

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (ENGLISH)

HYDROGEN, WATER AND HYDROGEN PEROXIDE

Illustration

1. Comment on the reactions of dihydrogen with (a) chlorine,(b) sodium and (c) copper (II) oxide.

- **2.** a. Would you expect the hydrides of N,O and F to have lower boiling points than the hydrides of their subsequent group members? Give reason.
- b. Can phosphorous with outer electronic configuration $3s^23p^3$ form PH_5 ?
- c. How many hydrogen-bonded water molecules(s) are associated with $CuSO_4.5H_2O$?

Why?

- **3.** a. Which isotpe of hydrogen is used as a tracer in organic reactions.?
- b.Concentrated H_2SO_4 cannot be used for drying H_2 .

c. The electrolysis of water of manufactures H_2 gas is always carried out in presence of acid (H_2SO_4) or alkali (KOH), yet no SO_4^{2-} or K^\oplus are discharged. Why?

Watch Video Solution

4. a. A solution of ferric chloride acidified with HCl is unaffacted when hydrogen is bubbled through it, but gets reduced when zinc is added to acidified solution. Explain. b. When sodium hydride in fused state is electrolysed, hydrogen is discharged at the anode. Explain.

5. In the laboratory, for the preparation of dihydrogen gas form granular zinc, conc H_2SO_4 ,and HNO_3 cannot be used. Why? Which is the most suitable acid?

Watch Video Solution

6. A sample of hard water contains 1 mg $CaCl_2$ and 1 mg $MgCl_2$ per litre. Calculate the hardness of water in terms of $CaCO_3$ present in per 10^6 parts of water.

A. 2.5ppm

 $\mathsf{B.}\ 1.95ppm$

 $\mathsf{C}.\ 2.15ppm$

D. 195ppm

Answer: B

- **7.** A water sample is found to contain 96 ppm of SO_4^{2-} and 122 ppm of $HCO+3^{\Theta}$ with Ca^{2-} ion as the only cation.
- (a). Calculate the ppm of Ca^{2+} in water.

Watch Video Solution

8. Hardness of water is 200 ppm. The normality and molarity of $CaCO_3$ in the water is

(a). $2 imes10^{-6}ig(N, 2 imes10^{-6}M$

(b).
$$4 \times 10^{-2} N$$
, $2 \times 10^{-2} M$

(c).
$$4 \times 10^{-3} N$$
, $2 \times 10^{-3} M$

(d).
$$4 \times 10^{-1} N$$
, $2 \times 10^{-1} M$

A.
$$2 imes10^{-6}N$$
, $2 imes10^{-6}M$

B.
$$4 imes 10^{-2} N$$
, $2 imes 10^{-2} M$

C.
$$4 imes10^{-3}N, 2 imes10^{-3}M$$

D.
$$4 \times 10^{-1} N$$
, $2 \times 10^{-1} M$

Answer: C

Watch Video Solution

9. A sample of hard water contains 122 ppm of HCO_3^{Θ} ions. What is the minimum weight of CaO required to

remove ions completely from 1 kg of such water sample?
(a). 56 mg
(b). 112 mg
(c). 168 mg
(d). 224 mg
A. $56mg$
B. $112mg$
C. $168mg$
D. $244mg$
Answer: A
Watch Video Solution

10. 25mL sample of distilled water, tap water and boiled water required, respectively, 1mL, 13mL and 5mL of soap solution to form permanent lather. The ratio of permanent to temprorary hardness in the tap water is

- A. 3:2
- B.2:3
- C. 1: 2
- D. 2:1

Answer: C

11. $0.0093gofNa_2H_2EDTA.2H_2O$ is dissolved in 250mLof aqueous solution. A sample of hard water containing Ca^{2+} and Mg^{2+} ions is titrated with the above EDTAsolution using a buffer of $NH_4OH + NH_4Cl$ using eriochrome balck-T as indicator. 10mL of the above EDTA solution requires 10mL of hard water at equivalent point, another sample of hard water is titrated with 10mL of above EDTA solution using KOHsolution (pH = 12). using murexide indicator, it requires 40mL of hard water at equivalence point.

a. Calculate the ammount of Ca^{2+} and Mg^{2+} present in 1L of hard water.

b. Calculate the hardness due to Ca^{2+} , mG^{2+} ions and the total hardness of water in p p m of $CaCO_3$. (Given

MW(EDTA

sal

t)=372

g

 $mol^{-1}, MW(CaCO_3) = 100gmol^{-1}$)

Watch Video Solution

12. A 50 mL sample of hard water containing Ca^{2+} and Mg^{2+} ions is titrated with 50 mL 0.005 M EDTA solution at pH=10, using eriochrome black-T indicator to reach equivalence point.

In an equal another amount of hard water sample, Mg^{2+} ions are precipitated as $Mg(OH)_2$ by adding suitable amount of NaOH. The solution after precipitation of $Mg(OH)_2$, is stirred and then titrated with EDTA solution using calcon as indicator, and it requires 10 " mL of " above EDTA solution to reach equivalence point.

(a). Calculate the strength of $Ca^{2\,+}$ and $Mg^{2\,+}$ ions present in hard water.

(b). Calculate the hardness due to Ca(2+) ions in ppm of $CaCO_3$.

(c). Calculate the hardness due to $Mg^{2\,+}$ ions in ppm of $CaCO_3$.

(d) Calculate the total hardness of water in ppm of $CaCO_3$.

13. 100 mL sample of hard water is titrated with 500 " mL of " 0.001 M EDTA solution at pH=10, using eriochrome black-T indicator to reach equivalence point. An equal another amount of hard water sample is boiled for 30

min. After filtration and cooling, the same sample is titrated with 200 " mL of " 0.011 M EDTA solution at pH=10 using Mg-EDTA complex solution and erichrome black-T indicator to reach equivalence point.

(i). Calculate the total hardness of water sample (temporary + permanent) in ppm of $CaCO_3$.

14. Can sodium bicarbonate make water hard?

15. a. Water extinguishes most fires, but it does not extinguish petrol fires. Explain.

b. Soft water lathers with soap, but not hard water. Why?

16. a. A small amount of acid or alkali is added before electrolysis of water. Why?

b. What happens when:

- i. Hydrolith is treated with water.
- ii. Heavy water reacts with aluminium carbide.

17. How many types of heavy water are possible? Write down formulae of all possible heavy water molecules.

Valcii Video Solution

18. Calculate (a) normality (b) molarity (c) strength in gL^{-1} and (d) percentage strength of 10 volume strength of H_2O

19. Calculate the number of moles and weight of ${\cal O}_2$ produced on heating 1.12 L of 10 volume strength of $H_2{\cal O}_2$ at STP.

20. 10 ml of H_2O_2 liberates 12.7g of iodine from an acidic KI solution. Calculate (a) normality, (b) molarity, (c) volume strength. (d) Strength and (c) percentage strength of H_2O_2 .

Watch Video Solution

21. A solution of $K_2cr_2O_7$ contanining $4.9gL^{-1}$ is used to tirate H_2O_2 solution contaning $3.4gL^{-1}$ in acidic medium. What volume of $K_2Cr_2O_7$ will be required to react with 20mL of H_2O_2 solution ? Also calculate the strength of H_2O_2 in terms of available oxygen.

22. When 25 " mL of " an aqueous solution of H_2O_2 is titrated with an excess of KI solution in dilute H_2SO_4 , the liberated I_2 required 20 " mL of " 0.3 N $Na_2S_2O_3$ solution for complete reaction.volume strength of H_2O_2 solution.

Watch Video Solution

23. Calculate the volume strength of H_2O_2 solution if 50mL of H_2O_2 solution is diluted with 50mL of H_2O . 20mLofthisdiluted solution required <math>40mLof M//60 K_(2)Cr_(2)O_(7) solution $\in presence of H_(2)O_(2)$ for complete reaction.

24. 100 mL of ozone (O_3) at STP were passed through 100 mL of 10 volume H_2O_2 solution. What is the volume strength of H_2O_2 after the reaction?

Watch Video Solution

25. 5.1 g sample of H_2O_2 solution containg $x\ \%\ H_2O_2$ by weight requires x mL of $K_2Cr_2O_7$ solution for complete oxidation under acidic condition. What is the molarity of $K_2Cr_2O_7$ solution?

26. 200 mL of acidified 3 N H_2O_2 is reacted with $KMnO_4$ solution till there is a light tinge of purple colour. Calculate the volume of O_2 produced at STP.

Watch Video Solution

27. a. When H_2O_2 is added to blood, rapid evolution of a gas occures. Why ?

b. Hydrogen peroxide acts both as an oxidising and as a reducing agent in alkaline solution towards certain first row transition metal ions. Illustration both these properties of H_2O_2 using chemical equations.

28. What happens when:

- a. Chromium hydroxide is treated with hydrogen peroxide in the presence of sodium hydroxide.
- b. Hydrogen peroxide is added to ferrous ammonium sulphate solution.
- c. hydrogen peroxide is added to acidified potassium permanganate.
- d. An alkaline solution of potassium ferricyanide is reacted with H_2O_2 .

