© 'doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (ENGLISH)

SOUND WAVES AND DOPPLER EFFECT

Illustration

1. The equation of a sound wave in air is given
by $\triangle p=(0.02) \sin [(3000) t-(9.0) x]$, where
all variables are is SI units. (a) find the
frequency, wavelength and the speed of sound
wave in air. (b) If the equilibrium pressure of air is $1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$, What are the maximum and minimum pressure at a point as the wave passes through that point?

D Watch Video Solution

2. Calculate the velocity of sound in air at NTP.

The density of air at NTP is $(1.29 g) /(L)$.
Assume air to be diatomic with $\gamma=1.4$. Also
calculate the velocity of sound in air at $27^{\circ} \mathrm{C}$.
3. Calculate the sterss in a tight wire of a material whose Young's modulus is $19.6 \times 10^{11} \frac{\text { dyne }}{\mathrm{cm}^{2}}$ so that the speed of the longitudinal waves is 10 times the speed of transverse waves.

- Watch Video Solution

4. Taking the composition of air to be 75% of nitrogen and 25% of oxygen by weight,
calculate the velocity of sound through air.

D Watch Video Solution

5. The velocity of sound in hydrogen at $0^{\circ} C$ is $1200 \frac{m}{s}$. When some amount of oxygen is mixed with hydrogen, the velocity decreases to $500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Determine the ratio of H_{2} to O_{2} by volume in this mixture, given that the density of oxygen in 16 times that of hydrogen.

D Watch Video Solution

$\xrightarrow[A]{\rightarrow \rightarrow C}$

6.

The figure shows an instantaneous
displacement position graph of a sound wave travelling along the positive x-axis Identify the points of
i.Maximum pressure,
ii. Minimum pressure and
iii. Atmospheric pressure (or normal pressure.)
7. A point source emits sound waves with an average power output of 80.0 W (a) Find the intensity 3.00 m from the source. (b) find the distance at which the intensity of the sound is $1.00 \times 10^{-8} \frac{W}{m^{2}}$

- Watch Video Solution

8. The faintest sound the human ear can detect at a frequency of 1000 Hz correspond
to an intensity of about $1.00 \times 10^{-12} \frac{W}{m^{2}}$, which is called threshold of hearing. The loudest sounds the ear can tolerate at this frequency correspond to an intensity of about $1.00 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$, the threshold of pain. Detemine the pressure amplitude and displacement amplitude associated with these two limits. Take speed of sound $=342 \frac{\mathrm{~m}}{\mathrm{~s}}$ and density of air $=1.20 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

D Watch Video Solution

9. Two identical machines are positioned the same distance from a worker. The intensity of
sound delivered by each operating machine at the worker's location is $2.0 \times 10^{-7} \frac{W}{m^{2}}$.

Find the sound level heard by the worker when one machine is operating. (b) Find the sound level heard by the worker when both the machines are operating.

Watch Video Solution

10. The loudness of a sound depends upon the

D Watch Video Solution

11. Calculate the sound level (in decibels) of a sound wave that has an intensity of $4.00 \mu \frac{W}{m^{2}}$.

- Watch Video Solution

12. A family ice show is held at an enclosed arena. The skaters perform to music with level
80.0dB. This level is too loud for your baby, who yells at 75.0 dB . (a) What total sound intensity engulfs you? (b) what is the combined sound level ?

D Watch Video Solution

13. A firework charge is detonated many metres above the ground. At a distance of 400 m from the explosion, the acoustic pressure reaches a maximum of $10.0 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$. Assume that the speed of sound is constant at $343 \frac{\mathrm{~m}}{\mathrm{~s}}$
throughout the atmosphere over the region
considered, the ground absorbs all the sound
falling on it, and the air absorbs sound energy at the rate of $7.00 \frac{d B}{\mathrm{~km}}$. What is the sound level (in decibels) at 4.00 km from the axplosion?

