© 'doubtnut

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (ENGLISH)

CHEMICAL BONDING AND MOLECULAR STRUCTURE

Illustration

1. Which statement is correct for ionic bond?
(a) It is non-directional .
(b) It is not formed by overlapping of orbitals
(b) It is formed by overlapping of orbitals.
(c) it is formed by the elements with same EN
(d) Both (a) and (b) are correct.
2. Which one is having high hydration energy?
(a) K^{\oplus}
(b) $L i^{\oplus}$
(c) Na^{\oplus}
(e) $C s^{\oplus}$.

- Watch Video Solution

3. Which statement is/are correct(more than one correct) ?
(a) In aqueous solution $A 1$ gives hydrated ions $\left[\mathrm{A1}^{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+{ }^{3+}+{ }^{2}}\right.$
(b) Most of aluminium compounds are covalent because formation of $A 1^{3+}$ requires much more energy $\left(=5138 \mathrm{kJmo1}^{-1}\right)$ which is not available ordinarily
(c) In aqueous solution $A 1$ forms hydrated ions becuse og high (negative) heat of hydration of $A 1^{3+}$ compensates the high $I E_{3}$ of $A 1$
(d) Magnitude of hydration energy of $A 1^{3+}<I E_{3}$ of $A 1$.

- Watch Video Solution

4. Which statement is/are correct
(a) Formation of anions with unit charge (e.gCI ${ }^{\Theta} B r^{\Theta}, B r^{\Theta}, I^{\Theta}$ are very common because the EA of these atoms is positive and quite high or $\Delta_{e g} H^{\Theta}$ of these atoms are negative and quite high
(b) $E A^{\prime}$ or $\Delta_{e g} H^{\Theta}$ of these atoms is positive and quite high
(c) Formation of anions with -23 charge (e.g. S^{2-}, O^{2}) is not so easy as their second $E A$ are negative i.e energy is needed to add second electron
(d) Formation of anions with -3 charge (e.g. $\left.N^{3-}, p^{3-}\right)$ is almost rare as the third $\Delta_{e g} H^{\Theta}$ are positive i,e energy in needed to add third electron.

- Watch Video Solution

5. Which statement is/are correct?
(a) Ionic compounds like sulphate and phosphates of Ba and Sr $\left[\right.$ e. $\mathrm{gBaSO}_{4}, \mathrm{SrSO}_{4}, \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and $\left.\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]$ are insoluble in water
(b) The above compounds are soluble in water
(c) Magnitude of lattice energy $\left(\Delta_{U} H^{\Theta}\right)$ of the above compounds is greater than their hydration energy $\left(\Delta_{\text {hyd }} H^{\Theta}\right)$ High $\Delta_{U} H^{\Theta}$ of these
compounds is due to polyvalent nature of both the cations and the anions
(d) In these cases,hydration of ions fails to liberate sufficient energy to offset the lattice energy .

- Watch Video Solution

6. Draw the Lewis structure of CO molecule

- Watch Video Solution

7. Draw the Lewis structure of NO_{2}^{-}(Nitrite ion) .

- Watch Video Solution

8. Write the Lewis dot structure of CO_{3}^{2-} ion .
9. Write the Lewis structure for $C N^{\Theta}$ ion .

- Watch Video Solution

10. Write the Lewis structure for SO_{5}^{2-} (Per oxodisulphate ion).

- Watch Video Solution

11. Calculate the formal charge on atoms in carbonate $\left(\mathrm{CO}_{3}^{2-}\right)$.

- Watch Video Solution

12. Calculate the formal charge on each atoms in nitrite ion .

- Watch Video Solution

13. Calcuate the formal charge on each atom in SO_{5}^{2-} (per -oxosulphate ion).

- Watch Video Solution

14. Calculate the formal charge on each atoms in CO_{4}^{2-} (per oxocarbonate ion).

- Watch Video Solution

15. Explain the structure of CO_{3}^{2-} ion in terms of resonance

- Watch Video Solution

16. Which of the following pairs do not constitute resonanting structures
a. $\mathrm{Me}-\stackrel{\oplus}{\mathrm{N}}=\mathrm{O}^{\ominus} \quad$ and $\quad \mathrm{Me}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
b. $\mathrm{Me}-\mathrm{C}<\stackrel{\stackrel{\ominus}{\mathrm{C}} \mathrm{C}_{2}}{\stackrel{\circ}{\mathrm{O}}}$, and $\mathrm{Me}-\stackrel{\text { CÖ: }}{\stackrel{\mathrm{C}}{\mathrm{C}}}$
c. $\begin{aligned} & \mathrm{Me} \\ & \mathrm{Me}\end{aligned}=\mathrm{O} \quad$ and $\mathrm{Me}-\stackrel{\mathrm{OH}}{\mathrm{C}}=\mathrm{CH}_{2}$
d. $\mathrm{MeCH}=\mathrm{CH} \mathrm{Me}$ and $\mathrm{MeCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

- Watch Video Solution

17. A arrange the following resonating structures in the order of decreasing stability

$$
\begin{aligned}
& \text { (I) } \\
& \left(\begin{array}{c}
\text { Formic or } \\
\text { methanoic } \\
\text { acid }
\end{array}\right) \\
& \text { (IV) }
\end{aligned}
$$

18. Write the resonating structures of phenol in order of decreasing stabilities.

Watch Video Solution

19. Write the resonating structures of NO_{2}^{Θ} (nitrite ion) and NO_{3}^{Θ} (nitrate ion).

- Watch Video Solution

20. Which of the following is the most stable resonance structure
a.

b.

c.

d.

21. Give the stability of the following resonance structures
(a) $H_{2} C=\stackrel{\oplus}{N}=\stackrel{\Theta}{C}$
(b) $H_{2}{ }^{\oplus}-N=\stackrel{\Theta}{N}$
$\Theta \quad \oplus$
(c) $\mathrm{H}_{2} \mathrm{C}-\mathrm{N} \equiv \mathrm{N}$
$\Theta \quad \oplus$
(d) $\mathrm{H}_{2} \mathrm{C}-\mathrm{N}=\mathrm{N}$.

Watch Video Solution

22. Explain :
(i) $\mu o f \mathrm{NH}_{3}>\mathrm{NF}_{3}$

Watch Video Solution

23. Arrange the following compounds in decreasing order of dipole moment values Explain the order
(a) CBr_{4}, (b) CHBr_{3}, (c) $\mathrm{CH}_{2} \mathrm{Br}_{2}$, (d) $\mathrm{CH}_{3} \mathrm{Br}$.
24. (a) Assign orientation to the three chlorotoluenes with $\mu=1.3,1.78$ and 1.9 D

- Watch Video Solution

25. The dipole moment of $\mathrm{CH}_{3} \mathrm{~F}$ is greater than that of $\mathrm{CH}_{3} \mathrm{Cl}$.

- Watch Video Solution

26. Calculate the dipole moment of the following compound

27. Calculate the number of σ, π and non-bonding (i.e lone pair) electrons in the following compounds
(a) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(b) $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(c) $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \mid \mathrm{CH}_{3} \mathrm{H}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{N}$

28. Discuss the hybridisation of carbon atoms in allene $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$ and show the π-orbital overlap.

- Watch Video Solution

29. Out of the following species, group them having similar structures
$\mathrm{CH}_{4}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}, \stackrel{\oplus}{\mathrm{~N}} \mathrm{H}_{4}, \mathrm{NO}_{3}^{\Theta}, \mathrm{N}_{3}^{\Theta}, \mathrm{BF}_{4}^{\Theta}, \mathrm{SO}_{2}, \mathrm{NO}_{2}^{\Theta}$.

- Watch Video Solution

30. Determine the hybridisation, geometry, number of lone pairs (lps's) and bond pairs (bp's) excluding pi bonds in the following compounds
(a) $P F_{6}^{\Theta}$
(b) I_{3}^{Θ}
(c) CIF_{3}
(d) XeOF_{4}
(e) SO_{2}
(f) SO_{3}
(g) $I F_{4}^{\oplus}$
\oplus
(h) NH_{4}.

- Watch Video Solution

31. In which of the following molecules, p and d orbitals of central atoms are involved in the hybridisation
(a) $\left[\mathrm{PtCI}_{4}\right]^{2-}$
(b) AsF_{3}

Watch Video Solution

32. Explain why boilling point of n-alkanes increases regularly with the increase in the number of carbon atoms .
33. Which of the following intermolecular forces have a potential energy distance function as $E \propto \frac{1}{r^{2}}$
(i) Ion -dipole (ii) Dipole -dipole (iii) Ion -induced dipole (iv) London dispersion forces .

- Watch Video Solution

34. Ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ has higher boiling point than dimethyl ether $\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}\right)$ although the molecular weight of both are same due to

- Watch Video Solution

35. Explain unusual stabillity of chorohybrate thugh a compound with two or more - OH groups present on one carbon atom is usually unstabel

- Watch Video Solution

36. o-Hydroxybenzaldehyde is a liquid at room temperature while phydroxybenzaldehyde is a high milting solid because of

- Watch Video Solution

37. (a) Nitrogen and chlorine have almost same $E N^{\prime}$ s but N forms H bonding
38. (I) Arrange the compounds (aO in the order of decreasing boilling points and (b) in the order of decreasing solubility in water
(A) (1) Ethanol (2) Propane, (3) Pentanol

- Watch Video Solution

39. Give the decreasing order of boiling points of $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and HF

- Watch Video Solution

40. Compare the bond lenth of $O-O$ in the following molecules
(a) KO_{2}, (b) $\mathrm{O}_{2}\left[\mathrm{AsF}_{6}\right]$

- Watch Video Solution

41. Which diatomic molecule of second period basides O_{2} should be paramagnetic ?.

- Watch Video Solution

42. Write the molecular orbital electron distribution of oxygen $\left(\mathrm{O}_{2}\right)$ Specify its bond order and magnetic property

- Watch Video Solution

43. Which of the two peroxide ion or superoxide ion has larger bond length ?

- Watch Video Solution

44. How the bond energy varies from N_{2}^{Θ} and N_{2}^{\oplus} and why ?
45. Select from the following molecular orbitals which are gerade ungerade
(a) $\sigma(2 s)$
(b) $\pi^{*}\left(2 p_{x}\right)$
(c) $\pi^{*}\left(2 p_{y}\right)$
(d) $\sigma^{*}(1 s)(e) \pi\left(2 p_{x}\right)$ (f) $\pi\left(2 p_{x}\right)$.

- Watch Video Solution

Solved Examples

1. Construct a table comparing metals with non-metals in terms of
(a) The sign of the charges possible on monoatomic ions
(b) The possibility of reaction with other elements of the same class
(c) The range of the possible number of valence electrons
(d) The ability of the elecments to conduct electricity in the elementary state.
2. Write the formula for a compound of $C I$ which contains lonic bonds only

- Watch Video Solution

3. Pure liquid $\mathrm{H}_{2} \mathrm{SO}_{4}$ solidifies below $10.4^{\circ} \mathrm{C}$ Neither the pure liquid nor the solid conducts electricity however, aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ conducts electricity

Solid $\mathrm{Na}_{2} \mathrm{SO}_{4}$ which melts at $884^{\circ} \mathrm{C}$ does not conduct electricity, but molten $\mathrm{Na}_{2} \mathrm{SO}_{4}$ as well as aqueous solutions of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ conduct electricity Explain the difference in properties between pure $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

4. Write electron dot and line structure for
(a) SeO_{3}^{2-}
(b) $\mathrm{Li}_{3} \mathrm{PO}_{4}$
c) $\mathrm{ClO}_{2}^{\Theta}$
(d) COCl_{2}
(e) $\mathrm{H}_{2} \mathrm{CO}$
(f) $\mathrm{C}_{2} \mathrm{H}_{2}$ (g) $\mathrm{HCO}_{2} \mathrm{H}$.

- Watch Video Solution

5. By completing the following structures, adding unshared e^{-}pairs when necessary calculate the charges
(a) $N \equiv C-\equiv N$
$C I-C \equiv N$
a. $\mathbf{N} \equiv \mathbf{C}-\mathbf{C} \equiv \mathbf{N}$
b. $\mathrm{Cl}-\mathrm{C} \equiv \mathrm{N}$
c.

d.

- Watch Video Solution

6. (a) In each of the following parts select the species having the greater resonance stabilisation
$\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$ and $\mathrm{H} \mid \mathrm{O}^{\oplus} \mathrm{C}=\mathrm{O}$
(ii) HNO_{3} and NO_{3}^{Θ}
(b) Draw all possible octet structural formulas for N_{3}^{Θ} Which ones are possible resonance forms?.

- Watch Video Solution

7. Arrange in decreasing polarity of bonds $\mathrm{SbH}_{3}, \mathrm{AsH}_{3}, \mathrm{PH}_{3}, \mathrm{NH}_{3}$

- Watch Video Solution

8. The dipole moment of HBr is $2.60 \times 10^{-30} \mathrm{Cm}$ and the interatomic spacing is 1.41 A What is the percentage of ionic character of HBr ? .

- Watch Video Solution

9. The single and multiple bond radii of some elements given in the following table Calculate the bond lengths in
(a) SCI_{2}
(b) NH_{3}
(c) $\mathrm{CH}_{2} \mathrm{CI}_{2}$
(d) HOCI
(e) HCN
(f) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(g) $\mathrm{CH}_{3} \mathrm{NH}_{2}$

Single bond radii (\AA)					
H	0.28	P	1.10	Te	1.37
C	0.77	As	1.21	F	0.64
Si	1.77	Sb	1.41	Cl	0.99
Ge	1.22	O	0.66	Br	1.14
Sn	1.40	S	1.04	I	1.33
N	0.70	Se	1.17		

Multiple bond radii (\mathbf{A})	
$\mathrm{C}=$	0.67
$\mathrm{C} \equiv$	0.61
$\mathrm{~N}=$	0.63
$\mathrm{~N} \equiv$	0.55

- Watch Video Solution

10. Arrange $C-C, C=C$ and $C \equiv C$ in order of
(i) Decreasing bond dissociation energy
(ii) Decreasing bond lengths

- Watch Video Solution

11. The $\mathrm{Pt}-\mathrm{Cl}$ distance is 2.32 A in several crystalline compounds

What is the $\mathrm{Cl}-\mathrm{Cl}$ distance in structure (i) and in structure (ii)

(i)

(ii)

- Watch Video Solution

12. The averge $\left(C_{C}\right)$ bond energy is $343 \mathrm{kJmo1}^{-1}$. What do you predict for the Si - Si single bond energy
(b) Carbrundum (SiC) and corundun $\left(\mathrm{A1}_{2} \mathrm{O}_{3}\right)$ are important abrasives Comment on the structures for these compounds to explain why they have such hardness .

- Watch Video Solution

13. What is the hybridisation state of each C -atom in the following molecule?

Benzene

- Watch Video Solution

14. How many σ and π bonds are present in a benzene molecule?.

- Watch Video Solution

15. (a) What is the number of molecular orbitals obtained by mixing of two atomic orbitals ?
(b) Out of F_{2} and $O F$ which of these molecules is (are) paramagnetic

- Watch Video Solution

16. Compare and contrast the concepts of hybrid orbitals and molecular orbitals with respect to
(i) The number of atoms involved
(ii) The number of orbitals produced from a given number of ground state orbitals
(iii) The energies of the resulting orbitals with respect to one another

- Watch Video Solution

17. Which of the following molecules has the highest IE
(i) Ne (ii) F

- Watch Video Solution

18. Select the species with the largest $I E$ in each
(i) $N a, K, R b$ (ii) $F, N e$
19. Select from following gropus, the one which has the largest radius Li, Na, Rb

Watch Video Solution

20. Distinguish using the property mentioned in brackets
(e) $N F_{3}, \mathrm{NH}_{3}$ (dipole moment)

- Watch Video Solution

21. Which of the following alkali metal chlorides is expected to have the highest melting point
(i) LiCl (ii) KCl (iii) RbCl (iv) NaCl .

- Watch Video Solution

22. Explain

Why $\mathrm{H}_{2} \mathrm{O}$ is liquid while $\mathrm{H}_{2} \mathrm{~S}$ is gas

- Watch Video Solution

23. How do you account for the difference in melting points between (a) and (b) between (c) and (d) and between these two differences ?

- Watch Video Solution

24. A plant virus was found to consist of uniform cylindrical particles 100 A in diameter and 4000 A long The virus has a specific volume $0.314 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ If
the virus particle is considered to be one molecule, what is its molecular weight? .

- Watch Video Solution

25. Calculate the II distance in each of the isomeric compounds $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{I}_{2}$ as shown below

Give Bond length of $C-I \Rightarrow 210 \mathrm{pm}$
Bond length of $C=C \Rightarrow 133 \mathrm{pm}$

(a)

(b)

- Watch Video Solution

26. Calculate the I-I distance in each of the three isomeric diiodobenzenes

Assume that the ring is a regular hexagon and that each $C-I$ bonds lies on a line through the centre of the hexagon .

Given C - I bond length $=210 \mathrm{pm}$
The distance between two adjacent C -atom (i.e C-C)
$=140 \mathrm{pm}$

(a)

(b)

(c)

- Watch Video Solution

27. Enthalpic of hydrogenation of ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ and benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ are -136.68 and $205.65 \mathrm{kJmo}^{-1}$ respectively

Calculate the resonance energy of benzene
(a) $\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}, \Delta \mathrm{H}_{1}=-136.68 \mathrm{~kJ} \mathrm{mo1}^{-1}$
(b) $\mathrm{C}_{6} \mathrm{H}_{6_{(1)}}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}, \Delta \mathrm{H}_{2}=-205.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

28. Select the species which is best described
$C I, A r, K$ (has the smallest IE)

- Watch Video Solution

29. (a)The $\mathrm{CI}-\mathrm{O}$ bond distance in $\mathrm{CIO}_{4}^{\Theta}$ is 144 pm What do you conclude about the structure of this ion?
(b) The POCI_{3} molecule has the shape of an irregular tetrahedron with the P atom located centrally The $C I-P-C I$ angle is found to be 1035°

Give a qualitative explanation for the deviation of this structure from a regular tetrahedron.

- Watch Video Solution

30. Draw all geometrical isomers of $\mathrm{PBr}_{2} \mathrm{Cl}_{3}$ molecule State which isomer (s) have no dipole moment .

- Watch Video Solution

31. Write structures and describe the geometry of the following molecules
(a) $\mathrm{NH}_{2} \mathrm{OH}$ (Hydroxylamine)
(b) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ (Hybrazine)
(c) $\mathrm{CH}_{3} \mathrm{COCI}$ (Acety1 chloride)
(d) $\mathrm{CH}_{2}=\mathrm{NH}$ (methylenamine).
32. Reduce the hybridisation, geometry and shape of the following
(i) Br_{3}^{Θ}
(ii) $\mathrm{CIO}_{3}^{\oplus}$
(iii) $I O_{2} F_{2}^{\Theta}$

Either of the hybridisation (i) $s p^{2}$ and (ii) $s p^{3} d^{2}$ of a central atom can lead to a squar planar molecule Give one example of each .

- Watch Video Solution

33. State the bond order and indicate whether the species is paramagnetic
$C N^{\oplus}$
(b) $C N(c) C N^{\Theta}$
(d) No.

- Watch Video Solution

34. If the internuclear axis in the diatomic molecule $A B$ is designated as the z -axis what are the varoius pairs of s, p or d atomic orbitals that can be combined to from (a) π_{x} and (b) π_{y} orbitals ? .
35. Make a table giving (i) number of orbitals with a given energy (ii) maximum number of electrons per orbital and (iii) maximum number of electrons per orbital and (iii) maximum number of electrons at a given energu for the following types of orbitals
(a) s
(b) p (c) $s p^{2}$ (d) $s p^{3}$
(e) σ (f) $\sigma^{*}(\mathrm{~g}) \pi^{*}$.

- Watch Video Solution

36. When 2 s orbital overlaps with $2 p_{x}$ or $2 p_{y}$ orbital (assuming Z-axis as the internuclear axis) threr is a partical overlap and they do not form any MO Explain why?.

