© 'doubtnut

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (ENGLISH)

CHEMICAL EQUILIBRIUM

Solved Example

1. Which graph will show equilibrium condition?

A. 1

B.
D. None of these

Answer: C

Watch Video Solution

2. For $A+B \Leftrightarrow C+D$, the equilibrium constant is K_{1} and for $C+D \Leftrightarrow A+B$, the equilibrium constant is K_{2}. The correct relation between K_{1} and K_{2} is
A. $K_{1} \times K_{2}=1$
B. $K_{1} \times\left(K_{2}-1\right)=0$
C. $K_{1} / K_{2}=1$
D. All of these

D Watch Video Solution

3. For the reactions,
$A \Leftrightarrow B, K_{c}=1, B \Leftrightarrow C, K_{c}=3, C \Leftrightarrow D, K_{c}=5 . K_{c}$ for the reaction $A \Leftrightarrow D$ is
A. 15
B. 5
C. 3
D. 1

Answer: A

- Watch Video Solution

4. The law of mass action was enunciated by
A. Guldberg and Waage
B. Le Chatelier and Braun
C. Kossel and Lewis
D. vant Hoff

Answer: A

D Watch Video Solution

5. At a certain temperature, the following reactions have the equilibrium constants as shown below:
$S(s)+O_{2}(g) \Leftrightarrow S O_{2}(g), K_{c}=5 \times 10^{52}$
$2 S(s)+3 O_{2}(g) \Leftrightarrow 2 S O_{3}(g), K_{c}=10^{29}$
what is the equilibrium constant K_{C} for the reaction at tahea same temperature?
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
A. $K_{1}=K_{2}$
B. $K_{2}^{2}=K_{1}$
C. $K_{1}^{2}=K_{2}$
D. $K_{2}=\sqrt{K_{1}}$

Answer: C

- Watch Video Solution

6. When 4 mol of A is mixed with 4 mol of $B, 2 \mathrm{~mol}$ of C and D are formed at equilibrium, according to the reaction
$A+B \Leftrightarrow C+D$
the equilibrium constant is
A. (a) $\sqrt{2}$
B. (b) 2
C. (c) 1
D. (d) 4

D Watch Video Solution

7. The rate at which a substance reacts, depends on its:
A. Active mass
B. molecular mass
C. Equivalent mass
D. Atomic mass

Answer: A

- Watch Video Solution

8. The state of equilibrium refers to
A. State of rest
B. Dynamic state
C. Stationary state
D. State of inertness

Answer: B

- Watch Video Solution

9. For the reaction, $A+2 B \Leftrightarrow C$, the expession for equilibrium constant is
A. $\frac{[A][B]^{2}}{[C]}$
B. $\frac{[A][B]}{[C]}$
C. $\frac{[C]}{[A][B]^{2}}$
D. $\frac{[C]}{[2 B][A]}$

Answer: C

10. For the reaction:
$2 A(g)+B(g) \Leftrightarrow 3 C(g)+D(g)$
Two moles each of A and B were taken into a flask. The following must always be true when the system attained equilibrium
A. $[A]=[B]$
B. $[A]<[B]$
C. $[B]=[C]$
D. $[A]>[B]$

Answer: B

- Watch Video Solution

11. In aa chemical reaction equilibrium is established when :
A. Concentrations of reactants and products are equal
B. Opposing reactions cease
C. Speeds of opposing reactions become equal
D. Temperature of opposing reactions are equal

Answer: C

- Watch Video Solution

12. Active mass is defined as
A. Number of g equivalent per unit volume
B. Number of g mol per L
C. Amount of substance in g per unit volume
D. Number of g mol in 100 L

Answer: B

13. For the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
and $\frac{1}{2} N_{2}+\frac{3}{2} H_{2} \Leftrightarrow \mathrm{NH}_{3}$
write down the expression for equilibrium constants K_{c} and K_{c}. How is K_{c} related to K_{c} ?

D Watch Video Solution

14. The equilibrium constant for the reaction
$\mathrm{N}_{2}+2 \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}$
at a particular temperature is 100 . Write down the equilibrium law equations for the following reaction and determine the values of equilibrium constants.
$2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2}+2 \mathrm{O}_{2}$
$N O_{2} \Leftrightarrow 1 / 2 N_{2}+O_{2}$

- Watch Video Solution

15. Determine K_{c} for the reaction
$\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)+\frac{1}{2} \mathrm{Br}_{2}(g) \Leftrightarrow \operatorname{NOBr}(g)$
from the following data at 298 K .
The equilibrium constants for the following reaction
$2 \mathrm{NO}(\mathrm{g}) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
and $\operatorname{NO}(g)+\frac{1}{2} \mathrm{Br}_{2}(g) \Leftrightarrow \operatorname{NOBr}(g)$
are 2.4×10^{30} and 1.4 , respectively.

- Watch Video Solution

16. For the hypothetical reactions, the equilibrium constant (K) value are given
$A \Leftrightarrow B, K_{1}=2, B \Leftrightarrow C, K_{2}=4$,
$C \Leftrightarrow D, K_{3}=3$
The equilibrium constant (K) for the reaction
$A \Leftrightarrow D$ is
A. 48
B. 6
C. 27
D. 24

Answer: D

- Watch Video Solution

17. Consider the following gases equilibrium given below:
(i) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$, Eqm.Constant $=K_{1}$
(ii) $N_{2}+O_{2} \Leftrightarrow 2 N O$, Eqm. constant $=K_{2}$
(III) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}$, Eqm. constant $=K_{3}$

The equilibrium constant for the reaction ,
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \Leftrightarrow 3 \mathrm{H}_{2} \mathrm{O}$ in terms of K_{1}, K_{2} and K_{3} will be :
A. $K_{1} K_{2} K_{3}$
B. $\frac{K_{1} K_{2}}{K_{3}}$
c. $\frac{K_{1} K_{3}^{2}}{K_{2}}$
D. $\frac{K_{2} K_{3}^{3}}{K_{1}}$

Answer: D

- Watch Video Solution

18. In areversible reaction, study of its mechanism says that both the forward and reverse reaction follows first-order kinetics. If the halfife of forward reaction $\left(t_{1 / 2}\right)_{f}$ is 400 s and that of reverse reaction $\left(t_{1 / 2}\right)_{b}$ is 250 s, the equilibrium of the reaction is
A. 1.6
B. 0.433
C. 0.625
D. 1.109

Answer: C

19. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm . Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is 0.8atm.

- Watch Video Solution

20. A sample of $\mathrm{CaCO}_{3}(s)$ is introduced into a sealed container of volume 0.654 L and heated to 1000 K until equilibrium is reached. The equilibrium constant for the reaction
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$,
is $3.9 \times 10^{-2} \mathrm{~atm}$ at this temperature. Calculate the mass of CaO present at equilibrium.

- Watch Video Solution

21. Form the given data of equilibrium constants of the following reactions:

$$
\mathrm{CuO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \mathrm{K}=67
$$

$$
\mathrm{CuO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \Leftrightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}=490
$$

Calculate the equilibrium constant of the reaction,

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow+\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Watch Video Solution

22. Given that at 1000 K
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}), \mathrm{K}=261$
Calculate K for the following equations:
a. $2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
b. $\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
c. $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

23. If $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ then $2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \Leftrightarrow 4 \mathrm{NH}_{3} ; \mathrm{K}^{\prime}$ is equal to
A. K^{2}
B. $(K)^{1 / 3}$
C. $1 / \sqrt{K}$
D. $1 / K^{2}$

Answer: A

- Watch Video Solution

24. Equilibrium constants for four different reaction are given as $K_{1}=10^{6}, K_{2}=10^{-4}, K_{3}=10$, and $K_{4}=1$. Which reaction will take maximum time to attain equilibrium?
A. $K_{1}=10^{6}$
B. $K_{2}=10^{-4}$
C. $K_{3}=10$
D. $K_{4}=1$

Answer: B

- Watch Video Solution

25. In the equilibrium constant for $A \Leftrightarrow B+C$ is $K_{\text {eq }}^{(1)}$ and that of $B+C=P$ is $K_{e q}^{(2)}$, the equilibrium constant for $A \Leftrightarrow P$ is :
A. $K_{1}+K_{2}+K_{3}$
B. $K_{1} \times K_{2} \times K_{3}$
C. $K_{1} K_{2} / 3$
D. None

Answer: B

- Watch Video Solution

Exercise 7.26 AO $\rightleftharpoons\left(\frac{\mathbf{1}}{2}\right) \mathbf{A}_{2}+\left(\frac{\mathbf{1}}{\mathbf{2}}\right) \mathrm{O}_{2} ; K=5 \times 10^{5}$
$B O \rightleftharpoons\left(\frac{1}{2}\right) B_{2}+\left(\frac{1}{2}\right) O_{2} ; K=1.10 \times 10^{12}$
$\mathrm{CO} \rightleftharpoons\left(\frac{1}{2}\right) \mathrm{C}_{2}+\left(\frac{1}{2}\right) \mathrm{O}_{2} ; K=2.3 \times 10^{18}$
$\mathrm{DO} \rightleftharpoons\left(\frac{1}{2}\right) \mathrm{D}_{2}+\left(\frac{1}{2}\right) \mathrm{O}_{2} ; K=1.4 \times 10^{21}$
26.

Which oxide is most stable?
A. AO
B. BO
C. CO
D. DO

Answer: A

- Watch Video Solution

27. Theory of 'active mass' indicates that the rate of a chemical reaction is directly proportional to the
A. Equilibrium constant
B. Properties of reactants
C. Volume of apparents
D. Concentration of reactants

Answer: D

- Watch Video Solution

28. In the system $X+2 Y \Leftrightarrow Z$, the equilibrium concentration are,
$[X]=0.06 \mathrm{~mol} \mathrm{~L}^{-1},[Y]=0.12 \mathrm{~mol} \mathrm{~L}^{-1}$,
$[Z]=0.216 \mathrm{~mol} \mathrm{~L}^{-1}$. Find the equilibrium constant of the reaction.
A. 120
B. 400
C. 4×10^{-3}
D. 250

Answer: D

D Watch Video Solution

29. Equilibrium constants (K) for the reaction
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NOCl}(\mathrm{g})$ is correctly given by the expression
A. (a) $\frac{[\mathrm{NOCl}]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}$
B. (b) $\frac{[2 N O C l]}{[2 N O]}$
$[2 \mathrm{NO}]\left[\mathrm{Cl}_{2}\right]$

$$
[\mathrm{NO}]^{2}+\left[\mathrm{Cl}_{2}\right]
$$

C. (c) $[\mathrm{NOCl}]$
D. (d) $\frac{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}{[\mathrm{NOCl}]^{2}}$

Answer: A

30. Consider the following equilibrium:
$\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \stackrel{K_{1}}{\Leftrightarrow} \mathrm{SO}_{3}(g)$,
$2 \mathrm{SO}_{3}(g) \Leftrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$

What is the relation between K_{1} and K_{2} ?
A. (a) $K_{1}=\frac{1}{K_{2}}$
B. (b) $K_{1}=\frac{1}{\sqrt{K_{2}}}$
C. (c) $K_{1}=K_{2}$
D. (d) $K_{1}=\frac{1}{K_{2}^{2}}$

Answer: B

- Watch Video Solution

31. Consider the following reaction:
$2 \mathrm{NO}_{2}(g) \rightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$

In the figure below, identify the curves X, Y, and Z associated with the three species in the reaction

A. $X=N O, Y=O_{2}, Z=N O_{2}$
B. $X=O_{2}, Y=N O, Z=N O_{2}$
C. $X=N_{2}, Y=N O, Z=O_{2}$
D. $X=O_{2}, Y=N O_{2}, Z=N O$

Answer: A

- Watch Video Solution

32. Two equilibrium $A B \Leftrightarrow A^{+}+B^{-}$and $A B+B^{-} \Leftrightarrow A B_{2}^{-}$are simultaneously maintained in a solution with equilibrium constants K_{1} and k_{2}, respectively. Ratio of $\left[A^{+}\right]$to $\left[A B_{2}^{-}\right]$in the solution is
A. Directly proportional to $\left[B^{-}\right]$
B. Inversely proportional to $\left[B^{-}\right]$
C. Directly proportional to $\left[B^{-}\right]^{2}$
D. Inversely proportional to $\left[B^{-}\right]^{2}$

Answer: D

- Watch Video Solution

33. At $1400 K, K_{c}=2.5 \times 10^{-3}$ for the reaction
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \Leftrightarrow \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$
A 10 L reaction vessel at 1400 K contains 2.0 mol of $\mathrm{CH}_{4}, 4.0 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{~S}$, 3.0 mol of $\mathrm{CS}_{2}, 3.0 \mathrm{~mol}$ of H_{2}. In which direction does the reaction proceed to reach equilibrium?
A. Forward
B. Backward
C. May be forward or backward
D. Reaction is in equilibrium

Answer: B

D Watch Video Solution

34. For the reaction
$P C l_{5}(g) \Leftrightarrow$ PCl $_{3}(g)+\mathrm{Cl}_{2}(g)$
Which of the following sketches may represent above equilibrium?

Assume equilibrium can be achieved from either side and by taking any one or more components initially. Give K_{c} for the reaction <2 ?

B.
b.

C.

D.

- Watch Video Solution

35. a. For which of the following reactions, K_{p} is equal to K_{c} ?
i. $\mathrm{H}_{2}+\mathrm{I}_{2} \Leftrightarrow 2 \mathrm{HI}$
ii. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
iii. $P C l_{5} \Leftrightarrow$ PCl $_{3}+\mathrm{Cl}_{2}$
b. For which of the following cases does the reaction go garthest to completion:

$$
K=1, K=10^{10}, K=10^{-10} ?
$$

- Watch Video Solution

36. Both matels Mg and Fe can reduce copper metal from a solution having copper ions $\left(\mathrm{Cu}^{2+}\right)$. According to the equilibria:
$\mathrm{Mg}(\mathrm{s})+\mathrm{Cu}^{2+} \Leftrightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}(\mathrm{s}), K_{1}=6 \times 10^{90}$
$\mathrm{Fe}(\mathrm{s})+\mathrm{Cu}^{2+} \Leftrightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}(\mathrm{s}), K_{2}=3 \times 10^{26}$
Which metal will remove cupric ion from the solution to a greater extent?

Watch Video Solution

37. The equilibrium constant of the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
at $426{ }^{\circ} \mathrm{C}$ is 55.3 , what will be the value of equilibrium constant
a. if the reaction is reversed and
b. if the given reaction is represented as
$3 H_{2}+3 I_{2} \Leftrightarrow 6 H I ?$

- Watch Video Solution

38. What will be the effect on the equilibrium constant for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$,
$\Delta H=-22.4 \mathrm{kcal}$, when
a. Pressure is increased
b. Concentration of N_{2} is increased and
c. Temperature is raised at equilibrium ?

- Watch Video Solution

39. At a certain temperature , the following reactions have the equilibrium constants as shown below:

$$
S(s)+O_{2}(g) \Leftrightarrow S O_{2}(g), K_{c}=5 \times 10^{52}
$$

$2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}), K_{c}=10^{29}$
what is the equilibrium constant K_{C} for the reaction at tahea same temperature?
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
A. 0.78
B. 2.0
C. 16.2
D. 1.28

Answer: B

- Watch Video Solution

40. For a reversible reaction
$A+B \Leftrightarrow C$
$\left(\frac{d x}{d t}\right)=2.0 \times 10^{3} \mathrm{Lmol}^{-1} S^{-1}[A][B]-1.0 \times 10^{2} S^{-1}[C]$ where x is the amount of ' A ' dissociated. The value of equilibrium constant $\left(K_{e q}\right)$ is
A. 10
B. 0.05
C. 20
D. Cannot be calculated

Answer: C

D Watch Video Solution

41. The formation of amoonia from nitrogen and hydrogen gases can be written by the following two equations:
a. $\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \ll \mathrm{NH}_{3}(g)$
b. $\frac{1}{3} N_{2}(g)+H_{2}(g) \ll \frac{2}{3} \mathrm{NH}_{3}(g)$

The two equations have equilibrium constants K_{1} and K_{2} respectively. The relationship between the equilibrium constant is
A. $K_{1}=K_{2}^{2}$
B. $K_{1}^{3}=K_{2}^{2}$
C. $K_{1}^{2 / 3}=K_{2}$
D. $K_{1}=K_{2}^{3 / 2}$

Answer: C::D

42. The following concentrations were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at 500 K . $\left[N_{2}\right]=1.5 \times 10^{-2} \mathrm{M}$. $\left[\mathrm{H}_{2}\right]=3.0 \times 10^{-2} \mathrm{M}$ and $\left[\mathrm{NH}_{3}\right]=1.2 \times 10^{-2} \mathrm{M}$. Calculate equilibrium constant.

- Watch Video Solution

43. At equilibrium the concentrations of
$N_{2}=3.0 \times 10^{-3} \mathrm{M}, O_{2}=4.2 \times 10^{-3} \mathrm{M}$ and $N O=2.8 \times 10^{-3} \mathrm{M}$ ina sealed vessel at 800 K . What will be K_{c} for the reaction

$$
N_{2}(g)+O_{2}(h) \Leftrightarrow 2 N O(g)
$$

- Watch Video Solution

44. In the reaction,

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

The concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI at equilibrium are $8.0,3.0$ and 28.0 mol per L respectively. Determine the equilibrium constant.

- Watch Video Solution

45.40% of a mixture of 0.2 mol of N_{2} and 0.6 mol of H_{2} react to give NH_{3} according to the equation : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ at constant temperature and pressure. Then the ratio of the final volume to the initial volume of gases are :
A. $4: 5$
B. 5:4
C. 7:10
D. 8:5

Answer: A

46. Arrange the following in order of increasing tendency of the forward reactions to proceed towards completion at 298 K and one atmospheric pressure :
a. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \mathrm{K}_{\mathrm{c}}=782$
b. $F_{2}(g) \Leftrightarrow 2 F(g), K_{c}=4.9 \times 10^{-21}$
c. $C_{\text {graphite }}+O_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g), K_{c}=1.3 \times 10^{69}$
d. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=4.6 \times 10^{-3}$
e. $H_{2}(g)+C_{2} H_{4}(g) \Leftrightarrow C_{2} H_{6}(g), K_{c}=9.8 \times 10^{18}$

- Watch Video Solution

47. The equilibrium constant of the dissocition of various of an element A are given at constant temperature:
a. $2 \mathrm{~A}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; K_{c}=4.0 \times 10^{30}$
b. $2 \backslash\left(\mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; K_{c}=2.0 \times 10^{27}\right.$
c. $2 \mathrm{AO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) ; K_{c}=7.0 \times 10^{13}$
a.
d. $2 \mathrm{~A}_{2}\left(\mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) ; K_{c}=1.0 \times 10^{31}\right.$

Write the stability of these oxides in increasing order.
48. At

$$
\begin{gathered}
\mathrm{NH}_{3}(\mathrm{~g}) \\
+ \\
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~s})
\end{gathered} \xrightarrow[\text { till } 100 \mathrm{~K}]{\text { heated }} \begin{array}{|l|}
2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~s}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
\end{array}
$$

Assuming complete decomposition of NH_{3} and $\mathrm{N}(2) \mathrm{H}_{4}$
$P=0.3 \mathrm{~atm}, P=2.7 \mathrm{~atm}$
$T=300 K, T=200 K$
$V L, V L$
mole \% of NH_{3} in original mixture is (assume both concentration same volume)
A. 25%
B. 20%
C. 75 \%
D. 37.5 \%

Answer: C

49. Write the expression for equilibrium constant for the following reactions. If the concentrations are expressed in molL^{-1}, give the units in each case.

$$
\begin{aligned}
& \text { a. } \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \\
& \text { b. } 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
& \text { c. } 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}^{(\mathrm{g})} \rightleftharpoons 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \text { d. } \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \text { e. } 2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \\
& \text { f. } \mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \text { g. } 3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \\
& \text { h. } 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

a.

- Watch Video Solution

50. At a certain temperature, the equilibrium constant $\left(K_{c}\right)$ is 16 for the reaction:
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$

If we take one mole of each of the equilibrium concentration of $N O$ and NO_{2} ?

- Watch Video Solution

51. A mixture of $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} gases is maintained in a 10 L flask at a temperature at which the equilibrium constant for the reaction is 100 :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
a. If the number of moles of SO_{2} and SO_{3} in the flask are equal. How many moles of O_{2} are present?
b. If the number of moles of SO_{3} in flask is twice the number of moles of SO_{2}, how many moles of oxygen are present?

- Watch Video Solution

52. The value of K_{c} for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
is 0.50 at $400^{\circ} \mathrm{C}$. Find the value of K_{p} at $400^{\circ} \mathrm{C}$ when concentrations are expressed in mol L^{-1} and pressure in atm.

D Watch Video Solution

53. For an ideal gas reaction
$2 A+B \Leftrightarrow C+D$
the value of K_{p} will be:
A. $K_{p}=\frac{n_{C} n_{D}}{n_{A}^{2} n_{B}} \cdot \frac{V}{R T^{2}}$
B. $K_{p}=\frac{n_{C} n_{D}}{n_{A}^{2} n_{B}} \cdot \frac{V}{R T}$
C. $K_{p}=\frac{n_{C} n_{D}}{n_{A}^{2} n_{B}} \cdot \frac{R T}{V}$
D. $K_{p}=\frac{n_{C} n_{D}}{4 n_{A}^{2} n_{B}} \cdot \frac{V}{R T}$

Answer: B

- Watch Video Solution

54. For a reaction
$a A(g) \Leftrightarrow b B(g)$
at equilibrium, the heat of reaction at constant volume is 1500 cal more than at constant pressure. If the temperature is $27^{\circ} \mathrm{C}$ then
A. $K_{p}=K_{c}$
B. $K_{p}>K_{c}$
C. $K_{p}<K_{c}$
D. None of these

Answer: B

- Watch Video Solution

55. Given that K_{c} for equation (i) given below has a value of 256 at $1000 K$.

Calculate the numerical values of K_{c} for other reactions (ii), (iii), and (iv).
i. $2 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g})$
ii. $2 \mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g}) \rightleftharpoons \mathbf{2 A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g})$
iii. $A_{2}(g)+1 / 2 B_{2}(g) \rightleftharpoons A_{2} B(g)$
iv. $A_{2} B(g) \rightleftharpoons A_{2}(g)+1 / 2 B_{2}(g)$
i.

- Watch Video Solution

56. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a two-litre evacuated flask at $27^{\circ} \mathrm{C}, 30 \%$ of the solid decomposes into gaseous ammonia and hydrogen sulphide. (i) Calculate K_{c} and K_{p} for the reaction at $27^{\circ} \mathrm{C}$. (ii) What would happen to the equilibrium when more solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into the flask?

- Watch Video Solution

57. At $540 \mathrm{~K}, 0.10 \mathrm{~mol}$ of PCl_{5} is heated in a 8 L flask. The pressure of equilibrium mixture is found to be 1.0atm. Calculate K_{p} and K_{c} for the

- Watch Video Solution

58. Prove that the pressure necessary to obtain 50% dissociation of PCl_{5} at $250^{\circ} \mathrm{C}$ is numerically three times of K_{p}.

- Watch Video Solution

59. For the reaction
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Hydrogen gas is introduced into a five-litre flask at $327^{\circ} \mathrm{C}$, containing 0.2 mol of $C O(\mathrm{~g})$ and a catalyst, untill the pressure is 4.92 atm . At this point, 0.1 mol of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ is formed. Calculate the equilibrium constants K_{p} and K_{c}.

- Watch Video Solution

60. When sulphur in the form of S_{8} is heated at $900 K$, the initial pressure of 1 atm falls by 10% at equilibrium. This is because of conversion of some S_{8} to S_{2}. Find the value of equilibrium constant for this reaction.

- Watch Video Solution

61. Two solid X and Y dissociate into gaseous products at a certain temperature as followas:
$X(s) \Leftrightarrow A(g)+C(g)$, and $Y(s) \Leftrightarrow B(g)+C(g)$
At a given temperature, the pressure over excess solid X is 40 mm and total pressure over solid Y is 80 mm . Calculate
a. The value of K_{p} for two reactions.
b. The ratio of moles of A and B in the vapour state over a mixture of X and Y.
c. The total pressure of gases over a mixture of X and Y.

- Watch Video Solution

62. For a homogenous gaseous reaction
$X(g)+2 Y) g) \Leftrightarrow Z(g)$,
at $473 K$, the value of $K_{C}=0.35$ concentration units. When 2 moles of Y are mixed with 1 mole of X, at what pressure 60% of X is converted to Z ?

- Watch Video Solution

63. Solid $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ (ammonium hydrogen sulphate) dissociates to give $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and is allowed to attain equilibrium at $100^{\circ} \mathrm{C}$. If the value of K_{p} for its dissociation is found to be 0.34 , find the total pressure at equilibrium at $100^{\circ} \mathrm{C}$. If the value of K_{p} for its dissociation is found to be 0.34 , find the total pressure at equilibrium and partial pressure of each component.

- Watch Video Solution

64. At $700 K$, the equilibrium constant K_{p} for the reaction
$2 \mathrm{SO}_{3}(g) \Leftrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$
is $1.80 \times 10^{-3} \mathrm{kPa}$. What is the numerical value of K_{c} in moles per litre for this reaction at the same temperature?

- Watch Video Solution

65. The equilibrium of formation of phosgene is represented as :
$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{COCl}_{2}(\mathrm{~g})$
The reaction is carried out in a 500 mL flask. At equilibrium, 0.3 mol of phosgene, 0.1 mol of CO , and 0.1 mol of Cl_{2} are present.

