© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS (ENGLISH)

GRAVITATION

Illustration

1. The time period of Jupiter is 11.6 year, how far
is Jupiter from the sun. Distance of earth from
the sun is $1.5 \times 10^{11} \mathrm{~m}$.

- Watch Video Solution

2. The mean distance of Mars from the sun in
1.524 times that of the Earth from the sun. Find the number of years requires for Mars make one revolution about the Sun.

Watch Video Solution

3. Let the speed of the planet at the perhelion

Pin Fig. 8.1 (a) be v_{p} and the sun-planat distance
SP be r_{p}. Relate $\left(r_{p}, v_{p}\right)$ to the corresponding
quantities at the aphelion $\left(r_{A} \cdot v_{A}\right)$ will the planat take equal times to traverse BAC and

CPB?

D Watch Video Solution

4. A sphere of mass 40 kg is attracted by a second sphere of mass 15 kg , when their centres are 20 cm apart, with a force of 0.1 miligram weight. Caculate the value of gravitational constant.
5. The mass of planet Jupiter is $1.9 \times 10^{7} \mathrm{~kg}$ and that of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$. The mean distance of Jupiter from the Sun is $7.8 \times 10^{11} \mathrm{~m}$.

Calculate the gravitational force which Sun exerts on Jupiter. Assuming that Jupiter moves in circular orbit around the Sun, also calculate the speed of Jupiter
$G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.

D Watch Video Solution

6. Gravitational force between two point masses m and M separated by a distance r is
F. Now if a point mass $3 m$ is placed next to m, what will be the (a) force on M due to m, (b) total force on M ?

D Watch Video Solution

7. Two particles of mass m and M are initialljy at rest at infinite distance. Find their relative velocity of approach due to gravitational
attraction when d is their separation at any instant

- Watch Video Solution

8. Three equal masses $2 m$ each are placed at the vertices an equilateral triangle $P Q R$
(i) What is the force acting on a mass m placed at the centroid G of the triangle?
(ii) What is the force on mass m if the mass at the vertex P is quadrupled?

Take PG = QG = RG = 1m

- Watch Video Solution

9. Three particles each of mass m, are located at the vertices of an equilateral triangle of side
a. At what speed must they move if they all revolve under the influence of their gravitational force of attraction in a circular orbit circumscribing the triangle while still preserving the equilateral triangle ?

10. Figure shows a spherical cavity inside a lead sphere. The surface of the cavity passes through the centre of the sphere and touches
the right side of the sphere. The mass of the sphere before hollowing was M. With what gravitational force does the hollowed out lead sphere attract a particle of mass m that lies at a distance d from the centre of the lead sphere on the straight line connecting the centres of
the spheres and of the cavity.

D Watch Video Solution

11. A mass m is at a distance a from centre of a
uniform rod of length l and M. The gravitational force on the mass due to the rod
is

- Watch Video Solution

12. In a double star, two stars one of mass m_{1} and another of mass m_{2}, with a separation d , rotate about their common centre of mass.

Find
(a) an expression for their time period of
revolution.
(b) the ratio of their kinetic energies.
(c) the ratio of their angular momenta about
the centre of mass.
(d) the total angular momentum of the system.
(e) the kinetic energy of the system.

D Watch Video Solution

13. Find the relation between the gravitational
field on the surface of two planets A and B of masses m_{A}, m_{B} and radii R_{A} and R_{B}, respectively if
a. they have equal mass.
b. they have equal (uniform)density.

D View Text Solution

14. Calculate the gravitational field intensity at the centre of the base of a hollow hemisphere of mass M and radius R. (Assume the base of
hemisphere to be open)

- Watch Video Solution

15. Two masses 90 kg and 160 kg are at a distance $5 m$ apart. Compute the magnitude of intensity of the gravitational field at a point distance $3 m$ from the 90 kg and $4 m$ from the 160 kg mass. $G=6.67 \times 10^{-11} \mathrm{~kg}^{-2}$

D View Text Solution

16. Two bodies of masses 100 kg and $10,000 \mathrm{~kg}$ are at a distance $1 m$ part. At which point on
the line joining them will the resultant gravitational field intensity be zero?

- Watch Video Solution

17. Assuming the earth of to be a uniform sphere of radius 6400 km and density $5.5 g / c . c$., find the value of g on its surface $G=6.66 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

- Watch Video Solution

18. At what height from the surface of earth will
the value of g be reduced by 36% from the
value on the surface? Take radius of earth $R=6400 \mathrm{~km}$.
A. $3.2 \times 10^{\wedge} 6 \mathrm{~m}$
B. $1.6 \times 10^{\wedge} 6 \mathrm{~m}$
C. $2.5 \times 10^{\wedge} 6 \mathrm{~m}$
D. $4.6 \times 10^{\wedge} 6 \mathrm{~m}$

Answer: B
19. Calculate the percentage decrease in the weight of a body when taken 32 km below the surface of the earth. Radius of the earth is 6400 km and $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$
A. 0.6%
B. 0.2%
C. 0.5%
D. 0.7%

Answer: C
20. What is the fractional decrease in the value of free-fall acceleration g for a particle when it is lifted from the surface to an elevation h ?

$$
(h \ll R)
$$

- Watch Video Solution

21. a. Find the height from the earth's surface
where g will be 25% of its value on the surface
of earth $\quad(R=6400 \mathrm{~km})$. b. Find the
percentage increase in the value of g at a depth h from the surface of earth.

D View Text Solution

22. What would be the time period of rotation of earth so that the bodies at the equator would weight 40% of their actual weight?
23. On a planet whose size is the same and mass four times as that of our earth, find the amount of work done to lift 3 kg mass vertically upwards through $3 m$ distance on the planet.

The value of g on the surface of earth is $10 m s^{-2}$

D Watch Video Solution

24. The gravitational field in a region is given by
$\vec{E}=-\left(20 N k g^{-1}\right)(\hat{i}+\hat{j})$.
Find
the
gravitational potential at the origin $(0,0)$ in $J k g^{-1}$

- Watch Video Solution

25. Calculate the gravitational field intensity and potential at the centre of the base of a solid hemisphere of mass m, radius R
26. A particle of mass ' m ' is raised to a height $h=R$ from the surface of earth. Find increase in potential energy. $R=$ radius of earth. $g=$ acceleration due to gravity on the surface of earth.

D Watch Video Solution

27. The gravitational potential difference between the surface of a planet and a point 20 m above it is $16 \mathrm{~J} / \mathrm{kg}$. Calculate the work
done in moving a 4 kg body by 8 m on a slope of 60° from the horizontal.

(Watch Video Solution

28. A projectile is fired vertically from the earth's surface with an initial speed of $10 \mathrm{~km} / \mathrm{s}$
. Neglecting air drag, how high above the surface of earth will it go?

D Watch Video Solution

29. A satellite of mass 1000 kg is rotating around the earth in a circular orbit of radius $3 R$. What extra energy should be given to this satellite if it is to be lifted into an orbit of radius $4 R$?

D Watch Video Solution

30. Two particles of mass m and M are initialljy
at rest at infinite distance. Find their relative
velocity of approach due to gravitational
attraction when d is their separation at any instant

- Watch Video Solution

31. A body is released at a distance far away from the surface of the earth. Calculate its speed when it is near the surface of earth.

Given $\quad g=9.8 m s^{-2}$, radius of earth
$R=6.37 \times 10^{6} \mathrm{~m}$

D Watch Video Solution
32. Calculate the velocity with which a body must be thrown vertically upward from the surface of the earth so that it may reach a height of $10 R$, where R is the radius of the earth and is equal to $6.4 \times 10^{6} \mathrm{~m}$. (Given: Mass of the earth $=6 \times 10^{24} \mathrm{~kg}$, gravitational constant $G=6.7 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$)

D Watch Video Solution

33. Distance between the centres of two stars is
$10 a$. The masses of these stars are M and $16 M$
and their radit a and $2 a$ respectively. A body of mass m is fired straight from the surface of the larger star towards the smaller star. What should be its minimum inital speed to each the surface of the smaller star? Obtain the expression in terms of G, M and a.

D Watch Video Solution

34. Estimate whether it takes more energy to get a satellite upto 1600 km above the earth than to put in orbit there. Earth's radius is

6400 km . Does your answer remain same for height 3200 km or for height 4800 km ?

D Watch Video Solution

35. Calculate the self-gravitational potential energy of matter forming a. a thin uniform shell of mass M and radius R, b. a uniform sphere of mass m and radius R.

- Watch Video Solution

36. Calculate the escape speed on the surface of a planet of mass $7.5 \times 10^{25} \mathrm{~g}$, and radius $1.6 \times 10^{8} \mathrm{~cm} . G=6.67 \times 10^{-8}$ dynecm $^{2} g^{-2}$.

- Watch Video Solution

37. The escape speed from earth's surface is
$11 \mathrm{kms}^{-1}$. A certain planet has a radius twice
that of earth but its mean density is the same
as that of the earth. Find the value of the escape speed from the planet.
38. A spaceship is launched into a circular orbit
close to the earth's surface . What additional
velocity has now to be imparted to the spaceship in the orbit to overcome the gravitational pull. Radius of earth $=6400 \mathrm{~km}$, $g=9.8 m / s^{2}$.
39. A rocket starts vertically upward with speed
v_{0}. Show that its speed v at height h is given by
$v_{0}^{2}-v^{2}=\frac{2 h g}{1+\frac{h}{R}}$
where R is the radius of the earth and g is
acceleration due to gravity at earth's suface.
Deduce an expression for maximum height reachhed by a rocket fired with speed 0.9 times the escape velocity.

D Watch Video Solution

40. For a particle projected in a transverse direction from a height h above earth's surface, find te minimum initial velocity so that it just grazes the surface of earth such that path of this particle would be an ellipse with centre of earth as the farther focus, point of projection as the apogee and a diametrically opposite point on earth's surface as perigee.
41. Two masses m_{1} and m_{2} at an infinite distance from each other are initially at rest, start interacting gravitationally. Find their velocity of approach when they are at a distance r apart.

D Watch Video Solution

42. A satellite revolves around the earth at a height of 1000 km . The radius of the earth is
$6.38 \times 10^{3} \mathrm{~km}$. Mass of the earth is $6 \times 10^{24} k g$ and $G=6.67 \times 10^{-14} \mathrm{~N}-\mathrm{m}^{2} k g^{-2}$.

Determine its orbital velocity and period of revolution.

D Watch Video Solution

43. A satellite orbits the earth at a height of
$3.6 \times 10^{6} m$ from its surface. Compute it's a kinetic energy, b. potential energy, c. total energy. Mass of the satellite $=500 \mathrm{~kg}$ mass of the earth $=6 \times 10^{24} \mathrm{~kg}$, radius of the earth

$$
=6.4 \times 10^{6}, G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}
$$

44. You are given the following data $: g=9.81 m s^{-2}, \quad$ radius of earth
$=6.37 \times 10^{6} \mathrm{~m}$ the distance of the Moon from
the earth $=3.84 \times 10^{8} \mathrm{~m}$ and the time period of the Moon's revolution $=27.3$ days. Obtain the mass of the earth in two different ways. $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.
45. Assume the radius of the earth to be $6.4 \times 10^{6} \mathrm{~m}$
a. Calculate the time period T of a satellite on equational orbit at $1.4 \times 10^{e} m$ above the surface of the earth.
b. What is the speed of the satellite in this orbit?
c. If the satellite is travelling in the same direction as the rotation of the earth i.e. west to east, what is the interval between two successie times at which it will appear vertically
overhead to an observed at a fixed point on the equator?

D Watch Video Solution

46. Two satellites A and B of equal mass move in the equatorial plane of the earth, close to earth's surface. Satellite A moves in the same direction as the of the rotation of the earth while satellite B moves in the opposite direction. Calclate the ratio of the kinetic energy of B of that of A in the reference frame
fixed to the earth $\left(g=9.8 m s^{-2}\right.$ and radius of the earth $=6.37 \times 10^{6} \mathrm{~m}$)

D Watch Video Solution

47. A satellite is revolving in the circular equatorial orbit of radius $R=2 \times 10^{4} \mathrm{~km}$ from east to west. Calculate the interval after which it will appear at the same equatorial town. Given that the radius of the earth
$=6400 \mathrm{~km}$ and g (acceleration due to gravity)
$=10 m s^{-2}$
48. A satellite ils launched into a circular orbit

1600 km above the surface of the earth. Find
the period of revolution if the radius of the earth is $R=6400 \mathrm{~km}$ and the acceleration due to gravity is $9.8 \mathrm{~ms}^{-2}$. At what height from the ground should it be launched so that it may appear stationary over a point on the earth's equator?

D Watch Video Solution

1. Gravitational force is a weak force but still it is considered the most important force. Why?

D Watch Video Solution

2. The earth is continuously pulling the Moon towards its centre. Why the moon does not fall on to the earth?
3. Which has longer period of revolution, a satellite revolving close or away from the surface of earth?
(Watch Video Solution
4. What would happen if gravity suddenly disappears?
5. Two identical copper spheres of radius R are in contact with each other. If the gravitational attraction between them is F, find the relation between F and R.

D Watch Video Solution

6. A mass M is broken into two parts of masses
m_{1} and m_{2}. How are m_{1} and m_{2} related so
that force of gravitational attraction between
the two parts is maximum?
7. A small planet is revolving around a very massive star in a circular orbit of Radius R with
a period of revolution T. If the gravitational force between the planet and the star were proportional to $R^{-5 / 2}$, then T would be proportional to
(Watch Video Solution

8. A planet of mass m moves around the sun of

 mass M in an elliptical orbit. The maximum and minimum distance of the planet from the sun are r_{1} and r_{2} respectively. The time period of the planet is proportional to
D Watch Video Solution

9. Suppose the gravitational force varies inversely as the $n^{\text {th }}$ power of distance. Then the
time period of a planet in circular orbit of radius r around the sun will be proportional to

- Watch Video Solution

10. The distance of the planet Jupiter from the Sun is 5.2 times that of the Earth. Find the period of Jupiter's revolution around the Sun.

- Watch Video Solution

11. The distance of the two planets from the Sun are $10^{13} \mathrm{~m}$ and $10^{12} \mathrm{~m}$, respectively. Find the ratio of time periods of the two planets.
12. Given that $T^{2}=k R^{3}$, express the constant k of the above relation in days and kilometres.

Given, $k=10^{-13} s^{2} m^{3}$. The Moon is at a distance of $3.84 \times 10^{5} \mathrm{~km}$ from the earth. Obtain its time period of revolution in days.

D Watch Video Solution

13. Two heavy particles of masses 40 kg and 60
kg attracts each other with a fore of
$4 \times 10^{-5} N$. If G is $6 \times 10^{-11} N-m^{2} \mathrm{~kg}^{-2}$, calculate the distance between them.

D Watch Video Solution

Exercise 6.2

1. The radii of two planets are respectively
R_{1} and R_{2} and their densities are respectively
ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity $\left(g_{1} / g_{2}\right)$ at their surfaces is
2. Draw g' versus d and g versus h graph. Here, d is depth below the surface of earth and h is the height from the surface of earth.

(Watch Video Solution

3. The mass and diameter of a planet are twice
those of earth. What will be the period of oscillation of a pendulum on this plenet. If it is
a 2 second's pendulum on earth?
4. Will 1 kg sugar be more at poles or at the equator?

D Watch Video Solution

5. The magnitude of gravitational field at distances r_{1} and r_{2} from the centre of a uniform sphere of radius R and mass M, respectively. Find the ratio of $\left.\left(I_{1}\right) /\left(I_{2}\right)\right)$ if $r_{1}>R$ and $r_{2}>R$.
6. Assertion : On satellites we feel
weightlessness. Moon is also a satellite of earth. But we do not feel weightlessness on moon.