D Watch Video Solution

14. A police siren emits a sinusoidal wave with
frequency $f_{S}=300 H_{z}$. The speed of the sound is $340 \mathrm{~m} / \mathrm{s}$. (a) Find the wavelength of
the waves if siren is at rest in the air . (b) If the siren is moving at $30 \mathrm{~m} / \mathrm{s}$, Find the wavelength of the waves ahead of and behind the source.

- Watch Video Solution

15. If a listener L is at rest and the siren in
previous illustrantion is moving away from L at a speed of $30 \frac{m}{s}$, what frequency does the listener hear?
16. Standing at a crosswalk, you hear a
frequency of 560 Hz from the siren of an approaching ambulance, After the ambulance passes, the observed frequency of the siren is

480 Hz . Determine the ambulance's speed from these observations. Speed of sound $=343 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

17. Two ships are moving along a line due east.

The trailing ship has a speed relative to land based observation point of $64.0 \frac{\mathrm{~km}}{\mathrm{~h}}$, and the leading ship has a speed of $45.0 \frac{\mathrm{~km}}{\mathrm{~h}}$ relative to that point. The two ships are in a region of
the ocean where the current is moving uniformly due west at $10.0 \frac{\mathrm{~km}}{\mathrm{~h}}$. The trailing ship transmits a sonar signal at a frequency of
1200.0 Hz. What frequency is monitored by the leading ship? Use $1520 \frac{\mathrm{~m}}{\mathrm{~s}}$ as the speed of sound in ocean water.
18. To permit measurement of her speed a sky
diver carries a buzzer emitting a steady tone
at 1800 Hz . A friend on the ground at the landing site directly below listens to the amplified sound he receives. Assume the air is calm and the sound speed is $343 \frac{m}{s}$ independent of altitude. While the sky diver is
falling at terminal speed, his friend on the ground receives waves of frequency 2150 Hz .
(a) What is the sky diver's speed of descent?
(b) Suppose the sky diver can hear the sound
of the buzzer reflected from the ground. What frequency does she receive?

D Watch Video Solution

19. Two trains A and B simultaneously start moving along parallel tracks from a station along same direction. A starts with constant acceleration $2 \frac{m}{s^{2}}$ from rest, while B with the same acceleration but with initial velocity of
$40 \mathrm{~m} / \mathrm{s}$. Twenty seconds after the start, passenger of A hears whistle of B. If frequency
of whistle is 1194 Hz and velocity of sound in
air is $322 \mathrm{~m} / \mathrm{s}$, calculate frequency observed by the passenger.

D Watch Video Solution

20. A train approachign a railway crossing at a speed of $120 \mathrm{kmh}^{-1}$ sounds a short whistle at
frequency 640 Hz when it is 300 m away from
the crossing. The speed of sound in air is
$340 \mathrm{~ms}^{-1}$. What will be the frequency heard by
a person standing on a road perpendicular to
the track through the crossing at a distance of 400 m from the crossing ?

D Watch Video Solution

21. Your clock radio awakens you with a steady
and irritating sound of frequency 600 Hz . On morning, it malfunction and cannot be turned off. In frustration, you drop the clock radio out of your fourth-story dorm wndow 15.0m from the ground. Assume the speed of sound is 343 m / s. As you listen to the falling clock radio,
what frequency do you hear just before you hear it striking the ground?

D Watch Video Solution

22. A submarin Travels through water at a speed of $8.00 \frac{m}{s}$, emitting a sonar wave at a frequency of 1400 Hz . The speed of sound in the water is $1533 \mathrm{~m} / \mathrm{s}$. What frequency is detected by an observer riding on submarine of velocity $9.00 \frac{\mathrm{~m}}{\mathrm{~s}}$ as the submarines approach each other?
23. The equation of a sound wave in air is given by $\triangle p=(0.02) \sin [(3000) t-(9.0) x]$, where all variables are is SI units. (a) find the frequency, wavelength and the speed of sound wave in air. (b) If the equilibrium pressure of air is $1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$, What are the maximum and minimum pressure at a point as the wave passes through that point?
24. Calculate the velocity of sound in air at

NTP. The density of air at NTP is $\frac{1.29 g}{L}$. Assume air to be diatomic with $\gamma=1.4$. Also calculate the velocity of sound in air at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

25. Calculate the stress in a tight wire of a material whose Young's modulus is $19.6 \times 10^{11} \frac{\text { dyne }}{\mathrm{cm}^{2}}$ so that the speed of the
longitudinal waves is 10 times the speed of transverse waves.