- Watch Video Solution

Ex 22 Subjective Intermolecular Forces And H Bonding

1. Write a Lewis structure for $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ one of the compounds indicated in the depletion of stratoshpheric ozone.

- Watch Video Solution

2. Write Lewis structure for the following
(a) Ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ the most important reactant in polymer manufacture
(b) Nitrogen $\left(N_{2}\right)$ the most abundant atmosheric gas
(c) Methanol $\left(\mathrm{CH}_{4} \mathrm{O}\right)$ an important industrial alcohol that is begin used as a gasoline alternative in car engines .

- Watch Video Solution

3. The dipole moment of LiH is $1.964 \times 10^{-29} \mathrm{Cm}$ and interatomic distance between Li and H in this molecule is 1.6A What is the per cent ionic character in LiH ? .
4. Predict whether each of the following molecule has a dipole momnet
(a) $B F_{3}$
(b) IBr (c) $\mathrm{CH}_{2} \mathrm{CI}_{2}$.

Watch Video Solution

5. The dipole moment of $K C I$ is $3.36 \times 10^{-29} \mathrm{Cm}$ The interatomic distance between K^{\oplus} and $C I^{\Theta}$ in this unit of $K C I$ is $2.3 \times 10^{-10} \mathrm{~m}$ Calculate the percentage ionic character of $K C I$.

- Watch Video Solution

6. Account of the following observations
(a) Ammonium salts are more soluble in water than the corresponding sodium salts
(b) BeCI_{2} is linear but SnCI_{2} is angular
(c) F_{2} gas is more reactive than CI_{2} gas
(d) The bond lengths of both $O-O$ bonds in ozone are equal .
7. State whether the following are ionic or covalent
(a) CaH_{2} (b) MgO (c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (d) $\mathrm{NH}_{4} \mathrm{CI}$
(e) HCl (f) CaCl_{2} (g) $\mathrm{Na}_{2} \mathrm{~S}(\mathrm{~h}) \mathrm{SnCl}_{2}$
(i) Diamond (j) CaC_{2} (k) NaH (i) $\mathrm{C}_{2} \mathrm{H}_{2}$.

- Watch Video Solution

Ex 22 Subjective Molecular Orbital Theory

1. Identify which of them are polar and non-polar
(a) HF (b) BeCI_{2} (c) HgCI_{2} (d) NH_{3}
(e) $\mathrm{H}_{2} \mathrm{O}$ (f) N_{2} (g) AICI_{3} (h) CCI_{4}
(i) $\mathrm{CI}_{2}(\mathrm{j}) \mathrm{SiCI}_{4}$.

- Watch Video Solution

2. Give reasons for the following
(a) $P F_{5}$ is know but $N F_{3}$ is not
(b) $\mathrm{H}_{2} \mathrm{O}$ is a good solvent
(c) $B F_{3}$ is non- polar but planar
(e) Carbon -oxygen $(\mathrm{C}-\mathrm{O})$ bond lengths are equal in $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(f) $M g F_{2}$ is more soluble in water than $M g C I_{2}$.

- Watch Video Solution

3. Give reason for the following

Carbon has two unpaired electrons in the outermost orbit, but it is tetravalent in organic compound

- Watch Video Solution

4. Indicate wheter the following pairs of elements form ionic or covalent compounds Also write their molecular formula
(a) C and S (b) Na and $C I$ (c) S and O
(d) Ca and H.

- Watch Video Solution

Ex 22 Objective

1. Arrange the following as directed
(a) $N_{2}, O_{2}, F_{2}, C I_{2}$ (Decreasing order of bond energey)
(b) S-O,N-CIMg-O, As -F (Decreasing polarity of bonds)
(c) $s p, s p^{2}, s p$ (Decreasing order of energy of orbitals)
(d) $\mathrm{HF}, \mathrm{HCI}, \mathrm{HBr}, \mathrm{HI}$ (Decreasing order of dipole moments)

- Watch Video Solution

2. Expalin the following
(a) The central $C-C$ bond in Buta 1,3 diene is shorter than that of n butane
(b) Why the dipole moment of cis - 1, 2 dichloroethene is greater than that of trans -1,2 -dichloroethene (c) $C I F_{2}^{\Theta}$ is linear, but $C I F_{2}^{\oplus}$ is bent
(d)Two different bond lengths are observed in $P F_{5}$ but only one bond lenght is observed in $S F_{6}$.

- Watch Video Solution

3. Arrange the following in decreasing order of dipole moment
(1) m-Dichlorobenzene
(2) o-Dichlorobenzene (3) p-Dichlorobenzene

- Watch Video Solution

4. Predict the shape of the following Xenon compounds
(a) XeO_{3} (b) XeOF_{4} (c) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$.

- Watch Video Solution

5. Considering x-axis as the internuclear axis which out of the following will not form a sigma bond and why? (a) 1 s and 1 s (b) 1 s and $2 p_{x}$ (c) $2 p_{y}$
and $2 p_{y}(\mathrm{~d}) 1 \mathrm{~s}$ and 2 s .

- Watch Video Solution

6. Arrange the following types of interaction in order of decreasing stability
(a) Covalent bond (b) van ber Waals force
(c) H-bonding (d) Dipole interaction
(e) Ionic bond .

- Watch Video Solution

7. Arrange the following types of intermolecular forces in order of decreasing their strength
(a) Ion dipole
(b) Keesom forces
(C) Dispersion or London forces
(d) Dipole-induced dipole
(e) Ion-induced dipole (Debye forces).

- Watch Video Solution

8. Name the types of interaction or intermolecular forces of which potential energy-distance function are given below
(a) $E \propto \frac{1}{r}$ (b) $E \propto \frac{1}{r^{2}}$ (c) $E \propto \frac{1}{r^{3}}$
(d) $E \propto \frac{1}{r^{4}}(\mathrm{e}) E \propto \frac{1}{r^{6}}$.

- Watch Video Solution

9. List properties of water that stem from H -bonding

- Watch Video Solution

10. Predict the order of decreasing boiling points of the following $\mathrm{H}_{2}, \mathrm{He}, \mathrm{Ne}, \mathrm{Xe}, \mathrm{CH}_{4}$.
11. Which of the following pairs is expected to exhibit H-bonding
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{SH}$
(c) $\mathrm{CH}_{3} \mathrm{OH}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$.

- Watch Video Solution

12. (a)Give the decreasing order of melting points of the following $\mathrm{NH}_{3}, \mathrm{PH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ Explain
(b) In which molecule is the van der Waals force likely to be the most important in determining the m.pt and b.pt for ICI, $\mathrm{Br}_{2}, \mathrm{HCI}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}$.

D Watch Video Solution

13. Give the number of electrons which occupy the bonding orbitals in $H_{2}^{\oplus} H_{2}$ and O_{2}^{\oplus}
14. Compare the relative stabilities and magnetic behaviour of the following species
(a) O_{2}^{Θ} and N_{2}^{\oplus}
(b) O_{2}^{2-} and N_{2}^{Θ}
(c) O_{2}^{2-} and N_{2}^{2-}.

- Watch Video Solution

15. Expalin

(a) H_{2}^{\oplus} and H_{2}^{Θ} ions have same bond order but H_{2}^{\oplus} ions are more stable than H_{2}^{Θ}
(b) It is possible to have a diatomic molecule with its ground sate MO s full with electrons
(c) Why $2 p_{x 0}$ or $2 p_{y}$ orbitals do not combine with 2 s orbitals to form $M O$ (Taking Z-axis as the internuclear axis).

- Watch Video Solution

16. Which of the following species have same bond order and same shape
(a) N_{3}^{Θ}
(b) O_{3}
(c) CO_{2}
(d) NO_{2}^{Θ}.
17. Which of the following is soluble in water
A. $C S_{2}$
B. CHCl_{3}
C. CCl_{4}
D. $\mathrm{CH}_{3} \mathrm{OH}$

Answer:

- Watch Video Solution

18. Which one among the following does not have the hybrogen bond ?
A. Liquid NH_{3}
B. Liquid HCl
C. Water
D. Phenol

Answer:

- Watch Video Solution

19. The molecule having one unpaired electrons is .
A. O_{2}
B. $C N^{\Theta}$
C. NO
D. CO

Answer:

- Watch Video Solution

20. The hydrogen bond is strongest in
A. $F-H \ldots O$
B. $C-H \ldots . . O$
C. $O-H \ldots . S$
D. $F-H \ldots . F$

Answer:

D Watch Video Solution

21. Hydrogen bond is maximum in .
A. Propanol
B. Propyl chloride
C. Tripropylamine
D. Dipropyl ether

Answer:

22. How many hydrogen bonds can be formed by a water molecule?
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

23. Number of paired electrons in O_{2} molecule is .
A. 16
B. 14
C. 8
D. 7

Answer:

- Watch Video Solution

24. Among $\mathrm{KO}_{2}, \mathrm{AlO}_{2}^{+}, \mathrm{BaO}_{2}$ and NO_{2}^{+}unpaired electron is present in
A. KO_{2} only
B. NO_{2}^{\oplus} and BaO_{2}
C. KO_{2} and $\mathrm{AIO}_{2}^{\Theta}$
D. BaO_{2} only

Answer:

- Watch Video Solution

25. The correct order of decreasing bond lengths of $\mathrm{CO}, \mathrm{CO}_{2}$ and CO_{3}^{2-} is
A. $I>I I I>I I$
B. $I>I I>I I I$
C. $I I I>I I>I$
D. $I I>I I I>I$

Answer:

- Watch Video Solution

26. Which of the following statement is correct among the species $C N^{\Theta}, C O$ and $N O^{\oplus}$.
A. Isolelectronic and weak field ligands
B. Isolelectronic with three bond order
C. Bond order three and weak field ligands
D. Bond order two and pi-acceptor

Answer:

27. Which of the following species has unpaired electrons?
A. O_{2}^{2-}
B. F_{2}
C. N_{2}
D. O_{2}^{Θ}

Answer:

28. Which of the following are iso-electronic as well as iso-structural ?
$\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}$
A. $\mathrm{CO}_{3}^{2-}, \mathrm{CIO}_{3}^{\Theta}$
B. $\mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{\Theta}$
C. $\mathrm{SO}_{3}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{\Theta}$

Answer:

- Watch Video Solution

29. According to MO theory which of the following statement about the magnetic character and bond order is correct regarding O_{2}^{+}?
A. paramagnetic and $\mathrm{BO}>\mathrm{O}_{2}$
B. paramagnetic and $\mathrm{BO}<\mathrm{O}_{2}$
C. Diamagnetic and $\mathrm{BO}>\mathrm{O}_{2}$
D. Diamagnetic and $\mathrm{BO}<\mathrm{O}_{2}$

Answer:

30. Which of the following compound is paramagnetic ?
A. $\mathrm{K}_{2} \mathrm{O}_{2}$
B. O_{3}
C. KO_{2}
D. $\mathrm{N}_{2} \mathrm{O}$

Answer:

31. The species having bond order differnet from that in $C O$ is .
A. N_{2}
B. $N O^{\Theta}$
C. $N O^{\oplus}$
D. $C N^{\Theta}$

- Watch Video Solution

32. In forming (i) $N_{2} \rightarrow N_{2}^{\oplus}$ and $O_{2} \rightarrow O_{2}^{\oplus}$ the electrons respectively removed from .
A. $\left(\pi^{*} 2 p_{y}\right.$ or $\left.\pi^{*} 2 p_{x}\right)$ and $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$
B. $\left(\pi .{ }^{*} 2 p_{y}\right.$ or $\left.\pi .{ }^{*} 2 p_{x}\right)$ and $\left(\pi .{ }^{*} 2 p_{y}\right.$ or $\left.\pi .{ }^{*} 2 p_{x}\right)$
C. $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$ and $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$
D. $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$ and $\left(\pi .{ }^{*} p_{y}\right.$ or $\pi^{*} p_{y}$ and $\left.\pi^{*} 2 p_{x}\right)$

Answer:

D Watch Video Solution

33. Using MO theory predict which of the following species has the shortest bond length ?
A. $O_{2}^{2 \oplus}$
B. O_{2}^{Θ}
C. O_{2}^{2-}
D. O_{2}^{\oplus}

Answer:

- Watch Video Solution

34. Which of the following have identical bond order?
A. O_{2}^{Θ}
B. $C N^{\Theta}$
C. NO^{\oplus}
D. O_{2}^{\oplus}

Answer:

Exercises Linked Comprehension

1. The shape of a moleculs is determined by electron pair repulsions in the valence shell A.lp occupies a larger space than a bp because it is not shared by two nuclei The the lp lp repulsion is greater than the lp-bp repulsion, which in trun is greater the bp-bp repulsion. The presence of lp causes distortion of bond angles hence, a daviation from an ideal shape THe extent of distortion depends upon the orientation of the lp's around the central atom In a trigonal bipyramid, the Ip's occupy equatorial positions than the apical ones $\ln A B_{n}$ type molecules, as the $E N$ of A increases, the bp's come closer and the repulsion between them increases. On the other hand, as $E N$ of B increases, the lp s get farther and repulsion decreases

In which of the following molecules is the bond angle largest ? .
A. $P F_{3}$
B. PCl_{3}
C. PBr_{3}
D. PI_{3}

Answer: D

- Watch Video Solution

2. The shape of a moleculs is determined by electron pair repulsions in the valence shell A.lp occupies a larger space than a bp because it is not shared by two nuclei The the lp lp repulsion is greater than the lp-bp repulsion, which in trun is greater the bp-bp repulsion. The presence of lp causes distortion of bond angles hence, a daviation from an ideal shape THe extent of distortion depends upon the orientation of the lp's around the central atom In a trigonal bipyramid, the Ip's occupy equatorial positions than the apical ones $\ln A B_{n}$ type molecules, as the $E N$ of A increases, the bp's come closer and the repulsion between them increases. On the other hand, as $E N$ of B increases, the lp s get farther and repulsion decreases

The shape of which of the following molecules will not be distored ?
A. BrF_{3}
B. ClF_{3}
C. XeF_{4}
D. XeF_{6}

Answer: C

D Watch Video Solution

3. The shape of a moleculs is determined by electron pair repulsions in the valence shell. A lp occupies a larger space than a bp because it is not shared by two nuclei The the lp lp repulsion is greater than the lp -bp repulsion, which in turn is greater the bp-bp repulsion. The presence of lp causes distortion of bond angles hence, a daviation from an ideal shape. The extent of distortion depends upon the orientation of the lp's around the central atom In a trigonal bipyramid, The Ip's occupy equatorial positions than the apical ones $\ln A B_{n}$ type molecules, as the $E N$ of A increases, the bp's come closer and the repulsion between them
increases. On the other hand, as $E N$ of B increases, the lp s get farther and repulsion decreases

Which of the following statements is true ?
A. $\mathrm{F}-\mathrm{N}-\mathrm{F}$ angle in NF_{3} is greater than $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle in NH_{3}.
B. $\mathrm{F}-\mathrm{N}-\mathrm{F}$ angle in NF_{3} is smaller than $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle in NH_{3}.
C. $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle in $\mathrm{H}_{2} \mathrm{O}$ is greater than $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle in NH_{3}.
D. $\mathrm{F}-\mathrm{O}-\mathrm{F}$ angle in $\mathrm{F}_{2} \mathrm{O}$ is greater than $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle in $\mathrm{H}_{2} \mathrm{O}$..

Answer: B

- Watch Video Solution

4. The shape of a moleculs is determined by electron pair repulsions in the valence shell lp occupies a larger space than a bp because it is not shared by two nuclei The the lp lp repulsion is greater than the bp-bp repulsion. The presence of lp causes distortion of bond angles hence, a daviation from an ideal shape THe extent of distortion depends upon orientation of the Ip's around the central atom In a trigonal bipyramid,
the Ip's occupy equatorial positions than the apical ones $\ln A B_{n}$ type molecules, as the $E N$ of A increases, the bp's come closer and the repulsion between them increases. On the other hand, as $E N$ of B increases, the lp s get farther and repulsion decreases

Which of the following species will have the lone pair effects cancelled?.
A. $I C I_{2}^{\Theta}$
B. CIF_{3}
C. PCI_{3}
D. BrF_{5}

Answer: A

- Watch Video Solution

5. In MO energy diagram for heteronuclear diatomic molecule is similar However, the energies of the $A O \mathrm{~s}$ of the atom having higher atomic number being lower, the diagram will be unsymmetrical, but that will not make a difference in the electron count The bond order is half the
difference in the number of electrns of the bonding (σ and π) and antibonding (σ and π) MOs For a bond to have been formed the bond order the shorter is the bond distance and the greater is the bond dissociation energey But if the bond order is smae in the above two cases, then the bond distance will be greater and the bond dissocation energy smaller in the case which has more populated anti-bonding orbitals The presence of unpaired electron(s) in a molecualr orbital will make the system paramagnetic

Which among the following will have a triple bond order? .
A. CO
B. $C N^{\Theta}$
C. $N O^{\oplus}$
D. All of these

Answer: D

- Watch Video Solution

6. In MO energy diagram for heteronuclear diatomic molecule is similar However, the energies of the $A O \mathrm{~s}$ of the atom having higher atomic number being lower, the diagram will be unsymmetrical, but that will not make a difference in the electron count The bond order is half the difference in the number of electrns of the bonding (σ and π) and antibonding (σ and π) MOs For a bond to have been formed the bond order the shorter is the bond distance and the greater is the bond dissociation energey But if the bond order is smae in the above two cases, then the bond distance will be greater and the bond dissocation energy smaller in the case which has more populated anti-bonding orbitals The presence of unpaired electron(s) in a molecualr orbital will make the system paramagnetic

Which of the following species is not expected to exist?.
A. $H e_{2}^{\oplus}$
B. H_{2}^{\oplus}
C. $B e_{2}$
D. $B e_{2}^{\oplus}$

Answer: C

- Watch Video Solution

7. In MO energy diagram for heteronuclear diatomic molecule is similar However, the energies of the $A O s$ of the atom having higher atomic number being lower, the diagram will be unsymmetrical, but that will not make a difference in the electron count The bond order is half the difference in the number of electrns of the bonding (σ and π) and antibonding (σ and π) MOs For a bond to have been formed the bond order the shorter is the bond distance and the greater is the bond dissociation energey But if the bond order is smae in the above two cases, then the bond distance will be greater and the bond dissocation energy smaller in the case which has more populated anti-bonding orbitals The presence of unpaired electron(s) in a molecualr orbital will make the system paramagnetic

Which of the following species is expected to be paramagnetic ?.

$$
\text { A. } N O^{\Theta}
$$

B. O_{2}^{Θ}
C. O_{2}^{+}
D. All of these

Answer: D

- Watch Video Solution

8. In MO energy diagram for heteronuclear diatomic molecule is similar However, the energies of the $A O \mathrm{~s}$ of the atom having higher atomic number being lower, the diagram will be unsymmetrical, but that will not make a difference in the electron count The bond order is half the difference in the number of electrns of the bonding (σ and π) and antibonding (σ and π) MOs For a bond to have been formed the bond order the shorter is the bond distance and the greater is the bond dissociation energey But if the bond order is smae in the above two cases, then the bond distance will be greater and the bond dissocation energy smaller in the case which has more populated anti-bonding orbitals The presence of
unpaired electron(s) in a molecualr orbital will make the system paramagnetic

Which of the following orders is correct in respect of bond dissociation energey? .
A. $N_{2}^{\oplus}>N_{2}^{\Theta}$
B. $O_{2}>O_{2}^{\Theta}$
C. $\mathrm{NO}^{\oplus}>\mathrm{NO}$
D. All of these

Answer: D

- Watch Video Solution

9. Which is correct statement ? .
A. Keto form of acetoacetic ester involves hydrogen bonding
B. In water vapour, hydrogen bonding exists
C. For first ionisation, maleic acid is stronger acid than fumaric acid This can be explained on the basis of concept of hydrogen bonding
D. Boiling point of HCI is higher than that of $H F$

Answer: C

- Watch Video Solution

10. Hydrogen bond is formed between hydrogen atoms and highly electronegative elements. It is of two types -intermolecular and intramolecualar It is a weaker bond than ionic, covalent and metallic bonds

In a suitable slovent such as benzene, benzoic acid associates and exists as a.
A. dimer
B. trimer
C. tetramer
D. hexamer

Answer: A

D Watch Video Solution

11. Hydrogen bond is formed between hydrogen atoms and highly electronegative elements it is of two types -intermolecular and intramolecualar it is a weaker bond than ionic, covalent and metallic bonds

The number of hydrogen bonds in $\mathrm{H}_{9} \mathrm{O}_{4}^{\oplus}$ species is .
A. 2
B. 3
C. 4
D. 1

- Watch Video Solution

12. Hydrogen bond between two atoms is formed due to
A. Paranitophenol is steam volatile but not orthonitrophenol
B. Ethyl alcohol is more viscous than glycerol
C. If a dry paper is torn, sound is heard due to breaking of hydrogen bonds one after another in a rhythmatic manner .
D. In fermic salt, bonds present are covalent, metallic and hydrogen bond.