The equilibrium constant of the reaction is
A. 30
B. 15
C. 5
D. 25

Answer: B

66. Which of the following relation(s) holds good for gaseous and reversible reactions?
A. $\frac{K_{p}}{K_{c}}=(R T)^{(\Delta n)_{g}}$
B. $\frac{K_{p}}{K_{c}}=(P)^{(\Delta n)_{g}}$
C. $\frac{K_{c}}{K_{p}}=\left(\frac{p}{R T}\right)^{(\Delta n)_{g}}$
D. $\frac{K_{c}}{K_{p}}=(P)^{-(\Delta n)_{g}}$

Answer: A: B

- Watch Video Solution

67. If two gases $A B_{2}$ and $B_{2} C$ are mixed, following equilibria are readily established:
$A B_{2}(g)+B_{2} C(g) \rightarrow A B_{3}(g)+B C(g)$,
$B C(g)+B_{2} C(g) \rightarrow B_{3} C_{2}(g)$

If the reaction started only with $A B_{2}$ with $B_{2} C$, then which of the following is necessarily true at equilibrium?
A. $\left[A B_{3}\right]_{e q}=[B C]_{e q}$
B. $\left[A B_{2}\right]_{e q}=\left[B_{2} C\right]_{e q}$
C. $\left[\mathrm{AB}_{3}\right]_{e q}>\left[\mathrm{B}_{3} \mathrm{C}_{2}\right]_{e q}$
D. $\left[A B_{3}\right]_{e q}>[B C]_{e q}$

Answer: C::D

- Watch Video Solution

68. The degree of dissociation of HI at a particualr temperature is 0.8 .

Calculate the volume of $2 \mathrm{MNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution required to neutralise the iodine present in an equilibrium mixture of a reaction when 2 mol each of H_{2} and I_{2} are heated in a closed vessel of $2 L$ capacity and the equilibrium mixture is freezed.
69. At $1000 K$, the pressure of iodine gas is found to be 0.1atm due to partial dissociation of $I_{2}(g)$ into $I(g)$. Had there been no dissociation, the pressure would have been 0.07 atm . Calculate the value of K_{p} for the reaction:

$$
I_{2}(g) \Leftrightarrow 2 I(g)
$$

- Watch Video Solution

70. Calculate the precentage dissociation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ if 0.1 mol of $\mathrm{H}_{2} \mathrm{~S}$ is kept in a 0.5 L vessel at 1000 K . The value of K_{c} for the reaction
$2 \mathrm{H}_{2} \mathrm{~S} \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
is 1.0×10^{-7}.

- Watch Video Solution

71. For the reaction
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
The degree of dissociation (α) of $H I(g)$ is related to equilibrium constant
K_{p} by the expression
a. $\frac{1+2 \sqrt{K_{p}}}{2}$, b. $\sqrt{\frac{1+2 K_{p}}{2}}$
c. $\sqrt{\frac{2 K_{p}}{1+2 K_{p}}}$, d. $\frac{2 \sqrt{K_{p}}}{1+2 \sqrt{K_{p}}}$

- Watch Video Solution

72. At certain temperature compound $A B_{2}(g)$ dissociates according to the reaction
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
With degree of dissociation α Which is small compared with unity, the expression of K_{p} in terms of α and initial pressure P is :

- Watch Video Solution

73. For the dissociation reaction
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$,
the equilibrium constant K_{P} is 0.120 atm at 298 K and total pressure of system is 2 atm. Calculate the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$.

- Watch Video Solution

74. A sample of air consisting of N_{2} and O_{2} was heated to 2500 K until the equilibrium
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
was established with an equlibrium constant, $K_{c}=2.1 \times 10^{-3}$. At equilibrium, the mole \% of NO was 1.8. Eatimate the initial composition of air in mole fraction of N_{2} and O_{2}.

- Watch Video Solution

75. PCl_{5} dissociates into PCl_{3} and Cl_{2}, thus
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If the total pressure of the system in equilibrium is P at a density ρ and temperature T, show that the degree of dissociation $\alpha=\frac{P M}{\rho R T}-1$, where
M is the relative molar mass of PCl_{5}. If the vapour density of the gas mixture at equilibrium has the value of 62 when the temperature is $230^{\circ} \mathrm{C}$, what is the value of P / ρ ?

- Watch Video Solution

76. The equilibrium constant K_{p} for the reaction
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
at $497^{\circ} \mathrm{C}$ is found to be 636 mmHg . If the pressure of the gas mixture is 182 mm , calculate the presentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$. At what pressure will it be dissociated?

- Watch Video Solution

77. For the reaction
$2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
The degree of dissociation (α) of $\mathrm{HI}(\mathrm{g})$ is related to equilibrium constant K_{p} by the expression
a. $\frac{1+2 \sqrt{K_{p}}}{2}$,b. $\sqrt{\frac{1+2 K_{p}}{2}}$
c. $\sqrt{\frac{2 K_{p}}{1+2 K_{p}}}$, d. $\frac{2 \sqrt{K_{p}}}{1+2 \sqrt{K_{p}}}$
$1+2 \sqrt{K_{p}}$

C. $\sqrt{\frac{2 K_{p}}{1+2 K_{p}}}$
D. $\frac{2 \sqrt{K_{p}}}{1+2 \sqrt{K_{p}}}$

- Watch Video Solution

78. At a given temperature and a total pressure of 1.0 atm for the homogenous gaseous reaction

$$
N_{2-}(4) \Leftrightarrow 2 N_{2}(g),
$$

the partial pressure of NO_{2} is 0.5 atm .
a. Find the value of K_{p}.
b.If volume of the vessel is decreased to half of its original volume, at constant temperature, what are the partial pressure of the components of the equilibrium mixture?

- Watch Video Solution

79. In the folowing reactions, the system will shift towards the forward reaction by adding inert gas at constant pressure?
$\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

- Watch Video Solution

80. $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociates as
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At $40^{\circ} \mathrm{C}$ and one atmosphere $\%$ decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 50.3%. At what pressure and same temperature, the equilibrium mixture has the ratio of $\mathrm{N}_{2} \mathrm{O}_{4}: \mathrm{NO}_{2}$ as $1: 8$?
81. At $627^{\circ} \mathrm{C}$ and 1 atm SO_{3} is partially dissociated into SO_{2} and O_{2} by the reaction
$\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
The density of the equilibrium mixture is $0.925 \mathrm{gL}^{-1}$. What is the degree of dissociation?

- Watch Video Solution

82. Density of equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 1 atm and 384 K is $1.84 \mathrm{gdm}^{-3}$. Calculate the equilibrium constant of the reaction.
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$

- Watch Video Solution

83. For the reaction
$\mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$

Show that the degree of dissociation of NH_{3} is given as
$\alpha=\left[1+\frac{3 \sqrt{3}}{4} \frac{p}{K_{p}}\right]^{-1 / 2}$
where p is equilibrium pressure. If K_{p} of the above reaction is 78.1atm at $400^{\circ} \mathrm{C}$, calculate K_{c}.

- Watch Video Solution

84. The vapour density of $\mathrm{N}_{2} \mathrm{O}_{4}$ at a certain temperature is 30 . Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ this temperature.

- Watch Video Solution

85.3 g mol of phosphorus is heated in a flask of $4 L$ volume. At equilibrium, it dissociates to give 40% of phosphorus trichloride and chlorine.

Calculate the equilibrium constant.

- Watch Video Solution

86. $\mathrm{N}_{2} \mathrm{O}_{4}$ is 25% dissociated at $37^{\circ} \mathrm{C}$ and one atmosphere pressure. Calculate (i) Kp and (ii) the percentage dissociation at 0.1 atm and $37^{\circ} \mathrm{C}$.

- Watch Video Solution

87. The equation $\alpha=\frac{D-d}{(n-1) d}$ is correctly matched for: (α is the degree of dissociation, D and d are the vapour densities before and after dissociation, respectively).
A.
B.
.
c.
D.

Answer: B

88. The vapour density of the equilibrium mixture of the reaction:
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
is 50 . The percent dissociation of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is
A. 33.00
B. 35.0
C. 30.0
D. 66.00

Answer: B

- Watch Video Solution

89. Consider the following equilibrium in a closed container:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At a fixed temperature, the volume of the reaction container is halved.
For this change which of the following statements holds true regarding the equilibrium constant $\left(K_{p}\right)$ and the degree of dissociation (α) ?
A. Neither K_{p} nor alpha changes
B. Both K_{p} and alpha change
C. K_{p} does not change but alpha changes
D. K_{p} changes, but alpha does not change

Answer: D

- Watch Video Solution

90. At certain temperature compound $A B_{2}(g)$ dissociates according to the reaction
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
With degree of dissociation α Which is small compared with unity, the expression of K_{p} in terms of α and initial pressure P is :
A. $256 P^{3} \alpha^{5}$
B. $4 P \alpha^{2}$
C. $8 P^{3} \alpha^{5}$
D. None of these

Answer: C

- Watch Video Solution

91. The following reaction occurs at 700 K . Arrange them in the order of increasing tendency to proceed to completion.

$$
\begin{aligned}
& \text { I. } \mathbf{2 N O C l}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; K_{p}=1.7 \times 10^{-2} \\
& \text { II. } \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) ; K_{p}=1.5 \times 10^{3} \\
& \text { III. } 2 \mathrm{SO}_{\mathbf{3}}(\mathrm{g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; K_{p}=1.3 \times 10^{-5} \\
& \text { IV. } \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g}) ; K_{p}=5.9 \times 10^{-5}
\end{aligned}
$$

A. II $<$ I $<$ IV $<$ III
B. III $<$ IV $<$ I $<$ II
C. I $<$ III $<$ IV $<$ II
D. IV $<$ III $<$ I $<$ II
92. At $727^{\circ} \mathrm{C}$ and 1.2 atm of total equilibrium pressure, SO_{3} is partially dissociated into SO_{2} and O_{2} as:
$\mathrm{SO}_{3}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
The density of equilibrium mixture is $0.9 \mathrm{~g} / \mathrm{L}$. The degree of dissociation
is:, $\left[U s e R=0.08 \mathrm{atmLmol}^{-1} \mathrm{~K}^{-1}\right]$
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{4}$

Answer: B

- Watch Video Solution

93. K_{p} for the reaction
$\mathrm{PCl}_{5}(g) g \Leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
at $250^{\circ} \mathrm{C}$ is 0.82 . Calculate the degree of dissociation at given temperature under a total pressure of 5 atm . What will be the degree of dissociation if the equilibrium pressure is 10 atm , at same temperature.

- Watch Video Solution

94. In reaction:
$\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$,
if the initial pressure of $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{~g})$ is 150 mm and at equilibrium the mole fraction of $\operatorname{CO}(g)$ is $\frac{1}{3}$, then the value K_{P} is
A. 50 mm
B. 100 mm
C. 33.3 mm
D. 75 mm

Answer: A

D Watch Video Solution

95. When PCl_{5} is heated, it dissociates into PCl_{3} and Cl_{2}. The vapour density of the gas mixture at $200^{\circ} \mathrm{C}$ and at $250^{\circ} \mathrm{C}$ is 70 and 58 , respectively. Find the degree dissociation at two temperatures.

- Watch Video Solution

96. 0.25 mol of $C O$ taken in a 1.5 L flask is maintained at 500 K along with a catalyst so that the following reaction can take place:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$.
Hydrogen is introduced until the total pressure of system is 8.2atm, at equilibrium, and 0.1 mol of methanol is formed. Calculate
a. K_{p} and K_{c}
b. The final pressure if the same amount of CO and H_{2} as before are used but no catalyst so that the reaction does take place.
97. Ammonia under a pressure of 15 atm , at $27^{\circ} \mathrm{C}$ is heated to $327^{\circ} \mathrm{C}$ in a vessel in the presence of catalyst. Under these conditions, NH_{3} partially decomposes to H_{2} and N_{2}. The vessel is such that the volume remains effectively constant, whereas the pressure increases to 50atm. Calculate the precentage of NH_{3} actually decomposed.

- Watch Video Solution

98. Solid Ammonium carbamate dissociates as:
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$.
In a closed vessel, solid ammonium carbonate is in equilibrium with its dissociation products. At equilibrium, ammonia is added such that the partial pressure of NH_{3} at new equilibrium now equals the original total pressure. Calculate the ratio of total pressure at new equilibrium to that of original total pressure. Also find the partial pressure of ammonia gas added.
99. The degree of dissociation of I_{2} molecule of $1000{ }^{\circ} \mathrm{C}$ and underatmosperic is 40% by volume if the disscoiation is reduced to 20% at he same temp ., total equilibrium pressure on the gas is:
A. 1.57 atm
B. 2.57 atm
C. $3.57 a t m$
D. 4.57 atm

Answer: D

- Watch Video Solution

100. $I_{2}(a q)+I^{-}(a q) \Leftrightarrow(a q)$. We started with 1 mole of I_{2} and 0.5 mole of I_{-}in one litre flask.After equilibrium is reached, excess of AgNO_{3} gave 0.25 mole of yellow precipitate. Equilibium constant is :
A. 1.33
B. 2.66
C. 2.00
D. 3.00

Answer: A

- Watch Video Solution

101. At $25^{\circ} \mathrm{C}$ and 1 atm, $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociates the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)
$$

If it is 35% dissociated at given condition, find the volume of above mixture will difuse if 20 mL of pure O_{2} diffuse10 minutes at same yemperature and pressure.

- Watch Video Solution

102. For the reaction
$\mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$
Show that the degree of dissociation of NH_{3} is given as
$\alpha=\left[1+\frac{3 \sqrt{3}}{4} \frac{p}{K_{p}}\right]^{-1 / 2}$
where p is equilibrium pressure. If K_{p} of the above reaction is 78.1atm at $400^{\circ} \mathrm{C}$, calculate K_{c}.

- Watch Video Solution

103. For the formation of ammonia the equilibrium constant data at 673 K and 773 K , respectively, are 1.64×10^{-4} and 1.44×10^{-5} respectively. Calculate heat of reaction $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

104. For the reaction
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

K is 0.63 at $700^{\circ} \mathrm{C}$ and 1.66 at $1000^{\circ} \mathrm{C}$.
a. What is the average ΔH^{\ominus} for the temperature range considered?
b. What is the value of K at $800^{\circ} \mathrm{C}$?

- Watch Video Solution

105. The value of K for the reaction
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{OH}(\mathrm{g}) \Leftrightarrow \mathrm{H}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g})$
Changed from 0.096 at 298 K to 1.4 at 373 K . Above what temperature will the reaction become thermodynamically spontaneous in the forward direction assuming that ΔH^{θ} and ΔS^{\ominus} values for the reaction do not change with change in temperature? Given that $\Delta S_{298}^{\ominus}=10.296 \mathrm{JK}^{-1}$.

- Watch Video Solution

106. Which of the following graph represents exothermic reaction ?

(I)

Reaction coordinate \longrightarrow
(II)

(III)
Activated complex
A.

A
B. 4
4
c.
D.

Answer: D

107. A reversible reaction is endothermic in forward direction. Then which of the following is (are) correct?
A. In K vs $1 / T$ will be a straight line with negative slope
B. $\frac{d}{d T} \ln K>0$
C. A plot of $d \ln K$ against $1 / T^{2}$ will have positive slope
D. An increase in temperature will shift the reaction in the forward direction.

Answer: A::B::C

- Watch Video Solution

108. The activation energy of
$\mathrm{H}_{2}+\mathrm{I}_{2} \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ in equilibrium for the forward reaction is $167 \mathrm{kJmol}^{-1}$ whereas for the reverse reaction is $180 \mathrm{kJmol}^{-1}$. The presence of catalyst lowers the activation energy by $80 \mathrm{kJmol}^{-1}$. Assuming that the reactions
are made at $27^{\circ} \mathrm{C}$ and the frequency factor for forwatd and backward reactions are 4×10^{-4} and 2×10^{-3} respectively, calculate K_{C}.

- Watch Video Solution

109. Variation of equilibrium constan K with temperature is given by van't

Hoff equation
In $K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constans K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
Select the correct statement :
A. $\log \frac{K_{2}}{K_{1}}=-\frac{\Delta H}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
B. $\log \frac{K_{2}}{K_{1}}=\frac{\Delta H}{2.303 R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]$
C. $\log \frac{K_{2}}{K_{1}}=-\frac{\Delta H}{2.303 R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]$
D. None of the above

- Watch Video Solution

110. It is known that the heat is needed to dissociate ammonia into N_{2} and H_{2}. For the reaction $N_{2}+3 H_{3} \Leftrightarrow 2 \mathrm{NH}_{3}, K_{f}$ is the velocity constant for forward reaction and K_{b} is velocity constant for backward reaction, K_{c} is equilibrium constant for the reaction shown. Then $\frac{d k_{f}}{d T}$ (where T is symbol for absolute temp.):
A. Is greater than $d k_{b} / d T$
B. Is less than $d k_{b} / d T$
C. Is equal to $d k_{b} / d T$
D. Cannot be compared with $d k_{b} / d T$

Answer: B

111. For the chemical equilibrium $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), \Delta_{r} \mathrm{H}^{\circ}$ can be determined from which one of the following plots?
A.

B.

C.

D.

Answer: A

112. Solubility of a solute in water is dependent on temperature as given by
$S=A e^{-\Delta H / R T}$, where $\Delta H=$ heat of solution
Solute $+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow$ Solution, $\Delta H= \pm x$
For given solution, variation of $\log \mathrm{S}$ with temperature is shown
graphically. Hence, solution is

A. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. NaCl
C. Sucrose
D. CaO
113. In the preparation of CaO from CaCO_{3} using the equilibrium,
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
K_{p} is expressed as
$\log K_{p}=7.282-\frac{8500}{T}$
For complete decomposition of CaCO_{3}, the temperature in celsius to be used is:
A. 1167
B. 894
C. 8500
D. 850

Answer: B

- Watch Video Solution

114. The partial pressure of CO_{2} in the reaction
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Is 0.773 mm at $500^{\circ} \mathrm{C}$. Calculate K_{p} at $600^{\circ} \mathrm{C}$ for the above reaction, ΔH of the reaction is 43.2 kcal per mole and does not change in the given range of temperature.

- Watch Video Solution

115. For the reaction $B r_{2} \Leftrightarrow 2 B r$, the equilibrium constants at $327^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ are, respectively, 6.1×10^{-12} and 1.0×10^{-7}. What is the nature of the reaction?

- Watch Video Solution

116. From the following data
i. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}), \mathrm{K}_{2000 \mathrm{~K}}=4.40$
ii. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), K_{2000 K}^{I}=5.31 \times 10^{-10}$
iii. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}), K_{1000 \mathrm{~K}}=2.24 \times 10^{22}$

Show whether reaction (iii) is exothermic or endothermic.

- Watch Video Solution

117. The equilibrium constant K_{p} for the reaction,
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
is 1.64×10^{-4} at $400^{\circ} \mathrm{C}$ and 0.144×10^{-4} at $500^{\circ} \mathrm{C}$. Calculate the mean heat of formation of 1 mol of NH_{3} from its elements in this temperature range.

- Watch Video Solution

118. For the reaction $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$, the equilibrium constant is 2.8×10^{-5} at 300 K and 7.0×10^{-1} at 400 K . What is the activation energy for the reaction?
119. A schematic plot of $\log K_{e q}$ vs inverse of temperature for a reaction is shown in the figure. The reaction must be:

A. Exothermic
B. Endothermic
C. One with negligible enthalpy change
D. Highly spontaneous at ordinary temperature
120. For the reaction
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
K is 0.63 at $727^{\circ} \mathrm{C}$ and 1.26 at $927^{\circ} \mathrm{C}$.
a. What is the average ΔH for the temperature range considered? [Use $\log 2=0.3]$
b. What is the value of K at $1227^{\circ} \mathrm{C}$?

- Watch Video Solution

121. The equilibrium constant K_{p}, for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is 1.6×10^{-4} at $400^{\circ} \mathrm{C}$. What will be the equilibrium constant at $500^{\circ} \mathrm{C}$ if the heat of reaction in this temperature range is -25.14 kcal ?

- Watch Video Solution

122. The equilibrium constant for the reaction
$H_{2}(g)+S(s) \Leftrightarrow H_{2} S(g)$
is 18.5 at 925 K and 9.25 at 1000 K , respectively. Calculate the enthalpy of the reaction.

- Watch Video Solution

123. Consider the reaction
$\mathrm{SO}_{2} \mathrm{Cl}_{2} \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
at $375^{\circ} \mathrm{C}$, the value of equilibrium constant for the reaction is 0.0032 . It was observed that the concentration of the three species is $0.050 \mathrm{molL}^{-1}$ each at a certain instant. Discuss what will happen in the reaction vessel?

- Watch Video Solution

124. Consider the reaction
$X(g) \Leftrightarrow Y(g)+Z(g)$
When the system is at equilibrium at 100°, the concentrations are found to be $[X]=0.2 M,[Y]=[Z]=0.4 M$
a. If the pressure of the container is suddenly halved at $100^{\circ} \mathrm{C}$, find
equilibrium concentration.
b. If the pressure of the container is suddenly doubled at $100^{\circ} \mathrm{C}$, find the equilibrium concentration

- Watch Video Solution

125. The value of K_{c} for the reaction
$2 A \Leftrightarrow B+C$ is 2×10^{-3}. At a given time, the composition of reaction is $[A]=[B]=[C]=3 \times 10^{-4} M$. In which direction the reaction will proceed?

- Watch Video Solution

126. The value of K_{c} for the reaction:
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$
at $100^{\circ} \mathrm{C}$ is 49 . If 1.0 L flask containing one mole of A_{2} is connected with a
2.0L flask containing one mole of B_{2}, how many moles of $A B$ will be formed at $100^{\circ} \mathrm{C}$?
127. The value of K_{c} for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
is 64 at 773 K . If one "mole" of H_{2}, one mole of I_{2}, and three moles of HI are taken in a 1 L flask, find the concentrations of I_{2} and HI at equilibrium at $773 K$.

- Watch Video Solution

128. In a 1.0 L aqueous solution when the reaction
$2 \mathrm{Ag}^{\oplus}(a q)+\mathrm{Cu}(s) \Leftrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s)$
reaches equilibrium, $\left[\mathrm{Cu}^{2+}\right]=\mathrm{Cu}(\mathrm{s}) \Leftrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(\mathrm{s})$
reaches equilibrium, $\left[\mathrm{Cu}^{2+}\right]=x M$ and $\left[\mathrm{Ag}^{\oplus}\right]=y M$.
If the volume of solution is doubled by adding water, then at equilibrium:
A. $\left[C u^{2+}\right]=\frac{x}{2} M,\left[A g^{\oplus}\right]=\frac{y}{2} M$
B. $\left[\mathrm{Cu}^{2+}\right]>\frac{x}{2} M,\left[\mathrm{Ag}^{\oplus}\right]>\frac{y}{2} M$
C. $\left[\mathrm{Cu}^{2+}\right]<\frac{x}{2} M,\left[\mathrm{Ag}^{\oplus}\right]>\frac{y}{2} M$
D. $\left[\mathrm{Cu}^{2+}\right]<\frac{x}{2} M,\left[A g^{\oplus}\right]<\frac{y}{2} M$

- Watch Video Solution

129. H_{2} and I_{2} are mixed at $400^{\circ} \mathrm{C}$ in a 1.0 L container, and when equilibrium is established, the following concentrations are present: $[\mathrm{HI}]=0.8 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.08 \mathrm{M}$, and $\left[\mathrm{I}_{2}\right]=0.08 \mathrm{M}$. If now an additional 0.4 mol of HI is added, what are the new equilibrium concentrations, when the new equilibrium $\mathrm{H}_{2}(g)+I_{2}(g) \Leftrightarrow 2 \mathrm{HI}(g)$ is re-established?

- Watch Video Solution

130. At $448^{\circ} \mathrm{C}$, the equilibrium constant $\left(K_{c}\right)$ for the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
is 50.5 . Predict the direction in which the reaction will proceed to reach equilibrium at $448^{\circ} \mathrm{C}$, if we start with $2.0 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{HI}, 1.0 \times 10^{-2} \mathrm{~mol}$ of H_{2} and $3.0 \times 10^{-2} \mathrm{~mol}$ of I_{2} in a 2.0 L container.

Watch Video Solution

131. The value of ΔG^{θ} for the phosphorylation of glucose in glycolysis is $13.8 \mathrm{~kJ} / \mathrm{mol}$. Find the value of K_{c} at 298 K .

- Watch Video Solution

132. Hydrolysis of sucrose gives.

Sucrose $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ Glucose + Frutose
Equilibrium constant K_{c} for the reaction is 2×10^{13} at $300 K$. Calculate ΔG^{\ominus} at $300 K$.

- Watch Video Solution

133. If K_{c} is not numerically equal to K_{p}, how can both of the following equations be valid?
$\Delta G^{\ominus}=-2.303 R T \log K_{c}, \Delta G^{\ominus}=-2.303 R T \log K_{p}$
134. The value of K_{p} at $298 K$ for the reaction
$\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
is found to be 826.0, partial pressure being measured atmospheric units.
Calculate ΔG^{\ominus} at $298 K$.

- Watch Video Solution

135. For the reaction,
$2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Calculate the standard equilibrium constant at 298 K . Given that the value of ΔH^{\ominus} and ΔS^{\ominus} of the reaction at 298 K are $77.2 \mathrm{kJmol}^{-1}$ and $122 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

136. ΔG^{\ominus} for $\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow N H_{3}(g)$ is $-16.5 \mathrm{kJmol}^{-1}$. Find out K_{p} for the reaction at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

137. In the reaction equilibrium
$N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
When 5 mol of each is taken and the temperature is kept at 298 K , the total pressure was found to be 20 bar.

Given : $\Delta_{f} G_{n_{2} O_{4}}^{\Theta}=100 \mathrm{~kJ}, \Delta_{f} G_{N O_{2}}^{\Theta}=50 \mathrm{KJ}$
a. Find ΔG^{\ominus} of the reaction at $298 K$.
b. Find the direction of the reaction.

- Watch Video Solution

138. A large positive value of ΔG^{\ominus} corresponds to which of these?
A. Small positive K
B. Small negative K
C. Large positive K
D. Large negative K

Answer: A

- Watch Video Solution

139. For the reaction
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
in a closed flask, the equilibrium pressure is P atm. The standard free energy of the reaction would be:
A. $-R T \ln p$
B. $-R T(\ln p-\ln 2)$
C. $-2 R T \ln p$
D. $-2 R T(\ln p-\ln 2)$

- Watch Video Solution

140. ΔG^{\ominus} for the reaction $X+Y \Leftrightarrow C$ is -4.606 kcal at 1000 K . The equilibrium constant for the reverse mode of the reaction will be:
A. 100
B. 10
C. 0.01
D. 0.1

Answer: D

- Watch Video Solution

141. For the following reaction: $K=1.7 \times 10^{7}$ at $25^{\circ} \mathrm{C}$

$$
A g^{\oplus}(a q)+2 \mathrm{NH}_{3}(a q) \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \oplus
$$

What is the value of ΔG^{θ} in kJ ?