Watch Video Solution

29. There are three samples of H_2O_2 labelled as $10vol,\,15vol,\,20vol.$ Half liter of each sample are mixed

and then diluted with equal volume of water. Calculate the volume strength of resultant solution.

Watch Video Solution

Solved Examples

1. $5.0cm^3$ of H_2O_2 liberates 0.508 g of iodine from an acidified KI solution. The strength of H_2O_2 solution in terms of volume strenth at STP is

Watch Video Solution

2. To a 25 mL H_2O_2 solution excess of an acidified solution of

potassium iodide was added. The iodine liberated required 20 mL of 0.3 N sodium thiosulphate solution Calculate the volume strength of H_2O_2 solution.

3. Element (A) burns in nitrogen to give an ionic compound, (B) reacts with water to give (C) and (D). A solution of (C) becomes milky on bubbling carbon dioxide. Idendity (A),(B),(C) and (D)

4. Calculate the volume of 10 volume H_2O_2 solution that will react with $200mLof2NKMnO_4$ in acidic medium.

- **5.** An aqueous compound of an inorganic compound (X) shows the following reactions:
- a. it decolourises and acidified $KMnO_4$ solution accompanied by the evolution of oxygen.
- b. it liberates I_2 from an acidified KI solution.
- c. It gives a brown precipitate with alkaline $KMnO_4$ solution with evolution of oxygen.
- d. It removes black stains from old oil paintings. Identify (X) and give chemical equtions for the reaction at steps
- (a) to (d).

6. 3.4g sample of H_2O_2 solution containing $x\ \%\ H_2O_2$ by weight requires $xmLofaKMnO_4$ solution for complete oxidation under acidic condition. The normality of $KMnO_4$ solution is

- A. 1N
- B.2N
- $\mathsf{C.}\,3N$
- D.0.5N

Answer: B

7. If 100mL of acidified $2NH_2O_2$ is allowed to react with $KMnO_4$ solution till there is light tinge of purples colour, the volume of oxygen produced at STP is :

- $\mathsf{A.}\ 2.24L$
- B. 1.12L
- $\mathsf{C}.\,3.36L$
- D. 4.48L

Answer: A

8. Calcium burns in nitrogen to produce a white powder which dissolves in sufficient water to produce a gas (A) and alkaline solution. The solution on exposure to air produce a thin solid layer of (B) on the surface. Identity the compound (A) and (B)

Watch Video Solution

Ex 3 1

1. If water contains 10ppm of $MgCl_2$ and $8ppmofCaSO_4$ calculate the $ppmofCaCO_3$

2. 100 " mL of " tap water was titrated with $\frac{M}{50}$ HCl with methyl orange as indicator if 30 " mL of " HCl were required, calculate the hardness of $CaCO_3$ per 10^6 parts of water. The hardness is temporary.

Watch Video Solution

3. In the determination of hardness of a sample of water, the following results were obtained:

Volume of sample $H_2O=100mL$

volume of $N/50Na_2CO_3$ added to it $\ = 20mL$

volume of $N/50H_2SO_4$ used to back titrate the

unreacted $Na_{2}CO_{3}=10mL$

Calculate the hardness of water in gL^{-1}

4. An exhausted zeolite bed was revived by 250 L of NaCl solution containing $50gL^{-1}$ of NaCl solution. How many litres of hard water of hardness 250 ppm can be softened on the zeolite bed?

Ex 3 2

1. What is understood by 'Water gas shift reaction'? Discuss its use for the preparation of hydrogen.

2. Hydrogen forms compounds with elements having atomic numbers 9, 11, 12 and 17. Mention their chemical formulae and compare their chemical behaviour.

Watch Video Solution

3. What are metallic/interstitial hydrides ? How do they differ form molecular hydrides ?

Watch Video Solution

4. Complete the following reactions :

$$CaO(s) + H_2O(l)
ightarrow$$

5. Explain, why hydrogen peroxide is stored in coloured/plastic bottles.

6. Describe the industrial applications of hydrogen which depend on the heat liberated when its atoms are made to combine on the surface of a metal,

7. How would you prepare

dihydrogen from water by using a reducing agent?

Watch Video Solution

8. Complete the following equations:

$$Fe(s) + H_2O(g)
ightarrow$$

Watch Video Solution

9. Discuss the importance of heavy water in nuclear reactors.

10. How is heavy water prepared from ordinary water ?

Discuss its important physical and chemical properties.

Watch Video Solution

11. Explain, why water has high boiling and melting points as compared to H_2S .

Watch Video Solution

12. Distinguish clearly between

hard and soft water

13. Explain the correct context in which the following terms are used:

Diprotium

Watch Video Solution

14. Is it correct to say that hydrogen can behave as a metal? If it is correct, mention the conditions under which such behaviour is possible.

Watch Video Solution

15. What is importance of the heavier isotopes of hydrogen?

16. Does hydrogen show allotropy? How many allotropes of dihydrogen are known and what is their importance?

17. What is understood by 'hydrogen gap'?

18. Hydrogen forms three types of bonds in its compounds. Giving suitable examples, explain each type of bonding.

19. Elements with atomic numbers 17 and 20 form compounds with hydrogen. Write the formula of these two compounds and compare their chemical behaviour in water.

Watch Video Solution

20. Complete the following reactions.

a.
$$CaO_{\,(\,s\,)}\,+H_{2\,(\,g\,)}\,
ightarrow\,,$$
 $b.$ $CO_g+H_{2\,(\,g\,)}\,
ightarrow\,$

21. Describe some unusual properties of water.
Watch Video Solution
22. What is the difference between the terms 'hydrolysis' and 'hydration'?
Watch Video Solution
23. What is meant by hydrogenation?
Watch Video Solution
24. What are tHe advantages in using hydrogen as a fuel ?

25. Why are ionic hydrides frequently used to remove traces of water from organic compounds?

26. Although D_2O resembles H_2O chemically, yet it is a toxic substance. Explain

27. Why do lakes freeze from top towards bottom?

Water video Solution

28. Why is ice less dense than water and what kind of attractive forces must be overcome to melt ice?

Watch Video Solution

- **29.** A white solid is either Na_2O or Na_2O_2 . A piece of red litmus paper turns white when it is dipped into a freshly made aqueous solution of the white solid.
- a. Identify the substance and explain the balanced equation.
- b. Explain what would happen to the red litmus if the

white solid

were the other compound.

Watch Video Solution

30. Explain the following.

a. Hydrated barium peroxide is used in the preparation of H_2O_2 instead of anhydrous barium peroxide.

b. Phosphoric acid is preferred to sulphuric acid in the preparation of H_2O_2 from barium peroxide..

Watch Video Solution

31. An element has the minimum and maximum oxidation states as -X and +X respectively. It does not have the

possibility of undergoing disproportionation in any of its compounds. What is the value of X?

Watch Video Solution

32. Give reason for the following

a. The process $\frac{1}{2}H_{2\,(g)}+e^{\,\Theta} o H_{(g)}^{\,\Theta}$ is endothermic, yet ionic hydrides are known.

b. A mixture of hydrazine and $H_2{\cal O}_2$ with Cu(II) catalyst is used as a rocket propellant.

c. It is possible to remove completely the temporary hardness caused due to $Mg(HCO_3)_2$ by boiling.

Watch Video Solution

33. The degree of hardness of a given sample of hard water is 40ppm. If the entire hardness is due to $MgSO_4$, how much of $MgSO_4$ is present per kg of water?

Watch Video Solution

34. 34 g of H_2O_2 is present in 1120 " mL of " solution. This solution is called

- A. 10vol
- B. 20vol
- $\mathsf{C.}\ 34vol$
- D. 32vol

Answer: A

Watch Video Solution

35. A 5.0 mL solution of H_2O_2 liberates 1.27 g of iodine from an acidified KI solution. The percentage strenth of H_2O_2 is

- A. 11.2
- B.5.6
- C. 1.7
- D. 3.4

Answer: D

watch video Solution

36. 100 mL of ozone (O_3) at STP were passed through 100 mL of 10 volume H_2O_2 solution. What is the volume strength of H_2O_2 after the reaction?

