©゙doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (ENGLISH)

RIGID BODY DYNAMICS 1

Illustration

1. A uniform rod of length l is spinning with an angular velocity $\omega=2 \frac{v}{l}$ while its centre of mass moves with a velocity v. Find the velocity of the

end of the rod.

- Watch Video Solution

2. The ends A and B of a eod of length l have velocities of magnitudes $\left|\vec{v}_{A}\right|=v$ and $\left|\vec{v}_{B}\right|=2 v$ respectively. If the inclination of \vec{v}_{A} relationn to the rod is α find the
a. Inclination β of \vec{c}_{B} relative of the rod.
b. angular velocity of the rod.

- Watch Video Solution

3. A uniiform disc of radius r spins with angular velocity ω and angular acceleration α. If the centre of mass of the disc has linear acceleration a,
find the magnitude and direction of aceeleration of the point 1,2 , and 3 .

- Watch Video Solution

4. A rod of length l is moving in a vertical plane $(x-y)$ when the lowest point A of the rod is moved with a velocity v. find the a angular velocity
of the rod and b velocity of the end B.

- Watch Video Solution

5. Find the instantneous axis of rotation of a rod length l when its end A moves with a velocity $\vec{v}_{A}=V i$ and the rod rotates with an angular
velocity $\vec{\omega}=-\frac{v}{2 l} \hat{k}$.

- Watch Video Solution

6. Four particles each of mass ' m ' are kept at the four corners of a square of edge 'a'. Find the moment of inertia of the system about a line perpendicular to the plane of the square and passing through the center of the square.
7. A uniform rod of mass m and length l_{0} is rotating with a constant angular speed ω about a vertical axis passing through its point of suspension. Find the moment of inertia of the rod about the axis of rotation if it make an angle θ to the vertical (axis of rotation).

- Watch Video Solution

8. Calculate the moment of inertia of a ring having mass M, radius R and having uniform mass distribution about an axis passing through the centre of the ring and perpendicular to the plane of the ring?

9. Calculate the moment of inertia of a uniform rod of mass M and length l about an axis passing through an end and perpendicular to the rod. The rod can be divided into a number of mass elements along the length of the rod.

10. Find the moment of inertia of a circular disk or solid cylinder of radius R about the axis through the centre and perpendicular to the flat surface.

- Watch Video Solution

11. Two uniform identicla rods each of mass M and length I are joined to form a cross as shown in figure. Find the momet of inertia of the cross
about a bisector as shown doted in the figure

12. Find the moment of inertia of a solid cylinder of mass M and radius R about a line parallel to the axis of the cylinder and on the surface of the cylinder.
13. Calculate the moment of inertia of
a. a ring of mass M and radius R about an axis coinciding with the diameter of the ring.
b. as thin disc about an axis coinciding with the diameter.

- Watch Video Solution

14. Find the out the moment of inertia of a ring having uniform mass distribution of mass M and radius R about an axis which is tangent ot the ring and a in the plane of the ring b. perpendicular to the plane of the ring.
(1)

15. Two uniform solid of masses m_{1} and m_{2} and radii r_{1} and r_{2} respectively, are connected at the ends of a uniform rod of length l and mass m. Find the moment of inertia of the system about an axis perpendicular to the rod and passing through a point at a distance of a from the centre of mass of the rod as shown in figure.

- Watch Video Solution

16. There are four solid balls with their centres at the four corners of a square of side a. the mass of each sphere is m and radius is r. Find the moment of inertia of the system about one of the sides of the square
17. A circular hole of radius $R / 2$ is cut from a circular disc of radius R. The disc lies in the $x y$-plane and its centre coincides with the origin. If the remaining mass of the disc is M, then
a. determine the initial mass of the disc and
b. determine its moment of inertia about the z-axis.

18. Three identical thin rods, each of mass m and length l, are joined to form an equilateral triangular frame. Find the moment of inertia of the frame about an axis parallel to tis one side and passing through the opposite vertex. Also find its radius of gyration about the given axis.

- Watch Video Solution

19. A particle of mass m is released in vertical plane from a point P at $x=x_{0}$ on the x-axis. It falls vertically parallel to the y-axis. Find the torque τ acting on the particle at a time about origin.

20. Determine the point of application of force, when forces of 20 N and 30 N are acting on rod as shown in figure.

- Watch Video Solution

21. In a circus show are used large numbers of light boards, each of which can rotate around a fixed fulcrum. Fulcrum of reach board divides the length of the board in ration 2: 1. At the one end of the left most board is placed a small block of mass 30 kg and a team of clowns stand keeping their feel at the ends of adjacent boards as shown in figure. the mass of
each clown is 80 kg . What maximum number of clowns can keep balance in this way?

- Watch Video Solution

22. Two small kids weighing 10 kg and 15 kg respectively are trying to balance a seesaw of total length 5.0 with the fulcrum at the centre. If one of the kids is sitting at an end where should the other sit?

- Watch Video Solution

23. A rod $A B$ rests with the end A on rough horizontal ground and the end B against a smooth vertical wall. The rod is uniform and of weight w . If the rod is in equilibrium in the position shown in figure.Find
(a)frictional force shown at A
(b) normal reaction at A
(c) normal reaction at B.

24. At the bottom edge of a smooth wall, an inclined plane is kept at an angle of 45°. A uniform ladder of length l and mass M rests on the inclined plane against the wall such that it is perpendicular to the inclined.

(a) if the plane is also smooth ,which way will the ladder slide .
(b) What is the minimum coefficient of friction neccessary so that the ladder does not slip on the inclined?
25. A horizontal force F is applied to a homogeneous rectangular block of mass m, width b and height H. The block moves with constant velocity, the coefficient of friction is μ_{k}.
a. What is the greater height h at which the force F can be applied so that the block will slide without tipping over ?

b. Through which point on the bottom face of the block will the resultant of the friction and normal forces act if $h=H / 2$?
c. If the block is at rest and coefficient of static friction is μ_{s} what are the various criteria for which sliding or tipping occurs?
26. A cube of side a is placed on an inclined plane of inclination θ. What is the maximum value of θ for which the cube will not topple?

- Watch Video Solution

27. A tall block of mass $M=50 \mathrm{~kg}$ and base width $b=1 \mathrm{~m}$ and height $h=3 m$ is kept on rough inclined surface with coefficient of friction $\mu=0.8$ as shown in figure. The angle of inclination with the horizontal is
37°. Determine whether the block slides down or topples over.

- Watch Video Solution

28. Determine the maximum ratio h / b for which the homogenous block will side without tipping under the actionof force P. The coefficient of
static friction between the block and the incline is μ_{s}.

- Watch Video Solution

29. the door of an almirah is 6 ft high, 1.5 ft wide and weights 8 kg . The door is supported by two hinges situated at a distance of 1 ft from the ends. If the magnitude of the forces exerted by the hinges on the door are equal find this magnitude.
30. A cotton reel of mass m and moment of inertia I is kept at rest on as smooth horizontal surface. The reel has inner and other radius r and R respectively. A horizontal force F starts actings as shown in figure. Find the

a. acceleration of the centre of mass of reel.
b. angular acceleration of the reel
c. net acceleration of point of contact.

- Watch Video Solution

31. A uniform rod of mass m and length l is in equilibrium under the action of constraint forces, gravity and tension in the string. Find the

a. frictional force acting on the rod.
b. tension in the string.
c. normal reaction on the rod.

Now, the string is cut. Find the
d. angular acceleration of the rod just after the string is cut.
e. normal reaction on the rod just after the string is cut.

- Watch Video Solution

32. In figure calculate the linear acceleration of the blocks.

Mass of block $B=8 \mathrm{~kg}$
mass of disc shaped pulley $=2 k g$ (take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

33. A block of mass m is attached at the end of an inextensible string which is wound over a rough pulley of mass M and radius R figure a. Assume the string does not slide over the pulley. Find the acceleration of the block when released.

- Watch Video Solution

34. In figure mass m_{1} slides without friction on the horizontal surface, the frictionless pulley is in the form of a cylinder of mass M and radius R, and a string turns the pulley without slipping. Find the acceleration of each mass, and tension in each part of the string.

35. In figure mass m_{1} slides without friction on the horizontal surface, the frictionless pulley is in the form of a cylinder of mass M and radius R, and a string turns the pulley without slipping. Find the acceleration of each mass, and tension in each part of the string.

- Watch Video Solution

36. A uniform cylinder of radius R is spinned about it axis to the angular velocity ω_{0} and then placed into a corner,. The coeficient of friction between the corner walls and the cylinder is μ_{k} How many turns will the
cylinder accomplish before it stops?

- Watch Video Solution

37. A uniform rod of length L and mass M is pivoted freely at one end and placed in vertical position.
a. What is angular acceleration of the rod when it is at ann angle θ with the vertical?
b. What is the tangential linear acceleration of the free end when the rod is horizontal?
38. Three particles A, B and C each of mass m, are connected to each other by three massless rigid rods to form a rigid, equilateral triangular body of side I. This body is placed on a horizontal frictionless table ($x-y$ plane) and is hinged to it at the point A so that it can move without friction about the vertical axis through A. the body is set into rotational motion on the table about A with a constant angular velocity ω.

(a) Find the magnitude of the horizontal force exerted by the hinge on the body.
(b) At time T, when the side BC is parallel to the x-axis, a force F is applied on B along $B C$ (as shown). Obtain the x-component and the y-component of the force exerted by the hinge on the body, immediately after time T .
39. The arrangement shown in figure consists of two identical, uniform, solid cylinders, each of mass m, on which two light theads are wound symmetrically.

Find the tensions of each thread in the process of motion. The friction in the axle of the upper cylinder is assumed to be absent.

1. A uniform cylinder of radius r and mass m can rotate freely about a fixed horizontal axis. A thin cord of length I and mass m_{0} is would on the cylinder in a single layer. Find the angular acceleration of the cylinder as a function of the length x of the hanging part of the end. the wound part of the cord is supposed to have its centre of gravity on the cylinder axis is
shown in figure.

- Watch Video Solution

2. A thin uniform bar of mass m and length $2 L$ is held at an angle 30° with the horizontal by means of two vertical inextensible strings, at each end as shown in figure. If the string at the right end breaks, leaving the bar to swing, determine the tension in the string at the left end and the
angular acceleration of the bar immediately after string breaks.

- Watch Video Solution

3. A uniform solid sphere of mass 1 kg and radius 10 cm is kept stationary on a rough inclined plane by fixing a highly dense particle at B. Incination of plane is 37° with horizontal and $A B$ is the diameter of the sphere which is parallel to the plane, as show in figure. Calculate

a. mass of the particle fixed at B
b. minimum required coefficient of friction between sphere and plane to keep sphere in equilibrium.

- Watch Video Solution

4. A block of mass m height $2 h$ and width $2 b$ rests on a flat car which moves horizontally with constant acceleration a as shown in figure.

a. the value of the acceleration at which slipping of the block on the car starts, if the coefficient of friction is μ.
b. the value of the acceleration at which block topples about A, assuming sufficient friction to prevet slipping and
c. the shortest distance in which it can be stopped from a speed of $20 \mathrm{~ms}^{-1}$ with constant deceleration so that the block is not disturbed.