- Watch Video Solution

142. In an equilibrium reaction for which $\Delta G^{\ominus}=0$, the equilibrium constant K should be equal to :
A. Zero
B. 10
C. 1
D. 2

Answer: C

- Watch Video Solution

143. What is ΔG^{\ominus} for the following reaction?
$\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow N H_{3}(g), K_{p}=4.42 \times 10^{4}$ at $25^{\circ} \mathrm{C}$
A. $-26.5 \mathrm{kJmol}^{-1}$
B. $11.5 \mathrm{kJmol}^{-1}$
C. $-2.2 \mathrm{kJmol}^{-1}$
D. $-0.97 \mathrm{kJmol}^{-1}$

Answer: A

D Watch Video Solution

144. If the $E_{\text {cell }}^{\circ}$ for a given reaction has a negative value, which of the following gives correct relationships for the value of ΔG° and $K_{e q}$?
A. $\Delta G^{\ominus}>0, K_{e q}<1$
B. $\Delta G^{\ominus}>0, K_{e q}>1$
C. $\Delta G^{\ominus}<0, K_{e q}>1$
D. $\Delta G^{\ominus}<0, K_{e q}<1$
145. Which of the following graph correctly represent for equilibrium reaction whose $K_{p}>1$?
a.

A. reactants products
b.

B. reactants products
c.

C.
d.

D. reactants

- Watch Video Solution

146. The equilibrium constant K_{p} for the homogeneous reaction is 10^{-3}. The standard Gibbs free energy change ΔG^{\ominus} for the reaction at $27^{\circ} \mathrm{C}\left(\right.$ using $\left.R=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}\right)$ is
A. Zero
B. -1.8 kcal
C. -4.145 kcal
D. +4.145 kcal

Answer: D

- Watch Video Solution

147. The free energy of formation of NO is $78 \mathrm{kJmol}^{-1}$ at the temperature of an authomobile engine (1000K). What is the equilibrium constant for this reaction at $1000 K$?
$\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$
A. 8.4×10^{-5}
B. 7.1×10^{-9}
C. 4.2×10^{-10}
D. 1.7×10^{-19}

Answer: A

- Watch Video Solution

148. The densities of graphite and diamond are 22.5 and $3.51 \mathrm{gm} \mathrm{cm}^{-3}$. The $\Delta_{f} G^{\ominus}$ values are $0 \mathrm{Jmol}^{-1}$ and 2900 Jmol^{-1} for graphite and diamond, respectively. Calculate the equilibrium pressure for the conversion of graphite into diamond at 298 K .

(D) Watch Video Solution

149. Calculate the pressure of CO_{2} gas at 700 K in the heterogenous equilibrium reaction $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$, if ΔG^{\ominus} for this reaction is $130.2 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

150. For the equilibrium
$\mathrm{NiO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{Ni}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\Delta G^{\ominus}\left(\mathrm{Jmol}^{-1}\right)=-20700-11.97 \mathrm{~T}$. Calculate the temperature at which the product gases at equilibrium at 1 atm will contain 400 ppm of carbon monoxide.

- Watch Video Solution

151. K_{c} for the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ in chloroform at 291 K is 1.14 . Calculate the free energy change of the reaction when the concentration of the two gases are 0.5 mol dm each at the same temperature. $\left(R=0.082 \mathrm{LatmK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

152. A reaction mixture containing $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and NH_{3} has partial pressures 1 atm, 2 atm, and 3 atm. Respectively, at $725 K$. If the value of K_{p} for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is $4.28 \times 10^{-5} \mathrm{~atm}^{-2}$ at 725 K , in which direction the net reaction will go?
A. Forward
B. Backward
C. No net reaction
D. Direction of reaction cannot be predicted.
153. i. The initial pressure of $P C l_{5}$ present in one litre vessel at 200 K is 2 atm. At equilibrium the pressure increases to 3 atm with temperature increasing to 250. The percentage dissociation of PCl_{5} at equilibrium is
A. 30 \%
B. 60 \%
C. 0.2 \%
D. 20 \%

Answer: D

- Watch Video Solution

154. One mole of $N_{2} O_{4}(g)$ at 100 K is kept in a closed container at 1.0 atm pressure. It is heated to 300 K , where 30% by mass of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to $\mathrm{NO}_{2}(\mathrm{~g})$. The resultant pressure will be
A. 3.9 atm
B. 1.95 atm
C. 1.0 atm
D. 3.0atm

- Watch Video Solution

155. The density of an equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 1 atm is $3.62 g L^{-1}$ at 288 K and $1.84 g L^{-1}$ at 348 K . Calculate the entropy change during the reaction at 348 K .

- Watch Video Solution

156. Which of the following conditions help melting of ice?
A. High pressure, temperature below $0{ }^{\circ} \mathrm{C}$
B. High pressure, temperature above $0^{\circ} \mathrm{C}$
C. Low pressure, temperature above $0^{\circ} \mathrm{C}$
D. Low pressure, temperature below $0^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

157. Densities of diamond and graphite are 3.5 and $2.3 \mathrm{gmL}^{-1}$, respectively. The increase of pressure on the equilibrium $C_{\text {diamond }} \Leftrightarrow C_{\text {graphite }}$
A. Favours backward reaction
B. Fovours forward reaction
C. Have no effect
D. Increases the reaction rate

Answer: C

158. K_{p} for an endothermic chemical reaction is 10 atm. Then backward reaction is favoured at
A. High pressure, high temperature
B. High pressure, low temperature
C. Low pressure, high temperature
D. Low pressure, low temperature

Answer: C

- Watch Video Solution

159. For the following reaction, the value of K change with
$N_{2}(g)+O_{2}(g) \ll 2 N O(g), \Delta H=+180 \mathrm{kJmol}^{-1}$
A. Change in pressure
B. Change in concentration of oxygen
C. concentration of $\mathrm{NO}(\mathrm{g})$
D. Change in temperature

Answer: D

- Watch Video Solution

160. Which among the following reactions is favoured in forward direction by increase of temperature?
A. $\mathrm{N}_{2}(\mathrm{~g}) 3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+22.9 \mathrm{kcal}$
B. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})-42.8 \mathrm{kcal}$
C. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+45.3 \mathrm{kcal}$
D. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HCl}(\mathrm{g})-44 \mathrm{kcal}$

Answer: B

- Watch Video Solution

161. The exothermic formation of ClF_{3} is represented by thr equation:
$\mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{ClF}_{3}(\mathrm{~g}), \Delta \mathrm{H}=-329 \mathrm{~kJ}$
Which of the following will increase the quantity of ClF_{3} in an equilibrium mixture of Cl_{2}, F_{2}, and CIF_{3} ?
A. Increasing the temperature
B. Removing Cl_{2}
C. Increasing the volume of the container
D. Adding F_{2}

Answer: D

- Watch Video Solution

162. For the following reaction through stages I, II and III

quantity of the product formed (x) varies with temperature (T) as given.

Select the correct statement.

A. Stages I and III are endothermic but II is exothermic.
B. Stages I and III are exothermic but II is endothermic
C. Stages II and III are exothermic but I is endothermic
D. Stage I is exothermic but stages II and III are endothermic.

Answer: A

- Watch Video Solution

163. Which among the following reactions will be favoured at low pressure?
A. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
C. $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Answer: C

- Watch Video Solution

164. Consider the following reversible reactionat equilibrium:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}=+24.7 \mathrm{~kJ}$
Which one of the following changes in conditions will lead to maximum decomposition of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
A. Increasing both temperature and pressure
B. Decreasing temperature and increasing pressure
C. Increasing temperature and decreasing pressure
D. Decreasing temperature and decreasing pressure

Answer: C

- Watch Video Solution

165. A gas $X(g)$ is when dissolved in water heat is evolved. Then solubility of X^{\prime} will increase :
A. Low pressure, high temperature
B. Low pressure, low temperature
C. High pressure, high temperature
D. High pressure, low temperature

Answer: D

166. $A u(s) \Leftrightarrow A u(l)$
above mentioned equilibrium is fovoured at
A. High pressure, lowtemperature
B. High pressure, high temperature
C. Low pressure, high temperature
D. Low pressure, low temperature

Answer: C

- Watch Video Solution

167. What is the direction of a reversoble reaction when one of the products of the reaction is removed?
A. The reaction moves towards right hand side.
B. The reaction moves towards left hand side
C. The reaction moves towards both hand side
D. The reaction stops.

Answer: A

- Watch Video Solution

168. According to Le- Chatelier's principle. Adding heat to a solid \Leftrightarrow liquid equilibrium will cause the.
A. Amount of solid to decrease
B. Amount of liuid to decrease
C. Temperature to rise
D. Temperature to fall

Answer: A

169. The equilibrium constant for the reaction, $A+B \Leftrightarrow C+D$ is 2.85 at room temperature and 1.4×10^{-2} at 698 K . This shows that the forward reaction is
A. Exothermic
B. Endothermic
C. Unpredictable
D. There is no relationship between ΔH and K.

Answer: A

- Watch Video Solution

170. Le - Chatelier principle is not applicable to :
A. Only homogeneous chemical reversible reactions
B. Only heterogeneous chemical reversible reactions
C. Only physical equilibria
D. All system, chemical or physical, in equilibrium

Answer: D

- Watch Video Solution

171. Solubility of a gas in liquid increases on
A. Addition of a catalyst
B. Decreaseing of pressure
C. Increasing of pressure
D. Increasing of temperature

Answer: C

172. When any system in equilibrium is subjected to a change in pressure, concentration, or temperature, the equilibrium is shifted in the direaction which tends to undo the effect of the change. This statement is known as
A. First law of thermodynamics
B. Le Chatelier's principle
C. Hess's law
D. Ostwald/s law

Answer: B

- Watch Video Solution

173. The equilibrium constant for the reaction $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)$ is 4.0×10^{-4} at 2000 K . In the presence of a catalyst, the equilibrium is attained 10 times faster. Therefore, the equilibrium constant in presence of the catalyst at 2000 K is
A. 4×10^{-4}
B. 40×10^{-4}
C. 4×10^{-2}
D. Difficult to compute without more data

Answer: A

- Watch Video Solution

174. When KOH is dissolved in water, heat is evolved. If the temperature is raised, the solunility of KOH
A. Increases
B. Decreases
C. Remains the same
D. Cannot be predicted
175. Le - Chatelier principle is not applicable to :
A. $F e(s)+S(s) \Leftrightarrow F e S(s)$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$

Answer: A

- Watch Video Solution

176. Consider the reaction

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

in closed container at equilibrium. What would be the effect of addition of CaCO_{3} on the equilibrium concentration of CO_{2} ?
A. Increase
B. Decreases
C. Remains unaffected
D. Data is not sufficient to predict it

Answer: C

- Watch Video Solution

177. The equilibrium constant for a reaction $A+B \Leftrightarrow C+D$ is 1×10^{-2} at 298 K and is 2 at 273 K . The chemical process resulting in the formation of C and D is
A. Exothermic
B. Endothermic
C. Unpredictable
D. There is no relationship between ΔH and K.

- Watch Video Solution

178. In a flask colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown coloured NO_{2}. At equilibrium, when the flask is heated at $100^{\circ} \mathrm{C}$ the brown colour deepens and on cooling it becomes less coloured. The change in enthalpy, ΔH for this system is
A. Nagative
B. Positive
C. Zero
D. Not defined

Answer: A

- Watch Video Solution

179. Consider the following equilibria:
I. $A(s) \Leftrightarrow B(s), I I . A(s) \Leftrightarrow B(l)$
III. $A(l) \Leftrightarrow B(l), I V . A(g) \Leftrightarrow B(g)$

Which of the above will be disturbed by an increase in pressure?
A. II
B. I, II
C. I, II, III,
D. None of these

Answer: D

- Watch Video Solution

180. The following two reactions:
i. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+\mathrm{Cl}_{2}(g)$
(ii) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
are simultaneously in equilibrium in a container at constant volume. A
few moles of $C O(g)$ are later introduced into the vessel. After some time, the new equilibrium concentration of
A. $P C l_{5}$ will remain unchanged
B. Cl_{2} will be greater
C. PCl_{5} will become greater
D. PCl_{5} will become less

Answer: D

- Watch Video Solution

181. The oxidation of SO_{2} by O_{2} to SO_{3} is an exothermic process. The yield of SO_{3} is maximum if
i. Temperature is increased and pressure is kept constant
ii. Temperature is reduced and pressure is kept constant
iii. Pressure is increased
iv. Temperature and pressure both are increased

The correct option is:
A. I, ii
B. i, iii
C. ii, iii
D. ii, iii, ive

Answer: C

- Watch Video Solution

182. The position of equilibrium will shift, by the addition of inert gas at constant pressure condition, in the following case(s):
a. $N_{2}(g)+3 F_{2}(g) \Leftrightarrow 2 N F_{2}(g)$, forward direction
b. $\mathrm{COCl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$, forward direction
c. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$, backward direction
d. $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$, forward direction
183. COCl_{2} gas decomposes as:
$\mathrm{COCl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If one mole of He gas is added in the vessel at equilibrium at constant pressure then
A. $\left[\mathrm{COCl}_{2}\right]$ increases.
B. "moles" of $C O$ will increases.
C. The reaction goes in forward goes in forward direction.
D. $K_{c}=1$

Answer: B::C

- Watch Video Solution

184. What would be the effect of increasing the volume of each of the following system at equilibrium?
a. $2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}_{2}(g)$
b. $\mathrm{NI}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{NI}(\mathrm{CO})_{4}(\mathrm{~g})$
c. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

- Watch Video Solution

185. What happens when an inert gas is added to
i. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
ii. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
at equilibrium at : (a) constant pressure and temperature and temperature, and (b) at constant volume and temperature.

- Watch Video Solution

186. What is the effect of temperature and pressure on the yields of products?
a. $\mathrm{N}_{2}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}+x \mathrm{cal}$
b. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)-y c a l$
c. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)+46.9 \mathrm{kcal}$
d. $P C l_{5}(g) \Leftrightarrow \operatorname{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)-15.0 \mathrm{kcal}$

- Watch Video Solution

187. What would happen to a reversible reaction at equilibrium, when
a. The temperature is raised, given that its ΔH is positive.
b. The temperature is lowered, given that its ΔH is positive.
c. The temperature is lowered, given that its ΔH is negative.
d. The pressure is lowered, given that Δn is negative.
e. The pressure is increased, given Δn is negative.

- Watch Video Solution

188. Which of the following factors will increase the solubility of NH_{3} gas in $\mathrm{H}_{2} \mathrm{O}$?
a. Increase in pressure
b. Addition of water
c. Increase in temperature
d.Decrease in pressure

D Watch Video Solution

189. An aqueous solution of hydrogen sulphide shows the equilibrium:
$H_{2} S \Leftrightarrow H^{\oplus}+H S^{\ominus}$
If dilute hydrochloric acid is added to an aqueous solution of $\mathrm{H}_{2} \mathrm{~S}$, without any change in temperature, the
a. The equilibrium constant will change.
b. The concentration $H S^{\ominus}$ will increase.
c. The concentration of un-dissociated hydogen sulphide will decrease.
d. The concentration of $H S^{\ominus}$ will decrease.

(Watch Video Solution

190. Consider the equilibrium
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g})$

How would the following affect the position of equilibrium?
a. Addition of PCl_{3}
b. Addition of Cl_{2}
c. Removal of PCl_{5}
d. Addition of He without a change in volume

- Watch Video Solution

191. The reaction between H_{2} and CO_{2} to form CO and $\mathrm{H}_{2} \mathrm{O}$ in the gas phase is exothermic. Predict the changes that take place when the system originally at equilibrium is stressed in each of the following ways
a. CO_{2} is removed.
b. $C O$ is removed.
c. The temperature is decreased.
d. The pressure of the system is increased.
e. The volume of the system is increased.
192. State which one is homogeneous or heterogeneous?
a. $S_{\text {Rhombus }} \Leftrightarrow S_{\text {Monoclinic }}$
b. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(v)$
c. $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d. $C_{\text {Diamond }} \Leftrightarrow C_{\text {Amorphous }}$
e. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
f. $\mathrm{CuSO}_{4}(\mathrm{~s})+3 \mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{CuSO}_{4} \cdot 3 \mathrm{NH}_{3}(\mathrm{l})$
g. $\mathrm{CaCO}(3)(\mathrm{s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

- Watch Video Solution

193. If a mixture of 3 mol of H_{2} and 1 mole of N_{2} is completely converted into NH_{3}, what would be the ratio of the initial and final volume at same temperature and pressure?

- Watch Video Solution

194. Calculate the equilibrium constant for the reaction,
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})}$ at 1395 K , if the equilibrium constants at 1395 K for the following are:
$2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2(\mathrm{~g})}\left(\mathrm{K}_{1}=2.1 \times 10^{-13}\right)$
$2 \mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}\left(\mathrm{K}_{2}=1.4 \times 10^{-12}\right)$

- Watch Video Solution

195. For the reaction, $A+B \Leftrightarrow 2 C, 2 \mathrm{~mol}$ of A and 3 mol of B are allowed to react. If the equilibrium constant is 4 at $400^{\circ} \mathrm{C}$, what will be the moles of C at equilibrium?

- Watch Video Solution

196. In which case does the reaction go farthest to completion:
$K=1, K=10^{-10}$, and why?
197. One mole of H_{2} two moles of I_{2} and three moles of HI are injected in one litre flask. What will be the concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium at $500^{\circ} \mathrm{C} . \mathrm{K}_{\mathrm{c}}$ for reaction $\mathrm{H}_{2}+I_{2} \Leftrightarrow 2 \mathrm{HI}$ is 45.9.

- Watch Video Solution

198. 0.5 mol of H_{2} and 0.5 mol of I_{2} react in 10 L flask at $448^{\circ} \mathrm{C}$. The equilibrium constant $\left(K_{c}\right)$ is 50 for
$\mathrm{H}_{2}+\mathrm{I}_{2} \Leftrightarrow 2 \mathrm{HI}$
a. What is the value of K_{p} ?
b. Calculate the moles of I_{2} at equilibrium.

- Watch Video Solution

199. The activation energy of
$\mathrm{H}_{2}+\mathrm{I}_{2} \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ in equilibrium for the forward reaction is $167 \mathrm{kJmol}^{-1}$ whereas for the reverse reaction is $180 \mathrm{kJmol}^{-1}$. The presence of catalyst lowers the activation energy by $80 \mathrm{kJmol}^{-1}$. Assuming that the reactions
are made at $27^{\circ} \mathrm{C}$ and the frequency factor for forwatd and backward reactions are 4×10^{-4} and 2×10^{-3} respectively, calculate K_{c}.

- Watch Video Solution

200. K_{c} for $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ at $986{ }^{\circ} \mathrm{C}$ is 0.63 . A mixture of $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $3 \mathrm{~mol} \mathrm{CO}(\mathrm{g})$ is allowed to react to come to an equilibrium. The equilibrium pressure is 2.0 atm .
a. How many moles of H_{2} are present at equilibrium ?
b. Calculate partial pressure of each gas at equilibrium.

- Watch Video Solution

201. At $700 \mathrm{~K}, \mathrm{CO}_{2}$ and H_{2} react to form CO and $\mathrm{H}_{2} \mathrm{O}$. For this purpose, K_{C} is 0.11 . If a mixture of 0.45 mol of CO_{2} and 0.45 mol of H_{2} is heated to 700K.
(a) Find out amount of each gas at equilibrium.
(b) When equilibrium has been reached, another 0.34 mol of CO_{2} and
0.34 mol of H_{2} are added to the reaction mixture. Find the composition of of mixture at new equilibrium.

- Watch Video Solution

202. The degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ into NO_{2} at $1 \mathrm{~atm} 40^{\circ} \mathrm{C}$ is 0.25 .

Calculate its K_{p} at $40^{\circ} \mathrm{C}$.

- Watch Video Solution

203. $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociates as
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At $40^{\circ} \mathrm{C}$ and one atmosphere $\%$ decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 50.3%. At what pressure and same temperature, the equilibrium mixture has the ratio of $\mathrm{N}_{2} \mathrm{O}_{4}: \mathrm{NO}_{2}$ as $1: 8$?

- Watch Video Solution

204. An equilibrium mixture at 300 K contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 0.28 and 1.1atm, respectively. If the volume of container is doubles, calculate the new equilibrium pressure of two gases.

- Watch Video Solution

205. At $25^{\circ} \mathrm{C}$ and 1 atm pressure, the partial pressure in equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2}, are 0.7 and 0.3 atm , respectively. Calculate the partial pressures of these gases when they are in equilibrium at $25^{\circ} \mathrm{C}$ and a total pressure of 10atm.

- Watch Video Solution

206. Prove $\alpha=\sqrt{\left(\frac{K_{p}}{P+K_{p}}\right)}$ for
$P C l_{5} \Leftrightarrow P C l_{3}+\mathrm{Cl}_{2}$
where α is the degree of dissociation at temperature when equilibrium constant is K_{p}.

(D) Watch Video Solution

207. At some temperature and under a pressure of $4 \mathrm{~atm}, \mathrm{PCl}_{5}$ is 10% dissociated. Calculated the pressure at which PCl_{5} will be 20% dissociated temperature remaining same.

- Watch Video Solution

208. 1 mole of N_{2} and 3 moles of PCl_{5} are placed in a 100 litre vessels heated at $227^{\circ} \mathrm{C}$ the equilibrium pressure is 2.05 atm Assuming ideal behaviour,Calculate degree of dissociation of PCl_{5} and K_{p} for the reaction
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

- Watch Video Solution

209. One "mole" of N_{2} is mixed with three moles of H_{2} in a $4 L$ vessel. If $0.25 \% \mathrm{~N}_{2}$ is coverted into NH_{3} by the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, calculate K_{c}. Also report K_{c} for $\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow \mathrm{NH}_{3}(g)$

- Watch Video Solution

210. NH_{3} is heated at 15 atm , from $25^{\circ} \mathrm{C}$ to $347^{\circ} \mathrm{C}$ assuming volume constant. The new pressure becomes 50 atm at equilibrium of the reaction $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$. Calculate \% moles of NH_{3} actually decomposed.

- Watch Video Solution

211. What is \% dissociation of $\mathrm{H}_{2} \mathrm{~S}$ if 1 "mole" of $\mathrm{H}_{2} \mathrm{~S}$ is introduced into a
1.10 L vessel at $1000 K$? K_{c} for the reaction

2H_(2)S(g) hArr 2H_(2)(g)+S_(2)(g)is1xx10^(-6)
212. Some solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in flask containing 0.5 atm of NH_{3}. What would be the pressure of NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ when equilibrium is reached.
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), K_{p}=0.11$

- Watch Video Solution

213. In an experiment starting with $1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 1 \mathrm{~mol} \mathrm{CH} 33 \mathrm{COOH}$, and 1 mol of water, the equilibrium mixture mixture of analysis shows that 54.3 \% of the acid is esterified. Calculate K_{c}.

- Watch Video Solution

214. When $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$ are mixed in equivalent proportion, equilibrium is reached when $2 / 3$ of acid and alcohol are used. How much ester will be present when $2 g$ "mole"cule of acid were to react with $2 g$ "mole"cule of alcohol.
215. When $\alpha-D$ glucose is dissolved in water, it undergoes a partial converion to $\beta-D$ glucose to exhibit mutarotation. This conversion stops when 63.6 \% of glucose is in β form. Assuming that equilibrium has been attained, calculate K_{c} for mutarotation.

- Watch Video Solution

216. Calculate K_{c} for the reaction $K I+I_{2} \Leftrightarrow K I_{3}$. Given that initial weight of $K I$ is 1.326 g weight of $K I_{3}$ is 0.105 g and number of moles of free I_{2} is 0.0025 at equilibrium the volume of solution is $1 L$.

- Watch Video Solution

217. Sulphide ions in alkaline solution react with solid sulphur to form polyvalent sulphide ions. The equilibrium constant for the formation of
S_{2}^{2-} and S_{3}^{2-} from S and S^{2-} ions is 1.7 and 5.3 respectively. Calculate equilibrium constant for the formation of S_{3}^{2-} from S_{2}^{2-} and S.

- Watch Video Solution

218. When NO and NO_{2} are mixed, the following equilibria are readily obtained,
$2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~K}_{p}=6.8 \mathrm{~atm}^{-1}$
$\mathrm{NO}+\mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{3}$
In an experiment when NO and NO_{2} are mixed in the ratio of 1:2, the final total pressure was 5.05 atm and the partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ was 1.7 atm. Calculate
a. the equilibrium partial pressure of $N O$.
b. K_{p} for $\mathrm{NO}+\mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{3}$.

- Watch Video Solution

219. N_{2} and O_{2} combine at a given temperature to produce NO. At equilibrium the yield of $N O$ is ' x ' precent by volume. If $x=\sqrt{K a . b}-\frac{K(a+b)}{4}$, where K is the equilibrium constant of the given reaction at the given temperature and a and b are the volume percentage of N_{2} and O_{2}, respectively, in the initial state. Report. Report the value of K at which X is maximum

- Watch Video Solution

220. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition
of graphite. Calculate the value of K_{p} if total pressure at equilibrium is $0.8 a t m$.

- Watch Video Solution

221. The equilibrium constant K_{p} of the reaction: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is $900 \mathrm{~atm}^{-1}$ at 800 K . A mixture constaining SO_{3} and O_{2} having initial
pressure of 1 atm and 2 atm respectively, is heated at constant volume to equilibriate. Calculate the partial pressure of each gas at 800 K at equilibrium.

- Watch Video Solution

222. When 0.15 mol of CO taken in a 2.5 L flask is maintained at 750 K along with a catalyst, the following reaction takes place
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Hydrogen is introduced until the total pressure of the system is 8.5 atm at equilibrium and 0.08 mol of methanol is formed.

Calculate
a. K_{p} and K_{c}
b. The final pressure, if the same amount of CO and H_{2} as before are used, but with no catalyst so that the reaction does not take place.

- Watch Video Solution

223. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} \mathrm{C}$ is 4×10^{-19} Calculate $\left[A g^{\oplus}\right]$ in solution which was originally 0.1 M in KCN and 0.03 M in AgNO_{3}.

- Watch Video Solution

224. $\Delta G^{\ominus}=77.77 \mathrm{kJmol}^{-1}$ at 1000 K for the reaction $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}(\mathrm{g})$. What is the partial pressure of NO under equilibrium at 1000 K for air at 1 atm pressure containing $80 \% N_{2}$ and $20 \% O_{2}$ volume.

