

Reasoning Electronegativities are in the order F > Cl > Br > I .

A. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: D

Watch Video Solution

15. Assertion Ionic compounds tend to be non-volatile

Reasoning Intermolecular forces in these compounds are weak.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: C

Watch Video Solution

16. Assertion: Water is a good solvent for ionic compounds but poor for covalent compounds.

Reason: Hydration energy of ions releases sufficient energy to overcome lattice energy and break hydrogen bonds in water while covalent compounds interact so weakly that even van der Waal's forces between molecules of covalent compounds cannot be broken.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

(A)

D. If (A) is incorrect but (R) is correct

Answer: A

Watch Video Solution

17. Assertion: The atoms in a covalent molecule are said to share electrons, yet some covalent molecules are polar.

Reason: In polar covalent molecule, the shared electrons spend more time on the average near one of the atoms.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Watch Video Solution

18. Assertion : Na_2SO_4 is soluble in water while $BaSO_4$ is water insoluble.

Reason :Lattice energy of $BaSO_4$ exceeds its hydration energy.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

19. Assertion: The dipole moment helps to predict whether a molecule is polar or non-polar.

Reason: The dipole moment helps to predict geometry of molecule.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

(*A*)

Watch Video Solution

20. Assertion BF_3 is a weaker Lewis acid than BCI_3

Reasoning In BF_3 molecule, back bonding $(p\pi$ - $p\pi$) is stronger than in

 BCI_3 .

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

Watch Video Solution

21. Assertion Bond order for N_2^{\oplus} and N_2^{Θ} are same (i.e2.5)

Reasoning N_2^{\oplus} is more stable than N_2^{Θ} .

A. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

B. If both (A) and (R) are correct and (R) is not the correct

explanation of (A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: B

Watch Video Solution

22. Assertion Among two cations of similar size the polarising power of cation with pseudo noble gas configuration is larger than cation with noble gas configuration

Reasoning Polarising power of $Ag^{\,\oplus}\,$ is more than $K^{\,\oplus}\,$.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

Watch Video Solution

23. Assertion BF_3 has greater dipole momnet than H_2S

Reasoning Fluorine is more electronegative than sulphur .

A. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct

explanation of (A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: D

24. Assertion Both $\pi(2P_x)$ and $\pi*(2P_x)MO's$ have one nodal plane each Reasoning All MO's formed by side way overlapping of 2p orbitals have one nodal plane .

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D. If both (A) and (R) are incorrect

Answer:

(A)

25. Assertion H_2 , Li_2 , B_2 each has a bond order of 1 and hence are equally stable

Reasoning Stability of molecule//ion depends only on bond order .

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D. If both (A) and (R) are incorrect

Answer:

(A)

26. Assertion: Bond order can assume any value including zero.

Reason: Higher the bond order, shorter is the bond length and greater is

the bond energy.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: A

Watch Video Solution

27. Assertion : N_2 and NO^+ both are diamagnetic substances.

Reason : NO^+ is isoelectronic with N_2 .

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

C. If (A) is correct but (R) is incorrect

D. If (A) is incorrect but (R) is correct

Answer: B

Watch Video Solution

28. Assertion B_2 molecule is diamagnetic

Reasoning The highest occupied molecular orbital is of sigma type.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(*A*)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D. If both (A) and (R) are incorrect

Answer:

Watch Video Solution

29. Asseration: $SeCl_4$, does not have a tetrahedral structure.

Reason: Se in $SeCl_4$ has two lone pairs.

A. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

C. If (A) is correct but (R) is incorrect

D.

Answer: C

Watch Video Solution

30. Assertion : All F - S - F angle in SF_4 are greater than 90 $^{\circ}$ but less than 180 $^{\circ}$.

Reason :The lone pair -bond pair repulsion is weaker than bond pair -bond pair repulsion

A. If both (A) and (R) are correct and (R) is the correct explanation of (A)

B. If both (A) and (R) are correct and (R) is the correct explanation of

C. If (A) is correct but (R) is incorrect

D.

(*A*)

Answer: C

Watch Video Solution

1. How many molecules among the following have zero dipole moment

$$NH_3$$
, BF_3 , NF_3 , CCI_4 ?.

2. Find the number of lone pairs of electrons preent in OF_2 .

3. How many of the following compounds violate octet rule

(i) BrF_5 (ii) SF_6 (iii) IF_7 (iv) $XeOF_4$

(v) CIF_2 (vi) PCI_4^{\oplus} .