D Watch Video Solution

26. Taking the composition of air to be 75% of nitrogen and 25% of oxygen by weight, calculate the velocity of sound through air.

D Watch Video Solution
27. The velocity of sound in hydrogen at $0^{\circ} \mathrm{C}$ is $1200 \frac{\mathrm{~m}}{\mathrm{~s}}$. When some amount of oxygen is mixed with hydrogen, the velocity decreases to $500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Determine the ratio of H_{2} to O_{2} by volume in this mixture, given that the density of oxygen in 16 times that of hydrogen.

28.

The figure shows an instantaneous
displacement position graph of a sound wave travelling along the positive x-axis Identify the points of
i.Maximum pressure,
ii. Minimum pressure and
iii. Atmospheric pressure (or normal pressure.)

Watch Video Solution

29. A point source emits sound waves with an average power output of 80.0 W (a) Find the intensity 3.00 m from the source. (b) find the distance at which the intensity of the sound is $1.00 \times 10^{-8} \frac{W}{m^{2}}$

D Watch Video Solution

30. The faintest sound the human ear can detect at a frequency of 1000 Hz correspond
to an intensity of about $1.00 \times 10^{-12} \frac{W}{m^{2}}$, which is called threshold of hearing. The loudest sounds the ear can tolerate at this frequency correspond to an intensity of about $1.00 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$, the threshold of pain. Detemine the pressure amplitude and displacement amplitude associated with these two limits. Take speed of sound $=342 \frac{\mathrm{~m}}{\mathrm{~s}}$ and density of air $=1.20 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

D Watch Video Solution

31. Two identical machines are positioned the same distance from a worker. The intensity of
sound delivered by each operating machine at the worker's location is $2.0 \times 10^{-7} \frac{W}{m^{2}}$.

Find the sound level heard by the worker when one machine is operating. (b) Find the sound level heard by the worker when both the machines are operating.

Watch Video Solution

32. The loudness of a sound depends upon the

D Watch Video Solution

33. Calculate the sound level (in decibels) of a sound wave that has an intensity of $4.00 \mu \frac{W}{m^{2}}$.

D Watch Video Solution

34. A family ice show is held at an enclosed arena. The skaters perform to music with level
80.0dB. This level is too loud for your baby, who yells at 75.0 dB . (a) What total sound intensity engulfs you? (b) what is the combined sound level ?

D Watch Video Solution

35. A firework charge is detonated many metres above the ground. At a distance of 400 m from the explosion, the acoustic pressure reaches a maximum of $10.0 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$. Assume that the speed of sound is constant at $343 \frac{\mathrm{~m}}{\mathrm{~s}}$
throughout the atmosphere over the region considered, the ground absorbs all the sound falling on it, and the air absorbs sound energy at the rate of $7.00 \frac{d B}{\mathrm{~km}}$. What is the sound level (in decibels) at 4.00 km from the explosion?

D Watch Video Solution

36. A police siren emits a sinusoidal wave with
frequency $f_{S}=300 H_{z}$. The speed of the sound is $340 \mathrm{~m} / \mathrm{s}$. (a) Find the wavelength of
the waves if siren is at rest in the air . (b) If the siren is moving at $30 \mathrm{~m} / \mathrm{s}$, Find the wavelength of the waves ahead of and behind the source.

