©゙" doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (ENGLISH)

MISCELLANEOUS VOLUME 2

Scq Type

1. Figure shows a path followed by a particle and position of a particle at any instant. Four different students have represented the
velocity vectors and acceleration vectors at
the given instant. Which vector diagram cannot be true in any situation? (In each figure, velocity is tangential to the trajectory).

D Watch Video Solution

2. Two students analysed two different problems off mechanics involving constraint motion. Symbols have their usual meaning. Student A

The vertical rod can move only vertically and the wedge can move only horizontally.
$\frac{y}{x}=\tan \theta, y=x \tan \theta, v_{y}=v_{x} \tan \theta$
Student B.

The ends of the rods are slipping on the
ground and the wall, respectively
$\frac{y}{x}=\tan \theta, y=x \tan \theta, v y=v x \tan \theta$

$\longleftarrow x$
A. Student A is correct B is wrong
B. Student A is wrong B is correct
C. Both are correct
D. Both are wrong

Answer: A

D Watch Video Solution

3. The system of two weights with masses M_{1}
and M_{2} are connected with weightless spring
as shown in fig. The system is resting on the support S. Find the acceleration of each of the weights just after the support S is quickly
removed.

A. $a_{1}=0, a_{2}=\frac{\left(m_{1}+m_{2}\right) g}{m_{2}}$
B. $a_{1}=0, a_{2}=\frac{\left(m_{1}+m_{2}\right) g}{m_{1}}$
C. $a_{1}=\frac{\left(m_{1}+m_{2}\right) g}{m_{1}}, a_{2}=0$

$$
\text { D. } a_{1}=0, \frac{\left(m_{1}+m_{2}\right) g}{m_{1}, a_{2}}=0
$$

Answer: A

D Watch Video Solution

4. The plot shows the position (x) as a function of time (t) for two trains that run on
a parallel track. Train A is next to train B at
$t=0$ and at $t=T_{0}$.

A. At T_{0} both the trains have the same velocity.
B. Both the trains speed up all the times.
C. Both trains have the same velocity at some time before T_{0}.

D. At T_{0} the trains have covered different

distances

Answer: C

D Watch Video Solution

5. Two identical balls are set into motion simultaneously from equal height h. While the
ball A is thrown horizontally with velocity v , the ball B is just released to fall by itself.

Choose the alternative that best represents
the motion of A and B with respect to an observer who moves with velocity $v / 2$ with respect to the ground as shown in figure.

Answer: C

D Watch Video Solution

6. Measuring g

The figure shows a method for measuring the acceleration due to gravity. The ball is projected upward by a "gun". The ball passes
electronic "gates" 1 and 2 as it rises and again
as it falls. Each gate is connected to a separate
timer. The first passage of the ball through
each gate starts the corresponding timer, and
the second passage through the same gate
stops the timer. and the second passage through the same gate stops the timer. The
time intervals Δt_{1} and Δt_{2} are thus measured. The vertical distance between the
two gates is d. If $\mathrm{d}=5 \mathrm{~m}, \Delta t_{1}=3 s, \Delta t_{2}=2 s$,
find the measured value of acceleration due to
gravity $\left(\in m s^{-2}\right)$.

A. $8 m s^{-2}$
B. $4 m s^{-2}$
C. $2 m s^{-2}$
D. $1 m s^{-2}$

Answer: A

D Watch Video Solution

7. A particle is projected with velocity 30° above on an inclined plane, inclination of which from horizontal is 37°. Choose the appropriate path (air resistance is negligible)

c.
C.

Answer: D

- Watch Video Solution

8. A helicopter is moving to the right at a constant horizontal velocity. It experiences thre forces $\vec{F}_{\text {gravitational }}, \vec{F}_{\text {drag }}$ force on it caused by rotor $\vec{F}_{\text {rotor }}$. Which of the following

diagrams can be a correct free body diagram

represents forces on the helicopter?

Answer: C

D Watch Video Solution

9. Figure shows the direction of the total acceleration and velocity of a particle moving clockwise in a circle radius m at an instant of time. Tangential acceleration this instant is
$5 m / s^{2}$. Which of the following statements is

not correct?

A. The centripetal aceleration is $5 \sqrt{3} m s^{-2}$
B. Particle is speeding up.
C. The net acceleration is $10 \mathrm{~ms}^{-2}$
D. The particle is slowing down.

Answer: D

D Watch Video Solution

10. Rain is falling with a sped of $12 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle 45° with the vertical line. A man in a glider going at a speed of u at angle of 37° with respect to the ground. Find the speed of
the glider so that rain appears to him falling
vertically. Consider the motion of the glider
and rain drops in the same vertical plane.

A. $15 m s^{-1}$
B. $30 \mathrm{~ms}^{-1}$
C. $10 m s^{-1}$
D. $25 m s^{-1}$

Answer: A
11. The ratio of tensions in the string connected to the block of mass m_{2} in figure, respectively, is (friction is absent everywhere): $\left[m_{1}=50 \mathrm{~kg}, m_{2}=80 \mathrm{~kg}\right.$ and $\left.F=1000 \mathrm{~N}\right]$

(a)

(b)
A. $7: 2$
B. $2: 7$
C. $3: 4$

D. $4: 3$

Answer: C

D Watch Video Solution

12. A man of mass 75 kg is pushing a heavy box on a flat floor. The coefficient of kinetic and
static friction between the floor and the box is
0.20 , and the coefficient of static friction between the man's shoes and the floor is 0.80 .

If the man pushes horizontally, what is the

move?

A. 300 kg
B. 60 kg
C. 900 kg
D. none of these

Answer: A

- Watch Video Solution

13. In the figure shown, the lower pulley is free to move in a vertical direction only. Block A is given a uniform velocity u as shown, what is the velocity of block B as a function of angle θ

A. $u \cos \theta$
B. $\frac{u}{\cos \theta}$
C. $\frac{u[1+\sin \theta]}{\cos \theta}$
D. $\frac{u[1+\cos \theta]}{\sin \theta}$

Answer: C

D Watch Video Solution

14. Two particles are projected simultaneously from two points O and O^{\prime} such that 10 m is the horizontal and $5 m$ is the vertical distance between them as shown in the figure. They are projected at the same inclination 60° to the
horizontal with the same velocit $10 \mathrm{~ms}^{-1}$. The
time after which their separation becomes
minimum is

A. 2.5 s
B. $1 s$
C. $5 s$

D. $10 s$

Answer: B

D Watch Video Solution

15. A force F is applied to a system of light pulleys to pull body A. If F is $10 k N$ and block of mass A has a mass of $5 \times 10^{3} \mathrm{~kg}$, what is the speed of A after $1 s$ starting from rest?

A. (a) $4 m s^{-1}$
B. (b) $8 m s^{-1}$
C. (c) $6 m s^{-1}$
D. (d)none of these

Answer: A

D Watch Video Solution
16. A block of mass 2 kg slides down the face of a smooth 45° wedge of mass 9 kg as shown in
the figure. The wedge is placed on a frictionless horizontal surface. Determine the acceleration of the wedge.

A. $2 m s^{-2}$
B. $\frac{11}{\sqrt{2}} m s^{-2}$
C. $1 m s^{-2}$
D. none of these

Answer: C

D Watch Video Solution

17. Four block are arranged on a smooth horizontal surface as shown in figure .The masses of the blocks are given (see the fig) The coefficient of static friction between the
top and the bottom blocks is μ_{s} What is the maximum value of the horizontal force F applied to one of the bottom blocks as shown that makes all four block with the same acceleration ?

$$
\begin{aligned}
& \text { A. } F_{\max }=2 \mu_{s} m g\left(\frac{2 m+M}{m+M}\right) \\
& \text { B. } F_{\max }=\mu_{s} m g\left(\frac{m+M}{2 m+M}\right) \\
& \text { C. } F_{\max }=2 \mu_{s} m g\left(\frac{m+M}{2 m+M}\right) \\
& \text { D. } F_{\max }=\mu \operatorname{smg}\left(\frac{2 m+M}{m+M}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

18. A bomb of mass $3 m$ is kept inside a closed
box of mass $3 m$ and length $4 L$ at its centre. It explodes in two parts of mass m and $2 m$. The two parts move in opposite directions and stick to the opposite sides of the walls of box.