4. The number of hypervalent species among the following ClO_4^{Θ} , BF_3 , SO_4^{2-} , CO_3^{2-} is .

5. The number of correct options is

(a)
$$1^{\Theta} > Br^{\Theta} > CI^{\Theta} > F^{\Theta}$$
 (polarisability)

(b)
$$Li^{\oplus} > Na^{\oplus} > K^{\oplus} > Rb^{\oplus}$$
 (polarisation power)

(c)
$$H_2O > H_2S > H_2Se > H_2$$
 Te (order of b.pt)

(d)
$$H_2^{\Theta} \leq H_2^{\Phi}$$
 (order of stability) .

6. How many of the following compounds have sp^3 hybridisation

(i)
$$SO_4^{2-}$$
 (ii) SO_5^{2-} (iii) PO_4^{3-} (iv) PO_5^{3-}

(v)
$$I_3^{\Theta}$$
 (iv) CO_3^{2-} (vii) CO_4^{2-} .

7. How many of the following compounds have $(p\pi - d\pi)$ multiple bonds

(i)
$$SO_2$$
 (ii) SO_3 (iii) HSO_4^{Θ} (iv) SO_4^{2-}

(v) SO_3^{3-} (vi) HSO_3^{Θ} .

Watch Video Solution

- 8. How many of the following oxides of nitrogen are paramangnetic?
- (i) N_2O (ii) NO (iii) N_2O_3 (iv) NO_2
- (v) N_2O_4 (vi) N_2O_5 (vii) NO_2^{\oplus} (viii) NO_2^{Θ}
- (ix) NO_3^{Θ} .

 N_2^{\oplus} (ii) N_2^{Θ} (iii) O_2^{\oplus} (iv) O_2^{Θ} (v) NO (vi) CN.

9. How many of the following species have bond order of 2.5?

- **Watch Video Solution**

- 10. The number of correct option is
- (a) $P_2O_5 > ZnO > MgO > Na_2O_2$ (acidic strenght)

- (b) $TI_2O_3 > TI_2O > Ga_2O_3 > AI_2O_3$ (basic strenght)
- (c) $MnO > P_2O_5 > CrO_3 > Mn_2O_7$ (ionic character)
- (d) $H_2O > HF > NH_3$ (melting point)
- (e) $H_2O > HF > NH_3$ (boiling point) .
 - Watch Video Solution

Exercises Fill In The Blanks

- - Watch Video Solution

2. The cyanide ion CN and N_2 are isoelectronic, but in contrast to CN^- , N_2 is chemically inert, because of

1. The type of hybrid orbitals used by chlorine atom in ClO_2^- is

Watch Video Solution

3. The shape of $\left[CH_3\right]^{\oplus}$ is
Watch Video Solution
4. The valence atomic orbital on C in silver acetylide ishybridised.
▶ Watch Video Solution
5. Out of CH_3^{\oplus} , H_3O^{\oplus} , NH_3 , CH_3^{Θ} the species which is not isoelectronic is
Watch Video Solution
6. The experimentally determined N - F bond length in NF_3 isthan
the sum of the single covalent bond radii of N and \mathcal{F} .
Watch Video Solution

7. When N_2 goes to N_2^+ , the N - N bond distance
Watch Video Solution
8. The central bond in 1,3 butadiene is than that of n-butane .
Watch Video Solution
9. Out of (A) toluene (B) m-dichloro benzene (C) o-dichloro benzene and
(D) p-dichlorobenzenehave highest andhave lowest dipole
moment.
Watch Video Solution
10. In BaC_2 sigma andpi bonds are present between two C-
atoms .
Watch Video Solution

11. During the formation of a chemical bond potential energy of the system

Watch Video Solution

12. Comparatively low melting point and insolubility in water of $AlCl_3$ is explained by ____rule .

13. The dipole moment of CH_3OH is _____ than that of CH_3SH .

14. What is the correct dipole moment of NH_3 and NF_3 respectively?

15. In a compound A, B if the element B attracts electrons more than
element A it will tend to becharged .
Watch Video Solution
16. The strenght of covalent bond will depend on the extent to which
atomic orbitals
Watch Video Solution
17. Salicyaldehyde involveshydrogen bonding .
Watch Video Solution
18. The bond multiplicity leads to in bond distance.
Watch Video Solution