The following data are given $b=0.6 m, h=0.9 m, \mu=0.5$ and $g=10 m s^{-2}$

- Watch Video Solution

5. A uniform slender bar $A B$ of mass m is suspended as shown from a small cart of the same mass m. Neglecting the effect of the friction, determine the accelerations of points A and B immediately after a horizontal force F has been applied at B.

6. One fourth length of a uniform rod of length $2 l$ and mass m is place don a horizontal table and the rod is held horizontal. The rod is released from rest. Find the normal reaction on the rod as soon as the rod is released.

- Watch Video Solution

7. Determine the minimum coefficient of friction between a thin rod and a
floor at which a person can slowly lift the rod from the floor, without slipping, to the vertical position applying at its end a force always perpendicular to its length.

- Watch Video Solution

8. Consider two heavy right circular rollers of the radii R and r respectively and rest on a rough horizontal plane a shown in figure. The larger roller has a string wound around it to which a horizontal force P can be applied as shown. Assuming that the coefficient of friction m has the same value for all surfaces of contact, determine the necessary condition under which the larger roller can be pulled over the smaller one. Assume the smaller cylinder should neither roll nor slide.

P

9. In the system shown in the figure blocks A and B have mass $m_{1}=2 \mathrm{~kg}$ and $m_{2}=26 / 7 \mathrm{~kg}$ respectiely. Pulley having moment of inertia $I=0.11 \mathrm{kgm}^{-2}$ can rotate without friction about a fixed axis. Inner and outer radii of pulley are $a=10 \mathrm{~cm}$ and $b=15 \mathrm{~cm}$ respectively. B is hanging with the thread wrapped around the pulley, while A lies on a rough inclined plane.

Coefficient of friction being $\mu=\sqrt{3} / 10$

Calculate

as. Tension in each thread, and
b. Acceleration of each block $\left(g=10 m s^{-2}\right)$

(D) Watch Video Solution

Exercise 2.1

1. The rod of length $l=1 m$ rotates with an angular velocity $\omega=2 \mathrm{rads}^{-1}$ an the point P moves with velocity $v=1 \mathrm{~ms}^{-1}$ and acceleration $a=1 \mathrm{~ms}^{-2}$. Find the velocity and acceleration of Q.

2. The angular velocity and angular acceleration of the pivoted rod are given as ω and α respectively. Fid the x and y components of acceleration of B.

3. A rod $A B$ length $5 m$ which remains in vertical plane has its ends A and B constrained to remain contact with a horizontal floor and a vertical wall respectively. Determine the velocity of the end B and angular velocity at the position shown in Fig., if the point A has a velocity of $3 m s^{1}$ rightward.

- Watch Video Solution

4. Shown in the figure is rod which moves with $v=2 \mathrm{~ms}^{-1}$ and rotates with $\omega=2 \pi \mathrm{rads}^{-1}$. Find the instantaneous axis of rotation.

-
 Watch Video Solution

5. Find the position of instantaneous centre of rotation and angular velocity of the disc in the following cases as shown. Radius of disc is R in

each case.

- Watch Video Solution

6.

A rotating disc moves in the positive direction of the x-axis. Find the equation $y(x)$ describing the position of the instantaneous axis of rotation if at the initial moment of the centre c of the disc was located at the point O after which it moved with constant velocity v while the disc
started rotating counterclockwise with a constant angular acceleration α. the initial angular velocity is equal to zero.

- Watch Video Solution

Exercise 2.2

1. Two heavy particles having masses m_{1} and m_{2} are situated in a plane perendicular to line $A B$ at a distance or r_{1} and r_{2} respectively.

a. What is the moment of inertia of the system about axis $A B$?
b. What is the moment of inertia of the system about an axis passing through m_{1} and perpendicular to the line joining m_{1} and m_{2} ?
c. What is the moment of inertia of the system about an axis passing through m_{1} and m_{2} ?

- Watch Video Solution

2. Find out the moment of inertia of the circular arcs shown, each having mass M, radius R and having uniform mass distribution about an axis passing through the centre and perpendicular to the plane ?

(a)

(b)

(c)

- Watch Video Solution

3.

Calculate the moments of inertia of the figures shown, each having mass M, radius R and having uniform mass distribution about an axis perpendicular to the plane and passing through the centre?

- Watch Video Solution

4. In Fig. find moment of inertia of a plate having mass M, length l and width b about axes $1,2,3$ and 4 . Assume that C is the centre and mass is uniformly distributed.

- Watch Video Solution

5. Find the moment of inertia of a uniform rectangular plate of mass M and edges of length ' I ' and ' b ' about its axis passing through the
centre and perpendicular to it.

- Watch Video Solution

6. Find the moment of inertia of a uniform square plate of mass M and edge of length ' l ' about its axis passing through P and perpendicular to
it.

- Watch Video Solution

7. Calculate the moment of inertia of a rectangular frame formed by uniform rods having mass m each as shown in about an axis passing through its centre and perpendicular to the plane of frame. Also find
moment of inertia about an axis passing through $P Q$?

- Watch Video Solution

8. Find the moment of inertia of the two uniform joint rods about point P as shown in Fig. Use parallel axis theorem. Mass of each rod is M.

9.

Find the moment of inertia of a solid sphere of mass M and radias R about an axis XX shown in figure. Also find radius of gyration about the given axis.
10. Find the radius of gyration of a hollow uniform sphere of radius R about its tangent.

- Watch Video Solution

11. The square structure shown in Fig. consists of lour point masses connected by rods of negligible Find the moment of inertia of the structure about the following axes: (a) axis A, passing through the centre of the structure and normal to its plane, (b) axis B passing through one of the point masses and normal to the plane of the structure, (c) axis CC', passing through two adjacent point masses and (d) axis DD^{\prime}, along the diagonal of the structure.

(D) Watch Video Solution

12. Calculate the moment of inertia of each particle in Fig. about the indicated axis of rotation.
(a)

(b)

(c)

(d)

- Watch Video Solution

13. A uniform disc of mass m and radius R has an additional rim of mass m as well as four symmetrically placed masses, each of mass $m / 4$ tied at positions $R / 2$ from the centre as shown in Fig. What is the total moment
of inertia of the disc about an axis perpendicular to the disc through its centre?

- Watch Video Solution

14. Find the moment of inertia A of a spherical ball of mass m and radius r attached at the end of a straight rod of mass M and length l, if this system is free to rotate about an axis passing through the end of the rod
(end of the rod opposite to sphere).

- Watch Video Solution

15. Find the moment of inertia of a cylinder of mass M, radius R and length L about an axis passing through its centre and perpendicular to its symmetry axis. Do this by integrating an elemental disc along the length of the cylinder.

- Watch Video Solution

16. Find $M I$ of a triangular lamina of mass M about the axis of rotation $A B$ shown in Fig.

- Watch Video Solution

17. Four identical rods, each of mass m and length l, make a square frame in the $x y$ plane as shown in Fig.
a. Calculate its moment of inertia about the x-and y-axes.
b. Also, calculate its moment of inertia about the z-axis.

- Watch Video Solution

Exercise 2.3

1. A uniform cube of side a and mass m rests on a rough horizontal table.

A horizontal force F is applied normal to one of the faces at a point directly above the centre of the face, at a height $\frac{3 a}{4}$ above the base.

What is the minimum value of F for which the cube begins to tip about an edge?

2.

Two 30 kg blocks rest on a massless belt which passes over a fixed pulley and is attached to a 40 kg block. If coefficient of friction between the belt and the table as well as between the belt and the blocks B and C is μ and the system is released from rest from the position shown, the speed with which the block B falls off the belt is

- Watch Video Solution

3. A beam of weight W supports a block of weight W. The length of the beam is L. and weight is at a distance $\frac{L}{4}$ from the left end of the beam.

The beam rests on two rigid supports at its ends. Find the reactions of the supports.

- Watch Video Solution

4. A uniform ladder of mass 10 g leans agais ta smooth vertical wall making an angle of 53^{0} with it. The other end rests on a rough horizontal floor. Find the normal force and the frictinal force that the floor exerts on the ladder

- Watch Video Solution

5. A uniform ladder of length 10.0 m and mas 16.0 kg is resting against a vertical wall making an angle of 37° with it. An electrician weighing 60.0 kg climbs up the ladder. If the stays on the ladder at a point 8.00 m from the lower end, will be normal force and the force of friction on the ladder by the ground? What should be the minimum coefficient of friction for the electrician to work safely?

- Watch Video Solution

6. A uniform rod of length L rests against a smooth roller as shown in figure. Find the friction coefficeint between the ground and the lower end
if the minimum angle that rod can make with the horizontal is θ.

Figure 10-E9

- Watch Video Solution

7. The ladder shown in figure has negligible mass and rests on a frictionless floor. The crossbar connects the two legs of the ladder at the middle. The angle between the two legs is 60°. The fat person sitting on the ladder thas a mas of 80 kg . Find the contact force exerted by the floor
on each leg and the tension in the cross bar.

- Watch Video Solution

8. A uniform rod of length l and mass m is hung from, strings of equal length from a ceiling as shown in figure. Determine the tensions in the
strings?

- Watch Video Solution

9. A uniform ladder of length L and mass m_{1} rests against a frictionless wall. The ladder makes an angle θ with the horizontal. (a) Find the horizontal and vertical forces the ground exerts on the base of the ladder when a firefighter of mass m_{2} is a distance x from the bottom. (b) If the ladder is just on the verge of slipping when the firefighter is a distance d from the bottom, what is the coefficient of static friction between ladder and ground?
10. A uniform beam of mass m is inclined at an angle θ to the horizontal. Its upper end produces a ninety degree bend in a very rough rope tied to a wall, and its lower end rests on a rough floor (a) If the coefficient of static friction between beam and floor is μ_{s} determine an expression for the maximum mass M that can be suspended from the top before the beam slips. (b) Determine the magnitude of the reaction force at the floor and the magnitude of the force exerted by the beam on the rope at P in terms of m, M and μ_{s}

m

- Watch Video Solution

11. A uniform rod of weight F_{g} and length L is supported at its ends by a frictionless through as shown in figure. (a) Show that the centre of gravity of the rod must be vertically over point O when the rod is in equilibrium. (b) Determine the equilibrium value of the angle θ.

- Watch Video Solution

12. Figure shows a vertical force applied tangentially to a uniform cylinder of weight F_{g}. The coefficient of static friction between the cylinder and all
surfaces is 0.500 . In terms of F_{g}, find the maximum force P that can be applied that does not cause the cylinder to rotate.

O
 Watch Video Solution

13. A trailer with loaded weight F_{g} is being pulled by a vehicle with a force P, as in figure. The trailer is loaded such that its centre of mass is located as shown. Neglect the force of rolling friction and let a represent the x component of the acceleration of the trailer. (a) Find the vertical component of P in terms of the given parameters. (b) If $\mathrm{a}=2.00 \mathrm{~ms}^{-2}$ and $h=1.50 m$, what must be the value of d in order that $P=0$ (no vertical load on the vehicle)?

- Watch Video Solution

14. A bicycle is traveling downhill at a high speed. Suddenly, the cyclist sees that a bridge ahead has collapsed, so she has to stop. What is the
maximum magnitude of acceleration the bicycle can have if it is not to flip over its front wheel-in particular, if its rear wheel is not to leave the ground? The slope makes an angle of 37° with the horizontal. On level ground, the centre of mass of the woman-bicycle system is at a point 1.0 m above the ground, 1.0 m horizontally behind the axle of the front wheel, and 35.0 cm in front of the rear axle. Assume that the tires do not skid.