The box is kept on a smooth horizontal surface. What is the distance moved by the
box during this time interval.

A. 0
B. $\frac{L}{6}$
C. $\frac{L}{12}$
D. $\frac{L}{3}$

Answer: D
19. In the situation as shown in the figure if acceleration of B is a, then find the acceleration of A (B always remain horizintal),
A. (a) $a \sin \theta$
B. (b) $a \cot \theta$
C. (c) $2 a \tan \theta$
D. (d) $2 a \cos \theta$

Answer: D

D Watch Video Solution

20. Three particles of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and $3 k g$ are situated at the corners of an equilateral triangle move at speed $6 m s^{-1}, 3 m s^{-1}$ and $2 m s^{-1}$ respectively. Each particle maintains a direction towards the particle at the next
corner symmetrically. Find velocity of $C M$ of
the system at this instant

A. $3 m s^{-1}$
B. $5 m s^{-1}$
C. $6 m s^{-1}$
D. zero

Answer: D

- Watch Video Solution

21. A uniform solid right circular cone of base
radius R is joined to a uniform solid hemisphere of radius R and of the same density, as shown. The centre of mass of the composite solid lies at the centre of base of
the cone. The height of the cone is

A. $1.5 R$
B. $\sqrt{3} R$
C. $3 R$
D. $2 \sqrt{3} R$

Answer: B

- Watch Video Solution

22. Three carts move on a frictionless track with masses and velocities as shown. The carts collide and stick together after successive collisions. Find the total magnitude of the impulse experienced by

A. $1 N s$
B. $2 N s$
C. $3 N s$
D. 4 Ns

Answer: C

D Watch Video Solution

23. A rod of length L is held vertically on a smooth horizontal surface. The top end of the
rod is given a gentle push. At a certain instant of time, when the rod makes an angle 37°
with horizontal the velocity of COM of the rod
is $2 m s^{-1}$. The velocity of the end of the rod in contact with the surface at that instant is:
A. $2 m s^{-1}$
B. $1 m s^{-1}$
C. $4 m s^{-1}$
D. $1.5 m s^{-1}$

Answer: D

D Watch Video Solution
24. A uniform cylinder of mass M lies on a
fixed plane inclined at an angle θ with horizontal. A light string is tied to the cylinder
at the right most point, and a mass m hangs
from the string, as shown. Assume that the coefficient of friction between the cylinder and
the incline plane is sufficiently large to prevent
slipping. For the cylinder the remain static, the
value of m is

$M \sin \theta$
A. $\frac{}{1-\sin \theta}$
B. $\frac{M \cos \theta}{1+\sin \theta}$
c. $\frac{M \sin \theta}{1+\sin \theta}$
D. $\frac{M \cos \theta}{1-\cos \theta}$

Answer: A

D Watch Video Solution

Uniform rod $A B$ is hinged at end A in
horizontal position as shown in the figure. The other end is connected to a block through a
massless string as shown. The pulley is smooth and massless. Mass of block and rod is
same and is equal to m Then acceleration of block just after release from this position is
A. $6 g / 13$
B. $g / 4$
C. $3 g / 8$
D. none

Answer: C

26. An L shaped thin uniform rod of total length $2 l$ is free to rotate in a vertical plane about a horizontal axis a P as shown in the figure. The bas is released from rest. Neglect air and contact friction. The angular velociyt at the instant it has rotated through 90° and reached the dotted position shown is

A. zero
B. $\sqrt{\frac{6 g}{5 l}}$
C. $\sqrt{\frac{3 g}{5 l}}$
D. none

Answer: B

D Watch Video Solution

27. A horizontal force F is applied at the top
of an equilateral triangular block having mass
m. The minimum coefficient of friction
required to topple the block before translation will be

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}} \\
& \text { B. } \frac{1}{3} \\
& \text { C. } \frac{1}{\sqrt{3}} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

28. A closed rectangular tank is completely
filled with water and is accelerated
horizontally with an acceleration towards right. Pressure is

(i) maximum at, and (ii) minimum at
A. i. B ii D
B. i C ii D

C. i B ii C

D. i B ii A

Answer: A

D Watch Video Solution

29. We have a vessel in shape of a cuboid partially filled with water. It base is square wilth an area of $4.5 \mathrm{dm}^{2}(1 \mathrm{dm}=10 \mathrm{~cm})$ and a vessel contains water up to 2 cm height. Then
we place wooden cube inside water. The wood
has mass $4 k g$ and specific gavity 0.5 . The base of the wooden cube is horizontal. Find the height of water level above the base of the wooden block.
A. (a) 10 cm
B. (b) 2 cm
C. (c) 15 cm
D. (d) 7 cm

Answer: A
30. A square gate of size $1 m \times 1 m$ is hinged
at its mid point. A fluid of density ρ fill the space to the left of the gate. The force F required to hold the gate stationary is
A. $\rho g / 3$
B. $(1 / 2) \rho g$
C. $\rho g / 6$
D. none of these

Answer: C

D Watch Video Solution
31. A rectangular bar of soap has density $800 \mathrm{~kg} / \mathrm{m}^{3}$ floats in water density $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Oil of density $300 \mathrm{~kg} / \mathrm{m}^{3}$ is slowly added,
forming a layer that does not mix with water.

When the top surface of thhe oil is the some level as the top surface of the soap. What is the ratio of the oil layer thickness to the soap's thickness. x / L ?

A. $\frac{3}{7}$
B. $\frac{2}{7}$
C. $\frac{3}{10}$
D. $\frac{3}{8}$

Answer: B

D Watch Video Solution

32. A soap bubble of raidus R is surrounded
by another soap bubble of radius $2 R$, as
shown. Take surface tension $=S$. Then the
pressure inside the smaller soap bubble, in
excess of the atmosphere presure will be

A. $4 S / R$
B. $3 S / R$
C. $6 S / R$

D. none of these

Answer: C

D Watch Video Solution

33. A metal ball B_{1} (density $3.2 \mathrm{gcm}^{-3}$)is dropped in water while another metal ball B_{2}
(density $6.0 \mathrm{~g} \mathrm{~cm}^{-3}$) is dropped in aliquid of density $1.6 \mathrm{gcm}^{-3}$. If both the balls have the same diameter and attain the same terminal
velocity, the ratio of viscosity of water to that

of the liquid is

A. 2.0
B. 0.5
C. 4.0
D. indeterminate due to insufficient data

Answer: B

D Watch Video Solution

34. The vernier of a circular scale is divided into 30 divisons, which coincides with 29 main scale divisions. If each main scale division is $(1 / 2)^{\circ}$ the least count of the instrument is $\left(1^{\circ}=60^{\prime}\right)$
A. (a) 0.1
B. (b) 1^{\prime}
C. (c) 10^{\prime}
D. (d) 30^{\prime}

Answer: B

- Watch Video Solution

35. In the figure shown, there is a smooth tube of radius R, fixed in the vertical plane. A ball B of mass m is released from the top of the tube. B slides down due to gravity and compresses the spring is fixed and end A is free., Initially, line $O A$ makes an angle 60° with $O C$ and finally it makes an angle of 30° after compression. Find the spring constant of
the spring.

$$
\begin{aligned}
& \text { A. } \frac{12 m g(2+\sqrt{3})}{\pi^{2} R} \\
& \text { B. } \frac{36 m g(2+\sqrt{3})}{\pi^{2} R}
\end{aligned}
$$

C. $\frac{16 m}{\pi^{2} g}$
D. none of these

Answer: B

D Watch Video Solution

36. A system comprises of two small spheres with the same masses m. initially, the spring is non deformed. the spheres set in motion in a gravity space at the velocities as shown in the diagram.