Answer: C

- Watch Video Solution

13. in an ionic bond the cation tends to polarise the electron cloud of the anion by pulling electron density towards itself This causes development
of covalent character in the ionic bond because the electron density gets localised in between the nuclei The tendency of the cation to bring about the polarisation of the anion is expressed as its polasising power The ability of ion to undergo polarisation is called its polarisability The polarising power of a cation or an anion is decided on the basis of F ajans' rules as follows .
(i) The smaller the cation, the higher is its polarising power
(ii) Cations with pseudo-noble gas configuration $\left(n s^{2} n p^{6} n d^{10}\right)$ have relatively high polarising power than those with noble gas configuration $\left(n s^{2} n p^{6}\right)$
(iii) The larger the size of the anion, the higher is its polarisability The ionic conductance of which of the following is the highest ? .
A. $L i{ }_{(a q)}^{\oplus}$
B. $N a{ }_{(a g)}^{\oplus}$
C. $K_{(a q)}^{\oplus}$
D. $C s \stackrel{\oplus}{(a q)}$

Answer: D

14. Among the following which will have the lowest melting point and the highest solubility $\mathrm{LiCI}, \mathrm{BeCI}_{2}, \mathrm{BCI}_{3}, \mathrm{CCI}_{4}$.
A. $\mathrm{CCI}_{4}, \mathrm{LiCI}$
B. $\mathrm{LIICI}, \mathrm{CCI}_{4}$
C. $\mathrm{BeCI}_{2}, \mathrm{BCI}_{3}$
D. $B C I_{3}, B e C I_{2}$

Answer: A

- Watch Video Solution

15. in an ionic bond the cation tends to polarise the electron cloud of the anion by pulling electron density towards itself This causes development of covalent character in the ionic bond because the electron density gets localised in between the nuclei The tendency of the cation to bring about
the polarisation of the anion is expressed as its polasising power The ability of ion to undergo polarisation is called its polarisability The polarising power of a cation or an anion is decided on the basis of F ajans' rules as follows .
(i) The smaller the cation, the higher is its polarising power
(ii) Cations with pseudo-noble gas configuration $\left(n s^{2} n p^{6} n d^{10}\right)$ have relatively high polarising power than those with noble gas configuration $\left(n s^{2} n p^{6}\right)$
(iii) The larger the size of the anion, the higher is its polarisability Choose the correct order of polarisability for the following $I^{\Theta}, B r^{\Theta}, C I^{\Theta} F^{\Theta}$.
A. $I^{\ominus}>B r^{\ominus}>C l^{\ominus} F^{\ominus}$
B. $I^{\ominus}>B r^{\ominus}=C l^{\ominus}>F^{\ominus}$
$C . I^{\ominus}=B r^{\ominus}=C l^{\ominus}>F^{\ominus}$
D. $I^{\ominus}=B r^{\ominus}<C l^{\ominus}=F^{\ominus}$

Answer: A

16. in an ionic bond the cation tends to polarise the electron cloud of the anion by pulling electron density towards itself This causes development of covalent character in the ionic bond because the electron density gets localised in between the nuclei The tendency of the cation to bring about the polarisation of the anion is expressed as its polasising power The ability of ion to undergo polarisation is called its polarisability The polarising power of a cation or an anion is decided on the basis of F ajans' rules as follows .
(i) The smaller the cation, the higher is its polarising power
(ii) Cations with pseudo-noble gas configuration $\left(n s^{2} n p^{6} n d^{10}\right)$ have relatively high polarising power than those with noble gas configuration $\left(n s^{2} n p^{6}\right)$
(iii) The larger the size of the anion, the higher is its polarisability

Arranfe of the following species in dereasing order of polarising powers $A g^{\oplus}, T I^{\oplus}, N a^{\oplus}$.

$$
\text { A. } T I^{\oplus}>\mathrm{Ag}^{\oplus}>\mathrm{Na}^{\oplus}
$$

B. $T I^{\oplus}>A g^{\oplus}>A g^{\oplus}$
C. $\mathrm{Ag}^{\oplus}>\mathrm{TI}{ }^{\oplus}>\mathrm{Na}^{\oplus}$
D. $\mathrm{Na}^{\oplus}>\mathrm{TI}{ }^{\oplus}>\mathrm{Ag}^{\oplus}$

Answer: C

- Watch Video Solution

17. The $\mathrm{Pt}-\mathrm{Cl}$ distance is 2.32 A in several crystalline compounds

What is the $\mathrm{Cl}-\mathrm{Cl}$ distance in structure (i) and in structure (ii)

(i)

(ii)
A. $4.32 \AA$
B. $4.32 \AA$
C. $1.16 \AA$
D. $9.28 \AA$

Answer: B

- Watch Video Solution

18. The $\mathrm{Pt}-\mathrm{Cl}$ distance is 2.32 A in several crystalline compounds

What is the $\mathrm{Cl}-\mathrm{Cl}$ distance in structure (i) and in structure (ii)

(i)

(ii)
A. $2.32 \AA$
B. $1.52 \AA$
C. $2.15 \AA$
D. $3.28 \AA$

Answer: D

- Watch Video Solution

19. The Pt - CI distance is 2.32 A in several crystaline compounds

What is the CI-CI distance in structure (i) and in structure (ii)

(i)

(ii)

Watch Video Solution

20. The platinum-chlorine distance has been found to be $2.32 \AA$ in several crystalline compounds This value applies to both compounds A
and B given here

(A)

(B)

Based on the above structures, answer the following questions Structure B is .
A. cis-isomer
B. trans-isomer
C. nuclear isomer
D. co-ordinate isomer

Answer: A

21. The platinum-chlorine distance has been found to be $2.32 \AA$ in several crystalline compounds This value applies to both compounds A and B given here

Based on the above structures, answer the following questions The $C-C$ single-bond distnaance is $1.54 \AA$ What is the distance between the terminal carbons is propane ? Assume that the four bonds of any carbon atoms arre pointed towards the corners of a reqular tetrahedron.
A. $3.08 \AA$
B. $1.54 \AA$
C. $2.52 \AA$
D. $1.26 \AA$

Answer: C

D Watch Video Solution

22. The $H F_{2}^{\Theta}$ ion solid state and in liquid $H F$ but not in the dilute aqueous solution
$H F_{2}^{\Theta}$ exists in solid state and in liquid $H F$ because $H F_{2}^{\Theta}$ ions are held together by .
A. hydrogen bonding
B. van der Waals force
C. London force
D. All of these

Answer: A

23. The $H F_{2}^{\Theta}$ ion solid state and in liquid $H F$ but not in the dilute aqueous solution In aqueous solution

Θ

A. HF forms $\mathrm{H}_{2} \mathrm{~F}^{\oplus}$ and $\mathrm{H}, \mathrm{H}_{2} \mathrm{O}$ being a stronger acid than HF
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HF} \Leftrightarrow \mathrm{H}_{2} \mathrm{~F}^{\oplus}+\stackrel{\Theta}{\mathrm{O}}{ }^{-}$
B. HF forms $\mathrm{H}_{3} \mathrm{O}^{\oplus}$ and $F^{\Theta}, \mathrm{H}_{2} \mathrm{O}$ being a weaker acid than HF

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{HF} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}^{\oplus}+\mathrm{F}^{\Theta} .
$$

C. H -bonding between HF and $\mathrm{H}_{2} \mathrm{O}$ is observed
D. No change is observed

Answer: B

- Watch Video Solution

24. The $H F_{2}^{\Theta}$ ion solid state and in liquid $H F$ but not in the dilute aqueous solution

At 300 K and 1.00 atm , the density of HF is $3.17 \mathrm{gL}^{-1}$ We conclude that there is a.
A. dimer formation by H -bonding
B. trimer formation by H -bonding
C. tetramer formation by H -bonding
D. ionisation formation $H F_{2}^{\Theta}$ and H^{\oplus}

Answer: C

- Watch Video Solution

25. The $H F_{2}^{\Theta}$ ion solid state and liquid $H F$ but not in the dilute aqueous solution

Energy of H -bond is maximum in .
A. $F-H--O$
B. $F-H--F$
C. $\mathrm{O}-\mathrm{H}-\mathrm{-}$ -
D. $\mathrm{O}-\mathrm{H}-\mathrm{-}-\mathrm{F}$

Answer: B

- Watch Video Solution

26. Consider the following molecules .

A:Anti -pyridine -2-carboxaldoxime

B:syn pyridine -2-carboaxaldoxime
C: nickel -dimethyl glyoximate

D: o-nitrophenol

E: p-nitrophenol

F: p-salicylaldehyde

In which case chelate formation occurs ? .
A. A, B
B. B, C
C. C, F
D. C only

Answer: D

- Watch Video Solution

27. Consider the following molecules .

A:Anti -pyridine -2-carboxaldoxime

B:syn pyridine -2-carboaxaldoxime

C: nickel -dimethyl glyoximate
D : o-nitrophenol
intermolecular hydrogen bonding (inQ.5) is observed in .
A. A, B, C, D
B. A, B, E, F
C. B, C, D
D. A, C, D

Answer: D

28. Valence-bond theory is one of the two quantum mechanical approaches that explains bonding in molecules In some cases, valence bond theroy cannot cannot satisfactorily account for observed properties of molecules

Consider the following molecular geometries $\mathrm{NO} \quad \mathrm{CO} \quad \mathrm{O}_{2}$

Select correct statement(s) about these (More than one correct) .
A. $N O$ is paramagnetic CO and O_{2} are diamagnetic
B. NO and O_{2} are paramagnetic CO is diamagentic
C. Bond order is in order $\mathrm{O}_{2}<\mathrm{NO}<\mathrm{CO}$
D. Number of unpaired electrons are

NO	1
CO	0
O_{2}	0

Answer: B::C

29. Valence-bond theory is one of the two quantum mechanical approaches that explains bonding in molecules In some cases, valence bond theroy cannot cannot satisfactorily account for observed properties of molecules Valnce-bond theroy can explain molecular geometries.
A. predicated by VSEPR model
B. predicated by MO theory
C. predicated by both (a) and (b)
D. predicated by none of these

Answer: A

- Watch Video Solution

30. Valence-bond theory is one of the two quantum mechanical approaches that explains bonding in molecules In some cases, valence bond theroy cannot cannot satisfactorily account for observed properties of molecules

Bond order and magnetic behaviour shown by different species have been matched Which is the incorrect matching .

| | Species
 A.

 $C N$ | Bond order |
| :--- | :--- | :--- |\quad| Magentic behaviour |
| :--- |

Answer: D

- Watch Video Solution

31. Valence-bond theory is one of the two quantum mechanical approaches that explains bonding in molecules In some cases, valence bond theroy cannot cannot satisfactorily account for observed properties of molecules

MO electronic configuration of superoxide ion is .

$$
\text { A. } K K^{*}(\sigma 2 s)^{2},\left(\sigma^{*} 2 s\right)^{2},\left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi^{*} 2 p\right)^{2}\left(\pi^{*} 2 p_{x}\right)^{1}
$$

B. $K K^{*}(\sigma 2 s)^{2},\left(\sigma^{*} 2 s\right)^{2},\left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi^{*} 2 p\right)^{2}\left(\pi^{*} 2 p_{x}\right)^{2}$
C. $K K^{*}(\sigma 2 s)^{2},\left(\sigma^{*} 2 s\right)^{2},\left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi^{*} 2 p\right)^{2}\left(\pi^{*} 2 p_{x}\right)$
D. none of these

Answer: A

- Watch Video Solution

32. Which of the following statements is correct about $\mathrm{O}_{2}, \mathrm{O}_{2}^{\Theta}, \mathrm{O}_{2}^{2-}$ species? .
A. KO_{2} and $\mathrm{K}_{2} \mathrm{O}_{2}$ are diamagnetic while O_{2} is paramagnetic .
B. KO_{2} and O_{2} are paramagnetic while $\mathrm{K}_{2} \mathrm{O}_{2}$ is diamagnetic .
C. Bond length increase in the order $\mathrm{O}_{2}<\mathrm{O}_{2}^{\Theta}<\mathrm{O}_{2}^{2-}$
D. Bond enthalpy increases in the order $O_{2}^{2-}<O_{2}^{\Theta}<O_{2}$.

Answer: A

33. O_{2}^{2-} will have .
A. bond order equal to H_{2} and diamagnetic
B. bond order equal to H_{2} but diamagnetic
C. bond order equal to N_{2} and diamagnetic
D. bond order higher than O_{2}

Answer: A

- Watch Video Solution

34. According to the moleular orbital theory, all atomic orbitals combine to form molecular orbital by LCAO (linear combination of atomic orbitals) method When two atomic orbitals have additive (constructive) method When two atomic orbitals have additive (constructive) overlapping they form bonding molecular orbitals (BMO) which have lower energy than atomic orbitals whereas when atomic orbitals overlap
subtractive higher energy antibonding molecular orbitals (ABMO) are formed Each MO occupies two electrons with opposite spin Distribution of electrons in MO follows Aufbau principle as well as Hund's rule MO theory can successfully explain the magnetic behaviour of molecules Which of the following is/are not paramagnetic?.
A. NO
B. B_{2}
C. CO
D. O_{2}

Answer: C

- Watch Video Solution

35. According to the moleular orbital theory, all atomic orbitals combine to form molecular orbital by LCAO (linear combination of atomic orbitals) method When two atomic orbitals have additive (constructive) method When two atomic orbitals have additive (constructive)
overlapping they form bonding molecular orbitals (BMO) which have lower energy than atomic orbitals whereas when atomic orbitals overlap subtractive higher energy antibonding molecular orbitals (ABMO) are formed Each MO occupies two electrons with opposite spin Distribution of electrons in MO follows Aufbau principle as well as Hund's rule MO theory can successfully explain the magnetic behaviour of molecules Bond strength increases when
A. bond order increases
B. bond length increases
C. antibonding electrons increases
D. bond angle increases

Answer: A

- Watch Video Solution

36. Most of the polyatomic molecules except a few such as CO_{2} and CS_{2} are linear or angular with a bond angle generally somewhat greater than
90° A bond angle is defined as the angle between the direction of two covalent bonds Since the atoms in molecules are in constant motion with respect to each other they are not expected to have a fixed value of bond angle Repulsion between non-bonded atoms alone does not provide an adequate explanation Hybridisation of bonding orbitals an adequate explanation Hybridisation of bonding orbitals also plays a very important role in detrmining the value of bond angle it has been observed that in hybridisation as the s-character of hybrid orbital increases the bond angle increases

In P_{4} molecule phosphorous atoms are tetrahedrally arranged The angle $P-P-P$ in the molecule is .
A. 108°
B. 120°
C. 60°
D. 180°

Answer: C

37. Which of the following have highest bond angle ? .
A. $\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{H}_{2} \mathrm{Te}$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. All have same bond angle

Answer: A

D Watch Video Solution

38. Which of the following hybridisation may have more than one type of bond angle? .
A. $s p^{2}$
B. $s p^{3}$
C. $s p^{3} d$
D. $s p^{3} d^{2}$

Answer: C

- Watch Video Solution

39. Which one of the following statements is correct .
A. $B M O$ is lowered by the same amount of energy by which $A B M O$ is raised.
B. BMO is lowered by a greater amount of energy than the amount by which $A B M O$ is raised .
C. BMO is lowered by less amount of energy than the amount by which $A B M O$ is raised .
D. Any one of the above is possible .

Answer: C

40. $M O^{\prime} s$ are formed by the overlap of $A^{\prime} O s$ Two $A O^{\prime} s$ combine to form two MO's called bonding molecular orbital (BMO) and antibonding molecular orbital (ABMO) Differnet $A O^{\prime} s$ of one atom combine with these $A O^{\prime} s$ of the second atom which have comparable energies and proper orienation Further, If the overlapping is head on, the MO is called 'pi' The $M O^{\prime} s$ are filled with electrons following the same rules as followed for filling of atomic orbitals However the order of filling is not the same for all molecules or their ions Bond order is one of the most important parameter to compare a number of their characteristics
$H_{2}, L i_{2} B_{2}$ each has bond order equal to 1 The order of their stability is .
A. $H_{2}=L i_{2}=B_{2}$
B. $H_{2}>L i_{2}>B_{2}$
C. $H_{2}>B_{2}>L i_{2}$
D. $B_{2}>L i_{2}>H_{2}$

Answer: C

41. $M O^{\prime} s$ are formed by the overlap of A^{\prime} Os Two $A O^{\prime} s$ combine to form two $M O^{\prime} s$ called bonding molecular orbital (BMO) and antibonding molecular orbital (ABMO) Differnet $A O^{\prime} s$ of one atom combine with these $A O^{\prime} s$ of the second atom which have comparable energies and proper orienation Further, If the overlapping is head on, the MO is called 'pi' The $M O^{\prime} s$ are filled with electrons following the same rules as followed for filling of atomic orbitals However the order of filling is not the same for all molecules or their ions Bond order is one of the most important parameter to compare a number of their characteristics In which of the following pair both to $M O^{\prime} s$ are gerade or ungerade?.
A. $\sigma 2 \mathrm{~s}, \pi 2 p_{x}$
B. $\sigma^{*} 2 s, \pi^{*} 2 p_{x}$
C. $\sigma^{*} 2 s, \pi 2 p_{x}$
D. $\pi 2 p_{x}, \pi^{*} 2 p_{x}$

Answer: C

Watch Video Solution

42. Which one of the following has maximum number of nodal planes?.
A. $\sigma^{*} 1 s$
B. $\sigma^{*} 2 p_{z}$
C. $\pi 2 p_{x}$
D. $\pi^{*} 2 p_{y}$

Answer: D

- Watch Video Solution

43. $M O^{\prime} s$ are formed by the overlap of $A^{\prime} O s$ Two $A O^{\prime} s$ combine to form two MO's called bonding molecular orbital (BMO) and antibonding molecular orbital (ABMO) Differnet $A O^{\prime} s$ of one atom combine with these $A O^{\prime} s$ of the second atom which have comparable energies and proper orienation Further, If the overlapping is head on, the MO is called 'pi' The

MO's are filled with electrons following the same rules as followed for filling of atomic orbitals However the order of filling is not the same for all molecules or their ions Bond order is one of the most important parameter to compare a number of their characteristics

Which of the following has pair is expected to have the same bond order ?.
A. $\mathrm{O}_{2}, \mathrm{~N}_{2}$
B. $N_{2}^{\oplus}, N_{2}^{\Theta}$
C. $O_{2}^{\Theta}, N_{2}^{\oplus}$
D. $O_{2}^{\Theta}, N_{2}^{\Theta}$

Answer: B

- Watch Video Solution

Exercises Multiple Correct Chemical Bonding

1. The type of bond s present in ammonium chloride is (are) :
A. Ionic
B. Covalent
C. Coordinate
D. Singlet

Answer: A::B::C

- Watch Video Solution

2. Which of the following statement (s) is (are) true ? .
A. CuCI is more covalent than NaCI
B. HFis more polar than HBr
C. HF is less polar than HBr
D. Chemical bond formation takes plane when forces of attraction overcome the forces of repulsion .
3. Which is (are) correct among the following ? .
A. The radius of $C I^{\Theta}$ ion is $1.56 \AA$ while that of $N a^{\oplus}$ ion is $0.95 \AA$.
B. The radius of CI atom is 0.99 while that of Na atom is 1.54
C. The radius of $C I$ atom is 0.99 while that of $C I^{\Theta}$ ion is 0.81
D. The radius of Na atom is 0.95 while that of Na^{\oplus} ion is 1.54 .