Reason : Mass of moon is considerable.

- Watch Video Solution

7. Why does a body lose weight at the centre of the earth?

- Watch Video Solution

8. Does the concentration of the earth's mass near its centre change the variation of g (acceleration due to gravity) with height from its surface?

D Watch Video Solution

9. The Sun's tide-raising power is only half as
great as that of the Moon. The direct pull of
the Sun on the earth, however, is about 175
times that of the Moon. Why is it then that the Moon causes larger tides?

D Watch Video Solution

10. If a planet of given density were made larger, its force of attraction for an object on its surface would increase because of the greater distance from the object to the centre of the planet. Which effect predominates?
11. A stone is dropped along the centre of a deep vertical mine shaft. Assume no air resistance but consider the earth's rotation.

Will the stone continue along the centre of the shaft? If not, describe the motion.

D Watch Video Solution

12. Show that if the earth were not rotating about its axis the value of g at the equator would exceed its present value by $3.36 \mathrm{~cm} / \mathrm{s}^{-2}$. Given the radius of earth $=6.371 \times 10^{6} \mathrm{~m}$.
and angular speed

$$
=7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s}^{-1}
$$

- Watch Video Solution

13. How far away from the earth does the acceleration due to gravity become 10% of its value on earth's surface? Radius of earth $=6.37 \times 10^{6} \mathrm{~m}$.
14. (a) Assuming the earth to be a sphere of uniform density, calculate the value of acceleration due to gravity at a point (i) 1600 km above the earth, (ii) 1600 km below the earth, (b) Also find the rate of variation of acceleration due to gravity above and below the earth's surface. Radius of earth $=6400 \mathrm{~km}, g 9.8 \mathrm{~m} / \mathrm{s}^{2}$.
15. How much faster than its present speed
should the. earth (radius $6.37 \times 10^{6} \mathrm{~m}$) rotate so that the bodies lying on the equator may fly off into space? (At equator, $g=9.78 m / s^{-2}$)

D Watch Video Solution

Exercise 6.3

1. Why do different planets have different escape speeds?
2. What are the two factors which determine why some bodies in solar system have atmosphere and others do not?
(D) Watch Video Solution
3. Why does Moon have no atmosphere'?

- Watch Video Solution

4. What is binding energy of a satellite?

- Watch Video Solution

5. If a body is projected with speed v greater
than escape speed v_{e} from the surface of earth, find its speed in intersteller space.
(Watch Video Solution
6. The radius of a planet is double that of earth
but their average are the same. If the escape velocities at the planet and the earth are v_{p} and v_{e} respectively, then prove that $v_{p}=2 v_{e}$.

- Watch Video Solution

7. A particle is projected vertically upwards from the surface of earth (radius R) with a kinetic energy equal to half of the minimum value needed for it to escape. The height to which it rises above the surface of earth is

(D) Watch Video Solution

8. The magnitude of the potential energy per unit mass of the object on the surface of earth is E . Then the escape velocity of the object is

- Watch Video Solution

9. Would you expect the total energy of the solar system to be constant? What about the total angular momentum? Explain
10. The total energy of the earth + Sun system is negative. How do you interpret the negative energy of a system?

D Watch Video Solution

11. An artificial satellite in the presence of frictional forces will move into an orbit closer to the earth and may have increased kinetic energy. Explain this.

Watch Video Solution

12. The value of escape speed from the surface of earth is

- Watch Video Solution

13. A body is released at a distance far away
from the surface of the earth. Calculate its speed when it is near the surface of earth.

Given $\quad g=9.8 m s^{-2} \quad$ radius of earth
$R=6.37 \times 10^{6} m$

(D) Watch Video Solution

14. A projectile is fired vertically from the earth's surface with an initial speed of $10 \mathrm{~km} / \mathrm{s}$
. Neglecting air drag, how high above the surface of earth will it go?

- Watch Video Solution

15. Two earth satellites A and B, each of mass
m are to be launched into circular orbits about earth's centre at altitudes 6400 km and

19200 km , respectively. The radius of earth is 6400 km . Find (i) the ratio of potential energy of B to that of A, (ii) ratio of kinetic energy of
B to that of A and (iii) which one has greater total energy?

- Watch Video Solution

16. Calculate te radus of an isolated sphere of density $3.0 \mathrm{gcm}^{-3}$ from the surface of which the escape velocity be $40 \mathrm{~ms}^{-1}$

Exercise 6.4

1. What are the conditions under which a rocket, fired from the earth, launches an artificial satellite of the earth?

- Watch Video Solution

2. Two artificial satellites one close to the
surface and the other away, are revolving around the earth. Which one has larger speed?

- Watch Video Solution

3. Should the speed of two artificial satellites of the earth having the different masses but the same orbital radius be the same?

- Watch Video Solution

4. Can a pendulum vibrate in an artificial satellite.
5. Air friction increases the velocity of the sastellite. Explain.

D Watch Video Solution

6. Why is it that we can learn more about the shape of the earth by studying the motion of an artificial satellite than by studying the motion of the Moon?

7. Objects at rest on the earth's surface move in

circular paths with a period of $24 h$. Are they in
'orbit' in the sense that an earth satellite is in orbit? Explain.

D Watch Video Solution

8. Can a satellite move in a stable orbit in a plane not passing through the earth's centre? Explain,
9. A scientist is making a precise measurement of g at a certain point in the indian ocean (on
the equator) by timing the swings of a pendulum of accurately known construction. To provide stable base, the measurements are conducted in a submerged submarine. It is observed that slightly different results, for g is
obtained when the submarine is moving eastward through the point than when the submarine is moving westward, the speed in each case being 10 mile/h. Account for this
difference and calculate the effect, in parts per million that it has on the value of g.

- Watch Video Solution

10. Two satellites move along a circular orbit in
the same direction at a small distance from
each other. A container has to be thrown from
the first satellite on the second a one. When
will the container reach the second satellite
earlier, if it is thrown in the direction of motion
of the first satellite or in the opposite
direction? The velocity of the container is small in comparison to that of the satellite.

- Watch Video Solution

11. Explain the reason of weightlessness inside a satellite.

D Watch Video Solution

12. A satellite moves in a circular orbit around
the earth at height $\left(R_{e}\right) / 2$ from earth's
surface where R_{e} is the radius of the earth.

Calculate its period of revolution. Given $R=6.38 \times 10^{6} \mathrm{~m}$.

- Watch Video Solution

13. A small satellite revolves around a planet in an orbit just above planet's surface. Taking the mean density of the planet $8000 \mathrm{kgm}^{-3}$ and
$G=6.67 \times 10^{-11} N / k g^{-2}, \quad$ find the time period of the satellite.
14. Consider two satellites A and B of equal mass, moving in the same circular orbit of radius r around the earth but in the opposite sense and therefore a collision occurs.
(a) Find the total mechanical energy $E_{A}+E_{B}$ of the two satellite-plus-earth system before collision.
(b) If the collision is completely inelastic, find the total mechanical energy immediately after collision. Describe the subsequent motion of the combined satellite.
15. Mars and earth have masses in the ratio

1: 11 and radii in the ratio 42: 79. Compare
a. their densities, assuming them to be spheres
of uniform density,
b. gravitational field strengths at their surfaces:
c. escape velocities from their surfaces,
d. periods of their satellites near their surfaces.

- Watch Video Solution

16. If a satellite is revolving around a planet of mass M in an elliptical orbit of semi-major axis a. Show that the orbital speed of the satellite
when it is a distance r from the focus will be given by
$v^{2}=G M\left[\frac{2}{r}-\frac{1}{a}\right]$

- Watch Video Solution

Subjective

1. Calculate the velocity with which a body must be thrown vertically upward from the surface of the earth so that it may reach a height of $10 R$, where R is the radius of the earth and is equal to $6.4 \times 10^{6} \mathrm{~m}$. (Given: Mass of the earth $=6 \times 10^{24} \mathrm{~kg}, \quad$ gravitatio
$\left.G=6.7 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)$

D Watch Video Solution

2. A sky lab of mass $2 \times 10^{3} \mathrm{~kg}$ is first launched
from the surface of earth in a circular orbit of
radius $2 R$ and them it is shifted from this circular orbit to another circular orbit of radius
$3 R$. Calculate the energy required
(a) to place the lab in the first orbit,
(b) to shift the lab from first orbit to the second orbit. ($\left.R=6400 \mathrm{~km}, g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

- Watch Video Solution

3. Estimate whether it takes more energy to get
a satellite upto 1600 km above the earth than
to put in orbit there. Earth's radius is 6400 km .

Does your answer remain same for height 3200 km or for height 4800 km ?

(Watch Video Solution

4. The gravitational field in a region is given by $\vec{E}=(3 \hat{i}-4 \hat{j}) N k g^{-1}$. Find out the work done (in joule) in displacing a particle by $1 m$ along the line $4 y=3 x+9$.
5. A body suspended on a spring balance in a
ship weighs W_{0} when the ship is at rest. When
the ship begins to move along the equator with a speed v, show that the scale reading is very close to $W_{0}(1 \pm 2 \omega V / g)$, where ω is the angular speed of the earth.

D Watch Video Solution

6. A spaceship is sent to investigate a planet of mass M and radius R. While hanging motionless in space at a distance $5 R$ from the
centre of the planet, the spaceship fires an instrument package of mass m, which is much smaller than the mass of the spaceship. For what angle θ will the package just graze the surface of the planet?

D Watch Video Solution

7. Ravi can throw a ball at a speed on the earth which can cross a river of width 10 m . Ravi reaches on an imaginary planet whose mean density is twice that of the earth. Find out the maximum possible radius of the planet so that if Ravi throws the ball at the same speed it may escape from the planet. Given radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$.
8. A spaceship approaches the Moon (mass
$=M$ and radius $=R$ along a parabolic path
which is almost tangential to its surface. At the
moment of the maximum approach, the brake rocket is fired to convert the spaceship into a satellite of the Moon. Find the change in speed.

D Watch Video Solution

9. Taking the earth to be a uniform sphere of radius 6400 km and the value of g at the surface to be $10 \mathrm{~ms}^{-2}$, calculate the energy
needed to raise a satellite of mass 2000 kg to a height of 800 km a above the earth's surface and to set it into circular orbit at that altitude.

D Watch Video Solution

10. A satellite is to be put into an orbit 600 km
above the surface of the earth. If its vertical
velocity after launching is $2400 \mathrm{~m} / \mathrm{s}$ at this
height, calculate the magnitude and direction
in the impulse required to put the satellite
directly increase. The mass of the satellite is

60 kg and the radius of the earth is 6400 km .
Take $g=10 m s^{-2}$

D Watch Video Solution

11. A pair of stars rotates about a common centre of mass. One of the stars has a mass M and the other has mass m such that $=2 \mathrm{~m}$. The distance between the centres of the stars is d (d being large compare to the size of eithe star).

The period of rotation of the stars about their common centre of mass (in terms of d,m,G) is
12. The small dense stars rotate about their common centre of mass as a binary system, each with a period of 1 year. One star has mass double than that of the other, while mass of the lighter star is one-third the mass of the Sun. The distance between the two stars is r and the distance of the earth from the Sun is R
, find the relation between r and R.

D Watch Video Solution

13. A satellite revolving in a circular equatorial orbit of radius $R=2.0 \times 10^{4} \mathrm{~km}$ from west to east appears over a certain point at the equator every 11.6h. From these data, calculate the mass of the earth.
$\left(G=6.67 \times 10^{-11} \mathrm{Nm}^{2}\right)$

- Watch Video Solution

14. An artificial satellite (mass m) of a planet (mass M) revolves in a circular orbit whose radius is n times the radius R of the planet in
the process of motion the satellite experiences
a slight resistance due to cosmic dust. Assuming the force of resistance on satellite to depend on velocity as $F=a v^{2}$ where 'a' is a constant caculate how long the satellite will stay in the space before it falls on to the planet's surface.

- Watch Video Solution

15. A satellite of mass m is orbiting the earth in
a circular orbit of radius r. It starts losing energy due to small air resistance at the rate of
$C J / s$. Then the time teken for the satellite to reach the earth is.

- Watch Video Solution

Single Correct

1. The escape velocity from the earth is
$11.2 \mathrm{~km} / \mathrm{s}$. If a body is to be projected in a direcion making an angle 45° to the vertical, then the escape velocity is

$$
\text { A. } \frac{11.2}{\sqrt{2}} k m s^{-1}
$$

$$
\begin{aligned}
& \text { B. } 11.2 \times \sqrt{2} \mathrm{kms}^{-1} \\
& \text { C. } 11.2 \times 2 \mathrm{kms}^{-1} \\
& \text { D. } 11.2 k m s^{-1}
\end{aligned}
$$

Answer: D

- Watch Video Solution

2. A projectile is fired from the surface of earth of radius R with a velocity $k v_{e}$ (where v_{e} is the escape velocity from surface of earth and
$k<1$). Neglecting air resistance, the maximum
height of rise from centre of earth is

$$
\begin{aligned}
& \text { A. } \frac{I-k^{2}}{R} \\
& \text { B. } \frac{R}{1-k^{2}} \\
& \text { C. } R(1-k)^{2} \\
& \text { D. } \frac{R}{1+k^{2}}
\end{aligned}
$$

Answer: B
3. The radius of a planet is R. A satellite revolves around it in a circle of radius r with angular velocity ω_{0}. The acceleration due to the gravity on planet's surface is

$$
\begin{aligned}
& \text { A. } \frac{r^{3} \omega_{0}}{R} \\
& \text { B. } \frac{r^{3} \omega_{0}^{2}}{R^{2}} \\
& \text { C. } \frac{r^{3} \omega_{0}^{2}}{R} \\
& \text { D. } \frac{r^{3} \omega_{0}^{2}}{R^{2}}
\end{aligned}
$$

Answer: D

4. A space vehicle approaching a planet has a speed v when it is very far from the planet At that moment tangent of its trajectory would miss the centre of the planet by distance R if the planet has mass M and radius r what is the smallest value of R in order that the resulting orbit of the space vehicle will just miss the surface of the planet?

$$
\begin{aligned}
& \text { A. a) } \frac{r}{v}\left[v^{2}+\frac{2 G M}{r}\right]^{\frac{1}{2}} \\
& \text { B. b) } v r\left[1+\frac{2 G M}{r}\right]
\end{aligned}
$$

C. c) $\frac{r}{v}\left[v^{2}+\frac{2 G M}{r}\right]$
D. d) $\frac{2 G M v}{r}$

Answer: A

- Watch Video Solution

5. The planets with radii R_{1} and R_{2} have densities p_{1}, p_{2} respectively. Their atmospheric pressues are p_{1} and p_{2} respectively.Therefore, the ratio of masses of their atmospheres,
neglecting variation of g within the limits of atmoshpere is

$$
\begin{aligned}
& \text { A. } \frac{p_{1} R_{2} \rho_{1}}{p_{2} R_{1} \rho_{2}} \\
& \text { B. } \frac{p_{1} R_{2} \rho_{2}}{p_{2} R_{1} \rho_{1}} \\
& \text { C. } \frac{p_{1} R_{1} \rho_{1}}{p_{2} R_{2} \rho_{2}} \\
& \text { D. } \frac{p_{1} R_{1} \rho_{2}}{p_{2} R_{2} \rho_{1}}
\end{aligned}
$$

Answer: D
6. A particle of mass ' m ' is raised to a height $h=R$ from the surface of earth. Find increase in potential energy. $R=$ radius of earth. $g=$ acceleration due to gravity on the surface of earth.
A. $\frac{m g R}{2}$
B. $2 m g R$
C. $m g R$
D. $-m g R$

- Watch Video Solution

7. A space station is set up in space at a distance equal to the earth's radius from the surface of the earth. Suppose a satellite can be launched from the space station. Let v_{1} and v_{2} be the escape velocities of the satellite on the earth's surface and space station, respectively. Then

$$
\text { A. } v_{2}=v_{1}
$$

$$
\text { B. } v_{2}<v_{1}
$$

C. $v_{2}>v_{1}$
D. a, b and c are valid depending on the mass of satellite

Answer: B
(Watch Video Solution
8. The orbital velocity of an artificial in a circular orbit just above the earth's surface v. For a satellite orbiting at an altitude of half the earth's radius the orbital velocity is

> A. $\left(\frac{3}{2}\right) v$
> B. $\sqrt{\left(\frac{3}{2}\right)} v$
> C. $\sqrt{\left(\frac{2}{3}\right)} v$
> D. $\left(\frac{2}{3}\right) v$

Answer: C

D Watch Video Solution

9. The radius of earth is about 6400 Km and
that of mars is about 3200 km The mass of the earth is about 10times the mass of mars. An
object weight 200 N on earth 's surface, then its
weight on the surface of mars will be:
A. $6 N$
B. 20 N
C. 40 N
D. 80 N

Answer: D

D Watch Video Solution
10. The distance of the two planets from the Sun are $10^{13} \mathrm{~m}$ and $10^{12} \mathrm{~m}$, respectively. Find the ratio of time periods of the two planets.