The maximum elastic potential energy stored in the system is
A. $\frac{m v_{0}^{2}}{2 \sqrt{2}}$
B. $m v_{0}^{2}$
C. $\frac{1}{2} m v_{0}^{2}$
D. $2 m v_{0}^{2}$

Answer: B
37. In the figure shown, the minimum force F to be applied perpendicular to the incline so that the block does not slide is

A. 200 N
B. 40 N
C. $120 N$

D. none

Answer: A

D Watch Video Solution

38. A vernier caliper with a least count of of
0.01 cm was used to measure diameter of
cylinder as 4 cm and a scale $(0-15 \mathrm{~cm})$ with
the least count of 1 mm was used to measue a
length of 5 cm . The $\%$ error in the measurement of volume of the cylinder is
A. 3.0
B. 4.0
C. 5.0
D. 2.5

Answer: D

D Watch Video Solution

39. The angular momentum vector for a spinning wheel lies along its axle and is pointed north. To make this vector point east
with chagin magnitude it is necessary to exert a force of constant magnitude on the north end of the axle in which direction?

A. always up

B. always down
C. at the initial moment in the east
direction, but the force always remain perpendicular to the axle

D. always in the east direction

- Watch Video Solution

40. A man whose mass is $m \mathrm{~kg}$ jumps vertically into air from the sitting position in which his centre of mass is at a height h_{1} from the ground. When his feet are just about to leave the ground his centre of mass is at height h_{2} from the ground and finally centre of mass rises to h_{3} above the ground when he is at the top of the jump. what is the average upward force exerted by the ground on him?
A. (a) $\frac{m g\left(h_{3}-h_{1}\right)}{\left(h_{3}-h_{2}\right)}$
B. (b) $\frac{m g\left(h_{3}-h_{1}\right)}{h_{3}}$
C. (c) $\frac{m g\left(h_{3}-h_{1}\right)}{\left(h_{2}-h_{1}\right)}$
D. (d) none of these

Answer: C

D Watch Video Solution

41. If the ratio of lengths, radii and Young's moduli of steel and brass wires in the figure are a, b and c respectively then the
corresponding ratio of increase in their lengths is

A. $\frac{2 a^{2} c}{b}$
B. $\frac{3 a}{2 b^{2} c}$
C. $\frac{2 a c}{b^{2}}$
D. $\frac{3 c}{2 a b^{2}}$

Answer: B

D Watch Video Solution

42. An open capillary tube is lowered in vessel with mercury. The difference between the levels of the mecury in the vessel and in the capillary tube $\triangle h=4.6 \mathrm{~mm}$. What is the radius of curvature of the mercury meniscus in
the capillary tube? Surface tension of mercury
is $0.46 \mathrm{~N} / \mathrm{m}$, density of mercury is $13.6 \mathrm{gm} / \mathrm{cc}$.

> A. (a) $\frac{1}{340} m$
> B. (b) $\frac{1}{680} m$
> C. (c) $\frac{1}{1020} m$
D. (d)information insufficient

Answer: B

D Watch Video Solution

43. A raind drop starts falling from a heigh of
$2 k m$. If falls with a continuously decreasing
acceleration and attains its terminal velocity
at a height of 1 km . The ratio of the work done
by the gravitational force in the first halt to
that in the second half of the drops journey is
A. 1:1 and the time of fall of the drop in
the two halves is $a: 1$ (where $a>1$)
B. 1:1 and the time of fall of the drop in
the two halves is $a: 1$ (where $a<1$)
C. $a: 1$ (where $a>1$) and the time of fall of
the drop in the two halves is $1: 1$

D. $a: 1$ (where $a<1$) and the time of fall of

the drop in the two halves is $1: 1$

Answer: A

D Watch Video Solution

44. Two wires $A C$ and $B C$ are tied at C of a small sphere of mass 5 kg , which revolves at a constant speed v in the horizontal speed v in
the horizontal circle of radius 1.6 m . Find the minimum value of v

A. (a) $4 m s^{-1}$
B. (b) $2 m s^{-1}$
C. (c) $2.5 m s^{-1}$
D. (d)none of these

Answer: A

D Watch Video Solution

45. At $t=0$, the positions and velocities of two particles are as shown in the figure. They are kept on a smooth surface and being mutually attracted by gravitational force. Find
the position of centre of mass at $t=2 s$.

A. $X=5 m$
B. $X=7 m$
C. $X=3 m$
D. $X=2 m$

Answer: B

- Watch Video Solution

46. A turck is moving on the ground with a velocity $v=12 m / s$ and a box is moving on the truck with respect to it with a velocity $u=5 m / s$ as shown in the figure. What is the velocity of the box with respect to the ground?

A. $5 m s^{-1}$ towards right
B. $7 m s^{-1}$ towards left
C. $7 m s^{-1}$ towards right
D. $5 m s^{-1}$ towards left

Answer: C

D Watch Video Solution

47. A wedge is placed on a smooth horizontal
plain and a rat runs on its sloping side. The velocity of the wedge is $v=4 m s^{-1}$ towards
the right. What should be the velocity of the
rat with respect to the wedge (u), so that the
rat appears to ,move in the vertical direction
to an observer stading on the ground?

A. (a) $2 m s^{-1}$
B. (b) $4 m s^{-1}$
C. (c) $8 m s^{-1}$
D. (d) $4 \sqrt{2} m s^{-1}$

Answer: C

D Watch Video Solution

48. An annular disc of radius $r_{1}=10 \mathrm{~cm}$ and
$r_{2}=5 \mathrm{~cm}$ is placed on a water surface. Find
the surface tension force on the disc if we want to pull it from water surface. Take coefficient of surface tension as
$\sigma=72 d y \neq / c m, g=10 m s^{-2}$.

A. 6782.4 dyne
B. 67.82 dyne

C. 678.24 dyne

D. none of these

Answer: A

49. Calculate the pressure inside a small air bubble of radus r situated at a depth h below the free surface of liquids of densities ρ_{1} and ρ_{2} and surface tennsions T_{1} and T_{2}. The thickness of the first and second liquids are h_{1} and h_{2} respectively. Take atmosphere pressure

$=P_{0}$.

A. $P_{0}+\rho_{1} g h_{1}+\rho_{2} g\left(h-h_{1}\right)-\frac{2 T_{2}}{r}$
B. $P_{0}+\rho_{1} g h_{1}+\rho_{2} g\left(h-h_{1}\right)+\frac{2 T_{2}}{r}$
C. $P_{0}-\rho_{1} g h_{2}+\rho_{2} g\left(h-h_{1}\right)+\frac{2 T_{2}}{r}$
D. none of these

Answer: B

- Watch Video Solution

50. A thin uniform square plate $A B C D$ of side a and mass m is suspended in a vertical plane as shown in the figure. $A E$ and $B F$ are two massless inextensible strings. The line $A B$ is horizontal. The tension in $A E$ just after $B F$ is
cut will be

A. (a) $\frac{2 m g}{5}$
B. (b) $m g$
C. (c) $\frac{2 m g}{7}$
D. (d) $\frac{3 m g}{5}$

Answer: A

D Watch Video Solution

Mcq Type

1. Figure shows top view of an airplane blown off course by wind in various directions.

Assume the magnitude of the velocity of the airplane relative to the wind and the magnitude of the velocity of the wind to be the same each case. $\vec{v}_{A / w}=$ velocity of the
airplane relative to the wind, $\vec{v}_{w / g}=$ velocity of the wind in ground frame
A. Air plane travels fastest across the ground in case d
B. Airplane travels slowest across across
the ground in case c
C. Airplane experiences in the maximum
lateral displacement in case a in a given
time.