- Watch Video Solution

15. The weight of an object on the surface of the Earth is 40 N . Its weight at a height equal to the radius of the Earth is

- Watch Video Solution

1. A uniform rod of mass m and length l can rotate in a vertical plane about a smooth horizontal axis point H. a. Find angular acceleration α of the rod. just after it is released from initial horizontal position from rest'?
b. Calculate the acceleration (tangential and radial), point A at this moment.

- Watch Video Solution

2. A uniform rod of mass m and length l can rotate in a vertical plane abota smooth horizontal axis hinged at point H. Find the force exerted by the hinge just after rod is released from rest, from initial horizontal

position?

- Watch Video Solution

3. A wheel of radius r and moment of inertia I about its axis is fixed at top of an inclined plane of inclination θ as shown in figure. A string is wrapped round the wheel and its free end supports a block of mass M which can slide on the plane. Initially, the wheel is rotating at a speed ω in direction such that the block slides up the plane. How far will the block
move before stopping?

- Watch Video Solution

4. A uniform rod $A B$ of mass $m=2 k g$ and length $l=1.0 \mathrm{~m}$ is placed on a sharp support P such that $a=0.4 m$ and $b=0.6 m$. A. spring of force constant $k=600 \mathrm{~N} / \mathrm{m}$ is attached to end B as shown in Fig. To keep the rod horizontal, its end A is tied with a thread such that the spring is B elongated by $1 C M$. Calculate reaction of support P when the thread is
burnt.

D Watch Video Solution

5. A cotton reel of mass m and moment of inertia I is kept at rest on as smooth horizontal surface. The reel has inner and other radius r and R respectively. A horizontal force F starts actings as shown in figure. Find the

a. acceleration of the centre of mass of reel.
b. angular acceleration of the reel
c. net acceleration of point of contact.

- Watch Video Solution

6. Find acceleration a and angular acceleration α. If $F=2 N, m=1 \mathrm{~kg}$ and $l=2 m$

7.

Find α, a_{Q} and the point of zero acceleration when the horizontal force F acts on the smooth rod of mass m and length l which is kept on a horizontal surface.

Watch Video Solution

8. A uniform solid. cylinder A of mass can freely rotate about a horizontal axis fixed to a mount of mass m_{2}. A constant horizontal force F is applied to the end K of a light thread tightly wound on the cylinder. The friction between the mount and the supporting horizontal plane is assumed to be absent. Find the acceleration of the point K.

- Watch Video Solution

9. For what value of x, the point P on the rod of length $l=6 m$ has zero acceleration if a force F is applied at the end of rod as shown.

Watch Video Solution
10. A uniform rod of mass m and length is acted upon by the forces F_{1} and F_{2} Find that:
a. linear-and angular acceleration of the rod.
b. value of x for which the point P does not accelerate.

11. Find a_{C} and α of the smooth rod of mass m and length l.

Watch Video Solution

Subjective

1. In the instant shown in the diagram the board is moving up (vertically) with velocity v. The drum winds up at a constant rate ω. If the radius of the drum is R and the board always remains horizontal, find the value of velocity in terms of R, θ, ω.

- Watch Video Solution

2. A weightless rod of length l with a small load of mass m at the end is hinged at point A as shown and occupies a strictly vertical position, touching a body of mass M. A light jerk sets the system in motion.
a. For what mass ratio M / m will the rod form an angle $\alpha=\pi / 6$ with the horizontal at the moment of the separation from the body?
b. What will he the velocity u of the body at this moment? Friction should be neglected.

(Watch Video Solution

3. A cylinder of weight W and radius R is to be raised onto a horizontal step of height h as shown in Fig. A rope is wrapped around the cylinder and pulled horizontally with force F. Assuming the cylinder does not slip on the step, find the minimum force F necessary to raise the cylinder.

4. A cylinder is rolling without sliding over two horizontal planks (surfaces) 1 and 2 . If the velocities of the surfaces A and B are $-v \hat{i}$ and $2 v \hat{i}$ respectively, find the:
a. Position of instantaneous axis of rotation.
b. Angular velocity of the cylinder.

2

- Watch Video Solution

5. A block of mass $M=4 k g$ of height and breath b is placed on a rough plank of same mass M. A light inextensible string is connected to the
upper end of the block and passed through a light smooth pulley as shown in figure. A mass $m=1 \mathrm{~kg}$ is hung to the other end of the string.
a. What should be the minimum value of coefficient of friction between the block and the plank so that, there is no slipping between the block and the wedge?
b. Find the minimum value of b / h so that the block does not topple over the plank, friction is absent between the plank and the ground.

- Watch Video Solution

6. A uniform rod $A B$ of mass m and length l is suspended by two massless and inextensible strings $A C$ and $B D$ whose ends C and D are fixed as shown. Find the tension in the string $B D$ immediately after the
string at A is cut.

- View Text Solution

7. A cylinder rests on a horizontal rotating disc, as shown in the figure.

Find at what angular velocity, ω, the cylinder falls off the disc, if the distance between the axes of the disc and cylinder is R, and the coefficient of friction $\mu>D / h$ where D is the diameter of the cylinder
and It is its height.

- Watch Video Solution

8. A uniform slender bar $A B$ of mass m is suspended as shown from a small cart of the same mass m. Neglecting the effect of the friction, determine the accelerations of points A and B immediately after a
horizontal force F has been applied at B.

- Watch Video Solution

9. A uniform bar of length I and mass m stands vertically touching a vertical wall (y-axis). When slightly displaced, its lower end begins to slide along the floor (x-axis). Obtain an expression for the angular velocity (ω) of the bar as a function of O. Neglect friction everywhere.

- Watch Video Solution

10. A uniform cube of side ' a ' and mass m rests on a rough horizontal table. A horizontal force F is applied normal to one of the faces at a point directly below the centre of the face, at a height $a / 4$ above the base.
a. What is the minimum value of F for which the cube begins to tip about an edge?
b. What is the minimum value of its so that toppling occurs?
c. If $\mu=\mu_{\min }$ find minimum force for topping.
d. Find minimum μ_{s} so that $F_{\min }$ can cause toppling.

Watch Video Solution

11. Find minimum value of l so that truck can avoid the dead end, without toppling the block kept on it.

- Watch Video Solution

12. A uniform rod of mass m and length l can rotate in vertical plane about a smooth horizontal axis hinged at point H. Find angular acceleration α of the rod just after it is released from initial position making an angle of 37° with horizontal from rest?

- Watch Video Solution

13. A wheel of radius $R=10 \mathrm{~cm}$ and moment of inertia $I=0.05 \mathrm{kgm}^{2}$ is rotating about a fixed horizontal axis O with angular velocity
$\omega_{0}=10 \mathrm{rads}^{-1}$. A uniform riigid rod of mass $m=3 \mathrm{~kg}$ and length $l=50 \mathrm{~cm}$ is hinged at one end A such that it can rotate at end A in a vertical plane. End B of the rod is tied with a thread as shown in figure such that the rod is horizontal and is just in contact with the surface of rotating wheel. Horizontal distance between axis of rotation O of cylinder and A is equal to $a=30 \mathrm{~cm}$.

If the wheel stops rotating after one second after the thread has burnt, calculate coefficient of friction,μ between the rod and the surface of the wheel. $\left(g=10 \mathrm{~ms}^{-2}\right)$

- Watch Video Solution

1. Two rings of same radius and mass are placed such that their centres are at a common point and their planes are perpendicular to each other. The moment of inertia of the system about an axis passing through the centre and perpendicular to the plane of one of the rings is (mass the ring $=m$, radius $=r$)
A. $\frac{1}{2} m r^{2}$
B. $m r^{2}$
C. $\frac{3}{2} m r^{2}$
D. $2 m r^{2}$

Answer: C

- Watch Video Solution

2. The moment of inertia of a solid sphere about an axis passing through the centre radius is $\frac{2}{5} M R^{2}$, then its radius of gyration about a parallel axis t a distance $2 R$ from first axis is
A. $5 R$
B. $\sqrt{\frac{22}{5}} R$
C. $\frac{5}{2} R$
D. $\sqrt{\frac{12}{5}} R$

Answer: B

- Watch Video Solution

3. From a given sample of uniform wire, two circular loops P and Q are made, P of radius r and Q of radius $n r$. If the M.I. of Q about its axis is four times that of P about its axis (assuming the wire to be of diameter much smaller than either radius), the value of n is
A. $(4)^{\frac{2}{3}}$
B. $(4)^{\frac{1}{3}}$
C. $(4)^{\frac{1}{2}}$
D. $(4)^{\frac{1}{4}}$

Answer: B

D Watch Video Solution

4. Two circular discs A and B of equal masses and thicknesses. But are made of metals with densities d_{A} and $d_{B}\left(d_{A}>d_{B}\right)$. If their moments of inertia about an axis passing through the centre and normal to the circular faces be I_{A} and I_{B}, then.
A. $I_{A}=I_{B}$
B. $I_{A}>I_{B}$
C. $I_{A}<I_{B}$
D. $I_{A} \geq I_{B}$

Answer: C

5. A symmetric lamina of mass M consists of a square shape with a semicircular section over of the edge of the square as shown in Fig. The side of the square is $2 a$. The moment of inertia of the lamina about an axis through its centre of mass and perpendicular to the plane is $1.6 M a^{2}$. The moment of inertia of the lamina about the tangent $A B$ in the plane of the lamina is \qquad .

A. $\frac{M l^{2}}{3}$
B. $\frac{M l^{2}}{4}$
C. $\frac{M l^{2}}{6}$
D. none of these

Answer: D

- Watch Video Solution

6. Two circular discs are of same thickness. The diameter of A is twice that of B. The moment of inertia of A as compared to that of B is
A. A. twice as large
B. B. four times as large
C. C. eight times as large
D. D. 16 times as large

Answer: D

- Watch Video Solution

7. Two thin discs each of mass M and radius r metre are attached to form a rigid body as shown in figure. The rotational inertia of this body about an axis perpendicular to the plane of disc B and passing through its centre is

A. $2 M r^{2}$
B. $3 M r^{2}$
C. $4 M r^{2}$
D. $5 M r^{2}$

- Watch Video Solution

8. An isosceles triangular piece is cut a square plate of side l. The piece is one-fourth of the square and mass of the remaining plate is M. The moment of inertia of the plate about an axis passing through O and perpendicular to its plane is

A. $\frac{M l^{2}}{6}$
B. $\frac{M l^{2}}{12}$
C. $\frac{M l^{2}}{24}$
D. $\frac{M l^{2}}{3}$

Answer: A

- Watch Video Solution

9. Three rings, each of mass m and radius r, are so placed that they touch each other. Find the moment of inertia about the axis as shown in Fig.

A. $5 m r^{2}$
B. $\frac{5}{7} m r^{2}$
C. $7 m r^{2}$
D. $\frac{7}{2} m r^{2}$

D Watch Video Solution

10. Three identical rods, each of mass m and length l, form an equaliteral triangle. Moment of inertia about one of the sides is

A. $\frac{m l^{2}}{6}$
B. $m l^{2}$
C. $\frac{3 m l^{2}}{4}$
D. $\frac{2 m l^{2}}{3}$
11. About which axis moment of inertia in the given triangular lamina is maximum?