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{10}} \\
& \text { B. } 100 \\
& \text { C. } \frac{10}{\sqrt{10}} \\
& \text { D. } \sqrt{10}
\end{aligned}
$$

Answer: C

11. If the gravitational force between two objects were proportional to $\frac{1}{R}$ (and not as $\frac{1}{R^{2}}$, where R is separation between them, then a particle in circular orbit under such a force would have its orbital speed v proportional to
A. $\frac{1}{R^{2}}$
B. R^{0}
C. R^{1}
D. $\frac{1}{R}$
12. Two particles of equal mass go around a circle of radius R under the action of their mutual gravitational attraction. Find the speed of each particle.

$$
\begin{aligned}
& \text { A. } v=\frac{1}{2 R} \sqrt{\left(\frac{1}{G m}\right)} \\
& \text { B. } v=\sqrt{\left(\frac{G m}{2 R}\right)} \\
& \text { C. } v=\frac{1}{2} \sqrt{\left(\frac{G m}{R}\right)} \\
& \text { D. } v=\sqrt{\left(\frac{4 G m}{R}\right)}
\end{aligned}
$$

Answer: C

D Watch Video Solution

13. The gravitational potential energy of body of mass ' m ' at the earth's surface $-m g R_{e}$. Its gravitational potential energy at a height R_{e} from the earth's surface will be (here R_{e} is the radius of the earth)
A. $m g R$
B. $0.67 m g R$

$$
\text { C. }-\frac{m g R}{2}
$$

D. $0.33 m g R$

Answer: C
(Watch Video Solution
14. If g is same at a height h and at a depth d, then
A. $R=2 d$
B. $d=2 h$

C. $h=d$

D. none

Answer: B

D Watch Video Solution

15. A solid sphere of radius $R / 2$ is cut out of a
solid sphere of radius R such that the spherical
cavity so formed touches the surface on one
side and the centre of the sphere on the other side, as shown. The initial mass of the solid
sphere was M. If a particle of mass m is placed at a distance $2.5 R$ from the centre of the cavity, then what is the gravitational attraction on the mass m ?

A. (a) $\frac{G M m}{R^{2}}$
B. (b) $\frac{G M m}{2 R^{2}}$
C. (c) $\frac{G M m}{8 R^{2}}$
D. (d) $\frac{23}{100} \frac{G M m}{R^{2}}$

Answer: D

D Watch Video Solution

16. A geo-stationary satellite orbits around the earth in a circular orbit of radius 36000 km .

Then, the time period of a spy satellite orbiting
a few hundred kilometers above the earth's
surface (R_("Earth") = 6400 " km")’ will approximately be
A. $\frac{1}{2} h$
B. $1 h$
C. $2 h$
D. h

Answer: C

D Watch Video Solution
17. If $W_{1} W_{2}$ and W_{3} represent the work done in moving a particle from A to B along three different paths 1.2 and 3 respectively (asshown
) in the gravitational fieled of a point mass m, find the correct relation between W_(1) W_(2) and W_(3)'

A. $W_{1}>W_{2}>W_{3}$

$$
\text { B. } W_{1}=W_{2}=W_{3}
$$

C. $W_{1}<W_{2}>W_{3}$
D. $W_{2}>W_{1}>W_{3}$

Answer: B

- Watch Video Solution

18. If R is the radius of the earth and g the acceleration due to gravity on the earth's surface, the mean density of the earth is
A. $\frac{4 \pi G}{3 g R}$
B. $\frac{3 \pi R}{4 g G}$
C. $\frac{3 g}{4 \pi R G}$
D. $\frac{\pi R}{12 G}$

Answer: C

D Watch Video Solution

19. The satellite of mass m is orbitating around
the earth in a circular orbit with a velocity v .
what will be its total energy?
A. $-\frac{1}{2} m v^{2}$
B. $\frac{1}{2} m v^{2}$
C. $\frac{3}{2} m v^{2}$
D. $\frac{1}{4} m v^{2}$

Answer: A

D Watch Video Solution

20. The value of g (acceleration due to gravity) at earth's surface is $10 \mathrm{~ms}^{-2}$. Its value in $m s^{-2}$ at the centre of the earth which is assumed to
be a sphere of radius R metre and uniform mass density is
A. 5
B. $\frac{10}{R}$
C. $\frac{10}{2 R}$
D. zero

Answer: D
21. Two satellites A and B of masses m_{1} and
$m_{2}\left(m_{1}=2 m_{2}\right)$ are moving in circular orbits of
radii r_{1} and $r_{2}\left(r_{1}=4 r_{2}\right)$, respectively, around
the earth. If their periods are T_{A} and T_{B}, then
the ratio T_{A} / T_{B} is
A. 4
B. 16
C. 2
D. 8

- Watch Video Solution

22. Three uniform spheres each having a mass
M and radius a are kept in such a way that each
touches the other two. Find the magnitude of
the gravitational force on any of the spheres due to the other two.

$$
\begin{aligned}
& \text { A. } \frac{G M^{2}}{4 r^{2}} \\
& \text { B. } \frac{2 G M^{2}}{r^{2}} \\
& \text { C. } \frac{2 G M^{2}}{4 r^{2}} \\
& \text { D. } \frac{\sqrt{3} G M^{2}}{4 r^{2}}
\end{aligned}
$$

- Watch Video Solution

23. If the radius of the earth decreases by 10%
, the mass remaining unchanged, what will happen to the acceleration due to gravity?
A. Decreases by 19%
B. Increases by 19 \%
C. Decreases by more than 19%
D. Increases by more than 19%

Answer: D

D Watch Video Solution

24. The maximum vertical distance through
which a fully dressed astronaut can jump on
the earth is $0.5 m$. If mean density of the Moon
is two-third that of the earth and radius is one quarter that of the earth, the maximum vertical distance through which he can jump on the

Moon and the ratio of the time of duration of the jump on the Moon to hold on the earth are
A. $3 m, 6: 1$
B. $6 m, 3: 1$
C. $3 m, 1: 6$
D. $6 m, 1: 6$

Answer: A

D Watch Video Solution

25. Two equal masses each in are hung from a balance whose scale pans differ in vertical
height by h. The error in weighing in terms of density of the earth ρ is
A. $\pi G \rho m h$
B. $\frac{1}{2} \pi G \rho m h$
C. $\frac{8}{3} \pi G \rho m h$
D. $\frac{4}{3} \pi G \rho m h$

Answer: C

D Watch Video Solution
26. The distances from the centre of the earth, where the weight of a body is zero and onefourth that of the weight of the body on the surface of the earth are (assume R is the radius of the earth)

$$
\begin{aligned}
& \text { A. } 0, \frac{R}{4} \\
& \text { B. } 0, \frac{3 R}{4} \\
& \text { C. } \frac{R}{4}, 0 \\
& \text { D. } \frac{3 R}{4}, 0
\end{aligned}
$$

27. If a man at the equator would weight (3/5)th of his weight, the angular speed of the earth is:
A. $\sqrt{\frac{2}{5} \frac{g}{R}}$
B. $\sqrt{\frac{g}{R}}$
C. $\sqrt{\frac{R}{g}}$
D. $\sqrt{\frac{2}{5} \frac{R}{g}}$

Answer: A

- Watch Video Solution

28. The distance of the centres of moon the earth is D. The mass of earth is 81 times the mass of the moon. At what distance from the centre of the earth, the gravitational force on a particle will be zero.
A. $\frac{D}{2}$
B. $\frac{2 D}{3}$
c. $\frac{4 D}{3}$
D. $\frac{9 D}{10}$

Answer: D

D Watch Video Solution

29. Two bodies with masses M_{1} and M_{2} are initially at rest and a distance R apart. Then
they move directly towards one another under
the influence of their mutual gravitational attraction. What is the ratio of the distances travelled by M_{1} to the distance travelled by M_{2} ?

$$
\text { A. } \frac{M_{1}}{M_{2}}
$$

B. $\frac{M_{2}}{M_{1}}$
C. 1
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

30. If g be the acceleration due to gravity of the earth's surface, the gain is the potential energy of an object of mass m raised from the surface
of the earth to a height equal to the radius R of
the earth is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m g R \\
& \text { B. } 2 m g R \\
& \text { C. } m g R \\
& \text { D. } \frac{1}{4} m g R
\end{aligned}
$$

Answer: A
31. A small planet is revolving around a very massive star in a circular orbit of Radius R with a period of revolution T. If the gravitational
force between the planet and the star were proportional to $R^{-5 / 2}$, then T would be proportional to
A. r^{3}
B. r^{2}
C. $r^{2.5}$
D. $r^{3.5}$

Answer: D

D Watch Video Solution

32. The masses and radii of the Earth and the

Moon are M_{1}, R_{1} and M_{2}, R_{2} respectively. Their centres are at a distance d apart. The minimum speed with which a particle of mass m should be projected from a point midway between the two centres so as to escape to infinity is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 G\left(M_{1}+M_{2}\right)}{d}} \\
& \text { B. } \sqrt{\frac{4 G\left(M_{1}+M_{2}\right)}{d}} \\
& \text { C. } \sqrt{\frac{4 G M_{1} M_{2}}{d}} \\
& \text { D. } \sqrt{\frac{G\left(M_{1}+M_{2}\right)}{d}}
\end{aligned}
$$

Answer: B

Watch Video Solution

33. A spaceship is launched into a circular orbit
close to the earth's surface . What additional
velocity has now to be imparted to the spaceship in the orbit to overcome the gravitational pull. Radius of earth $=6400 \mathrm{~km}$, $g=9.8 m / s^{2}$.
A. $11.2 \mathrm{kms}^{-1}$
B. $8 k m s^{-1}$
C. $3.2 \mathrm{kms}^{-1}$
D. $1.414 \times 8 \mathrm{~km} \mathrm{~s}^{-1}$

Answer: C
34. A sky lab of mass $2 \times 10^{3} \mathrm{~kg}$ is first launched
from the surface of earth in a circular orbit of radius $2 R$ and them it is shifted from this circular orbit to another circular orbit of radius
$3 R$. Calculate the energy required
(a) to place the lab in the first orbit,
(b) to shift the lab from first orbit to the second orbit. $\left(R=6400 \mathrm{~km}, g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $\frac{3}{4} m g R, \frac{m g R}{6}$
B. $\frac{3}{4} m g R, \frac{m g R}{12}$
C. $m g R, m g R$

D. $2 m g R, m g R$

Answer: B

- Watch Video Solution

35. Consider two satellites A and B of equal mass, moving in the same circular orbit of radius r around the earth but in the opposite sense and therefore a collision occurs.
(a) Find the total mechanical energy $E_{A}+E_{B}$ of the two satellite-plus-earth system before collision.
(b) If the collision is completely inelastic, find
the total mechanical energy immediately after
collision. Describe the subsequent motion of the combined satellite.

$$
\begin{aligned}
& \text { A. }-\frac{2 G M m}{r} \\
& \text { B. }-\frac{G M m}{r} \\
& \text { C. } \frac{G M m}{2 r} \\
& \text { D. } \frac{G M m}{4 r}
\end{aligned}
$$

Answer: A
36. A spherical shell is cut into two pieces along
a chord as shown in the figure. P is a point on
the plane of the chord. The gravitational field at P due to the upper part is I_{1}, and that due to the lower part is I_{2}. What is the relation between them?

A. $I_{1}>I_{2}$
B. $I_{1}<I_{2}$
C. $I_{1}=I_{2}$

D. no definite relation

Answer: C

D Watch Video Solution

37. Two particles of equal mass go around a circle of radius R under the action of their
mutual gravitational attraction. Find the speed of each particle.

$$
\begin{aligned}
& \text { A. } v=\frac{1}{2 R} \sqrt{\left(\frac{1}{G m}\right)} \\
& \text { B. } v=\sqrt{\left(\frac{G M}{2 R}\right)} \\
& \text { C. } v=\frac{1}{2} \sqrt{\left(\frac{G m}{R}\right)} \\
& \text { D. } v=\sqrt{\left(\frac{4 G m}{R}\right)}
\end{aligned}
$$

Answer: C

38. A rocket is fired vertically from the surface of the earth with a speed v. How far from the earth does the rocket go before returning to the earth ? (where R_{E} is the radius of the earth and g is acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } R\left(\frac{2 g R}{v^{2}}-1\right)^{-1 / 2} \\
& \text { B. } R\left(\frac{2 g R}{v^{2}}-1\right) \\
& \text { C. } R\left(\frac{2 g R}{v^{2}}-1\right)^{-1} \\
& \text { D. } R\left(\frac{2 g R}{v^{2}}-1\right)^{2}
\end{aligned}
$$

- Watch Video Solution

39. The gravitational potential due to earth at infinite distance from it is zero. Let the gravitational potential at a point P be $-5 \mathrm{Jkg}^{-1}$. Suppose, we arbitrarily assume the gravitational potential at infinity to be $+10 \mathrm{Jkg}^{-1}$, then the gravitational potential at P will be

$$
\text { A. }-5 \mathrm{Jkg}^{-1}
$$

$$
\text { B. }+5 \mathrm{Jkg}^{-1}
$$

$$
\begin{aligned}
& \text { C. }-15 \mathrm{Jkg}^{-1} \\
& \text { D. }+15 \mathrm{Jkg}^{-1}
\end{aligned}
$$

Answer: B

D Watch Video Solution

40. A projectile is fired from the surface of earth of radius R with a velocity $k v_{e}$ (where v_{e} is the escape velocity from surface of earth and $k<1$). Neglecting air resistance, the maximum height of rise from centre of earth is
A. $\frac{R}{n^{2}}$
B. $\frac{R}{\left(1-n^{2}\right)}$
C. $\frac{R n^{2}}{\left(1-n^{2}\right)}$
D. $R n^{2}$

Answer: C

D Watch Video Solution

41. How many hours would make a day if the earth were rotating at such a high speed that the weight of a body on the equator were zero
A. 6.24
B. $1.4 h$
C. $28 h$
D. $5.6 h$

Answer: B

D Watch Video Solution

42. Two particles of masses m and Mm are placed a distance d apart. The gravitational
potential at the position where the gravitational field due to them is zero is V . then

$$
\begin{aligned}
& \text { A. }-G \frac{\sqrt{M}_{1}}{R} \\
& \text { B. }-G \frac{\sqrt{M}_{2}}{R} \\
& \text { C. }-\left(\sqrt{M}_{1}+\sqrt{M}_{2}\right)^{2} \frac{G}{R} \\
& \text { D. }-\left(\sqrt{M}_{1}-\sqrt{M}_{2}\right)^{2} \frac{G}{R}
\end{aligned}
$$

Answer: C

D Watch Video Solution
43. In the solar system, the Sun is in the focus of the system for Sun-earth binding system.