- A. 9.5
- B. 9.0
- C.4.75
- D. 4.5

Answer: A

Watch Video Solution

1. H_2O_2 is reduced rapidly by Sn^{2+} . H_2O_2 is decomposed slowly at room temperature to yeild O_2 and H_2O . 136g of $10\,\%$ by mass of H_2O_2 in water is treated with 100mL of $3MSn^{2+}$ and then a mixture is allowed to stand until no further reaction occurs. The reactions involved are:

$$2H^{\,\oplus}\,+H_2O_2+Sn^{2\,+}\, o Sn^{4\,+}\,+2H_2$$

$$2H_2O_2
ightarrow 2H_2O+O_2$$

The equivalent of H_2O_2 reacted with $Sn^{2\,+}$ is

A. 0.2

B. 0.3

 $\mathsf{C}.\,0.4$

D. 0.6

Answer: D

2. H_2O_2 is reduced rapidly by Sn^{2+} . H_2O_2 is decomposed slowly at room temperature to yeild O_2 and H_2O . 136g of 10~% by mass of H_2O_2 in water is treated with 100mL of $3MSn^{2+}$ and then a mixture is allowed to stand until no further reaction occurs. The reactions involved are:

$$2H^{\,\oplus}\,+H_2O_2+Sn^{2\,+}\, o Sn^{4\,+}\,+2H_2$$

$$2H_2O_2
ightarrow 2H_2O+O_2$$

The equivalent of H_2O_2 reacted with Sn^{2+} is

A.0.1

B. 0.2

C. 0.3

D.0.4

Answer: B

Watch Video Solution

3. H_2O_2 is reduced rapidly by Sn^{2+} . H_2O_2 is decomposed slowly at room temperature to yeild O_2 and H_2O_2 . 136g of $10\,\%$ by mass of H_2O_2 in water is treated with 100mL of $3MSn^{2+}$ and then a mixture is allowed to stand until no further reaction occurs. The reactions involved are:

$$2H^{\oplus}+H_2O_2+Sn^{2+}
ightarrow Sn^{4+}+2H_2 \ 2H_2O_2
ightarrow 2H_2O+O_2$$

The volume strength of H_2O_2 left after reacting with $Sn^{2\,+}$

A. 1.12V

 $\mathsf{B.}\ 11.2V$

 $\mathsf{C.}\ 2.24V$

D. 22.4V

Answer: B

Watch Video Solution

decomposed slowly at room temperature to yeild O_2 and H_2O_2 . 136g of $10\,\%$ by mass of H_2O_2 in water is treated

4. H_2O_2 is reduced rapidly by Sn^{2+} . H_2O_2 is

with 100mL of $3MSn^{2\,+}$ and then a mixture is allowed to stand until no further reaction occurs. The reactions involved are:

$$2H^{\,\oplus}\,+H_2O_2+Sn^{2\,+}\, o Sn^{4\,+}\,+2H_2$$

$$2H_2O_2
ightarrow 2H_2O+O_2$$

Calculate the volume of O_2 produced at $27^{\circ}\,C$ and 1 atm after H_2O_2 is reacted with 'Sn^(2+) and the mixture is allowed to stand.

A. 2.46L

 $\mathsf{B.}\,4.92L$

 $\mathsf{C}.\,1.23L$

D. 7.38L

Answer: C

5. Hydrogen accounts for approximately $75\,\%$ of the mass of the universe. Hydrogen serves as the nuclear fuel of our Sun and other stars, and these are mainly composed of hydrogen. On the earth, though hydrogen is rarely found in the uncombined state. Since the earth's gravity is too weak to hold such light molecules, nearly all the H_2 originally present in the earth's atmosphere has been lost to space. In the earth's crust and oceans, hydrogen is found in water, petroleum, proteins, carbohydrates and other compounds and it is the ninth most abundant element on a mass basis. Hydrogen has three isotopes: hydrogen or protium (H), deuterium or heavy hydrogen (D or), tritium $(T ext{ or })$. The physical properties of the

three isotopes are different due to the difference in their masses, i.e. isotope effect. The chemical properties of the three isotopes are similar as they have the same electronic configuration. Reaction between hydrogen and oxygen is highly exothermic, and gas mixtures that contain as little as $4\,\%$ by volume hydrogen in oxygen (or in air) are highly flammable and potentially explosive.

$$2H_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,,\Delta H^{\,\Theta}\,=\,-\,485kJmol^{\,-\,1}$$

As hydrogen is environmentally clean it is an enormously attractive fuel. 'Hydrogen economy' is an emerging field in which it is thought that our energy needs can be met by gaseous, liquid and solid hydrogen. As hydrogen is no a naturally occurring substance such as coal, oil or natural gas, energy must be exploaded to produce hydrogen before it can be used.

If an isotope of hydrogen has one neutron in its atom, its atomic number and atomic mass will respectively be

- A. 1, 2
- B. 1, 3
- C. 1, 1
- D. 2, 1

Answer: A

Watch Video Solution

6. Hydrogen accounts for approximately $75\,\%$ of the mass of the universe. Hydrogen serves as the nuclear fuel of our Sun and other stars, and these are mainly composed of

hydrogen. On the earth, though hydrogen is rarely found in the uncombined state. Since the earth's gravity is too weak to hold such light molecules, nearly all the H_2 originally present in the earth's atmosphere has been lost to space. In the earth's crust and oceans, hydrogen is found in water, petroleum, proteins, carbohydrates and other compounds and it is the ninth most abundant element on a mass basis. Hydrogen has three isotopes: hydrogen or protium (), deuterium or heavy hydrogen (D or), tritium $(T ext{ or })$. The physical properties of the three isotopes are different due to the difference in their masses, i.e. isotope effect. The chemical properties of the three isotopes are similar as they have the same electronic configuration. Reaction between hydrogen and oxygen is highly exothermic, and gas mixtures that contain as little as 4% by volume hydrogen in oxygen (or

in air) are highly flammable and potentially explosive.

$$2H_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,,\Delta H^{\,\Theta}\,=\,-\,485kJmol^{\,-\,1}$$

As hydrogen is environmentally clean it is an enormously attractive fuel. 'Hydrogen economy' is an emerging field in which it is thought that our energy needs can be met by gaseous, liquid and solid hydrogen. As hydrogen is no a naturally occurring substance such as coal, oil or natural gas, energy must be exploaded to produce hydrogen before it can be used.

Which of the following fuel produces least environmental pollution?

A. Hydrogen

B. Coal

C. Wood

D. Gasoline

Answer: A

Watch Video Solution

7. Hydrogen accounts for approximately $75\,\%$ of the mass of the universe. Hydrogen serves as the nuclear fuel of our Sun and other stars, and these are mainly composed of hydrogen. On the earth, though hydrogen is rarely found in the uncombined state. Since the earth's gravity is too weak to hold such light molecules, nearly all the H_2 originally present in the earth's atmosphere has been lost to space. In the earth's crust and oceans, hydrogen is found in water, petroleum, proteins, carbohydrates and

element on a mass basis. Hydrogen has three isotopes: hydrogen or protium (), deuterium or heavy hydrogen (D or), tritium (T or). The physical properties of the three isotopes are different due to the difference in their masses, i.e. isotope effect. The chemical properties of the three isotopes are similar as they have the same electronic configuration. Reaction between hydrogen and oxygen is highly exothermic, and gas mixtures that contain as little as 4% by volume hydrogen in oxygen (or in air) are highly flammable and potentially explosive. $2H_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,,\Delta H^{\,\Theta}\,=\,-\,485kJmol^{\,-\,1}$ As hydrogen is environmentally clean it is an enormously attractive fuel. 'Hydrogen economy' is an emerging field in

which it is thought that our energy needs can be met by

gaseous, liquid and solid hydrogen. As hydrogen is no a

other compounds and it is the ninth most abundant

naturally occuring substance such as coal, oil or natural gas, energy must be exploaded to produce hydrogen before it can be used.

Which of the following is radioactive in nature?

- A. Hydrogen only
- B. Deutrium only
- C. Tritium only
- D. Deutrium and tritium

Answer: C

Watch Video Solution

8. Hydrogen accounts for approximately $75\,\%$ of the mass of the universe. Hydrogen serves as the nuclear fuel of our Sun and other stars, and these are mainly composed of hydrogen. On the earth, though hydrogen is rarely found in the uncombined state. Since the earth's gravity is too weak to hold such light molecules, nearly all the H_2 originally present in the earth's atmosphere has been lost to space. In the earth's crust and oceans, hydrogen is found in water, petroleum, proteins, carbohydrates and other compounds and it is the ninth most abundant element on a mass basis. Hydrogen has three isotopes: hydrogen or protium (), deuterium or heavy hydrogen (D or), tritium $(T ext{ or })$. The physical properties of the three isotopes are different due to the difference in their masses, i.e. isotope effect. The chemical properties of the

three isotopes are similar as they have the same electronic configuration. Reaction between hydrogen and oxygen is highly exothermic, and gas mixtures that contain as little as $4\,\%$ by volume hydrogen in oxygen (or in air) are highly flammable and potentially explosive.

$$2H_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,,\Delta H^{\,\Theta}\,=\,-\,485kJmol^{\,-\,1}$$

As hydrogen is environmentally clean it is an enormously attractive fuel. 'Hydrogen economy' is an emerging field in which it is thought that our energy needs can be met by gaseous, liquid and solid hydrogen. As hydrogen is no a naturally occuring substance such as coal, oil or natural gas, energy must be exploaded to produce hydrogen before it can be used.