19. The angle between two covalent bonds is maximum for $\left(CH_4, H_2O, CO_2\right)$ _____.

20. Due to hybridisation____hybrid orbitals are formed .

Exercises True False

1. Acidic strength order $CI_2O_7 > SO_3 > P_4O_{10}$.

2. Acidic strength order *HCIO* > *HBrO* > *HIO* .

3. Basic strength order $NH_3 > PH_3 > AsH_3 > BiH_3$.

4. XeO_3 is a trigonal pyramidal molecule .

5. The lanthanoid ions other than the f^0 type and f^{14} types are all paramagnetic.

6. $LiHCO_3$ and $Ca\Big(HCO_3\Big)_2$ are not found in solid state .

7. All molecules with polar bonds have dipole moment. Watch Video Solution 8. Assertion: Ionic bonds are directional in nature whereas covalent bonds are non-directional. Reason: According to orbital overlap concept, the formation of a covalent bond between two atoms results by pairing of electrons present in the valence shell having same spins. **Watch Video Solution 9.** The dipole moment of CH_3F is greater than that of CH_3Cl . **Watch Video Solution** 10. The presence of polar bonds in a polyatomic molecule suggests that the molecule has non-zero dipole moment.

11. The boiling point of HCI is less than that of HF .

12. Both PH_3 and PH_5 exist .

13. $\sigma 2s$, $\pi * (2p_x)$ and $\pi (2p_x)$ are gerade MO.

14. Out of NO, NO^{\oplus} and CN^{\oplus} the paramagnetic species is NO^{\oplus} .

15. Arrange the following types of intermolecular forces in order of decreasing their strength

- (a) Ion dipole
- (b) Keesom forces
- (C) Dispersion or London forces
- (d) Dipole-induced dipole
- (e) lon-induced dipole (Debye forces) .

16. $\sigma 2s$, $\pi * (2p_x)$ and $\pi (2p_x)$ are gerade MO.

17. Predict the order of decreasing boiling points of the following

 H_2 , He, Ne, Xe, CH_4 .

18. (a) Give the decreasing order of melting points of the following

 NH_3 , PH_3 , $(CH_3)_3N$ Explain

(b) In which molecule is the van der Waals force likely to be the most important in determining the m.pt and b.pt for ICI, Br_2, HCI, H_2S, CO .

19. Out of CH_3OH and $(CH_3)_3N$ both exhibit H-bonding.

20. CO_2 and N_3^{Θ} have sane bond order and same shape .

Archives Multiple Correct

1. CO_2 is isostructural with

A. HgCI₂

B. C_2H_2

C. SnCI₂

D. *NO*₂

Answer: A::B

Watch Video Solution

2. The linear struture is assumed by :

A. SnCI₂

B. *CS*₂

 $\mathsf{C}.NO_2^{\,\oplus}$

D. NCO [⊕]

Answer: B::C::D

Watch Video Solution

- 3. The molecule (s) that will have dipole moment is/are:
 - A. 2,2-dimethy1 propane
 - B. trans-2-pentene
 - C. cis-3-hexene
 - D. 2,2,3,3-tetramethyl butane

Answer: B::C

Watch Video Solution

- **4.** Which of the following have identical bond orders?.
 - A. CN^{Θ}

Watch Video Solution **5.** Out of CH_3^{\oplus} , H_3O^{\oplus} , NH_3 , CH_3^{Θ} the species which is not isoelectronic is_____. A. I and II B. III and IV C. I and III D. II,III,and IV Answer: A::C::D **Watch Video Solution**

 $B.O_2^{\Theta}$

C. NO [⊕]

D. CN^{\oplus}

Answer: A::C

6. The critical temperature of water is higher than that of ${\cal O}_2$ because the ${\cal H}_2{\cal O}$ molecule has .

A. Fewer electrons than O_2

B. Three covalent bonds

C. Two covalent bonds

D. Dipole moment

Answer: C::D

Watch Video Solution

7. The geometry and the type of hybrid orbital present about the central atom in BF_3 is .

A. Linear,sp

B. Trigonal planar, sp^2

C. Tetrahedral, sp^3

D. Pyramidal sp^3

Answer: B

Watch Video Solution

8. The nitrogen oxide (s) that contain (s) N - N bonds (s) is (are).

A. N_2O

 $B.N_2O_3$

 $C. N_2O_4$

 $D.N_2O_5$

Answer: A::B::C

Watch Video Solution

9. Hydrogen bonding plays a central role in which of the following phenomena?

A. Ice floats in water

B. Higher Lewis basicity of primary than tertiary amines in aqueous solutions

C. Formic acid is more acidic than acetic acid

D. Dimersation of acetic acid in benzene .

Answer: A::B::D

Watch Video Solution

10. When O_2 is adsorbed on ametallic surface, electron transfer occurs from the metal to O_2 The TRUE statement (s) regarding this adsorption is (are)