- Watch Video Solution

225. A saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ has a vapour pressure of 759.5 mm at 373 K . Calculate the solubility and $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$. "(Assume molarity equals molality)"
226. For the reaction
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ was put in to 10 L container and heated to $800^{\circ} \mathrm{C}$, what percentage of the CaCO_{3} would remain unreacted at equilibrium. if 'k_(p)' is 1.16 atm and 'CaCO_(3)(s)' initially is 20 g

- Watch Video Solution

227. Consider the reaction:
$A(g) \Leftrightarrow B(g)+C(g)$
When the system is at equilibrium at $200^{\circ} \mathrm{C}$, the concentrations are found to be:

$$
[A]=0.20 M,[B]=0.30 M,[C]=0.30 M
$$

a. If the volume of the container is suddenly doubled at $200^{\circ} \mathrm{C}$, find the equilibrium concentrations.
b. If the volume of the container is suddenly halved (instead of being doubled in part (i) at $200^{\circ} \mathrm{C}$, find the equilibrium concentrations.
228. Calculate the equilibrium constant for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ at 1395 K
If the equilibrium constants at $1395 K$ for the following are:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=2.1 \times 10^{-13}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.4 \times 10^{-12}$

- Watch Video Solution

229. Calculate the total pressure developed in a vessel containing a mixture of three parts H_{2} and one part of N_{2} to give a mixture containing 10% ammonia (by moles) at equilibrium at $450^{\circ} \mathrm{C}$.

$$
K_{p} \text { for } \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \text { is } 1.6 \times 10^{-4} \mathrm{~atm} \text { units at } 450^{\circ} \mathrm{C}
$$

- Watch Video Solution

230. Average value of poisson's ratio for a mixture of 2 mole of each gas A and B is 1.66 , then
231. Consider the following equilibrium:
$\mathrm{SO}_{3} \rightarrow \mathrm{SO}_{2}+\mathrm{O}_{2}$
8.0 g of SO_{3} are put in a container at $600^{\circ} \mathrm{C}$. The equilibrium pressure and density are 1.8 atm and $1.6 \mathrm{gL}{ }^{-1}$, respectively. Find the value of K_{p}.

- Watch Video Solution

232. When $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ is heated it dissociates to give $\mathrm{N}_{2} \mathrm{O}_{3}$ and $\mathrm{O}_{2} \cdot K_{c}$ for $\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{O}_{2}$ is 7.75 and K_{c} for $\mathrm{N}_{2} \mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{O}_{2}$ is $4.0 \mathrm{molL}^{-1}$. (both K_{c} are at same temperature) $4 \mathrm{~mol} N_{2} O_{5}$ in 1.0 L vessel is kept at a certain temperature. the concentration of O_{2} was $4.5 \mathrm{molL}^{-1}$. Find the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{~N}_{2} \mathrm{O}_{3}$, and $\mathrm{N}_{2} \mathrm{O}$ at equilibrium.

- Watch Video Solution

233. For a reversible reaction: $X+2 Y \rightarrow 2 Z$, the equilibrium concentrations of X, Y and Z are $0.32,0.40$ and 0.35 moles L^{-1} respectively at $25^{\circ} \mathrm{C}$.
a. If unitially the system contained only X and Y and then reached the state of equilibrium, what were the initial concentrations of X and Y.
b. If at the start only X and Z were present, what were the initial concentrations?

- Watch Video Solution

234. Under what pressure conditions $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ be efforescent at $25^{\circ} \mathrm{C}$. How good a drying agent is $\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ at the same temperature? Given
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(v)$
$K_{p}=1.086 \times 10^{-4} \mathrm{~atm}^{2}$ at $35^{\circ} \mathrm{C}$. Vapoure pressure of water at $25^{\circ} \mathrm{C}$ is
23.8 mm of Hg .

- Watch Video Solution

235. Under what pressure conditions $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ be efforescent at $25^{\circ} \mathrm{C}$. How good a drying agent is $\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ at the same temperature? Given
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(v)$
$K_{p}=1.086 \times 10^{-4} \mathrm{~atm}^{2}$ at $25^{\circ} \mathrm{C}$. Vapour pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 mm of Hg .

- Watch Video Solution

236. From the data given below which of the following reactant is most effective drying agent at $0^{\circ} \mathrm{C}$. Given $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{\circ}=4.58 \mathrm{~mm}$ at $0^{\circ} \mathrm{C}$.
i. $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{SrCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+4 \mathrm{H}_{1} \mathrm{O}(\mathrm{g}), \mathrm{K}_{p}=6.9 \times 10^{-12} \mathrm{~atm}{ }^{4}$
ii. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{K}_{p}=4.08 \times 10^{-25} \mathrm{~atm}^{10}$
iii.
$\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{K}_{p}=5.525 \times 10^{-13} \mathrm{~atm}^{5}$
237. Following two equilibria are established on mixing two gases A_{2} and C.
i. $3 A_{2}(\mathrm{~g}) \Leftrightarrow A_{6}(\mathrm{~g}) \quad K_{p}=1.6 \mathrm{~atm}^{-2}$
ii. $A_{2}(g)+C(g) \Leftrightarrow A_{2} C(g)$

If A_{2} and C mixed in 2:1 molar, ratio calculate the equilibrium partial pressure of $A_{2}, \mathrm{C}, A_{2} \mathrm{C}$ and K_{p} for the reaction (ii). Given that the total pressure to be 1.4 atm and partial pressure of A_{6} to be 0.2 atm at equilibrium

- Watch Video Solution

238. 1 mol of A in 1 litre vessel maintained at constant T shows the equilibrium
$A(g) \Leftrightarrow B(g)+2 C(g) \quad K_{C_{1}}$
$C(g) \Leftrightarrow 2 D(g)+3 B(g) \quad K_{C_{2}}$
If the equilibrium pressure is $\frac{13}{6}$ times of initial pressure and
$[C]_{e q}=\frac{4}{9}[A]_{e q}$, Calculate $K_{C_{1}}$ and $K_{C_{2}}$.
239. One "mole" of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at 100 K is kept in a closed container at 1.0 atm pressure. It is heated to 400 K , where 30% by mass of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to $\mathrm{NO}_{2}(\mathrm{~g})$. The resultant pressure will be
A. 4.2
B. 5.2
C. 3.2
D. 6.2

- Watch Video Solution

Concept Applicationexercise 7.1

1. In a reaction between hydrogen and iodine 6.84 mol of hydrogen and
4.02 mol of iodine are found to be in equilibrium with 42.85 mol of
hydrogen iodide at $350^{\circ} \mathrm{C}$. Calculate the equilibrium constant.

- Watch Video Solution

2. Calculate the equilibrium constant K_{p} and K_{c} for the reaction: $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})$. Given that the partial pressure at equilibrium in a vessel at 3000 K are $p_{\mathrm{CO}}=0.4 \mathrm{~atm}, p_{\mathrm{CO}_{2}}=0.6 \mathrm{atmpO}=0.2$ atm

- Watch Video Solution

3. The equilibrium composition for the reaction is

$$
P C l_{3}+C l_{2} \Leftrightarrow P C l_{5}
$$

0.20
0.10
$0.40 \mathrm{moll}^{-1}$

What will be the equilibrium concentration of PCl_{5} on adding 0.10 mol of Cl_{2} at the same temperature?

- Watch Video Solution

4. For the reaction
$C u(s)+2 A g^{\oplus}(a q) \rightarrow C u^{2+}(a q)+2 A g(s)$
Fill in the blanks in the following table for the three solution at equilibrium.

Solution $\left[C u^{2+}(a q)\right]\left[A g^{\oplus}(a q)\right] K L^{-1}$

$$
\mathrm{molL}^{-1} \quad \mathrm{molL}^{-1} \quad \mathrm{molL}^{-1}
$$

1. (a)
1.0×10^{-9}
2.0×10^{15}
2.

2.0×10^{-7}
1.0×10^{-11}
(b)
3.
2.0×10^{-2}
(c)
2.0×10^{15}

- Watch Video Solution

5. The value of K_{c} for the reaction:
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$
at $100^{\circ} \mathrm{C}$ is 49 . If 1.0 L flask containing one mole of A_{2} is connected with a 2.0L flask containing one mole of B_{2}, how many moles of $A B$ will be formed at $100^{\circ} \mathrm{C}$?

- Watch Video Solution

6. At $440^{\circ} \mathrm{C}$, the equilibrium constant (K) for the following reaction is 49.5, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$. If 0.2 mol of H_{2} and 0.2 mol of I_{2} are placed in a $10-L$ vessel and permitted to react at this temperature, what will be the concentration of each substance at equilibrium?

- Watch Video Solution

7. 0.15 mol of $C O$ taken in a 2.5 L flask is maintained at 750 K alongwith a catalyst so that the following reaction can take place $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$. Hydrogen is introduced unit the total pressure of the system is 8.5 atm at equilibrium and 0.08 mol of methanol is formed. Calculate
a. K_{p} and K_{c}
b. The final pressure if the same amount of CO and H_{2} as brfore is used but no catalyst so that the reaction does not take place.

- Watch Video Solution

8. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is $0.8 a t m$.

- Watch Video Solution

9. For the reaction, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, the concentration of an equilibrium mixture at 298 K is $\mathrm{N}_{2} \mathrm{O}_{4}=4.50 \times 10^{-2} \mathrm{molL}^{-1}$ and $\mathrm{NO}_{2}=1.61 \times 10^{-2} \mathrm{molL}^{-1}$. What is the value of equilibrium constant?

- Watch Video Solution

10. For an equilibrium reaction, the rate constants for the forward and the backward reaction are 2.38×10^{-4} and 8.15×10^{-5}, respectively.

Calculate the equilibrium constant for the reaction.
11. In a reaction between H_{2} and I_{2} at a certain temperature, the amounts of H_{2}, I_{2} and HI at equilibrium were found to be $0.45 \mathrm{~mol}, 0.39 \mathrm{~mol}$, and 3.0 mol respectively. Calculate the equilibrium constant for the reaction at the given temperature.

- Watch Video Solution

12. At $700 K$, the equilibrium constant K_{p} for the reaction
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
is $1.80 \times 10^{-3} \mathrm{kPa}$. What is the numerical value of K_{c} in moles per litre for this reaction at the same temperature?

- Watch Video Solution

13. Two moles of $P C l_{5}$ were heated to $327^{\circ} \mathrm{C}$ in a closed two-litre vessel, and when equilibrium was achieved, $P C l_{5}$ was found to be 40% dissociated into PCl_{3} and Cl_{2}. Calculate the equilibrium constant K_{p} and K_{c} for this reaction.

(D) Watch Video Solution

14. For the reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
the partial pressure of N_{2} and H_{2} are 0.80 and 0.40 atmosphere, respectively, at equilibrium. The total pressure of the system is 2.80 atm.

What is K_{p} for the above reaction?

D Watch Video Solution

15. The equilibrium constant at 278 K for
$C u(s)+2 \mathrm{Ag}^{+}(a q) \Leftrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s)$
is 2.0×10^{15}. At a particular moment, the concentration of Cu^{2+} and Ag^{+}ions are found to be $1.8 \times 10^{-2} \mathrm{~mol} L^{-1}$ and $3.0 \times 10^{-9} \mathrm{~mol} L^{-1}$ respectively. Is the system in equilibrium at that moment?

D Watch Video Solution

16. $A B_{2}$ dissociates as
$A B_{2}(g) \Leftrightarrow A B(g)+B(g)$. If the initial pressure is 500 mm of Hg and the total pressure at equilibrium is 700 mm of Hg . Calculate K_{p} for the reaction.

- Watch Video Solution

17. Under what pressure must an equimolar mixture of PCl_{5} and Cl_{2} be placed at $250^{\circ} \mathrm{C}$ in order to obtain PCl_{5} at 1 atm? $\left(K_{p}\right.$ for dissociation ofPCl $\left.l_{5}=1.78\right)$.

- Watch Video Solution

18. $X Y_{2}$ dissociates $X Y_{2}(g) \Leftrightarrow X Y(g)+Y(g)$. When the initial pressure of $X Y_{2}$ is 600 mm Hg , the total equilibrium pressure is 800 mm Hg . Calculate K for the reaction Assuming that the volume of the system remains unchanged.
A. 50
B. 100
C. 200
D. 400

Answer: A

- Watch Video Solution

19. K_{c} for the reaction $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{SO}_{3(g)}$ is $61 \cdot 7$ at $60^{\circ} \mathrm{C}$. What is its unit? Calculate K_{p} for the reaction and write its unit. ${ }^{*} *$

- Watch Video Solution

20. 1 mol of H_{2}, 2 mol of I_{2} and 3 mol of HI were taken in a $1-L$ flask. If the value of K_{c} for the equation $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is 50 at $440^{\circ} \mathrm{C}$, what will be the concentration of each specie at equilibrium?
21. For $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}$ is equal to
A. $K_{c}=\frac{1}{\left[\mathrm{CO}_{2}\right]}$
B. $K_{c}=\left[\mathrm{CO}_{2}\right]$
C. $K_{c}=\frac{[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCO}_{3}\right]}$
D. $K_{c}=\frac{\left[\mathrm{CaCO}_{3}\right]}{[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right]}$

Answer: B

- Watch Video Solution

22. For the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$, the partial pressure of CO_{2} and $C O$ is 2.0 and 4.0 atm, respectively, at equilibrium. The K_{p} of the reaction is
A. 0.5
B. 5.0
C. 30.0
D. 8.0

Answer: D

- Watch Video Solution

23. In a chemical equilibrium, $K_{c}=K_{p}$ when
A. The number of molecules entering into a reaction is more than the number of molecules produced.
B. The number of molecules entering into the reaction is equal to the number of molecules produced.
C. the number of molecules entering into the reaction is less to the number of moleculed produced.
D. None of the above

Answer: B

- Watch Video Solution

24. In a general reaction $A+B \Leftrightarrow A B$, which value of equilibrium constant most favours the production of $A B$?
A. (a) 9.0×10^{-3}
B. (b) 3.0×10^{-3}
C. (c) 9.0×10^{-7}
D. (d) 9.0×10^{-12}

Answer: A::B::C

- Watch Video Solution

25. During thermal dissociation of a gas, the vapour density.
A. Remains the same
B. Increases
C. Decreases
D. Increases in some cases and decreases in others

Answer: C

- Watch Video Solution

26. The vapour density of fully dissociated $\mathrm{NH}_{4} \mathrm{Cl}$ would be
A. Less than half of the vapour density of pure $\mathrm{NH}_{4} \mathrm{Cl}$
B. Double of the vapour density of pure $\mathrm{NH}_{4} \mathrm{Cl}$
C. Half of the vapour density of pure $\mathrm{NH}_{4} \mathrm{Cl}$
D. One-third of the vapour density of pure $\mathrm{NH}_{4} \mathrm{Cl}$

- Watch Video Solution

27. In the reversible reaction, $2 \mathrm{HI}(g) \Leftrightarrow H_{2}(g)+I_{2}(g), K_{p}$ is
A. Greater than K_{c}
B. Less than K_{c}
C. Equal to K_{c}
D. Zero

Answer: C

- Watch Video Solution

28. At $500 K$, the equilibrium constant for reaction cis $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2} \Leftrightarrow$ transa $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ is 0.6 . At the same temperature, the
equilibrium constant for the reaction trans $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2} \Leftrightarrow$ cis $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ will be
A. 1.67
B. 1.65
C. 1.06
D. 1.60

Answer: A::B::C

- Watch Video Solution

29. 2 mol of N_{2} is mixed with 6 mol of H_{2} in a closed vessel of one litre capacity. If $50 \% N_{2}$ is converted into NH_{3} at equilibrium, the value of K_{c} for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
A. $4 / 27$
B. $27 / 4$
C. $2 / 27$
D. 20

Answer: A::B::C

- Watch Video Solution

30. For the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, if the initial concentration of $\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]$ and x moles /litres of hydrogen is consumed at equilibrium, the correct expression of K_{p} is :
A. $\frac{x^{2}}{(1-x)^{2}}$
B. $\frac{(1+x)^{2}}{(1-x)^{2}}$
C. $\frac{1+x^{2}}{(2+x)^{2}}$
D. $\frac{x^{2}}{1+x^{2}}$
31. Partial pressure of O_{2} in the reaction
$2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow 4 \mathrm{Ag}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$ is
A. K_{p}
B. $\sqrt{K_{p}}$
C. $\sqrt[3]{K_{p}}$
D. $\left(K_{p}\right)^{2}$

Answer: A:B::C

- Watch Video Solution

32. Two moles of PCl_{5} were heated to $327^{\circ} \mathrm{C}$ in a closed two-litre vessel, and when equilibrium was achieved, $P C l_{5}$ was found to be 40% dissociated into PCl_{3} and Cl_{2}. Calculate the equilibrium constant K_{p} and K_{c} for this reaction.
A. 0.530
B. 0.266
C. 0.130
D. 0.170

Answer: B

D Watch Video Solution

33. For the reaction,
$2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$,
$\left(K_{c}=1.8 \times 10^{-6} a t 184^{\circ} \mathrm{C}\right)$
$(R=0.0083 \mathrm{~kJ}) /(\mathrm{mol} \mathrm{K})$
When K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$ it is found that
A. K_{p} is greater than K_{c}
B. K_{p} is less than K_{c}
C. $K_{p}=K_{C}$
D. None of the above

Answer: A

- Watch Video Solution

34. For a reaction $\mathrm{NH}_{4} \mathrm{COONH}_{4(\mathrm{~s})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$, the equilibrium pressure is $3 \mathrm{~atm} . K_{p}$ for the reaction will be
A. 4
B. 20
C. 25
D. 15

Answer: A::B::C

Watch Video Solution
35. For the reaction $A+B \Leftrightarrow C+D$, the initial concentrations of A and B are equal. The equilibrium concentration of C is two times the equilibrium concentration of A. The value of equilibrium constant is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

36. 15 mol of H_{2} and 5.2 moles of I_{2} are mixed and allowed to attain eqilibrium at $500^{\circ} \mathrm{C}$ At equilibrium, the concentration of HI is founf to be 10 mol . The equilibrium constant for the formation of HI is.
B. 25
C. 200
D. 15

Answer: A

- Watch Video Solution

37. For the reaction: $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}$ at $427^{\circ} \mathrm{C}$ is $3 \times 10^{-6} \mathrm{Lmol}^{-1}$. The value of K_{p} is
A. 7.5
B. 2.5×10^{-5}
C. 2.0×10^{-4}
D. 1.72×10^{-4}

Answer: D

38. For the reaction
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Which one is the correct representation?
A. $K_{p}=\left[p_{H_{2} \mathrm{O}}\right]^{2}$
B. $K_{c}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
C. $K_{p}=K_{c}(R T)^{2}$
D. All are correct

Answer: D

- Watch Video Solution

39. Which one is the correct representation for the reaction
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

$$
\left[p_{\mathrm{SO}_{3}}\right]^{2}
$$

A. $K_{p}=\frac{}{\left[p_{S O}\left[p_{0}\right]\right.}$

$$
\left[p_{\mathrm{SO}_{2}}\right]^{2}\left[p_{\mathrm{O}_{2}}\right]
$$

B. $K_{c}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
C. $K_{p}=\frac{\left[n_{\mathrm{SO}_{3}}\right]^{2}}{\left[n_{\mathrm{SO}_{2}}\right]^{2}\left[n_{\mathrm{O}_{2}}\right]} \times\left[\frac{P}{\text { Total mole }}\right]^{-1}$
D. All the above

Answer: D

- Watch Video Solution

40. For the reactions,
$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{COCl}_{2}(\mathrm{~g})$, the $\frac{K_{P}}{K_{C}}$ is equal to
A. $1 / R T$
B. $R t$
C. $\sqrt{R T}$
D. $(R T)^{2}$

Answer: A

- Watch Video Solution

41. The equilibrium constant for the reacction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ at temperature (T) 4×10^{-4} The value of K_{c} for the reaction $N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$ atthesametemperature ${ }^{2}(1) /(2) \mathrm{F}_{-}(2)(\mathrm{g}) \mathrm{h} \operatorname{ArrF}(\mathrm{g})^{.}$
A. 25×10^{2}
B. 50
C. 4×10^{-4}
D. 10.00

Answer: B

42. K_{p} / K_{c} for the reaction
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})$ is
A. $R T$
B. $(R T)^{1 / 2}$
C. $\frac{1}{(R T)^{3}}$
D. $\frac{1}{\sqrt{R T}}$

Answer: D

- Watch Video Solution

43. The unit of equilibrium constant K_{c} for the reaction $A+B \Leftrightarrow C$ would be
A. $\mathrm{mol}^{-1} L$
B. molL^{-1}
C. molL
D. No unit

Answer: A

D Watch Video Solution

44. For which of the following reaction does the equilibrium constant depend on the units of concentration?
A. $N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
D. $\mathrm{COCl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Answer: D

- Watch Video Solution

45. To the system,
$\operatorname{LaCl}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \operatorname{LaClO}(\mathrm{s})+2 \mathrm{HCL}(\mathrm{g})-$ Heat already at equilibrium, more water vapour is added without altering temperature or volume of the system. When equilibrium is re-established, the pressure of water vapour is doubled. The pressure of HCl present in the system increases by a factor of
A. 2
B. $2^{1 / 2}$
C. $2^{1 / 3}$
D. 2^{2}

Answer: B

- Watch Video Solution

46. For the reaction, $A(g)+2 B(g) \Leftrightarrow 2 C(g)$, the rate constant for forward and the reverse reactions are 1×10^{-4} and 2.5×10^{-2} respectively. The
value of equilibrium constant, K for the reaction would be
A. 2×10^{-4}
B. 3×10^{-2}
C. 4×10^{-3}
D. 3×10^{2}

Answer: C

- Watch Video Solution

47. The equilibrium constant for the reaction
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$
is 20 at $500 K$. The equilibrium constant for the reaction
$2 A B(g) \Leftrightarrow A_{2}(g)+B_{2}(g)$ would be
A. 20
B. 0.5
C. 0.05

D. 10

Answer: C

- Watch Video Solution

48. For the reaction
$\mathrm{Ag}(\mathrm{CN})_{2}^{\ominus} \Leftrightarrow \mathrm{Ag}{ }^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} \mathrm{C}$ is 4×10^{-19} Calculate $\left[\mathrm{Ag}{ }^{\oplus}\right]$ in solution which was originally 0.1 M in KCN and 0.03 M in AgNO_{3}.

- Watch Video Solution

49. At a certain temperature, the equilibrium constant $\left(K_{c}\right)$ is 16 for the reaction:
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
If we take one mole of each of the four gases in one litre container then what will be the equilibrium concentration of NO and NO_{2} ?
A. $1.6 \mathrm{molL}^{-1}$
B. $0.8 \mathrm{molL}^{-1}$
C. $0.4 \mathrm{molL}^{-1}$
D. $0.6 \mathrm{molL}^{-1}$

Answer: C

- Watch Video Solution

50. HI was heated in a sealed tube at $400^{\circ} \mathrm{C}$ till the equilibrium was reached. HI was found to be 22 \% decomposed. The equilibrium constant for dissociation is
A. 1.99
B. 0.0199
C. 0.0796
D. 0.282

Answer: B

51. For the equilibrium $A B(g) \Leftrightarrow A(g)+B(g)$ at a given temperature, the pressure at which one-third of $A B$ is dissociated is numerically equal to
A. 8 times K_{p}
B. 16 times K_{p}
C. 4 times K_{p}
D. 9 times K_{p}

Answer: A

- Watch Video Solution

52. For a reversible reaction, if the concentration of the reactants are doubled, then the equilibrium constant will
A. change to $1 / 4 K$
B. change to $1 / 2 K$
C. change to $2 K$
D. remain the same

Answer: D

- Watch Video Solution

53. For the equilibrium
$A B(g) \Leftrightarrow A(g)+B(g)$,
K_{p} is equal to four times the total pressure. Calculate the number of moles of A formed.
A. 0.45
B. 0.30
C. 0.60
D. 0.90

Answer: D

- Watch Video Solution

Ex 7.2

1. 1.5 mol of PCl_{5} are heated at constant temperature in a closed vessel of
$4 L$ capacity. At the equilibrium point, PCl_{5} is 35% dissociated into PCl_{3} and Cl_{2}. Calculate the equilibrium constant.

- Watch Video Solution

2. Calculate the degree of dissociation of HI at $450^{\circ} \mathrm{C}$ if the equilibrium constant for the dissociation reaction is 0.263 .
3. Calculate the percent dissociation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ if 0.1 mol of $\mathrm{H}_{2} \mathrm{~S}$ is kept in 0.4 L vessel at 1000 K . For the reaction:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{g})$
The value of K_{c} is 1.0×10^{-6}

- Watch Video Solution

4. One mole of H_{2} two moles of I_{2} and three moles of HI are injected in one litre flask. What will be the concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium at $500^{\circ} \mathrm{C} . \mathrm{K}_{\mathrm{c}}$ for reaction $\mathrm{H}_{2}+I_{2} \Leftrightarrow 2 \mathrm{HI}$ is 45.9.

- Watch Video Solution

5. At $700 K$, hydrogen and bromine react to form hydrogen bromine. The value of equilibrium constant for this reaction is 5×10^{8}. Calculate the amount of the $\mathrm{H}_{2}, \mathrm{Br}_{2}$ and HBr at equilibrium if a mixture of 0.6 mol of H_{2} and 0.2 mol of Br_{2} is heated to 700 K .
6. At some temperature and under a pressure of $4 \mathrm{~atm}, \mathrm{PCl}_{5}$ is 10% dissociated. Calculated the pressure at which PCl_{5} will be 20% dissociated temperature remaining same.

- Watch Video Solution

7. $20 \% \mathrm{~N}_{2} \mathrm{O}_{4}$ molecules are dissociated in a sample of gas at $27^{\circ} \mathrm{C}$ and 760 torr. Calculate the density of the equilibrium mixture.

- Watch Video Solution

8. 0.1 mol of PCl_{5} is vaporised in a litre vessel at $260^{\circ} \mathrm{C}$. Calculate the concentration of Cl_{2} at equilibrium, if the equilibrium constant for the dissociation of PCl_{5} is 0.0414 .
9. The equilibrium constant for the reaction
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
is 4.0 at $25^{\circ} \mathrm{C}$. Calculate the weight of ethyl acetate that will be obtained when 120 g of acetic acid are reacted with 92 g of alcohol.

- Watch Video Solution

10. The vapour density of PCl_{5} at 43 K is is found to be 70.2 . Find the degree of dissociation of PCl_{5} at this temperature.

- Watch Video Solution

11. For the equilibrium $A B(g) \Leftrightarrow A(g)+B(g)$. K_{p} is equal to four times the total pressure. Calculate the number moles of A formed if one mol of $A B$ is taken initially.

- Watch Video Solution

12. The vapoour density of a mixture containing NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at 300 K . the number of moles of NO_{2} in 100 g of the mixture is approximately

- Watch Video Solution

13. NH_{3} is heated at 15 atm , from $25^{\circ} \mathrm{C}$ to $347^{\circ} \mathrm{C}$ assuming volume constant. The new pressure becomes 50 atm at equilibrium of the reaction $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$. Calculate \% moles of NH_{3} actually decomposed.