Hydrogen, H_2 is very less abundant in the atmosphere due to

A. inflammable nature of H_2

B. weak earth's gravity which is not able to hold light H_2 molecules

C. diatomic nature of hydrogen

D. very rapid reaction between hydrogen and atmosphere oxygen

Answer: B

9. Hydrogen accounts for approximately $75\,\%$ of the mass of the universe. Hydrogen serves as the nuclear fuel of our Sun and other stars, and these are mainly composed of

hydrogen. On the earth, though hydrogen is rarely found in the uncombined state. Since the earth's gravity is too weak to hold such light molecules, nearly all the H_2 originally present in the earth's atmosphere has been lost to space. In the earth's crust and oceans, hydrogen is found in water, petroleum, proteins, carbohydrates and other compounds and it is the ninth most abundant element on a mass basis. Hydrogen has three isotopes: hydrogen or protium (), deuterium or heavy hydrogen (D or), tritium $(T ext{ or })$. The physical properties of the three isotopes are different due to the difference in their masses, i.e. isotope effect. The chemical properties of the three isotopes are similar as they have the same electronic configuration. Reaction between hydrogen and oxygen is highly exothermic, and gas mixtures that contain as little as 4% by volume hydrogen in oxygen (or

in air) are highly flammable and potentially explosive.

$$2H_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,,\Delta H^{\,\Theta}\,=\,-\,485kJmol^{\,-\,1}$$

As hydrogen is environmentally clean it is an enormously attractive fuel. 'Hydrogen economy' is an emerging field in which it is thought that our energy needs can be met by gaseous, liquid and solid hydrogen. As hydrogen is no a naturally occurring substance such as coal, oil or natural gas, energy must be exploaded to produce hydrogen before it can be used.

Liquid H_2 has been used as rocket fuel as

A. its reaction with oxygen is highly exothermic

B. it occupies small space

C. it has high thrust

D. all of the above

Answer: D

10. Hydrogen accounts for approximately $75\,\%$ of the mass of the universe. Hydrogen serves as the nuclear fuel of our Sun and other stars, and these are mainly composed of hydrogen. On the earth, though hydrogen is rarely found in the uncombined state. Since the earth's gravity is too weak to hold such light molecules, nearly all the H_2 originally present in the earth's atmosphere has been lost to space. In the earth's crust and oceans, hydrogen is found in water, petroleum, proteins, carbohydrates and other compounds and it is the ninth most abundant element on a mass basis. Hydrogen has

three isotopes: hydrogen or protium (), deuterium or heavy hydrogen (D or), tritium (T or). The physical properties of the three isotopes are different due to the difference in their masses, i.e. isotope effect. The chemical properties of the three isotopes are similar as they have the same electronic configuration. Reaction between hydrogen and oxygen is highly exothermic, and gas mixtures that contain as little as 4% by volume hydrogen in oxygen (or in air) are highly flammable and potentially explosive.

$$2H_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,,\Delta H^{\,\Theta}\,=\,-\,485kJmol^{\,-\,1}$$

As hydrogen is environmentally clean it is an enormously attractive fuel. 'Hydrogen economy' is an emerging field in which it is thought that our energy needs can be met by gaseous, liquid and solid hydrogen. As hydrogen is no a

naturally occuring substance such as coal, oil or natural

gas, energy must be exploaded to produce hydrogen before it can be used.

Which of the following is the lightest gas?

- A. hydrogen
- B. oxygen
- C. nitrogen
- D. helium

Answer: A

Watch Video Solution

11. Hydrogen peroxide is a powerful oxidising agent, both in the acidic

and alkaline medium.

In acidic medium: $H_2O_2+2H^{\,\oplus}+2e^{\,\Theta}\,
ightarrow 2H_2O$

In alkaline medium: $H_2O_2+2e^{\,\Theta}\,
ightarrow\, \overset{\Theta}{2OH}$

Hydrogen peroxide acts as a reducing agent towards powerful oxidising agents.

In acidic medium: $H_2O_2 o 2H^{\,\oplus}+O_2+2e^{\,f e}$ In alkaline medium, however, its reducing nature is more effective.

$$H_2O_2
ightarrow 2H^{\,\oplus}+O_2+2e^{\,oldsymbol{arTheta}}$$

 H_2O_2 behaves as a bleaching agent due to

A. oxidation of $KMnO_4$

B. reduction of $KMnO_4$

C. both oxidation and reduction

D. none of the above of $KMnO_4$

Answer: B

Watch Video Solution

12. Hydrogen peroxide is a powerful oxidising agent, both in the acidic

and alkaline medium.

In acidic medium: $H_2O_2 + 2H^{\,\oplus} + 2e^{\,\Theta} \,
ightarrow 2H_2O$

In alkaline medium: $H_2O_2+2e^{\,\Theta}\,
ightarrow\, \overset{\Theta}{2OH}$

Hydrogen peroxide acts as a reducing agent towards powerful oxidising agents.

In acidic medium: $H_2O_2 o 2H^{\,\oplus} + O_2 + 2e^{\,m{ heta}}$ In alkaline medium, however, its reducing nature is more effective.

$$H_2O_2
ightarrow 2H^{\,\oplus} + O_2 + 2e^{\,oldsymbol{arTheta}}$$

 H_2O_2 behaves as a bleaching agent due to

- A. oxidising nature
- B. reducing nature
- C. acidic nature
- D. unstable nature

Answer: A

Watch Video Solution

13. Hydrogen peroxide is a powerful oxidising agent, both in the acidic and alkaline medium.

In acidic medium: $H_2O_2 + 2H^{\,\oplus} + 2e^{\,\Theta} \,
ightarrow \, 2H_2O$

In alkaline medium: $H_2O_2+2e^{\,\Theta}\,
ightarrow\, \overset{\Theta}{2OH}$

Hydrogen peroxide acts as a reducing agent towards

powerful oxidising agents.

In acidic medium: $H_2O_2 o 2H^{\,\oplus} + O_2 + 2e^{\,f e}$ In alkaline medium, however, its reducing nature is more effective.

$$H_2O_2
ightarrow 2H^{\,\oplus} + O_2 + 2e^{\,f e}$$

In the reaction, $H_2O_2+O_3 o H_2O+2O_2, H_2O_2$ behaves as

A. an oxdising agent

B. reducing agent

C. acid

D. base

Answer: B

Watch Video Solution

14. Hydrogen peroxide is a powerful oxidising agent, both in the acidic and alkaline medium.

In acidic medium: $H_2O_2 + 2H^{\,\oplus} + 2e^{\,f e} \,
ightarrow 2H_2O$

In alkaline medium: $H_2O_2+2e^{\,\Theta}\,
ightarrow\, \overset{\Theta}{2O}H$

Hydrogen peroxide acts as a reducing agent towards powerful oxidising agents.

In acidic medium: $H_2O_2 o 2H^{\,\oplus} + O_2 + 2e^{\,f e}$ In alkaline medium, however, its reducing nature is more effective.

$$H_2O_2
ightarrow 2H^{\,\oplus}+O_2+2e^{\,f e}$$

In which of the following reactions, H_2O_2 act as a reducing agent?

A.
$$2KI + H_2O_2
ightarrow 2KOH + I_2$$

B.
$$KNO_2 + H_2O_2
ightarrow KNO_3 + H_2O$$

C.
$$Na_2SO_3 + H_2O_2
ightarrow Na_2SO_4 + H_2O$$

D.
$$PbO_2 + H_2O_2
ightarrow PbO + H_2O + O_2$$

Answer: D

Watch Video Solution

15. Hydrogen peroxide is a powerful oxidising agent, both in the acidic and alkaline medium.

In acidic medium: $H_2O_2 + 2H^{\,\oplus} + 2e^{\,f e} \,
ightarrow 2H_2O$

In alkaline medium: $H_2O_2+2e^{\,\Theta}\,
ightarrow\, \overset{\Theta}{2OH}$

Hydrogen peroxide acts as a reducing agent towards powerful oxidising agents.

In acidic medium: $H_2O_2 o 2H^\oplus + O_2 + 2e^\Theta$ In alkaline medium, however, its reducing nature is more effective.

$$H_2O_2
ightarrow 2H^{\,\oplus}+O_2+2e^{\,oldsymbol{arTheta}}$$

In which of the following reactions, H_2O_2 act as a reducing agent?

A.
$$2I^{\, \Theta} \, + H_2 O_2 + 2H^{\, \oplus} \,
ightarrow \, I_2 + 2 H_2 O$$

B. $IO_4^{\,f e} + H_2O_2
ightarrow IO_3^{\,f e} + H_2O + O_2$

C.
$$Ag_2O + H_2O_2
ightarrow 2Ag + H_2O + O_2$$

D.

 $2MnO_4^{\,\Theta}\,+6H^{\,\oplus}\,+5H_2O_2\,
ightarrow\,2Mn^{2\,+}\,+8H_2O\,+\,5O_3$

Answer: A

16. Red hot coke+Steam
$$\stackrel{100^{\circ}C}{\longrightarrow} X \xrightarrow[Catalyst(Y)]{}^{500^{\circ}C} (Z) + H_2$$

the above sequence refers to

- A. Lane's process
- B. Bosch's process
- C. Ostwald's process
- D. Haber's process

Answer: B

Watch Video Solution

17. Red hot coke+Steam
$$\overset{1000°C}{\longrightarrow} \underset{\mathrm{Steam}}{X} \xrightarrow{500°C} (Z) + H_2$$

 ${}'X{}'$ is

- A. water gas
- B. producer gas
- C. coal gas
- D. oil gas

Answer: A

Watch Video Solution

18. Red hot coke+Steam
$$\stackrel{1000^{\circ}C}{\longrightarrow} X \xrightarrow[Steam]{500^{\circ}C} (Z) + H_2$$

 $^{\prime}Z^{\prime}$ is

- A. *CO*
- B. CO_2

 $\mathsf{C}.\,O_2$

D. H_2O

Answer: B

Watch Video Solution

19. Red hot coke+Steam
$$\overset{1000^{\circ}C}{\longrightarrow} X \xrightarrow[Steam]{500^{\circ}C} (Z) + H_2$$

Catalyst ${}'Y'$ is

A. V_2O_5

B. Cr_2O_3

C. Fe_2O_3

D. $Fe_2O_3 + Cr_2O_3$

Answer: D

Watch Video Solution

20.