- Watch Video Solution

37. If a listener L is at rest and the siren in
previous illustrantion is moving away from L at a speed of $30 \frac{m}{s}$, what frequency does the listener hear?
38. Standing at a crosswalk, you hear a
frequency of 560 Hz from the siren of an approaching ambulance, After the ambulance passes, the observed frequency of the siren is

480 Hz . Determine the ambulance's speed from these observations. Speed of sound $=343 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

39. Two ships are moving along a line due east.

The trailing ship has a speed relative to land based observation point of $64.0 \frac{\mathrm{~km}}{\mathrm{~h}}$, and the leading ship has a speed of $45.0 \frac{\mathrm{~km}}{\mathrm{~h}}$ relative to that point. The two ships are in a region of the ocean where the current is moving uniformly due west at $10.0 \frac{\mathrm{~km}}{\mathrm{~h}}$. The trailing ship transmits a sonar signal at a frequency of
1200.0 Hz . What frequency is monitored by the leading ship? Use $1520 \frac{\mathrm{~m}}{\mathrm{~s}}$ as the speed of sound in ocean water.
40. To permit measurement of her speed a sky
diver carries a buzzer emitting a steady tone at 1800 Hz . A friend on the ground at the landing site directly below listens to the amplified sound he receives. Assume the air is calm and the sound speed is $343 \frac{\mathrm{~m}}{\mathrm{~s}}$ independent of altitude. While the sky diver is
falling at terminal speed, his friend on the ground receives waves of frequency 2150 Hz .
(a) What is the sky diver's speed of descent?
(b) Suppose the sky diver can hear the sound
of the buzzer reflected from the ground. What frequency does she receive?

D Watch Video Solution

41. Two trains A and B simultaneously start moving along parallel tracks from a station along same direction. A starts with constant acceleration $2 \frac{m}{s^{2}}$ from rest, while B with the same acceleration but with initial velocity of
$40 \mathrm{~m} / \mathrm{s}$. Twenty seconds after the start, passenger of A hears whistle of B. If frequency
of whistle is 1194 Hz and velocity of sound in
air is $322 \mathrm{~m} / \mathrm{s}$, calculate frequency observed by the passenger.

D Watch Video Solution

42. A train approachign a railway crossing at a speed of $120 \mathrm{kmh}^{-1}$ sounds a short whistle at
frequency 640 Hz when it is 300 m away from
the crossing. The speed of sound in air is
$340 \mathrm{~ms}^{-1}$. What will be the frequency heard by
a person standing on a road perpendicular to
the track through the crossing at a distance of 400 m from the crossing ?

D Watch Video Solution

43. Your clock radio awakens you with a steady and irritating sound of frequency 600 Hz . On morning, it malfunction and cannot be turned off. In frustration, you drop the clock radio out of your fourth-story dorm wndow 15.0m from the ground. Assume the speed of sound is 343 m / s. As you listen to the falling clock radio,
what frequency do you hear just before you hear it striking the ground?

D Watch Video Solution

44. A submarin Travels through water at a speed of $8.00 \frac{m}{s}$, emitting a sonar wave at a frequency of 1400 Hz . The speed of sound in the water is $1533 \mathrm{~m} / \mathrm{s}$. What frequency is detected by an observer riding on submarine of velocity $9.00 \frac{\mathrm{~m}}{\mathrm{~s}}$ as the submarines approach each other?
45. The equation of a sound wave in air is given by $\triangle p=(0.02) \sin [(3000) t-(9.0) x]$, where all variables are is SI units. (a) find the frequency, wavelength and the speed of sound wave in air. (b) If the equilibrium pressure of air is $1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$, What are the maximum and minimum pressure at a point as the wave passes through that point?
46. Calculate the velocity of sound in air at NTP. The density of air at NTP is $\frac{1.29 g}{L}$. Assume air to be diatomic with $\gamma=1.4$. Also calculate the velocity of sound in air at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

47. Calculate the stars in a tight wire of a material whose Young's modulus is
$19.6 \times 10^{11} \frac{\text { dyne }}{c m^{2}}$ so that the speed of the
longitudinal waves is 10 times the speed of transverse waves.

D Watch Video Solution

48. Taking the conposition of air to be 75% of nitrogen and 25% of oxygen by weight, calculate the velocity of sound through air.