Then the binding energy for the system will be
[given that radius of the earth's orbit round the Sun is $1.5 \times 10^{11} \mathrm{~m}$ and mass of the earth

$$
\left.=6 \times 10^{24} \mathrm{~kg}\right]
$$

A. $2.7 \times 10^{33} \mathrm{~J}$
B. $5.4 \times 10^{33} \mathrm{~J}$
C. $2.7 \times 10^{30} \mathrm{~J}$
D. $5.4 \times 10^{30} \mathrm{~J}$

D Watch Video Solution

44. A body is released from a point of distance
R^{\prime} from the centre of earth. Its velocity at the time of striking the earth will be $\left(R^{\prime}>R_{e}\right)$
A. $\sqrt{2 g R_{e}}$
B. $\sqrt{R_{e} g}$
C. $\sqrt{2 g\left(R^{\prime}-R_{e}\right)}$

$$
\text { D. } \sqrt{2 g R_{e}\left(1-\frac{R_{e}}{R^{r}}\right)}
$$

Answer: D

- Watch Video Solution

45. A solid sphere of uniform density and radius R applies a gravitational force of attraction equal to F_{1} on a particle placed at P , distant $2 R$ from the centre O of the sphere. A spherical cavity of radius $R / 2$ is now made in the sphere as shown in the figure. The sphere with cavity now applies a gravitational force F_{2} on same particle placed at P . The ratio F_{2} / F_{1}
will be

A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. $\frac{7}{8}$
D. $\frac{9}{7}$

Answer: D
46. The value of g at a particular point is
$10 \mathrm{~ms}^{-2}$. Suppose the earth shrinks uniformly
to half of its present size without losing any mass. The value of g at the same point (assuming that the distance of the point from the centre of the earth does not change) will now be
A. $5 m s^{-2}$
B. $10 m s^{-2}$
C. $3 m s^{-2}$

$$
\text { D. } 20 m s^{-2}
$$

Answer: B

- Watch Video Solution

47. Two satellites of masses of m_{1} and
$m_{2}\left(m_{1}>m_{2}\right)$ are revolving round the earth in
circular orbits of radius r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$
respectively. Which of the following statements
is true regarding their speeds v_{1} and v_{2} ?

$$
\text { A. } v_{1}=v_{2}
$$

B. $v_{1}>v_{2}$
C. $v_{1}<v_{2}$
D. $\frac{v_{1}}{r_{1}}=\frac{v_{2}}{v_{2}}$

Answer: C

D Watch Video Solution
48. The earth moves around the Sun in an elliptical orbit as shown figure. The ratio
$\mathrm{OA} / \mathrm{OB}=\mathrm{x}$. The ratio of the speed of the earth at
B to that at A is nearly

A. \sqrt{x}
B. x
C. $x \sqrt{x}$
D. x^{2}

- Watch Video Solution

49. Figure shows two shells of masses m_{1} and m_{2}. The shells are concentric. At which point, a particle of mass m shall experience zero force?

A. A
B. B
C. C

D. D

Answer: D

- Watch Video Solution

50. Suppose the acceleration due to gravity at earth's surface is $10 \mathrm{~ms}^{-2}$ and at the surface of

Mars it is $4.0 \mathrm{~ms}^{-2}$. A passenger goes from the earth to the mars in a spaceship with a
constant velocity. Neglect all other object in sky. Which part of figure best represent the weight (net gravitational force) of the passenger as a function of time?

A. A
B. B
C. C
D. D

Answer: C

- Watch Video Solution

51. Two satellites A and B of the same mass are
revolving around the earth in the concentric circular orbits such that the distance of satellite B from the centre of the earth is
thrice as compared to the distance of the satellite A from the centre of the earth. The
ratio of the centripetal force acting on B as

compared to that on A is

$$
\text { A. } \frac{1}{3}
$$

B. 3
C. $\frac{1}{9}$
D. $\frac{1}{\sqrt{3}}$

Answer: C

D Watch Video Solution
52. What is the minimum energy required to
launch a satellite of mass m from the surface of
a planet of mass M and radius R in a circular orbit at an altitude of $2 R$?
A. $\frac{5}{3} m g R$
B. $\frac{4}{3} m g R$
C. $\frac{5}{6} m g R$
D. $\frac{5}{4} m g R$

Answer: C
53. What is the mass of the planet that has a
satellite whose time period is T and orbital radius is r ?
A. $\frac{4 \pi^{3} r^{3}}{G T^{2}}$
B. $\frac{4 \pi^{2} r^{3}}{G T^{2}}$
C. $\frac{4 \pi^{2} r^{3}}{G T^{3}}$
D. $\frac{4 \pi^{2} T}{G T^{2}}$

Answer: B
54. If the mass of a planet is 10% less than
that of the earth and the radius is 20% greater than that of the earth, the acceleration due to gravity on the planet will be

5

A. $\frac{5}{8}$ times that on the surface of the earth
B. $\frac{3}{4}$ times that on the surface of the earth
C. $\frac{1}{2}$ times that on the surface of the earth
D. $\frac{9}{10}$ times that on the surface of the earth

- Watch Video Solution

55. If a man at the equator would weigh ($3 / 5$)
th of his weight, the angular speed of the earth
is
A. $\sqrt{\frac{v}{3 R}}$
B. $\sqrt{\frac{2 g}{3 R}}$
C. $\sqrt{\frac{2 g}{5 R}}$
D. $\sqrt{\frac{2 g}{7 R}}$

Answer: C

D Watch Video Solution

56. In order to shift a body of mass m from a circular orbit of radius $3 R$ to a higher orbit of radius $5 R$ around the earth, the work done is
A. $\frac{3 G M m}{5 R}$
B. $\frac{G M m}{2 R}$
C. $\frac{2}{15} \frac{G M m}{R}$
D. $\frac{G M m}{5 R}$

Answer: C

D Watch Video Solution

57. A uniform ring of mass m and radius r is
placed directly above a uniform sphere of mass
M and of equal radius. The centre of the ring is directly above the centre of the sphere at a distance $r \sqrt{3}$ as shown in the figure. The gravitational force exerted by the sphere on
the ring will be

A. $\frac{G M m}{8 r^{2}}$
B. $\frac{G M m}{4 r^{2}}$
C. $\sqrt{3} \frac{G M m}{8 r^{2}}$
D. $\frac{G M m}{8 r^{3} \sqrt{3}}$

Answer: C

(Watch Video Solution

58. A tunnel is dug along a diameter of the earth. Find the force on a particle of mass m
placed in the tunnel at a distance x from the centre.

$$
\begin{aligned}
& \text { A. } \frac{G M_{e} m}{R_{e}^{3}} \\
& \text { B. } \frac{G M_{e} m}{R_{e}^{3} r} \\
& \text { C. } \frac{G M m R_{e}^{3}}{r} \\
& \text { D. } \frac{G M m}{R_{e}^{2}}
\end{aligned}
$$

Answer: A
59. The value of g at a certain height h above the free surface of the earth is $x / 4$ where x is the value of g at the surface of the earth. The height h is
A. R
B. $2 R$
C. $3 R$
D. $4 R$

Answer: A
60. A planet moving along an elliptical orbit is
closest to the sun at a distance r_{1} and farthest
away at a distance of r_{2}. If v_{1} and v_{2} are the
linear velocities at these points respectively, then the ratio $\frac{v_{1}}{v_{2}}$ is

> A. $\frac{r_{\max }}{r_{\min }}$
> B. $\frac{r_{\min }}{r_{\max }}$
> C. $\frac{r_{\min }+r_{\max }}{r_{\max }-r_{\min }}$
D. none of these

D Watch Video Solution

61. Masses of 1 kg each are placed
$1 m, 2 m, 4 m, 8 m, \ldots$ from a point P. The gravitational field intensity at P due to these masses is
A. G
B. G
C. $4 G$

D. $4 G / 3$

Answer: D

- Watch Video Solution

62. Suppose that the acceleration of a free fall at the surface of a distant planet was found to be equal to that at the surface of the earth. If the diameter of the planet were twice the diameter of the earth, then the ratio of mean density of the planet to that of the earth would be
A. $4: 1$
B. 2: 1
C. $1: 1$
D. 1:2

Answer: D

D Watch Video Solution
63. Three uniform spheres each having a mass
M and radius a are kept in such a way that each touches the other two. Find the magnitude of
the gravitational force on any of the spheres due to the other two.

$$
\begin{aligned}
& \text { A. } \frac{G m^{2}}{r^{2}} \\
& \text { B. } \frac{G m^{2}}{4 r^{2}} \\
& \text { C. } \sqrt{2} \frac{G m^{2}}{4 r^{2}} \\
& \text { D. } \sqrt{3} \frac{G m^{2}}{4 r^{2}}
\end{aligned}
$$

Answer: D
64. A body of mass m rises to height $h=R / 5$
from the earth's surface, where R is earth's
radius. If g is acceleration due to gravity at earth's surface, the increase in potential energy is
A. $m g h$
B. $\frac{4}{5} m g h$
C. $\frac{5}{6} m g h$
D. $\frac{6}{7} m g h$

- Watch Video Solution

65. A man weighs 80 kg on the surface of earth of radius r. At what height above the surface of earth his weight will be 40 kg ?
A. $\frac{R}{2}$
B. $\sqrt{2} R$
C. $(\sqrt{2}-1) R$
D. $(\sqrt{2}+1) R$

- Watch Video Solution

66. The gravitational potential energy of an isolated system of three particles, each of mass
m, at the three corners of an equilateral triangle of side l is
A. $-\frac{G m^{2}}{l}$
B. $-\frac{G m^{2}}{2 l}$
C. $-\frac{2 G m^{2}}{l}$
D. $-\frac{3 G m^{2}}{l}$

Answer: D

D Watch Video Solution

67. A diametrical tunnel is dug across the earth.

A ball dropped into the tunnel from one side.

The velocity of the ball when it reaches the centre of the earth is [Given: gravitational potential at the centre of earth

$$
=-3 / 2(G M / R)]
$$

A. \sqrt{R}
B. $\sqrt{g R}$
C. $\sqrt{2.5 g R}$
D. $\sqrt{7.1 g R}$

Answer: B

D Watch Video Solution

68. Consider two solid uniform spherical objects of the same density ρ. One has radius
R and the other has radius $2 R$. They are in outer space where the gravitational fields from
other objects are negligible. If they are arranged with their surface touching, what is
the contact force between the objects due to their traditional attraction?

> A. $G \pi^{2} R^{4}$
> B. $\frac{128}{81} G \pi^{2} R^{4} \rho^{2}$
> C. $\frac{128}{81} G \pi^{2}$
> D. $\frac{128}{87} \pi^{2} R^{2} G$

Answer: B
69. A body starts from rest from a point distant
r_{0} from the centre of the earth. It reaches the
surface of the earth whose radius is R. The velocity acquired by the body is
A. $2 G M \sqrt{\frac{1}{R}-\frac{1}{r_{0}}}$
B. $\sqrt{2 G M\left(\frac{1}{R}-\frac{1}{r_{0}}\right)}$
C. $G M \sqrt{\frac{1}{R}-\frac{1}{r_{0}}}$
D. $\sqrt{G M\left(\frac{1}{R}-\frac{1}{R_{0}}\right)}$

Answer: B
70. Four particles, each of mass M, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

$$
\begin{aligned}
& \text { A. } \frac{G M}{R} \\
& \text { B. } \sqrt{2 \sqrt{2} \frac{G M}{R}} \\
& \text { C. } \sqrt{\frac{G M}{R}(2 \sqrt{2}+1)} \\
& \text { D. } \sqrt{\frac{G M}{R}\left(\frac{2 \sqrt{2}+1}{4}\right)}
\end{aligned}
$$

Answer: D

D Watch Video Solution

71. The mass of the earth is 81 times the mass
of the Moon and the distance between the
earth and the Moon is 60 time the, radius of
the earth. If R is the radius of the earth, then
the distance between the Moon and the point on the in joining the Moon and the earth where the gravitational force becomes zero is
A. $30 R$
B. $15 R$
C. $6 R$
D. $5 R$

Answer: C

- Watch Video Solution

72. Three equal masses m are placed at the three corners of an equilateral triangle of side
a. find the force exerted by this system on another particle of mass m placed at (a) the
mid point of a side (b) at the center of the triangle.
A. $0, \frac{4 G M^{2}}{3 a^{2}}$
B. $\frac{4 G M^{2}}{3 a^{2}}, 0$
C. $\frac{3 G M^{2}}{a^{2}}, \frac{G M^{2}}{a^{2}}$
D. 0,0

Answer: B
73. Suppose the gravitational force varies inversely as the $n^{\text {th }}$ power of distance. Then the
time period of a planet in circular orbit of radius r around the sun will be proportional to
A. R^{n}
B. $R^{\frac{(n+1)}{2}}$
C. $R^{\frac{(n-1)}{2}}$
D. R^{-n}

Answer: B
74. Two astronauts have deserted their spaceship in a region of space far from the gravitational attraction of any other body. Each has a mass of 100 kg and they are 100 m apart.

They are initially at rest relative to one another.

How long will it be before the gravitational attraction brings them 1 cm closer together?
A. 2.52days
B. 1.41 days
C. 0.70 days

D. $1.41 s$

Answer: B

- Watch Video Solution

75. A satellite of mass m revolves around the earth of radius R at a height x from its surface.

It g is the acceleration due to gravity on the surface of the earth, the orbit speed of the satellite is
A. $g x$
B. $\frac{g R}{R-x}$
C. $\frac{g R^{2}}{R+x}$
D. $\left(\frac{g R^{2}}{R+x}\right)^{\frac{1}{2}}$

Answer: D

(Watch Video Solution

76. A projectile is fired from the surface of earth of radius R with a velocity $k v_{e}$ (where v_{e} is the escape velocity from surface of earth and
$k<1$). Neglecting air resistance, the maximum
height of rise from centre of earth is

$$
\begin{aligned}
& \text { A. } \frac{1-k^{2}}{R} \\
& \text { B. } \frac{R}{1-k^{2}} \\
& \text { C. } R\left(1-k^{2}\right) \\
& \text { D. } \frac{R}{1+k^{2}}
\end{aligned}
$$

Answer: B
77. An artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from the surface of earth. (Radius of earth $=6400 \mathrm{~km}$)
(a) Dentermine the height of the satellite above the earth's surface.
(b) If the satellite is stopped suddenly in its orbit and allowed to fall freely on the earth, find the speed with which it hits the surface of earth.
A. $2 R$
B. $\frac{R}{2}$
C. R
D. $\frac{R}{4}$

Answer: C
(Watch Video Solution
78. Two concentric shells of masses M_{1} and M_{2} are having radii r_{1} and r_{2}. Which of the following is the correct expression for the
gravitational field on a mass m ?

A. $F=\frac{G\left(M_{1}+M_{2}\right)}{r^{2}}$, for $r<r_{1}$
B. $F=\frac{G\left(M_{1}+M_{2}\right)}{\left(r^{2}\right)}$, for $r<r_{2}$
C. $F=\frac{G M_{2}}{r^{2}}$, for $r_{1}<r<r_{2}$
D. $F=G \frac{M_{1}}{r^{2}}$, for $r_{1}<r<r_{2}$

Answer: C

D Watch Video Solution

79. A satellite of mass m is circulating around the earth with constant angular velocity. If the radius is R_{0} and mass of earth is M , then the angular momentum about the centre of the earth is
A. m
B. M
C. h

D. none of these

Answer: D

- Watch Video Solution

80. Two concentric shells have masses M and
m and their radii are R and r, respectively,
where $R>r$. What is the gravitational potential at their common centre?

$$
\text { A. }-\frac{G M}{R}
$$

> B. $-\frac{G M}{r}$
> C. $-G\left[\frac{M}{R}-\frac{m}{r}\right]$
> D. $-G\left[\frac{M}{R}+\frac{m}{r}\right]$

Answer: D

- Watch Video Solution

81. A solid sphere of uniform density and radius

4 units is located with its centre at the origin O
of coordinates. Two spheres of equal radii I
unit, with their centres at $A(-2,0,0)$ and
$B(2,0,0)$, respectively, are taken out of the solid leaving behind spherical cavities as shown in the figure.