A. $A B$
B. $B C$
C. $A C$
D. $B L$

Answer: B

12.

A square is made by joining four rods each of mass M and length L. Its moment of inertia about an axis PQ , in its plane and passing through one one of its corner is
A. $\frac{2}{3} m l^{2}$
B. $2 m l^{2}$
C. $3 m l^{2}$
D. $\frac{8}{3} m l^{2}$

Answer: D

- Watch Video Solution

13. Figure shows a uniform solid block of mass M and edge lengths a, b and c. Its M. I. about an axis through one edge and perpendicular (as
shown) to the large face of the block is

A. $\frac{M}{3}\left(a^{2}+b^{2}\right)$
B. $\frac{M}{4}\left(a^{2}+b^{2}\right)$
C. $\frac{7 M}{12}\left(a^{2}+b^{2}\right)$
D. $\frac{M}{12}\left(a^{2}+b^{2}\right)$

- Watch Video Solution

14. In a rectangle $A B C D, A B=2 l$ and $B C=l$. Axes \times and $y y$ pass through centre of the rectangle. The moment of inertia is least about :

A. $D B$
B. $B C$
C. $x x$
D. $y y$

Answer: C

- Watch Video Solution

15. Figure shows a thin metallic triangular sheet $A B C$. The mass of the sheet is M. The moment of inertia of the sheet about side $A C$ is :

A. A. $\frac{M l^{2}}{18}$
в. в. $\frac{M l^{2}}{12}$
c. c. $\frac{M l^{2}}{6}$
D. D. $\frac{M l^{2}}{4}$

Answer: B

- Watch Video Solution

16. The moment of inertia of a door of mass m, length $2 l$ and width l about its longer side is.
A. $\frac{11 m l^{2}}{24}$
B. $\frac{5 m l^{2}}{24}$
C. $\frac{m l^{2}}{3}$
D. none of these

Answer: C

- Watch Video Solution

17. A disc of radius R rolls without slipping at spped v along positve x-axis.

Velocity of point P at the instant shown in figure is

A. $\vec{V}_{P}=\left(v+\frac{v r \sin \theta}{R}\right) \hat{i}+\frac{v r \cos \theta}{R} \hat{j}$
B. $\vec{V}_{P}=\left(v+\frac{v r \sin \theta}{R}\right) \hat{i}-\frac{v r \cos \theta}{R} \hat{j}$
C. $\vec{V}_{P}=\frac{v r \sin \theta}{R} \hat{i}+\frac{v r \cos \theta}{R} \hat{j}$
D. $\vec{V}_{P}=\frac{v r s i \theta}{R} \hat{i}-\frac{v r \cos \theta}{R} \hat{j}$

Answer: B
18. Choose the correct option:

A disc of radius R rolls on a horizontal ground with linear acceleration a and angular acceleration α as shown in Fig. The magnitude of acceleration of point P as shown in the figure at an instant when its linear velocity is v and angular velocity is ω will be a

A. $\sqrt{(a+r \alpha)^{2}+\left(r \omega^{2}\right)^{2}}$
B. $\frac{a r}{R}$
C. $\sqrt{r^{2} \alpha^{2}+r^{2} \omega^{4}}$
D. $r \alpha$

Answer: A

- Watch Video Solution

19. A uniform disc of mass M and radius R is mounted on axle supported in frictionless bearings. A light cord is wrapped around the rim of the disc and a steady downward pull T is exerted on the cord. The angular acceleration of the disc is
A. $\frac{T}{M R}$
B. $\frac{M R}{T}$
c. $\frac{2 T}{M} R$
D. $\frac{M R}{2 T}$

Answer: C

D Watch Video Solution

20. Two rings of same radius and mass are placed such that their centres are at a common point and their planes are perpendicular to each other. The moment of inertia of the system about an axis passing through the centre and perpendicular to the plane of one of the rings is (mass the ring $=m$, radius $=r$)
A. $\frac{1}{2} m r^{2}$
B. $m r^{2}$
C. $\frac{3}{2} m r^{2}$
D. $2 m r^{2}$

Answer: c

21. The moment of inertia of a solid sphere about an axis passing through the centre radius is $\frac{2}{5} M R^{2}$, then its radius of gyration about a parallel axis t a distance $2 R$ from first axis is
A. $5 R$
B. $\sqrt{\frac{22}{5}} R$
C. $\frac{5}{2} R$
D. $\sqrt{\frac{12}{5}} R$

Answer: b

- Watch Video Solution

22. A triangular plate of uniform thickness and density is made to rotate about an axis perpendicular to the plane of the paper and
(i) passing through A,
(ii) passing through B, by the application of some force F at C (mid point $A B$) as shown in the figure. In which case angular acceleration is

more?

A. a. in case a
B. b. in case b
C. c. both a and b
D. d. none of these

Answer: B
23. A uniform rod of length L and mass M is pivoted freely at one end and placed in vertical position.
a. What is angular acceleration of the rod when it is at angle θ with the vertical?
b. What is the tangential linear acceleration of the free end when the rod is horizontal?
A. $g \sin \theta$
B. $\frac{g}{L} \sin \theta$
C. $\frac{3 g}{2 L} \sin \theta$
D. $6 g L \sin \theta$

Answer: C

- Watch Video Solution

24. In Fig, the bar is uniform and weighing 500 N . How large must W be if T_{1} and T_{2} are to be equal?

A. 500 N
B. 300 N
C. 750 N
D. 1500 N

Answer: D

- Watch Video Solution

25. In an experiment with a beam balance, an unknown mass m is balanced by two known masses of 16 kg and 4 kg shown in Fig. The value of the unknown mass m is

A. 10 kg
B. 6 kg
C. 8 kg
D. 12 kg

Answer: C

26. A sphere is moving towards the positive x-axis with a velocity v_{c} and rotates clockwise with angular speed ω shown in Fig. such that $v_{c}>\omega R$.

The instantaneous axis of rotation will be

A. on point P
B. on point P^{\prime}
C. inside the sphere
D. outside the sphere

- Watch Video Solution

27. A cylinder of height H and diameter $H / 4$ is kept on a frictional turntable as shown in Fig. The axis of the cylinder is perpendicular to the surface of the table and the distance of axis of the cylinder is $2 H$ from the centre of the table. The angular speed of the turntable at which the cylinder will start toppling (assume that friction is sufficient to prevent slipping) is

A. $\sqrt{\frac{g}{2}\left(\frac{1}{2}-H\right)}$
B. $\sqrt{g\left(\frac{1}{2}-H\right)}$
C. $\sqrt{\frac{g}{4 H}}$
D. $\sqrt{\frac{g}{8 H}}$

Answer: D

- Watch Video Solution

28.

A thin rod of length 4 l , mass 4 m is bent at the point as shown in the figure. What is the moment of inertia of the rod about the axis passing through O and perpendicular to the plane of the paper?
A. $\frac{M l^{2}}{3}$
B. $\frac{10 M l^{2}}{3}$
C. $\frac{M l^{2}}{12}$
D. $\frac{M l^{2}}{24}$

Answer: B

- Watch Video Solution

29. Three point masses m_{1}, m_{2} and m_{3} are located at the vertices of an equilateral triangle of side α. What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?
A. $\left(m_{1}+m_{2}\right) \frac{a^{2}}{4}$
B. $\left(m_{2}+m_{3}\right) \frac{a^{2}}{4}$
C. $\left(m_{1}+m_{3}\right) \frac{a^{2}}{4}$
D. $\left(m_{1}+m_{2}+m_{3}\right) \frac{a^{2}}{4}$

Answer: B

30. The pulleys in figure are identical, each having a radius R and moment of inertia I. Find the acceleration of the block M.

A. $\frac{(M-m) g}{\left(M+m+\frac{2 l}{r^{2}}\right)}$
B. $\frac{(M-m) g}{\left(M+m-\frac{2 l}{r^{2}}\right)}$
C. $\frac{(M-m) g}{\left(M+m+\frac{I}{r^{2}}\right)}$
D. $\frac{(M-m) g}{\left(M+m-\frac{I}{r^{2}}\right)}$
31. A uniform cube of side a and mass m rests on a rough horizontal table. A horizontal force F is applied normal to one of the faces at a point directly above the centre of the face, at a height $\frac{3 a}{4}$ above the base. What is the minimum value of F for which the cube begins to tip about an edge?
A. $m g$
B. $\frac{2}{3} m g$
C. $\frac{3}{2} m g$
D. $\frac{3}{4} m g$

Answer: B

- Watch Video Solution

32. A ladder of length l and mass m is placed against a smooth vertical wall, but the ground is not smooth. Coefficient of friction between the ground and the ladder is μ. The angle θ at which the ladder will stay in equilibrium is
A. $\theta=\tan ^{-1}(\mu)$
B. $\theta=\tan ^{-1}(2 \mu)$
C. $\theta=\tan ^{-1}\left(\frac{\mu}{2}\right)$
D. none of these

Answer: D

- Watch Video Solution

33. A cube of side a is placed on an inclined plane of inclination θ. What is the maximum value of θ for which the cube will not topple?

A. 15°
B. 30°
C. 45°
D. 60°

Answer: C

34. A uniform rod of length l is placed symmetrically on two walls as shown in Fig. The rod is in equilibrium. If N_{1} and N_{2} are the normal forces
exerted by the walls on the rod, then

A. $N_{1}>N_{2}$
B. $N_{1}<N_{2}$
C. $N_{1}=N_{2}$
D. N_{1} and N_{2} would be in the vertical directions

Answer: C

35. A square plate of mass M and edge L is shown in the figure. The moment of inertia of the plate about the axis in the plane of plate and passing through one of its vertex making an angle 15° horizontal is

A. $\frac{M L^{2}}{12}$
B. $\frac{11 M L^{2}}{24}$
C. $\frac{7 M L^{2}}{12}$
D. none of these

Answer: B

36. The figure shows a uniform rod lying along the X-axis. The locus of all the points lying on the XY -plane, about which the moment of inertia of the rod is same as that about O is

A. an ellipse
B. a circle
C. a parabola
D. a striaght line

D Watch Video Solution

37. Find the minimum height of the obstacle so, that the sphere can stay in equilibrium.

A. $\frac{R}{1+\cos \theta}$
B. $\frac{R}{1+\sin \theta}$
C. $R(1-\sin \theta)$
D. $R(1-\cos \theta)$

Answer: D

- Watch Video Solution

38. A sphere is placed rotating with its centre initially at rest in a corner as shown in Figs.(a) and (b). Coefficient of friction between all surfaces and the sphere is $1 / 3$. Find the ratio of the friction forces f_{a} / f_{b} by ground in situations (a) and (b).

(a)

(b)
A. 1
B. $\frac{9}{10}$
C. $\frac{10}{9}$
D. none of these

Answer: B

- Watch Video Solution

39.