- Watch Video Solution

14. The pressure of iodine gas at 1273 K is found to be 0.112 atm whereas the expected pressure is 0.074 atm . The increased pressure is due to dissociation $I_{2} \Leftrightarrow 2 I$. Calculate K_{p}.
15. K_{c} for $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 0.00466 at 298 K . If a 1 L container initially contained 0.8 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$, what would be the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium? Also calculate the equilibrium concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} if the volume is halved at the same temperature.

- Watch Video Solution

16. At a certain temperature, K_{p} for dissociation of solid CaCO_{3} is $4 \times 10^{-2} \mathrm{~atm}$ and for the reaction, $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2} \Leftrightarrow 2 \mathrm{CO}$ is 2.0 atm, respectively. Calculate the pressure of CO at this temperature when solid $\mathrm{C}, \mathrm{CaO}, \mathrm{CaCO}_{3}$ are mixed and allowed to attain equilibrium.

- Watch Video Solution

17. Given below are the values of ΔH^{\ominus} and ΔS^{\ominus} for the reaction given below at $27^{\circ} \mathrm{C}$.

$$
\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})
$$

$\Delta H^{\ominus}=-98.32 \mathrm{kJmol}^{-1}, \Delta S^{\ominus}=-95 \mathrm{Jmol}^{-1}$

Find K_{p} for the reaction

D Watch Video Solution

18. The yield of product in the reaction,
$A_{2}(g)+2 B(g) \Leftrightarrow C(g)+Q K J$
would be higher at:
A. Low temperature and high pressure
B. High temperature and high pressure
C. Low temperature and low pressure
D. High temperature and low pressure

Answer: A

19. Manufacture of ammonia from the elements is represented by
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+22.4 \mathrm{kcal}$
The maximum yield of ammonia will be obtained when the process is made to take place
A. At low pressure and high temperature
B. At low pressure and low temperature
C. At high pressure and high temperature
D. At high pressure and low temperature

Answer: D

- Watch Video Solution

20. The reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}+$ Heat, will be favoured by
A. Low temperature and low pressure
B. High temperature and low pressure
C. High temperature and high pressure
D. Low temperature and high pressure

Answer: D

- Watch Video Solution

21. In which of the following equilibrium ,change in volume of the system does not alter the number of moles:
A. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
B. $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Answer: A

22. In the dissociation of $2 \mathrm{HI} \Leftrightarrow \mathrm{H}_{2}+I_{2}$, the degree of dissociation will be affected by
A. Increase of temperature
B. Addition of an inert gas
C. Addition of H_{2} and I_{2}
D. Increase of pressure

Answer: A

- Watch Video Solution

23. In line kilns, the following reaction,
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
proceeds to completion because of
A. High temperature
B. CO_{2} escapes
C. Low temperature and low pressure
D. molecular mass of CaO is less than that of CaCO_{3}

Answer: B

D Watch Video Solution

24. Which among the following reactions will be favoured at low pressure?
A. $\mathrm{H}_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $P C l_{5}(g) \Leftrightarrow$ PCl $_{3}(g)+\mathrm{Cl}_{2}(g)$
D. $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)$

Answer: C

25. If E_{f} and E_{r} are the activation energies of forward and backward reactions and the reaction is known to be exothermic, then
A. $E_{f}>E_{r}$
B. $E_{f}<E_{r}$
C. $E_{f}=E_{r}$
D. No relation can be given between E_{f} and E_{r}

Answer: B

- Watch Video Solution

26. K_{p} for a reaction at $25^{\circ} \mathrm{C}$ is 10 atm . The activation energy for forward and reverse reactions are 12 and $20 \mathrm{kJmol}^{-1}$ respectively. The K_{c} for the reaction at $40^{\circ} \mathrm{C}$ will be:
A. $4.33 \times 10^{-1} M$
B. $3.4 \times 10^{-2} M$
C. $3.4 \times 10^{-1} \mathrm{M}$
D. $4.33 \times 10^{-2} M$

Answer: C

- Watch Video Solution

27. The concentration of a pure solid or liquid phase is not include in the expression of equilibrium constant because :
A. Solid and liquid concentrations are independent of their quantities
B. Solid and liquid react slowly
C. Solid and liquids at equilibrium do not interact with gaseous phase
D. The molecules of solids and liquid cannot migrate to the gaseous phase

Answer: A

28. For an equilibrium reaction involving gases, the forward reaction is first order while the reverse reaction is second order. The unit of K_{p} for forward equilibrium is
A. atm
B. atm^{2}
C. atm^{-1}
D. atm^{-2}

Answer: A

- Watch Video Solution

29. For the reaction, $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g})$, the position of equilibrium can be shifted to the right by:
A. Doubling the volume
B. Increasing the temperature
C. Addition of equimolar quantities of PCl_{3} and PCl_{5}
D. Addition of Cl_{2} at constant volume

Answer: D

- Watch Video Solution

30. What are the favourable conditions for the synthesis of ammonia.
A. High temperature and high pressure
B. Low temperature and low pressure
C. High temperature and low pressure
D. Low temperature and high pressure

Answer: D

31. Which of the following change will shift the reaction in forward direction?
$I_{2}(g) \Leftrightarrow 2 I(g), \Delta H^{\Theta}=+150 k J$
A. Increase in total pressure
B. Increase in temperature
C. Increse in concentration of I
D. Decrease in concentration of I_{2}

Answer: B

- Watch Video Solution

32. In a vessel containing $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} at equilibrium, some helium gas is introduced so that total pressure increases while temperature and volume and volume remain the same. According to Le Chatelier's principle, the dissociation of SO_{3} :
A. Increases
B. Decreases
C. Remains unaltered
D. Changes unpredictably

Answer: C

D Watch Video Solution

33. Vapour density of the equilibrium mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is found to be 40 for the equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$
Calculate
A. abnormal molecular weight
B. degree of dissociation
C. percentage of NO_{2} in the mixture
D. N / A

- Watch Video Solution

34. Calculate the pressure of CO_{2} gas at 700 K in the heterogenous equilibrium reaction $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$, if ΔG^{\ominus} for this reaction is $130.2 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

35. The equilibrium constant $K_{p_{2}}$ and $K_{p_{2}}$ for the reactions $A \Leftrightarrow 2 B$ and $P \Leftrightarrow Q+R$, respectively, are in the ratio of $2: 3$. If the degree of dissociation of A and P are equal, the ratio of the total pressure at equilibrium is,
A. 1:36
B. 1:1
C. $1: 3$
D. $1: 9$

Answer: A::C

- Watch Video Solution

36. For $I_{2}(g) \Leftrightarrow 2 I(g), K_{p}=1.79 \times 10^{-10}$. The partial pressure of $I_{2}=1.0$ atm and $I=0.5 \times 10^{-6}$ atm after 50 min . Comment on the status of equilibrium process.

- Watch Video Solution

37. Calculate the volume percent of chlorine gas at equilibrium in the dissociation of $\mathrm{PCl}_{5}(g)$ under a total pressure of 1.5 atm. The K_{p} for its dissociation $=0.3$.

- Watch Video Solution

38. $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}, K_{c}=4$. This reversible reaction is studied graphically as shown in the figure. Select the correct statement out of I, II and III.

I: Reaction quotient has maximum value at point A
II : Reaction proceeds left to right at a point when
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\left[\mathrm{NO}_{2}\right]=0.1 \mathrm{M}$
III: $K=Q$ when point D or F is reached:

B

Time \longrightarrow

A. I, II
B. II, III
C. II

D. I, II, III

Answer: B

- Watch Video Solution

39. The equilibrium:
$P_{4}(g)+6 \mathrm{Cl}_{2}(g) \Leftrightarrow 4 \mathrm{PCl}_{3}(\mathrm{~g})$
is attained by mixing equal moles of P_{4} and Cl_{2} in an evacuated vessel.
Then at equilibrium:
A. $\left[\mathrm{Cl}_{2}\right]>\left[\mathrm{PCl}_{3}\right]$
B. $\left[\mathrm{Cl}_{2}\right]>\left[\mathrm{P}_{4}\right]$
C. $\left[P_{4}\right]>\left[C l_{2}\right]$
D. $\left[\mathrm{PCl}_{3}\right]>\left[\mathrm{P}_{4}\right]$

Answer: C

40. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is dissociated to an extent of 20% at equilibrium pressure of 1.0 atm and $57^{\circ} \mathrm{C}$. Find the percentage of $\mathrm{N}_{2} \mathrm{O}_{4}$ at 0.2 atm and $57^{\circ} \mathrm{C}$.

- Watch Video Solution

Exercises (Subjective)

1. The equilibrium pressure of
$\mathrm{NH}_{4} \mathrm{CN}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCN}(\mathrm{g})$ is 2.98 atm. Calculate K_{p}

(Watch Video Solution

2. To 500 mL of $0.150 \mathrm{MAgNO}_{3}$ solution were added 500 mL of $1.09 \mathrm{MFe}^{2+}$ solution and the reaction is allowed to reach an equilibrium at $25^{\circ} \mathrm{C}$
$A g^{\oplus}(a q)+\mathrm{Fe}^{2+}(a q) \Leftrightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{Ag}(s)$
For 25 mL of the solution, 30 mL of $0.0832 \mathrm{MKMnO}_{4}$ was required for oxidation. Calculate the equilibrium constant for the the reaction $25^{\circ} \mathrm{C}$.
3. For the equilibrium

LiCl. $3 \mathrm{NH}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{LiCl} . \mathrm{NH}_{3}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g})$,
$K_{p}=9 \mathrm{~atm}^{2}$ at $37^{\circ} \mathrm{C}$. A5 litre vesssell contains 0.1 mole of LiCl. NH_{3} How many moles iof NH_{3} should be added to the flask at this temperature to derive the bckward reaction for completionn?

$$
\text { Use }: R=0.082 \mathrm{~atm}-L / \mathrm{molK}
$$

- Watch Video Solution

4. The equilibrium constant of the reaction,

$$
\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

is 0.15 at 900 K . Calculate the equilibrium constant for

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(g)
$$

- Watch Video Solution

5. K_{c} for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is $0.5 \mathrm{~mol}^{-2} \mathrm{~L}^{2}$ at 400 K . Find K_{p}. Given $R=0.082 L-\mathrm{atm} \mathrm{K}{ }^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

6. The equilibrium constant K_{c} for $A(g) \Leftrightarrow B(g)$ is 1.1. Which gas has a molar concentration greater than 1 .

- Watch Video Solution

7. In an equilibrium $A+B \Leftrightarrow C+D$, A and B are mixed in vesel at temperature T . The initial concentration of A was twice the initial concentration of B. After the equilibrium has reaches, concentration of C was thrice the equilibrium concentration of B. Calculate K_{c}.
A. (a) 1
B. (b) 2
C.
D.

Answer: A::C

- Watch Video Solution

8. For a gaseous phase reaction $A+2 B \Leftrightarrow A B_{2}, K_{c}=0.3475 L^{2}$ mole $^{-2}$ at $200^{\circ} \mathrm{C}$. When 2 moles of B are mixed with one "mole" of A , what total pressure is required to convert 60% of A in $A B_{2}$?

- Watch Video Solution

9. For a reaction $2 \mathrm{HI} \Leftrightarrow \mathrm{H}_{2}+I_{2}$, at equilibrium 7.8 g , 203.2g, and 1638.4 g of H_{2}, I_{2}, and HI , respectively were found. Calculate K_{c}.

- Watch Video Solution

10. 25 moles of H_{2} and 18 moles of l_{2} vapour were heated in a sealed tube at $445^{\circ} \mathrm{C}$ when at equilibrium 30.8 moles of HI were formed. Calculate the degree of dissociation of pure Hl at the given temperature,

- Watch Video Solution

11. In the dissociation of $\mathrm{HI}, 20 \%$ of HI is dissociated at equilibrium.

Calculate K_{p} for
$H I(g) \Leftrightarrow 1 / 2 H_{2}(g)+1 / 2 I_{2}(g)$

- Watch Video Solution

12. The value of K_{p} for dissociation of $2 \mathrm{HI} \Leftrightarrow \mathrm{H}_{2}+I_{2}$ is 1.84×10^{-2}. If the equilibrium concentration of H_{2} is $0.4789 \mathrm{~mol} L^{-1}$, calculate the concentration of HI at equilibrium.

- Watch Video Solution

13. 0.96 g of HI were, heated to attain equilibrium $2 \mathrm{HI} \Leftrightarrow \mathrm{H}_{2}+I_{2}$. The reaction mixture on titration requires 15.7 mL of $\mathrm{N} / 10$ hypo solution.

Calculate the degree of dissociation of HI.

- Watch Video Solution

14. An equilibrium mixture
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
present in a vessel of one litre capacity at $815{ }^{\circ} \mathrm{C}$ was found by analysis to contain 0.4 mol of $\mathrm{CO}, 0.3 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}, 0.2 \mathrm{~mol}$ of CO_{2} and 0.6 mol of H_{2}.
a. Calculate K_{c}
b. If it is derived to increase the concentration of CO to 0.6 mol by adding CO_{2} to the vessel, how many moles must be addes into equilibrium mixture at constant temperature in order to get this change?

- Watch Video Solution

15. A mixture of one mole of CO_{2} and "mole" of H_{2} attains equilibrium at a temperature of $250^{\circ} \mathrm{C}$ and a total pressure of 0.1 atm for the change $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Calculate K_{p} if the analysis of final reaction mixture shows 0.16 volume percent of CO .

- Watch Video Solution

16. At a certain temperature, the equilibrium constant $\left(K_{c}\right)$ is 16 for the reaction:
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
If we take one mole of each of the four gases in one litre container then what will be the equilibrium concentration of NO and NO_{2} ?

- Watch Video Solution

17. The equilibrium mixture for
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
present in $1 L$ vessel at $600^{\circ} \mathrm{C}$ contains $0.50,0.12$, and 5.0 moles of
$\mathrm{SO}_{2}, \mathrm{O}_{2}$, and SO_{3} respectively.
a. Calculate K_{c} for the given change at $600^{\circ} \mathrm{C}$.
b. Also calculate K_{p}.

- Watch Video Solution

18. At 273 K and 1atm, 10 litre of $\mathrm{N}_{2} \mathrm{O}_{4}$ decompose to NO_{4} decompoes to NO_{2} according to equation

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{\circ}(G)
$$

What is degree of dissociation (α) when the original volume is 25% less then that os existing volume?

- Watch Video Solution

19. At 340 K and 1 atm pressure, $\mathrm{N}_{2} \mathrm{O}_{4}$ is 66% into NO_{2}. What volume of $10 \mathrm{gN}_{2} \mathrm{O}_{4}$ occupy under these conditions?

- Watch Video Solution

20. How much PCl_{5} must be added to a one litre vessel at $250^{\circ} \mathrm{C}$ in order to obtain a 35 concentration of 0.1 mol of $\mathrm{Cl}_{2} ? K_{c}$ for $\mathrm{PCl}_{5} \Leftrightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ is $0.0414 \mathrm{molL}^{-1}$

- Watch Video Solution

21. The degree of dissociation of PCl_{5} at 1 atm pressure is 0.2. Calculate the pressure at which PCl_{5} is dissociated to 50% ?

Watch Video Solution

22. At 473 K , partially dissociated vapours of PCl_{5} are 62 times as heavy as H_{2}. Calculate the degree of dissociation of PCl_{5}.

- Watch Video Solution

23. In a mixture of N_{2} and H_{2} in the ratio $1: 3$ at 30 atm and $300^{\circ} \mathrm{C}$, the
$\%$ of NH_{3} at equilibrium is 17.8. Calculate K_{p} for $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$.

- Watch Video Solution

24. A reaction carried out by 1 mol of N_{2} and 3 mol of H_{2} shows at equilibrium the mole fraction of NH_{3} as 0.012 at $500^{\circ} \mathrm{C}$ and 10 atm pressure. Calculate K_{p} Also report the pressure at which "mole" \% of NH_{3} in equilibrium mixture is increased to 10.4.

- Watch Video Solution

25. The equilibrium constant K_{p}, for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is 1.6×10^{-4} at $400^{\circ} \mathrm{C}$. What will be the equilibrium constant at $500^{\circ} \mathrm{C}$ if the heat of reaction in this temperature range is -25.14 kcal ?

- Watch Video Solution

26. What concentration of CO_{2} be in equilibrium with $2.5 \times 10^{-2} \mathrm{molL}^{-1}$ of CO at $100^{\circ} \mathrm{C}$ for the reaction:
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), K_{c}=5.0$

- Watch Video Solution

27. Calculate K_{c} for the reaction:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
if $1.58 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}, 1.27 \mathrm{~mol} \mathrm{H}_{2}$ and $2.78 \times 10^{-6} \mathrm{~mol}$ of S_{2} are in equilibrium in a flask of capacity 180 L at $750^{\circ} \mathrm{C}$.

- Watch Video Solution

28. For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed, pressure for reaction mixture in equilibrium is 1.12 atm at $106{ }^{\circ} \mathrm{C}$. What is the value of K_{p} for the reaction?
29. If 50% of CO_{2} converts to CO at the following equilibrium:
$\frac{1}{2} C(s)+\frac{1}{2} \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})$
and the equilibrium pressure is 12 atm . Calculate K_{P}.

- Watch Video Solution

30. For $A+B \Leftrightarrow C$, the equilibrium concentration of A and B at a temperature are $15 \mathrm{molL}^{-1}$. When volume is doubled the reaction has equilibrium concentration of A as $10 \mathrm{molL}^{-1}$, calculate a. K_{c}

- Watch Video Solution

31. Two solid compounds A and B dissociate into gaseous products at $20^{\circ} \mathrm{C}$ as
a. $A(s) \Leftrightarrow A^{\prime}(s)+H_{2} S(g)$
b. $B(s) \Leftrightarrow B^{\prime}(g)+H_{2} S(g)$

At $20^{\circ} \mathrm{C}$ pressure over excess solid A is 50 mm and that over excess solid
B is 68 mm . Find:
a. The dissociation constant of A and B
b. Relative number of moles of A^{\prime} and B^{\prime} in the vapour phase over a mixture of the solids A and B.
c. Show that the total pressure of gas over the solid mixture would be 84.4 mm .

D Watch Video Solution

32. Consider the heterogeneous equilibrium
$\mathrm{CaCO}_{3} \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~s}), \mathrm{K}_{p}=4 \times 10^{2}$ atm \ldots (i)
$C(s)+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g}),{K_{p}^{\prime}}^{\prime}=2 \mathrm{~atm} \ldots(\mathrm{ii})$
Calculate the partial pressure of $\mathrm{CO}(\mathrm{g})$ when CaCO_{3} and C are mixed and allowed to attain equilibrium at the temperature for which the above two equilibria have been studied.

- Watch Video Solution

33. Would $1 \% \mathrm{CO}_{2}$ in air be sufficient to prevent any loss in weight when $\mathrm{M}_{2} \mathrm{CO}_{3}$ is heated at $120^{\circ} \mathrm{C}$?
$\mathrm{M}_{2} \mathrm{CO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{M}_{2} \mathrm{O}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$K_{p}=0.0095 \mathrm{~atm}$ at $120^{\circ} \mathrm{C}$. How long would the partial pressure of CO_{2} have to be to promote this reaction at $120^{\circ} \mathrm{C}$?

- Watch Video Solution

34. Under what pressure conditions $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ be efforescent at $25^{\circ} \mathrm{C}$. How good a drying agent is $\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ at the same temperature? Given $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(v)$
$K_{p}=1.086 \times 10^{-4} \mathrm{~atm}^{2}$ at $35^{\circ} \mathrm{C}$. Vapoure pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 mm of Hg .

- Watch Video Solution

35. For the reaction, $\mathrm{SnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{Sn}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ the equilibrium mixture of steam and hydrogen contained 45% and $24 \% \mathrm{H}_{2}$ at 900 K and
$1100 K$ respectively. Calculate K_{p} at both the temperature.

- Watch Video Solution

36. For the reaction:
$2 F e^{3+}(a q)+\left(\mathrm{Hg}_{2}\right)^{2+}(a q) \Leftrightarrow 2 F e^{2+}(a q)$
$K_{c}=9.14 \times 10^{-6}$ at $25^{\circ} \mathrm{C}$. If the initial concentration of the ions are $F e^{3+}=0.5 \mathrm{M},\left(\mathrm{Hg}_{2}\right)^{2+}=0.5 \mathrm{M}, \mathrm{Fe}^{2+}=0.03 \mathrm{M}$ and $\mathrm{Hg}^{2+}=0.03 \mathrm{M}$, what will be the concentration of ions at equilibrium.

(Watch Video Solution

37. 0.1 mol each of ethyl alcohol and acetic acid are allowed to react and at equilibrium, the acid was exactly neutralised by 100 mL of 0.85 NNaOH . If no hydrolysis of ester is supposed to have undergo, find K_{c}.

D Watch Video Solution

38. At $450^{\circ} \mathrm{C}$ the equilibrium constant K_{p} for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ was found to be 1.6×10^{-5} at a pressure of 200 atm . If N_{2} and H_{2} are taken in 1:3 ratio. What is \% of NH_{3} formed at this temperature?

- Watch Video Solution

39. K_{p} for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at $400^{\circ} \mathrm{C}$ is $1.64 \times 10^{-4} \mathrm{~atm}^{-2}$. Find K_{c}.

- Watch Video Solution

40. Equilibrium constant K_{p} for
$H_{2} \mathrm{~S}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
is 0.0118 atm at $1065{ }^{\circ} \mathrm{C}$ and heat of dissociation is 42.4 Kcal . Find equilibrium constant at $1132{ }^{\circ} \mathrm{C}$.
41. K_{p} for $3 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{~N}_{2} \Leftrightarrow \mathrm{NH}_{3}$ are 0.0266 and $0.0129 \mathrm{~atm}^{-1}$, respectively, at $350^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$. Calculate the heat of formation of NH_{3}.

- Watch Video Solution

42. In a reaction at equilibrium, X moles of the reactant A decomposes to give 1 mole each of C and D. It has been found that the fraction of A decomposed at equilibrium is independent of initial concentration of A.

Calculate X.

- Watch Video Solution

43. For the reaction $A+B \Leftrightarrow 3 . C$ at $25^{\circ} C$, a $3 L$ vessel contains 1,2 , and 4 moles of A, B and C respectively. Predict the direction of reaction if:
a. K_{c} for the reaction is 10 .
b. K_{c} for the reaction is 15 .
c. K_{c} for the reaction is 10.66
44. An equilibrium mixture at 300 K contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 0.28 and 1.1atm, respectively. If the volume of container is doubles, calculate the new equilibrium pressure of two gases.

- Watch Video Solution

45. NO and Br_{2} at initial pressures of 98.4 and 41.3 torr respectively were allowed react at 300 K . At equilibrium the total pressure was 110.5 torr.

Calculate the value of equilibrium constant, K_{p} and the standard free energy change at 300 K for the reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NOBr}(\mathrm{g})$

- Watch Video Solution

46. In the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

When 5 mol of each is taken and the temperature is kept at 298 K , the total pressure was found to be 20 bar.

Given : $\Delta_{f} G_{n_{2} \mathrm{O}_{4}}^{\ominus}=100 \mathrm{~kJ}, \Delta_{f} G_{\mathrm{NO}_{2}}^{\ominus}=50 \mathrm{KJ}$
a. Find ΔG^{\ominus} of the reaction at $298 K$.
b. Find the direction of the reaction.

- Watch Video Solution

Exercises (Linked Comprehensive)

1. Consider the following equilibrium:
$2 \mathrm{NO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{3}, \Delta \mathrm{H}=-\mathrm{ve}$,
If O_{2} is added and volume of the reaction vessel is reduced, the equilibrium
A. Shift in the product side
B. Shifts in the reactant side
C. Cannot be predicted
D. Remains unchanged

Answer: A

- Watch Video Solution

2. If we add SO_{4}^{2-} ion to a saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$, it will result in a//an
A. Increase in Ag^{\oplus} concentration.
B. Decrease in Ag^{\oplus} concentration
C. It will shift Ag^{\oplus} ions from solid $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ into solution.
D. It will decrease the SO_{4}^{2-} ion concentration in the solution.

Answer: B

3. Physical and chemical equilibrium can respond to a change in their pressure, temperature, and concentration of reactants and products. To describe the change in the equilibrium we have a principle named Le Chatelier principle. According to this principle, even if we make some changes in equilibrium, then also the system even re-establishes the equilibrium by undoing the effect.