Answer: A: B

- Watch Video Solution

4. Which of the following is (are) correct? .
A. A double bond is shorter than a single bond .
B. A sigma- vbond is weaker than a pi-bond .
C. Adouble bond is stronger than a single bond .
D. A covalent bond is stronger than a hydrogen bond .

Answer: A::C::D

- Watch Video Solution

5. The non-metallic cation is persent in .
A. $\mathrm{CrO}_{2} \mathrm{CI}_{2}$
B. VOCI
C. OF_{2}
D. $P F_{3}$

Answer: C::D

- Watch Video Solution

6. Peroxo bond ($-\mathrm{O}-\mathrm{O}$ -) is present in
A. $\mathrm{Na}_{2} \mathrm{O}_{2}$
B. CrO_{5}
C. PbO_{2}
D. SrO_{2}

Answer: A::B::D

- Watch Video Solution

7. Among the following the electron deficient compound is
A. BeCI_{2}
B. CCl_{4}
C. CHI_{3}
D. CHCl_{3}

Answer: A::D

Exercises Multiple Correct Dipole Moment

1. Which among the following molecules have minimum dipole moment ?
A. CH_{4}
B. CCl_{4}
C. CHI_{3}
D. CHCl_{3}

Answer: A: B

- Watch Video Solution

2. Which among the following pairs of molecules have zero dipole moment?.
A. SiF_{4} and CO_{2}
B. SiF_{4} and NO_{2}
C. O_{2} and CO_{2}
D. NO_{2} and O_{3}

Answer: A::C::D

- Watch Video Solution

3. Which of the following satements are false ?
A. Dipole-dipole interations between molecules are greatest if the molecules possess possess only temporary dipole moments .
B. All compounds containing hydrogen atoms can participate in hydrogen bonding .
C. Dispersion forces exist between all atoms, molecules and ions
D. The extent of ion-induced dipole interaction depends only on the charge of the ion.

D Watch Video Solution

Exercises Multiple Correct Hybridisation

1. Which of the following are tetrahedral structures?.
A. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
C. $\left[\mathrm{NiCI}_{4}\right]^{2-}$
D. CrO_{4}^{2-}

Answer: B::C::D

- Watch Video Solution

2. Which among the following are isostructural ? .
A. $\mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{SF}_{4}$
B. $\mathrm{CO}_{2}, I_{3}^{\Theta}$
C. $\mathrm{SO}_{3}^{2-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CIF}_{3}, \mathrm{XeF}_{2}$

Answer: A::B

- Watch Video Solution

3. In which of the following molecules all the atoms lie in one plane? .
A. NH_{3}
B. $P F_{5}$
C. $B F_{3}$
D. XeF_{4}

Answer: C::D

4. Which of the following have $s p^{3} \mathrm{~d}$ hybridisation of the central atom ? .
A. XeF_{4}
B. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
C. $\mathrm{CIO}_{3}{ }^{\Theta}$
D. BrF_{3}

Answer: B::D

- Watch Video Solution

5. Which are the species in which central atom undergoes $s p^{3}$ hybridisation?.
A. $S F_{4}$
B. SCI_{2}
C. SO_{4}^{2-}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: B::C::D

- Watch Video Solution

6. The pair od species having identical shapes for molecules of both species is?.
A. $B F_{3}, P C I_{3}$
B. $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$
C. $\mathrm{CF}_{4}, \mathrm{SIF}_{4}$
D. $P F_{5}, I F_{5}$

Answer: B::C

7. Which among the following is (are) having two lone pair of electrons on central atom? .
A. CO_{2}
B. CIF_{3}
C. SO_{3}^{2-}
D. XeF_{4}

Answer: B::D

- Watch Video Solution

8. The state of hybridisation of atoms in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ is .
A. $s p^{3}$
B. $s p^{2}$
C. $s p$
D. None of these

Answer: A::B

D Watch Video Solution

9. Which of the following have $s p^{3} \mathrm{~d}$ hybridisation?.
A. $S F_{4}$
B. BrCI_{3}
C. XeOF_{2}
D. $\mathrm{H}_{3} \mathrm{O}^{\oplus}$

Answer: A::B::C

- Watch Video Solution

10. The hybridisation number of lone pair of electron and shape of I_{3}^{Θ} is .
A. $s p^{3} \mathrm{~d}$ hybridisation
B. It has trigonal bipyramidal shape
C. It is linear
D. It has three lone pair of electrons

Answer: A::C::D

- Watch Video Solution

11. Which of following is (are) correct for B and N in $\mathrm{NH}_{3} . \mathrm{BF}_{3}$ adduct ? .
A. Both have $s p^{3}$ hybrid orbitals
B. Both have tetrahedral structures
C. N is $s p^{3}$ hybridised while B is $s p^{2}$ hybridised.
D. N in NH_{3} is pyramidal, while B in BF_{3} is planar .

Answer: A: B

12. Which of the following is not square planar?.
A. XeF_{4}
B. XeF_{2}
C. XeOF_{4}
D. $\mathrm{CH}_{3} \mathrm{CI}$

Answer: B::C::D

- Watch Video Solution

Exercises Multiple Correct Hydrogen Bonding

1. Which property is due to H -bonding ? .
A. High boiling point of water
B. Solubility of NH_{3} in $\mathrm{H}_{2} \mathrm{O}$
C. Polar nature of halogen acid
D. High viscosity of $\mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: A::B::C

- Watch Video Solution

2. Hybrogen bonds are present in
A. Ice
B. Solid CO_{2}
C. HF
D. Water

Answer: A::C::D

- Watch Video Solution

3. Which of the following gem-diol is stable ? .
A.

B.

C.

D. none of these

Answer: B::C

- Watch Video Solution

Exercises Multiple Correct Bond Angle

1. Bond angle in PH_{3} is
A. Much less than NH_{3}
B. Much less than $P F_{3}$
C. More than NH_{3}
D. More than PF_{3}

Answer: A::B

- Watch Video Solution

2. Which statement (s) is (are) wrong for bond angle ?
A. $\mathrm{NH}_{3}>\mathrm{NF}_{3}$
B. $\mathrm{NF}_{3}>\mathrm{NCI}_{3}$
C. $\mathrm{NO}_{2}^{\oplus}>\mathrm{NO}_{2}$
D. $\mathrm{NO}_{3}^{\Theta}>\mathrm{NO}_{2}^{\Theta}$

Answer: A::C::D

3. Which statement (s) is (are) wrong for bond angle ?
A. $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{BF}_{3}>\mathrm{CH}_{4}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NCl}_{3}$
\oplus
C. $\mathrm{NH}_{4}>\mathrm{NH}_{3}>\mathrm{PCl}_{5}$
D. $\mathrm{CO}_{2}>\mathrm{NH}_{3}>\mathrm{CH}_{4}$

Answer: B::D

- Watch Video Solution

4. Bond angle in I_{3}^{Θ} is .
A. More than CIO_{2}
B. 180°
C. Less than CIO_{2}
D. $>109.5^{\circ}$

Answer: A::B

- Watch Video Solution

5. Which statements (s) is (are) correct for $A B_{2}$ type molecule ? .
A. If the $E N$ of central atom decreases, the bond angle decreases .
B. If the size of central atom increases the bond angle decreases.
C. If the $E N$ of atom B decreases the bond angle increases
D. If the $E N$ of atom B decreases that bond angle decreases .

Answer: A::B::C

- Watch Video Solution

1. Which of the folowing have identical bond orders ?
A. O_{2}^{Θ}
B. $C N^{\Theta}$
C. NO^{\oplus}
D. $C N^{\oplus}$

Answer: B::C

- Watch Video Solution

2. Which of the following diatomic molecule //ions have same bond order ?.
A. O_{2}
B. $C N^{\Theta}$
C. N_{2}
D. C_{2}

- Watch Video Solution

3. Which of the following species exhibits the diamagnetic behaviour?
A. O_{2}
B. O_{2}^{\oplus}
C. NO
D. O_{2}^{2-}

Answer: A::B::C

- Watch Video Solution

4. Which of the following molecules has one unpiared electron in antibonding orbitals?.
A. $C O$
B. O_{2}^{Θ}
C. $\mathrm{O}_{2}{ }^{\oplus}$
D. NO

Answer: B::C::D

- Watch Video Solution

5. Which of the following show paramagnetism? .
A. $\mathrm{Na}_{2} \mathrm{O}$
B. NO_{2}
C. NO
D. KO_{2}

Answer: B::C::D

6. Which of the following is (are) correct statements ? .
A. Probability of finding the electron in bonding $M O$ is more than combining atomic orbitals .
B. Bonding $M O^{\prime} s$ are formed when same sign of orbitals overlap
C. d-d combination of atomic orbitals gives delta and delta^(**) $M O^{\prime} s$.
D. None of these

Answer: A::B::C

- Watch Video Solution

7. Which of the following is (are) gerade (g) $M O^{\prime} s$? .
A. $\sigma 2 s$
B. $\sigma 2 p z$
C. $\pi^{*}(2 p x)$
D. $\sigma^{*} 2 s$

Answer: A::B::C

- Watch Video Solution

8. $M O^{\prime} s$ are formed by the overlap of A^{\prime} Os Two $A O^{\prime} s$ combine to form two MO's called bonding molecular orbital (BMO) and antibonding molecular orbital (ABMO) Differnet $A O^{\prime} s$ of one atom combine with these $A O^{\prime} s$ of the second atom which have comparable energies and proper orienation Further, If the overlapping is head on, the $M O$ is called 'pi' The $M O$ ' s are filled with electrons following the same rules as followed for filling of atomic orbitals However the order of filling is not the same for all molecules or their ions Bond order is one of the most important parameter to compare a number of their characteristics

In which of the following pair both to $M O^{\prime} s$ are gerade or ungerade? .
A. $\sigma^{*}(2 p z)$
B. $\pi\left(2 p_{x}\right)$
C. $\pi\left(2 p_{y}\right)$
D. $\pi^{*}(2 p y)$

Answer: A::B::C

- Watch Video Solution

9. Which of the following MO s have one nodal plane? .
A. $\sigma 1 s$
B. $\sigma^{*} 1 s$
C. $\sigma 2 p_{z}$
D. $\sigma^{*} 2 p_{z}$

Answer: B::D

10. Which of the following 'MO's have two nodal plane? .
A. $\sigma 2 p_{z}$
B. $\pi^{*} 2 p_{x}$
C. $\pi^{*} 2 p_{y}$
D. $\sigma^{*} 2 p_{z}$

Answer: A::B::C

- Watch Video Solution

Exercises Multiple Correct Miscellaneous

1. Select corrcet orders for corresponding property as indicated in bracket for the following .
A. $\mathrm{NH}_{3}>\mathrm{BiH}_{3}>\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}$ (Boiling point)
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{\mathrm{S}}(2)$ (Boiling point)
C. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$ (Basic character)
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2}$ Te (Acidic character)

Answer: B::C::D

- Watch Video Solution

2. Which one or more among the following involve (s) (pi -dpi) bonding ? .
A. $\left(\mathrm{SiH}_{3}\right)_{3} N$:
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$:
Θ
C. : $C C I_{3}$
Θ
D. $: C F_{3}$

Answer: A::C

3. Paramagnetic pairs (s) among the following is (are).
A. $\left[\mathrm{BaO}_{2}, \mathrm{NO}_{2}\right]$
B. $\left[\mathrm{KO}_{2}, \mathrm{NO}\right]$
C. $\left[\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NO}\right]$
D. $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{CuCI}_{2}$

Answer: B::D

- Watch Video Solution

4. Which of the following orders are correct for property indicated in brackets ? .
A. $\mathrm{NH}_{3}>\mathrm{NF}_{3}>\mathrm{BF}_{3}$ (dipole moment)
B. $C I>S>O>N$ (electron affinity)
C. $S i>M g>A 1>N a$ (first ionisation enthalpy)
D. $\mathrm{HCIO}_{4}>\mathrm{HBrO}_{4}>\mathrm{HIO}_{4}\left(p K_{a}\right.$ values $)$

D Watch Video Solution

5. The first element of groups 13-16 differ rest of the elements This is due to .
A. Small size and high electronegativity
B. Inability to expand the octet
C. Ability to form strong $р \pi р \pi$ multiple bonds
D. Due to greater abundance

Answer: A::B::C

- Watch Video Solution

6. Select the correct statements .
A. The heat of hydration of the dipositive earth metal ions increases with an increase in their ionic size
B. Hydration of alkali metal ions is less than that of group 2
C. Alkaline earth metal ions because of their much larger charge to size ratio exert a much stronger electrostatic attaction on the oxygen of water molecule surrounding them .
D. Melting point of sodium halides is as follows $\mathrm{NaF}>\mathrm{NaCl}>\mathrm{NaBr}>\mathrm{NaI}$.

Answer: B::C::D

- Watch Video Solution

7. White vitriol is not isomorphous with .
A. $\mathrm{K}_{2} \mathrm{SO}_{4}$
B. MgSO_{4}
C. CaSO_{4}
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: A::B::C::D

- Watch Video Solution

8. The stability of ions of Ge Sn and Pb will be in the order .
A. $\mathrm{Ge}^{2+}<\mathrm{Sn}^{2+}<\mathrm{Pb}^{2+}$
B. $\mathrm{Pb}^{2+}>\mathrm{Pb}^{4+}$
C. $\mathrm{Sn}^{4+}>\mathrm{Pb}^{2+}$
D. $\mathrm{Ge}^{4+}<\mathrm{Sn}^{4+}<\mathrm{Pb}^{4+}$

Answer: A::B

- Watch Video Solution

9. Select the correct satements (s) .
A. NF_{3} is weaker base than NH_{3}
B. NO^{\oplus} is more stable than O_{2}
C. AlCl_{3} has higher melting point than AlF_{3}
D. SbCl_{3} is more covalent than SbCl_{5}

Answer: A::B

- Watch Video Solution

10. Which of the following are true?.
A. PH_{5} and BiCI_{5} do not exist
B. There are two $p \pi-d \pi$ bond is SO_{3}
C. SeF_{4} and CH_{4} are tetrahedral ion
D. I_{3}^{Θ} is a linear molecule with $s p^{3} \mathrm{~d}$ hybridisation

D Watch Video Solution

Exercises Single Correct Chemical Bonding

1. Which of the following is the most ionic ? .
A. $P_{4} O_{10}$
B. MnO
C. CrO_{3}
D. $\mathrm{Mn}_{2} \mathrm{O}_{7}$

Answer: B

2. Among $\mathrm{LiCl}, \mathrm{BeCl}_{2}, \mathrm{BCl}_{3}$ and CCl_{4} the covalent bond character varies as .
A. $\mathrm{LiCI}<\mathrm{BeCI}_{2}<\mathrm{BCI}_{3}>\mathrm{CCI}_{4}$
B. $\mathrm{LiCI}<\mathrm{BeCI}_{2}>\mathrm{BCI}_{3}>\mathrm{CCI}_{4}$
C. $\mathrm{LiCI}<\mathrm{BeCI}_{2}>\mathrm{BCI}_{3}>\mathrm{CCI}_{4}$
D. $\mathrm{LiCI}<\mathrm{BeCI}_{2}>\mathrm{BCI}_{3}>\mathrm{CCI}_{4}$

Answer: C::D

- Watch Video Solution

3. In a matallic crystal the .
A. Valence electrons remain within the fields of influence of their own
kernels
B. Valence electrons constitute a sea of mobile electrons
C. Valence electrons are localised between the two kernels
D. Kernal as well as the electrons move rapidly

Answer: B

- Watch Video Solution

4. Polarization involves the distortion of the shape of an anion by an adjacently placed cation. In this context, which of the following statements is correct ?
A. Maximum polarisation is brought about by a cation of high charge
B. Maximum polarisation is brought about by a cation of high charge
C. A large cation is likely to bring about a high degree of polarisation .
D. The polarising power of a cation is less than that of an anion

Answer: A

- Watch Video Solution

5. Which of the following is required for the formation of an ionic bond?
A. An electron from the more electronegative element should be transferred to the less electronegative .
B. The total energy of the resulting molecule should be less than the total energy of the reactants .
C. The lattice energy of the resultants molecule should be as low as possible.
D. The ionic potential of the reactants should be identical .

Answer: B

- Watch Video Solution

6. AICI_{3} is covalent while AIF_{3} is ionic This can be justified on the basic of
A. The valence bond theory
B. Fajans rules
C. The molecuar orbital theory
D. Hydration energy

Answer: B

- Watch Video Solution

7. Which of the following oxyacids of phosphorous are monoprotic (mono basic) ? .
A. $\mathrm{H}_{3} \mathrm{PO}_{3}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{H}_{3} \mathrm{PO}_{2}$
D. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
8. Which of the following has greater bond length ? .
A. $P-O$
B. S - O
C. $\mathrm{CI}-\mathrm{O}$
D. $O=O$

Answer: A

Watch Video Solution
9. Which of the following has been arranged order of increasing covalent character? .
A. $\mathrm{KCI}<\mathrm{CaCI}_{2}<\mathrm{AICI}_{3}<\mathrm{SnCI}_{4}$
B. $\mathrm{SnCI}_{4}<\mathrm{AICI}_{3}<\mathrm{CaCI}_{2}<\mathrm{KCI}$
C. $\mathrm{AICI}_{3}<\mathrm{CaCI}_{2}<\mathrm{KCI}<\mathrm{SnCI}_{4}$
D. $\mathrm{CaCI}_{2}<\mathrm{SnCI}_{4}<\mathrm{KCI}<\mathrm{AICI}_{3}$

Answer: A

- Watch Video Solution

10. Which of the following pairs have nearly identical values of bond energy? .
A. O_{2} and H_{2}
B. N_{2} and $C O$
C. F_{2} and I_{2}
D. O_{2} and Cl_{2}

Answer: D

11. The ion which has the lowest ionic mobility is
A. Li^{\oplus}
B. $N a^{\oplus}$
C. K^{\oplus}
D. Cs^{\oplus}

Answer: D

12. In $\mathrm{PO}_{4}^{3-}, \mathrm{P}-\mathrm{O}$ bond order is .
A. 1.25
B. 2
C. -0.75
D. -3

D Watch Video Solution

13. Which of the following has least covalent $P-H$ bond ? .
A. PH_{3}
B. $P_{2} H_{6}$
C. $P_{2} H_{4}$
D. PH_{6}^{\oplus}

Answer: D

Watch Video Solution
14. Which of the following molecule stabilizes by removal of electron?
A. O_{2}
B. $C N^{\Theta}$
C. N_{2}
D. C_{2}

Answer: A

- Watch Video Solution

15. In which of the following species the bond is nondirectional ?
A. NCI_{3}
B. RbCI
C. BeCI_{2}
D. $B C I_{2}$

Answer: B

16. Which contains both polar and non-polar bonds ?
A. $\mathrm{NH}_{4} \mathrm{CI}$
B. HCN
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. CH_{4}

Answer: C

- Watch Video Solution

17. The bond angle between two hybrid orbitals is 180° The percentage s-character of hybrid orbital is between .
A. 50 and 55%
B. 9 and 12%
C. 22 and 23 \%
D. 11 and 12%

- Watch Video Solution

18. Which type of bond is not present in HNO_{2} molecule ? .
A. Covalent
B. Coordinate
C. Ionic
D. Both ionic and coordinate

Answer: D

- Watch Video Solution

19. $K F$ combines with $H F$ to form KHF_{2} The compound contains the species.
A. K^{\oplus}, F^{Θ} and H^{\oplus}
B. K^{\oplus}, F^{Θ} and $H F$
C. K^{\oplus} and $\left[H F_{2}\right]^{\Theta}$
D. $[K H F]^{\oplus}$ and F_{2}

Answer: C

D Watch Video Solution

20. There is no $S-S$ bond in .
A. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}$

Answer: D

21. Angle between two hybridised orbital is 105° and hence the percentage of s-character in the hybridised orbital would be in the range .
A. 23-24 \%
B. 20-21\%
C. 50-55\%
D. 11-12 \%

Answer: A

- Watch Video Solution

22. The octet rule is not valid for the molecule
A. CO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O_{2}
D. $C O$

Answer: D

- Watch Video Solution

23. The total number of electrons that take part in forming the bond in N_{2} is .
A. 2
B. 4
C. 6
D. 10

Answer: C

24. Bonds presents in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
A. Electrovalent and covalent
B. Electrovalent, coordinate covalent .
C. Electrovalent, covalent and coordinate covalent .
D. Covalent and coordinate covalent .