D. In none of thecases, the velocity of the

wind with respect to the airplanes can
be directed along south west

Answer: A::B::C::D

D View Text Solution
2. Figure shows three blocks on a rough surface under the influene of a force P of the same magnitude in all the three cases. Coefficient of friction is the same between each block and the ground. What possile relation holds between the magnitudes of normal reaction and friction force?(Assume that the blocks do not overturn about edge.)

Here f_{A}, f_{B} and f_{C} are frictional forces and
N_{A}, N_{B} and N_{C} are reactions.

(A)

(B)

A. $N_{A}>N_{C}>N_{B}$
B. $f_{A}>f_{C}>f_{B}$
C. $f_{C}>f_{A}=f_{B}$
D. $N_{C}>N_{A}=N_{B}$

Answer: A::B::D

- Watch Video Solution

Consider a cart being pulled by a horse with constant velocity. The horse exerts force $\vec{F}_{\frac{C}{h}}$ on the cart. (The subscript indicate the force on the cart due to horse.). The first subscript denotes the body on which force acts and second due to which it acts.

Choose the statements(s):
A. $\vec{f}_{C / g}, \vec{N}_{C / g}, \vec{N}_{h / g}$ are external force
on a system consisting of a horse and a
cart.
B. `vecf_(C//g)+vecf_(C//g) $=0$
C. $\vec{N}_{C / g}$ and $\vec{F}_{C / E}$ are action reaction pairs.
D. $\vec{F}_{C / h} \vec{F}_{h / C}$ are action reaction pairs

Answer: A::B::C
4. A small spehre of mass m is connected by a stirng to a nail at O and moves in a circle of radius r on the smooth plane inclined at an angle θ with the horizontal. If the sphere has a velocity u at the top position A. Mark the correct options.

A. Minimum velocity at A so that the string
does not get slack instanntaneously is
$\sqrt{\frac{3}{5} g r}$
B. Tension at B is $8 m g / 5$ if the sphere has
the required velocity as in option a.
C. Tension C is $18 \mathrm{mg} / 5$ in situation of
option b.
D. none of these

Answer: A::C::D

5. A man is standing on a plank which is placed

on smooth horizontal surface. There is
sufficient friction between feet of man and
plank. Now man starts running over plank, correct statement is/are
A. Work done by friction on the man with
respect to the ground is negative
B. Work done by friction on the man with
respect to the ground is positive
C. Work done by friction on the plank with respect to the ground is positive.
D. Work done by friction on the man with
respect to the plank is zero.

Answer: A::C::D

6. Consider a block of mass 10 kg . which rests
on as smooth surface and is subjected to a
horizontal force of $6 N$. If observer A is in a
fixed frame x.

A. The final speed of the block in $4 s$ is
$7.4 m / s$ if it has an initial speed of
$5 \mathrm{~m} / \mathrm{s}$ measured from the fixed frame.
B. The same speed will be observed by
observer B Attached to the x axis that moves at a constant velocity of $2 m / s$ relative to A.
C. Principle of impulse and momentum is
valid for observers in an inertial reference frame.
D. Momentum of a body is reference frame
dependent.

- Watch Video Solution

7. A particle of mass m is released from a height H on a smooth curved surface which ends into a vertical loop of radius R, as shown.

Choose the correct alernative(s) if $H=2 R$.

A. The particles reaches the top of the loop
with zero velocity
B. The particle cannot reach the top of the loop.
C. The particle breaks off at a height
$h=R$ from the base of the loop.
D. The particle breaks off at a height h
from the base of the loop such that
$R<h<2 R$

- Watch Video Solution

8. A massles spool of inner radius r and other radius R is placed against vertical wall and tilted split floor as shown. A light inextensible thread is tightly wound around the spool through which a mass m is hanging. There exists no friction at point A, while the coefficient of friction between spool and point

B is μ. The angle between two surface is θ

A. The magnitude of the force on the spool
at B in order to maintain equilibrium is

$$
m g \sqrt{\left(\frac{r}{R}\right)^{2}+\left(1-\frac{r}{R}\right)^{2} \frac{1}{\tan ^{2} \theta}}
$$

B. The magnitude of the force on the spool
at B in order to maintain equilibrum is
$m g\left(1-\frac{r}{R}\right) \frac{1}{\tan \theta}$
C. The minimum value of μ for the system
to remain in equilibrium is $\frac{\cot \theta}{(R / r)-1}$
D. The minimum values of μ for the system
to remain in equilibrium is $\frac{\tan \theta}{(R / r)-1}$

Answer: A::D
9. A rod bent at right angle along its centre line, is placed on a rough horizontal fixed cylinder of radius B as shown in figure. Mass of rod is $2 m$ and rod is in equilibrium. Assume that friction force on rod at A and B are equal in magnitude.

A. Normal force applied by the cyinder on
the rod at A is $3 m g / 2$.
B. Normal force appplied by the cylinder on rod at B must be zero.
C. Friction force acting on rod at B is
upwards
D. Normal force applied by the cyinder on
rod at A is $m g$.

Answer: A::C
10. A solid sphere is given an angular velocity
ω and kept on a rough fixed incline plane. Then
choose the correct statement.

A. If $\mu=\tan \theta$, then the sphere will be in
linear equilibrium for some time and
after that pure rolling down the plane
will start
B. If $\mu=\tan \theta$, then sphere will move up
the plane and frictional force acting all
the time will be $2 m g \sin \rho$.
C. If $\mu=\tan \theta / 2$ there will never be pure
rolling (consider inclined plane to be
long enough).
D. If the incline plane is not fixed at it is on
the smooth horizontal surface, then the
linear momentum of the system (wedge
and sphere) can be conserved in the horizontal direction.

Answer: A::D

D Watch Video Solution

11. Illustrated below is a uniform cubical block of mass M and side a. Mark the correct
statement(s).

A. The moment of inertia about axis A,
passing through the centre of mass is
$I A=\frac{1}{6} M a^{2}$
B. The moment of inertia about axis B,
which bisects one of the cube faces is

$$
I B=\frac{5}{12} M a^{2}
$$

C. The moment of in nertia about axis C,
along one of the cube edges is

$$
I C=\frac{2}{3} M a^{2}
$$

D. The moment of inertia about axis D
which bisects one of the horizontal cube
faces is $\frac{7}{12} M a^{2}$
12. A body floats on water and then also on an
oil of densily 1.25 . Which of the following is/are true?
A. The body loses more weight in oil than in water.
B. The volume of water displaced is 1.25
times that of oil diplaced
C. The body experiences equal upthrust
form water and oil.
D. Apparent weight is zero in both cases.

Answer: B::C::D

D Watch Video Solution

13. A body of density d_{2} is dropped from rest
at a height x into a beaker having a liquid of density $d_{1}\left(d_{2}>d_{1}\right)$. Which of the following
is/are true?

A. The speed with which the body just enters the liquid is $\sqrt{2 g x}$
B. The body has an acceleration of
$g\left(1-\frac{d_{1}}{d_{2}}\right)$ downwards
C. The body does not come back to the surface of the liquid (observation made after a long time).

D. none

Answer: A::B::C

D Watch Video Solution

14. The limbs of a U-tube are lowerd into beakes A and B. A contains water and B some other liquid. Density of water is $1 g / \mathrm{cm}^{3}$.