In the figure shown, the instantaneous speed of end A of the rod is v to the left. Find angular velocity of the rod at given instant.
A. $\frac{v}{2 L}$
B. $\frac{v}{L}$
C. $\frac{v \sqrt{3}}{2 L}$
D. none of these

Answer: B

- Watch Video Solution

40. A uniform rod of mass m and length l is fixed from Point A, which is at a distance $l / 4$ from one end as shown in the figure. The rod is free to rotate in a vertical plane. The rod is released from the horizontal position.

What is the reaction at the hinge, when kinetic energy of the rod is maximum?
A. $\frac{4}{7}$
B. $\frac{5}{7} m g$
C. $\frac{13}{7} m g$
D. $\frac{11}{7} m g$

Answer: C

- Watch Video Solution

41. In the pully system shown, if radii of the bigger and smaller pulley are 2 m and 1 m respectively and the acceleration of block A is $5 \mathrm{~m} / \mathrm{s}^{2}$ in the
downward direction, then the acceleration of block B will be

A. $0 m s^{-2}$
B. $5 m s^{-2}$
C. $10 m s^{-2}$
D. $\frac{5}{2} m s^{-2}$

Watch Video Solution

42. A planar object made up of a uniform square plate and four semicircular discs of the same thickness and material is being acted upon by four forces of equal magnitude as shown in Fig. The coordinates of point of application of forces is given by

A. $(0, a)$
B. $(0,-a)$
C. $(a, 0)$
D. $(-a, 0)$

Answer: B

- Watch Video Solution

43. An equilateral prism of mass m rests on a rough horizontal surface with cofficent of friction μ. A horizontal force F is applied on the prism as shown in the figure. If the cofficent of the friction is sufficently high so that the prism does not slide before toppling, then the minimum force required to topple the prism is

A. $\frac{m g}{\sqrt{3}}$
B. $\frac{m g}{4}$
C. $\frac{\mu m g}{\sqrt{3}}$
D. $\frac{\mu m g}{4}$

Answer: A

- Watch Video Solution

44. A uniform disc of radius R lies in x - y plane with its centre at origin. Its moment of inertia about z -axis is equal to its moment of inertia, about line $y=x+c$. The value of c is
A. $-\frac{R}{2}$
B. $\pm \frac{R}{\sqrt{2}}$
C. $+\frac{R}{4}$
D. $-R$

Answer: B

D Watch Video Solution

45. A rectangular block of mass M and height a is resting on a smooth level surface. A force F is applied to one corner as shown in Fig. At what point should a parallel force $3 F$ be applied in order that the block shall undergo pure translational motion? Assume normal contact force a between the block and surface passes through the centre of gravity of the block.

A. $\frac{a}{3}$ vertically above centre of gravity
B. $\frac{a}{6}$ vertically above centre of gravity
C. no such point exists
D. it is not possible

Answer: B

- Watch Video Solution

46. A uniform rod of mass 15 kg is held stationary at 37 degree with the help of a light string as shown in Fig. The tension in the string is

A. 150 N
B. 225 N
C. 100 N
D. none of these

Answer: C

- Watch Video Solution

47. Figure shown two pulley arrangments for lifting a mass m. In case-1, the mass is lifting by attaching a mass 2 m while in case- 2 the mass is lifted by pulling the other end with a downward force $F=2 m g$. If a_{a} and a_{b} are the accelerations of the two masses then (Assumme string is
massless and pulley is ideal).

A. $\alpha_{A}=\alpha_{B}$
B. $\alpha_{A}>\alpha_{B}$
C. $\alpha_{A}<\alpha_{B}$
D. none of these

Answer: B

- Watch Video Solution

48. Two uniform boards, tied together with the help of a string, are balanced on a surface as shown in Fig.

The coefficient of static friction between boards and surface is 0.5 . The minimum value of θ, for which this type of arrangement is possible is

A. 30°
B. 45°
C. 37°
D. it is not possible to have this type of balanced arrangement

Answer: B

- Watch Video Solution

49. A slender rod of mass m and length L is pivoted about a horizontal axis through one end and released from rest at an angle of 30° above the horizontal. The force exerted by the pivot on the rod at the instant when the rod passes through a horizontal position is

A. $\sqrt{\frac{10}{4}} \mathrm{mg}$ along horizontal
B. $m g$ along vertical
C. $\frac{\sqrt{10}}{4} m g$ alonng a line making an angle of $\tan ^{-1}\left(\frac{1}{3}\right)$ with the horizontal
D. $\frac{\sqrt{10}}{4} \mathrm{mg}$ along a line making an angle of $\tan ^{-1}(3)$ with the horizontal

- Watch Video Solution

50. Two painters are working from a wooden hoard $5 m$ long suspended from the top of a building by two ropes attached to the ends of the plank. Either rope can withstand a maximum tension of $1040 N$. Painter A of mass 80 kg is working at a distance of 1 m from one end. Painter B of mass 60 kg is working at a distance of x in from the centre of mass of the board on the other side. Take mass of the board as 20 kg and $g=10 \mathrm{~ms}^{-2}$. The range of x so that both the painters can work safely is
A. $\frac{1}{3}<x<\frac{11}{6}$
B. $0<x<\frac{11}{6}$
C. $0<x<2$
D. $\frac{1}{3}<x<2$

Answer: C

51. In Fig. a massive rod $A B$ is held in horizontal position by two massless strings. If the string at B breaks and if the horizontal acceleration of centre of mass, vertical acceleration and angular acceleration of rod about the centre of mass are a_{x}, a_{y} and 'alpha' respectively, then

A. a. $2 \sqrt{3} a_{y}=\sqrt{3} \alpha l+2 a_{x}$
B. b. $\sqrt{3}_{y}=\sqrt{3} \alpha l+a_{x}$
C. c. $a_{y}=\sqrt{3} \alpha l+2 a_{x}$
D. d. $2 a_{y}=\alpha l+2 \sqrt{3} a_{x}$

Answer: D

- Watch Video Solution

52. A rod of length L is held vertically on a smooth horizontal surface. The top end of the rod is given a gentle push. At at certain instant of time, when the rod makes an angle 37° with horizontal the velocity of $C O M$ of the rod of $2 m / s$. The velocity of the end of the rod in contact with the surface at that instant is
A. $2 m s^{-1}$
B. $1 m s^{-1}$
C. $4 m s^{-1}$
D. $1.5 m s^{-1}$

Answer: D

- Watch Video Solution

53. A uniform bar $A B$ of mass m and a ball of the same mass are released from rest from the same horizontal position. The bar is hinged at end A. There is gravity downwards. What is the distance of the point from point
B that has the same acceleration as the ball, immediately after release?

A. $\frac{2 L}{3}$
B. $\frac{L}{3}$
C. $\frac{L}{2}$
D. $\frac{3 L}{4}$

Answer: B

- Watch Video Solution

54. Find force F required to keep the system in equilibrium. The dimensions of the system are $d=0.3 m$ and $a=0.2 m$. Assume the rods
to be massless.

A. $150(\hat{i})$
B. $150(-\hat{k})$
C. $150(-\hat{i})$
D. it cannot be in equilibrium

Answer: C

Watch Video Solution

55. A uniform cylinder of mass m lies on a fixed plane inclined at a angle θ with the horizontal. A light string is tied to the cylinder at the rightmost
point, and a mass m hangs from the string as shown. Assume that the coefficient of friction between the cylinder and the incline plane is sufficiently large to prevent slipping. for the cylinder to remain static the value of m is

A. $\frac{M \sin \theta}{1-\sin \theta}$
B. $\frac{M \cos \theta}{1+\sin \theta}$
C. $\frac{M \sin \theta}{1+\sin \theta}$
D. $\frac{M \cos \theta}{1-\sin \theta}$

Answer: A

56. Two blocks each of the mass m are attached to the ends, a massless rod which pivots as shown in figure. Initial the rod is held in the horizontal position and then release, Calculate the net torque on this system above pivot.

A. $\left(m l_{2} g-m l_{1} g\right) \hat{k}$
B. $\left(m l 1 g-m l_{2} g\right) \hat{k}$
C. $\left(m l_{1} g+m l_{2} g\right) \hat{k}$
D. $-\left(m l 1 g+m l_{2} g\right) \hat{k}$

Answer: B

- Watch Video Solution

57. A 198 - $c m$ tall girl lies on a light (massless) board which is supported by two scales one under the top of her heal and one beneath the bottom of her feet. The two scales read respectively 36 and 30 kg . What distance is the centre of gravity of this girl from the bottom of her feet? .

A. 99 cm
B. 90 cm
C. 108 cm
D. 82 cm

Answer: C

- Watch Video Solution

58. The wheels of an airplane are set into rotation just before landing so that the wheels do not slip on the ground. If the airplane is travelling in the east direction, what should be the direction of angular velocity vector of the wheels?
A. east
B. west
C. south
D. north

Answer: D

- Watch Video Solution

59. A wheel rotates with a constant acceleration of $2.0 \mathrm{ra} \frac{\mathrm{d}}{\mathrm{s}^{2}}$. If the wheel starts from rest, how many revolutions will it make in the first 10 seconds?
A. 3
B. 6
C. 9
D. 12

Answer: A

- Watch Video Solution

60.

Uniform rod $A B$ is hinged at end A in horizontal position as shown in the figure. The other end is connected to a block through a massless string as
shown. The pulley is smooth and massless. Mass of block and rod is same and is equal to m Then acceleration of block just after release from this position is
A. $6 g / 13$
B. $g / 4$
C. $3 g / 8$
D. none of these

Answer: C

- Watch Video Solution

61. A 'T' shaped object with dimension shown in the figure, is lying on a smooth floor. A force F is applied at the point P parallel to $A B$, such that the objects has only hte translational motion without rotation. Find the
location of P with respect to C .

A. $(3 / 4) l$
B. l
C. $(4 / 3) l$
D. $(3 / 2) l$
62. Four forces of the same magnitude act on a square as shown in figure.

The square can rotate about point O, mid point of one of the edges. The force which can produce greatest torque is

A. F_{1}
B. F_{2}
C. $F 3$
D. $F 4$

Answer: C

D Watch Video Solution

63. Given a uniform disc of mass M and radius R. A small disc of radius $R / 2$ is cut from this disc in such a way that the distance between the centres of the two discs is $R / 2$. Find the moment of inertia of the remaining disc about a diameter of the original disc perpendicular to the line connecting the centres of the two discs
A. $3 M R 2 / 32$
B. $5 M R 2 / 16$
C. $11 M R 2 / 64$
D. none of these

Answer: C

64. A horizontal force F is applied at the top of an equilateral triangular block having mass m. The minimum coefficient of friction required to topple the block before translation will be

a

A. $\frac{2}{\sqrt{3}}$
B. $\frac{1}{3}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{2}$

Answer: C

65. The line of action of the resultant of two like parallel forces shifts by one-fourth of the distance between the forces when the two forces are interchanged. The ratio of the two forces is:
A. 1:2
B. 2: 3
C. 3:4
D. 3:5

Answer: D

- Watch Video Solution

66. $A B C$ is a triangular plate of uniform A thickness. The sides are in the ratio shown in the figure. $I_{A B}, I_{B C}, I_{C A}$ are the moments of inertia of the plated about $A B, B C$ and $C A$ respectively. Which one of the following
relation is correct?