Answer: C

- Watch Video Solution

25. The bond between two identical non-metal atoms has a pair of electrons:
A. Unqually shared between the two
B. Transferred fully between the two
C. With identical spins
D. Equally shared between them

Answer: D

D Watch Video Solution

26. The number and type of bonds between two C -atom in SrC_{2} are .
A. $1 \sigma, 1 \pi$
B. $1 \sigma, 2 \pi$
C. $1 \sigma, 5 \pi$
D. 1σ

Answer: B

27. Which species has the maximum number of lone pair of electrons on the central atom? .
A. $\left[\mathrm{ClO}_{3}\right]^{\Theta}$
B. XeF_{4}
C. $\mathrm{N}_{2} \mathrm{O}$
D. $\left[I_{3}\right]^{\Theta}$

Answer: D

- Watch Video Solution

28. Among the following the electron deficient compound is
A. $C C I_{4}$
B. $P C I_{5}$
C. OF_{2}
D. $B C I_{3}$

Answer: D

29. Which of the following does not follow the octet rule? .
A. CO_{2}
B. PCl_{3}
C. ICl
D. ClF_{3}

Answer: D

- Watch Video Solution

30. Which of the following does not have coordinate bonds? .
A. CO_{3}^{2-}
B. $\mathrm{H}_{3} \mathrm{C}-\mathrm{NC}$
C. CO
D. O_{3}

Answer: A

- Watch Video Solution

31. Which of the following bonds is the strongest ? .
A. I-I
B. $F-F$
C. $H-H$
D. $\mathrm{O}-\mathrm{O}$

Answer: C

- Watch Video Solution

32. When two atoms combine to form a molecule
A. Energy is released
B. Energy is absorbed
C. Energy is neither released nor absorbed
D. Energy may either be absorbed or relesed

Answer: A

- Watch Video Solution

33. Most favourable conditions for inoic bonding are .
A. Low charge on ions,large cations,small anions
B. Low charge on ions,large cations,large anions
C. High charge on ions, small cations, large anions
D. High charge on ions, small cations, small anions

Answer: A

34. Which of the following is not a correct statement? .
A. Ionic compounds are electrically netural.
B. Boilling point of an ionic compound is more than a covalent compound.
C. Melting point of a covalent compound is more than an ionic compound
D. Ionic compound are soluble in polar solvent .

Answer: C

D Watch Video Solution

35. Element A has 3 electrons in the outermost orbit and element B has 6 electrons in the outermost orbit. The formula of the compound formed A and B would be
A. $A_{2} B_{3}$
B. $A_{2} B_{6}$
C. $A_{2} B$
D. $A_{3} B_{2}$

Answer: A

- Watch Video Solution

36. The pair of elements which form ionic bond is .
A. $C+C l$
B. $H+F$
C. $\mathrm{Na}+\mathrm{Br}$
D. $O+H$

Answer: C

37. Lattice energy of an ionic compound depends on
A. Charge on the ion and size of the ion
B. Packing of ions only
C. Size of the ion only
D. Charge on the ion only

Answer: A

- Watch Video Solution

38. The bonds present in $\mathrm{N}_{2} \mathrm{O}_{5}$ are .
A. Only ionic
B. Covalent and coordinate
C. Only covalent
D. Covalent and ionic

Answer: B

- Watch Video Solution

39. Which of the following statement is correct for $C O$?
A. A double bond between C and O atoms
B. $1 \sigma, 1 \pi$ and 1 coordinate bond between C and O atoms
C. One lone pair of electrons on each atom
D. $1 \sigma, 2 \pi$ bonds between C and O atoms

Answer: B

- Watch Video Solution

40. Which of the following statemwnt regarding valence bond theory $(V B T)$ is not true? .
A. A molecule is considered to be a collection of atoms, and the interactions between different atoms is considered.
B. For a molecule to be stable the electrostatic attactions must predominate over the repulsion .
C. The potential energy of a diatomic molecule is less than the sum of potential energies of free atoms .
D. The net force of altration acting on the atoms in a molecule is not zero .

Answer: D

- Watch Video Solution

41. Correct statement about $V B T$ is .
A. Each bond is formed by maximum overlap for its maximum stability
B. It represents localised electron modal of bonding.
C. Most of electrons retain the same orbital localisation as in a separate atom .
D. All are correct .

Answer: D

- Watch Video Solution

42. The strength of bonds formed by overlapping of atomic orbitals is in the order .
A. $s-s>s-p>p-p$
B. $s-s>p-p>s-p$
C. $s-p>s-s>p-p$
D. $p-p>s-s>s-p$

Answer: A

- Watch Video Solution

43. The nodal plane in the π-bond of ethene is located in :
A. The molecular plane
B. A plane parallel to the molecular plane
C. A plane perpendicular to molecular plane which bisects th (C-C) sigma-bond at a right angle .
D. A plane perpendicular to the molecular plane which contains the ($C-C$) sigma-bond.

Answer: A

44. Which of the following statement is wrong? .
A. A sigma bond is shorter than a pi-bond .
B. Bond energies of sigma and pi bonds are of the order of 264 and $347 \mathrm{kJmo} 1^{-1}$.
C. Free rotation of atoms about sigma bond is allowed but not in case of a-pi bond .
D. A sigma-bond determines the direction between C -atoms but a pibond has no primary effect which leads to bonding .

Answer: B

(D) Watch Video Solution

45. Which of the following is a positive overlap which leads to bonding ? .
a.
A.

B.
b.

C.

D.

Answer: C

- Watch Video Solution

46. Which of the following is a zero overlap which leads to non-bonding?
A.

b. ${ }^{+} \bigcirc{ }^{+}$
B.
C.

D.

Answer: A

- Watch Video Solution

Exercises Single Correct Dipole Moment

1. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in the water molecule is 105°, the $H-\mathrm{O}$ bond distance being $0.94 \AA$, The dipole moment for the moelcule is $1.85 D$. Calculate the charge on the oxygen atom .
A. 2×10^{-10} esu
B. $3.28 \times 10^{-10} \mathrm{esu}$
C. $3.21 \times 10^{-10} \mathrm{esu}$
D. $1.602 \times 10^{-19} \mathrm{esu}$

Answer: C

- Watch Video Solution

2. In a diatomic molecule the bond distance is $1 \times 10^{-8} \mathrm{~cm}$. Its dipole moment is 1.2.D. What is the fractional electronic charge each atom ?
A. 11%
B. 20%
C. 25 \%
D. Noe of these

Answer: C

- Watch Video Solution

3. The compound with no dipole moment is .
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. CCl_{4}
C. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
D. chloroform $\left(\mathrm{CHCl}_{3}\right)$

Answer: B

4. The molecule which have zero dipole moments is .
A. $\mathrm{CH}_{2} \mathrm{CI}_{2}$
B. $B F_{3}$
C. NF_{3}
D. CIO_{2}

Answer: B

- View Text Solution

5. The critical temperature of water is higher than that of O_{2} because the $\mathrm{H}_{2} \mathrm{O}$ molecule has
A. A fewer electrons than O_{2}
B. A dipole momnent
C. a V shape structure
D. Two covalent bonds

Answer: B

D Watch Video Solution

6. The correct order of dipole moment is :
A. $\mathrm{CH}_{4}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}$

Answer: A

Watch Video Solution
7. Among the following which is polar ? .
A. CO_{2}
B. SO_{2}
C. BeCl_{2}

Cl

Answer: B

- Watch Video Solution

8. Which of the following is polar ?
A. $N F_{3}$
B. $B F_{3}$
C. $S F_{6}$
D. SiF_{4}

Answer: A

9. The resultant dipole moment (μ) of two compounds NOF and $\mathrm{NO}_{2} \mathrm{~F}$ is 1.81 D and 0.47 D respectively Which dipole momnet do you predict? .
A. 1.81D for $\mathrm{NO}_{2} \mathrm{~F}$ and 0.47 D for NOF .
B. 0.47 D for $\mathrm{NO}_{2} \mathrm{~F}$ and 1.81 D for NOF
C. For both $\mathrm{NO}_{2} \mathrm{~F}$ and NOF dipole moment (μ) is 1.81 D
D. For both $\mathrm{NO}_{2} \mathrm{~F}$ and NOF dipole moment (μ) is 0.47 D

Answer: B

- Watch Video Solution

10. In terms of polar character the correct, the correct order is .
A. $\mathrm{H}_{2} \mathrm{~S}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
B. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{~S}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}$

Answer: B

- Watch Video Solution

11. How many sigma and pi bonds are there in the molecule of tetracyano ethylene? .
A. $4 \sigma, 14 \pi$
B. $5 \sigma, 13 \pi$
C. $80,10 \pi$
D. $9 \sigma, 9 \pi$

Answer: D

12. $\mathrm{H}_{2} \mathrm{O}$ is dipolar, whereas BeF_{2} is not. It is because:-
A. $E N$ of $F>E N$ of O
B. $\mathrm{H}_{2} \mathrm{O}$ involes H -bonding whereas BeF_{2} is a discrete molecule .
C. $\mathrm{H}_{2} \mathrm{o}$ is linear and BeF_{2} is angular
D. $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear

Answer: D

- Watch Video Solution

13. Which of the following hydrocarbons has the lowest dipole moment.
A.

B. $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
C. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$
D. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$

Answer: B

- Watch Video Solution

14. Which one of the following arrangements of molecules is correct on the basic of their dipole moments?
A. $\mathrm{NH}_{3}>\mathrm{BF}_{3}>\mathrm{NF}_{3}$
B. $\mathrm{NH}_{3}>\mathrm{NF}_{3}>B F_{3}$
C. $B F_{3}>\mathrm{NH}_{3}>\mathrm{NF}_{3}$
D. $\mathrm{BF}_{3}>\mathrm{NF}_{3}>\mathrm{NH}_{3}$

Answer: B

D Watch Video Solution

15. Which statement (s) is/are correct about dipole moment
(I) Debye is equivalent to $3.33 \times 10^{-30} \mathrm{Cm}$
(II) 1 Debye is equivalent to 10^{-18} esucm
(III) SI unit of dipole moment is coulomb meter (Cm)
$\left(1 \mathrm{Cm}=q \times d=1.602 \times 10^{-19} \times 10^{-9} \mathrm{~m}\right)$
(IV) Dipole moment of a molecule is useful to explain the shape of a molecule and also to predict other properties of the molecule .
A. I, II
B. I, III, IV
C. I, II, III
D. All are correct

Answer: D

- Watch Video Solution

16. Which of the following molecule (s) have dipole moment
(I) Trans -pent -2-ene
(II) cis-hex -3-ene
(III) 2,2-Dimethy1 propane
(IV) 2, 2, 3, 3 tetramethy1 butane .

- Watch Video Solution

Exercises Single Correct Hybridisation

1. The shapes of $\mathrm{PCI}_{4}^{\oplus}, \mathrm{PCI}_{4}^{\Theta}$ and $A s C I_{5}$ and are respectively .
A. Squar planar, tetrahedral and see-saw
B. Tetrahedral,see-saw and trigonal bipyramidal
C. Tetrahedarl ,square planar and pentagonal bipyramidal
D. Trigonal bipyramidal, tetrahedral and square pyramidal

Answer: B

- Watch Video Solution

2. The I_{3}^{Θ} ion has.
A. Five equatorial lone pairs on the central I atom and two axial bonding pairs in a trigonal bipyramidal arrangement.
B. Five equatorial lone pairs on the central I atom and two axial bonding pairs in a pentagonal bipyramidal arrangement
C. Three equatorial lone pairs on the central I atom and two axial bonding pairs in a trigonal bipyramidal arrangement .
D. Two equatorial lone pairs on the central I atom and three axial bonding pairs in a trigonal bipyramidal arrangement .

Answer: C

- Watch Video Solution

3. In the reaction $2 P C I_{5} \Leftrightarrow P C I_{4}^{\oplus}+P C I_{6}^{\Theta}$ change in hybridisation is from
4. There are four species $\mathrm{CO}_{2}, \mathrm{~N}_{3} \Theta, \mathrm{NO}_{2}^{\oplus}$ and I_{3}^{Θ} Which of the following statement is correct about these species? .
A. All are linear and having $s p$ hybridisation central atoms .
B. All are linear but only $\mathrm{CO}_{2}, N_{3}^{\Theta}$ and I_{3}^{Θ} have sp hybridisation on their central atom .
C. All are linear but only $\mathrm{CO}_{2}, \mathrm{~N}_{3}^{\Theta}$ and $\stackrel{\oplus}{\mathrm{NO}_{2}}$ have sp hybridisation on their cental atom .
D. $\mathrm{CO}_{2}, N_{3}^{\Theta}$ and NO_{3}^{\oplus} are linear but I_{3}^{Θ} is not .

Answer: C

- Watch Video Solution

5. On hybridization of one s and one p orbital we get
A. Two mutually perpendicualr orbitals
B. Two orbitals at 180°.
C. Two orbitals directed tetrahedrally
D. Three orbitals in a plane

Answer: B

- Watch Video Solution

6. Which moleucle is T-shaped ?
A. $B e F_{2}$
B. $B C I_{3}$
C. NH_{3}
D. CIF_{3}

Answer: D

7. The hybridisation of the central atom in $I C I_{2}^{\oplus}$ is .
A. $s p^{3}$
B. $s p^{2}$
C. $s p^{2}$
D. $s p$

Answer: A

- Watch Video Solution

8. The molecule that has linear structure is
A. CO_{2}
B. NO_{2}
C. SO_{2}
D. SiO_{2}

Answer: A

- Watch Video Solution

9. The species which has pyramidal shape is
A. PCI_{3}
B. SO_{3}
C. CO_{3}^{2-}
D. NO_{3}^{Θ}

Answer: A

- Watch Video Solution

10. The compounds in which C uses its $s p^{3}$ - hybrid orbitals for bond formation are:
A. HCOOH
B. $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}$
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
D. $\mathrm{CH}_{3} \mathrm{CHO}$

Answer: C

- Watch Video Solution

11. Which one of the following compounds has $s p^{2}$ hybridisation?.
A. CO_{2}
B. SO_{2}
C. $\mathrm{N}_{2} \mathrm{O}$
D. $C O$

Answer: B

D Watch Video Solution

12. CO_{2} has same geometry as
A. HgCI_{2}
B. NO_{2}
C. SnCI_{2}
D. CH_{4}

Answer: A

13. In which pair of species both species do have the similar geometry? .
A. $\mathrm{CO}_{2}, \mathrm{SO}_{2}$
B. $\mathrm{NH}_{3}, B \mathrm{H}_{3}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{NO}_{2}^{-}$
D. $\mathrm{SO}_{4}^{2-}, \mathrm{CIO}_{4}^{\Theta}$

Answer: D

D Watch Video Solution

14. The geometry and the type of hybrid orbitals present about the central atom in BF_{3} is :
A. Linear sp
B. Trigonal planar, $s p^{2}$
C. Tetrahedral, $s p^{3}$
D. Pyramidal $s p^{3}$

Answer: B

15. $S F_{2}, S F_{4}$ and $S F_{6}$ have the hybridisation at sulphur atom respectively as.
A. $s p^{2}, s p^{3}, s p^{2} d^{2}$
B. $s p^{3}, s p^{3}, s p^{3} d^{2}$
C. $s p^{3}, s p^{3} d, s p^{3} d^{2}$
D. $s p^{3}, s p d^{2}, s p^{3}$

Answer: C

- Watch Video Solution

16. Two types FXF angles are presnet in which of the following molecule $(X=S, X e, C) ?$.
A. $S F_{4}$
B. XeF_{4}
C. $S F_{6}$
D. $C F_{4}$

Answer: A

- Watch Video Solution

17. A sigma bonded molecule $M X_{3}$ is T-shaped The number of nonbonding pairs of electrons is .
A. 2
B. 1
C. 0
D. Can be predicted only if atomic number of M is known

Answer: A

18. In NH_{4}^{+}and OF_{2} th hybridisation of central atom respectively are .
A. $s p^{3}, s p^{2}$
B. $s p^{3}, s p^{3}$
C. $s p^{3} d, s p^{3} d$
D. $s p^{3} d, s p^{3}$

Answer: B

- Watch Video Solution

19. Hybridisation involves .
A. Orbitals of same atom with slightly different energies .
B. Orbitals of different atom but with equal energies .
C. Orbitals of different atoms with exactly equal energies .
D. Orbitals of same atoms with exactly equal energies .

D Watch Video Solution

20. As $P F_{5}$ molecule is $s p^{3} \mathrm{~d}$ hybridised and is trigonal bipyramidal (TbP) shape Which d-orbital is involved in $s p^{3} \mathrm{~d}$ hyridisation.
A. $d x^{2}-y^{2}$
B. $d z^{2}$
C. $d x y$
D. $d z x$

Answer: B

- Watch Video Solution

21. If the geometry of $\left[\mathrm{PtCl}_{4}\right]^{2-}$-is square planar, which orbitals are involved in bonding?
22. SeF_{6} is $s p^{3} d^{2}$ hybridised and is octahedral (OH) Which d orbitals are involved in hybridisation .
A. $d x^{2}-y^{2}, d x y$
B. $d x^{2}-y^{2}, d z^{2}$
C. $d x y, d y z$
D. $d z^{2}, d x y$

Answer: B

- Watch Video Solution

23. $I F_{7}$ is $s p^{3} d^{3}$ hybridised and is (pentagonal bipyramid) Which d orbitals are involved in hybridisation .
A. $d x y, d y z, d x z$
B. $d x^{2}-y^{2}, d x y, d z^{2}$
C. $d x^{2}-y^{2}, d y z, d x z$
D. $d x^{2}-y^{2}, d z^{2}, d y z$

Answer: A

D Watch Video Solution

24. In a regular octahedral molecule $S F_{6}$ the number of $F-S-F$ bonds at 180° is.
A. 2
B. 3
C. 4
D. 6

Answer: B

25. The maximum number of 90° angles between bp-bp of electrons is observed in .
A. $s p^{3} \mathrm{~d}$ hybridisation
B. $d s p^{3}$ hybridisation
C. $d s p^{2}$ hybridisation
D. $s p^{3} d^{2}$ hybridisation

Answer: D

- Watch Video Solution

26. Among the following ions the $p \pi-d \pi$ overlap could be present in
A. $\mathrm{NO}_{3}{ }^{\Theta}$
B. $P O_{3}^{\Theta}$
C. CO_{3}^{2-}
D. NO_{3}^{Θ}

Answer: B

- Watch Video Solution

27. Which of the following have distored octahedral structure ? .
A. $S F_{6}$
B. $P F_{6}^{\Theta}$
C. SiF_{6}^{2-}
D. XeF_{6}

Answer: D

- Watch Video Solution

28. Sulphur reacts with chlorine in 1:2 ratio and forms X hydrolysis of X gives a sulphure compound Y . What is the hybridisation state od central atom in the compound?
A. $s p^{3}$
B. $s p^{2}$
C. $s p$
D. $d s p^{2}$

Answer: A

- Watch Video Solution

29. Orthonitrophenol is steam volatile but paranitrophenol is not because.
A. Orhtonitrophenol has intramolecular hydrogen bonding while paranitrophenol has intermolecular hydrogen bonding .
B. Both ortho and paranitropenol have intramolecular hydrogen bonding .
C. Orthonitrophenol has intermolecular hybrogen bonding and paranitrophenol has intramolecular hydrogen bonding .
D.