Some air is pumped out from C and then this end is closed, as a result of this liquids rise by 10 cm and 12 cm respectively, on the left and right side. which of the following is/are correct?

A. (a)Density of the liquid in B is $0.83 g / \mathrm{cc}$
B. (b)The heights raised by water and the other liquid in both the sides will change if beakers are kept at different heights
C. (c)The heights raised by water and the
other liquid in both sides will be inependent of the positions of the beakers.

D. (d)Liquid in B in denser than water in A.

Answer: A::C

15. The cone of radius R and height H is
hanging inside a liquid of density by means of a string a shwon in the figure.

A. Net force on the cone by the liquid is equal to buoyancy force on the cone.
B. Force on the bottom surfae of the cone
is more than buoyancy force on the
cone.
C. Net force on the slant surface of the cone is more than buoyancy force on the cone.
D. Net force on the slant surface of the
cone is less than buoyancy force on the
cone.

Answer: A::B::C

D Watch Video Solution

16. Two particles move on a circular path (one
just inside and the other just outside) with the
angular velocities ω and 5ω starting from the
same point. Then
A. the cross each other at regular intervals
of time $2 \pi / 4 \omega$ when their angular
velocities are oppositely directed
B. they cross each other at point on the
path subtending an angle of 60° at the
centre if their angular velocities are oppositely directed
C. the cross at intervals of time $\pi / 3 \omega$ if
their angular velocities are oppositely
directed
D. they cross each other at points on the path subtendingf 90 at the centre if their angular velocities are in the same sence

Answer: B::C::D

D Watch Video Solution

17. A particle starts moving along a straight line path with a velocity $10 \mathrm{~ms}^{-1}$. After 5 s , the distance of the particle from the starting
point is 50 m . Which of the following statement about the nature of motion of the particle are correct?
A. The body may be speeding up with a constant positve acceleration.
B. The body may be moving with a constant
velocity.
C. The body may have a constant negative acceleration.

D. The body may be first accelerated and

 then retarded.
Answer: B::C::D

D Watch Video Solution

18. A boy is sitting on a seat of merry-go-round moving with a constant angular velocity. A
$t=0$, the boy is at position A as shown in the
figure

Which of the following graphs are correct? All graphs are sinusoidal.
A. F_{y} is the y-component of the force keeping the boy moving in a circle.

B. x is the x -component of the boy's

C. θ is the angle that the positoin vector of
the boy makes with the positive x-axis.

D. V_{x} is the x-component of the boy's

Answer: A::C

D Watch Video Solution

19. Consider three masses A, B and C as
shoon in the figure. Friction coefficient between all surfaces is 0.5 . Pulleys are smooth.
(Given $m_{A}=1 \mathrm{~kg}, m_{B}=1 \mathrm{~kg}$) Mass of C may

A. (a)is possible that both A and B remain
at rest
B. (b) It is possible that both A and B accelerate.
C. (c) It is possible that both A accelerates
but B does not accelerate
D. (d) If B accelearates, then A definitely accelarates

Answer: A::B::C::D

- Watch Video Solution

20. A man of mass m walks from end A to the
other end B of a boat of mass M and length
l. The coefficient of friction between the man
and the boat is μ an neglect any resistive force between the boat and the water.
A. (a)If the man runs at his maximum
acceleration, the acceleration of the boat is $(m / M) \mu g$.
B. (b)The minimum time take by the man to
reach the other end of the boat is
$\sqrt{\frac{2 M I}{(M+m) \mu g}}$
C. (c)If man runs at his maximum
acceleration the acceleration of boat is

$$
\frac{m}{m+M} \mu g
$$

D. (d)The minimum time take by the man to

reach the other end of the boat is

$$
\sqrt{\frac{2 m l}{(M+m) \mu g}}
$$

Answer: A::B

D Watch Video Solution

Lc Type

1. A man standing on a inclined plain observes
rain is falling verticaly. When he starts moving
down the inclined plain with velocity
$v=6 m / s \quad$ observes rain hitting him
horizontally.

The actual velocity of rain is
A. $3 m / s$
B. $3 \sqrt{3} m / s$
C. $4 m / s$
D. none of these

Answer: B

D Watch Video Solution

2. A man standing on a inclined plain observes
rain is falling vertically. When he starts moving
down the inclined plain with velocity
$v=6 m / s \quad$ observes rain hitting him
horizontally.

The velocity of rain with respect to the man when he is moving down is
A. $3 m / s$
B. $3 \sqrt{3} m / s$
C. $4 m / s$

D. none of these

Answer: A

D Watch Video Solution

3. A straight rigid rod of mass M and length L
lies on a smooth horizontal table. Taking the co-ordinate axes as shown in the figure and assuming an average force $<F>$ acting for a small time interval $(\triangle t)$, at the end A,
making an angle 30° with the X-axis, Based
on the above passege, answer the following questions.

The angular impulse, due to the force about O
, is
A. $\frac{\sqrt{5}}{4} F(\triangle t) L \hat{k}$
B. $\frac{\sqrt{5}}{2} F(\triangle t) L \hat{k}$
C. $\frac{\sqrt{3}}{4} F(\triangle t) L \hat{k}$
D. $\frac{\sqrt{3}}{2} F(\triangle t) L \hat{k}$

Answer: C

D Watch Video Solution

4. A straight rigid rod of mass M and length L lies on a smooth horizontal table. Taking the co-ordinate axes as shown in the figure and
assuming an average force $<F>$ acting for a small time interval $(\triangle t)$, at the end A, making an angle 30° with the X-axis, Based on the above passege, answer the following questions.

Angular velocity of rod about O is

$$
\text { A. } \frac{3 \sqrt{5}<F>(\triangle t)}{M L}
$$

$$
\begin{aligned}
& \text { B. } \frac{2 \sqrt{5}<F>(\triangle t)}{M L} \\
& \text { C. } \frac{2 \sqrt{3}<F>(\triangle t)}{M L} \\
& \text { D. } \frac{3 \sqrt{3}<F>(\triangle t)}{M L}
\end{aligned}
$$

Answer: D

D Watch Video Solution

5. A straight rigid rod of mass M and length L
lies on a smooth horizontal table. Taking the co-ordinate axes as shown in the figure and assuming an average force $<F>$ acting for
a small time interval $(\triangle t)$, at the end A,
making an angle 30° with the X-axis, Based
on the above passege, answer the following
questions.
(

Linear velocity of the $C M$ of rod is

$$
\text { A. } \frac{<F>(\triangle t)}{2 m} /(2 m)(\sqrt{3} \hat{i}+\hat{j})
$$

$$
\begin{aligned}
& \text { B. } \frac{\langle F\rangle(\triangle t)}{2 m} /(2 m)(\sqrt{5} \hat{i}+2 \hat{j}) \\
& \text { C. } \frac{<F>(\triangle t)}{2 m} / m(\sqrt{3} \hat{i}+\hat{j}) \\
& \text { D. } \frac{<F>(\triangle t)}{2 m} / m(\sqrt{5} \hat{i}+\hat{j})
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. A planet is revolving around the sun in an elliptcal orbit. Its $K E$ is different for different points and the total energy is negative. Its
linear momentum is not conserved the
eccentricity decides the shape of the orbit.

Velocity of the planet is minimum at
A. (a) C
B. (b) D
C. (c) A
D. (d) B

Answer: B
7. A planet is revolving around the sun in an elliptcal orbit. Its $K E$ is different for different points and the total energy is negative. Its linear momentum is not conserved the eccentricity decides the shape of the orbit.

Net torque on the planet is
A. constant at all points
B. zero at all point
C. maximum at A
D. minimum at D

Answer: B

D Watch Video Solution

8. A planet is revolving around the sun in an elliptcal orbit. Its $K E$ is different for different points and the total energy is negative. Its
linear momentum is not conserved the eccentricity decides the shape of the orbit.