A. O_2 is physisorbed

- B. heat is released
- C. occupancy of π_{2p} of O_2 increased
- D. bond length of ${\cal O}_2$ is increased .

Answer: A::B::C::D

Watch Video Solution

Archives Single Correct

- **1.** In which of the following molecules does the central atom not follow the octet rule?
 - A. CO_2
 - $B.H_2O$
 - C. *O*₂
 - D. NO

Answer: D

Watch Video Solution

- 2. The compound which contains both ionic and covalent bonds is
 - A. CH_4
 - $B.H_2$
 - C. KCN
 - D. KCI

Answer: C

Watch Video Solution

3. The total number of electrons that take part in forming the bond in N_2

is .

- **A**. 2
- B. 4
- **C**. 6
- D. 100

Answer: C

Watch Video Solution

4. Element X is strongly electropositive and Y is strongly electronegative .

Both are univalent. The compound formed would be

- A. *X Y* -
- $B.X^-Y^-$
- C. X Y
- $D. X \rightarrow Y$

Answer: A

5. Which of the following compounds is covalent?.

 $A.H_2$

B. CaO

C. KCI

D. *Na*₂*S*

Answer: A

Watch Video Solution

6. If a molecule $M\!X_3$ has zero dipole moment , the sigma bonding orbitals

used by M are

A. puraP

B. sp-hybridised

C. sp^2 -hybridised

D. sp^3 hybridised

Answer: C

Watch Video Solution

7. The ion that is isoelectronic with CO is

A. CN^{Θ}

B. O_2^{\oplus}

 $\mathsf{C.}\,\mathsf{O}_2^{\Theta}$

D. N_2^{\oplus}

Answer: A

Watch Video Solution

8. Carbon tetrachloride has no net dipole moment because of
A. Its planar structure
B. Its regular tetrahedral structure
C. Similar sizes of carbon and chlorine atoms
D. Similar electron affinities of carbon and chlorine .
Answer: B
Watch Video Solution
9. Which one among the following does not have the hybrogen bond?
A. Phenol
B. Liquid $N\!H_3$
C. Water
D. <i>HCI</i>

Answer: D Watch Video Solution

- 10. On hydridisation of one s and one p-orbitals, we get
 - A. Two mutually perpendicualr orbitals
 - B. Two orbitals at $180\,^{\circ}$.
 - C. Four obitals directed tetrahedrally
 - D. Three orbitals in a plane

Answer: B

- **11.** The molecule having one unpaired electrons is .
 - A. NO

13. The bond between two indentical non-metal atoms has a pair of electrons.

- A. Unqually shared between the two
- B. Transferred fully between the two
- C. With identical spins
- D. Equally shared between them

Answer: D

- 14. Which of the following compounds has a zero dipole momnet?.
 - A. 1,1-Dichloroethylene
 - B. cis-1,2Dicloroehtylene
 - C. trans-1,2-Dichloroethylene
 - D. None of these

Answer: C

Watch Video Solution

15. The species in which the central atom uses sp^2 hybrid orbitals in its bonding is

- A. PH_3
- $B.NH_3$
- C. CH_3^{\oplus}
- D. SbH_3

Answer: C

Watch Video Solution

16. The molecule that has linear structure is

- A. CO_2
- $B.NO_2$
- $C.SO_2$
 - D. SiO₂

Answer: A

Watch Video Solution

respectively will be about

17. The Cl-C-Cl angle is 1,1,2,2-tetrachloroethene and tetrachloromethane

- A. 120 $^{\circ}$ and 109.5 $^{\circ}$
- B. 90 $^{\circ}$ and 109.5 $^{\circ}$
- C. $109.5\,^{\circ}$ and $90\,^{\circ}$
- D. 109.5 ° and 120.5 °

Answer: A

- 18. The molecule which has pyramidal shape is
 - A. *PCI*₃
 - $\mathsf{B.}\,SO_3$
 - c. CO_3^2
 - D. NO_3^{Θ}