Answer: A

- Watch Video Solution

30. Which of the following compounds has the least tendency to from $\mathrm{H}-$ bonds?.
A. $H F$
B. HCI
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}

D Watch Video Solution

31. Which of the following molecule forms linear polymeric structure due to H -bonding ?
A. HCl
B. $H F$
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}

Answer: B

- Watch Video Solution

32. Which one of the following hydrogen halides has the lowest boilling point?.
A. HF
B. HCl
C. HBr
D. HI

Answer: B

D Watch Video Solution

33. Out of the two compounds shown below the vapour pressure of II at a particular temperature is expected to be

A. Higher than that of I
B. Lower than that of I
C. Same as that of I
D. Can be higher or lower depending upon the size of vessel.

Answer: A

- Watch Video Solution

Exercises Single Correct Bond Angle

1. The decreasing valuse of bond angles from $\mathrm{NH}_{3}\left(106^{\circ}\right)$ to $\mathrm{SbH}_{3}\left(101^{\circ}\right)$ down group -15 of the periodic table is due to .
A. Decreasing Ip-lp repulsion
B. Decreasing electronegativity
C. Increasing bp-bp repulsion
D. Decreasing p-orbital character in $s p^{3}$.

Answer: B

- Watch Video Solution

2. in compound X all the bond angles around central atom are $109^{\circ} 28^{\prime}$ one of the following will be X ? .
A. Chloromethane
B. Carbon tetrachloride
C. lodoform
D. Chloroform

Answer: B

- Watch Video Solution

3. In which of the following molecules all the atoms lie in one plane? .
A. CO_{2}
B. $B F_{3}$
C. $P F_{5}$
D. NH_{3}

Answer: B

- Watch Video Solution

Θ
4. The bond angles of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{\oplus}$ and NH_{2} are in the order .
A. $\mathrm{NH}_{2}^{\Theta}>\mathrm{NH}_{3}>\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}$
\oplus
Θ
B. $\mathrm{NH}_{4}>\mathrm{NH}_{3}>\mathrm{NH}_{2}$
C. $N H_{3}>\stackrel{\oplus}{N} H_{2}>\stackrel{\oplus}{N} H_{4}$
$\oplus \quad \Theta$
D. $\mathrm{NH}_{3}>\mathrm{NH}_{4}>\mathrm{NH}_{2}$

Answer: B

- Watch Video Solution

5. For $A B_{2}$ type molecule which statement (s) si (are) correct about bond angle $(B-A-B)$
(I) Bond angel $\propto E N$ of the central atom A
(II) Bond angle $\propto 1 / E N$ of the central atom A
(III) Bond angle \propto Size of central atom
(IV) Bond angle prop 1/Size of central atom .
A. I,III,III
B. II,IV
C. I,IV
D. II,III

Answer: C

6. For $A B_{x}$ type molecule which statement (s) si (are) correct about bond angle $(B-A-B)$
(I) Bond angel $\propto E N$ of atom B
(II) Bond angle $\propto E N$ of atom B
(III) Molecules or ions without non-bonding electrons on central atom add having regular geometry the change in $E N$ of A or B has no effect on the bond angle
(IV) THe bond angle in compounds having $s p, s p^{2}$ and $s p^{3}$ hybridisation on central atom decreases as follows
$s p>s p^{2}>s p^{3}$.
A. I,IV
B. IIIIV
C. I,IIIIII
D. IIII,IV

Answer: B
7. Decreasing order of bond angle of $\left(\mathrm{NO}_{2}^{\oplus}, \mathrm{NO}_{2}, \mathrm{NO}_{2}^{\ominus}\right.$ is A. I gt II gt III
B. II gt I gt III
C. III gt II gt I
D. IIIgt I gt II

Answer: B

- Watch Video Solution

8. Decreasing order of bond angle of $\left(\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}\right)$ is
A. I gtII gtIII
B. I gtIII gtII
C. II gtl gtIII
D. III gtII gtI

Answer: A

- Watch Video Solution

9. Which statement is correct about bond angle of $\mathrm{NCl}_{3}, \mathrm{NF}_{3}$ and NH_{3} Bond angle of $\mathrm{NCl}_{3}>\mathrm{NF}_{3}$ Bond angle of $\mathrm{NCl}_{3}<\mathrm{NF}_{3}$

Bond angle of $\mathrm{NH}_{3}>\mathrm{NF}_{3}$
Bond angle of $\mathrm{NH}_{3}<\mathrm{NF}_{3}$.
A. I,II
B. I,III
C. I,II,III
D. I,II,IV

Answer: B

10. Bond order of SO_{2} is .
A. 1.5
B. 1.33
C. 2.0
D. 2.5

Answer: B

- Watch Video Solution

Exercises Single Correct Resonance And Formal Charges

1. Which of the following conditions apply to resonating structrues ?
A. The contributing structures must have the same number of unpaired electrons.
B. The contributing structures should have similar energies .
C. The contributing structures should be so written that unlike charges reside on atoms that are far apart .
D. The positive charge should be present on the electropositive element and the negative charge on the electrongative element.

Answer: C

- Watch Video Solution

2. Resonance structures can be written for .
A. O_{3}
B. NH_{3}
C. CH_{4}
D. $\mathrm{H}_{2} \mathrm{O}$
3. The bond length of $C=O$ bond in $C O$ is $1.20 \AA$ and in $C O_{2}$ it is $1.34 \AA$ Then $C=O$ bond length in CO_{3}^{2-} will be .
A. $1.50 \AA$
B. $1.34 \AA$
C. $1.29 \AA$
D. $0.95 \AA$

Answer: C

- Watch Video Solution

4. Maximum number of H -bonds that can be formed by a water molecule is.
A. 2
B. 3
C. 4
D. 6

Answer: C

- Watch Video Solution

5. Which of the following resonating structures is not correct for CO_{2} ? .
A.
B.
C.
D.

Answer: C

6. In PO_{4}^{3-} the formal charge on each O-atom and $\mathrm{P}-\mathrm{O}$ bond order respectively are .
A. $-0.75,0.1$
B. $-0.75,1.25$
C. $-0.75,0.6$
D. $-3,1.25$

Answer: B

7. The formed charge of the O-atoms in the ion $\left[\begin{array}{ll}: \ddot{N}=\ddot{O}:\end{array}\right]$ is .
A. 0
B. +1
C. -1
D. -2

Answer: A

- Watch Video Solution

8. Which of the following statements regarding the concept of resonance is not correct?
A. The different resonting structures of a molecule have fixed arrangement of atomic nuclei .
B. The differnet resonating structures differ in the arrangement of electrons .
C. None of the individual resonating structures explains the verious characteristics of the molecule .
D. The hybrid structures have equal contribution from all the resonating structures .

D Watch Video Solution

9. Which of the following pairs do not constitute resonanting structures ?
a. $\mathrm{Me}-\stackrel{\oplus}{\mathrm{N}}<\mathrm{O}_{\mathrm{O}}^{\ominus}$
and $\mathrm{Me}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
b. $\mathrm{Me}-\mathrm{C}=\stackrel{\stackrel{\ominus}{\mathrm{O}}:}{\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}}$

c. $\begin{aligned} & \mathrm{Me} \\ & \mathrm{Me}\end{aligned}>=\mathrm{O}$

d. $\mathrm{MeCH}=\mathrm{CHMe}$ and $\mathrm{MeCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
A.
a. $\mathrm{H}_{3} \mathrm{C}-\stackrel{\oplus}{\mathrm{N}} / \mathrm{O}^{\ominus}$ and $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
B.

C.

D.
10. Which of the following statement about resonance energy is wrong ? .
A. The different in energy of the resonance hybrid and the most stable contributing structures (having least energy) is called resonance energy .
B. The differnet in energy of the resonane hybrid and the least stable contributing structures (having highest energy) is called resonance energy .
C. The differnece in the experimental and calculated enthalpies (bond enthalpy formation or combustion or hydrogenation) is called resonance enrgy .
D. Resonance energy is the amount of energy by which the compound is stable .

Answer: B

- Watch Video Solution

Exercises Single Correct Molecular Orbital Theory Mot

1. During the formation of a molecular orbital from atomic orbital , the electron density is :
A. Minimum in the nodal plane
B. Maximum in the nodal plane
C. Zero in the nodal plane
D. Zero on the surface of the lobe

Answer: C

2. Which of the following have been arranged in increasing bond order as well as bond dissociation energy? .
A. $O_{2}^{-2}<O_{2}^{\Theta}<O_{2}^{\oplus}<O_{2}$
B. $\mathrm{O}_{2}^{-2}<\mathrm{O}_{2}^{\Theta}<\mathrm{O}_{2}<\mathrm{O}_{2}^{\oplus}$
C. $\mathrm{O}_{2}<\mathrm{O}_{2}^{\oplus}<\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}^{\Theta}$
D. $O_{2}^{\oplus}<O_{2}^{2-}<O_{2}^{\Theta}<O_{2}$

Answer: B

- Watch Video Solution

3. In forming (i) $N_{2} \rightarrow N_{2}^{\oplus}$ and $O_{2} \rightarrow O_{2}^{\oplus}$ the electrons respectively removed from .
A. $\left(\pi^{*} 2 p_{y}\right.$ or $\left.\pi^{*} 2 p_{x}\right)$ and $\left(\pi^{*} 2 p_{y}\right.$ or $\left.\pi^{*} 2 p_{x}\right)$
B. $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$ and $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$
C. $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$ and $\left(\pi^{*} 2 p_{y}\right.$ or $\left.\pi^{*} 2 p_{x}\right)$
D. $\left(\pi^{*} 2 p_{y}\right.$ or $\left.\pi^{*} 2 p_{x}\right)$ and $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$

Answer: C

- Watch Video Solution

4. The species which does not show paramagnetism is .
A. O_{2}
B. O_{2}^{\oplus}
C. O_{2}^{2-}
D. H_{2}^{\oplus}

Answer: C

- Watch Video Solution

5. Which of the following cannot exist on the basic of MO theory ? .
A. H_{2}^{\oplus}
B. $\mathrm{He}{ }_{2}^{\oplus}$
C. He_{2}
D. O_{2}

Answer: C

- Watch Video Solution

6. Which one paramagnetic and has a bond order of 0.5 ? .
A. H_{2}^{\oplus}
B. F_{2}
C. N_{2}^{\oplus}
D. O_{2}

Answer: A

7. The bond energies $\mathrm{NO}, \mathrm{NO}^{+}$and NO^{Θ} ion follows the order
A. $\mathrm{NO}^{\oplus}>\mathrm{NO}>\mathrm{NO}^{\Theta}$
B. $\mathrm{NO}>\mathrm{NO}^{\oplus}>\mathrm{NO}^{\oplus}$
C. $\mathrm{NO}^{\Theta}>\mathrm{NO}>\mathrm{NO}^{\oplus}$
D. $\mathrm{NO}^{\oplus}>\mathrm{NO}^{\Theta}>\mathrm{NO}$

Answer: A

- Watch Video Solution

8. In the $M O$ diagram for O_{2}^{Θ} ion the highest occupied orbital is .
A. $\pi M O$ orbital
B. $\sigma M O$ orbital
C. $\pi^{*} M O$ orbital
D. $\sigma M O$ orbital

Answer: C

- Watch Video Solution

9. Which of the following is not diamagnetic ? .
A. O_{2}^{2-}
B. $L i_{2}$
C. N_{2}^{\oplus}
D. C_{2}

Answer: C

- Watch Video Solution

10. The bond order of $C O$ and $N O$ is .
A. 3 and 2
B. 3 and 2.5
C. 3 and 1.3
D. 3 and 3.5

Answer: B

D Watch Video Solution

11. Combination of two $A O \mathrm{~s}$ lead to the formation of .
A. $2 M O^{\prime} s$
B. 1 MO
C. $3 \mathrm{MO}^{\prime} \mathrm{s}$
D. $4 M O^{\prime} \mathrm{s}$

Answer: A

12. The possible molecular orbital formed when two d-orbitals overlap is .
A. π
B. π^{*}
C. σ^{*}
D. δ^{*}

Answer: D

- Watch Video Solution

13. Which of the following species exhibits the diamagnetic behaviour?
A. NO
B. O_{2}^{2-}
C. O_{2}^{\oplus}
D. O_{2}

Answer: B

- Watch Video Solution

14. Which of the following species is paramagnetic ? .
A. CO_{2}
B. O_{2}^{2-}
C. $C N^{\Theta}$
D. NO

Answer: D

- Watch Video Solution

15. The bond order in $N O$ is 2.5 while that in $N O^{\oplus}$ is 3 Which of the following statement is true for these two species?.
A. Bond length in $N O>\operatorname{inNO}{ }^{\oplus}$
B. Bond length in $\mathrm{NO}^{\oplus}=$ in $N O$
C. Bond length in $\mathrm{NO}^{\oplus}=\mathrm{inNO}$
D. Bond length in $\mathrm{NO}^{\oplus}>$ inNO

Answer: A

- Watch Video Solution

16. When two $A O$ s combine energy of bonding $M O$ is lowered by x while of antibonding $M O$ is raised by y Then.
A. $x=y$
B. $x<y$
C. $x>y$
D. Can be any of these

Answer: B

- Watch Video Solution

17. In Which of the following the double bond consist of the pi bonds .
A. O_{2}
B. $B e_{2}$
C. C_{2}
D. S_{2}

Answer: C

- Watch Video Solution

18. Which of the following MOs has more than one nodal plane?
A. $\pi 2 p_{y}$
B. $\sigma 2 s$
C. $\pi^{*} 2 p_{y}$
D. $\sigma^{*} 2 p_{z}$

Answer: C

- Watch Video Solution

19. Which of the following $M O^{\prime} s$ has zero nodal planes ?
A. $\sigma^{*} 1 s$
B. $\sigma 1 \mathrm{~s}$
C. $\pi 2 p_{x}$
D. $\pi^{*} 2 p_{z}$

Answer: B

20. The main axis of diatomic molecule is z. The orbitals p_{x} and p_{y} overlap to form
(a) π-molecular orbital
(b) σ - molecular orbital
(c) δ-molecular orbital
(d)No bond will form
А. $\pi-M O$
B. $\sigma-M O$
C. $\delta-M O$
D. No bond will form

Answer: D

- Watch Video Solution

21. The paramagnetic property of the oxygen molecule is due to the presence of unpiared electrons present in .
A. $\left(\pi^{*} 2 p_{y}\right)^{1}$ and $\left(\pi^{*} 2 p_{x}\right)$
B. $\left(\sigma 2 p_{z}\right)^{1}$ and $\left(\sigma^{*} 2 p_{z}\right)^{1}$
C. $\left(\pi 2 p_{y}\right)^{1}$ and $\left(\pi^{*} 2 p_{y}\right)^{1}$
D. $\left(\sigma 2 p_{z}\right)^{1}$ and $\left(\pi 2 p_{y}\right)^{1}$

Answer: A

- Watch Video Solution

22. Which of the following combination is not allowed in the LCAO method for the formation of molecular orbital (consider Z-axis as the molecular axis)?.
A. $s+p_{x}$
B. $s+p_{z}$
C. $p_{X}+p_{X}$
D. $p_{z}+p_{z}$

Answer: A

D Watch Video Solution

23. The energy of $\sigma_{2 s}$, is greater than that of $\sigma_{1 s}^{*}$ orbital because
A. $\sigma 2 s$ is bigger than $\sigma^{*} 1 s M O$
B. $\sigma 2 s$ is bonding whereas $\sigma^{*} 1 s$ is an $A B M O$
C. $\sigma 2 s$ orbital has a greater value of than $\sigma^{*} 1 s M O$
D. $\sigma 2 s$ orbital is formed only after $\sigma^{*} 1 s$.

Answer: C

D Watch Video Solution

1. Which of the following statement is incorrect ? .
A. NH_{3} is more basic than PH_{3}
B. NH_{3} has a higher boiling point than that of HF .
C. N_{2} is less reactive than P_{4}
D. The dipole momnet of NH_{3} is less than that of SO_{2}.

Answer: B

- Watch Video Solution

2. If one assume linear structure instead of bent structure for water then which on of the following properties cannot be explained ?.
A. The formation of intermolecular hybrogen bond in water
B. The high boiling point of water .
C. Solubility of polar compounds in water
D. Ability of water to form coordinate covalent bond .

Answer: C

- Watch Video Solution

3. Which is the wrong order for the stated property? .
A. $\mathrm{Ba}>\mathrm{Sr}>\mathrm{Mg}$ atomic radius
B. $F>O>N$, first ionisation enthalpy
C. $C l>F>I$, electron affinity
D. $O>S e>T e$, electronegativity

Answer: B

(Watch Video Solution

4. Which is a correct statement about diborane structure? .
A. All $H B H$ bond angles are equal
B. All - $H-B$ bond lenghts are equal
C. it has two three-center-2 electron bonds
D. All hydrogen and boron atoms are in one plane

Answer: C

- Watch Video Solution

Θ
5. For NH_{2} the best three-dimensional view is .

A.
C.
B.
C.
c.

d.
D.

Answer: C

Watch Video Solution

6. The set representing the correct order of ionic radius is
A. $\mathrm{Li}^{\oplus}>\mathrm{Na}^{\oplus}>\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}$
B. $\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}>\mathrm{Li}^{\oplus}>\mathrm{Na}^{\oplus}$
C. $\mathrm{Li}^{\oplus}>\mathrm{Be}^{2+}>\mathrm{Na}^{\oplus}>\mathrm{Mg}^{2+}$
D. $\mathrm{Na}^{\oplus}>\mathrm{Li}^{\oplus}>\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}$
7. Which of the following are not isoelectronic speices ?
A. $\mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{CIO}_{4}^{\Theta}$
B. $\mathrm{SO}_{3}^{2-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{\Theta}$
C. $\mathrm{BO}_{3}^{3-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{\Theta}$
D. $C N^{\Theta}, N_{2}, C_{2}^{2-}$

Answer: B

- Watch Video Solution

8. The $E N^{\prime} s$ of $F, C I \mathrm{Br}$ and I are $4.0,3.0,2.8$ and 2.5 respectively The hybrogen halide with a highest percentage of ionic character is .
A. HI
B. HBr
C. HCI
D. $H F$

Answer: D

- Watch Video Solution

9. The $C-C$ bond length is $1.54 \AA C=C$ bond length is $1.33 \AA$ What is the circumference of benzene ring ? Bond length between single and double bonds $=1.4 \AA$.
A. $(3 \times 1.54+3 \times 1.33) \AA$
B. $(4 \times 1.54+2 \times 1.33) \AA$
C. $(6 \times 1.4) \AA$
D. $(4 \times 1.33+2 \times 1.54) \AA$

Answer: C

10. The correct order of the thermal stability of hydrogen halides $(H-X)$ is
A. $\mathrm{HI}>\mathrm{HCI}<\mathrm{HF}>\mathrm{HBr}$
B. $\mathrm{HCI}<\mathrm{HF}>\mathrm{HBr}<\mathrm{HI}$
C. $\mathrm{HF}>\mathrm{HCI}>\mathrm{HBr}>\mathrm{HI}$
D. $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCI}>\mathrm{HF}$

Answer: C

- Watch Video Solution

11. Which of following statement is correct ? .
A. The bond angle of NCI_{3} is greater than that of NH_{3}
B. The bond angle of PH_{3} is greater than that of PF_{5}
C. $\mathrm{CIO}_{3}^{\Theta}$ and SO_{3}^{2-} are isostructural
D. It is not necessary that in Tbp structure the lone pairs always would occupy the equatorial positions .