Linear momentum of the planet is
A. different of different points of the orbit
B. conserved
C. non conserved
D. none of these

Answer: A::C

D Watch Video Solution

9. A train is moving with a constant speed of $10 \mathrm{~m} / \mathrm{s}$ in a circle of radius $\frac{16}{\pi} \mathrm{~m}$. The plane of the circle lies in horizontal $x-y$ plane. At time t
$=0$, train is at point P and moving in counter-
clockwise direction. At this instant, a stone is
thrown from the train with speed $10 \mathrm{~m} / \mathrm{s}$ relative to train towards negative x-axis at an angle of 37° with vertical z-axis. Find
(a) the velocity of particle relative to train at the highest point of its
trajectory.
(b) the co-ordinates of points on the ground where it finally falls and that of the hightest point of its trajectory. (Take g
$=10 \mathrm{~m} / \mathrm{s}^{2}, \sin 37^{\circ}=\frac{3}{5}$

A. $(-4 \hat{i} 10 \hat{j})$
B. $(4 \hat{i}-10 \hat{j})$
c. $(4 \hat{i}+10 \hat{j})$

$$
\text { D. }(-4 \hat{i}-10 \hat{j})
$$

Answer: C

- Watch Video Solution

10. A train is moving with a constant speed of $10 \mathrm{~m} / \mathrm{s}$ in a circle of radius $\frac{16}{\pi} \mathrm{~m}$. The plane of the circle lies in horizontal $x-y$ plane. At time t $=0$, train is at point P and moving in counterclockwise direction. At this instant, a stone is
thrown from the train with speed $10 \mathrm{~m} / \mathrm{s}$
relative to train towards negative x-axis at an
angle of 37° with vertical z-axis. Find
(a) the velocity of particle relative to train at the highest point of its
trajectory.
(b) the co-ordinates of points on the ground where it finally falls and that of the hightest point of its trajectory. (Take g
$=10 \mathrm{~m} / \mathrm{s}^{2}, \sin 37^{\circ}=\frac{3}{5}$

τ
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. π
D. $\frac{3 \pi}{4}$

Answer: A

- Watch Video Solution

11. A train is moving with a constant speed of $10 \mathrm{~m} / \mathrm{s}$ in a circle of radius $\frac{16}{\pi} \mathrm{~m}$. The plane of the circle lies in horizontal $x-y$ plane. At time t
$=0$, train is at point P and moving in counter-
clockwise direction. At this instant, a stone is
thrown from the train with speed $10 \mathrm{~m} / \mathrm{s}$
relative to train towards negative x-axis at an
angle of 37° with vertical z-axis. Find
(a) the velocity of particle relative to train at the highest point of its
trajectory.
(b) the co-ordinates of points on the ground where it finally falls and that of the hightest point of its trajectory. (Take g
$=10 \mathrm{~m} / \mathrm{s}^{2}, \sin 37^{\circ}=\frac{3}{5}$

\cdots
A. $(-9.2 \hat{i}-8 \hat{j})$
B. $(9.2 \hat{i}+8 \hat{j})$
c. $(9.6 \hat{i}-16 \hat{j})$

$$
\text { D. }(-9.6 \hat{i}+16 \hat{j})
$$

Answer: D

D Watch Video Solution

12. A model rocket rests on a frictionless
horizontal surface and is joined by a string of
length l to a fixed point so that the rocket moves in a horizontal circular path of radius l.

The string will break if its tensiion exceeds a
value T. The rocket engine provides a thrust F
of constant magnitude along the rocket's direction of motion. the rocket has a mass m
that does not change with time. Answer the following questions based on the above passage.

Starting from rest at $t=0$ at what later time
t_{1} is the rocket travelling so fast that the string breaks. Ignnore any air resistance.
A. $\left(\frac{2 m l T}{F^{2}}\right)^{1 / 2}$
B. $\left(\frac{m l T}{F^{2}}\right)^{1 / 2}$
C. $\left(\frac{m l T}{2 F^{2}}\right)^{1 / 2}$
D. $\left(\frac{m l F}{T^{2}}\right)^{1 / 2}$

Answer: B

D Watch Video Solution

13. A model rocket rests on a frictionless
horizontal surface and is joined by a string of length l to a fixed point so that the rocket moves in a horizontal circular path of radius l.

The string will break if its tensiion exceeds a value T. The rocket engine provides a thrust F
of constant magnitude along the rocket's direction of motion. the rocket has a mass m
that does not change with time. Answer the following questions based on the above passage.

What was the magnitude of instantaneous net acceleration at time $t_{1} / 2$? Obtain answer in terms of F, T and m.

$$
\begin{aligned}
& \text { A. } \frac{\left[T^{2}+8 F^{2}\right]^{1 / 2}}{m} \\
& \text { B. } \frac{\left[T+4 F^{2}\right]^{1 / 2}}{2 m} \\
& \text { C. } \frac{\left[T^{2}+16 F^{2}\right]^{1 / 2}}{4 m}
\end{aligned}
$$

D. none of these

Answer: C

D Watch Video Solution

14. A model rocket rests on a frictionless
horizontal surface and is joined by a string of
length l to a fixed point so that the rocket moves in a horizontal circular path of radius l.

The string will break if its tensiion exceeds a
value T. The rocket engine provides a thrust F
of constant magnitude along the rocket's direction of motion. the rocket has a mass m
that does not change with time. Answer the following questions based on the above passage.

What distance does the rocket travel between
the time t_{1} when the string breaks and the
time $2 t_{1}$? The rocket engine continues of operate after the string breaks.
A. $\frac{3 l T}{2 F}$
B. $\frac{2 l T}{3 F}$
C. $\frac{l T}{2 F}$
D. $\frac{2 l T}{F}$

Answer: A

D Watch Video Solution

15. Two ropes are puling a large ship at rest of mass $1 \times 106 \mathrm{~kg}$ into harbour. Rope A exerts a
force of $40,000 N$ and rope B exerts a force of $30,000 N$.

The angle θ if the slip is to move directly forward is
A. $\sin ^{-1}\left(\frac{4}{9}\right)$
B. $\sin ^{-1}\left(\frac{2}{3}\right)$
C. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
D. none of these

Answer: B

D Watch Video Solution

16. Two ropes are puling a large ship at rest of mass $1 \times 106 \mathrm{~kg}$ into harbour. Rope A exerts a force of $40,000 \mathrm{~N}$ and rope B exerts a force of $30,000 N$. Also the value of \sin inverse θ is $\frac{4}{5}$

If the acceleration of the ship is $0.03 m s^{-2}$,
the magnitude of the resistive forces on the ship is
A. $40,000 \times 9.8 N$
B. $30,000 \times 9.8 N$
C. $27,000 N$
D. none of these

Answer: C

D Watch Video Solution

17. Two ropes are puling a large ship at rest of mass $10^{6} \mathrm{~kg}$ into harbour. Rope A exerts a force of $40,000 N$ and rope B exerts a force of
$30,000 N$.