In the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$. If we increase the pressure of the system, the equilibrium is
A. Shifts in the product side
B. Shift un reactant side
C. Remains unchanged
D. Cannot be predicted

Answer: A

- Watch Video Solution

4. Consider the chemical reaction:
$\mathrm{Ni}^{2+}(a q)($ Green solution $)+6 \mathrm{NH}_{3}(\mathrm{aq}) \Leftrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ (Blue solution) $(a q)$
When $H^{\oplus}(a q)$ is added, the colour green is favoured. Use one or more of the following interpretations to answer the questions:
i. Some unreacted $\mathrm{Ni}^{2+}(a q)$ is present in the solution at equilibrium
ii. Some unreacted $\mathrm{NH}_{3}(\mathrm{aq})$ is present in the solution at equilibrium
iii. The colour change indicates new equilibrium conditions with reduced $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}(a q)$
iv. The colour change indicates new equilibrium conditions with increased $\left[N i\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}(a q)$.
The deepening of blue colour on dissolving more $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ supports interpretation (s).
A. i only
B. i and iv only
C. ii and iv only
D. i and ii only

Answer: B

D Watch Video Solution

5. Consider the chemical reaction:
$\mathrm{Ni}^{2+}(a q)($ Green solution $)+6 \mathrm{NH}_{3}(a q) \Leftrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ (Blue solution) $(a q)$
When $H^{\oplus}(a q)$ is added, the colour green is favoured. Use one or more of the following interpretations to answer the questions:
i. Some unreacted $\mathrm{Ni}^{2+}(a q)$ is present in the solution at equilibrium
ii. Some unreacted $\mathrm{NH}_{3}(\mathrm{aq})$ is present in the solution at equilibrium
iii. The colour change indicates new equilibrium conditions with reduced

$$
\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}(a q)
$$

iv. The colour change indicates new equilibrium conditions with increased

$$
\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}(a q)
$$

The deepening of blue colour on addition of more $\mathrm{NH}_{3}(a q)$ supports interpretation(s).
A. i only
B. i and iv only
C. i and ii only
D. ii and iv only

Answer: D

- Watch Video Solution

6. One "mole" of $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ was allowed to decompose in a 1 - L container at $200^{\circ} \mathrm{C}$. It decomposes reversibly to $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) . \mathrm{NH}_{3}(\mathrm{~g})$ further undergoes decomposition to form $N_{2}(g)$ and $H_{2}(g)$. Finally, when equilibrium was set up, the ratio between the number of moles of $\mathrm{NH}_{3}(\mathrm{~g})$ and $H_{2}(g)$ was found to be 3.
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=8.91 \times 10^{-2} \mathrm{M}^{2}$
$2 \mathrm{NH}_{3}(g) \Leftrightarrow N_{2}(g)+3 H_{2}(g), K_{c}=3 \times 10^{-4} M^{2}$
Answer the following:

What is the "mole" fraction of hydrogen gas in the equilibrium mixture in the gas phase?
A. $1 / 4$
B. $3 / 4$
C. $1 / 8$
D. 4

Answer: B

- Watch Video Solution

7. One "mole" of $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ was allowed to decompose in a 1 - L container at $200^{\circ} \mathrm{C}$. It decomposes reversibly to $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) . \mathrm{NH}_{3}(\mathrm{~g})$ further undergoes decomposition to form $N_{2}(g)$ and $H_{2}(g)$. Finally, when equilibrium was set up, the ratio between the number of moles of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2}(g)$ was found to be 3 .
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=8.91 \times 10^{-2} \mathrm{M}^{2}$
$2 \mathrm{NH}_{3}(g) \Leftrightarrow N_{2}(g)+3 H_{2}(g), K_{c}=3 \times 10^{-4} M^{2}$
Answer the following:

To attain equilibrium, how much \% by weight of folid $\mathrm{NH}_{4} \mathrm{HS}$ got dissociated?
A. 19%
B. 30%
C. 33%
D. 15%

Answer: C

- Watch Video Solution

8. One "mole" of $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ was allowed to decompose in a 1 - L container at $200^{\circ} \mathrm{C}$. It decomposes reversibly to $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) . \mathrm{NH}_{3}(\mathrm{~g})$ further undergoes decomposition to form $\mathrm{N}_{2}(g)$ and $\mathrm{H}_{2}(g)$. Finally, when equilibrium was set up, the ratio between the number of moles of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ was found to be 3 .
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), K_{c}=8.91 \times 10^{-2} \mathrm{M}^{2}$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}), K_{c}=3 \times 10^{-4} \mathrm{M}^{2}$

Answer the following:

What is the "mole" fraction of hydrogen gas in the equilibrium mixture in the gas phase?
A. $16.83 g L^{-1}$
B. $16.83 \mathrm{gmL}^{-1}$
C. $18.415 g L^{-1}$
D. $14.83 g L^{-1}$

Answer: A

- Watch Video Solution

9. The persentage of ammonia produced from nitrogen and hydrogen under conditions of temperature and pressure is given in the graph

Use the graph answering the following questions:

What happens to the percentage of ammonia produced when the temperature is increased
A. The \% is decreased
B. The \% is increased
C. No effect
D. Cannot be predicted

Answer: A

10. The persentage of ammonia produced from nitrogen and hydrogen under conditions of temperature and pressure is given in the graph

Use the graph answering the following questions:
What happens to the percentage of ammonia produced when the pressure is increased?
A. The \% is decreased
B. The \% is increased
C. No effect
D. Cannot be predicted

- Watch Video Solution

11. The persentage of ammonia produced from nitrogen and hydrogen under conditions of temperature and pressure is given in the graph

Use the graph answering the following questions:
What conditions of pressure produce the highest percentage of ammonia?
A. At least 50 atm
B. At least 150 atm
C. At least 300 atm
D. At least 100 atm

Answer: C

- Watch Video Solution

12. The synthesis of ammonia is given as:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N_{3}(g), \Delta H^{\ominus}=-92.6 \mathrm{kJmol}^{-1}$ given $K_{c}=1.2$ and
temperature $(T)=375^{\circ} \mathrm{C}$
The expression of equilibrium constant is
A. $K_{c}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}}$
B. $K_{c}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{NH}_{3}\right]}$
C. $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$

$\left[\mathrm{NH}_{3}\right]^{2}$

D. $K_{C}=\frac{}{\left[N_{2}\right]\left[H_{2}\right]^{3}}$

$$
\left[N_{2}\right]\left[H_{2}\right]^{3}
$$

Answer: D

Watch Video Solution

13. The synthesis of ammonia is given as:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g), \Delta H^{\ominus}=-92.6 \mathrm{kJmol}^{-1}$ given $K_{c}=1.2$ and temperature $(T)=375{ }^{\circ} \mathrm{C}$

On increasing the temperature, the value of equilibrium constant K_{c}
A. Increases
B. Decreases
C. Remain unchanged
D. Cannot be predicted

Answer: B
14. The synthesis of ammonia is given as:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H^{\Theta}=-92.6 \mathrm{kJmol}^{-1}$ given $K_{c}=1.2$ and temperature $(T)=375^{\circ} \mathrm{C}$

The relationship between K_{p} and K_{c} for this reaction is
A. $K_{c}=K_{p}(R T)^{-2}$
B. $K_{p}=K_{c}(R T)^{-1}$
C. $K_{p}=K_{c}(R T)^{2}$
D. $K_{p}=K_{c}(R T)^{4}$

Answer: A

- Watch Video Solution

15. The synthesis of ammonia is given as:

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H^{\ominus}=-92.6 \mathrm{kJmol}^{-1} \text { given } K_{c}=1.2 \text { and }
$$

$$
\text { temperature }(T)=375^{\circ} \mathrm{C}
$$

Which of the following factors does not alter the yield of NH_{3} at equilibrium?
A. Catalyst
B. Increase in pressure
C. Increase in temperature
D. Decrease in pressure

Answer: A

- Watch Video Solution

16. The synthesis of ammonia is given as:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta H^{\ominus}=-92.6 \mathrm{kJmol}^{-1}$ given $K_{c}=1.2$ and temperature $(T)=375^{\circ} \mathrm{C}$

Starting with 2 mol of each $\left(\mathrm{N}_{2}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{NH}_{3}\right)$ in 5.0 L reaction vessel at $375^{\circ} \mathrm{C}$, predict what is true for the reaction?
A. The reaction is at equilibrium
B. The reaction proceed in forward direction.
C. The reaction proceed in backward direction
D. Q_{c} for the reaction is less then K_{c}

Answer: C

- Watch Video Solution

17. Phosphorous pentachloride when heated in a sealed tube at 700 K it undergoes decomposition as
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}), K_{p}=38 \mathrm{~atm}$
Vapour density of the mixture is 74.25 .
The reaction is
A. Endothermic
B. Exothermic
C. May be endothermic or exothermic
D. Unpredictable

- Watch Video Solution

18. Phosphorous pentachloride when heated in a sealed tube at 700 K it undergoes decomposition as
$\mathrm{PCl}_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g), K_{p}=38$ atm
Vapour density of the mixture is 74.25 .
Percentage dissociation of PCl_{5} may be given as
A. 4.04
B. 40.4
C. 44.0
D. 0.404

Answer: B

Watch Video Solution

19. Phosphorous pentachloride when heated in a sealed tube at 700 K it undergoes decomposition as
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g), K_{p}=38 \mathrm{~atm}$
Vapour density of the mixture is 74.25 .
Equilibrium constant K_{c} for the reaction will be
A. $0.66 M$
B. 0.56 M
C. 0.46 M
D. 0.36 M

Answer: A

- Watch Video Solution

20. Phosphorous pentachloride when heated in a sealed tube at 700 K it undergoes decomposition as
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g), K_{p}=38 \mathrm{~atm}$

Vapour density of the mixture is 74.25 .
If pressure is increased then the equilibrium will
A. Be unaffected
B. Shift in backward direction
C. Shift in forward direction
D. Cannot be predicted

Answer: B

- Watch Video Solution

21. Phosphorous pentachloride when heated in a sealed tube at 700 K it undergoes decomposition as
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}), K_{p}=38 \mathrm{~atm}$
Vapour density of the mixture is 74.25 .
When an inert gas is added to the given reversible process, then the equilibrium will.
A. Be unaffected
B. Shift in backward direction
C. Shift in forward direction
D. Cannot be predicted

Answer: C

- Watch Video Solution

22. Decomposition of ammonium chloride is an endothermic reaction.

The equilibrium may be represented as:
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
A 6.250 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ os placed in an evaculated 4.0 L container at $27^{\circ} \mathrm{C}$. After equilibrium the total pressure inside the container is 0.820 bar and some solid remains in the container. Answer the followings The value of K_{p} for the reaction at 300 K is
A. 16.2
B. 0.168
C. 1.68
D. 32.4

Answer: B

- Watch Video Solution

23. Decomposition of ammonium chloride is an endothermic reaction.

The equilibrium may be represented as:
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
A 6.250 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ os placed in an evaculated 4.0 L container at $27^{\circ} \mathrm{C}$. After equilibrium the total pressure inside the container is 0.820 bar and some solid remains in the container. Answer the followings The amount of solid $\mathrm{NH}_{4} \mathrm{Cl}$ left behind in the container at equilibrium is
A. 2.856
B. 28.56
C. 0.2856
D. 1.320

Answer: A

- Watch Video Solution

24. Decomposition of ammonium chloride is an endothermic reaction.

The equilibrium may be represented as:
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
A 6.250 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ os placed in an evaculated 4.0 L container at $27^{\circ} \mathrm{C}$. After equilibrium the total pressure inside the container is 0.820 bar and some solid remains in the container. Answer the followings If the volume of container were doubled at constant temperature, then what would happen to the amount of solid in the container.
A. Decrease
B. Increases
C. Remain unchanged
D. None

Answer: A

D Watch Video Solution

25. Decomposition of ammonium chloride is an endothermic reaction.

The equilibrium may be represented as:
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
A 6.250 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ os placed in an evaculated 4.0 L container at
$27^{\circ} \mathrm{C}$. After equilibrium the total pressure inside the container is 0.820
bar and some solid remains in the container. Answer the followings
The value of K_{p} for the reaction at $300 K$ is
A. Increasing the temperature
B. Decreasing the temperature
C. Adding more $\mathrm{NH}_{4} \mathrm{Cl}$
D. Removing $\mathrm{HCl}(\mathrm{g})$

Answer: A

- Watch Video Solution

26. Decomposition of ammonium chloride is an endothermic reaction.

The equilibrium may be represented as:
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
A 6.250 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ os placed in an evaculated 4.0 L container at
$27^{\circ} \mathrm{C}$. After equilibrium the total pressure inside the container is 0.820
bar and some solid remains in the container. Answer the followings
The value of K_{p} for the reaction at 300 K is
A. Increase in volume
B. Decrease in temperature
C. Decrease in pressure
D. Increase in temperature

- Watch Video Solution

27. K_{p} and K_{c} are inter related as
$K_{p}=K_{c}(R T)^{\Delta n}$
Answer the following questions:

Which of the following have $K_{p}=K_{c}$?
A. $\mathrm{H}_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
B. $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)$
C. $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NOCl}(\mathrm{g})$
D. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{SO}_{3}(g)$

Answer: A::B

- Watch Video Solution

28. K_{p} and K_{c} are inter related as
$K_{p}=K_{c}(R T)^{\Delta n}$
Answer the following questions:
Which of the following have same units of K_{p} ?
A. $\mathrm{PCl}_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
B. $A B_{2}(g) \Leftrightarrow A B(g)+B(g)$
C. $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
D. $2 \mathrm{NH}_{3}(g) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

Answer: A::B

- Watch Video Solution

29. K_{p} and K_{c} are inter related as
$K_{p}=K_{c}(R T)^{\Delta n}$
Answer the following questions:
In which of the following equilibria K_{p} is less than K_{c} ?
A. $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HCl}(\mathrm{g})$
D. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Answer: B

- Watch Video Solution

30. K_{p} and K_{c} are inter related as
$K_{p}=K_{c}(R T)^{\Delta n}$
Answer the following questions:
For $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g), K_{p} / K_{c}$ is equal to:
A. $R T^{3}$
B. $1 / R T$
C. $(R T)^{4}$
D. $1 /(R T)^{2}$

- Watch Video Solution

31. K_{p} and K_{c} are inter related as
$K_{p}=K_{c}(R T)^{\Delta n}$
Answer the following questions:

The unit of equilibrium constant for
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
A. $\mathrm{mol} L^{-2}$
B. $\mathrm{mol}^{2} L^{-2}$
C. Lmol^{-2}
D. None of these

Answer: D

32. Consider the following reactions:
i. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{1}$
ii. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{2}$
iii. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{3}$

Which of the following is/are incorrect?
A. $K_{3}=K_{1} / K_{2}$
B. $K_{3}=K_{1}^{2} / K_{2}^{3}$
C. $K_{3}=K_{1} \times K_{2}$
D. $K_{3}=K_{1} \sqrt{K_{2}}$

Answer: C

- Watch Video Solution

33. The equilibrium constant of the following reactions at 400 K are given:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), K_{1}=3.0 \times 10^{-13}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=2 \times 10^{-12}$

Then, the equilibrium constant K for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
is
A. 2.04
B. 20.5
C. 0.85
D. 1.4

Answer: D

(D) Watch Video Solution

34. The relation between K_{p} and K_{c} is $K_{p}=K_{c}(R T)^{\Delta n}$ unit of
$K_{p}=(\mathrm{atm})^{\Delta n}$, unit of $K_{c}=\left(\mathrm{molL}^{-1}\right)^{\Delta n}$
Given: $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{K}_{1}$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}), \mathrm{K}_{2}$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}), \mathrm{K}_{3}$
Which of the following relations is correct?
A. $K_{3}=K_{1} / K_{2}$
B. $K_{3}=K_{1} \times K_{2}$
C. $K_{3}=K_{1}+K_{2}$
D. $K_{3}=K_{1} / \sqrt{K_{2}}$

Answer: B

- Watch Video Solution

35. The relation between K_{p} and K_{c} is $K_{p}=K_{c}(R T)^{\Delta n}$ unit of
$K_{p}=(a t m)^{\Delta n}$, unit of $K_{c}=\left(\mathrm{molL}^{-1}\right)^{\Delta n}$
$\mathrm{H}_{3} \mathrm{ClO}_{4}$ is a tribasic acid, it undergoes ionisation as

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{ClO}_{4} \Leftrightarrow \mathrm{H}^{\oplus}+\mathrm{H}_{2} \mathrm{ClO}_{4}^{-}, \mathrm{K}_{1} \\
& \mathrm{H}_{2} \mathrm{ClO}_{4}^{-} \Leftrightarrow \mathrm{H}^{\oplus}+\mathrm{HClO}_{4}^{2-}, K_{2}
\end{aligned}
$$

$$
\mathrm{HClO}_{4}^{2-} \Leftrightarrow H^{\oplus}+\mathrm{ClO}_{4}^{3-}, K_{3}
$$

Then, equilibrium constant for the following reaction will be:

$$
\mathrm{H}_{3} \mathrm{ClO}_{4} \Leftrightarrow 3 \mathrm{H}^{\oplus}+\mathrm{ClO}_{4}^{3-}
$$

A. $K_{1} K_{2} K_{3}$
B. $\frac{\left(K_{1} K_{3}\right)^{2}}{K_{2}}$
C. $\frac{K_{1}}{K_{2}}$
D. $\frac{K_{1} K_{2}}{K_{3}^{2}}$

Answer: A

- Watch Video Solution

36. If K_{1} and K_{2} are the respective equilibrium constants for the two reactions
$\mathrm{XeF}_{6}(g)+2 H F(g) \Leftrightarrow \mathrm{XeOF}_{4}(g)+2 H F(g)$
$\mathrm{XeO}_{4}(g)+\mathrm{XeFe}_{6}(g) \Leftrightarrow \mathrm{XeOF}_{4}(g)+\mathrm{XeO}_{3}(g)$
The equilibrium constant of the reaction,
$\mathrm{XeO}_{4}(g)+2 \mathrm{HF}(g) \Leftrightarrow \mathrm{XeO}_{3} \mathrm{~F}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ will be
A. K_{1} / K_{2}^{2}
B. $\left(K_{1} / K_{2}\right)^{1 / 2}$
c. K_{1}^{2} / K_{2}^{3}
D. K_{2} / K_{1}

Answer: D

- Watch Video Solution

37. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta H^{\theta}=-22.4 \mathrm{~kJ}$

The pressure inside the chamber is 100 atm and temperature at 300 K If K_{p} for the given reaction is 1.44×10^{-5}, then the value of K_{c} will be:
A. $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}} \mathrm{molL}^{-1}$
B. $\frac{1.44 \times 10^{-5}}{(8.314 \times 200)^{-2}} \mathrm{molL}^{-1}$
C. $\frac{1.44 \times 10^{-5}}{(0.082 \times 700)^{2}} \mathrm{molL}^{-1}$
D. $\frac{1.44 \times 10^{-5}}{(0.082 \times 300)^{-2}} \mathrm{molL}^{-1}$

Answer: A::B::D

38. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta H^{\ominus}=-22.4 \mathrm{~kJ}$

The pressure inside the chamber is 100 atm and temperature at 300 K
The preparation of ammonia by Haber's process is an exothermic reaction. If the preparation follows the following temperature-pressure relationship for its $\%$ yield. Then for temperature T_{1}, T_{2} and T_{3} the correct option is:

A. $T_{3}>T_{2}>T_{1}$
B. $T_{1}>T_{2}>T_{3}$
C. $T_{3}<T_{2}<T_{3}$
D. $T_{1}=T_{2}=T_{3}$

Answer: B

- Watch Video Solution

39. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta H^{\ominus}=-22.4 \mathrm{~kJ}$

The pressure inside the chamber is 100 atm and temperature at 300 K On adding catalyst the equilibrium of reaction:
A. Shift in backward direction
B. Shift in forward direction
C. Does not affect the equilibrium
D. Cannot predict.

- Watch Video Solution

40. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g), \Delta H^{\ominus}=-22.4 \mathrm{~kJ}$

The pressure inside the chamber is 100 atm and temperature at 300 K If K_{p} for the reaction is 1.44×10^{-5}, then the value of K_{p} for the decomposition of NH_{3}
$2 \mathrm{NH}_{3}(g) \Leftrightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$
will be:
A. (a) $\sqrt{1.44 \times 10^{-5}}$
B. (b) $\left(1.44 \times 10^{-5}\right)^{4}$
C. (c) $\frac{1}{1.44 \times 10^{-5}}$
D. (d) 1.00×10^{-3}

Answer: C

41. Mass action rato or reaction quotient Q for a reaction can be calculate using the law of masss action
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
$Q=\frac{[C][D]}{[A][B]}$
The value of Q decides whether the reaction is at equilibrium or not.
At equilibrium, $Q=K$
For an equilibrium process, $Q \neq K$
when $Q>K$, reaction will favour backward direction and when $Q<K$, it will favour direction.

Answer the following questions:
The reaction quotient Q for:
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
is given by $Q=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{O}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}$. The reaction will proceed in backward direction, when

$$
\text { A. } Q=K_{c}
$$

B. $Q<K_{c}$
C. $Q>K_{c}$
D. $Q=0$

Answer: C

- Watch Video Solution

42. Mass action rato or reaction quotient Q for a reaction can be calculate using the law of masss action
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
$Q=\frac{[C][D]}{[A][B]}$
The value of Q decides whether the reaction is at equilibrium or not.
At equilibrium, $Q=K$
For an equilibrium process, $Q \neq K$
when $Q>K$, reaction will favour backward direction and when $Q<K$, it will favour direction.

Answer the following questions:
For the reaction:
$2 A+B \Leftrightarrow 3 C$ at $298 K, K_{C}=40$

A $4 L$ vessel contains 2,1 , and 4 mol of A, B and c, respectively. The reaction at the same temperature
A. Must proceed in forward direction
B. Must proceed in backward direction
C. Must be in equilibrium
D. Cannot be predicted

Answer: A

- Watch Video Solution

43. Mass action rato or reaction quotient Q for a reaction can be calculate using the law of masss action
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
$Q=\frac{[C][D]}{[A][B]}$
The value of Q decides whether the reaction is at equilibrium or not.

At equilibrium, $Q=K$

For an equilibrium process, $Q \neq K$
when $Q>K$, reaction will favour backward direction and when $Q<K$, it will favour forward direction.

Answer the following questions:
In a reaction mixture containing $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and NH_{3} at partial pressure of 2 atm, 1 atm and 3 atm respectively, the value of K_{p} at 700 K is $4.00 \times 10^{-5} \mathrm{~atm}^{-2}$. In which direction the net reaction will go?

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)
$$

A. Forward
B. Backward
C. No reaction
D. Cannot be predicted

Answer: B

44. Mass action rato or reaction quotient Q for a reaction can be calculate using the law of masss action
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
$Q=\frac{[C][D]}{[A][B]}$
The value of Q decides whether the reaction is at equilibrium or not.
At equilibrium, $Q=K$
For an equilibrium process, $Q \neq K$
when $Q>K$, reaction will favour backward direction and when $Q<K$, it will favour direction.

Answer the following questions:
In the following reaction:
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
the equilibrium is not attained. The rate of forward reaction is greater than that of backward reaction. Thus, which of the following is the correct relation between K_{p} and Q_{p} ?
A. $K_{p}=Q_{p}$
B. $Q_{p}>K_{p}$
C. $Q_{p}<K_{p}$
D. $K_{p}=Q_{p}=1$

Answer: C

- Watch Video Solution

45. Mass action rato or reaction quotient Q for a reaction can be calculate using the law of masss action
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
$Q=\frac{[C][D]}{[A][B]}$
The value of Q decides whether the reaction is at equilibrium or not.
At equilibrium, $Q=K$
For an equilibrium process, $Q \neq K$
when $Q>K$, reaction will favour backward direction and when $Q<K$, it will favour direction.

Answer the following questions:
In the reaction:
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
a graph is plotted to show that the variation or the rate of forward and backward reaction against time.

Which of following is correct?

A. $Q>K=3, Q=K=2, Q<K=1$
B. $Q>K=2, Q=K=3, Q<K=1$
C. $Q>K=1, Q=K=2, Q<K=3$
D. $Q>K=2, Q=K=1, Q<K=3$

(D) Watch Video Solution

46. Dehydration of salts is an important class of heterogeneous reactions. The salt hydrates during dehydration often dissociate in steps to form a number of intermediate hydrates according to the prevailing pressure of moisture in contact with the solid hydrates. Thus, copper sulphate pentahydrate on dissociation yield trihydrates, monohydrates and then the anhydrous salt in the above order as follows:

The equilibrium constant K_{p} for the equilibrium between pentahydrate and trihydrate is:
A. 7.8
B. 60.84
C. 31.36
D. 5.6

Answer: B

- Watch Video Solution

47. Dehydration of salts is an important class of heterogeneous reactions.

The salt hydrates during dehydration often dissociate in steps to form a number of intermediate hydrates according to the prevailing pressure of moisture in contact with the solid hydrates. Thus, copper sulphate pentahydrate on dissociation yield trihydrates, monohydrates and then the anhydrous salt in the above order as follows:

The ratio of equilibrium constant between pentahydrate and trihydrate and equilibrium between trihydrate and monohydrate is
A. 1.9
B. 2.9
C. 8.6
D. 5.6

Answer: A

- Watch Video Solution

48. Dehydration of salts is an important class of heterogeneous reactions. The salt hydrates during dehydration often dissociate in steps to form a number of intermediate hydrates according to the prevailing pressure of moisture in contact with the solid hydrates. Thus, copper sulphate pentahydrate on dissociation yield trihydrates, monohydrates and then the anhydrous salt in the above order as follows:

Which of the following conditions is favourable for dehydration of $\mathrm{CuCO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?
i. Low humidty in air
ii. High temperature
iii. $p_{\mathrm{H}_{2} \mathrm{O}}$ increases

The correct option is:
A. i
B. i, ii
C. ii, iii
D. i, ii, iii

Answer: B
49. X, Y and Z react in the $1: 1: 1$ stoichiometric ratio.

The concentration of X, Y and Z we are found to vary with time as shown in the figure below:

Timc (s) \longrightarrow

Which of the following equilibrium reaction represents the correct variation of concentration with time?
A. $X(g)+Y(g) \Leftrightarrow Z(g)$
B. $X(g)+Y(s) \Leftrightarrow Z(g)$
C. $Z(g)+Y(g) \Leftrightarrow X(g)$
D. $Z(g)+X(g) \Leftrightarrow Y(g)$

Answer: C

- Watch Video Solution

50. X, Y and Z react in the 1:1:1 stoichiometric ratio.

The concentration of X, Y and Z we are found to vary with time as shown in the figure below:

The value of the equilibrium constant $\left(K_{c}\right)$ for the equilibrium represented the in above sketch will be
A. $\frac{9}{2}$
B. $\frac{11}{4}$
C. $\frac{2}{3}$
D. $\frac{10}{7}$

Answer: C

- Watch Video Solution

51. X, Y and Z react in the $1: 1: 1$ stoichiometric ratio.

The concentration of X, Y and Z we are found to vary with time as shown in the figure below:

If the above equilibrium is established in a 2.0 L container by taking reactants in sufficient amount then how many moles of components Y must have reacted to establish the equilibrium?
A. 0
B. 6
C. 12
D. 8
52. Two solids X and Y dissociate into gaseous products at a certain temperature as follows:
i. $X(s) \Leftrightarrow A(g)+C(g)$ and
ii. $Y(s) \Leftrightarrow B(g)+C(g)$

At a given temperature, pressure over excess solid ' X ' is 40 mm of Hg and total pressure over solid ' $\mathrm{Y}(\mathrm{s}$)' is 60 mm of Hg .