Then
A. $\frac{31 G M}{1024}$
B. $\frac{G m}{1024}$

C. $31 G M$

D. zero

Answer: D

D Watch Video Solution

82. Three equal masses m are placed at the
three corners of an equilateral triangle of side
a. find the force exerted by this system on another particle of mass m placed at (a) the
mid point of a side (b) at the center of the triangle.

$$
\begin{aligned}
& \text { A. } \frac{3 G M m}{4 l^{2}} \\
& \text { B. } \frac{4 G M m}{3 l^{2}} \\
& \text { C. } \frac{G M m}{4 l^{2}} \\
& \text { D. } \frac{4 G M m}{l^{2}}
\end{aligned}
$$

Answer: B
83. Figure shows a planet in an elliptical orbit around the Sun S. Where is the kinetic energy of the planet maximum?

A. P_{1}
B. P_{2}
C. P_{3}
D. P_{4}

Answer: D

D Watch Video Solution

84. The escape velocity corresponding to a planet of mass M and radius R is $50 \mathrm{kms}^{-1}$. If the planet's mass and radius were $4 M$ and R, respectively, then the corresponding escape velocity would be
A. $100 \mathrm{kms}^{-1}$
B. $50 \mathrm{~km} \mathrm{~s}^{-1}$
C. $200 \mathrm{~km} \mathrm{~s}^{-1}$

$$
\text { D. } 25 \mathrm{~km} \mathrm{~s}^{-1}
$$

Answer: A

D Watch Video Solution

85. A planet is revolving around the Sun in an
elliptical orbit. Its closest distance from the Sun
is r and farthest distance is R. If the orbital
velocity of the planet closest to the Sun is v,
then what is the velocity at the farthest point?
A. $\frac{v r}{R}$
B. $\frac{v R}{r}$
C. $v \sqrt{\frac{r}{R}}$
D. $v \sqrt{\frac{R}{r}}$

Answer: A

- Watch Video Solution

86. The radii of two planets are respectively
R_{1} and R_{2} and their densities are respectively
ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity $\left(g_{1} / g_{2}\right)$ at their surfaces is
A. $r_{1} \rho_{1}: r_{2} \rho_{2}$
B. $r_{1} \rho_{1}^{2}: \rho_{2} \rho_{2}^{2}$
C. $r_{1}^{2} \rho_{1}: r_{2}^{2} \rho_{2}$
D. $r_{1} \rho_{2}: r_{2} \rho_{1}$

Answer: A
87. Figure shows the motion of a planet around
the Sun S in an elliptical orbit with the Sun at the focus. The shaded areas A and B are also
shown in the figure which can be assumed to be equal. If t_{1} and t_{2} represent the time taken for the planet to move from a to b and c to d, respectively then

A. $t_{1}<t_{2}$
B. $t_{1}>t_{2}$
C. $t_{1}=t_{2}$
D. from the given information the relation
between t_{1} and t_{2} cannot be determined

Answer: C

(D) Watch Video Solution

88. A body is fired with a velocity of magnitude
$\sqrt{g R}<V<\sqrt{2 g R}$ at an angle of 30° with
the radius vector of the earth. If at the highest point, the speed of the body is $V / 4$, the maximum height attained by the body is equal to

$$
\text { A. } \frac{V^{2}}{8 g}
$$

B. R
C. $\sqrt{2} R$
D. none of these

Answer: B
89. A double star system consists of two stars
A and B which have time periods T_{A} and T_{B}. Radius R_{A} and R_{B} and mass M_{A} and M_{B}.

Choose the correct option.

$$
\begin{aligned}
& \text { A. } \frac{T_{A}}{T_{B}}=\left(\frac{r_{A}}{r_{B}}\right)^{\frac{3}{2}} \\
& \text { B. } T_{A}>T_{B} \text { (if } r_{A}>r_{B} \text {) } \\
& \text { C. } T_{A}>T_{B}\left(\text { if } m_{A}>m_{B}\right) \\
& \text { D. } T_{A}=T_{B}
\end{aligned}
$$

Answer: D
90. Two spherical bodies of masses M and $5 M$ and radii R and $2 R$ are released in free space with initial separation between their centres equal to 12 R. if they attract each other due to gravitational force only, then the distance convered by the smaller body before collision is
A. $2.5 R$
B. $4.5 R$
C. $7.5 R$

D. $1.5 R$

Answer: C

D Watch Video Solution

91. IF the change in the value of g at the height
h above the surface of the earth is the same as
at a depth x below it, then (both x and h being much smaller than the radius of the earth)

$$
\begin{aligned}
& \text { A. } d=\frac{h}{2} \\
& \text { B. } d=\frac{3 h}{2}
\end{aligned}
$$

$$
\text { C. } d=2 h
$$

$$
\text { D. } d=h
$$

Answer: C

D Watch Video Solution

92. A particle of mass 10 g is kept on the surface of a uniform sphere of masss 100kg and radius

10 cm . Find the work to be done against the gravitational force between them to take the
particel far away from the sphere (you may take

$$
\left.G=6.67 \times 10^{-11} N \frac{m^{2}}{k} g^{2}\right)
$$

$$
\text { A. } 13.34 \times 10^{-10} J
$$

$$
\text { B. } 3.33 \times 10^{-10} J
$$

C. $6.67 \times 10^{-9} \mathrm{~J}$

$$
\text { D. } 6.67 \times 10^{-10} J
$$

Answer: D

D Watch Video Solution

93. A tunnel is dug along the diameter of the
earth. There is particle of mass m at the centre of the tunnel. Find the minimum velocity given
to the particle so that is just reaches to the surface of the earth. ($R=$ radius of earth)

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{G M}{R}} \\
& \text { B. } \sqrt{\frac{G M}{2 R}} \\
& \text { C. } \sqrt{\frac{2 G M}{R}}
\end{aligned}
$$

D. it will reach will the help of a negligible

Answer: A

D Watch Video Solution

94. A cavity of radius $R / 2$ is made inside a solid sphere of radius R. The centre of the
cavity is located at a distance $R / 2$ from the centre of the sphere. The gravitational force on
a particle of a mass ' m ' at a distance $R / 2$ from the centre of the sphere on the line
joining both the centres of sphere and cavity is
(opposite to the centre of cavity). [Here
$g=G M / R^{2}$, where M is the mass of the solide sphere]

> A. $\frac{m g}{2}$
> B. $\frac{3 m g}{8}$
> C. $\frac{m g}{16}$
D. none of these

Answer: B
95. A satellite is seen after every 8 hours over the equator at a place on the earth when its sense of rotation is opposite to the earth. The time interval after which it can be seen at the same place when the sense of rotation of earth and satellite is same will be:
A. $8 h$
B. $12 h$
C. $24 h$
D. $6 h$

Answer: C

D Watch Video Solution

96. Four particles, each of mass M, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

$$
\begin{aligned}
& \text { A. }\left[\frac{G m}{r}\left(\frac{1+2 \sqrt{2}}{4}\right)\right]^{\frac{1}{2}} \\
& \text { B. } \sqrt{\frac{G M}{r}} \\
& \text { C. } \sqrt{\frac{G M}{r}(1+2 \sqrt{2})}
\end{aligned}
$$

$$
\text { D. }\left[\frac{1}{2} \frac{G m}{r}\left(\frac{1+2 \sqrt{2}}{2}\right)\right]^{\frac{1}{2}}
$$

Answer: A

D Watch Video Solution

97. The gravitational potential of two homogeneous spherical shells A and B (separated by large distance) of same surface mass density at their respective centers are in the ratio $3: 4$. If the two shells coalesce into single one such that surface mass density
remains same, then the ratio of potential at an internal point of the new shell A is equal to
A. $3: 2$
B. $4: 3$
C. $5: 3$
D. $5: 6$

Answer: C

D Watch Video Solution
98. A point P lies on the axis of a fixed ring of mass M and radius a, at a distance a from its centre C. A small particle starts from P and reaches C under gravitational attraction only. Its speed at C will be.
A. zero

$$
\begin{aligned}
& \text { B. } \sqrt{\frac{2 G M}{a}} \\
& \text { c. } \sqrt{\frac{2 G M}{a}(\sqrt{2}-1)}
\end{aligned}
$$

D. $\sqrt{\frac{2 G M}{a}\left(1-\frac{1}{\sqrt{2}}\right)}$

- Watch Video Solution

99. The percentage change in the acceleration of the earth towards the Sun from a total eclipse of the Sun to the point where the Moon is on a side of earth directly opposite to the Sun is

$$
\begin{aligned}
& \text { A. (a) } \frac{M_{s}}{M_{m}} \frac{r_{2}}{r_{1}} \times 100 \\
& \text { B. (b) } \frac{M_{s}}{M_{m}}\left(\frac{r_{2}}{r_{1}}\right) \times 100 \\
& \text { C. (c) } 2\left(\frac{r_{1}}{r_{2}}\right)^{2} \frac{M_{m}}{M_{s}} \times 100
\end{aligned}
$$

$$
\text { D. (d) }\left(\frac{r_{1}}{r_{2}}\right)^{2} \frac{M_{m}}{M_{s}} \times 100
$$

Answer: C

D Watch Video Solution

100. A comet is in highly elliptical orbit around
the Sun. The period of the comet's orbit is 90 days. Some statements are given regarding the collision between the comet and the earth.

Mark the correct statement. [Mass of the Sun
$=2 \times 10^{30} \mathrm{~kg}$, mean distance between the earth and the Sun $=1.5 \times 10^{11} \mathrm{~m}$.]
A. Collision is there.
B. Collision is not possible
C. Collision may or may not be there
D. Enough information is not given

Answer: B
101. Imagine that you are in a spacecraft orbiting around the earth in a circle of radius

7000 km (from the centre of the earth). If you decrease the magnitude of mechanical energy
of the spacecraft - earth system by 10% by
firing the rockets, then what is the greatest height you can take your spacecraft above the surface of the earth? $\left[R_{e}=6400 \mathrm{~km}\right]$
A. (a) 6400 km
B. (b) 540 km
C. (c) 2140 km

D. (d) 3000 km

Answer: C

D Watch Video Solution

102. A satellite of mass m is in an elliptical orbit around the earth. The speed of the satellite at its nearest position is $(6 G M) /(5 r)$ where r is the perigee (nearest point) distance from the centre of the earth. It is desired to transfer the satellite to the circular orbit of radius equal to its apogee (farthest point) distance from the
centre of the earth. The change in orbital speed
required for this purpose is

> A. $0.35 \sqrt{\frac{G M_{e}}{r}}$
> B. $0.085 \sqrt{\frac{G M_{e}}{r}}$
> C. $\sqrt{\frac{2 G M_{3}}{r}}$
D. zero

Answer: B
103. Two rings having masses M and $2 M$ respectively, having the same radius are placed coaxially as shown in the figure.

If the
mass distribution on both the rings is nonuniform, then the gravitational potential at point P is

$$
\text { A. (a) }-\frac{G M}{R}\left[\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{5}}\right]
$$

B. (b) $-\frac{G M}{R}\left[1+\frac{2}{2}\right]$
C. (c)zero
D. (d)cannot be determined from the given information

Answer: A

D Watch Video Solution

104. A point mass m is released from rest at a distance of $3 R$ from the centre of a thin-walled hollow sphere of radius R and mass M as
shown. The hollow sphere is fixed in position and the only force on the point mass is the gravitational attraction of the hollow sphere.

There is a very small hole in the hollow sphere through which the point mass falls as shown.

The velocity of a point mass when it passes through point P at a distance $R / 2$ from the
centre of the sphere is

A. (a) $\sqrt{\frac{2 G M}{3 R}}$
B. (b) $\sqrt{\frac{5 G M}{3 R}}$
C. (c) $\sqrt{\frac{25 G M}{24 R}}$

D. (d)none of these

Answer: D

- Watch Video Solution

105. A body is thrown from the surface of the earth with velocity $\left(g R_{e}\right) / 12$, where R_{e} is the radius of the earth at some angle from the vertical. If the maximum height reached by the body is $R_{e} / 4$, then the angle of projection with the vertical is
A. $\sin ^{-1}\left(\frac{\sqrt{5}}{4}\right)$
B. $\cos ^{-1}\left(\frac{\sqrt{5}}{4}\right)$
C. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
D. none of these

Answer: A

D Watch Video Solution

106. The gravitational force exerted by the Sun on the Moon is about twice as great as the
gravitational force exerted by the earth on the

Moon, but still Moon is not escaping from the gravitational influence of the earth. Mark the option which correctly explains the above system.
A. Escape speed is independent of the
direction in which it is projected.
B. The rotational effect of the earth plays a
role in computation of escape speed, however small it may be.

C. A body thrown in the eastward direction

 has less escape speed.D. None of the above

Answer: C

D Watch Video Solution
107. A tunnel has been dug into a solid sphere of non-uniform mass density as shown in the figure. As one moves from A to B, the
magnitude of gravitational field intensity

A. will continuously decrease
B. will decrease up to the centre of the sphere and then increase

C. may increase or decrease

D. will continuously increase

Answer: C

D Watch Video Solution

108. A ring having non-uniform distribution of mass M and radius R is being considered. A point mass m_{0} is taken slowly towards the ring. In doing so, work done by the external force against the gravitational force exerted by ring
is

A. $\frac{G M m_{0}}{\sqrt{2} R}$
B. $\frac{G M m_{0}}{R}\left[\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{5}}\right]$
C. $\frac{G M m_{0}}{R}\left[\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{2}}\right]$
D. It is not possible to find the required
work as the nature of distribution of mass is not known.

Answer: B

D Watch Video Solution

109. An artificial satellite of the earth is
launched in circular orbit in the equatorial
plane of the earth and the satellite is moving from west to east. With respect to a person on
the equator, the satellite is completing one round trip in $24 h$. Mass of the earth is
$M=6 \times 10^{24} \mathrm{~kg}$. For this situation the orbital radius of the satellite is

A. $2.66 \times 10^{4} \mathrm{~km}$

B. 6400 km
C. $36,000 \mathrm{~km}$

D. $29,600 \mathrm{~km}$

Answer: A

- Watch Video Solution

110. A satellite is orbiting around the earth in a
circular orbit of radius r. A particle of mass m
is projected from the satellite in a forward
direction with a velocity $v=2 / 3$ times the orbital velocity (this velocity is given w.r.t. earth). During subsequent motion of the particle, its minimum distance from the centre of earth is
A. $\frac{r}{2}$
B. r
C. $\frac{2 r}{3}$
D. $\frac{4 r}{5}$
111. Figure shows the kinetic energy $\left(E_{k}\right)$ and potential energy (E_{p}) curves for a two-particle system. Name the point at which the system is
a bound system.

A. A
B. B
C. C
D. D

Answer: A::B::C::D

- Watch Video Solution

112. A double star consists of two stars having masses M and $2 M$. The distance between their centres is equal to r. They revolve under their
mutual gravitational interaction. Then, which of the following statements are not correct?
A. $r^{\frac{3}{2}}$
B. r
C. $m^{\frac{1}{2}}$
D. $m^{-\frac{1}{2}}$

Answer: A::D
113. A tunnel is dug along a chord of the earth
at a perpendicular distance $R / 2$ from the earth's centre. The wall of the tunnel may be assumedd to be frictionless. A particle is released from one end of the tunnel. The pressing force by the particle on the wall and the acceleration of the particle varies with x (distance of the particle from the centre) according to

Pressing
force

b.