D Watch Video Solution
49. The velocity of sound in hydrogen at $0^{\circ} \mathrm{C}$ is $1200 \frac{\mathrm{~m}}{\mathrm{~s}}$. When some amount of oxygen is mixed with hydrogen, the velocity decreases to $500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Determine the ratio of H_{2} to O_{2} by volume in this mixture, given that the density of oxygen in 16 times that of hydrogen.

50.

The figure shows an instantaneous
displacement position graph of a sound wave travelling along the positive x-axis Identify the points of
i.Maximum pressure,
ii. Minimum pressure and
iii. Atmospheric pressure (or normal pressure.)

D Watch Video Solution

51. A point source emits sound waves with an average power output of 80.0 W (a) Find the intensity 3.00 m from the source. (b) find the distance at which the intensity of the sound is $1.00 \times 10^{-8} \frac{W}{m^{2}}$

D Watch Video Solution

52. The faintest sound the human ear can detect at a frequency of 1000 Hz correspond
to an intensity of about $1.00 \times 10^{-12} \frac{W}{m^{2}}$, which is called threshold of hearing. The loudest sounds the ear can tolerate at this frequency correspond to an intensity of about $1.00 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$, the threshold of pain. Detemine the pressure amplitude and displacement amplitude associated with these two limits. Take speed of sound $=342 \frac{\mathrm{~m}}{\mathrm{~s}}$ and density of air $=1.20 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

D Watch Video Solution

53. Two identical machines are positioned the same distance from a worker. The intensity of
sound delivered by each operating machine at the worker's location is $2.0 \times 10^{-7} \frac{W}{m^{2}}$.

Find the sound level heard by the worker when one machine is operating. (b) Find the sound level heard by the worker when both the machines are operating.

Watch Video Solution

54. The loudness of a sound depends upon the

D Watch Video Solution

55. Calculate the sound level (in decibels) of a sound wave that has an intensity of $4.00 \mu \frac{W}{m^{2}}$.

D Watch Video Solution

56. A family ice show is held at an enclosed arena. The skaters perform to music with level
80.0dB. This level is too loud for your baby, who yells at 75.0 dB . (a) What total sound intensity engulfs you? (b) what is the combined sound level ?

D Watch Video Solution

57. A firework charge is detonated many metres above the ground. At a distance of 400 m from the explosion, the acoustic pressure reaches a maximum of $10.0 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$. Assume that the speed of sound is constant at $343 \frac{\mathrm{~m}}{\mathrm{~s}}$
throughout the atmosphere over the region
considered, the ground absorbs all the sound
falling on it, and the air absorbs sound energy at the rate of $7.00 \frac{d B}{\mathrm{~km}}$. What is the sound level (in decibels) at 4.00 km from the axplosion?

D Watch Video Solution

58. A police siren emits a sinusoidal wave with
frequency $f_{S}=300 H_{z}$. The speed of the sound is $340 \mathrm{~m} / \mathrm{s}$. (a) Find the wavelength of
the waves if siren is at rest in the air . (b) If the siren is moving at $30 \mathrm{~m} / \mathrm{s}$, Find the wavelength of the waves ahead of and behind the source.

- Watch Video Solution

59. If a listener L is at rest and the siren in
previous illustrantion is moving away from L at a speed of $30 \frac{m}{s}$, what frequency does the listener hear?
60. Standing at a crosswalk, you hear a
frequency of 560 Hz from the siren of an approaching ambulance, After the ambulance passes, the observed frequency of the siren is

480 Hz . Determine the ambulance's speed from these observations. Speed of sound $=343 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