Now, answer the following questions:
Ratio of K_{p} for reaction (i) to that of reaction (ii), is:
A. $4: 9$
B. 2:3
C. $4: 9$
D. 2:1

Answer: A

53. Two solid X and Y dissociate into gaseous products at a certain temperature as followas:
$X(s) \Leftrightarrow A(g)+C(g)$, and $Y(s) \Leftrightarrow B(g)+C(g)$
At a given temperature, the pressure over excess solid X is 40 mm and total pressure over solid Y is 80 mm . Calculate
a. The value of K_{p} for two reactions.
b. The ratio of moles of A and B in the vapour state over a mixture of X and Y.
c. The total pressure of gases over a mixture of X and Y.
A. 2:3
B. 2:5
C. $4: 9$
D. 1:1

Answer: C

54. Two solid X and Y dissociate into gaseous products at a certain temperature as followas:

$$
X(s) \Leftrightarrow A(g)+C(g), \text { and } Y(s) \Leftrightarrow B(g)+C(g)
$$

At a given temperature, the pressure over excess solid X is 40 mm and total pressure over solid Y is 80 mm . Calculate
a. The value of K_{p} for two reactions.
b. The ratio of moles of A and B in the vapour state over a mixture of X and Y.
c. The total pressure of gases over a mixture of X and Y.
A. 100 mm
B. 74.84 mm
C. 50 mm
D. 120.74 mm

Answer: B

1. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, which of the following factors will have no effect on the value of equilibrium constant?
A. Temperature
B. Initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$
C. Pressure of catalyst
D. Pressure

Answer: B::C::D

- Watch Video Solution

2. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$, the equilibrium can be shifted in favour of product by
A. Increasing the $\left[\mathrm{H}_{2}\right]$
B. Increasing the pressure
C. Increasing the $\left[I_{2}\right]$
D. By using the catalyst

Answer: A: B

- Watch Video Solution

3. A reaction $S_{8}(g) \Leftrightarrow 4 S_{2}(g)$ is carried out by taking 2 mol of $S_{8}(g)$ and 0.2 mol of $S_{2}(g)$ is a reaction vessel of $1 L$. Which one is not correct if $K_{c}=6.30 \times 10^{-6}$
A. Reaction qutient is 8×10^{-4}
B. Reaction proceed in backward direction.
C. Reaction proceed is forward direction
D. $K_{p}=2.55 \mathrm{~atm}^{3}$

Answer: A::B::D

4. For the equilibrium at $298 \mathrm{~K}, \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}), G_{\mathrm{N}_{2} \mathrm{O}_{4}}^{\ominus}=100 \mathrm{kJol}^{-1}$ and $G_{\mathrm{NO}_{2}}^{\ominus}=50 \mathrm{kJmol}^{-1}$. If 5 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2 moles of NO_{2} are taken initially in one litre container than which statement are correct.
A. reaction proceeds in forward direction
B. $K_{c}=1$
C. $\Delta G=-0.55 K J, \Delta G^{\ominus}=0$
D. At equilibrium $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=4.84 \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=0.212 \mathrm{M}$

Answer: A::B::C::D

- Watch Video Solution

5. Which are true for the reaction: $A_{2} \Leftrightarrow 2 C+D$?
A. if $\Delta H=0, K_{p}$ and increases with temperature and dissociation.
B. if $\Delta H=+v e, K_{p}$ increases with temperature and dissociation of A_{2}
increases.
C. if $\Delta H=-v e, K_{p}$ decreases with temperature and dissociation of A_{2} decreases..
D. $K_{p}=4 \alpha^{3}\left[\frac{P}{1+2 \alpha}\right]^{2}$

Answer: A::B::C::D

- Watch Video Solution

6. van't Hoff equation is
A. $(d / d T) \ln K=-\Delta H / R T^{2}$
B. $d / d T(\ln K)=+\Delta H / R T^{2}$
C. $(d / d T) \ln K=-\Delta H / R T$
D. $K=A e^{-\Delta H / R T}$

Watch Video Solution

7. For given two equilibria attained in a container which are correct if degree of dissociation of A and A^{\prime} are α and α^{\prime}.
$A(s) \Leftrightarrow 2 B(g)+C(g), K_{p_{1}}=8 \times 10^{-2}$
$A^{\prime}(s) \Leftrightarrow 2 B(g)+D(g), K_{P_{2}}=2 \times 10^{-2}$
A. $\frac{K_{p_{1}}}{K_{p_{2}}}=\left[\frac{\left(3 \alpha^{\prime}+2 \alpha\right)}{\left(3 \alpha+2 \alpha^{\prime}\right)}\right]^{3} \times \frac{\alpha}{\alpha^{\prime}}$
B. $P^{\prime}{ }_{C} / P_{D}^{\prime}=4$
C. $P^{\prime}{ }_{B}=2 P^{\prime}{ }_{C}+2 P^{\prime}{ }_{D}$
D. $\alpha>\alpha^{\prime}$

Answer: A::B::C::D

8. In a reaction $A_{2}(g)+4 B_{2}(g) \Leftrightarrow 2 A B_{4}(g), \Delta H<0$. The formation of $A B_{4}$ is not favoured by
A. Low temperature and higher pressure
B. High temperature and low pressure
C. Low temperature and low pressure
D. High temperature and high pressure

Answer: B::C::D

- Watch Video Solution

9. The reaction which proceeds in the backward direction is
A. (a) $\mathrm{Fe}_{3} \mathrm{O}_{4}+6 \mathrm{HCl} \Leftrightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
B. (b) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl} \Leftrightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}$
C. (c) $\mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \Leftrightarrow \mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2}$
D. (d) $2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{~K}^{\oplus} \Leftrightarrow 2 \mathrm{Cu}^{2+}+4 \mathrm{KI}$

Answer: B::C::D

- Watch Video Solution

10. For which of the following reaction, $K_{p} \neq K_{c}$?
A. $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HCl}(\mathrm{g})$
D. $2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Answer: A: B

- Watch Video Solution

11. Select the incorrect statements:
A. K_{p} or K_{c} are dimenensionless if pressure or concentration are expressed in standard state.
B. The neumerical value of K_{p} changes with experimental conditions, i.e.P, T, and C at which equilibrium is attained.
C. Active mass of reactant = concentration of reactant
D. Dissolution of NH_{3} in water increases with increasing pressure.

Answer: A::B::C::D

- Watch Video Solution

12. For the chemical reaction
$3 X(g)+Y(g) \Leftrightarrow X_{3} Y(g)$,
the amount of $X_{3} Y$ at equilibrium is affected by
A. Temperature and pressure
B. Temperature only
C. Pressure only
D. Temperature, pressure, and catalyst

Answer: B::C::D

D Watch Video Solution

13. When two reactants A and B are mixed to give products C and D, the reaction quotient (Q) at the initial stages of the reaction
A. Is zero
B. Decreases with time
C. Is independent of time
D. Increases with time

Answer: A

14. At constant temperature, the equilibrium constant $\left(K_{P}\right)$ for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$, is expressed by $K_{p}=\frac{\left(4 x^{2} p\right)}{\left(1-x^{2}\right)}$
where $p=$ pressure,$x=$ extent of decomposition which one of the following statements is true?
A. K_{p} increases with increase of P .
B. K_{p} increases with increases of x .
C. K_{p} increase with decrease of x .
D. K_{p} remains constant with change in p and x

Answer: D

- Watch Video Solution

15. Consider the following equilibrium in a closed container,

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

At a fixed temperature, the volume of the reaction container is halved.
For this change which of the following statements holds true regarding the equilibrium constant $\left(K_{p}\right)$ and degree of dissociation (α) ?
A. neigher K_{p} no α changes
B. Both K_{p} and α change
C. K_{p} changes but α does not change
D. K_{p} does not chamge but α changes

Answer: B::C::D

- Watch Video Solution

16. Which of the following do not change the value of K for a reaction?
A. Addition of catalyst
B. Increase in temperature
C. Increase in pressure
D. Removal of one of the products

Answer: A::C::D

- Watch Video Solution

17. For which of the following reactions at equilibrium at constant temperature, doubling the volume will cause a shift to the right?
A. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
B. $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
C. $2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}_{2}(g)$
D. $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)$

Answer: A::B

- Watch Video Solution

18. Unit of equilibrium constant is:
A. $\left(\mathrm{molL}^{-1}\right)^{1-n}$
B. $\left(\mathrm{molL}^{-1}\right)^{\Delta n}$
C. $(a t m)^{\Delta n}$
D. All

Answer: B::C

- Watch Video Solution

19. Which is/are correct?
A. (a) $2.303 \log K=-\Delta H^{\ominus} / R T+\Delta S^{\ominus} / R$
B. (b) $\Delta G^{\boldsymbol{\theta}}=-2.303 R T \log K$
C. (c) $-2.303 \log K=-\Delta H^{\Theta} / R T^{2}+\Delta S^{\ominus} / R$
D. (d) $2.303 \log K=(1 / R T)\left(\Delta H^{\ominus}+\Delta S^{\ominus}\right)$

- Watch Video Solution

20. For the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$, which is the correct representation?
A. $K_{p}=\left(p_{\mathrm{CO}_{2}}\right)$
B. $K_{p}=K_{c}(R T)$
C. $K_{p}=\left(\mathrm{CO}_{2}\right) / 1$
D. None

Answer: A::B::C
21. $\mathrm{N}_{2} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}, K_{1}$,
$\left(\frac{1}{2}\right) N_{2}+\left(\frac{1}{2}\right) O_{2} \Leftrightarrow N O, K_{2}$,
$2 \mathrm{NO} \Leftrightarrow \mathrm{N}_{2}+\mathrm{O}_{2}, K_{3}$,
$N O \Leftrightarrow\left(\frac{1}{2}\right) N_{2}+\left(\frac{1}{2}\right) O_{2}, K_{4}$
Correct relaton(s) between K_{1}, K_{2}, K_{3} and K_{4} is/are
A. $K_{1} \times K_{3}=1$
B. $\sqrt{K_{1}} \times K_{4}=1$
C. $\sqrt{K_{3}} \times K_{2}=1$
D. None

Answer: A::B::C

D Watch Video Solution

22. The rate of disappearance of A at two temperature is given by $A \Leftrightarrow B$
i. $\frac{-d[A]}{d t}=2 \times 10^{-2}[A]-4 \times 10^{-3}[B]$ at $300 K$
ii. $\frac{-d[A]}{d t}=4 \times 10^{-2}[A]-16 \times 10^{-4}[B]$ at $400 K$

From the given values of heat of reaction
A. 3.86 kcal
B. 6.93 kcal
C. 1.68 kcal
D. $1.68 \times 10^{-2} \mathrm{kcal}$

Answer: B::C::D

- Watch Video Solution

23. Which of the following factors would favour the formation of ammonia?
A. Increase in temperature
B. Increase in pressure
C. Addition of catalyst
D. Addition of promoter

Answer: B::C::D

- Watch Video Solution

24. Which of the following will not affect the value of equilibrium constant of a reaction?
A. Change in the concentration of the reactants
B. Change in temperature
C. Change in pressure
D. Addition of catalyst

Answer: A::C::D

- Watch Video Solution

25. Which of the following statement is/are wrong?
A. At equilibrium, concentrations of reactants and products become constant because the reaction stops.
B. Addition of catalyst speeds up the forward reaction more than the backward reaction.
C. Equilibrium constant of an exothermic reaction decreases with increase of temperature.
D. K_{p} is always greater than K .

Answer: A::B::D

- Watch Video Solution

26. When NaNO_{3} is heated in a closed vessel, oxygen is liberated and
NaNO_{2} is left behind. At equilibrium, which are correct
A. Addition of NaNO_{2} favours reverse reactions.
B. Addition of NaNO_{2} favours forward reactions.
C. Increasing temperature favours forward reaction
D. Increasing pressure reverse reaction.

Answer: C::D

- Watch Video Solution

Exercises (Single Correct)

1. In the dissociation of PCl_{5} as
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If the degree of dissociation is α at equilibrium pressure P , then the equilibrium constant for the reaction is
A. $K_{p}=\frac{\alpha^{2}}{1+\alpha^{2} P}$
B. $K_{p}=\frac{\alpha^{2} P^{2}}{1-\alpha^{2}}$
C. $K_{p}=\frac{P^{2}}{1-\alpha^{2}}$
D. $K_{p}=\frac{\alpha^{2} P}{1-\alpha^{2}}$

Answer: D

- Watch Video Solution

2. For a hypothetical reaction of kind.
$A B_{2}(g)+\frac{1}{2} B_{2}(g) \Leftrightarrow A B_{3}(g), \Delta H=-x k J$
More $A B_{3}$ could be produceed at equilibrium by
A. Using a catalyst
B. Removing some of B_{2}
C. Increasing the temperature
D. Increasing the pressure

Answer: D

3. The equilibrium constant for a reaction $A+B \Leftrightarrow C+D$ is 1×10^{-2} at 298 K and is 2 at 273 K . The chemical process resulting in the formation of C and D is
A. Exothermic
B. Endothermic
C. Unpredictable
D. None

Answer: B

- Watch Video Solution

4. The solubility of CO_{2} in water increases with
A. Increasing in temperature
B. Reduction of gas pressure
C. Increasing in gas pressure
D. Increasing in volume

Answer: C

- Watch Video Solution

5. The equilibrium constant for a reaction
$A+2 B \Leftrightarrow 2 C$ is 40 . The equilibrium constant for reaction $C \Leftrightarrow B+1 / 2 A$ is
A. $1 / 40$
B. $(1 / 40)^{1 / 2}$
C. $(1 / 40)^{2}$
D. 40

Answer: B

6. Inert gas has been added to the following equilibrium system at constant volume
$\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})$
To which direction will the equilibrium shift?
A. Forward
B. Backward
C. No effect
D. Unpredictable

Answer: C

- Watch Video Solution

7. The equilibrium constant K for the reaction $2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ at room temperature is 2.85 and that at 698 K is 1.4×10^{-2}. This implies
A. Exothermic
B. Endothermic
C. Exergonic
D. Unpredictable

Answer: A

- Watch Video Solution

8. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ to NO_{2} is carried out at $280^{\circ} \mathrm{C}$ in chloroform. When equilibrium is reached, 0.2 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2×10^{-3} mol of NO_{2} are present in a 2 L solution. The equilibrium constant for the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ is
A. 1×10^{-2}
B. 2×10^{-3}
C. 1×10^{-5}
D. 2×10^{-5}

Answer: C

- Watch Video Solution

9. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$, the degree of dissociation at equilibrium is 0.2 at 1 atm pressure. The equilibrium constant K_{p} will be
A. $1 / 2$
B. $1 / 4$
C. $1 / 6$
D. $1 / 8$

Answer: C

- Watch Video Solution

10. 4 mol of carbon dioxide was heated in $1 d m^{3}$ vessel under conditions which produced at equilibrium 25 \% dissociation into carbon monoxide
and oxygen. The number of moles of carbon monoxide produced
A. 0.5
B. 1.0
C. 2.0
D. 4.0

Answer: B

- Watch Video Solution

11. 1 mol of N_{2} is mixed with 3 mol of H_{2} in a litre container. If 50% of N_{2} is converted into ammonia by the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, then the total number of moles of gas at the equilibrium are
A. 1.5
B. 4.5
C. 3.0

D. 6.0

Answer: C

- Watch Video Solution

12. The equilibrium constant of a reaction is 300 , if the volume of the reaction flask is tripled, the equilibrium constant will be
A. 100
B. 300
C. 250
D. 150

Answer: B

13. For reaction : $\mathrm{H}_{2}(h)+I_{2}(g) \Leftrightarrow 2 \mathrm{HI}(g)$ at certain temperature, the value of equilibrium constant is 50 . If the volume of the vessel is reduced to half of its original volume, the value of new equilibrium constant will be
A. 25
B. 50
C. 100
D. Unpredictable

Answer: B

- Watch Video Solution

14. The system $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ attains equilibrium. If the equilibrium concentration of $\mathrm{PCl}_{3}(g)$ is doubled, the concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ would become
A. $1 / 4$ its original value
B. $1 / 2$ its original value
C. Twice its original value
D. Unpredictable

Answer: D

- Watch Video Solution

15. $X Y_{2}$ dissociates $X Y_{2}(g) \Leftrightarrow X Y(g)+Y(g)$. When the initial pressure of $X Y_{2}$ is 600 mm Hg , the total equilibrium pressure is 800 mm Hg . Calculate K for the reaction Assuming that the volume of the system remains unchanged.
A. 50.0
B. 100.0
C. 166.6
D. 400.0

- Watch Video Solution

16. Consider the reaction
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$

Which occurs in one step. The specific rate constant are 0.25 and 5000 for the forward and reverse reaction, respectively. The equilibrium constant is
A. 2.0×10^{-4}
B. 4.0×10^{2}
C. 5.0×10^{-5}
D. 2.5×10^{-6}

Answer: C

17. For the equilibrium system
$2 H X(g) \Leftrightarrow H_{2}(g)+X_{2}(g)$
the equilibrium constant is 1.0×10^{-5}. What is the concentration of HX if the equilibrium concentration of H_{2} and X_{2} are $1.2 \times 10^{-3} \mathrm{M}$, and $1.2 \times 10^{-4} \mathrm{M}$ respectively?
A. $12 \times 10^{-4} \mathrm{M}$
B. $12 \times 10^{-3} \mathrm{M}$
C. $12 \times 10^{-2} \mathrm{M}$
D. $12 \times 10^{-1} \mathrm{M}$

Answer: C

- Watch Video Solution

18. In alkaline solution, the following equilibria exist
a. $S^{2-}+S \rightarrow S_{2}^{2-}$ equilibrium constant K_{1}
b. $S_{2}^{2-}+S \rightarrow S_{3}^{2-}$ equilibrium constant K_{2}
K_{1} and K_{2} have values 12 and 11 , respectively.
$S_{3}^{2-} \rightarrow S^{2-}+2 S$. What is equilibrium constant for the reaction
A. 132
B. 7.58×10^{-3}
C. 1.09
D. 0.918

Answer: B

- Watch Video Solution

19. Given the equilibrium constants
$\mathrm{HgCl}^{\oplus}+\mathrm{Cl}^{\ominus} \rightarrow \mathrm{HgCl}_{2}, \mathrm{~K}_{1}=3 \times 10^{6}$
$\mathrm{HgCl}_{2}+\mathrm{Cl}^{\ominus} \rightarrow \mathrm{HgCl}_{3}^{\ominus}, \mathrm{K}_{2}=8.9$
The equilibrium constant for the disproportionation equilibrium
$2 \mathrm{HgCl}_{2} \rightarrow \mathrm{HgCl}^{\oplus}+\mathrm{HgCl}_{3}^{\ominus}$ is
A. (a) -3.3×10^{5}
B. (b) 3×10^{-5}
C. (c) 3.3×10^{5}
D. (d) 3×10^{-6}

Answer: D

- Watch Video Solution

20. When the reaction, $2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ reaches equilibrium at 298 K . The partial pressure of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are 0.2 Kpa and 0.4 Kpa , respectively. What is the equilibrium constant K_{p} of the above reaction at 298K?
A. 0.1
B. 0.5
C. 1.0
D. 10

- Watch Video Solution

21. The vapour density of mixture consisting of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at $26.7^{\circ} \mathrm{C}$. Calculate the number of moles of $\mathrm{NO}_{2} \mathrm{I} 100 \mathrm{~g}$ of the mixture.
A. 0.2
B. 0.4
C. 0.8
D. 1.6

Answer: B

- Watch Video Solution

22. In the problem number 21 , the number of mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ in 100 g of the mixture is:
A. 0.43
B. 0.86
C. 0.57
D. 0.2

Answer: B

D Watch Video Solution

23. One mole of SO_{3} was placed in a litre reaction flask at a given temperature when the reaction equilibrium was established in the reaction.
$2 \mathrm{SO}_{3} \Leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$ the vessel was found to contain 0.6 mol of SO_{2}. The value of the equilibrium constant is
A. 0.36
B. 0.675
C. 0.45
D. 0.54

Answer: B

- Watch Video Solution

24. The equilibrium constant for the reaction $w+x \Leftrightarrow y+z$ is 9 . If one mole of each of w and x are mixed and there is no change in volume, the number of moles of y for formed is
A. (a) 0.10
B. (b) 0.50
C. (c) 0.75
D. (d) 0.54

Answer: C

25. In the gaseous equilibrium
$A+2 B \Leftrightarrow C+$ Heat, the forward reaction is favoured:
A. Low P, High T
B. Low P, Low T
C. High P, Low T
D. High P, High T

Answer: C

- Watch Video Solution

26. The active mass of $64 g$ of $H I$ in a $2-L$ flask would be
A. 2
B. 1
C. 5
D. 0.25

- Watch Video Solution

27. For $\mathrm{N}_{2}+3 \mathrm{H}_{3} \Leftrightarrow 2 \mathrm{NH}_{3}+$ Heat
A. $K_{p}=K_{c}$
B. $K_{p}=K_{c} R T$
C. $K_{p}=K_{c}(R T)^{-2}$
D. $K_{p}=K_{c}(R T)^{-1}$

Answer: C

- Watch Video Solution

28. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$, the equilibrium constant changes with:
A. Total pressure
B. Catalyst
C. The amounts of H_{2} and I_{2} present
D. Temperature

Answer: D

- Watch Video Solution

29. The equilibrium constant K for the reaction $2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+I_{2}(g)$ at room temperature is 2.85 and that at 698 K is 1.4×10^{-2}. This implies
A. $H I$ is exothermic compound
B. HI is very stable at room temperature
C. HI is relatively less stable than H_{2} and I_{2} at room temperature
D. HI is resonance stablised

Answer: C

30. K_{1} and K_{2} are equilibrium constant for reactions (i) and (ii)
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) \ldots(\mathrm{i})$
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) . . .(i i)$
Then,
A. $K_{1}=\left(1 / K_{2}\right)^{2}$
B. $K_{1}=K_{2}^{2}$
C. $K_{1}=1 / K_{2}$
D. $K_{1}=\left(K_{2}\right)^{\circ}$

Answer: A

- Watch Video Solution

31. The equilibrium constant K_{p} for a homogeneous gaseous reaction is 10^{-8}. The standard Gibbs free energy change ΔG^{\ominus} for the reaction

$\left(\right.$ using $\left.R=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}\right)$ is

A. 10.98 kcal
B. -1.9 kcal
C. $-4.1454 k c a l$
D. +4.1454 kcal

Answer: A

D Watch Video Solution

32. Which of the following will not change the concentration of ammonia in the equilibrium

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g), \Delta H=-x k J
$$

A. increase of temperature
B. increase of volume
C. decrease of volume
D. addition of catalyst

Answer: D

- Watch Video Solution

33. In a chemical reaction, equilibrium is said to have been established when the
A. Concentrations of reactants and products are equal
B. Opposing reactions ceases
C. Velocities of opposing reaction become equal
D. Temperature of opposing reactions are equal

Answer: C

34. In a chemical reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$, at equilibrium point
A. Equal volumes of N_{2} and H_{2} are reacting
B. Equal masses of N_{2} and H_{2} are reacting
C. The reaction has stopped
D. The same amount of ammonia is formed as is decomposed into N_{2} and H_{2}

Answer: D

- Watch Video Solution

35. The equilibrium constant of a reversible reaction at a given temperature
A. Depends on initial concentration, of the reactants.
B. Depends on the concentration of the products at equilibrium.
C. Does not depend on the initial concentration.
D. It is not characteristic of the reaction

Answer: C

- Watch Video Solution

36. According to Le- Chatelier's principle. Adding heat to a solid \Leftrightarrow liquid equilibrium will cause the.
A. Amount of solid to decrease
B. Amount of liuid to decrease
C. Temperature to rise
D. Temperature to fall

Answer: A

37. In the formation of nitric acid, N_{2} and O_{2} are made to combine. Thus, $\mathrm{N}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}+$ Heat which of the following condition will favour the formation of NO?
A. low temperature
B. high temperature
C. freezing point
D. all are favourable

Answer: A

- Watch Video Solution

38. Which of the following factors will favour the reverse reaction in a chemical equilibrium?
A. increase in concentration of one of the reactants
B. increase in concentration of one of the products
C. removal of one of the products regularly
D. None of these

Answer: B

D Watch Video Solution

39. For the system $A(g)+2 B(g) \Leftrightarrow C(g)$ the equilibrium concentration is $A=0.06 \mathrm{molL}^{-1}, B=0.12 \mathrm{molL}^{-1}$
$C=0.216 \mathrm{molL}^{-1}$ The $K_{e q}$ for the reaction is
A. 250
B. 416
C. 4×10^{-3}
D. 125

Answer: A

40. When 4 mol of A is mixed with 4 mol of $B, 2 \mathrm{~mol}$ of C and D are formed at equilibrium, according to the reaction
$A+B \Leftrightarrow C+D$
the equilibrium constant is
A. 4
B. 1
C. $1 / 2$
D. $1 / 4$

Answer: B

- Watch Video Solution

41. Consider the reaction
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
in closed container at equilibrium. What would be the effect of addition of CaCO_{3} on the equilibrium concentration of CO_{2} ?
A. Increases
B. Decreases
C. Data is not sufficient
D. Remains unaffected

Answer: D

- Watch Video Solution

42. The equilibrium constant for the reaction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is 4×10^{-4} at 200 K In presence of a catalyst of the catalyst at 200 K is:
A. 40×10^{-4}
B. 4×10^{-4}
C. 4×10^{-2}
D. incomplete data

Answer: B

- Watch Video Solution

43. In which of the following reaction, the yield of the products does not increase by increase in thepressure?
A. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NO}(\mathrm{g})$
B. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})=\mathrm{PCl}_{5}(\mathrm{~g})$

Answer: A

44. At a certain temperature, only $50 \% \mathrm{HI}$ is dissociated at equilibrium in the following reaction:
$2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
the equilibrium constant for this reaction is:
A. 1.0
B. 3.0
C. 0.5
D. 0.25

Answer: D

- Watch Video Solution

45. For a reaction $A(g) \Leftrightarrow B(g)+C(g) . K_{p}$ at $400^{\circ} C$ is 1.5×10^{-4} and K_{p} at $600^{\circ} \mathrm{C}$ is 6×10^{-3}. Which statement is incorrect?
A. The reaction is exothermic
B. Increase in temperature increases the formation of B
C. Increase in pressure increases the formation of A
D. Decrease in temperature and increase in pressure shift the equilibrium towards left

Answer: A

- Watch Video Solution

46.8 mol of gas $A B_{3}$ are introduced into a $1.0 \mathrm{dm}^{3}$ vessel. It dissociates as
$2 A B_{3}(g) \Leftrightarrow A_{2}(g)+3 B_{2}(g)$
At equilibrium, 2 mol of A_{2} is found to be present. The equilibrium constant for the reaction is
A. (a) $2 \mathrm{~mol}^{2} L^{-2}$
B. (b) $3 \mathrm{~mol}^{2} L^{-2}$
C. (c) $27 \mathrm{~mol}^{2} L^{-2}$
D. (d) $36 \mathrm{~mol}^{2} L^{-2}$

D Watch Video Solution

47. 1 mol of $X Y(g)$ and 0.2 mol of $Y(g)$ are mixed in 1 L vessel. At equilibrium, 0.6 mol of $Y(g)$ is present. The value of K for the reaction $X Y(g) \Leftrightarrow X(g)+Y(g)$ is
A. $0.04 \mathrm{molL}^{-1}$
B. $0.06 \mathrm{molL}^{-1}$
C. $0.36 \mathrm{molL}^{-1}$
D. $0.40 \mathrm{molL}^{-1}$

Answer: D

- Watch Video Solution

48. How will the lowering of temperature affect the chemical equilibrium in the system
$2 \mathrm{NO}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}, \Delta \mathrm{H}<0$
A. Relative concentration of products and reactants does not change.
B. Relative concentration of products and reactants change.
C. Equilibrium is shift to the left.
D. Equilibrium is shift to the right.