Acceleration

c.

Acceleration
 d.
D.

Answer: B::C

114. Consider a planet moving in an elliptical orbit round the sun. The work done on the planet by the gravitational force of the sun
A. is zero in any small part of the orbit B. is zero in some parts of the orbit
C. is zero in complete revolution
D. is zero in no part of the motion

Answer: B::C

D Watch Video Solution

115. Which of the following statements are true about acceleration due to gravity?
A. g decreases in moving away from the centre if $r>R$.
B. g decreases in moving away from the
centre if $r<R$
C. g is zero at the centre of earth
D. g decreases if earth stops rotating on its
axis.

Answer: A::C

D Watch Video Solution

116. Let V and E denote the gravitational
potential and gravitational field at a point. It is possible to have
A. $V=$ and $E=0$
B. $V=0$ and $E \neq 0$
C. $V \neq$ and $E=0$
D. $V \neq 0$ and $E \neq 0$

Answer: A::C::D

D Watch Video Solution

117. If a body is projected with speed lesser then escape velocity
A. the body can reach a certain height and may fall down following a straight line path
B. the body can reach a certain height and
C. the body may orbit the earth in a circular orbit

D. the body may orbit the earth in an elliptical orbit

Answer: A::B:C::D

- Watch Video Solution

118. Earth orbiting satellite will escape if
A. its speed is increased by 41%

B. its speed in the orbit is made $\sqrt{1.5}$ times

of its initial value

C. its $K E$ is doubled

D. it stops moving in the orbit

Answer: A::C

D Watch Video Solution

119. In case of an orbiting satellite if the radius of orbit is decreased
A. its $K E$ decreases
B. its $P E$ decreases
C. its $M E$ decreases
D. its speed decreases

Answer: B::C
(D) Watch Video Solution
120. If two satellites of different masses are revolving in the same orbit, they have the same

A. angular momentum

B. energy
C. time period
D. speed

Answer: C::D

D Watch Video Solution

121. A double star is a system of two stars of masses m and $2 m$, rotating about their centre of mass only under their mutual gravitational
attraction. If r is the separation between these two stars then their time period of rotation about their centre of mass will be proportional to
A. Heavier star revolves in orbit of radius
$2 r / 3$.
B. Both the stars revolve with the same
speed, period of which is equal to
$\left(2 \pi / r^{3}\right)\left(2 G M^{2} / 3\right)$
C. Kinetic energy of the heavier star is twice
that of the other star.

D. None of the above

Answer: A::C

- Watch Video Solution

122. Mark the correct statements.
A. Gravitational potential at the centre of
curvature of a thin hemispherical shell of
radius R and mass M is equal to $G M / R$
B. Gravitational field strength at a point
lying on the axis of a thin, uniform
circular ring of radius R and mass M is
equal to $G M x /\left[\left(R^{2}+x^{2}\right)^{\frac{3}{2}}\right]$ where x
is distance of that point from the centre
of the ring.
C. Newton's law of gravitation for
gravitational force between two bodies is
applicable only when bodies have spherical symmetric distribution of mass.

D. None of these

Answer: B::C

D Watch Video Solution

Multiple Correct

1. Suppose an earth satellite, revolving in a
circular orbit experiences a resistance due to
cosmic dust. Then
A. its kinetic energy will increase
B. its potential energy will decrease
C. it will spiral towards the earth and in the process its angular momentum will remain conserved

D. it will burn off ultimately

Answer: A::B::D

- Watch Video Solution

2. Suppose universal gravitational constant starts to decrease, then
A. length of the day on the earth will increase
B. length of the year will increase
C. the earth will follow a spiral path of decreasing radius

D. kinetic energy of the earth will decrease

Answer: B::D
3. An astronaut experiences weightlessness in a space satellite. It is because
A. no external force is acting on him
B. he is falling freely
C. no reaction is exerted by the floor of the satellite
D. he is far away from the earth's surface

Answer: B::C

4. Suppose a smooth tunnel is dug along a straight line joining two points on the surface of the earth and a particle is dropped from rest at its one end. Assume that mass of earth is uniformly distributed over its volume. Then
A. The particle will emerge from the other end with velocity $\frac{G M_{e}}{2 R_{e}}$, where M_{e} and R_{e} are earth's mass and radius, respectively.
B. The particle will come to rest at the centre of the tunnel because at this position, the particle is closest to the earth's centre.
C. Potential energy of the particle will be equal to zero at centre of the tunnel if it
is along a diameter.
D. Acceleration of the particle will be proportional to its distance from the midpoint of the tunnel.

Answer: A::B::C

- Watch Video Solution

5. If the radius of the earth suddenly decreases
to 80% of its present value, the mass of the earth remaining the same, the value of the acceleration due to gravity will
A. remain unchanged
B. become $\frac{9.8}{0.64} m s^{-2}$
C. increase by 36%

D. increase by about 56 \%

Answer: B::D

D Watch Video Solution

6. Choose the correct statements from the
following
A. The gravitational forces between two particles are an action and reaction pair.
B. Gravitational constant (G) is scalar but acceleration due to gravity (g) is a vector.
C. The values of G and g are to be determined experimentally.
D. G and g are constant everywhere.

Answer: A::B::C

D Watch Video Solution

7. Choose the correct statements from the following:
A. The magnitude of the gravitational force
between two bodies of mass 1 kg each
and separated by a distance of $1 m$ is
$9.8 N$.
B. The higher the value of the escape
velocity for a planet, the higher is the
abundance of the lighter gases in its
atmosphere.
C. The gravitational force of attraction
between two bodies of ordinary mass is
not noticeable because the value of the gravitational constant is extremely small.

D. Force of friction arises due to

gravitational attraction.

Answer: B::C

D Watch Video Solution
8. Choose the incorrect statements from the following:
A. It is possible to shield a body from the gravitational field of another body by
using a thick shielding material between
them.
B. The escape velocity of a body is
independent of the mass of the body and
the angle of projection.
C. The acceleration due to gravity increases
due to the rotation of the earth.
D. The gravitational force exerted by the earth on a body is greater than that exerted by the body on the earth.

Answer: A::C::D

D Watch Video Solution

9. A satellite is orbiting the earth, if its distance
from the earth is increased, its
A. angular velocity would increase
B. linear velocity would increase
C. angular velocity would decrease
D. time period would increase

Answer: C::D

- Watch Video Solution

10. Which of the following statements are true?

For a particle on the surface of the earth:
A. the linear speed is minimum at the equator
B. the angular speed is maximum at the equator
C. the linear speed is minimum at the poles
D. the angular speed is $7.3 \times 10^{-5} \mathrm{rads}^{-1}$
at the equator

Answer: C::D

11. Two identical satellites are orbiting are orbiting at distances R and 7R from the surface of the earth, R being the radius of the earth.

The ratio of their
A. total energies is 4 and potential and
kinetic energies is 2
B. potential energies is 4
C. kinetic energies is 4
D. total energies is 4

- Watch Video Solution

12. If both the mass and radius of the earth decrease by 1% the value of
A. acceleration due to gravity would decrease by nearly 1%
B. acceleration due to gravity would increase by 1%
C. escape velocity from the earth's surface
would decrease by 1%

D. the gravitational potential energy of a

body on earth's surface will remain unchanged

Answer: B::D

- Watch Video Solution

13. An object is taken from a point P to another point Q in a gravitational field:
A. assuming the earth to be spherical, if
both P and Q lie on the earth's surface,
the work done is zero
B. if P is on the earth's surface and Q above
it, the work done is minimum when it is
taken along the straight line $P Q$
C. the work done depends only on the
position of P and Q and is independent
of the path along which the particle is
taken

D. there is no work done if the object is

taken from P to Q and then brought back to P along any path

Answer: A::C::D

- Watch Video Solution

14. A small mass m is moved slowly from the
surface of the earth to a height h above the
surface. The work done (by an external agent) in doing this is
A. $m g h$, for all values of h

$$
\text { B. } m g h, \text { for } h \ll R
$$

C. $1 / 2, m g R$, for $h=R$

$$
\text { D. }-1 / 2 m g R \text {, for } h=R
$$

Answer: B::C

D Watch Video Solution

15. Which of the following are correct?
A. If R is the radius of a planet, g is the acceleration due to gravity, the mean density of the planet is $3 g / 4 \pi G R$ B. Acceleration due to gravity is a universal constant.
C. The escape velocity of a body from earth
is $11.2 \mathrm{kms}^{-1}$. The escape velocity from a
planet which has double the mass of earth and half its radius is $22.4 \mathrm{kms}^{-1}$
D. The ratio of gravitational mass and inertial mass of a body at the surface of earth is 1 .

Answer: A::C::D

- Watch Video Solution

16. Which of the following are correct?
A. An astronaut going from the earth to the

Moon will experience weightlessness
once.
B. When a thin uniform spherical shell
gradually shrinks maintaining its shape,
the gravitational potential at its centre decreases.
C. In the case of a spherical shell, the plot of
V versus r is continuous.
D. In the case of a spherical shell, the plot of
gravitational field intensity I versus r is

Answer: A::B::C

- Watch Video Solution

17. Which of the following are not correct?
A. The escape velocity for the Moon is
$6 k m s^{-1}$.
B. The escape velocity from the surface of

Moon is v.

The orbital velocity for a satellite to orbit
very close to the surface of Moon is $v / 2$
C. When an earth satellite is moved from
one stable orbit to a further stable orbit,
the gravitational potential energy
increases.
D. The orbital velocity of a satellite revolving
in as circular path close to the planet is
independent of the density of the planet

- Watch Video Solution

18. Which of the following are correct?
A. Out of electrostatic, electromagnetic,
nuclear and gravitational interactions,
the gravitational interaction is the
weakest.
B. If the earth were to 'rotate faster than its
present speed, the weight of an object
would decrease at the equator but remain unchanged at the poles.
C. The mass of the earth in terms of g, R
and G is $\left(g R^{2} / G\right)$.
D. If the earth stops rotating in its orbit
around the Sun there will be no variation
in the weight of a body on the surface of earth.

Answer: A::B::C::D

19. Two satellites S_{1} and S_{2} are revolving around the earth in coplanar concentric orbits
in the opposite sense. At $t=0$, the position of satellites are shown in the diagram. The periods of S_{1} and S_{2} are $4 h$ and $24 h$, respectively. The radius of orbit of S_{1} is $1.28 \times 10^{4} \mathrm{~km}$. For this situation, mark the

A. The angular velocity of S_{2} as observed by
S_{1} at $t=12 h$ is $0.468 \pi r a d s^{-1}$
B. The two satellites are closet to each
other for the first tme at $t=12 h$ and
then after every $24 h$ they are closet to

each other.

C. The orbital velocity of S_{1} is
$0.64 \pi \times 10^{4} \mathrm{~km}$.
D. The velocity of S_{1} relative to S_{2} is
continuously changing in magnitude and
direction both.

Answer: A::B::C::D

D Watch Video Solution
20. Consider two satellites A and B of equal mass m, moving in the same circular orbit about the earth, but in the opposite sense as
shown in Fig. The orbital radius is r. The satellites undergo a collision which is perfectly inelastic. For this situation, mark out the correct statement(s). [Take mass of earth as M]

A. The total energy of the two satellites plus
earth system just before collision is
$-(G M m) / r$
B. The total energy of the two satellites plus
earth system just after collision is
$-(2 G M m) / r$
C. The total energy of two satellites plus.
earth system just after collision is
$-(G M m) / 2 r)$

D. The combined mass (two satellites) will

fall towards the earth just after collision.

Answer: A::B::D

D Watch Video Solution

21. Assertion: For the plantes orbiting around the sun, angular speed, linear speed, K.E. changes with time, but angular momentum remains constant.

Reason: No torque is acting on the rotating planet. So its angular momentum is constant.

A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.
B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

D Watch Video Solution

22. Statement I: For a satellite revolving very
near to the earth's surface the time period of
revolution is given by $1 h 24 \mathrm{~min}$.

Statement II: The period of revolution of a
satellite depends only upon its height above the earth's surface.

A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.
B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: A
23. Assertion: Kepler's second law can be understood by conservation of angular momentum principle.

Reason: Kepler's second law is related with areal velocity which can further be proved to be used on coservation of angular momentum as $(d A / d t)=\left(r^{2} \omega\right) / 2$.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.

D. Statement I is False, Statement II is True.

Answer: A

D Watch Video Solution

24. Statement $\mathrm{I}:$ The force of gravitation between a sphere and a rod of mass M_{2} is
$=\left(G M_{1} M_{2}\right) / r$.

Statement II: Newton's law of gravitation holds correct for point masses.

A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.
B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.

D. Statement I is False, Statement II is True.

Answer: D

D Watch Video Solution

Assertion- Reasoning

1. Statement 1: The value of escape velocity from the surface of earth at 30° and 60° is
$v_{1}=2 v_{e}, v_{2}=2 / 3 v_{e}$.

Statement II: The value of escape velocity is independent of angle of projection.

A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: D

2. Statement I: If the earth suddenly stops rotating about its axis, then the acceleration due to gravity will become the same at all the places.

Statement II: The value of acceleration due to gravity is independent of rotation of the earth.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.

D. Statement I is False, Statement II is True.

Answer: C

D Watch Video Solution

3.

Statement I: The magnitude of the
gravitational potential at the surface of solid sphere is less than that of the centre of sphere.

Statement II: Due to the solid sphere, the gravitational potential is the same within the sphere.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.
B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.

C. Statement I is True, Statement II is False.

D. Statement I is False, Statement II is True.

Answer: C

D Watch Video Solution

4. Statement I: The smaller the orbit of a planet
around the Sun, the shorter is the time it takes
to complete.

Statement II: According to Kepler's third law of planetary motion, square of time period is
proportional to cube of mean distance from Sun.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.
B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: A

Watch Video Solution

5. Assertion: The value of acceleration due to gravity does not depends upon mass of the body on which force is applied.

Reason: Acceleration due to gravity is a constant quantity.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: C

D Watch Video Solution
6. Statement I: In free space a uniform spherical
planet of mass M has a smooth narrow tunnel
along its diameter. This planet and another
superdense small particle of mass M start
approaching towards each other from rest
under action of their gravitational forces. When
the particle passes through the centre of the planet, sum of kinetic energies of both the bodies is maximum.

Statement II: When the resultant of all forces acting on a particle or a particle like object (initially at rest) is constant in direction, the kinetic energy of the particle keeps on increasing.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.

D. Statement I is False, Statement II is True.

Answer: A

D Watch Video Solution

7. Statement I: The earth does not retain hydrogen molecules and helium atoms in its
atmosphere, but does retain much heavier molecules, such as oxygen and nitrogen.

Statement II: Lighter molecules in the atmosphere have translational speed that is greater or closer to escape speed of earth.

A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.

C. Statement I is True, Statement II is False.

D. Statement I is False, Statement II is True.

Answer: A

D Watch Video Solution

8. Statement I: It takes more fuel for a
spacecraft to travel from the earth to the Moon than for the return trip.

Statement II: The point of zero gravitational field intensity due to the earth and the Moon is
lying nearer to the Moon, i.e., in the diagram shown, for $r<r_{0}, E_{g}$ is towards the earth's centre and for $r>r_{0}, E_{g}$ is towards the Moon's centre and at $r=r_{0}, E_{g}$ is zero.

A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.