The angle θ if the slip is to move directly forward is
A. 1 min 30 s
B. 1 min
C. $40 s$
D. $20 s$

Answer: D

- Watch Video Solution

18. In the given figure $\mathrm{F}=10 \mathrm{~N}, \mathrm{R}=1 \mathrm{~m}$, mass of
the body is 2 kg and moment of inertia of the body about an axis passing through O and perpendicular to plane of body is $4 k g-m^{2} .0$
is the centre of mass of the body.
 energy of the body after 2 s ?
A. 100 J
B. 75 J
C. 50 J
D. 25 J

Answer: C

D Watch Video Solution

19. In the given figure $\mathrm{F}=10 \mathrm{~N}, \mathrm{R}=1 \mathrm{~m}$, mass of
the body is 2 kg and moment of inertia of the body about an axis passing through O and perpendicular to plane of body is $4 k g-m^{2} .0$
is the centre of mass of the body.
 energy of the body now in the given time interval ?
A. 18.75 J
B. 16.67 J
C. 5.55 J
D. cannot be found

Answer: B

D Watch Video Solution

20. A disc having radius R is rolling without slipping on a horizontal $(x-z)$ plane. Centre of the disc has a velocity v and acceleration a as

Speed of point P having coordinates (x, y) is

D. none

Answer: A

D Watch Video Solution

21. A disc having radius R is rolling without
slipping on a horizontal $(x-z)$ plane. Centre
of the disc has a velocity v and acceleration a as shown.

If $v=\sqrt{2 a R}$ the angle θ betweenn
accelertion of the top most point and horizontal is
A. 0
B. 45°
C. $\tan ^{-1}(2)$
D. $\tan ^{-1}\left(\frac{1}{2}\right)$

Answer: B

D Watch Video Solution

22. A cylindrical container of length L is full to
the brim with a liquid which has mass density
ρ.it is placed on a weight -scale, the scale reading is W. A light ball of volume V and mass m which wold float on the liquid, if allowed to do so, is pushed gently downand
held beneath the surface of the liquid with a rigid rod of negligible volume as shwon on the

Rigid rod

left.

A. $\rho g V$
B. m
C. $m \rho-V$
D. none

Answer: A

D Watch Video Solution

23. A cylindrical container of length L is full to

the brim with a liquid which has mass density
ρ.it is placed on a weight -scale, the scale
reading is W. A light ball of volume V and mass m which wold float on the liquid, if allowed to do so, is pushed gently downand held beneath the surface of the liquid with a rigid rod of negligible volume as shwon on the left.
Rigid rod

attached to the bottom of the containier as
shown on the right.
A. $W-\rho V g$
B. W
C. $W+m g-\rho V g$
D. none

Answer: B
(Watch Video Solution
24. A cylindrical container of length L is full to
the brim with a liquid which has mass density
ρ. it is placed on a weight -scale, the scale reading is W. A light ball of volume V and mass m which woUld float on the liquid, if allowed to do so, is pushed gently downand held beneath the surface of the liquid with a rigid rod of negligible volume as shwon on the

Rigid rod
left.

What is the tension T in the string?
A. $(\rho V-m) g$
B. $\rho V g$
C. $m g$
D. none

Answer: A
25. A cylindrical container of length L is full to
the brim with a liquid which has mass density
ρ.it is placed on a weight -scale, the scale reading is W. A light ball of volume V and mass m which wold float on the liquid, if allowed to do so, is pushed gently downand held beneath the surface of the liquid with a rigid rod of negligible volume as shwon on the

Rigid rod

left.

What is the reading on the scale?
A. (a) $W-\rho V g$
B. (b) W
C. (c) $W+m g-\rho V g$
D. (d) none

Answer: C
26. Fluids at rest exert a normal force to the walls of the container or to the sruface of the

Body immersed in the fluid. The pressure exerted by this force at a point inside the liqid
is the sum of atmospheric pressure and a factor which depends on the density of the liquid, the acceleration due to gravity and the height of the liquid, above that point. The upthrust acting on a body immersed in a stationary liquid is the net force acting on the
body in the upward direction. A number of phenomenon of liquids in motion can be explain by Bernoulli's theorem which relates the pressure, flow speed and height for flow of an ideal incompressible fluid.

A container of large uniform corss sectional area. A resting on a horizontal surface holds two immiscible, non viscous and incompressile
liquids of densities d and $2 d$, each of height
$H / 2$ as shown in the figure. The lower density
liquid is open to the atmosphere having pressure P_{0}.

Situation I:

A homogeneous solid cylinder of length
$L(L<H / 2)$. cross sectional area $A / 5$ is
immersed such that it floats with its axis
vertical at liquid -liquid interface with lenght
$L / 4$ in the denser liquid.

The density of the solid is
A. $\frac{5 d}{4}$
B. $\frac{d}{4}$
C. $\frac{2 d}{4}$
D. $\frac{3 d}{4}$

Answer: A

D Watch Video Solution

27. Fluids at rest exert a normal force to the walls of the container or to the sruface of the body immersed in the fluid. The pressure exerted by this force at a point inside the liqid
is the sum of atmospheric pressure and a
factor which depends on the density of the
liquid, the acceleration due to gravity and the height of the liquid, above that point. The upthrust acting on a body immersed in a stationary liquid is the net force acting on the
body in the upward direction. A number of phenomenon of liquids in motion can be explain by Bernoulli's theorem which relates
the pressure, flow speed and height for flow of an ideal incompressible fluid.

A container of large uniform corss sectional area. A resting on a horizontal surface holds
two immiscible, non viscous and incompressile
liquids of densities d and $2 d$, each of height
$H / 2$ as shown in the figure. The lower density liquid is open to the atmosphere having pressure

Situation I:

A homogeneous solid cylinder of length
$L(L<H / 2)$. cross sectional area $A / 5$ is
immersed such that it floats with its axis
vertical at liquid -liquid interface with lenght
$L / 4$ in the denser liquid.
The total pressure at the bottom of the container is

$$
\begin{aligned}
& \text { A. }\left(\frac{H}{2}+\frac{L}{4}\right) d g \\
& \text { B. } P_{0}+\left(\frac{3 H}{2}+\frac{L}{2}\right) d g \\
& \text { C. } P_{0}+\left(H+\frac{L}{4}\right) d g \\
& \text { D. } P_{0}+\left(\frac{3 H}{2}+\frac{L}{4}\right) d g
\end{aligned}
$$

Answer: D
28. Fluids at rest exert a normal force to the
walls of the container or to the sruface of the body immersed in the fluid. The pressure exerted by this force at a point inside the liqid is the sum of atmospheric pressure and a
factor which depends on the density of the
liquid, the acceleration due to gravity and the height of the liquid, above that point. The upthrust acting on a body immersed in a stationary liquid is the net force acting on the
body in the upward direction. A number of phenomenon of liquids in motion can be explain by Bernoulli's theorem which relates the pressure, flow speed and height for flow of an ideal incompressible fluid.

A container of large uniform cross sectional area. A resting on a horizontal surface holds two immiscible, non viscous and incompressile
liquids of densities d and $2 d$, each of height
$H / 2$ as shown in the figure. The lower density
liquid is open to the atmosphere having pressure P_{0}.

Situation II:

A cyliner is removed and the original arrangement is restored.A tiny hole of area $s(s \ll A)$ is punched on the veritical sideof the containier at a height $h(h<H / 2)$

The initial speed of efflux of the liquid at the hole is
A. $\frac{\sqrt{(4 H-3 h) g}}{2}$

> B. $\frac{\sqrt{(3 H-4 h) g}}{2}$
> C. $\left(\frac{\sqrt{(3 H-3 h) g}}{2}\right)$
> D. $\sqrt{(3 H-3 h) \frac{g}{2}}$

Answer: D

- Watch Video Solution

29. Fluids at rest exert a normal force to the walls of the container or to the sruface of the body immersed in the fluid. The pressure exerted by this force at a point inside the liqid
is the sum of atmospheric pressure and a
factor which depends on the density of the
liquid, the acceleration due to gravity and the height of the liquid, above that point. The upthrust acting on a body immersed in a stationary liquid is the net force acting on the
body in the upward direction. A number of phenomenon of liquids in motion can be explain by Bernoulli's theorem which relates
the pressure, flow speed and height for flow of an ideal incompressible fluid.