Red

hot

coke+Steam

$$\stackrel{1000^{\circ}C}{\longrightarrow} \stackrel{X}{\stackrel{\uparrow}{\longrightarrow}} \stackrel{500^{\circ}C}{\stackrel{Catalyst(Y)}{\longrightarrow}} (Z) + H_2$$

 $^{\prime}Z^{\prime}$ is removed by passing the gaseous mixture through

- A. acidic solution
- B. alkaline solution
- C. water under high pressure of 25atm
- D. an organic solvent

Answer: C

Exercises Multiple Correct

1. Which of the following is//are basic hydride?

A. HCl

B. NH_3

 $\mathsf{C}.\,H_2S$

D. PH_3

Answer: B::D

2. In which of the following properties hydrogen does not show similarity with alkali metals?
A. atomicity
B. ionisation enthalpy
C. reducing nature
D. electropositive nature
Answer: C::D
Watch Video Solution
3. In the reaction of sodium hydride and water:

A. sodium is reduced

C. hydrogen is reduced D. No element is oxidised or reduced Answer: B::C **Watch Video Solution 4.** Which of the following elements are oxidised when they react with dihydrogen? A. Calcium B. Sulphur C. Lithium

B. hydrogen is oxidised

D. Carbon

Answer: A::C

Watch Video Solution

- 5. What is true about saline hydrides?
 - A. They are binary compounds of hydrogen and metallic elements
 - B. They are crystalline solids.
 - C. They are generally very soft.
 - D. Their common examples are SiH_4 , CH_4 , etc.

Answer: A::D

6. Among the hydrides given below which are reasonable good acids?

- A. NH_3
- $\mathsf{B}.\,HF$
- $\mathsf{C}.\,HCl$
- D. NaH

Answer: B::C

7. Which is false about ice?

A. It has open cage-like structure.

B. it has more density than water.

C. Each O atom is surrounded by four H atoms

D. Each O atom has four H-bonds around it.

Answer: B::D

Watch Video Solution

8. Which of the following statements about the following reaction is / are not correct?

$$Cr_2O_7^{2\,-} + 3H_2O_2 + 8H^{\,\oplus}
ightarrow 2Cr^{3\,+} + 7H_2O + 3O_2$$

- A. H_2O_2 is oxidised to O_2
- B. H_2O_2 is reduced to H_2O
- C. The oxidation number of chromium atom changes by 3.
- D. Hydrogen ions are oxidised to H_2O

Answer: B::D

Watch Video Solution

- 9. Which of the following statements is/are correct about
- $6.8\,\%$ strength of H_2O_2 ?

A. its normality is 4N

- B. its molarity is 2M
- C. Its volume strength is 22.4V
- D. Volume strength 11.2 imes M

Answer: A::B::C::D

Watch Video Solution

10. xg of H_2O_2 requires 100mL of $M/5KMnO_4$ in a titration in a solution having pOH=1.0 Which of the following is / are correct?

- A. The value of x is 1.7g
- B. The value of x is 0.34g

C. $MnO_4^{\,\Theta}$ change to $MnO_4^{2\,\Theta}$

D. H_2O_2 change to O_2

Answer: B::C::D

Watch Video Solution

11. 20mL of H_2O_2 is reacted completely with acidified $K_2Cr_2O_7$ solution. 40mL of $K_2Cr_2O_7$ solution is required to oxidise the H_2O_2 completely. Also, 2.0mL of the same $K_2Cr_2O_7$ solution is required to oxidise 5.0mL of a $1.0MH_2C_2O_4$ solution to reach equivalence point. Which of the following statements is / are correct?

A. The H_2O_2 solution is 5M

- B. The volume strength of H_2O_2 is 56V
- C. The volume strength of H_2O_2 is 112V
- D. If 40mL more $5M/8H_2O$ is further added to the 10mL of the above H_2O_2 solution, the volume strength of the resulting solution is changed to 16.8V

Answer: A::B::D

12. Permanent hardness is due to $CI^{\, \Theta}$ and $SO_4^{2\, -}$ of $Mg^{2\, +}$ and $Ca^{2\, +}$ and is removed by adding Na_2CO_3 .

 $CaSO_4+Na_2CO_3 o CaCO_3+Na_2SO_4 \ CaCl_2+Na_2CO_3 o CaCO_3+2NaCl$ Which of the following statements is / are correct?

A. If hardness is $100ppmCaCO_3$ the amount of Na_2CO_3 required to soften 10L of hard water is 10.6g

B. If hardness is $100ppmCaCO_3$, the amount of

 Na_2CO_3 required to soften 10L of hard water is

1.06g. C. If hardness is $420ppmMgCO_3$, the amount of

 Na_2CO_3 required to soften 10L of hard water is 53g D. If hardness is $420ppmMgCO_3$ is the amount of Na_2CO_3 required to soften 10L of hard water is

Answer: A::D

- **13.** The hardness of water due to HCO_3 is $122 \pm$. Select the correct statement(s).
 - A. The hardness of water in terms of $CaCO_3$ is 200ppm
 - B. The hardness of water in terms of $CaCO_3$ is 100ppm
 - C. The hardness of water in terms of $CaCO_3$ is 22ppm

D. The hardness of water in terms of $CaCO_3$ is 95ppm

Answer: B::D

Watch Video Solution

14. The reagent(s) used for softening the temporary hardness of water is (are):

- A. $Ca_3(PO_4)_2$
- B. $Ca(OH)_2$
- C. Na_2CO_3
- D. NaOCl

Answer: B::C

15. In which of the following hydrides, hydrogen exists in negative oxidation state?

- A. HCl
- B. NaH
- C. CaH_2
- D. HI

Answer: B::C

16. The oxidation states of the most electronegative elements in the products of the reaction between BaO_2 and H_2SO_4 are

- A. 1
- B. + 1
- $\mathsf{C.}-2$
- **D**. 0

Answer: A::C

17. The oxide that gives H_2O_2 on treatment with dilute H_2SO_4 is

- A. PbO_2
- B. MnO_2
- $\mathsf{C.}\ Na_2O_2$
- D. BaO_2

Answer: C::D

Watch Video Solution

18. When zeolite which is hydrated sodium aluminium silicate is treated with hard water, the sodium ions are

exchanged with which of the following ion (S)? A. $Cl^{\,\Theta}$ $\operatorname{B.}SO_{4}^{\, \operatorname{\Theta}}$ C. Ca^{2+} D. Mg^{2+} **Answer: C::D Watch Video Solution** 19. Which of the following metals will react with NaOH and KOH to liberate hydrogen gas? A. Zn

- B. Sn
- $\mathsf{C}.\,Al$
- D. Mg

Answer: A::B::C

Watch Video Solution

Exercises Single Correct

- **1.** Which of the following process uses water gas shift reaction?
 - A. Merck's process
 - B. Lane's process

- C. Permutit process
- D. Bosch's process

Answer: D

Watch Video Solution

2. Ethylene and H_2O_2 react to give

- A. $CO_2,\,H_2O$
- B. CO, H_2O
- C. Ethylene oxide
- D. Ethylene glycol

Answer: D

3. In which of the following compound does hydrogen exhibit a negative oxidation state:

- A. LiH
- B. H_2O
- $\mathsf{C}.\,HCl$
- D. none of these

Answer: A

A. 2
В. 3
C. 1
D. 0
Answer: C
Watch Video Solution
5. Which of the following represents the heavy water?
A. water at $277k$

4. The number of electrons in deuterium is

- B. water contaning large contamination of lead salts
- C. deuterium oxide
- D. protium oxide

Answer: C

- **6.** H_2O_2 cannot act as
 - A. oxidising agent
 - B. dehydrating agent
 - C. reducing agent
 - D. acid

Answer: B

Watch Video Solution

- 7. Hardness of water is due to dissolved impurities of
 - A. calcium and magnesium salt
 - B. barium and magnesium salts
 - C. calcium and strontium salts
 - D. sodium and potasium salts

Answer: A

A. O_3
B. acidic $KMnO_4$ solution
C. lead sulphide suspension in water
D. none of these
Answer: C
Watch Video Solution
9. When water is dropped over sodium peroxide, the
colourless gas produced is
A. dinitrogen

8. H_2O_2 is reduced by

- B. dioxygen
- C. dihydrogen
- D. hydrogen peroxide

Answer: B

Watch Video Solution

10. In which of the following reaction dihydron acts as an oxidising agent?

A.
$$Ca + H_2
ightarrow CaH_2$$

B.
$$2H_2+O_2
ightarrow 2H_2O$$

C.
$$H_2+F_2
ightarrow 2HF$$

D.
$$CuO + H_2
ightarrow Cu + H_2O$$

Answer: A

Watch Video Solution

11. Which of the following metal does not produce dihydrogen gas with dilute hydrochloric acid?

A. Mg

B. Zn

 $\mathsf{C}.\,Ag$

D. Ba

Answer: C

12. Which oxide cannot be reduced by H_2 ?

- A. Al_2O_3
- B. CuO
- $\mathsf{C}.\,ZnO$
- D. All of these

Answer: A

Watch Video Solution

13. Ortho- and para-hydrogen differ in

- A. atomic number
- B. mass number
- C. electron spin in two atoms
- D. nuclear spin in two atoms