Answer: C

- Watch Video Solution

12. The valuse of $E N$ of atoms A and B are 1.80 and 4.0 respectively The percentage of ionic character of $A-B$ bond is .
A. 43%
B. 50 \%
C. 55.3 \%
D. 65%

Answer: D

13. The statement true for N_{3}^{-}is
A. It has a non-linear structure
B. It is called pseudo halogens
C. The formal oxidation state of N in this anion is- 1
D. It is isoelectronic with NO_{2}

Answer: C

- Watch Video Solution

14. The decreasing $(O-O)$ bonf length order in the following is .
A. $\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{O}_{2}$
C. $\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2}$
D. $\mathrm{O}_{3}>\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}$

D Watch Video Solution

15. Which of the following substance has the highest melting point? .
A. BaO
B. MgO
C. $K C I$
D. NaCI

Answer: B

- Watch Video Solution

16. Which of the following statement is correct ? .
A. FeCI_{2} is more covalent than FeCI_{2}
B. FeCI_{3} is more covalent than FeCI_{2}
C. Both FeCI_{2} and FeCI_{3} are equally covalent
D. FeCI_{2} and FeCI_{3} do not have any covalent character

Answer: B

- Watch Video Solution

17. Which of the following bonds is the strongest ? .
A. $F-F$
B. $I-I$
C. $C I-C I$
D. $O-O$

Answer: C

18. The molecule having highest bond enegy is
A. $N-N$
B. $F-F$
C. C - C
D. $\mathrm{O}-\mathrm{O}$

Answer: C

- Watch Video Solution

19. Which set is expected to show the smallest difference in $I E_{1}$?
A. $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$
B. B, N, O
C. $M g, M g^{\oplus}, M g^{+2}$
D. $\mathrm{Fe}, \mathrm{CO}, \mathrm{Ni}$

Answer: D

D Watch Video Solution

20. Which of the following statement is wrong ? .
A. Multiple bonds are always shorter the corresponding single bonds
B. The electron-deficient molecules act as Lewis acids
C. Every $A B_{5}$ molecule does in fact have square pyramidal structure
D. The canonical structure has no real existence

Answer: C

- Watch Video Solution

21. Which of the following is correct ?
A. According to $V S E P R$ theory $S N C I_{2}$ in a linear molecule
B. The number of electrons present in the valence shell in $S F_{6}$ is 12
C. The rates of ionic reactions are very slow
D. The correct order of ability form ionic compounds among

$$
\mathrm{Na}^{\oplus}, \mathrm{Mg}^{2+}, \text { and } \mathrm{A1}{ }^{+3} \text { is } \mathrm{A1} 1^{+3}>\mathrm{Mg}^{+2}>\mathrm{Na}^{\oplus} .
$$

Answer: B

- Watch Video Solution

22. Lattice energy of $\mathrm{BeCO}_{3}(I), \mathrm{MgCO}_{3}(I I)$ and $\mathrm{CaCO}_{3}(I I I)$ is in order.
A. I It II It III
B. I gt II gt III
C. IIt III It II
D. II It |t III

Answer: B

23. Which of the following is a correct statement? .
A. Mobility of H^{\oplus} ions in ice is greater as compared to liquid water
B. Mobility of H^{\oplus} ions in ice is less as compared ti liquid water
C. Mobility of H^{\oplus} ions in ice is equal to that in liquid water .
D. Cannot be predicted

Answer: A

- Watch Video Solution

Exercises Assetion Reasoning

1. Assertion SiF_{6}^{2-} anion exists but $C F_{6}^{2-}$ does not

Reasoning Si atom vacnat d-orbital while C-atom has not .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

2. Assertion Boiling point of $\mathrm{SiH}_{4}>\mathrm{CH}_{4}$ whereas boiling point of $\mathrm{SiCI}_{4}<\mathbb{C I}_{4}$

Reasoning Chlorine possesses vacant d-orbitals but hydrogen does not .
A. If both (A) and (R) are correct and (R) is the correct explanation of
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: B

- Watch Video Solution

3. Assertion Sulfur forms $S F_{6}$ and also $S C I_{6}$ Reasoning Sulfur has vacant d-orbitals .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

4. Assertion Bond angles of $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}$ and SbH_{3} decrease in order as mentioned

Reasoning The central atom in each possesses a lone pair .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of
(A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: B

5. Assertion : $\left(\mathrm{CH}_{3}\right)_{3} N$ geometry is pyramidal but in case $\left(\mathrm{SiH}_{3}\right)_{3} N$ it is planar.

Reason :The maximum covalency of Si is six but that of C is four.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of
(A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: B

- Watch Video Solution

6. Assertion NCI_{3} reacts with water but $\mathrm{NF}_{3} \mathrm{I}$ s inert towards hydrolysis Reasoning Nitrogen des not possess vacant d-orbitals .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: B

- Watch Video Solution

7. Assertion LiF is practically insoluble in water

Reasoning LiF has very high lattice energy .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

8. Assertion O_{2} and N_{2}^{2-} have same number of electrons and same molecular orbital configuration Reasoning O_{2} and N_{2}^{2-} have the same bond order .
A. If both (A) and (R) are correct and (R) is the correct
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: D

- Watch Video Solution

9. Assertion MgCl_{2} is more soluble as comared to BeCl_{2}

Reasoning BeCl_{2} is covalent and MgCl_{2} is ionic compound .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

10. Assertion : H_{2} molecule is more stable than $\mathrm{He}-\mathrm{H}$ molecule .

Reason : The antibonding electron in $\mathrm{He}-\mathrm{H}$ molecule decreases the bond order thereby the stability.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of
(A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

11. Assertion Carbon tetrachloride dose not form a precipitate of AgCI with AgNO_{3} solution

Reasoning Carbon tetrachloride is a liquid.
A. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

B. If both (A) and (R) are correct and (R) is not the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: B

- Watch Video Solution

12. Assertion Both NO_{3}^{Θ} and CO_{3}^{2-} ions are triangular planar Reasoning Hybridisation of central atom in both NO_{3}^{Θ} and CO_{3}^{2-} is $\mathrm{sp}^{\wedge}(2)^{\prime}$.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of
(A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

13. Water has maximum density at $4^{\circ} \mathrm{C}$.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: D

- Watch Video Solution

14. Assertion Boiling point of halogen acids are in the order $\mathrm{HF}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HI}$

Reasoning Electronegativities are in the order $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$.
A. If both (A) and (R) are correct and (R) is the correct
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: D

- Watch Video Solution

15. Assertion Ionic compounds tend to be non-volatile Reasoning Intermolecular forces in these compounds are weak.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: C

- Watch Video Solution

16. Assertion : Water is a good solvent for ionic compounds but poor for covalent compounds.

Reason : Hydration energy of ions releases sufficient energy to overcome lattice energy and break hydrogen bonds in water while covalent compounds interact so weakly that even van der Waal's forces between molecules of covalent compounds cannot be broken.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

17. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecules are polar.

Reason : In polar covalent molecule, the shared electrons spend more time on the average near one of the atoms.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

18. Assertion : $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is soluble in water while BaSO_{4} is water insoluble.

Reason :Lattice energy of BaSO_{4} exceeds its hydration energy.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of
(A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

19. Assertion : The dipole moment helps to predict whether a molecule is polar or non- polar.

Reason : The dipole moment helps to predict geometry of molecule.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

20. Assertion BF_{3} is a weaker Lewis acid than BCI_{3}

Reasoning In BF_{3} molecule, back bonding ($p \pi-p \pi$) is stronger than in $B C I_{3}$.
A. If both (A) and (R) are correct and (R) is the correct explanation of

(A)

B. If both (A) and (R) are correct and (R) is the correct explanation of
(A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

21. Assertion Bond order for N_{2}^{\oplus} and N_{2}^{Θ} are same (i.e2.5) Reasoning N_{2}^{\oplus} is more stable than N_{2}^{Θ}.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is not the correct
explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: B

- Watch Video Solution

22. Assertion Among two cations of similar size the polarising power of cation with pseudo noble gas configuration is larger than cation with noble gas configuration Reasoning Polarising power of $A g^{\oplus}$ is more than K^{\oplus}.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

23. Assertion BF_{3} has greater dipole momnet than $\mathrm{H}_{2} \mathrm{~S}$

Reasoning Fluorine is more electronegative than sulphur .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct
24. Assertion Both $\pi\left(2 P_{x}\right)$ and $\pi^{*}\left(2 P_{x}\right) M O^{\prime} s$ have one nodal plane each Reasoning All $\mathrm{MO}^{\prime} \mathrm{s}$ formed by side way overlapping of $2 p$ orbitals have one nodal plane .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If both (A) and (R) are incorrect

Answer:

- Watch Video Solution

25. Assertion $H_{2}, L i_{2}, B_{2}$ each has a bond order of 1 and hence are equally stable

Reasoning Stability of molecule//ion depends only on bond order .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of
(A)
C. If (A) is correct but (R) is incorrect
D. If both (A) and (R) are incorrect

Answer:

- Watch Video Solution

26. Assertion : Bond order can assume any value including zero.

Reason : Higher the bond order, shorter is the bond length and greater is
the bond energy.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: A

- Watch Video Solution

27. Assertion : N_{2} and NO^{+}both are diamagnetic substances.

Reason : NO^{+}is isoelectronic with N_{2}.
A. If both (A) and (R) are correct and (R) is the correct explanation of
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct

Answer: B

- Watch Video Solution

28. Assertion B_{2} molecule is diamagnetic

Reasoning The highest occupied molecular orbital is of sigma type.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D. If both (A) and (R) are incorrect

Answer:

- Watch Video Solution

29. Asseration: SeCl_{4}, does not havea tetrahedral structure.

Reason: Se in SeCl_{4} has two lone pairs.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D.

Answer: C

30. Assertion : All F - S - F angle in SF_{4} are greater than 90° but less than 180°.

Reason :The lone pair -bond pair repulsion is weaker than bond pair bond pair repulsion
A. If both (A) and (R) are correct and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct and (R) is the correct explanation of (A)
C. If (A) is correct but (R) is incorrect
D.

Answer: C

- Watch Video Solution

1. How many molecules among the following have zero dipole moment $N H_{3}, B F_{3}, N F_{3}, C C I_{4} ?$.

- Watch Video Solution

2. Find the number of lone pairs of electrons preent in OF_{2}.

- Watch Video Solution

3. How many of the following compounds violate octet rule
(i) BrF_{5} (ii) SF_{6} (iii) IF_{7} (iv) XeOF_{4}
(v) $C I F_{2}$ (vi) $P C I_{4}^{\oplus}$.

- Watch Video Solution

4. The number of hypervalent species among the following $\mathrm{ClO}_{4}^{\Theta}, \mathrm{BF}_{3}, \mathrm{SO}_{4}^{2-}, \mathrm{CO}_{3}^{2-}$ is .
5. The number of correct options is
(a) $1^{\Theta}>\mathrm{Br}^{\Theta}>\mathrm{CI}^{\Theta}>\mathrm{F}^{\Theta}$ (polarisability)
(b) $\mathrm{Li}^{\oplus}>\mathrm{Na}^{\oplus}>K^{\oplus}>R b^{\oplus}$ (polarisation power)
(c) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$ (order of b.pt)
(d) $H_{2}^{\Theta}<H_{2}^{\oplus}$ (order of stability).

- Watch Video Solution

6. How many of the following compounds have $s p^{3}$ hybridisation
(i) SO_{4}^{2-}
(ii) SO_{5}^{2-}
(iii) PO_{4}^{3-}
(iv) PO_{5}^{3-}
(v) I_{3}^{Θ} (iv) CO_{3}^{2-} (vii) CO_{4}^{2-}.

- Watch Video Solution

7. How many of the following compounds have ($p \pi-d \pi$) multiple bonds
(i) SO_{2} (ii) SO_{3} (iii) $\mathrm{HSO}_{4}^{\Theta}$ (iv) SO_{4}^{2-}
(v) SO_{3}^{3-} (vi) $\mathrm{HSO}_{3}^{\Theta}$.

- Watch Video Solution

8. How many of the following oxides of nitrogen are paramangnetic ?
(i) $\mathrm{N}_{2} \mathrm{O}$ (ii) NO (iii) $\mathrm{N}_{2} \mathrm{O}_{3}$ (iv) NO_{2}
(v) $\mathrm{N}_{2} \mathrm{O}_{4}$ (vi) $\mathrm{N}_{2} \mathrm{O}_{5}$ (vii) NO_{2}^{\oplus} (viii) NO_{2}^{Θ}
(ix) NO_{3}^{Θ}.

Watch Video Solution

9. How many of the following species have bond order of 2.5 ?
N_{2}^{\oplus} (ii) N_{2}^{Θ} (iii) O_{2}^{\oplus} (iv) O_{2}^{Θ} (v) $N O$ (vi) $C N$.

- Watch Video Solution

10. The number of correct option is
(a) $\mathrm{P}_{2} \mathrm{O}_{5}>\mathrm{ZnO}>\mathrm{MgO}>\mathrm{Na}_{2} \mathrm{O}_{2}$ (acidic strenght)
(b) $\mathrm{TI}_{2} \mathrm{O}_{3}>\mathrm{TI}_{2} \mathrm{O}>\mathrm{Ga}_{2} \mathrm{O}_{3}>\mathrm{AI}_{2} \mathrm{O}_{3}$ (basic strenght)
(c) $\mathrm{MnO}>\mathrm{P}_{2} \mathrm{O}_{5}>\mathrm{CrO}_{3}>\mathrm{Mn}_{2} \mathrm{O}_{7}$ (ionic character)
(d) $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$ (melting point)
(e) $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$ (boiling point).

- Watch Video Solution

Exercises Fill In The Blanks

1. The type of hybrid orbitals used by chlorine atom in ClO_{2}^{-}is

- Watch Video Solution

2. The cyanide ion $C N$ and N_{2} are isoelectronic, but in contrast to $C N^{-}, N_{2}$ is chemically inert, because of
3. The shape of $\left[\mathrm{CH}_{3}\right]^{\oplus}$ is \qquad

- Watch Video Solution

4. The valence atomic orbital on C in silver acetylide is \qquad hybridised.

- Watch Video Solution

5. Out of $\mathrm{CH}_{3}^{\oplus}, \mathrm{H}_{3} \mathrm{O}^{\oplus}, \mathrm{NH}_{3}, \mathrm{CH}_{3}^{\Theta}$ the species which is not isoelectronic is \qquad .

Watch Video Solution
6. The experimentally determined $N-F$ bond length in $N F_{3}$ is \qquad than the sum of the single covalent bond radii of N and F.
7. When N_{2} goes to N_{2}^{+}, the $N-N$ bond distance

- Watch Video Solution

8. The central bond in 1,3 butadiene is \qquad than that of n-butane .

- Watch Video Solution

9. Out of (A) toluene (B) m-dichloro benzene (C) o-dichloro benzene and (D) p-dichlorobenzene \qquad have highest and \qquad have lowest dipole moment.

- Watch Video Solution

10. In BaC_{2} \qquad sigma and \qquad pi bonds are present between two Catoms.
11. During the formation of a chemical bond potential energy of the system

- Watch Video Solution

12. Comparatively low melting point and insolubility in water of AlCl_{3} is explained by \qquad rule .

- Watch Video Solution

13. The dipole moment of $\mathrm{CH}_{3} \mathrm{OH}$ is \qquad than that of $\mathrm{CH}_{3} \mathrm{SH}$.

- Watch Video Solution

14. What is the correct dipole moment of NH_{3} and NF_{3} respectively ?
15. In a compound A, B if the element B attracts electrons more than element A it will tend to be \qquad charged .

Watch Video Solution

16. The strenght of covalent bond will depend on the extent to which atomic orbitals \qquad .

Watch Video Solution

17. Salicyaldehyde involves \qquad hydrogen bonding .

- Watch Video Solution

18. The bond multiplicity leads to in bond distance.

- Watch Video Solution

19. The angle between two covalent bonds is maximum for $\left(\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}\right)$ \qquad .

- Watch Video Solution

20. Due to hybridisation \qquad hybrid orbitals are formed.

- Watch Video Solution

Exercises True False

1. Acidic strength order $\mathrm{CI}_{2} \mathrm{O}_{7}>\mathrm{SO}_{3}>\mathrm{P}_{4} \mathrm{O}_{10}$.

- Watch Video Solution

2. Acidic strength order $\mathrm{HCIO}>\mathrm{HBrO}>\mathrm{HIO}$.
3. Basic strength order $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{BiH}_{3}$.

- Watch Video Solution

4. XeO_{3} is a trigonal pyramidal molecule .

- Watch Video Solution

5. The lanthanoid ions other than the f^{0} type and f^{14} types are all paramagnetic.
6. LiHCO_{3} and $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ are not found in solid state .
7. All molecules with polar bonds have dipole moment.

- Watch Video Solution

8. Assertion : Ionic bonds are directional in nature whereas covalent bonds are non-directional.

Reason : According to orbital overlap concept, the formation of a covalent bond between two atoms results by pairing of electrons present in the valence shell having same spins.

- Watch Video Solution

9. The dipole moment of $\mathrm{CH}_{3} \mathrm{~F}$ is greater than that of $\mathrm{CH}_{3} \mathrm{Cl}$.

- Watch Video Solution

10. The presence of polar bonds in a polyatomic molecule suggests that the molecule has non-zero dipole moment.
11. The boiling point of $H C I$ is less than that of $H F$.

- Watch Video Solution

12. Both PH_{3} and PH_{5} exist .

Watch Video Solution
13. $\sigma 2 s, \pi^{*}\left(2 p_{x}\right)$ and $\pi\left(2 p_{x}\right)$ are gerade $M O$.

- Watch Video Solution

14. Out of $N O, N O^{\oplus}$ and $C N^{\oplus}$ the paramagnetic species is $N O^{\oplus}$.
15. Arrange the following types of intermolecular forces in order of decreasing their strength
(a) Ion dipole
(b) Keesom forces
(C) Dispersion or London forces
(d) Dipole-induced dipole
(e) lon-induced dipole (Debye forces).

- Watch Video Solution

16. $\sigma 2 s, \pi^{*}\left(2 p_{x}\right)$ and $\pi\left(2 p_{x}\right)$ are gerade $M O$.

- Watch Video Solution

17. Predict the order of decreasing boiling points of the following $\mathrm{H}_{2}, \mathrm{He}, \mathrm{Ne}, \mathrm{Xe}, \mathrm{CH}_{4}$.
18. (a)Give the decreasing order of melting points of the following $\mathrm{NH}_{3}, \mathrm{PH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ Explain
(b) In which molecule is the van der Waals force likely to be the most important in determining the m.pt and b.pt for ICI, $\mathrm{Br}_{2}, \mathrm{HCI}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}$.

- Watch Video Solution

19. Out of $\mathrm{CH}_{3} \mathrm{OH}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ both exhibit H -bonding.

- Watch Video Solution

20. CO_{2} and N_{3}^{Θ} have sane bond order and same shape .

- Watch Video Solution

Archives Multiple Correct

1. CO_{2} is isostructural with
A. HgCI_{2}
B. $\mathrm{C}_{2} \mathrm{H}_{2}$
C. SnCI_{2}
D. NO_{2}

Answer: A::B

- Watch Video Solution

2. The linear struture is assumed by:
A. SnCI_{2}
B. $C S_{2}$
C. $\mathrm{NO}_{2}{ }^{\oplus}$
D. $N C O^{\Theta}$

D Watch Video Solution

3. The molecule (s) that will have dipole moment is/are:
A. 2,2-dimethy1 propane
B. trans-2-pentene
C. cis-3-hexene
D. 2,2,3,3-tetramethyl butane

Answer: B::C

- Watch Video Solution

4. Which of the folowing have identical bond orders ? .
A. $C N^{\Theta}$
B. O_{2}^{Θ}
C. $N O^{\oplus}$
D. $C N^{\oplus}$

Answer: A::C

- Watch Video Solution

5. Out of $\mathrm{CH}_{3}^{\oplus}, \mathrm{H}_{3} \mathrm{O}^{\oplus}, \mathrm{NH}_{3}, \mathrm{CH}_{3}^{\Theta}$ the species which is not isoelectronic is \qquad .
A. I and II
B. III and IV
C. I and III
D. II,III, and IV

Answer: A::C::D

6. The critical temperature of water is higher than that of O_{2} because the $\mathrm{H}_{2} \mathrm{O}$ molecule has .
A. Fewer electrons than O_{2}
B. Three covalent bonds
C. Two covalent bonds
D. Dipole moment

Answer: C::D

- Watch Video Solution

7. The geometry and the type of hybrid orbital present about the central atom in $B F_{3}$ is .
A. Linear,sp
B. Trigonal planar, $s p^{2}$
C. Tetrahedral, $s p^{3}$
D. Pyramidal $s p^{3}$

Answer: B

- Watch Video Solution

8. The nitrogen oxide (s) that contain (s) $N-N$ bonds (s) is (are).
A. $\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{N}_{2} \mathrm{O}_{3}$
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: A::B::C

9. Hydrogen bonding plays a central role in which of the following phenomena?
A. Ice floats in water
B. Higher Lewis basicity of primary than tertiary amines in aqueous solutions
C. Formic acid is more acidic than acetic acid
D. Dimersation of acetic acid in benzene .