61. Two ships are moving along a line due east.

The trailing ship has a speed relative to land based observation point of $64.0 \frac{\mathrm{~km}}{\mathrm{~h}}$, and the leading ship has a speed of $45.0 \frac{\mathrm{~km}}{\mathrm{~h}}$ relative to that point. The two ships are in a region of the ocean where the current is moving uniformly due west at $10.0 \frac{\mathrm{~km}}{\mathrm{~h}}$. The trailing ship transmits a sonar signal at a frequency of
1200.0 Hz . What frequency is monitored by the leading ship? Use $1520 \frac{\mathrm{~m}}{\mathrm{~s}}$ as the speed of sound in ocean water.
62. To permit measurement of her speed a sky
diver carries a buzzer emitting a steady tone
at 1800 Hz . A friend on the ground at the landing site directly below listens to the amplified sound he receives. Assume the air is calm and the sound speed is $343 \frac{\mathrm{~m}}{\mathrm{~s}}$ independent of altitude. While the sky diver is
falling at terminal speed, his friend on the ground receives waves of frequency 2150 Hz .
(a) What is the sky diver's speed of descent?
(b) Suppose the sky diver can hear the sound
of the buzzer reflected from the ground. What frequency does she receive?

D Watch Video Solution

63. Two trains A and B simultaneously start moving along parallel tracks from a station along same direction. A starts with constant acceleration $2 \frac{m}{s^{2}}$ from rest, while B with the same acceleration but with initial velocity of
$40 \mathrm{~m} / \mathrm{s}$. Twenty seconds after the start, passenger of A hears whistle of B. If frequency
of whistle is 1194 Hz and velocity of sound in
air is $322 \mathrm{~m} / \mathrm{s}$, calculate frequency observed by the passenger.

D Watch Video Solution

64. A train approachign a railway crossing at a speed of $120 \mathrm{kmh}^{-1}$ sounds a short whistle at
frequency 640 Hz when it is 300 m away from
the crossing. The speed of sound in air is
$340 \mathrm{~ms}^{-1}$. What will be the frequency heard by
a person standing on a road perpendicular to
the track through the crossing at a distance of 400 m from the crossing ?

D Watch Video Solution

65. Your clock radio awakens you with a steady and irritating sound of frequency 600 Hz . On morning, it malfunction and cannot be turned off. In frustration, you drop the clock radio out of your fourth-story dorm wndow 15.0m from the ground. Assume the speed of sound is 343 m / s. As you listen to the falling clock radio,
what frequency do you hear just before you hear it striking the ground?

D Watch Video Solution

66. A submarin Travels through water at a speed of $8.00 \frac{m}{s}$, emitting a sonar wave at a frequency of 1400 Hz . The speed of sound in the water is $1533 \mathrm{~m} / \mathrm{s}$. What frequency is detected by an observer riding on submarine of velocity $9.00 \frac{\mathrm{~m}}{\mathrm{~s}}$ as the submarines approach each other?
67. The equation of a sound wave in air is given by $\triangle p=(0.02) \sin [(3000) t-(9.0) x]$, where all variables are is SI units. (a) find the
frequency, wavelength and the speed of sound wave in air. (b) If the equilibrium pressure of air is $1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$, What are the maximum and minimum pressure at a point as the wave passes through that point?
68. Calculate the velocity of sound in air at NTP. The density of air at NTP is $\frac{1.29 g}{L}$. Assume air to be diatomic with $\gamma=1.4$. Also calculate the velocity of sound in air at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

69. Calculate the sterss in a tight wire of a material whose Young's modulus is $19.6 \times 10^{11} \frac{\text { dyne }}{c m^{2}}$ so that the speed of the
longitudinal waves is 10 times the speed of transverse waves.

D Watch Video Solution

70. Taking the conposition of air to be 75% of nitrogen and 25% of oxygen by weight, calculate the velocity of sound through air.

D Watch Video Solution

71. The velocity of sound in hydrogen at $0^{\circ} C$ is $1200 \frac{\mathrm{~m}}{\mathrm{~s}}$. When some amount of oxygen is mixed with hydrogen, the velocity decreases to $500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Determine the ratio of H_{2} to O_{2} by volume in this mixture, given that the density of oxygen in 16 times that of hydrogen.

72.