Answer: D

- **14.** Nascent hydrogen consists of
 - A. hydrogen ions in the excited state
 - B. hydrogen molecules with excess energy
 - C. solvated protons

D. hydrogen atoms with excess energy

Answer: D

Watch Video Solution

15. 30 - volume hydrogen peroxide means

A. $30\,\%$ of H_2O_2 by volume

B. 30g of H_2O_2 solution contains 1g of H_2O

C. $1cm^3$ of solution liberates $30cm^3$ of dioxygen gas at

STP

D. $1cm^3$ of solution liberate $30cm^3$ of dioxygen gas at

STP

Answer: C

Watch Video Solution

16. The compound which gives H_2O_2 on treatment with dilute acid is

- A. PbO_2
- B. MnO_2
- $\mathsf{C}.\,TiO_2$
- D. KO_2

Answer: D

17. When a sample of hard water is passed through the layer of sodium zeolite resulting which of the following ions will not be present in the resulting sample of water obtained?

- A. Mg^{2+} and Ca^{2+}
- B. $Ca^{2\,+}$ and $Na^{\,\oplus}$
- C. Mg^{2+} and CO_3^{2-}
- D. CO_3^{2-} and Cl^{Θ}

Answer: A

18. Hydrolysis of one mole of peroxodisulphuric acid produces acid produces

A. two moles of sulphuric acid and hydrogen peroxide

B. two moles of peroxomonosulphuric acid

C. one mole of sulphuric acid, one mole of peroxomonosulphuric acid and one mole of hydrogen peroxide

D. one mole of sulphuric acid and one mole of peroxomonosulphate acid

Answer: A

19. Barium peroxide reacts with phosphoric acid to produce barium phosphate along with

- A. water
- B. hydrogen peroxide
- C. dioxygen
- D. phosphine

Answer: B

Watch Video Solution

20. One part of heavy water is present in X parts of ordinary water. Here X is

A. 10

B.60

C.6000

D.60000

Answer: C

Watch Video Solution

21. The hydride ion H^- is stronger base than its hydroxide ion OH^- . Which of the following reactions will occur if sodium hydride (NaH) is dissolved in water ?

A.
$$H_{(aq)}^{\,\Theta} + H_2 O_{(l)}
ightarrow H_3 O^{\,\oplus}$$

B.
$$H_{(aq)}^{\,m{arTheta}} + H_2 O_{(1)}^{\,}
ightarrow \stackrel{\Theta}{O} H_{(aq)}^{\,} + H_2^{\,}$$

C.
$$H^{\, {f heta}} + H_2 O
ightarrow {f No}$$
 reaction

D. none of the above

Answer: B

Watch Video Solution

22. The volume strength of $0.92NH_2O_2$ solution is

A. 4.8

B. 5.2

C. 8.8

D. 8.4

Answer: D

Watch Video Solution

23. Which one of the following pairs of substances on reaction will not evolve H_2 gas ?

A. Iron and aqeous H_2SO_4

- B. Copper and $HCl_{(\mathit{aq})}$
- C. Sodium and ethanol
- D. Iron and steam

Answer: C

24. H_2 molecule has two electrons and two nuclei. In which form of hydrogen the spin of electrons and also the spin of nuclei are in opposite directions.

- A. orthohydrogen
- B. parahydrogen
- C. metahydrogen
- D. β -hydrogen

Answer: B

Watch Video Solution

25. What is false about Lane's process?

- A. method is used for manufacture of dihydrogen
- B. it involves the oxidation of iron by steam
- C. it involves the reducing of $H_2O_{\,(\,g\,)}$ by iron
- D. it involves the oxidation of water gas

Answer: D

- **26.** Which of the following hydrides are generally non-stoichiometric in nature?
 - A. ionic hydrogen
 - B. molecular hydrides

C. interstitial hydrides D. all of these **Answer: C Watch Video Solution** 27. Dihydrogen gas may be prepared by heating caustic soda on A. CuB. Zn $\mathsf{C}.\,Na$

D. Ag

Answer: B

Watch Video Solution

28. The volume of 10 volume of H_2O_2 required to liberate 500mL of O_2 at 'STP is

- A. 25mL
- B.50mL
- $\mathsf{C}.\,100mL$
- D. 125mL

Answer: B

29.	Pure	H_2O_2	is
-----	------	----------	----

A. semi-solid

B. liquid

C. solid

D. gas

Answer: B

Watch Video Solution

30. Hydrogen can react with the following even in dark:

A. I_2

- B. Cl_2
- $\mathsf{C}.\,F_2$
- D. Br_2

Answer: C

Watch Video Solution

31. When zeolite which is hydrated sodium aluminium silicate is treated with hard water, the sodium ions are exchanged with which of the following ion (S)?

- A. $H^{\,\oplus}$ ions
- B. Ca^{2+} ions

- C. SO_4^{2-} ions
- D. $\overset{\Theta}{OH}$ ions

Answer: B

Watch Video Solution

32. 34 g of H_2O_2 is present in 1120 " mL of " solution. This solution is called

- A. 10vol solution
- B. 20vol solution
- C. 34vol solution
- D. 32vol solution

Answer: A

Watch Video Solution

33. A 5.0 mL solution of H_2O_2 liberates 1.27 g of iodine from an acidified KI solution. The percentage strenth of H_2O_2 is

- A. 11.2
- B.5.6
- C. 1.7
- D. 3.4

Answer: D

Match Mideo Colution

watch video Solution

34. A 5.0 mL solution of H_2O_2 liberates 1.27 g of iodine from an acidified KI solution. The percentage strenth of H_2O_2 is

- A. 11.2
- B. 5.6
- C. 1.7
- D. 3.4

Answer: A

35. 100 mL of ozone (O_3) at STP were passed through 100 mL of 10 volume H_2O_2 solution. What is the volume strength of H_2O_2 after the reaction?

- $\mathsf{A.}\ 9.5$
- $B.\,9.0$
- C. 4.75
- D.4.5

Answer: A

36. 25mL sample of distilled water, tap water and boiled water required, respectively, 1mL, 13mL and 5mL of soap solution to form permanent lather. The ratio of permanent to temprorary hardness in the tap water is

- A. 3:2
- B.2:3
- C. 1: 2
- D. 2:1

Answer: D

37. 3.4g sample of H_2O_2 solution containing $x\ \%\ H_2O_2$ by weight requires $xmLofaKMnO_4$ solution for complete oxidation under acidic condition. The normality of $KMnO_4$ solution is

- A. 1N
- B.2N
- $\mathsf{C.}\,3N$
- D.0.5N

Answer: B

38. If 100mL of acidified $2NH_2O_2$ is allowed to react with $KMnO_4$ solution till there is light tinge of purples colour, the volume of oxygen produced at STP is :

- $\mathsf{A.}\ 2.24L$
- B. 1.12L
- $\mathsf{C}.\,3.36L$
- D. 4.48L

Answer: A

39. 100mL of H_2O_2 is oxidised by 100mL of $0.01MKMnO_4$ in acidic medium $\left(MnO_4^{\Theta}\right)$ reduced to Mn^{2+} . 100mL of the same H_2O_2 is oxidised by VmL of $0.01MKMnO_4$ in basic medium. Hence V is

A.
$$\frac{100}{3}mL$$

B.
$$\frac{500}{3}mL$$

C.
$$\frac{300}{5}mL$$

D. None

Answer: B

40. 10mL of H_2O_2 solution (volume strength =x) requires 10mL of $N/0.56MnO_4^{\, \Theta}$ solution in acidic medium. Hencex is

- $\mathsf{A.}\ 0.56$
- $\mathsf{B.}\,5.6$
- C. 0.1
- D. 10

Answer: D

41. The normality and volume strength of a solution made by mixing

1.0L each of 5.6 volume and 11.2 volume H_2O_2 solution are:

- A. 1N, 5.6vol
- B. 1.5N, 5.6vol
- C. 1.5N, 8.4vol
- D. 1N, 8.4vol

Answer: C

42. 100mL of H_2O_2 is oxidised by 100mL of $0.01MKMnO_4$ in acidic medium $\left(MnO_4^{\theta}\right)$ reduced to Mn^{2+} . 100mL of the same H_2O_2 is oxidised by VmL of $0.01MKMnO_4$ in basic medium. Hence V is

- **A.** 500
- B. 100
- c. $\frac{100}{3}$
- $\mathsf{D.}\;\frac{500}{3}$

Answer: D

43. The purity of H_2O_2 in a given sample is $85\,\%$. Calculate the weight of impure sample of H_2O_2 which requires 10mL of $M/5KMnO_4$ solution in a titration in acidic medium