Answer: A::B::D

- Watch Video Solution

10. When O_{2} is adsorbed on ametallic surface, electron transfer occurs from the metal to O_{2} The TRUE statement (s) regarding this adsorption is (are)
A. O_{2} is physisorbed
B. heat is released
C. occupancy of $\pi_{2 p}$. of O_{2} increased
D. bond length of O_{2} is increased .

Answer: A::B::C::D

- Watch Video Solution

Archives Single Correct

1. In which of the following molecules does the central atom not follow the octet rule?
A. CO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O_{2}
D. NO

Answer: D

- Watch Video Solution

2. The compound which contains both ionic and covalent bonds is
A. CH_{4}
B. H_{2}
C. KCN
D. KCI

Answer: C

Watch Video Solution
3. The total number of electrons that take part in forming the bond in N_{2} is .
A. 2
B. 4
C. 6
D. 100

Answer: C

- Watch Video Solution

4. Element X is strongly electropositive and Y is strongly electronegative .

Both are univalent. The compound formed would be
A. $X^{-} Y^{-}$
B. $X^{-} Y^{-}$
C. $X-Y$
D. $X \rightarrow Y$

Answer: A

5. Which of the following compounds is covalent ? .
A. H_{2}
B. CaO
C. KCI
D. $\mathrm{Na}_{2} \mathrm{~S}$

Answer: A

- Watch Video Solution

6. If a molecule $M X_{3}$ has zero dipole moment, the sigma bonding orbitals used by M are
A. puraP
B. sp-hybridised
C. $s p^{2}$-hybridised
D. $s p^{3}$ hybridised

Answer: C

- Watch Video Solution

7. The ion that is isoelectronic with CO is
A. $C N^{\Theta}$
B. O_{2}^{\oplus}
C. O_{2}^{Θ}
D. N_{2}^{\oplus}

Answer: A

8. Carbon tetrachloride has no net dipole moment because of
A. Its planar structure
B. Its regular tetrahedral structure
C. Similar sizes of carbon and chlorine atoms
D. Similar electron affinities of carbon and chlorine .

Answer: B

- Watch Video Solution

9. Which one among the following does not have the hybrogen bond ?
A. Phenol
B. Liquid NH_{3}
C. Water
D. HCI

D Watch Video Solution

10. On hydridisation of one s and one p-orbitals, we get
A. Two mutually perpendicualr orbitals
B. Two orbitals at 180°.
C. Four obitals directed tetrahedrally
D. Three orbitals in a plane

Answer: B

- Watch Video Solution

11. The molecule having one unpaired electrons is .
A. NO
B. $C O$
C. $C N^{\Theta}$
D. O_{2}

Answer: A

- Watch Video Solution

12. The hybridisation of sulphur in sulphur dioxide is
A. $s p$
B. $s p^{3}$
C. $s p^{2}$
D. $d s p^{2}$

Answer: C

13. The bond between two indentical non-metal atoms has a pair of electrons .
A. Unqually shared between the two
B. Transferred fully between the two
C. With identical spins
D. Equally shared between them

Answer: D

- Watch Video Solution

14. Which of the following compounds has a zero dipole momnet ? .
A. 1,1-Dichloroethylene
B. cis-1,2Dicloroehtylene
C. trans-1,2-Dichloroethylene
D. None of these

Answer: C

- Watch Video Solution

15. The species in which the central atom uses $s p^{2}$ hybrid orbitals in its bonding is
A. PH_{3}
B. NH_{3}
C. CH_{3}^{\oplus}
D. SbH_{3}

Answer: C

- Watch Video Solution

16. The molecule that has linear structure is
A. CO_{2}
B. NO_{2}
C. SO_{2}
D. SiO_{2}

Answer: A

- Watch Video Solution

17. The $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ angle is $1,1,2,2$-tetrachloroethene and tetrachloromethane respectively will be about
A. 120° and 109.5°
B. 90° and 109.5°
C. 109.5° and 90°
D. 109.5° and 120.5°
18. The molecule which has pyramidal shape is
A. PCI_{3}
B. SO_{3}
C. CO_{3}^{2-}
D. NO_{3}^{Θ}

Answer: A

Watch Video Solution
19. Which of the following is paramagnetic ?
A. O_{2}^{Θ}
B. $C N^{\Theta}$
C. CO
D. $N O^{\oplus}$

Answer: A

- Watch Video Solution

20. The molecule which has zero dipole moment is
A. $\mathrm{CH}_{2} \mathrm{CI}_{2}$
B. $B F_{3}$
C. NF_{3}
D. CIO_{3}

Answer: B

- Watch Video Solution

21. The type of hybrid orbitals used by chlorine atom in ClO_{2}^{-}is
A. $s p^{3}$
B. $s p^{2}$
C. $s p$
D. None of these

Answer: A

- Watch Video Solution

22. The maximum number of H -bonds a water molecule can form are
A. 2
B. 4
C. 3
D. 1

Answer: B

23. Which one of the following molecules is planar?
A. NH_{3}
B. NCI_{3}
C. PH_{3}
D. $B F_{3}$

Answer: D

- Watch Video Solution

24. The number of types of bonds between two carbon atoms in calcium carbide is
A. One sigma and one pi-bond
B. One sigma and one pi-bonds
C. One sigma and one -half pi-bond
D. One sigma -bond

Answer: B

- Watch Video Solution

25. Among the following species, identify the isostuctural pairs
$\mathrm{NF}_{3} . \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}, \mathrm{HN}_{3}$
A. $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}^{\Theta}\right]$ and $\left[\mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$
B. $\left[\mathrm{NF}_{3}, \mathrm{~N}_{3} \mathrm{H}\right]$ and $\left[\mathrm{NO}_{3}{ }^{\Theta}, \mathrm{BF}_{3}\right]$
c. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ and $\left[\mathrm{NO}_{3}^{\Theta}, \mathrm{BF}_{3}\right]$
D. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ and $\left[\mathrm{N}_{3} \mathrm{H}, \mathrm{BF} \mathrm{F}_{3}\right]$

Answer: C

- Watch Video Solution

26. Polar covalent molecules exhibit dipole moment. Dipole moment is equal to the product of charge separation, q and the bond length d for the bond. Unit of dipole moment is debye. One debye is equal to 10^{-18} esucm.

Dipole moments is a vector quantity. It has both magnitude and direction. Hence, dipole moment of a molecule depends upon the relative orientation of the bond dipoles, but not on the polarity of bonds alone. A symmetrical structure shows zero dipole moment. Thus, dipole moment helps to predict the geometry of a molecules. Dipole moment values can be distinguish between cis- and trans- isomers, ortho, meta and pareforms of a substance, etc.
Q. Arrange the following compounds in increasing order of dipole moments, toluene (I), o-dichlorobenzene (II), m-dichlorobenzene (III) and p-dichlorobenzene (IV) :
A. I ItIV It II ItIII
B. I lt I It II It III
C. IV It I It III It II
D. IV It II It I It III

Answer: B

- Watch Video Solution

27. $C N^{\Theta}$ and N_{2} are isoelectronic But in contrast to $C N^{\Theta}, N_{2}$ is chemically less reactive because of \qquad .
A. Low and energy
B. Absence of bond polarity
C. Usymmetrical electron distribution
D. Presence of more number of electrons in bonding orbitals

Answer: B

- Watch Video Solution

28. Among $\mathrm{KO}_{2}, \mathrm{KAlO}_{2}, \mathrm{CaO}_{2}$ and NO_{2}^{+}, unpaired electrons is present in :
A. NO_{2}^{\oplus} and BaO_{2}
B. KO_{2} and $\mathrm{AIO}_{2}^{\Theta}$
C. KO_{2} only
D. BaO_{2} only

Answer: C

- Watch Video Solution

29. Which one of the following compounds has $s p^{2}$ hybridisation?.
A. CO_{2}
B. SO_{2}
C. $\mathrm{N}_{2} \mathrm{O}$
D. CO

Answer: B

D Watch Video Solution

30. Among the following compounds the one that is polar and has the central atom with $s p^{2}$-hybridisation is
A. $\mathrm{H}_{2} \mathrm{CO}_{3}$
B. SiF_{4}
C. $B F_{3}$
D. $\mathrm{HCIO}(2)$

Answer: A

- Watch Video Solution

31. Which contains both polar and non-polar bonds ?
A. $\mathrm{NH}_{4} \mathrm{CI}$
B. $H C N$
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. CH_{4}

Answer: C

- Watch Video Solution

32. The correct order of decreasing bond lengths of $\mathrm{CO}, \mathrm{CO}_{2}$ and CO_{3}^{2-} is
A. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
B. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
C. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
D. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$

Answer: D

33. The geometry of $\mathrm{H}_{2} \mathrm{~S}$ and its dipole moment are
A. Angular and non-zero
B. Angular and zero
C. Linear and non-zero
D. Linear and zero

Answer: A

- Watch Video Solution

34. Molecular shapes of $\mathrm{SF}_{4}, \mathrm{CF}_{4}, \mathrm{XeF}_{4}$ are
A. The same with 2,0 and 1 lone pair of electrons, respectively .
B. The same with 1,1 and 1 lone pair of electrons, respectively .
C. The same with 0,1 and 2 lone pair of electrons, respectively .
D. The same with 1,0 and 2 lone pair of electrons, respectively .

Answer: D

- Watch Video Solution

35. The types of hybrid orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+} respectively are excepted to be
A. $s p, s p^{3}$ and $s p^{2}$, respectively
B. $s p, s p^{2}$ and $s p^{3}$, respectively
C. $s p^{2}, s p$ and $s p^{3}$, respectively
D. $s p, s p^{2}, s p^{3}$ and $s p$, respectively

Answer: B

- Watch Video Solution

36. The correct order of hybridisation of the central atom in the following species $\mathrm{NH}_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{PCl}_{5}$ and BCl_{3} is :
A. $d s p^{2}, d s p^{3}, s p^{2}$ and $s p^{3}$
B. $s p^{3}, d s p^{3}, s p^{3} d$ and $s p^{2}$
C. $d s p^{2}, d s p^{2}, s p^{3}$ and $d s p^{3}$
D. $d s p^{2}, s p^{3}, s p^{2}$ and $d s p^{3}$

Answer: B

- Watch Video Solution

37. Which of the following statement is correct among the species $C N^{\Theta}, \mathrm{CO}$ and NO^{\oplus}.
A. Bond order three and isoelectronic
B. Bond order three and weak field ligands
C. Bond order two and pi acceptors
D. Isoelectronic and weak field ligands

Answer: A

- Watch Video Solution

38. Specify the coordination geometry around and the hybridisation of N and B atoms in 1:1 complex of BF_{3} and NH_{3}.
A. N : tetrahedral $s p^{3}$, B: tetrahedral $s p^{3}$
B. $\mathrm{N}:$ pyramidal, $s p^{3}, \mathrm{~B}:$ pyramidal $s p^{2}$
C. $\mathrm{N}:$ pyramidal, $s p^{3}, \mathrm{~B}:$ planar $s p^{2}$
D. $\mathrm{N}:$ pyramidal, $s p^{3}$, $\mathrm{B}:$ tetrahedral, $s p^{3}$.

Answer: A

- Watch Video Solution

39. The least stable ion among the following is
A. $L i^{\Theta}$
B. $B e^{\Theta}$
C. $B e^{\Theta}$
D. C^{Θ}

Answer: B

D Watch Video Solution

40. Which of the following species has unpaired electrons?
A. N_{2}
B. F_{2}
C. O_{2}^{Θ}
D. O_{2}^{2-}

Answer: C

- Watch Video Solution

41. Which of the following are iso-electronic as well as iso-structural ?
$\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}$
A. $\mathrm{NO}_{3}^{\Theta}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{\Theta}$
C. $\mathrm{CIO}_{3}{ }^{\Theta}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$

Answer: A

- Watch Video Solution

42. Which of the following oxoacids of sulpher has -O-O- linkage?
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
B. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
D. $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

Answer: B

- Watch Video Solution

43. According to $M O$ theory,
A. O_{2}^{\oplus} is paramagnetic and bond order is greater than O_{2}
B. O_{2}^{\oplus} is paramagnetic and bond order is less than O_{2}
C. O_{2}^{\oplus} is diamagnetic and bond order is less than O_{2}
D. O_{2}^{\oplus} is diamagnetic and bond order is more than O_{2}

Answer: A

44. Number of lone pairs (s) in XeOF_{4} is/are
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

45. Which species has the maximum number of lone pair of electrons on the central atom?.
A. $\mathrm{CIO}_{3}^{\Theta}$
B. XeF_{4}
C. $S F_{4}$
D. I_{3}^{Θ}

Answer: D

- Watch Video Solution

46. The species having bond order differnet from that in $C O$ is .
A. $N O^{\Theta}$
B. $N O^{\oplus}$
C. $C N^{\Theta}$
D. N_{2}

Answer: A

- Watch Video Solution

47. Among the following the paramagnetic compound is
A. $\mathrm{Na}_{2} \mathrm{O}_{2}$
B. O_{3}
C. $\mathrm{N}_{2} \mathrm{O}$
D. KO_{2}

Answer: D

- Watch Video Solution

48. The percentage of p-character in the orbitals forming $p-p$ bonds in P_{4} is
A. 25
B. 33
C. 50
D. 75
49. The molecule which has pyramidal shape is
A. SO_{3}
B. BrF_{3}
C. SiO_{3}^{2-}
D. OSF_{2}

Answer: D

- Watch Video Solution

50. Which one the following properties is not shown by NO ?
A. It is a neutral oxide
B. It combines with oxygen to form nitrogen dioxide
C. Its bond order is 2.5 .
D. It is diamagentic in gaseous state .

Answer: D

- Watch Video Solution

51. For which of the following molecule significant $\mu \neq 0$?
A.

B.

C.

D.

A. (A) and (B)
B. $\operatorname{Only}(C)$
C. (C) and (D)
D. $\operatorname{Only}(A)$

Answer: C

52. The correct statement for the molecule, Csl_{3} is
A. It contains $C s^{\oplus}$ and I_{3}^{Θ} ions.
B. It contains Cs^{3+} and I^{Θ} ions
C. It contains $\mathrm{Cs}^{\oplus}, I^{\Theta}$ and lattice I_{2} molecule.
D. it is covalent molecule

Answer: A

- Watch Video Solution

53. Assuming $2 s-2 p$ mixing is NOT operative, the paramagnetic species among the following is .
A. $B e_{2}$
B. B_{2}
C. C_{2}
D. N_{2}

Answer: C

- Watch Video Solution

54. The intermolecular interaction that is dependent on the inverse cube of distance between the molecule is :
A. ion-ion interaction
B. ion-dipole interaction
C. London force
D. hydrogen bond

Answer: B

- Watch Video Solution

55. The ionic radii (in \AA) of $\mathrm{N}^{3-}, \mathrm{O}^{2-}$ and F^{-}are respectively:
A. 1.36, 1.40 and 1.71
B. $1.36,1.71$ and 1.40
C. $1.71,1,40$ and 1.36
D. $1.76,1.36$ and 1.40

Answer: C

- Watch Video Solution

Archives Integer

1. Based on VSEPR theory the number of $90^{\circ} \mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in a molecules of BrF_{5} is \qquad .

Watch Video Solution
2. $\mathrm{BeCl}_{2}, \mathrm{~N}_{3}^{-}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}^{+}, \mathrm{O}_{3}, \mathrm{SCl}_{2}, \mathrm{lCl}_{2}^{-}, \mathrm{l}_{3}^{-}$and XeF_{2}, the total number of linear molecules (s)/ion(s) where the hybridisation of the central atom does not have contribution from the d - orbitals (s) is [atomic number of $S=16, C l=17, I=53$ and $X e=54]$

- Watch Video Solution

Archives Fill In The Blanks

1. The shape of $\left[\mathrm{CH}_{3}\right]^{\oplus}$ is \qquad .

- Watch Video Solution

2. The two types of bonds present in $\mathrm{B}_{2} \mathrm{H}_{6}$ are covalent and \qquad .

- Watch Video Solution

3. Fill in the blanks with appropriate choice.

Bond ordr of N_{2}^{+}is \quad Pwhile that of N_{2} is Q.
Bond order of O_{2}^{+}is \underline{R} while that of O_{2} is \underline{S}.
$\mathrm{N}-\mathrm{N}$ bond distance $\quad \underline{T}$ when N_{2} changes to N_{2}^{+}and when O_{2} changes to O_{2}^{+}, the O-O bond distance \underline{U}.

- Watch Video Solution

4. Among $\mathrm{N}_{2} \mathrm{O}, \mathrm{SO}_{2}, I_{3}^{+}$and I_{3}^{-}, the linear species areand

- Watch Video Solution

Archives True False

1. Linear overlap of two atomic p-orbitals leads to a sigma bond .

- Watch Video Solution

2. All molecules with polar bonds have dipole moment.

- Watch Video Solution

3. SnCI_{2} is a non-linear molecule .

- Watch Video Solution

4. In benzene, carbon uses all the three p-orbitals for hybridisation .

- Watch Video Solution

5. $s p^{3}$ hybrid orbitals have equal s and p characters.

- Watch Video Solution

6. The presence of polar bonds in a polyatomic molecule suggests that the molecule has non-zero dipole moment.

- Watch Video Solution

7. $\mathrm{H}_{2} \mathrm{O}$ moleule is linear

- Watch Video Solution

Archives Subjective

1. State four major physical properties that can be used to distinguish between covalent and ionic compounds. Mention the distinguishing features in each case.
2. Write the Lewis dot structural formula for each of the following Also give the formula of a neutral moleule which has the same geometry and the same arrangement of the bonding electrons as in each of the following
(a) O_{2}^{2-}
(b) O_{3}^{2-}
(c) CN^{Θ}
(d) $N C S^{\ominus}$.

- Watch Video Solution

3. The sigma and π-bonds present in benzene ring are

- Watch Video Solution

4. Arrange the following as stated Increasing strength of hydrogen bonding ($X H-X)^{\prime} O, S, F, C I, N$.

- Watch Video Solution

5. Given reasons in two or there sentences only for the following Hydrogen peroxide acts as an a reducing agent .

Watch Video Solution

6. The dipole moment of $K C I$ is $3.36 \times 10^{-29} \mathrm{Cm}$ The interatomic distance between K^{\oplus} and $C I^{\Theta}$ in this unit of $K C I$ is $2.3 \times 10^{-10} \mathrm{~m}$ Calculate the percentage ionic character of $K C I$.

- Watch Video Solution

7. Explain the difference in the nature of bonding in LiF and Lil .

- Watch Video Solution

8. Using the VSEPR theory, identify the type of hybridization and draw the structure of OF_{2} What are the oxidation states of O and F ?.
9. Explain the non-linear shape of $\mathrm{H}_{2} \mathrm{~S}$ and non-planar shape of PCl_{3} using valence shell electron pair repulsion theory.

- Watch Video Solution

10. Write the molecular orbital electron distribution of oxygen $\left(\mathrm{O}_{2}\right)$ Specify its bond order and magnetic property

- Watch Video Solution

11. Which one is more soluble in diethyl ether : anhydrous AlCl_{3} or hydrated AlCl_{3} ? Explain in terms of bonding.

- Watch Video Solution

12. Explain the shape of BrF_{5}

- Watch Video Solution

13. Draw the shape of XeF_{4} and OSF_{4} according to VSEPR theory Show the lone pair of electrons on the central atom.

- Watch Video Solution

14. One the basic of ground electronic configuration, arrange the following molecules in the oder of increasing $O-O$ bond lengths $\mathrm{KO}_{2}, \mathrm{O}_{2}, \mathrm{O}_{2}\left[\mathrm{AsF}_{6}\right]$.

- Watch Video Solution

15. Predict whether the following molecules are isostructural or not Justify your answer
$N(\mathrm{Me})_{3}$ and $N\left(\mathrm{SiH}_{3}\right)_{3}$.

Watch Video Solution