D. Statement I is False, Statement II is True.

Answer: A

D Watch Video Solution

9. Statement I: Consider a satellite moving in an
elliptical orbit around the earth. As the satellite
moves, the work done by the gravitational force of the earth on the satellite for any small part of the orbit is zero.

Statement II: K_{E} of the satellite in the above described case is not constant as it moves around the earth.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.
B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.

D. Statement I is False, Statement II is True.

Answer: D

D Watch Video Solution

10. Statement I: If a particle projected horizontally just above, the surface of the earth with a speed greater than escape speed, then it
earth. Assume that particle has a clear path.

Statement II: Escape velocity is independent of its direction.

A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: A

D Watch Video Solution

11. Statement I: If time period of a satellite revolving in circular orbit in equatorial plane is
$24 h$, then it must be a, geostationary satellite.

Statement II: Time period of a geostationary satellite is $24 h$.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: D

12. Statement I: Two satellites are following one another in the same circular orbit. If one satellite tries to catch another (leading one)
satellite, then it can be done by increasing its speed without changing the orbit.

Statement II: The energy of earth-satellite
system in circular orbit is given by
$E=(-G m s) /(2 a)$, where r is the radius of the circular orbit.
A. Statement I is True, Statement II is True:

Statement II is a correct explanation for

Statement I.

B. Statement I is True, Statement II is True:

Statement II is Not a correct explanation
for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: D

13. The minimum and maximum distances of a
satellite from the center of the earth are $2 R$
and $4 R$ respectively, where R is the radius of earth and M is the mass of the earth. Find
(a) its minimum and maximum speeds,
(b) radius of curvature at the point of minimum distance.

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{G M}{9 R}}, \sqrt{\frac{2 G M}{R}} \\
& \text { B. } \sqrt{\frac{G M}{5 R}}, \sqrt{\frac{3 G M}{2 R}} \\
& \text { C. } \sqrt{\frac{G M}{6 R}}, \sqrt{\frac{2 G M}{3 R}} \\
& \text { D. } \sqrt{\frac{G M}{3 R}}, \sqrt{\frac{5 G M}{2 R}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

Linked Comprehension

1. The minimum and maximum distances of a
satellite from the center of the earth are $2 R$
and $4 R$ respectively, where R is the radius of earth and M is the mass of the earth. Find
(a) its minimum and maximum speeds,
(b) radius of curvature at the point of minimum distance.
A. $\sqrt{\frac{8 R}{3}}$
B. $\sqrt{\frac{5 R}{3}}$
C. $\sqrt{\frac{4 R}{3}}$
D. $\sqrt{\frac{7 R}{3}}$

Answer: A
2. The orbit of Pluto is much more eccentric than the orbits of the other planets. That is, instead of being nearly circular, the orbit is noticeably elliptical. The point in the orbit nearest to the Sun is called the perihelion and the point farthest from the Sun is called the aphelion.

At perihelion, the gravitational potential energy of Pluto in its orbit has
A. its maximum value
B. its minimum value
C. the same value at every other point in the orbit

D. the value which depends on the sense of

rotation

Answer: B
3. The orbit of Pluto is much more eccentric
than the orbits of the other planets. That is, instead of being nearly circular, the orbit is noticeably elliptical. The point in the orbit nearest to the Sun is called the perihelion and the point farthest from the Sun is called the aphelion.

At perihelion, the mechanical energy of Pluto's orbit has
A. its maximum value
B. its minimum value
C. the same value at every other point in the orbit

D. the value which depends on the sense of

rotation

Answer: C

- Watch Video Solution

4. The orbit of Pluto is much more eccentric
than the orbits of the other planets. That is, instead of being nearly circular, the orbit is noticeably elliptical. The point in the orbit nearest to the Sun is called the perihelion and the point farthest from the Sun is called the aphelion.

As Pluto moves from the perihelion to the
aphelion, the work done by gravitational pull of

Sun on Pluto is
A. is zero
B. is positive
C. is negative
D. depends on sence of rotation

Answer: C

D Watch Video Solution
5. A solid sphere of mass m and radius r is placed inside a hollow thin spherical shell of mass M and radius R as shown in the figure. A particle of mass m^{\prime} is placed on the line joining the two centres at a distance x from the point of contact of the sphere and the shell. Find the magnitude of the resultant gravitational force on this particle due to the sphere and the shell if

$2 r<x<2 R$

$$
\begin{aligned}
& \text { А. } \frac{G m m^{\prime}(2 r-x)}{2 r^{3}} \\
& \text { B. } \frac{G m m^{\prime}(x-r)}{2 r^{3}} \\
& \text { C. } \frac{G m m^{\prime}(x-r)}{r^{3}}
\end{aligned}
$$

D. $\frac{G m m^{\prime}(2 x-r)}{r^{3}}$

Answer: C

- Watch Video Solution

6. a solid sphere of mass m and radius r is
placed inside a hollow thin spherical shell of mass M and radius R as shown in figure. A particle of mass m is placed on the line joining the two centers as a distance x from the point of contact of the sphere and the shell. Find the magnitude of the resultant gravitational force
on this particle due to the sphere and the shell
if
$a) . r<x<2 r, b) .2 r<x<2 R$ and $c) . x>2 R$

$$
\begin{aligned}
& \text { A. } \frac{G m m^{\prime}}{4(x-x)^{2}} \\
& \text { B. } \frac{G m m^{\prime}}{(x-r)^{2}} \\
& \text { C. } \frac{G m m^{\prime}}{(x-r)^{3}} \\
& \text { D. } \frac{2 G m m^{\prime}}{(x-r)^{2}}
\end{aligned}
$$

Answer: B
7. A solid sphere of mass m and radius r is placed inside a hollow thin spherical shell of mass M and radius R as shown in the figure. A particle of mass m^{\prime} is placed on the line joining the two centres at a distance x from the point of contact of the sphere and the shell. Find the magnitude of the resultant gravitational force on this particle due to the sphere and the shell if

$2 r<x<2 R$

$$
\begin{aligned}
& \text { A. } \frac{2 G M m^{\prime}}{(x-r)^{2}}+\frac{G m m^{\prime}}{(x+r)^{2}} \\
& \text { B. } \frac{G m m^{\prime}}{2 x(x-R)^{2}}+\frac{2 G m m^{\prime}}{(x-r)^{2}} \\
& \text { C. } \frac{G m m^{\prime}}{(x+R)^{2}}+\frac{G m m^{\prime}}{(x+r)^{2}}
\end{aligned}
$$

$$
\text { D. } \frac{G M m^{\prime}}{(x-R)^{2}}+\frac{G m m^{\prime}}{(x-r)^{2}}
$$

Answer: D

- Watch Video Solution

8. The gravitational field in a region is given by
$\vec{E}=\left(5 N k g^{-1}\right) \vec{i}+\left(12 N k g^{-1}\right) \vec{j} \ldots$ a. find
the magnitude of the gravitational force acting on a particle of mass 2 kg placed at the origin
b. Find the potential at the points $(12 m, 0)$ and $(0,5 m)$ if the potential at the origin is taken to
be zero. c. Find the change in gravitational potential energy if a particle of mass 2 kg is taken from the origin to the point $(12 m, 5 m) . d$.

Find the change in potential energy if the particle is taken from $(12 m, 0)$ to $(0,5 m)^{\prime}$.
A. $26 N$
B. 30 N
C. 20 N
D. 35 N

Answer: A
9. The gravitational field in a region is given by $\vec{E}=\left(5 N k g^{-1}\right) \vec{i}+\left(12 N k g^{-1}\right) \vec{j} \ldots$ a. find
the magnitude of the gravitational force acting on a particle of mass 2 kg placed at the origin
b. Find the potential at the points $(12 m, 0)$ and
$(0,5 m)$ if the potential at the origin is taken to
be zero. c. Find the change in gravitational potential energy if a particle of mass 2 kg is taken from the origin to the point $(12 m, 5 m)$. d.

Find the change in potential energy if the particle is taken from $(12 m, 0)$ to $(0,5 m)^{\prime}$.

$$
\begin{aligned}
& \text { A. }-30 \mathrm{Jkg}^{-1},-30 \mathrm{Jkg}^{-1} \\
& \text { B. }-40 \mathrm{Jkg}^{-1},-30 \mathrm{Jkg}^{-1} \\
& \text { C. }-60 \mathrm{Kkg}^{-1},-60 \mathrm{Jkg}^{-1} \\
& \text { D. }-40 \mathrm{Jkg}^{-1},-50 \mathrm{Jkg}^{-1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

10. The gravitational field in a region is given by $\vec{E}=\left(5 N k g^{-1}\right) \vec{i}+\left(12 N k g^{-1}\right) \vec{j}$. a. find
the magnitude of the gravitational force acting
on a particle of mass 2 kg placed at the origin
b. Find the potential at the points $(12 m, 0)$ and
$(0,5 m)$ if the potential at the origin is taken to
be zero. c. Find the change in gravitational potential energy if a particle of mass 2 kg is taken from the origin to the point $(12 m, 5 m)$. d.

Find the change in potential energy if the particle is taken from $(12 m, 0)$ to $(0,5 m)^{\prime}$.
A. -225 J
B. $-240 J$
C. $-245 J$
D. $-250 J$

Answer: B

D Watch Video Solution

11. The gravitational field in a region is given by
$\vec{E}=\left(5 N k g^{-1}\right) \vec{i}+\left(12 N k g^{-1}\right) \vec{j}$. a. find
the magnitude of the gravitational force acting on a particle of mass 2 kg placed at the origin
b. Find the potential at the points $(12 m, 0)$ and
$(0,5 m)$ if the potential at the origin is taken to
be zero. c. Find the change in gravitational potential energy if a particle of mass 2 kg is
taken from the origin to the point $(12 m, 5 m) . d$.

Find the change in potential energy if the particle is taken from $(12 m, 0)$ to $(0,5 m)^{\prime}$.
A. $-10 J$
B. -50 J
C. zero
D. $-60 J$

Answer: C
12. A uniform metal sphere of radius R and mass m is surrounded by a thin uniform spherical shell of same mass and radius $4 R$.

The centre of the shell C falls on the surface of
the inner sphere. Find the gravitational fields at points A and B.

A. $\frac{G M}{16 a^{2}}$
B. $\frac{G M}{8 a^{2}}$
C. $(G M)\left(2 a^{2}\right)$
D. $\frac{G M}{34 a^{2}}$

Answer: A

D Watch Video Solution

13. A uniform metal sphere of radius R and mass m is surrounded by a thin uniform spherical shell of same mass and radius $4 R$.

The centre of the shell C falls on the surface of
the inner sphere. Find the gravitational fields at
points A and B.

A. $\frac{21 G M}{900 a^{2}}$
B. $\frac{61 G M}{450 a^{2}}$
C. $\frac{61 G M}{900 a^{2}}$
D. $\frac{61 G M}{1800 a^{2}}$

Answer: C

- Watch Video Solution

14. In the graph shown, the $P E$ of earthsatellite system is shown by a solid line as a
function of distance r (the separation between
earth's centre and satellite). The total energy of
the two objects which may or may not be bounded to the earth are shown in the figure by dotted lines.

定

Based on the above information, answer the following questions.

Mark the correct statement(s).
A. The object having the total energy E_{1} is
bounded one.
B. The object having the total energy E_{2} is
bounded one.

C. Both the objects are bounded

D. Both the objects are unbounded

Answer: A

D Watch Video Solution

15. In the graph shown, the $P E$ of earth-
satellite system is shown by a solid line as a function of distance r (the separation between earth's centre and satellite). The total energy of
the two objects which may or may not be
bounded to the earth are shown in the figure by dotted lines.

Based on the above information, answer the following questions.

If object having total energy E_{1} is having the same $P E$ curve as shown in the figure, then
A. r_{0} is the maximum distance of the object
from the earth's centre
B. this object and the earth system is
bounded one
C. the $K E$ of the object is zero when $r=r_{0}$

D. all the above

Answer: D
16. In the graph shown, the $P E$ of earthsatellite system is shown by a solid line as a function of distance r (the separation between earth's centre and satellite). The total energy of the two objects which may or may not be bounded to the earth are shown in the figure by dotted lines.

Based on the above information, answer the
following questions. If both the objects have the same $P E$ curve as shown in the figure, then
A. for objects having total energy E_{2}, all
values of r are possible
B. for the object having total energy E_{2}
values of $r<r_{0}$ are only possible
C. for the object having total energy E_{1}, all
values of r are possible
D. none of the above

D Watch Video Solution

17. An unmanned satellite A and a spacecraft B
are orbiting around the earth in the same circular orbit as shown.

The
spacecraft is ahead of the satellite by some
time. Let us consider that some technical problem has arisen in the satellite and the astronaut from B has made it correct. For this
to be done docking of two (A and B) is required (in layman terms connecting A and B
). To achieve this, the rockets of A have been fired in forward direction and docking takes place as shown in the figure below:

New orbit of A

Take mass of the earth $=5.98 \times 10^{24} \mathrm{~kg}$

Radius of the earth $=6400 \mathrm{~km}$

Orbital radius $=9600 \mathrm{~km}$

Mass of satellite $A=320 \mathrm{~kg}$
Mass of spacecraft $=3200 \mathrm{~kg}$

Assume that initially spacecraft B leads
satellite A by $100 s$, i.e., A arrives at any particle
position after $100 s$ of $B^{\prime} s$ arrival. Based on the above information answer the following questions.

To dock A and B in the above-described
situation, one can use the rocket system of either one, i.e., either of A or of B. To accomplish docking in the minimum possible time which is the best way?
A. To use rocket system of A.
B. To use rocket system of B.
C. Either (a) or (b).
D. Information insufficient

Answer: C

- Watch Video Solution

18. An unmanned satellite A and a spacecraft B
are orbiting around the earth in the same circular orbit as shown.

The
spacecraft is ahead of the satellite by some
time. Let us consider that some technical problem has arisen in the satellite and the astronaut from B has made it correct. For this
to be done docking of two (A and B) is required (in layman terms connecting A and B
). To achieve this, the rockets of A have been fired in forward direction and docking takes place as shown in the figure below:

Take mass of the earth $=5.98 \times 10^{24} \mathrm{~kg}$
Radius of the earth $=6400 \mathrm{~km}$
Orbital radius $=9600 \mathrm{~km}$
Mass of satellite $A=320 \mathrm{~kg}$
Mass of spacecraft $=3200 \mathrm{~kg}$
Assume that initially spacecraft B leads satellite A by $100 s$, i.e., A arrives at any particle
position after $100 s$ of $B^{\prime} s$ arrival. Based on the above information answer the following questions

The initial total energy and time period of satellite are, respectively,

$$
\begin{aligned}
& \text { A. }-6.65 \times 10^{10} \mathrm{~J}, 9358 \mathrm{~s} \\
& \text { B. }-6.65 \times 10^{9} \mathrm{~J}, 9358 \mathrm{~s} \\
& \text { C. }-6.65 \times 10^{10} \mathrm{~J}, 9140 \mathrm{~s} \\
& \text { D. }-6.65 \times 10^{9} \mathrm{~J}, 9140 \mathrm{~s}
\end{aligned}
$$

Answer: B

19. An unmanned satellite A and a spacecraft B are orbiting around the earth in the same circular orbit as shown.

The
spacecraft is ahead of the satellite by some
time. Let us consider that some technical problem has arisen in the satellite and the astronaut from B has made it correct. For this
to be done docking of two (A and B) is required (in layman terms connecting A and B). To achieve this, the rockets of A have been
fired in forward direction and docking takes
place as shown in the figure below:

New orbit of A

Take mass of the earth $=5.98 \times 10^{24} \mathrm{~kg}$

Radius of the earth $=6400 \mathrm{~km}$

Orbital radius $=9600 \mathrm{~km}$

Mass of satellite $A=320 \mathrm{~kg}$

Mass of spacecraft $=3200 \mathrm{~kg}$

Assume that initially spacecraft B leads
satellite A by $100 s$, i.e., A arrives at any particle position after $100 s$ of $B^{\prime} s$ arrival. Based on the above information answer the following questions

The initial total energy and time period of satellite are, respectively,
A. Its orbit becomes elliptical with semimajor axis 9505.3 km .
B. its total energy becomes $-6.714 \times 10^{9} J$
C. Its new time period becomes 9219.67 s.