- A. 2g
- B. 0.2g
- C. 0.17g
- $\mathsf{D}.\,0.15g$

Answer: B

44. 10L of hard water required 0.56g of lime (CaO) for removing hardness. Hence, temporary hardness in ppm (part per million 10^6) of $CaCO_3$ is:

- A. 100
- B.200
- C. 10
- D. 20

Answer: B

45. Hydrogen has the tendency to gain one election to acquire helium configuration, in this respect, it resembles:

- A. alkali metals
- B. carbon
- C. alkaline earth metals
- D. halogens

Answer: D

- 46. Heavy water is qualified as heavy liquid as it is.
 - A. a heavy liquid

B. an oxide of heavier isotope of oxygen	
C. an oxide of deuterium	
D. denser than water	
ınswer: C	
Watch Video Solution	
7. Which of the following is used as rocket fuel?	
A. Liquid O_2	

B. liquid NH_3

C. Liquid N_2

D. Liquid ${\cal H}_2$

Answer: D

Watch Video Solution

- 48. On burning hydrogen in air the colour of flame is
 - A. green
 - B. light bluish
 - C. yellow
 - D. none of these

Answer: B

49. Number of $H-$ bonds formed by a water molecule is:		
A. 2		
B. 8		
C. 1		
D. 4		
Answer: D		
Watch Video Solution		
50. Surface water contains.		
A. suspended impurities		

C. salt

D. salt and organic compound

Answer: A

Watch Video Solution

51. Which is false about H_2O_2 ?

A. acts both as an oxidising and reducing agent.

B. Two -OH bonds lie in the same plane.

C. Pale blue liquid.

D. Can be oxidised by O_3

Answer: B

52. When electric current is passed through an ionic hydride in molten state:

A. hydrogen is liberated at anode

B. hydrogen is liberated at cathode

C. hydride ion migrates towards cathode

D. hydride ion remains in solution

Answer: A

53. Among CaH_2, NH_3, NaH and B_2H_6 which are covalent hydrides?

- A. NH_3 and B_2H_6
- B. NaH and CaH
- C. NaH and NH_3
- D. CaH_2 and B_2H_6

Answer: A

Watch Video Solution

54. The oxygen atoms in H_2O_2 undergone__hybridisation.

- A. (a) sp^3
 - B. (b) sp^2
- C. (c) sp
- D. (d) sp^3d^2

Answer: A

Watch Video Solution

55. Which of the following is correct for hydrogen?

A. it can form bonds in +1 as well as -1 oxidation state.

B. it is collected at cathode

- C. it has a very high ionisation potential
- D. all of the above

Answer: C

Watch Video Solution

- **56.** Which of the following is not a water softener?
 - A. calgon
 - B. permutit
 - C. Na_2SO_4
 - D. Na_2CO_3

Answer: C

57. Calgon is an industrial name given to

- A. normal sodium phosphate
- B. sodium meta-aluminate
- C. sodium hexametaphosphate
- D. hydrated sodium aluminium silicate

Answer: B

58. Both temporary and permanent hardness is removed on boiling with

- A. $Ca(OH)_2$
- B. Na_2CO_3
- C. $CaCO_3$
- D. CaO

Answer: A

Watch Video Solution

59. The exhausted permutit is generally regenerated by percolating through it a solution of

- A. sodium chloride
- B. calcium chloride
- C. magnesium chloride
- D. barium chloride

Answer: B

Watch Video Solution

60. Heavy water is

- A. H_2O
- B. D_2O
- C. water at 4° C

D. water obtained by repeated distillation

Answer: A

Watch Video Solution

61. An orange coloured solution acidified with H_2SO_4 and treated with

a substance ${}^{\prime}X{}^{\prime}$ gives a blue coloured solution of $CrO_5.$

The

substance ${}^{\prime}X{}^{\prime}$ is

A. H_2O_2

B. H_2O

 $\mathsf{C}.\ dil HCl$

D. ConcHCl

Answer: D

Watch Video Solution

62. The shape of water molecule is same as that of

A. C_2H_2

B. CO_2

 $\mathsf{C}.\,NH_3$

D. Cl_2O

Answer: A

63. Hydrogen can be placed in group 17 of the periodic table because

A. hydrogen forms hydrides like NaH

B. hydrogen has isotopes D and T

C. it is light

D. hydrogen combines with halogens

Answer: D

64. Given colourless liquid will be determined whether it is water or not?

A. by smelling

B. by tasting

C. by phenolphthalein

D. by adding a pinch of anhydrous $CuSO_4$

Answer: C

Watch Video Solution

65. Heavy water is used in atomic reactor as

B. moderator C. both coolant and moderator D. neither coolant nor moderator **Answer: C Watch Video Solution** 66. Hydrogen peroxide was first time prepared by A. gay-lussac B. priestely C. thenard

A. coolant

D. bernard

Answer: C

Watch Video Solution

67. Consider LiH, MgH_2 and CuH:

A. all are ionic hydrides

B. LiH, MgH_2 are ionic, whereas CUH is covalent

C. all are covalent

D. LiH is ionic, MgH_2 is covalent CuH is metallic

Answer: D

68. Water softening by Clarke's process uses

- A. calcium bicarbonate
- B. calcium hydroxide
- C. potash alum
- D. sodium bicarbonate

Answer: B

A. monobasic acid
B. diabasic acid
C. neutral
D. weak alkali
Answer: B
Watch Video Solution
70. Which one of the following compounds is a peroxide ?
70. Willer one of the following compounds is a peroxide.
A. KO_2
B. BaO_2
C. MnO_2

D. NO_2

Answer: B

Watch Video Solution

71. Hard water is not fit for washing clothes because

A. (a) it contains Na_2SO_4 and KCl

B. (b) it gives precipitate

C. (c) it contains impurities

D. (d) it is acidic in nature

Answer: B

Exercises Assertion Reasoning

1. Assertion (A): Ferrocyanide ion oxidises H_2O_2 to H_2O .

Reason (R): Oxidation product of H_2O_2 is O_2 .

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: D

2. Assertion (A): In a reaction of H_2O_2 and Na_2CO_3 , hydrogen peroxide acts as acid.

Reason $(R): H_2O_2$ cannot act as acid.

A. If both (A) and (R) are correct and (R) is the correct explanation

of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: C

3. Assertion (A): The colour of old lead painting can be restored by washing with dilute solution of H_2O_2 .

Reason (R) : Black lead sulphide is oxidised by $H_2{\cal O}_2$ to white lead suphate.

- A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
- B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
- C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A

Watch Video Solution

4. Assertion (A): A small piece of zinc dissolves in dilute nitric acid but no hydrogen is evolved.

Reason $(R):HNO_3$ is an oxidising acid and oxidises hydrogen evolved to water.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

- C. If (A) is correct, but (R) is incorrect.
- D. If (A) is incorrect, but (R) is correct.

Answer: A

- **5.** Assertion (A): Hydrogen oxidises lithium to Li.
- Reason (R): Hydrogen cannot act as oxidising agent.
 - A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
 - B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

- C. If (A) is correct, but (R) is incorrect.
- D. If (A) is incorrect, but (R) is correct.

Answer: A

Watch Video Solution

6. Assertion (A): Pink coloured solution of potassium permanganate turns green on passing O_3 through it.

Reason (R): K_2MnO_4 is oxidised by O_3 to $KMnO_4$.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: D

Watch Video Solution

7. Assertion (A): Electrolysis of hard water produces O_2 and D_2 .

Reason (R):Ordinary hydrogen is called protium.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A

Watch Video Solution

8. Assertion (A): Colour of $KMnO_4$ disappears when dihydrogen gas is bubbled through it.

Reason (R) :Dihydrogen gas is highly inflammable.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: B

Watch Video Solution

9. Assertion (A): Concentration of H_2O_2 is expressed in volume.

Reason (R) :Volume strength = Normality imes 5.6.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: B

Watch Video Solution

10. Assertion (A): Hardness of water is determined by titrating it with disodium salt of EDTA.

Reason $\left(R
ight)$:The indicator used in the titration is

Eriochrome Black-T at pH=10.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A

11. Assertion (A): Temporary hardness in water is due to the presence of chlorides of magnesium.

Reason (R) :Temporary hardness is removed by Clark's method.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: D

12. Assertion (A): When blood is added to a solution of H_2O_2 , the solution bubbles furiously.

Reason (R) : Catalase (an enzyme) present in blood decomposes $H_2{\cal O}_2$ and produces bubbles of ${\cal O}_2$.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A

13. Assertion (A): Alkali metals form ionic hydrides.

Reason (R): Alkali metals lose their valence electron which is accepted by hydrogen to form hydride ion.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A

14. Assertion (A): The process of adsorption of hydrogen on palladium is known as occlusion.

Reason (R): The adsorbed hydrogen is more active than ordinary hydrogen.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: B

Watch Video Solution

15. Assertion (A): H_2O is a linear molecule.

Reason (R): Oxygen is sp^3 hybridised.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

- B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
- C. If (A) is correct, but (R) is incorrect.
- D. If (A) is incorrect, but (R) is correct.