A. $I_{C A}$ is maximum
B. $I_{A B}>I_{B C}$
C. $I_{B C}>I_{A B}$
D. $I_{A B}+I_{B C}=I_{C A}$

Answer: B
67. Let I be the moment of inertia of a uniform square plate about an axis $A B$ that passes through its centre and is parallel to two of its sides. $C D$ is a line in the plane of the plate that passes through the centre of the plate and makes an angle θ with AB. The moment of inertia of the plate about the axis $C D$ is then equal to
A. I
B. $I \sin ^{2} \theta$
C. $I \cos ^{2} \theta$
D. $I \cos ^{2}\left(\frac{\theta}{2}\right)$

Answer: A

- Watch Video Solution

68. In a rectangle $A B C D, A B=2 l$ and $B C=l$. Axes \times and $y y$ pass through centre of the rectangle. The moment of inertia is least about :

A. $D B$
B. $B C$
C. $x x$
D. $y y$

Answer: C

- Watch Video Solution

69. A uniform thin rod is bent in the form of closed loop $A B C D E F A$ as shown in the figure. The ratio of moment of inertia of the loop about x axis to that about y-axis is

A. >1
B. <1
C. $=1$
D. $1 / 2$

Answer: B

70. Figure shows an arrangement of masses hanging from a ceiling. In equilibrium, each rod is horizontal, has negligible mass and extends three times as far to the right of the wire supporting it as to the left. If mass m_{4} is 48 kg then mass m_{1} is equal to

A. 1 kg
B. 2 kg
C. 3 kg
D. 4 kg

Answer: A

71. Two identical uniform discs of mass m and radius r are arranged as shown in the figure. If α is the angular acceleration of the lower disc and $a_{c m}$ is acceleration of centre of mass of the lower disc, then relation
among $a_{c m}, \alpha$ and r is

A. $a_{c m}=\frac{\alpha}{r}$
B. $a_{c m}=2 \alpha r$
C. $a_{c m}=\alpha r$
D. none of these

Answer: B

- Watch Video Solution

72. A uniform triangular plate $A B C$ of moment of mass m and inertia I (about an axis passing through A and perpendicular to plane of the plate) can rotate freely in the vertical plane about point ' A ' as shown in figure. The plate is released from the position shown in the figure. Line $A B$ is horizontal. The acceleration of centre of mass just after the release

A. $\frac{m g a^{2}}{\sqrt{3} I}$
B. $\frac{m g a^{2}}{4 I}$
C. $\frac{m g a^{2}}{2 \sqrt{3} I}$
D. $\frac{m g a^{2}}{3 I}$

Answer: C

73. ABC is an equilateral triangle with O as its centre. F_{1}, F_{2} and F_{3} represent three forces acting along the sides $A B, B C$ and $A C$ respectively. If the total about O is zero, then the magnitude of F_{3} is
A. $2\left(F_{1}+F_{2}\right)$
B. $\frac{F_{1}+F_{2}}{2}$
C. $F_{1}-F_{2}$
D. $F_{1}+F_{2}$

Answer: D

- Watch Video Solution

74. Two discs have same mass and thickness. Their materials are of densities π_{1} and π_{2}. The ratio of their moment of inertia about central axis will be
A. $\pi_{1}: \pi_{2}$
B. $\pi_{1} \pi_{2}: 1$
C. $1: \pi_{1} \pi_{2}$
D. $\pi_{2}: \pi_{1}$

Answer: D

- Watch Video Solution

75. Let I_{A} and I_{B} be moments of inertia of a body about two axes A and B respectively. The axis A passes through the centre of massof the body but B does not. Choose the correct option.
A. $I_{A}<I_{B}$
B. If $I_{A}<I_{B}$ the axes are parallel
C. If the axes are parallel $I_{A}<I_{B}$
D. If the axes are not parallel the $I_{A}>I_{B}$

Answer: C

76. In a rectangle $A B C D, A B=2 l$ and $B C=l$. Axes \times and $y y$ pass through centre of the rectangle. The moment of inertia is least about :

A. $B C$
B. $B D$
C. $H F$
D. $E G$

Answer: D

77. For the same total mass, which of the following will have the largest moment of inertia about an axis passing through the centre of mass and perpendicular to the plane of the body
A. a ring of radius l
B. a disc of radius l
C. a square lamina of side $2 l$
D. Four rods forming square of side $2 l$

Answer: D

- Watch Video Solution

78. A uniform plane sheet of metal in the form of a triangle $A B C$ has $B C>A B>A C$. Its moment of inertia will be smallest
A. about $A C$ as axis
B. about $A B$ as axis
C. about $B C$ as axis
D. with a line through C normal to its plane as axis,

Answer: C

- Watch Video Solution

79. The masses of two uniform discs are in the ratio $1: 2$ and their diameters in the ratio $2: 1$. The ratio of their moment, of inertia about the axis passing through their respective centres and perpendicular to their planes is
A. $1: 1$
B. 1:2
C. 2:1
D. 1:4

Answer: C

- Watch Video Solution

80. There are four solid balls with their centres at the four corners of a square of side a. the mass of each sphere is m and radius is r. Find the moment of inertia of the system about one of the sides of the square
A. $\frac{8}{5} m r^{2}+m b^{2}$
B. $\frac{8}{5} m r^{2}+2 m b^{2}$
C. $\frac{8}{5} m r^{2}+4 m b^{2}$
D. none of these

Answer: B

- Watch Video Solution

81. if l_{1} is the moment of inertia of a thin rod about an axis perpendicular to its length and passing through its centre of mass and l_{2} te moment of inertia of the ring formed by the same rod about an axis passing through the centre of mass of the ring and perpendicular tot he plane of the ring. then find the ratio $\frac{l_{1}}{l_{2}}$.
A. $I_{1}: I_{2}=1: 1$
B. $I_{1}: I_{2}=\pi^{2}: 3$
C. $I_{1}: I_{2}=\pi: 4$
D. $I_{1}: I_{2}=3: 5$

Answer: B

- Watch Video Solution

82. Moment of inertia of a uniform rod of length L and mass M, about an axis passing through $L / 4$ from one end and perpendicular to its length
A. $\frac{M L^{2}}{3}$
B. $\frac{M L^{2}}{6}$
C. $\frac{M L^{2}}{9}$
D. $\frac{M L^{2}}{12}$

Answer: C

- Watch Video Solution

83. A small hole is made in a disc of mass M and radius R at a distance $R / 4$ from centre. The disc is supported on a horizontal peg through this hole. The moment of inertia of the disc about horizontal peg is
A. $\frac{M R^{2}}{9}$
B. $\frac{5}{16} M R^{2}$
C. $\frac{9}{16} M R^{2}$
D. $\frac{5}{4} M R^{2}$

Answer: C

- Watch Video Solution

84. Two rings of same radius and mass are placed such that their centres are at a common point and their planes are perpendicular to each other. The moment of inertia of the system about an axis passing through the centre and perpendicular to the plane of one of the rings is (mass the ring $=m$, radius $=r$)
A. $M R^{2}$
B. $\frac{3}{2} M R^{2}$
C. $2 M R^{2}$
D. $\frac{5}{2} M R^{2}$

Answer: B

85. We have a solid sphere and a very thin spheical shell their masses and moments of inertia about a diameter are same. The ratio of their radii will be :
A. 5:7
B. 3: 5
C. $\sqrt{3}: \sqrt{5}$
D. $\sqrt{3}: \sqrt{7}$

Answer: C

- Watch Video Solution

86. Let I_{A} and I_{B} be moments of inertia of a body about two axes A and B respectively. The axis A passes through the centre of massof the body but B does not. Choose the correct option.

$$
\text { A. } I_{A}<I_{B}
$$

B. If $I_{A}<I_{B}$ the axes are parallel
C. If the axes are paralel $I_{A}<I_{B}$
D. if the axes are not parallel the $I_{A} \geq I_{B}$

Answer: C

- Watch Video Solution

87. A triangular platge of uniform thickness and densilty ismade to rotate about an axis perpendicular to the plane of the paper an a. passing through A b. passing through B, by the application of some foce F at C (mid point of $A B$) as show in figure. In which case is angular acceleration

A. angular acceleration in both the cases is the same
B. angular acceleration for case (a) is larger
C. angular acceleration for case (b) is larger
D. there would be no angular acceleration for case (a)

Answer: C

88. Two identical masses are connected to a horizontal thin massless rod as shown in the figure. When their distance from the pivot is x, a torque produces an angular acceleration α_{1}. If the masses are now repositioned so that they are at distance $2 x$ each from the pivot, the same torque will produce an angular acceleration α_{2} such that,

A. $\alpha_{2}=4 \alpha_{1}$
B. $\alpha_{2}=\alpha_{1}$
C. $\alpha_{2}=\frac{\alpha_{1}}{2}$
D. $\alpha_{2}=\frac{\alpha_{1}}{4}$

Answer: D

- Watch Video Solution

89. From a complete ring of mass M and radius R, a 30° sector is removed. The moment of inertia of the incomplete ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is

A. $\frac{9}{12} M R^{2}$
B. $\frac{11}{12} M R^{2}$
C. $\frac{13}{12} M R^{2}$
D. $M R^{2}$

Answer: B

- Watch Video Solution

90. A cubical box of side L rests on a rough horizontal surface with coefficient of friction p. A horizontal force F is a applied on the block as shown in Fig. 15.4.6. If the coefficient of friction is sufficiently high so that the block does not slide before toppling, the minimum force required to topple the block is

A. infinitesimal
B. $\frac{m g}{34}$
C. $\frac{m g}{2}$
D. $m g(1-\mu)$

Answer: C

- Watch Video Solution

91. The density of a rod continuously increases from A to B. It is easier to set it into rotation by
A. clamping the rod at A and applying a force F at B, perpendicular to the rod
B. clamping the rod at B and applying a force F at A, perpendicular to the rod
C. clamping the rod at mid point of $A B$ and applying a force F at A,
perpendicular to the rod
D. clamping the rod at mid-point of $A B$ and applying force F at B, perpendicular to the rod.

Answer: B

- Watch Video Solution

92. Three children are sitting on a see-saw in such a way that is balances. A 20 kg and a 30 kg boy are on opposite sides at a distance of 2 m from the pivot. It the third boy jumps off, thereby destroying balance, then the initial angular acceleration of the board is: (Neglect weight of board)
A. A. $0.01 \mathrm{rads}^{-2}$
B. B. $1.0 \mathrm{rads}^{-2}$
C. C. $10 r a d s^{-2}$
D. D. $100 \mathrm{rads}^{-2}$

Answer: B

93. A wheel of radius R has an axle of radius $R / 5$. A force F is applied tangentially to the wheel. To keep the system in a state of "rotational" rest, a force F^{\prime} is applied tangentially to the axle. The value of F^{\prime} is
A. F
B. $3 F$
C. $5 F$
D. $7 F$

Answer: C

- Watch Video Solution

94. Calculate the force F that is applied horizontally at the axle of the wheel which is necessary to raise the wheel over the obstacle of height
0.4 m . Radius of wheel is 1 m and mass $=10 \mathrm{~kg} . F$ is

A. 100 N
B. 66 N
C. $167 N$
D. 133.3 N

Answer: D
95. A rigid body is rotating about a vertical axis. In t second, the axis gradually becomes horizontal. But the rigid body continues to make v rotations per second throughout the time interval of 1 second. If the moment of inertia I of the body about the axis of rotation can he taken as constant, then the torque acting on the body is
A. $2 \pi v \mathrm{l}$
B. $2 \sqrt{2} \pi v$ ।
C. $\frac{2 \sqrt{2} \pi v}{t}$ I
D. $\frac{2 \sqrt{2} \pi v l}{t}$ I

Answer: D

- Watch Video Solution

96. A string is warapped around a cylinder of mass m and radius r. The string is also connected to a block of same mass m with the help of another pulley as shown in figure. The angular acceleration of the
cylinder is (friction is sufficient for rolling) (all pulleys are ideal)

A. $2 M g / 3$
B. $M g / 2$
C. $M g / 3$
D. $M g / 6$

Answer: C

- Watch Video Solution

97. End A of the bar $A B$ in figure rests on a frictionless horizontal surface and end B is hinged. A horizontal force \vec{F} of magnitude $120 N$ is exerted on end A. You can ignore the weight of the bar. What is the net force exerted by the bar on the hinge at B ?