D. All of the above.

Answer: D

D Watch Video Solution

20. An unmanned satellite A and a spacecraft
B are orbiting around the earth in the same
circular orbit as shown.

The
spacecraft is ahead of the satellite by some
time. Let us consider that some technical problem has arisen in the satellite and the astronaut from B has made it correct. For this to be done docking of two (A and B) is
required (in layman terms connecting A and B
). To achieve this, the rockets of A have been
fired in forward direction and docking takes
place as shown in the figure below:

Take mass of the earth $=5.98 \times 10^{24} \mathrm{~kg}$
Radius of the earth $=6400 \mathrm{~km}$

Orbital radius $=9600 \mathrm{~km}$

Mass of satellite $A=320 \mathrm{~kg}$

Mass of spacecraft $=3200 \mathrm{~kg}$
Assume that initially spacecraft B leads
satellite A by $100 s$, i.e., A arrives at any particle position after $100 s$ of $B^{\prime} s$ arrival. Based on the above information answer the following questions

The initial total energy and time period of satellite are, respectively,
A. $38 s$
B. $138 s$
C. Lags by $38 s$
D. Lags by $138 s$

(D) Watch Video Solution

21. An unmanned satellite A and a spacecraft B are orbiting around the earth in the same circular orbit as shown.

The
spacecraft is ahead of the satellite by some
time. Let us consider that some technical problem has arisen in the satellite and the astronaut from B has made it correct. For this
to be done docking of two (A and B) is required (in layman terms connecting A and B). To achieve this, the rockets of A have been
fired in forward direction and docking takes
place as shown in the figure below:

New orbit of A

Take mass of the earth $=5.98 \times 10^{24} \mathrm{~kg}$

Radius of the earth $=6400 \mathrm{~km}$

Orbital radius $=9600 \mathrm{~km}$

Mass of satellite $A=320 \mathrm{~kg}$

Mass of spacecraft $=3200 \mathrm{~kg}$

Assume that initially spacecraft B leads
satellite A by $100 s$, i.e., A arrives at any particle position after $100 s$ of $B^{\prime} s$ arrival. Based on the above information answer the following questions. After once returning to the original point, i.e., the place from where the rockets
have been fired, in which direction and with what extent the rockets have to be fired from
the satellite to again come back in the original orbit?
A. Forward direction with the same extent.
B. Backward direction with the same extent.
C. Forward direction with the higher extent.
D. Backward direction with the higher extent.

Answer: B
22. The satellites when launched from the earth
are not given the orbital velocity initially, a multistage rocket propeller carries the
spacecraft up to its orbit and during each
stage rocket has been fired to increase the
velocity to acquire the desired velocity for a particular orbit. The last stage of the rocket brings the satellite in circular/elliptical (desired) orbit.

Consider a satellite of mass 150 kg in a low circular orbit. In this orbit, we cannot neglect the effect of air drag. This air opposes the motion of satellite and hence the total
mechanical energy of earth-satellite system decreases. That means the total energy becomes more negative and hence the orbital radius decreases which causes the increase in
$K E$ When the satellite comes in the low enough orbit, excessive thermal energy generation due to air friction may cause the satellite to burn up. Based on the above information, answer the following questions.

It has been mentioned in the passage that as r decreases, E decreases but K increases. The
increase in K is [$E=$ total mechanical energy,
$r=$ orbital radius, $K=$ kinetic energy]

A. due to increase in gravitational $P E$

B. due to decrease in gravitational $P E$
C. due to work done by air friction force

D. both (b) and (c)

Answer: B

- Watch Video Solution

23. The satellites when launched from the earth
are not given the orbital velocity initially, a multistage rocket propeller carries the
spacecraft up to its orbit and during each
stage rocket has been fired to increase the
velocity to acquire the desired velocity for a particular orbit. The last stage of the rocket brings the satellite in circular/elliptical (desired) orbit.

Consider a satellite of mass 150 kg in a low
circular orbit. In this orbit, we cannot neglect
the effect of air drag. This air opposes the motion of satellite and hence the total mechanical energy of earth-satellite system decreases. That means the total energy becomes more negative and hence the orbital
radius decreases which causes the increase in
$K E$ When the satellite comes in the low enough orbit, excessive thermal energy generation due to air friction may cause the satellite to burn up. Based on the above information, answer the following questions.

If due to air drag, the orbital radius of the earth \quad decreases from $R \quad$ to
$R-\triangle R, \triangle R \ll R$, then the expression for increase in the orbital velocity $\triangle v$ is

$$
\begin{aligned}
& \text { A. } \frac{\triangle r}{2} \sqrt{\frac{G M}{R^{3}}} \\
& \text { B. }-\frac{\triangle R}{2} \sqrt{\frac{G M}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \triangle R \sqrt{\frac{G M}{R^{3}}} \\
& \text { D. }-\triangle R \sqrt{\frac{G M}{R^{3}}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

Integer

1. A particle of mass m is subjected to an attractive central force of magnitude k / r^{2}, k being a constant. If at the instant when the
particle is at an extreme position in its closed orbit, at a distance a from the centre of force, its speed is $(k / 2 m a)$, if the distance of other extreme position is b. Then a / b is

D Watch Video Solution

2. The earth (mass $=10^{24} \mathrm{~kg}$) revolves round
the Sun with an angular velocity
$2 \times 10^{-7} \mathrm{rads}^{-1}$ in a circular orbit of radius
$1.5 \times 10^{8} \mathrm{~km}$. Find the force exerted by the Sun on the earth (in $\times 10^{21} N$).
3. The density of newly discovered planet is twice that of the earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is R, the radius of the planet would be
4. Imagine a new planet having the same density as that of the earth but it is 3 times bigger than the earth in size. If the acceleration due to gravity on the surface of the earth is g and that on the surface of the new planet is g ', then

D Watch Video Solution

5. The numerical value of the angular velocity of rotation of the earth should be........ Rad/s in
order to make the effective acceleration due to gravity equal to zero.

(D) Watch Video Solution

Fill In The Blanks

1. According to Kepler's second law, the radius
vector to a planet from the Sun sweeps out equal areas in equal intervals of time. This law
is a consequence of the conservation of
\qquad
2. A gestationary satellite is orbiting the earth at a height 6 R above the surface of earth, where R is the radius of the earth. The time period of another statellight at a height of 2.5 R from the surface of earth in hours is

D Watch Video Solution

3. The masses and radii of the Earth and the

Moon are M_{1}, R_{1} and M_{2}, R_{2} respectively.

Their centres are at a distance d apart. The minimum speed with which a particle of mass m should be projected from a point midway between the two centres so as to escape to infinity is

- Watch Video Solution

4. A particle is projected vertically upwards
from the surface of earth (radius R) with a kinetic energy equal to half of the minimum
value needed for it to escape. The height to which it rises above the surface of earth is

(D) Watch Video Solution

5. The ratio of earth's orbital angular momentum (about the sun) to its mass is
$4.4 \times 10^{15} \mathrm{~m}^{2} / \mathrm{s}$. The area enclosed by earth's orbit approximately is (in m^{2})

(D) Watch Video Solution

True/False

1. Is it possible to put an artificial satellite in an

 orbit in such a way that it always remain visible directly over New Delhi ?
- Watch Video Solution

SCQ_TYPE

1. If the radius of the earth were to shrink by
1%, its mass remaining the same, the acceleration due to gravity on the earth's surface would
A. decrease
B. remain unchnaged
C. increase

D. be zero

Answer: C

D Watch Video Solution

2. If g be the acceleration due to gravity of the earth's surface, the gain is the potential energy of an object of mass m raised from the surface
of the earth to a height equal to the radius R of
the earth is
A. $\frac{1}{2} m g R$
B. $2 m g$
C. $m g R$
D. $\frac{1}{4} m g R$

Answer: A
3. A small planet is revolving around a very massive star in a circular orbit of Radius R with
a period of revolution T. If the gravitational
force between the planet and the star were proportional to $R^{-5 / 2}$, then T would be proportional to
A. T^{2} is proportioinal to R^{2}
B. T^{2} is proportional to $R^{\frac{7}{2}}$
C. T^{2} is proportional to $R^{\frac{3}{2}}$
D. T^{2} is proportional to $R^{3.75}$

Answer: B

- Watch Video Solution

4. If the distance between the earth and the
sun were reduced to half its present value, then
the number of days in one year would have been
A. 64.5
B. 129
C. 182.5

D. 730

Answer: B

- Watch Video Solution

5. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small as comapred to the mass of the earth. Then,
A. The acceleration of S is always directed towards the centre of the earth.
B. The angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant.
C. The total mechanical energy of S varies
periodically with time.
D. The linear momentum of S remains
constant in magnitude.

Answer: A

6. A simple pendulum has a time period T_{1} when on the earth's surface and T_{2} when taken to a height R above the earth's surface, where R is the radius of the earth. The value of $\frac{T_{2}}{T_{1}}$ is
A. 1
B. $\sqrt{2}$
C. 4
D. 2

Answer: D

7. The geostationalry orbit oif the earth is at a distance of about 36000 km from the earth's surface. Find the weight of a 120 kg equipment placed in a geostationary satellite. The radius of the earth is 6400 km .
A. $\frac{1}{2} h$
B. $1 h$
C. $2 h$
D. $4 h$

Answer: C

D Watch Video Solution

8. A system of binary stars of mass m_{A} and m_{B} are moving in circular orbits of radii r_{A} and r_{B} respectively. If T_{A} and T_{B} are at the time periods of masses m_{A} and m_{B} respectively then
A. If $T_{A}>T_{B}$, then $R_{A}>R_{B}$ B. If $T_{A}>T_{B}$, then $M_{A}>M_{B}$

$$
\begin{aligned}
& \text { C. }\left(\frac{T_{A}}{T_{B}}\right)^{2}=\left(\frac{R_{A}}{R_{B}}\right)^{3} \\
& \text { D. } T_{A}=T_{B}
\end{aligned}
$$

Answer: D

D Watch Video Solution

9. A spherically symmetric gravitational system
of particles has a mass density
$\rho=\left\{\begin{array}{lllll}\rho_{0} & f \text { or } & r & < & R \\ 0 & f & \text { or } & r & >\end{array} \quad R \quad\right.$ where ρ_{0} is a
constant. A test mass can undergo circular motion under the influence of the gravitational
field of particles. Its speed v as a function of distahce $r(0<r<O O)$ form the centre of the system is represented by
A.

C.
c.

Answer: C

D Watch Video Solution

10. A thin uniform disc (see figure) of mass M has outer radius $4 R$ and inner radius $3 R$. The work required to take a unit mass for point P
on its axis to infinity is

$$
\begin{aligned}
& \text { A. (a) } \frac{2 G M}{7 R}(4 \sqrt{2}-5) \\
& \text { B. (b) }-\frac{2 G M}{7 R}(4 \sqrt{2}-5) \\
& \text { C. (c) } \frac{G M}{4 R} \\
& \text { D. (d) } \frac{2 G M}{5 R}(\sqrt{2}-1)
\end{aligned}
$$

Answer: A
11. A satellite is moving with a constant speed v in circular orbit around the earth. An object of mass ' m ' is ejected from the satellite such that
it just escapes from the gravitational pull of the earth. At the time of ejection, the kinetic energy of the object is :
A. $\frac{1}{2} m V^{2}$
B. $m V^{2}$
C. $\frac{3}{2} m V^{2}$

D. $2 m V^{2}$

Answer: B

- Watch Video Solution

12. Two bodies, each of mass M, are kept fixed with a separation 2 L . A particle of mass m is projected from the midpoint of the line joining their cehntres, perpendicualr to the line. The gravitational constant is G. The correct statement (s) is (are)
A. The minimum initial velocity of the mass
m to escape the gravitational field of the
two bodies is $4 \sqrt{\frac{G M}{L}}$
B. The minimum initial velocity of the mass
m to escape the gravitational field of the
two bodies is $2 \sqrt{\frac{G M}{L}}$
C. The minimum initial velocity of the mass
m to escape the gravitational field of the
two bodies is $\sqrt{\frac{2 G M}{L}}$
D. The energy of the mass m remains

constant.

Answer: B

D Watch Video Solution

MCQ_TYPE

1. A solid sphere of uniform density and radius

4 units is located with its centre at the origin O
of coordinates. Two sphere of equal radii 1 unit,
with their centres at $A(-2,0,0)$ and $B(2,0,0)$ respectively, are taken out of the solid leaving behind spherical cavities as shown if fig Then:

A. the gravitational force due to this object
at the origin is zero
B. the gravitational force at point $B(2,0,0)$
is zero
C. the gravitational potential is the same at all points of circle $y^{2}+z^{2} q=36$

D. Both (a) and (c)

Answer: A::C::D

- Watch Video Solution

2. The magnitudes of the gravitational force at distances r_{1} and r_{2} from the centre of a uniform sphere of radius R and mass M are
F_{1} and F_{2} respectively. Then (more than one are correct)

$$
\begin{aligned}
& \text { A. } \frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}} \text { if } r_{1}<R \text { and } r_{2}<R \\
& \text { B. } \frac{r_{2}^{2}}{r_{2}} \text { if } r_{1}>R \text { and } r_{2}>R \\
& \text { C. } \frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}} \text { if } r_{1}>R \text { and } r_{2}>R \\
& \text { D. } \frac{F_{1}}{F_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}} \text { if } r_{1}<R \text { and } r_{2}<R
\end{aligned}
$$

Answer: A::B

- Watch Video Solution

3. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small as comapred to the mass of the earth. Then,
A. The acceleration of S is always directed towards the centre of the earth.
B. The angular momentum of S about the
centre of the earth changes in direction,
but its magnitude remains constant.
C. The total mechanical energy of S varies
periodically with time.
D. The linear momentum of S remains
constant in magnitude.

Answer: A::C

D Watch Video Solution
4. Two spherical planets P and Q have the
same uniform density ρ, masses M_{P} and M_{Q} and surface areas A and $4 A$, respectively. A
spherical planet R also has uniform density ρ
and its mass is $\left(M_{P}+M_{Q}\right)$. The escape
velocities from the planets P, Q and R, are
V_{P}, V_{Q} and V_{R}, respectively.
A. $V_{Q}>V_{R}>V_{P}$
B. $V_{R}>V_{Q}>V_{P}$
C. $V_{R} / V_{P}=3$
D. $V_{P} / V_{Q}=1 / 2$

Answer: B::D

1. Assertion : An astronaut in an orbiting space station above the earth experience
weightlessness.
Reason : An object moving around the earth
under the infuence of earth's gravitational force is in a state of 'free fall'
A. If both assertion and reason are true and
the reason is a correct explanation of the
assertion.

B. If both assertion and reason are true but

reason is not a correct explanation of assertion.
C. If assertion is true, but the reason is false.

D. If assertion is false but the reason is true.

Answer: A

D Watch Video Solution

INTEGER_TYPE

1. Gravitational acceleration on the surface of a planet is $\frac{\sqrt{6}}{11} g$. where g is the gravitational acceleration on the surface of the earth. The average mass density of the planet is $\frac{2}{3}$ times that of the earth. If the escape speed on the surface of the earht is taken to be $11 \mathrm{kms}^{-1}$ the escape speed on the surface of the planet in $k m s^{-1}$ will be

Watch Video Solution