Answer: A

- **19.** Which of the following is paramagnetic?
 - A. O_2^{Θ}
 - B. CN^{Θ}
 - C. CO

D.	NO	⊕
----	----	----------

Answer: A

Watch Video Solution

- 20. The molecule which has zero dipole moment is
 - A. CH_2CI_2
 - B. *BF* ₃
 - $C.NF_3$
 - D. CIO_3

Answer: B

Watch Video Solution

21. The type of hybrid orbitals used by chlorine atom in ClO_2^- is

D. One sigma -bond

Answer: B

Watch Video Solution

25. Among the following species, identify the isostuctural pairs

 NF_3 . NO_3^- , BF_3 , H_3O , HN_3

- A. $\left[NF_3,NO_3^\Theta\right]$ and $\left[BF_3,H_3O^\Theta\right]$
- B. $\left[NF_3, N_3 H \right]$ and $\left[NO_3^{\Theta}, BF_3 \right]$
- C. $\left[NF_3, H_3O^{\oplus} \right]$ and $\left[NO_3^{\Theta}, BF_3 \right]$
- D. $\left[NF_3, H_3O^{\oplus}\right]$ and $\left[N_3H, BF_3\right]$

Answer: C

26. Polar covalent molecules exhibit dipole moment. Dipole moment is equal to the product of charge separation , q and the bond length d for the bond. Unit of dipole moment is debye. One debye is equal to 10^{-18} esu cm.

Dipole moments is a vector quantity. It has both magnitude and direction. Hence, dipole moment of a molecule depends upon the relative orientation of the bond dipoles, but not on the polarity of bonds alone. A symmetrical structure shows zero dipole moment. Thus, dipole moment helps to predict the geometry of a molecules. Dipole moment values can be distinguish between cis- and trans- isomers, ortho, meta and pareforms of a substance, etc.

Q. Arrange the following compounds in increasing order of dipole moments, toluene (I), o-dichlorobenzene (II), m-dichlorobenzene (III) and p-dichlorobenzene (IV):

A. I ItIV It II ItIII

B. I It I It II It III

C. IV It I It III It II

D	IV	l+	ш	l+ I	I+	ш
υ.	I۷	Iι	ш	ILΙ	ΙL	111

Answer: B

Watch Video Solution

- **27.** CN^Θ and N_2 are isoelectronic But in contrast to CN^Θ , N_2 is chemically less reactive because of .
 - A. Low and energy
 - B. Absence of bond polarity
 - C. Usymmetrical electron distribution
 - D. Presence of more number of electrons in bonding orbitals

Answer: B

28. Among KO_2 , $KAlO_2$, CaO_2 and NO_2^+ , unpaired electrons is present in :

A. NO_2^{\oplus} and BaO_2

B. KO_2 and AIO_2^{Θ}

 $C.KO_2$ only

D. BaO_2 only

Answer: C

29. Which one of the following compounds has sp^2 hybridisation?.

A. CO_2

 $B.SO_2$

 $C. N_2O$

D. CO

Answer: B

Watch Video Solution

30. Among the following compounds the one that is polar and has the central atom with sp^2 -hybridisation is

- A. H_2CO_3
- B. SiF_4
- $C.BF_3$
- D. HCIO(2)

Answer: A

Watch Video Solution

31. Which contains both polar and non-polar bonds ? .

A. NH_4CI

B. HCN

 $C. H_2O_2$

D. CH_4

Answer: C

Watch Video Solution

32. The correct order of decreasing bond lengths of CO, CO_2 and CO_3^{2-} is

A. $CO_3^{2-} < CO_2 < CO$

 $B.CO_2 < CO_3^{2-} < CO$

 $C.CO < CO_3^{2-} < CO_2$

D. $CO < CO_2 < CO_3^2$

Answer: D

33. The geometry of H_2S and its dipole moment are

- A. Angular and non-zero
- B. Angular and zero
- C. Linear and non-zero
- D. Linear and zero

Answer: A

Watch Video Solution

34. Molecular shapes of SF_4 , CF_4 , XeF_4 are

- A. The same with 2,0 and 1 lone pair of electrons, respectively.
- B. The same with 1,1 and 1 lone pair of electrons, respectively.
- C. The same with 0,1 and 2 lone pair of electrons, respectively.