A container of large uniform corss sectional area. A resting on a horizontal surface holds
two immiscible, non viscous and incompressile
liquids of densities d and $2 d$, each of height
$H / 2$ as shown in the figure. The lower density
liquid is open to the atmosphere having pressure

Situation II:

A cyliner is removed and the original arrangement is restoreed.A tiny hole of area $s(s \ll A)$ is punched on the veritical
sideof the containier at a height $h(h<H / 2)$

The horizontal distance x travelled by the liquid is

$$
\begin{aligned}
& \text { A. } \sqrt{(H-3 h) h} \\
& \text { B. } \sqrt{3 H g} \\
& \text { C. } \sqrt{(3 H-4 h) h} \\
& \text { D. } 2 h
\end{aligned}
$$

Answer: C

- Watch Video Solution

30. Fluids at rest exert a normal force to the walls of the container or to the sruface of the
body immersed in the fluid. The pressure exerted by this force at a point inside the liqid
is the sum of atmospheric pressure and a
factor which depends on the density of the
liquid, the acceleration due to gravity and the
height of the liquid, above that point. The upthrust acting on a body immersed in a stationary liquid is the net force acting on the body in the upward direction. A number of phenomenon of liquids in motion can be
explain by Bernoulli's theorem which relates
the pressure, flow speed and height for flow of an ideal incompressible fluid.

A container of large uniform corss sectional area. A resting on a horizontal surface holds
two immiscible, non viscous and incompressile
liquids of densities d and $2 d$, each of height
$H / 2$ as shown in the figure. The lower density
liquid is open to the atmosphere having pressure P_{0}.

Situation II:

A cyliner is removed and the original arrangement is restoreed.A tiny hole of area $s(s \ll A)$ is punched on the veritical side of the containier at a height $h(h<H / 2)$

The height h_{m} at which the hole should be punched so that the liquid travels the maximum distance is
A. $\frac{2 H}{3}$
B. $\frac{3 H}{8}$
C. $\frac{4 H}{3}$
D. $\frac{4 H}{3}$

Answer: B

D Watch Video Solution

31. Fluids at rest exert a normal force to the walls of the container or to the sruface of the ody immersed in the fluid. The pressure
exerted by this force at a point inside the liqid
is the sum of atmospheric pressure and a
factor which depends on the density of the
liquid, the acceleration due to gravity and the
height of the liquid, above that point. The upthrust acting on a body immersed in a stationary liquid is the net force acting on the
body in the upward direction. A number of phenomenon of liquids in motion can be explain by Bernoulli's theorem which relates the pressure, flow speed and height for flow of an ideal incompressible fluid.

A container of large uniform corss sectional
area. A resting on a horizontal surface holds two immiscible, non viscous and incompressile
liquids of densities d and $2 d$, each of height $H / 2$ as shown in the figure. The lower density liquid is open to the atmosphere having pressure P_{0}.

Situation II:

A cyliner is removed and the original
arrangement is restoreed.A tiny hole of area
$s(s \ll A)$ is punched on the veritical side
of the container at a height $h(h<H / 2)$
The maximum distance travelled x_{m} is

> A. $\frac{3 H}{4}$
> B. $\frac{4 H}{3}$
> C. $\frac{2 H}{3}$
> D. $\frac{8 H}{3}$

Answer: A

32. A hollow sphere is completely filled with a liquid having a density ρ. The radius of the sphere is R. Now the sphere is puloled with a constant horizontal acceleration of g on a horizontal surface. Take centre of sphere as origin of coordinate system as shwon in the

Coordinate of the point having the minimum pressure is

$$
\begin{aligned}
& \text { A. } \frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}} \\
& \text { B. } \frac{R}{2}, \frac{R}{2} \\
& \text { C. } \frac{-R}{\sqrt{2}}, \frac{-R}{\sqrt{2}} \\
& \text { D. } \frac{-R}{2}, \frac{-R}{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

33. A hollow sphere is completely filled with a
liquid having a density ρ. The radius of the sphere is R. Now the sphere is puloled with a constant horizontal acceleration of g on a horizontal surface. Take centre of sphere as origin of coordinate system as shown in the
figure.

Coordinate of the point having the maximum pressure is

> A. $\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}$
> B. $\frac{R}{2}, \frac{R}{2}$
> C. $\frac{-R}{\sqrt{2}}, \frac{-R}{\sqrt{2}}$
> D. $\frac{-R}{2}, \frac{-R}{2}$

Answer: c

D Watch Video Solution

34. A hollow sphere is completely filled with a liquid having a density ρ. The radius of the sphere is R. Now the sphere is puloled with a
constant horizontal acceleration of g on a horizontal surface. Take centre of sphere as origin of coordinate system as shown in the

figure.
Consider points A and B as shown in the figure.
A. $P_{A}=P_{B}$
B. $P_{A}>P_{B}$
C. $P_{B}>P_{A}$
D. cannot say

Answer: a

D Watch Video Solution

Integer Type

1. Two blocks are arranged as shown in figure.

Find the ratio of a_{1} / a_{2}. (a_{1} is acceleration of
m_{1} and a_{2} that of m_{2})

- Watch Video Solution

2. A single wire $A C B$ passes through a smooth ring at C when revolves at a constant speed in the horizontal circle of radius $r=6.4 m$ as shown in the figure. Find the
speed (in m / s) of revolution of the ring.

3. We apply a force of 10 N on a cord wrapped around a cylinder of mass 2 kg . The cylinder rolls without slipping on the floor. What is the kinetic energy (in joule) when cylinder has moved by a distance of $3 / 5 \mathrm{~m}$?

- Watch Video Solution

4. The bar shown in the figure is made of a single piece of material. It is fixed at one end.

It consists of two segments of equal lengh
$L / 2$ each but different cross sectional area A and $2 A$. Find the ratio of total elongation in
the bar to the elongation produced in thicker segment under the action of an axial force F.

Consider the shape of the joint to remain circular. (Given : Y is Young's modulus.
5. A block of wood of density $500 \mathrm{~kg} / \mathrm{m}^{3}$ has
mass $m \mathrm{~kg}$ in air. A lead block which has apparent weight of 28 kg in water is attached to the block of wood, and both of them are submerged in water. If their combined apparent weight in water is 20 kg , find the value of m. Take density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
6. The range of water flowing out of a small hole made at a depth 10 m below water surface in a large tank is R. Find the extra pressure (in atm) applied on the water surface so that range becomes $2 R$. Take $1 \mathrm{~atm}=10^{5} \mathrm{~Pa}$.

$\longrightarrow-R \longrightarrow$

D Watch Video Solution
7. An artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from the surface of earth. (Radius of earth $=6400 \mathrm{~km}$)
(a) Dentermine the height of the satellite above the earth's surface.
(b) If the satellite is stopped suddenly in its orbit and allowed to fall freely on the earth, find the speed with which it hits the surface of earth.

- Watch Video Solution

8. Blocks A and B each of mass 1 kg are moving with $4 m / s$ and $2 m / s$ respectively as shown. The coefficient of friction for all surface is 0.10 . Find the distance (in m) by which centre of mass will travell before coming to rest. Assume large distance between the blocks

9. Two wheels, each marked with a dot on its rim, are mounted side by side. Initially the dots are alinged and wheels are at rest. One of the wheels is given a constant angular acceleration of $(\pi / 2) \mathrm{rad} / \mathrm{sec}^{2}$ and the other wheel is given a constant angular acceleration $(\pi / 4) \mathrm{rad} / \mathrm{sec}^{2}$. Both acceleration are in the same direction. Find the time (in s) after which
the two dots will becomes alingned again for the first time.
10. Two Steel wires of the same length but radii r and $2 r$ are connected together end to end and tied to a wall as shown.

The force stretches the combination by 10 mm
. How far does the midpoint A move? (in mm)

- Watch Video Solution