A. 200 N
B. 140 N
C. 100 N
D. none of these

Multiple Correct

1. A rigid body is in pure rotation, that is, undergoing fixed axis rotation.

Then which of the following statement(s) are true?
A. a. . You can find two points in the body in a plane perpendicular to the axis of A. a. rotation having the same velocity.
B. b. You can find two points in the body in a plane perpendicular to the axis of rotation having the same acceleration.
C. c. Speed of all the particles lying on the curved surface of a cylinder whose axis coincides with the axis of rotation is the same.
D. d. Angular speed of the body is the same as seen from any point in the body.

Answer: C::D

2. The moment of inertia of a thin square plate $A B C D$ of uniform thickness about an axis passing through the centre O and perpendicular to plate is

A. $I_{1}+I_{2}$
B. $I_{3}+I_{4}$
C. $I_{1}+I_{3}$
D. $I_{1}+I_{2}+I_{3}+I_{4}$

D Watch Video Solution

3. A bucket of water of mass 21 kg is suspended by a rope wrapped around a solid cylinder $0.2 m$ in diameter. The mass of the solid cylinder is 21 kg . The bucket is released from rest. Which of the following statements are correct?
A. The tension in the rope is $70 N$.
B. The acceleration of the bucket is $\left(\frac{20}{3}\right) m / s^{2}$
C. The acceleration of the bucket is independent of the mass of the bucket.
D. All of these

Answer: A::B::C::D

4. A massles spool of inner radius r and other radius R is placed against vertical wall and tilted split floor as shown. A light inextensible thread is tightly wound around the spool through which a mass m is hanging. There exists no friction at point A, while the coefficient of friction between spool and point B is μ. The angle between two surface is θ

A. the magnitude of force on the spool at B in order to maintain equilibrium is $m g \sqrt{\left(\frac{r}{R}\right)^{2}+\left(1-\text { or } \frac{r}{R}\right)^{2} \frac{1}{\tan ^{2} \theta}}$
B. the magnitude of force on the spool at B in order to maintain equilibrium is $m g\left(1-\frac{r}{R}\right) \frac{1}{\tan \theta}$
C. the minimum value of μ for the system to remain in equilibrium

$$
\frac{\cot \theta}{\left(\frac{R}{r}\right)-1}
$$

D. the minimum value of p for the system to remain equilibrium is

$$
\frac{\tan \theta}{\left(\frac{R}{r}\right)-1}
$$

Answer: A:D

Watch Video Solution

5. A uniform thin flat isolated disc is floating in space. It has radius R and mass m. A force is applied to it at a distance $d=\left(\frac{R}{2}\right)$ from the centre in the y-direction. Treat this problem as two-dimensional. Just after the
force is applied:

A. acceleration of the centre of the disc is F / m.
B. angular acceleration of the disk is $F / m R$.
C. acceleration of leftmost point on the, disc is zero
D. point which is instantaneously unaccelerated is the rightmost point.

Answer: A: B::C

- Watch Video Solution

6. A rod bent at right angle along its centre line is placed on a rough horizontal fixed cylinder of radius R as shown in the figure. Mass of the rod is $2 m$ and the rod is in equilibrimu. Assume that the friction force on rod at A and B is equal in magnitude.

A. a. Normal force applied by cylinder on rod at A is $3 \mathrm{mg} / 2$
B. b. Normal force applied by cylinder on rod at B must be zero.
C. c. Friction force acting on rod at B is upward.
D. d. Normal force applied by cylinder on rod at A is mg .

- Watch Video Solution

7. A clockwise torque of $6 N-m$ is applied to the circular cylinder as shown in the figure. There is no friction between the cylinder and the block.

A.A) The cylinder will be slipping but the system does not move forward
B. B)The system cannot move forward for any torque applied to the cylinder
C. C)The acceleration of the system will be $1 \mathrm{~m} / \mathrm{s}^{2}$ forward
D. D)The angular acceleration of the cylinder is $10 \mathrm{rads}^{-2}$

Answer: C::D

- Watch Video Solution

8. Illustrated is a uniform cubical block of mass M and side a Mark the correct statement (s)

A. A. The moment of inertia about axis A, passing through the centre of mass is $I A=\frac{1}{6} M a^{2}$
B. B. The moment of inertia about axis B, which bisects one of the cube faces is $l B=\frac{5}{12} M a^{2}$
C. C. The moment of inertia about axis C, along one of the cube edge is $I C=\frac{2}{3} M a^{2}$
D. D. The moment of inertia about axis D, which bhisects one of the horizontal cube face is $\frac{7}{12}$

- Watch Video Solution

9. The moment of inertia of a body depends upon
A. shape and mass of the body
B. nature of distribution of mass
C. axis of rotation
D. all of the above

Answer: B::C

- Watch Video Solution

Linked Comprehension

1. A uniform rod of mass $M=2 \mathrm{~kg}$ and length L is suspended by two smooth hinges 1 and 2 as shown in Fig. A force $F=4 N$ is applied downward at a distance $L / 4$ from hinge 2 . Due to the application of force F, hinge 2 breaks. At this instant, applied force F is also removed. The rod starts to rotate downward about hinge 1. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

The reaction at hinge 1 , before hinge 2 breaks, is
A. 24 N
B. 12 N
C. $11 N$
D. 10 N

Answer: C

2. A uniform rod of mass $M=2 k g$ and length L is suspended by two smooth hinges 1 and 2 as shown in Fig. A force $F=4 N$ is applied downward at a distance $L / 4$ from hinge 2 . Due to the application of force F, hinge 2 breaks. At this instant, applied force F is also removed. The rod starts to rotate downward about hinge 1. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

The reaction at hinge 1 , just after breaking of hinge 2 , is
A. 20 N
B. 10 N
C. 5 N
D. 0

Answer: C

3. A uniform rod of mass $M=2 k g$ and length L is suspended by two smooth hinges 1 and 2 as shown in Fig. A force $F=4 N$ is applied downward at a distance $L / 4$ from hinge 2 . Due to the application of force F, hinge 2 breaks. At this instant, applied force F is also removed.

The rod starts to rotate downward about hinge 1. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

The reaction at hinge 1 , just after breaking of hinge 2 , is
A. $30 m / s^{2}$
B. $20 \mathrm{~m} / \mathrm{s}^{2}$
C. $10 m / s^{2}$
D. 0

Answer: A

- Watch Video Solution

4.

A rod of length l forming an angle θ with the horizontal strikes a frictionless floor at A with its centre of mass velocity v_{0} and no angular velocity. Assuming that the impact at A is perfectly elastic. Find the angular velocity of the rod immediately after the impact.
A. $\frac{3}{5} v_{0}$
B. $\frac{4}{5} v_{0}$
C. $\frac{5}{3} v_{0}$
D. $\frac{5}{4} v_{0}$

Answer: B

- Watch Video Solution

5.

The end B of the $\operatorname{rod} A B$ which makes angle θ with the floor is being pulled with a constant velocity v_{v} as shown. The length of the rod is l.
A. $\frac{5 v_{0}}{3 l}$
B. $\frac{3 v_{0}}{5 l}$
C. $\frac{5 v_{0}}{4 l}$
D. $\frac{4 v_{0}}{5 l}$

Answer: A

- Watch Video Solution

6.

- $\frac{5}{7} v_{0}$ at $\frac{\tan ^{-1} 4}{3}$ below horizontal
- $\frac{5}{7} v_{0}$ at $\frac{\tan ^{-1} 3}{4}$ below horizontal
- $\frac{5}{6} v_{0}$ at $\frac{\tan ^{-1} 3}{4}$ below horizontal
- $\frac{5}{6} v_{0}$ at $\frac{\tan ^{-1} 4}{3}$ below horizontal

Answer: D

7. An L shaped uniform rod of mass $2 M$ and length $2 L(A B=B C=L)$ is held as shown in Fig. with a string fixed between C and wall so that $A B$ is vertical and $B C$ is horizontal. There is no friction between the hinge and the rod at A.

Find the tension in the string
A. $\frac{M g}{3}$
B. $\frac{M g}{4}$
C. $M g$
D. $\frac{M g}{2}$

Answer: D

- Watch Video Solution

8. An L shaped uniform rod of mass $2 M$ and length $2 L(A B=B C=L)$ is held as shown in Fig. with a string fixed between C and wall so that $A B$ is vertical and $B C$ is horizontal. There is no friction between the hinge and the rod at A.

What will be
the reaction between hinge and rod at point A ?
A. $\sqrt{65} \frac{M g}{4}$
B. $2 M g$
C. $\sqrt{17} \frac{M g}{4}$
D. $\sqrt{17} \frac{M g}{2}$

Answer: D

- Watch Video Solution

9. An L shaped uniform rod of mass $2 M$ and length $2 L(A B=B C=L)$ is held as shown in Fig. with a string fixed between C and wall so that $A B$ is vertical and $B C$ is horizontal. There is no friction between the hinge and the rod at A.