D. The same with 1,0 and 2 lone pair of electrons, respectively.

Answer: D

Watch Video Solution

35. The types of hybrid orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ respectively are excepted to be

A. sp, sp^3 and sp^2 , respectively

B. sp, sp^2 and sp^3 , respectively

C. sp^2 , sp and sp^3 , respectively

D. sp, sp^2 , sp^3 and sp,respectively

Answer: B

36. The correct order of hybridisation of the central atom in the following species NH_3 , $\left[PtCl_4\right]^{2-}$, PCl_5 and BCl_3 is :

A.
$$dsp^2$$
, dsp^3 , sp^2 and sp^3

B.
$$sp^3$$
, dsp^3 , sp^3d and sp^2

C.
$$dsp^2$$
, dsp^2 , sp^3 and dsp^3

D.
$$dsp^2$$
, sp^3 , sp^2 and dsp^3

Answer: B

Watch Video Solution

37. Which of the following statement is correct among the species CN^{Θ} , CO and NO^{\oplus} .

A. Bond order three and isoelectronic

B. Bond order three and weak field ligands

C. Bond order two and pi acceptors

D. Isoelectronic and weak field ligands

Answer: A

Watch Video Solution

38. Specify the coordination geometry around and the hybridisation of N and B atoms in 1:1 complex of BF_3 and NH_3 .

A. N: tetrahedral sp^3 , B: tetrahedral sp^3

B. N: pyramidal, sp^3 , B: pyramidal sp^2

C. N: pyramidal, sp^3 , B: planar sp^2

D. N: pyramidal, sp^3 , B: tetrahedral, sp^3 .

Answer: A

A. N_2

 $B.F_2$

C. O_2^{Θ} D. $O_2^{2^{-}}$

Answer: C

Watch Video Solution

41. Which of the following are iso-electronic as well as iso-structural?

$$NO_3^-, CO_3^{2-}, ClO_3^-, SO_3$$

- A. NO_3^{Θ} , CO_3^{2}
- B. SO_3 , NO_3^{Θ}
- C. CIO_3^{Θ} , CO_3^{2}
- D. CO_3^{2-} , SO_3

Answer: A

Watch Video Solution

42. Which of the following oxoacids of sulpher has -O-O- linkage?

A. $H_{2}S_{2}O_{6}$

 $B.H_2S_2O_8$

 $C.H_2S_2O_3$

D. $H_2S_4O_6$

Answer: B

Watch Video Solution

43. According to *MO* theory,

A. $O_2^{\,\oplus}$ is paramagnetic and bond order is greater than O_2

B. $O_2^{\,\oplus}$ is paramagnetic and bond order is less than O_2

C. O_2^{\oplus} is diamagnetic and bond order is less than O_2

D. O_2^{\oplus} is diamagnetic and bond order is more than O_2

Answer: A

Answer: D

Watch Video Solution

- **46.** The species having bond order differnet from that in *CO* is .
 - A. NO^{Θ}
 - B. *NO* [⊕]
 - $C. CN^{\Theta}$
 - $D.N_2$

Answer: A

Watch Video Solution

47. Among the following the paramagnetic compound is

49. The molecule which has pyramidal shape is

A. *SO*₃

B. BrF_3

 $C. SiO_3^2$

D. OSF₂

Answer: D

Watch Video Solution

50. Which one the following properties is not shown by NO?

A. It is a neutral oxide

B. It combines with oxygen to form nitrogen dioxide

C. Its bond order is 2.5.

D. It is diamagentic in gaseous state.

Answer: D

Watch Video Solution

51. For which of the following molecule significant $\mu \neq 0$?

A.
$$\bigcirc$$
Cl
CN
OH
SH
OCL
OH
OH
SI
OCL
OH
SI

A. (A) and (B)

B. Only(C)

C. (*C*) and (*D*)

D. Only(A)

Answer: C

52. The correct statement for the molecule, Csl_3 is

A. It contains Cs^{\oplus} and I_3^{Θ} ions .

B. It contains Cs^{3+} and I^{Θ} ions

C. It contains $\mathit{Cs}^{\,\oplus}$, $I^{\,\Theta}$ and lattice I_2 molecule.

D. it is covalent molecule

Answer: A

Watch Video Solution

53. Assuming 2s - 2p mixing is NOT operative, the paramagnetic species among the following is .

A. Be_2

 $B.B_2$

 $C.C_2$

D.	N_2

Answer: C

Watch Video Solution

- **54.** The intermolecular interaction that is dependent on the inverse cube of distance between the molecule is :
 - A. ion-ion interaction
 - B. ion-dipole interaction
 - C. London force
 - D. hydrogen bond