Answer: B::D

- Watch Video Solution

49. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, the value of K_{p} is 1.7×10^{3} at 500 K and 1.7×10^{4} at 600 K . Which of the following is/are correct ?
A. The proportions of NO_{2} in the equilibrium mixture is increased by decrease in pressure.
B. The standard enthalpy change for the forward reaction is negative
C. Units of K_{p} are atm $^{-1}$
D. At 500 K the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ decreases by 50% by
increasing the pressure by 100%

Answer: A

- Watch Video Solution

50. At equilibrium $X+Y \Leftrightarrow 3 Z, 1$ mol of $X, 2$ mol of Y and 4 mol of Z are contained in a $3-L$ vessel. What will be the value of the reaction coefficient Q,
A. 10
B. 15
C. 10.67
D. None of these

- Watch Video Solution

51. What concentration of CO_{2} be in equilibrium with 0.025 M CO at $120^{\circ} \mathrm{C}$ for the reaction
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
if the value of $K_{c}=5.0$?
A. $0.125 M$
B. $0.0125 M$
C. $1.25 M$
D. 12.5 M

Answer: A

- Watch Video Solution

52. Which of the following reactions will not be affected by increasing the pressure?
A. $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
C. $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

Answer: B::D

- Watch Video Solution

53. The value of $K_{c}=4.24$ at 800 K for the reaction.
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
Calculate equilibrium concentration of $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ at 800 K . If only CO and $\mathrm{H}_{2} \mathrm{O}$ are present initially at concentrations of 0.10 M each.
A. Adding a suitable catalyst
B. Adding an inert gas
C. Decreasing the volume of the container
D. Increasing the amount of $\mathrm{CO}(\mathrm{g})$

Answer: D

- Watch Video Solution

54. For the chemical reaction
$3 X(g)+Y(g) \Leftrightarrow X_{3} Y(g)$,
The amount of $X_{3} Y$ at equilibrium is not affected by
A. Temperature and pressure
B. Temperature only
C. Pressure only
D. Temperature, pressure, and catalyst

Answer: A

55. When two reactants A and B are mixed to give products C and D, the reaction quotient (Q) at the initial stages of the reaction
A. Is zero
B. Decreases with time
C. Is independent of time
D. Increases with time

Answer: D

- Watch Video Solution

56. At constant temperature, the equilibrium constant $\left(K_{P}\right)$ for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$, is expressed by $K_{p}=\frac{\left(4 x^{2} p\right)}{\left(1-x^{2}\right)}$
where $p=$ pressure,$x=$ extent of decomposition .which one of the following statements is true?
A. K_{p} increase with increase in p
B. K_{p} increases with increase in x
C. K_{p} increases with decrease in x .
D. K_{p} remains constant with change in p and x

- Watch Video Solution

57. The equilibrium constant $K_{p 1}$ and $K_{p 2}$ for the reactions $X \Leftrightarrow 2 Y$ and $Z \Leftrightarrow P+Q$, respectively, are in the ratio of 1:9. If the degrees of dissociation of X and Z are equal, then the ratio of total pressure at equilibria is
A. $1: 36$
B. 1:9
C. 1:6
D. 1:4

- Watch Video Solution

58. For the reaction $X \Leftrightarrow 2 Y$ and $Z \Leftrightarrow P+Q$ occuring at two different pressure P_{1} and P_{2}, respectively. The ratio of the two pressure is $3: 1$. What will be the ratio of equilibrium constant $K p 2: K p 1$, if degree of dissociation of X and Z are equal.
A. (a) 1:36
B. (b) $1: 12$
C. (c) $1: 9$
D. (d) $2: 3$
59. Assertion : K_{p} can be less than, greater than or equal to K_{c}

Reason : Relation between K_{p} and K_{c} depends on the change in number of moles of gaseous reactants and products (Δn).
A. If both (A) and (R) are correct, and (R) is the correct explanation for
(A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

2. Assertion (A) : For $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, the equilibrium constant is K. The for $\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow N H_{3}(g)$, the equilibrium constant will be \sqrt{K}.

Reason (R) : If concentrations are changed to half, the equilibrium constants will be halved.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

3. Assertion (A) : The equilibrium constant is fixed and characteristic for any given chemical reaction at a specified temperature.

Reason (R) : The composition of the final equilibrium mixture at a particular temperature depends upon the starting amount of reactants.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

4. Assertion (A) : K_{p} is always greater than K_{c}.

Reason (R) : The effect of pressure is greater on the rate of reaction than the effect of concentration.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If both (A) and (R) are incorrect.

Answer: D

(Watch Video Solution

5. Assertion (A) : A catalyst does not influences the values of equilibrium

Reason (R) : Catalyst influences the rate of both forward and backward reactions equally.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

6. Assertion (A) : Equilibrium constant of a reaction increases if temperature is increased

Reason (R) : The forward reaction becomes faster with increase of temperature.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

7. Assertion (A) : The active mass of pure solid and pure liquid is taken unity.

Reason (R) : The active mass of pure solids and liquids depends on the density and molecular mass. The density and molecular of a mass of pure liquids and solids are constant.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

8. Assertion (A) : For $\mathrm{PCl}_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$, if more Cl_{2} is added the equilibrium will shift in backward direction. Hence, equilibrium constant will decrease.

Reason (R) : Addition of inert gas to the equilibrium mixture at constant volume does not alter the equilibrium.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

9. Assertion (A) : Adding inert gas to dissociation equilibrium of $\mathrm{N}_{2} \mathrm{O}_{4}$ at constant pressure and temperature increases the dissociation.

Reason (R) : molar concentration of the reactants and products decreases.
A. If both (A) and (R) are correct, and (R) is the correct explanation for
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

10. Assertion (A) : The value of K for a reaction may increase or decrease with increase in temperature depending upon whether the reaction is exothermic or endothermic.

Reason (R) : With increase in temperature, the extent of reaction increases.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: B

- Watch Video Solution

11. Assertion (A) : When a catalyst is added to a reaction mixture in equilibrium the amount of the products increases.

Reason (R) : The forward reaction becomes faster on adding the catalyst.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

12. Assertion (A) : For the reaction
$H_{2}+I_{2} \Leftrightarrow 2 H I, K_{p}=K_{c}$
Reason (R) : In this reaction, the sum of stoichiometric coefficient of reactants is equal to the sum of stoichiometric coefficients of products.
A. If both (A) and (R) are correct, and (R) is the correct explanation for

(A)

B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

13. Assertion (A) : A change of pressure has no effect in case of the equilibrium,
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
Reason (R) : The reaction,
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is highly exothermic reaction
A. If both (A) and (R) are correct, and (R) is the correct explanation for
(A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Watch Video Solution

14. Assertion (A) : The value of K increases with increase in temperature in case of endothermic reaction

Reason (R) : The increase in temperature shifts the equilibrium in the backward direction in case of exothermic reaction.
A. If both (A) and (R) are correct, and (R) is the correct explanation for

(A)

B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: D

15. Assertion (A) : Greater the value of K, more is the fraction of initial concentration of reactants converted to products at equilibrium.

Reason (R) : The value of K depends on the initial concentration of reactants.
A. If both (A) and (R) are correct, and (R) is the correct explanation for

(A)

B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

1. A reaction attains equilibrium, when the free energy change is
A. (a) 1
B. (b) 2
C. (c) 3
D. (d) 0

Answer: D

- Watch Video Solution

2. For a homogeneous chemical reaction, $K_{p}=K_{c}$ when
A. $\Delta n=0$
B. $\Delta n=1$
C. $\Delta n=2$
D. $\Delta n=\infty$

- Watch Video Solution

3. For the reaction $A+B \Leftrightarrow C$, the rate constants for the forward and the reverse reactions are 4×10^{2} and 2×10^{2} respectively. The value of equilibrium constant K for the reaction would be
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

4. The equilibrium constant for the reactions
$A+B \Leftrightarrow A B$ is 0.5 at $200 K$. The equilibrium constant for the reaction
$A B \Leftrightarrow A+B$ would be
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

5. One mole of ethanol is treated with one mole of ethanoic acid at $25^{\circ} \mathrm{C}$.

Half of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

6. In the reaction $A+B \Leftrightarrow A B$, if the concentration of A and B is increased by a factor of 2 , it will cause the equilibrium concentration of $A B$ to change to
A. Two times to original value
B. Three times to original value
C. Same
D. Zero

Answer: A

7. At equilibrium, the value of equilibrium constant K is
A. 1
B. 2
C. 3
D. 0

Answer: A

-
 Watch Video Solution

Exercises (Fill In The Blanks)

1. At equilibrium stage, the rate of forward reaction is \qquad to the rate of backward reaction.
2. The equilibrium constant does not depends on the initial concentrations of the reactants but depends on of various reactants and products at \qquad

- Watch Video Solution

3. In the reaction $2 \mathrm{NO}(g) \Leftrightarrow N_{2}(g)+\mathrm{O}_{2}(g)$, the values of K_{c} and K_{p} are at a given temperature.

- Watch Video Solution

4. Number of moles when divided by the total volume in litre gives of the respective species.

- Watch Video Solution

5. The equilibrium state is attained when the reversible reaction is carried out in a............ space.

- Watch Video Solution

6. The chemical equilibrium is \qquad in nature.

- Watch Video Solution

7. A catalyst \qquad the equilibrium state but helps to attain in lesser time.

- Watch Video Solution

8. The equilibrium concentration of x, y and z are 4,2 and $2 \mathrm{~mol}^{-1}$, respectively, at equilibrium of the reaction $2 x+y \Leftrightarrow z$. The value of K_{c} is
9. At equilibrium , the amount of each constituent of reaction mixture becomes \qquad

Watch Video Solution

10. The equilibrium constant has no unit if $\Delta n=$ \qquad

- Watch Video Solution

11. The relation between K_{p} and K_{c} of a reversible reaction at constant temperature is $K_{p}=$ \qquad

- Watch Video Solution

12. For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, the units of K_{p} are
13. In the reaction $A+B \Leftrightarrow C+D$, the value of equilibrium constant is 10 . If the rate constant of forward reaction is 80 , the rate constant of backward reaction is \qquad

- Watch Video Solution

14. A tenfold increase in pressure on the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ at equilibrium result in in K_{p}.

- Watch Video Solution

15. The equilibrium constant for the reaction $2 A+2 B \Leftrightarrow 2 C+2 D$ is 200 .

The equilibrium constant for the reaction $A+B \Leftrightarrow C+D$, at the same temperature is \qquad
16. If the activation energies of the forward and backward reactions of a reversible reaction are $E_{a}(f)$ and $E_{a}(b)$, respectively. The ΔE of the reaction is \qquad

- Watch Video Solution

17. If the value of equilibrium constant is large, Are more stable.

- Watch Video Solution

18. The magnitude of equilibrium constant is a measure of to which the reversible reaction proceeds in a particular direction at a given \qquad

- Watch Video Solution

19. Le Chatelier's principle is applicable to both and equilibria.
20. Low temperature is favourable for reactions.

- Watch Video Solution

21. Low pressure is favourable for those reversible reactions in which there is in the number of molecules.

- Watch Video Solution

22. If the temperature of the system at equilibrium is increased, the equilibrium will shift in the direction which \qquad heat.

- Watch Video Solution

23. An endothermic reaction which proceeds with decrease in volume will give maximum yield of the products at and \qquad

- Watch Video Solution

24. The formation of ammonia by Haber's process is favoured by pressure.

- Watch Video Solution

25. Low pressure favoures those reactions which occur with in the number of molecule.

- Watch Video Solution

26. For a system of gases $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D at equilibrium $A+2 B \Leftrightarrow C+3 D$, the partial pressures are found to be $A=2.0, B=2.0, C=3.0$, and
$D=5.0 \mathrm{~atm}$. The value of equilibrium constant is

- Watch Video Solution

27. $A+B \Leftrightarrow C+D$

If initially the concentration of A and B are both equal but at equilibrium concentration of D will twice that of A, then what will be the equilibrium constant of the reaction?

- Watch Video Solution

28. For reaction $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g}), K_{c}$ is 30 at 300 K . The value of K_{p} at $300 K$ is

- Watch Video Solution

29. The equilibrium constant for the reaction
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ is:
30. The vapour density of Pcl_{5} is 104.16 but when heated to $230^{\circ} \mathrm{C}$, its vapour density is reduced to 62 . The degree of dissociation of PCl_{5} at $230^{\circ} \mathrm{C}$ is \qquad

- Watch Video Solution

31. In line kilns, the following reaction,
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
proceeds to completion because of

- Watch Video Solution

32. The degree of dissociation of PCl_{5} will be more at pressure.
33. When the system $2 \mathrm{HI}(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$ is at equilibrium, inert gas is introduced. Dissociation of HI is \qquad

- Watch Video Solution

34. When a product is removed from the system which is at equilibrium reaction is favoured.

- Watch Video Solution

35. The melting of ice is favoured by pressure and temperature.

- Watch Video Solution

Exercises (True/False)

1. The dissociation of CaCO_{3} is suppressed at high pressure
2. More of SO_{3} decompose at low temperature.

- Watch Video Solution

3. Addition of inert gas to system at equilibrium changes only K_{p} not K_{c}.

- Watch Video Solution

4. The melting of ice in water decreases with increase in pressure.

- Watch Video Solution

5. The evaporation of liquid with increase in pressure.
6. If equilibrium constant for the reaction
$A_{2}+B_{2} \Leftrightarrow 2 A B$ is k, then for the backward reaction $A B \Leftrightarrow 1 / 2 A_{2}+1 / 2 B_{2}$ the equilibrium constant k^{\prime} is $1 / K$.

- Watch Video Solution

7. K_{p} is equal to K_{c} if Δn is positive.

- Watch Video Solution

8. The value K_{c} of a reaction has a higher value at higher temperature.

The reaction is exothermic in nature.

- Watch Video Solution

9. The reaction having higher value of equilibrium constant is faster than the reaction having lower value of equilibrium constant.(T/F)
10. Ammonium chloride dissociates as,
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
The vapour density becomes half the initial value when degree of dissociation is 0.5 .

- Watch Video Solution

11. The low of mass action applicable to heterogenous equilibria.

- Watch Video Solution

12. Equilibrium can be achieved only in an open vessel. (T/F)

- Watch Video Solution

13. The solubility of sodium hydroxide increases with increase of temperature.

- Watch Video Solution

14. The degree of dissociation of PCl_{5} decreases with increase in pressure.

Watch Video Solution

15. High pressure and low temperature are favourable conditions for the synthesis of ammonia.

- Watch Video Solution

16. An endothermic reaction proceeds faster in the forward reaction with decrease in temperature.
17. A catalyst increases the rate of forward reaction and decrease the rate of backwark reaction.

- Watch Video Solution

18. The value of K does not depends upon pressure.

- Watch Video Solution

19. For any reaction, greater the value of equilibrium constant greater is the extent of reaction.
20. Solid \Leftrightarrow liquid equilibrium can be achieved only at melting point of the substance.

- Watch Video Solution

21. Assertion : The additions of an inert gas at constant volume to a system at equilibrium does not affect the state of equilibrium Reason: The inert gas does not react with any of the reactants or products.

- Watch Video Solution

22. For a reversible system at a constant temperature, the value of K_{c} increases if the concentrations are changed at equilibrium.

- Watch Video Solution

23. The equilibrium constant is 10 at 100 K . Hence, ΔG will be negative.

- Watch Video Solution

24. Unit of K_{p} is $(a t m)^{\Delta n}$

- Watch Video Solution

25. The value of equilibrium constant is independent of the speed with which the equilibirum is attained.

- Watch Video Solution

26. In Haber's process, once the equilibrium is established, addition of nitrogen decreases the yield of ammonia.
27. At chemical equilibrium, the concentration of all reactants and products are equal

- Watch Video Solution

28. The equilibrium state can be attained from both sides of the chemical reaction.

- Watch Video Solution

29. A reaction continues even after the attainment of equilibrium.

- Watch Video Solution

30. The equilibrium can be attained at a faster rate if one of the products is allowed to escape from the reaction mixture.

Archives (Multiple Correct)

1. For the gas phase reaction
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\Delta \mathrm{H}=-32.7 \mathrm{kcal})$
carried out in a vessel, the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{4}$ can be increased by
A. Increasing the temperature
B. Decreasing the temperature
C. Removing some H_{2}
D. Adding some $\mathrm{C}_{2} \mathrm{H}_{6}$

Answer: A::C::D

- Watch Video Solution

2. When NaNO_{3} is heated in a closed vessel, oxygen is liberated and NaNO_{2} is left behind. At equilibrium, which are correct
A. Addition of NaNO_{2} favours reverse reaction.
B. Addition of NaNO_{3} fovours forward reaction
C. Increasing the temperature favours forward reaction.
D. Increasing the pressure favours reverse reaction.

Answer: C::D

- Watch Video Solution

3. The equilibrium $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is attained at $25^{\circ} \mathrm{C}$ in a closed container and an inert gas, helium, is introduced. Which of the following statement is/are correct?
A. The concentrations of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ change.
B. More chlorine is formed.
C. The concentration of SO_{2} is reduced.
D. All are incorrect.

Answer: D

- Watch Video Solution

4. For the reaction $P C l_{5(\mathrm{~g})} \Leftrightarrow P C l_{3(\mathrm{~g})}+C l_{2(\mathrm{~g})}$, the forward reaction at constant temperature is favoured by
A. Introducing an inert gas at constant volume.
B. Introducing chlorine gas at constant volume,
C. Introducing an inert gas at constant pressure
D. Increasing the volume of the container.

Answer: C::D

5. For the reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
at a given temperature, the equilibrium amount of $\mathrm{CO}_{2}(\mathrm{~g})$ can be increased by
A. Adding a suitable catalyst
B. Adding an inert gas
C. Decreasing the volume of the container
D. Increasing the amount of $C O(g)$

Answer: D

- Watch Video Solution

6. The equilibrium $2 \mathrm{Cu}^{I} \Leftrightarrow \mathrm{Cu}+\mathrm{Cu}^{I I}$

In aqueous medium at $25^{\circ} \mathrm{C}$ shifts towards the left in the presence of
A. $\mathrm{NO}_{3}{ }^{\ominus}$
B. $C l^{\ominus}$
C. $S C N^{\ominus}$
D. $C N^{\ominus}$

Answer: B::C::D

- Watch Video Solution

Archives (Single Correct)

1. For the reaction $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \Leftrightarrow 2 \mathrm{HI}(g)$, the equilibrium constant changes with:
A. Total pressure
B. Catalyst
C. The amounts of H_{2} and I_{2} present
D. Temperature

Answer: D

- Watch Video Solution

2. Pure ammonia is placed in a vessel at a temperature where its dissociation constant (α) is appreciable. At equilibrium,
A. K_{p} does not change significantly with pressure
B. α does not change with pressure
C. The concentration of NH_{3} does not change with pressure.
D. The concentration of hydrogen is less than that of nitrogen.

Answer: A

D Watch Video Solution

3. An example of a reversible reaction is
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{NaI}(a q) \rightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{NaNO}_{3}(a q)$
B. $\mathrm{AgNO}(3)(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{HNO}_{3}(a q)$
C. $2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(\mathrm{~g})$
D. $\mathrm{KNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow \mathrm{Kcl}(a q)+\mathrm{NaNO}_{3}(a q)$

Answer: D

- Watch Video Solution

4. One "mole" of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at 100 K is kept in a closed container at 1.0 atm pressure. It is heated to 400 K , where 30% by mass of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to $\mathrm{NO}_{2}(g)$. The resultant pressure will be
A. 1.2 atm
B. 2.4 atm
C. 2.0 atm
D. 1.0 atm

- Watch Video Solution

5. For the chemical reaction

$$
3 X(g)+Y(g) \Leftrightarrow X_{3} Y(g)
$$

the amount of $X_{3} Y$ at equilibrium is affected by
A. Temperature and pressure
B. Temperature only
C. Pressure only
D. Temperature, pressure, and catalyst

Answer: A

- Watch Video Solution

6. For the reversible reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when the partial pressure is measured in atmophere. The corresponding value of K_{c} with concentration in $\mathrm{mol} L^{-1}$ is
A. $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
B. $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
C. $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{2}}$
D. $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$

Answer: D

Watch Video Solution

7. When two reactants A and B are mixed to give products C and D, the reaction quotient Q at the initial stages of the reaction
A. Is zero
B. Decreases with time
C. Is independent of time
D. Increases with time

Answer: D

D Watch Video Solution

8. At constant temperature, the equilibrium constant $\left(K_{P}\right)$ for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$, is expressed by $K_{p}=\frac{\left(4 x^{2} p\right)}{\left(1-x^{2}\right)}$
where $p=$ pressure,$x=$ extent of decomposition .which one of the following statements is true?
A. K_{p} increases with increase in p.
B. K_{p} increases with increase in x.
C. K_{p} increases with decrease in x .
D. K_{p} remains constant with change in p and x

Answer: D

D Watch Video Solution

9. Consider the following equilibrium in a closed container,

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

At a fixed temperature, the volume of the reaction container is halved.

For this change which of the following statements holds true regarding the equilibrium constant $\left(K_{p}\right)$ and degree of dissociation (α) ?
A. Neither K_{p} nor α changes
B. Both K_{p} and α change
C. K_{p} changes but α does not change
D. K_{p} does not change but α changes

Answer: D

- Watch Video Solution

Archives (Fill In The Blanks)

1. For a given reversible reaction at a fixed temperature, equilibrium constants K_{p} and K_{c} are related by

- Watch Video Solution

2. A 10-fold increase in pressure on the reaction

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)
$$

at equilibrium results in in K_{p}.
3. For a gaseous reaction $2 B \rightarrow A$, the equilibrium constant K_{p} is \ldots. to/ than K_{c}.

- Watch Video Solution

Archives (True/False)

1. When a liquid and its vapour are at equilibrium and the pressure is suddenly decreased, cooling occurs.

- Watch Video Solution

2. If equilibrium constant for the reactions.
$A_{2}+B_{2} \Leftrightarrow 2 A B$,
is K , then the backward reactions.
$A B \Leftrightarrow \frac{1}{2} A_{2}+\frac{1}{2} B_{2}$.
its value is $1 / K$. Is it true or false? If false then write the correct constant.
3. Catalyst makes a reaction more exothermic.

- Watch Video Solution

4. The rate of an exothermic reactions increases with increase in temperature.

- Watch Video Solution

Archives (Subjective)

1. One mole of nitrogen is mixed with three moles of hydrogen in a 4 litre container. If 0.25 per cent of nitrogen is converted into ammonia by the following reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
calculate the equilibrium constant of the reaction in concentration units.

What will be the value of K for the following reaction?
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})$

- Watch Video Solution

2. 1 mole of N_{2} and 3 moles of PCl_{5} are placed in a 100 litre vessels heated at $227^{\circ} \mathrm{C}$ the equilibrium pressure is 2.05 atm Assuming ideal behaviour,Calculate degree of dissociation of PCl_{5} and K_{p} for the reaction
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

- Watch Video Solution

3. The equilibrium constant of the reaction
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$
at $100^{\circ} \mathrm{C}$ is 50 . If a 1 L flask containing 1 mol of A_{2} is connected to a 2 L flask containing 2 mol of B_{2}, how many moles of $A B$ will be formed at 373K?
4. At a certain temperature, equilibrium constant $\left(K_{c}\right)$ is 16 for the reaction:
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
If we take 1 mol of each of the four gases in a 1 L container, what would be the equilibrium concentrations of NO and NO_{2} ?

- Watch Video Solution

5. $\mathrm{N}_{2} \mathrm{O}_{4}$ is 25% dissociated at $37^{\circ} \mathrm{C}$ and 1atm. Calculate K_{p}

- Watch Video Solution

6. For the reaction
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Hydrogen gas is introduced into a five-litre flask at $327^{\circ} \mathrm{C}$, containing 0.2 mol of $C O(\mathrm{~g})$ and a catalyst, untill the pressure is 4.92 atm . At this point,
0.1 mol of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ is formed. Calculate the equilibrium constants K_{p} and K_{c}.

- Watch Video Solution

7. 0.15 mol of $C O$ taken in a 2.5 L flask is maintained at 750 K alongwith a catalyst so that the following reaction can take place $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$. Hydrogen is introduced unit the total pressure of the system is 8.5 atm at equilibrium and 0.08 mol of methanol is formed. Calculate
a. K_{p} and K_{c}
b. The final pressure if the same amount of CO and H_{2} as brfore is used but no catalyst so that the reaction does not take place.

- Watch Video Solution

8. The progress of the reaction $A \Leftrightarrow n B$ with time is persented in the figure given below:

Determine
a. The value of n.
b. The equilibrium constant K .
c. The initial rate of concentration of A .

- Watch Video Solution

9. The degree of dissociation is 0.4 at 400 K and 1.0 atm for the gaseous reaction
$P C l_{5} \Leftrightarrow P C l_{3}+\mathrm{Cl}_{2}$
assuming ideal behaviour of all gases, calculate the density of equilibrium
mixture at 400 K and 1.0 atm (relative atomic mass of P is 31.0 and of Cl is 35.5).

- Watch Video Solution

10. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a two-litre evacuated flask at $27^{\circ} \mathrm{C}, 30 \%$ of the solid decomposes into gaseous ammonia and hydrogen sulphide. (i) Calculate K_{c} and K_{p} for the reaction at $27^{\circ} \mathrm{C}$. (ii) What would happen to the equilibrium when more solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into the flask?

- Watch Video Solution

11. In the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
When 5 mol of each is taken and the temperature is kept at 298 K , the total pressure was found to be 20 bar.

Given : $\Delta_{f} G_{n_{2} \mathrm{O}_{4}}^{\ominus}=100 \mathrm{~kJ}, \Delta_{f} G_{\mathrm{NO}_{2}}^{\ominus}=50 \mathrm{KJ}$
a. Find ΔG^{\ominus} of the reaction at 298 K .
b. Find the direction of the reaction.

- Watch Video Solution

Subjective type

1. The equilibrium constant K_{p} of the reaction: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is $900 \mathrm{~atm}^{-1}$ at 800 K . A mixture constaining SO_{3} and O_{2} having initial pressure of 1 atm and 2 atm respectively, is heated at constant volume to equilibriate. Calculate the partial pressure of each gas at 800 K at equilibrium.

- Watch Video Solution