Answer: D

Watch Video Solution

16. Assertion (A): NaCl is less soluble in heavy water than in ordinary water.

Reason (R): Dielectric constant of ordinary water is more than that of heavy water.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A

Watch Video Solution

17. Assertion (A): Dihydrogen is prepared in the laboratory by the action of conc H_2SO_4 on granular zinc. Reason (R): Pure hydrogen can be obtained by the action of water on sodium hydride.

A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).

- C. If (A) is correct, but (R) is incorrect.
- D. If (A) is incorrect, but (R) is correct.

Answer: D

Watch Video Solution

Exercises Interger

1. What is the molarity of H_2O_2 of the 11.2V (volume strength)?

2. A bottle of H_2O_2 is labelled as $10volH_2O_2$. 112mL of this solution of H_2O_2 is titrated against 0.04M acidified solution of $KMnO_4$. Calculate the volume of $KMnO_4$ in terms of litre.

Watch Video Solution

3. What is the oxidation state of oxygen of H_2O_2 in the final products when it reacts with $ClO_3^{-\,?}$

Watch Video Solution

4. What is the oxidation state of oxygen of H_2O_2 in the final products when it reacts with As_2O_3 ?

5. Washing soda ($Na_2CO_3.10H_2O$) is widely used in softening of hard water. If 1L of hard water requires 0.0143g of washing soda, what is hardness of water in terms of ppm of $CaCO_3$?

6. What is the sum of protons, electrons and neutrons in the heaviest isotope of hydrogen?

7. What is the sum of protons, electrons and neutrons in the lightest isotope of hydrogen?

Watch Video Solution

8. How many moles of ammonia are produced when one mole of calcium nitride reacts with water?

Watch Video Solution

9. How many moles of phosphine are produced when one of the calcium phosphides reacts with water?

10. What is the molarity of a commercial sample of 33.6 volume hydrogen peroxide solution?

Watch Video Solution

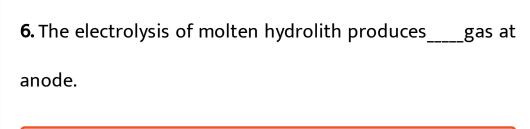
Exercises Fill In The Blanks

1. The principal cause of hardness of water is the presence of ____ and ___ions.

Watch Video Solution

2. In reaction of hydrogen peroxide and sodium carbonate, H_2O_2 acts as $$

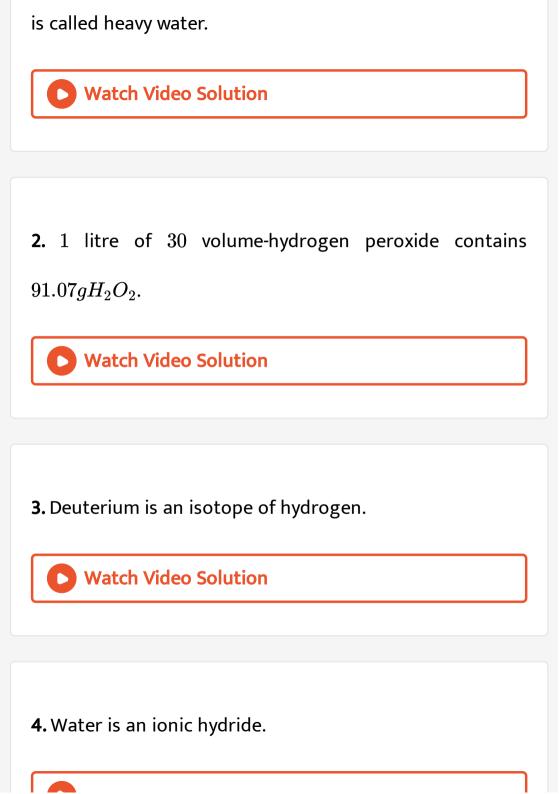
3. In the reaction of F_2 and H_2O , water act as____.



4. Sodium zeolite is____.

5. The trade name of sodium hexametaphosphate is____.

7. Bleaching action of hydrogen peroxide is due to____.



8. O-O-H bond angle in H_2O_2 is approximately_____

9. Bleaching powder and hydrogen peroxide react to give
Watch Video Solution
10. Dropping of water over calcium carbide producesgas.
Watch Video Solution
Exercises True False
1. A sample of water which does not produce lather with

soap readily

5. H_2O_2 cannot act as reducing agent. True or False

6. Zinc dissolves in concentrated NaOH solution to produce dihydrogen as well as dioxygen gas.

7. Protium oxide is the name given to D_2O .

8. Ammonia and phosphine are sailne hydrides.

9. Oxygen atoms and hydrogen atoms in H_2O_2 are collinear.

10. D_2O is more polar than H_2O .

1. When zeolite which is hydrated sodium aluminium silicate is treated with hard water, the sodium ions are exchanged with which of the following ion (S)?

- A. $H^{\,\oplus}$ ions
- B. Ca^{2+} ions
- C. SO_4^{2-} ions
- D. Mg^{2+}

Answer: B::D

2. The reagent(s) used for softening the temporary hardness of water is (are):

A.
$$Ca_3(PO_4)_2$$

B.
$$Ca(OH)_2$$

C.
$$Na_2CO_3$$

D. NaOCl

Answer: B::C::D

Watch Video Solution

3. Hydrogen peroxide in its reaction with KIO_4 and NH_4OH respectively, is acting as a

- A. reducing agent, oxidising agent
- B. reducing agent, reducing agent
- C. oxidising agent, oxidising agent
- D. oxidising agent, reducing agent

Answer: A

Watch Video Solution

Exercises Archive Single Correct

1. The temporary hardness of water due to calcium bicarbonate can

be removed by adding

- A. $CaCO_3$
- $\operatorname{B.}\operatorname{{\it Ca}}(OH)_2$
- C. $CaCl_2$
- D. HCl

Answer: B

Watch Video Solution

2. Heavy water is

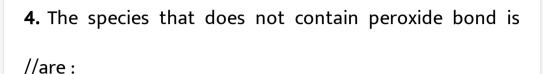
- A. H_2O^{18}
- B. water obtained by repeated distillation
- $\mathsf{C}.\,D_2O$

D. water at $4^{\circ}\,C$

Answer: C

Watch Video Solution

3. The compound which gives $H_2 {\cal O}_2$ on treatment with dilute acid is


A. PbO_2

B. Na_2O_2

C. MnO_2

D. TiO_2

Answer: B

A.
$$PbO_2$$

B.
$$H_2O_2$$

C.
$$SrO_2$$

D.
$$BaO_2$$

Answer: A

5. Hydrolysis of one mole of peroxodisulphuric acid produces

A. 2 mol of sulphuric acid

 ${\sf B.}\ 2\ {\sf mol}\ {\sf of}\ {\sf peroxomonosulphuric}\ {\sf acid}$

C. $1\ \mathrm{mol}\ \mathrm{of}\ H_2SO_4$ and $1\ \mathrm{mol}\ \mathrm{of}\ \mathrm{peroxomonosulphuric}$ acid

D. $2 \ \mathrm{mol} \ \mathrm{of} \ H_2O_2 \ \mathrm{and} \ 1 \ \mathrm{mol} \ H_2O_2$

Answer: D

- **6.** Polyphosphates llike sodium hexametaphosphate (calgon) are used as water softening agents because they
 - A. form soluble complexes with anionic species
 - B. percipitate anionic species
 - C. form soluble complexes with cationic species
 - D. percipitate cationic species.

Answer: C

Watch Video Solution

7. The reagent(s) used for softening the temporary hardness of water is (are):

A.
$$Ca_3(PO_4)_2$$

B.
$$Ca(OH)_2$$

C.
$$Na_2CO_3$$

D. NaOCl

Answer: B

Watch Video Solution

8. In which of the following reactions H_2O_2 acts as a reducing agent?

1.
$$H_2O_2+2H^++2e^-
ightarrow 2H_2O$$

2.
$$H_2O_2-2e^-
ightarrow O_2+2H^+$$

3. $H_2O_2+2e^ightarrow 2OH^-$

4. $H_2O_2+2OH^--2e^ightarrow O_2+2H_2O$

A. ${\cal B}$ and ${\cal C}$

 $\operatorname{B.} A \text{ and } C$

 $\operatorname{C.}{B} \text{ and } D$

D. A and B

Answer: C

Watch Video Solution

9. From the following statements regarding H_2O_2 , choose the incorrect statement :

- A. it can act only as an oxidizing agent
- B. it decomposes on exposure to light
- C. it has to be stored in plastic or wax lined glass bottles in dark
- D. it has to be kept away from dust

Answer: A

Exercises Archive Fill In The Blanks

1. The adsorption of hydrogen by palladium is commonly known as .

2. Hydrogen gas is liberated the action of aluminium with concentrated solution of .

Subjective Archive Subjective

1. H_2O_2 is a better oxidising agents than water.

2. The mixture of hydrazine and hydrogen peroxides with a copper (II) catalyst is used as a rocket propellant.

Watch Video Solution

3. a. When H_2O_2 is added to blood, rapid evolution of a gas occurs. Why ?

b. Hydrogen peroxide acts both as an oxidising and as a reducing agent in alkaline solution towards certain first row transition metal ions. Illustration both these properties of H_2O_2 using chemical equations.