Answer: B

55. The ionic radii (in Å) of N^{3-} , O^{2-} and F^{-} are respectively:

A. 1.36, 1.40 and 1.71

B. 1.36, 1.71 and 1.40

C. 1.71, 1, 40 and 1.36

D. 1.76, 1.36 and 1.40

Answer: C

Archives Integer

1. Based on VSEPR theory the number of 90 ° F - Br - F angles in a molecules of BrF_5 is _____.

2. Among the triatomic molecules/ions $BeCl_2, N_3^-, N_2O, NO_2^+, O_3, SCl_2, ICl_2^-, l_3^-$ and XeF_2 , the total number of linear molecules (s)/ion(s) where the hybridisation of the central atom does not have contribution from the d- orbitals (s) is [atomic number of

Archives Fill In The Blanks

- **1.** The shape of $\left[CH_3 \right]^{\oplus}$ is _____ .
 - Watch Video Solution

- **2.** The two types of bonds present in B_2H_6 are covalent and ____.
 - Watch Video Solution

3. Fill in the blanks with appropriate choice.

Bond ordr of N_2^+ is \underline{P} while that of N_2 is \underline{Q} .

Bond order of O_2^+ is \underline{R} while that of O_2 is \underline{S} .

N - N bond distance \underline{T} when N_2 changes to N_2^+ and when O_2 changes to

 O_2^+ , the O - O bond distance \underline{U} .

4. Among N_2O , SO_2 , I_3^+ and I_3^- , the linear species areand.......

Archives True False

1. Linear overlap of two atomic p-orbitals leads to a sigma bond .

2. All molecules with polar bonds have dipole moment.				
Watch Video Solution				
3. $SnCI_2$ is a non-linear molecule .				
Watch Video Solution				
4. In benzene, carbon uses all the three p-orbitals for hybridisation .				
Watch Video Solution				
5. sp^3 hybrid orbitals have equal s and p characters .				
Watch Video Solution				

6. The presence of polar bonds in a polyatomic molecule suggests that the molecule has non-zero dipole moment.

7. H_2O moleule is linear

Archives Subjective

1. State four major physical properties that can be used to distinguish between covalent and ionic compounds. Mention the distinguishing features in each case.

2. Write the Lewis dot structural formula for each of the following Also give the formula of a neutral moleule which has the same geometry and the same arrangement of the bonding electrons as in each of the following

(a)
$$O_2^{2^-}$$
 (b) $O_3^{2^-}$ (c) CN^Θ (d) NCS^Θ .

3. The sigma and π -bonds present in benzene ring are

4. Arrange the following as stated Increasing strength of hydrogen bonding (X.... H - X)'O, S, F, CI, N.

5. Given reasons in two or there sentences only for the following Hydrogen peroxide acts as an a reducing agent .

6. The dipole moment of KCI is $3.36 \times 10^{-29}Cm$ The interatomic distance between K^{\oplus} and CI^{Θ} in this unit of KCI is $2.3 \times 10^{-10}m$ Calculate the percentage ionic character of KCI.

7. Explain the difference in the nature of bonding in LiF and LiI.

8. Using the VSEPR theory, identify the type of hybridization and draw the structure of OF_2 What are the oxidation states of O and F?

9. Explain the non-linear shape of H_2S and non-planar shape of PCl_3 using valence shell electron pair repulsion theory.

10. Write the molecular orbital electron distribution of oxygen $\left(O_2\right)$ Specify its bond order and magnetic property

11. Which one is more soluble in diethyl ether : anhydrous $AlCl_3$ or hydrated $AlCl_3$? Explain in terms of bonding.

12. Explain the shape of BrF_5

Watch Video Solution

13. Draw the shape of XeF_4 and OSF_4 according to VSEPR theory Show the lone pair of electrons on the central atom .

Watch Video Solution

14. One the basic of ground electronic configuration, arrange the following molecules in the oder of increasing O - O bond lengths $KO_2, O_2, O_2 \left[AsF_6 \right]$.

Watch Video Solution

15. Predict whether the following molecules are isostructural or not Justify your answer

 $N(Me)_3$ and $N(SiH_3)_3$.