If the string is burnt, find the angle between $A B$ and the vertical at equilibrium position.
A. $\tan ^{-1}\left(\frac{1}{3}\right)$
B. $\tan ^{-1}\left(\frac{1}{4}\right)$
C. $\tan ^{-1}(3)$
D. $\tan ^{-1}\left(\frac{1}{2}\right)$

Answer: A

- Watch Video Solution

10. A uniform rod of length L and mass M is lying on a frictionless horizontal plane and is pivoted at one of its ends as shown in Fig. There is no friction at the pivot. An inelastic ball of mass m is fixed with the rod at a distance $L / 3$ from O. A horizontal impulse J is given to the rod at a distance $2 L / 3$ from O in a direction perpendicular to the rod. Assume that the ball remains in contact with the rod after the collision and impulse J acts for a small time interval Δt. Now answer the following

questions:

Find the impulse acted on the ball during the time $\triangle t$
A. A. $\mathrm{N} \frac{3 J}{(m+3 M) L}$
B. В. $\frac{6 J}{(m+3 M) L}$
C. C. $\frac{3 J}{(3 m+M) L}$
D. D. $\frac{6 J}{(3 m+M) L}$

Answer: B

Watch Video Solution

11. A uniform rod of length L and mass M is lying on a frictionless horizontal plane and is pivoted at one of its ends as shown in Fig. There
is no friction at the pivot. An inelastic ball of mass m is fixed with the rod at a distance $L / 3$ from O. A horizontal impulse J is given to the rod at a distance $2 L / 3$ from O in a direction perpendicular to the rod. Assume that the ball remains in contact with the rod after the collision and impulse J acts for a small time interval Δt. Now answer the following questions:

Find the impulse acted on the ball during the time $\triangle t$
A. $\frac{2 M J}{(3 m+M)}$
B. $\frac{2 M J}{(m+3 M)}$
C. $\frac{2 m J}{(3 m+M)}$
D. $\frac{2 m J}{(m+3 M)}$

Answer: D

12. A uniform rod of length L and mass M is lying on a frictionless horizontal plane and is pivoted at one of its ends as shown in Fig. There is no friction at the pivot. An inelastic ball of mass m is fixed with the rod at a distance $L / 3$ from O. A horizontal impulse J is given to the rod at a distance $2 L / 3$ from O in a direction perpendicular to the rod. Assume that the ball remains in contact with the rod after the collision and impulse J acts for a small time interval Δt. Now answer the following questions:

Find the magnitude of the impulse applied on the pivot during the time interval $\triangle t$
A. $\frac{m J}{(m+3 M)}$
B. $\frac{m J}{(3 m+M)}$
C. $\frac{M J}{(m+3 M)}$
D. $\frac{M J}{(3 m+M)}$

Answer: A

- Watch Video Solution

13. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm . The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts and the rolling friction.

The tension in the upper portion of the chain is equal to
A. 100 N
B. 120 N
C. $160 N$
D. 240 N

Answer: C

- Watch Video Solution

14. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm . The bicycle wheels are 70 cm in diameter and the chain
runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts and the rolling friction.

The speed of the bicycle is
A. zero
B. 16 Nm
C. $6.4 N-m$
D. $4.8 N-m$

(D) Watch Video Solution

15. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm . The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts and the rolling friction.

The power delivered by the cyclist is equal to

A. $280 W$

B. 100 W
C. $64 \pi W$
D. 32 W

Answer: C

- Watch Video Solution

16. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm . The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts and the rolling friction.

The speed of the bicycle is
A. $6.4 \pi m s^{-1}$
B. $3.5 \pi m s^{-1}$
C. $2.8 \pi m s^{-1}$
D. $6.5 \pi \mathrm{~ms}^{-1}$

Answer: B

- Watch Video Solution

17. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm . The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the
cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible. The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts and the rolling friction.

The net force of the friction on the rear wheel due to the road is:
A. 100 N
B. 62 N
C. 32.6 N
D. 18.3 N

Answer: D

18. A cord is wound round the circumference of a solid cylinder radius R and mass M. The axis of the cylinder is horizontal. A weight $m g$ is attached to the end of the cord and falls from rest. After falling through a distance h.

If the mass starts from rest and falls a distance h, then its speed at that instant is:
A. $\frac{2 m g}{M+2 m}$
B. $\sqrt{\frac{2 g h}{R^{2}}}$
C. $\left(\frac{\sqrt{4 m g h}}{(M+2 m) R^{2}}\right)$
D. $\sqrt{\frac{4 m g h}{M+2 m}}$

Answer: C

- Watch Video Solution

19. A cord is wound round the circumference of a solid cylinder radius R and mass M. The axis of the cylinder is horizontal. A weight $m g$ is attached to the end of the cord and falls from rest. After falling through a distance h.

If the mass starts from rest and falls a distance h, then its speed at that instant is:
A. proportional to R
B. proportional to $\frac{1}{R}$
C. propotional to $\frac{1}{R^{2}}$
D. independent of R

Answer: D

- Watch Video Solution

20. A diving board 3.00 m long is supported at a point 1.00 m from the end and a diver weighing 500 N stands at the free end. The diving board is of uniform cross section and weighs $280 N$. Find.

The force at the support point
A. $780 N$
B. 220 N
C. $1920 N$
D. 1140 N

Answer: C

- Watch Video Solution

21. A diving board 3.00 m long is supported at a point 1.00 m from the end and a diver weighing 500 N stands at the free end. The diving board is of uniform cross section and weighs $280 N$. Find. Support Point

The force at the end that is held down.
A. 780 N
B. 220 N
C. $1920 N$
D. $1140 N$

Answer: D

- Watch Video Solution

22. The horizontal beam in figure weighs 150 N , and its centre of gravity is at its centre. Find

The tension in the cable
A. 75 N
B. 500 N
C. 300 N
D. 625 N

Answer: B

23. The horizontal beam in figure weighs 150 N , and its centre of gravity is at its centre. Find

The horizontal and vertical components of the force exerted on the beam at the wall,
A. Horizontal component is 500 N towards left and vertical component

75 N downwards
B. Horizontal component is 500 N towards right and vertical component 75 N upwards
C. Horizontal component is 625 N towards left and vertical component

150 N upwards
D. Horizontal component is $625 N$ towards right and vertical component 150 N downwards

Answer: A

- Watch Video Solution

24. A uniform ladder 5.0 m long rests against a frictionless, vertical wall with its lower end 3.0 m to from the wall. The ladder weighs 160 N . The coefficient of static friction between the foot of the ladder and the ground is 0.40 . A man weighing 740 N climbs slowly up the ladder.

What is the actual frictional force when the man has climbed 1.0 m along the ladder?
A. 360 N
B. $171 N$
C. 900 N
D. 740 N

Answer: B

- Watch Video Solution

25. A uniform ladder 5.0 m long rests against a frictionless, vertical wall with its lower end 3.0 m to from the wall. The ladder weighs 160 N . The coefficient of static friction between the foot of the ladder and the ground is 0.40 . A man weighing 740 N climbs slowly up the ladder.

What is the actual frictional force when the man has climbed 1.0 m along the ladder?
A. A. $360 N$
B. B. $171 N$
C. C. 900 N
D. D. 740 N

Answer: C

- Watch Video Solution

26. A uniform ladder 5.0 m long rests against a frictionless, vertical wall with its lower end 3.0 m to from the wall. The ladder weighs 160 N . The coefficient of static friction between the foot of the ladder and the ground is 0.40 . A man weighing 740 N climbs slowly up the ladder.

What is the actual frictional force when the man has climbed 1.0 m along the ladder?
A. $3 m$
B. $5 m$
C. $2.7 m$
D. $1.25 m$

D Watch Video Solution

27. A disc of radius R rolls without slipping at spped v along positve x-axis.

Velocity of point P at the instant shown in figure is

A. $\frac{v \sqrt{x^{2}+y^{2}}}{R}$
B. $\frac{v \sqrt{x^{2}+(y+R)^{2}}}{R}$
C. $\frac{v \sqrt{v^{2}+(y-R)^{2}}}{R}$
D. none of these

Answer: B

- Watch Video Solution

28. A disc having radius R is rolling without slipping on a horizontal ($x-z$) plane. Centre of the disc has a velocity v and acceleration a as

If $v=\sqrt{2 a R}$ the angle θ between acceleration of the top most point and the horizontal is
A. 0
B. 45°
C. $\tan ^{-1} 2$
D. $\tan ^{-1}\left(\frac{1}{2}\right)$

- Watch Video Solution

Integer

1. A solid cylinder with $r=0.1 \mathrm{~m}$ and mass $M=2 k g$ is placed such that it is in contact with the vertical and a horizontal surface as shown in Fig. The coefficient of friction is $\mu=(1 / 3)$ for both the surfaces. Find the distance (in $C M$) from the centre of the cylinder at which a force $F=40 N$ should be applied vertically so that the cylinder just starts
rotating in anticlockwise direction.

- Watch Video Solution

2. A uniform rod of length $1 m$ and mass $2 k g$ is suspended. Calculate tension T (in N) in the string at the instant when the right string snaps
$\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

- Watch Video Solution

3. In all the four situations depicted in Column-l, a ball of mass m is connected to a string. In each case, find the tension in the string and match the appropriate entries in Column-II.
$(A)\left(\# \# V M C_{P} H Y_{X} I_{W} O R_{B} O K_{01}-C 04_{E} 03_{050}\right.$ - $\left.Q 01 \# \#\right)$ Conical pendul (B) (\#\#VMC $C_{P} H Y_{X} I_{W} O R_{B} O K_{01}-C 04_{E} 03_{050}$ - $\left.Q 02 \# \#\right)$ Pendulum is $s w$ (C) (\#\#VMC $P_{P} H Y_{X} I_{W} O R_{B} O K_{01}-C 04_{E} 03_{050}$ - Q03\#\#) The car is movi
(D)(\#\#VMC $P_{P} H Y_{X} I_{W} O R_{B} O K_{01}-C 04_{E} 03_{050}$ _ $\left.Q 04 \# \#\right)$ The car is mov:

- Watch Video Solution

4. A square plate $A B C D$ of mass m and side l is suspended with the help of two ideal strings P and Q as shown. Determine the acceleration (in m / s^{2}) of corner A of the square just at the moment the string Q is cut. $\left(g=10 m / s^{2}\right)$.

- Watch Video Solution

5. Four spheres A, B, C, D, each of mass m and diameter 2 a are placed with their centres at die four corners of a square of side b. What is the moment of inertia of the system about any side of the square ?

- Watch Video Solution

6. A uniform cylinder rests on a cart as shown. The coefficient of static friction between the cylinder and the cart is 0.5 If the cylinder is 4 cm in
diameter and 10 cm in height, which of the following is the minimum acceleration of the cart needed to cause the cylinder to tip over?

- Watch Video Solution

7. A uniform disc of mass m, radius R is placed on a smooth horizontal surface. If we apply a horizontal force F at P as shown in the figure. If $F=4 N, m=.1 \mathrm{~kg}, R=1 m$ and $r=\frac{1}{2} m$ then, find the:

acceleration of the $C M$ (in $m s^{2}$)

- Watch Video Solution

8. A uniform disc of mass m, radius R is placed on a smooth horizontal surface. If we apply a horizontal force F at P as shown in the figure. If $F=4 N, m=.1 \mathrm{~kg}, R=1 m$ and $r=\frac{1}{2} m$ then, find the:

angular acceleration of the disc. $\left(\mathrm{rads}^{-1}\right)$

- Watch Video Solution

9. A uniform disc of mass m, radius R is placed on a smooth horizontal surface. If we apply a horizontal force F at P as shown in the figure. If $F=4 N, m=.1 k g, R=1 m$ and $r=\frac{1}{2} m$ then, find the:

angular acceleration of the disc. $\left(\right.$ rads $\left.^{-1}\right)$

- Watch Video Solution

10. A light rigid rod of length $4 m$ is connected rigidly with two identical particles each of mass $m=2 \mathrm{~kg}$. the free end of the rod is smoothly pivoted at O. The rod is released from rest from its horizontal position at $t=0$. Find the

angular acceleration of the rod at $t=0\left(\right.$ in $\left.r a d s^{-2}\right)$.

Watch Video Solution

11. A light rigid rod of length $4 m$ is connected rigidly with two identical particles each of mass $m=2 k g$. the free end of the rod is smoothly pivoted at O. The rod is released from rest from its horizontal position at $t=0$. Find the

reaction offered by the pivot at $t=0($ in $N)$.

- Watch Video Solution