The figure shows an instantaneous
displacement position graph of a sound wave travelling along the positive x-axis Identify the points of
i.Maximum pressure,
ii. Minimum pressure and
iii. Atmospheric pressure (or normal pressure.)

Watch Video Solution

73. A point source emits sound waves with an average power output of 80.0 W (a) Find the intensity 3.00 m from the source. (b) find the distance at which the intensity of the sound is $1.00 \times 10^{-8} \frac{W}{m^{2}}$

- Watch Video Solution

74. The faintest sound the human ear can detect at a frequency of 1000 Hz correspond
to an intensity of about $1.00 \times 10^{-12} \frac{W}{m^{2}}$, which is called threshold of hearing. The loudest sounds the ear can tolerate at this frequency correspond to an intensity of about $1.00 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$, the threshold of pain. Detemine the pressure amplitude and displacement amplitude associated with these two limits. Take speed of sound $=342 \frac{\mathrm{~m}}{\mathrm{~s}}$ and density of air $=1.20 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

D Watch Video Solution

75. Two identical machines are positioned the same distance from a worker. The intensity of
sound delivered by each operating machine at the worker's location is $2.0 \times 10^{-7} \frac{W}{m^{2}}$.

Find the sound level heard by the worker when one machine is operating. (b) Find the sound level heard by the worker when both the machines are operating.

Watch Video Solution

76. Loudness is psychological response to a sound. It depends on both the intensity and
the frequency of the sound. As a rule of thumb, a doubling in loudness is approximately associated with an increase in sound level of 10 dB . (this rule of thumb is relatively inaccurate at very low or very high frequencis.) If the loudness of the machines in
illustration 6. is to be doubled, how many machines at the same distance from the worker must be running?
77. Calculate the sound level (in decibels) of a sound wave that has an intensity of $4.00 \mu \frac{W}{\mathrm{~m}^{2}}$.

D Watch Video Solution

78. A family ice show is held at an enclosed arena. The skaters perform to music with level 80.0dB. This level is too loud for your baby, who yells at 75.0 dB . (a) What total sound
intensity engulfs you? (b) what is the combined sound level ?

D Watch Video Solution

79. A firework charge is detonated many metres above the ground. At a distance of 400 m from the explosion, the acoustic pressure reaches a maximum of $10.0 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$. Assume that the speed of sound is constant at $343 \frac{\mathrm{~m}}{\mathrm{~s}}$ throughout the atmosphere over the region considered, the ground absorbs all the sound
falling on it, and the air absorbs sound energy at the rate of $7.00 \frac{d B}{\mathrm{~km}}$. What is the sound level (in decibels) at 4.00 km from the axplosion?

D Watch Video Solution

80. A police siren emits a sinusoidal wave with
frequency $f_{S}=300 H_{z}$. The speed of the sound is $340 \mathrm{~m} / \mathrm{s}$. (a) Find the wavelength of the waves if siren is at rest in the air . (b) If the siren is moving at $30 \mathrm{~m} / \mathrm{s}$, Find the
wavelength of the waves ahead of and behind the source.

D Watch Video Solution

81. If a listener L is at rest and the siren in
previous illustrantion is moving away from L at a speed of $30 \frac{m}{s}$, what frequency does the listener hear?
82. Standing at a crosswalk, you hear a
frequency of 560 Hz from the siren of an approaching ambulance, After the ambulance passes, the observed frequency of the siren is

480 Hz . Determine the ambulance's speed
from these observations. Speed of sound $=343 \frac{\mathrm{~m}}{\mathrm{~s}}$.
83. Two ships are moving along a line due east.

The trailing ship has a speed relative to land based observation point of $64.0 \frac{\mathrm{~km}}{\mathrm{~h}}$, and the leading ship has a speed of $45.0 \frac{\mathrm{~km}}{\mathrm{~h}}$ relative to that point. The two ships are in a region of
the ocean where the current is moving uniformly due west at $10.0 \frac{\mathrm{~km}}{\mathrm{~h}}$. The trailing ship transmits a sonar signal at a frequency of
1200.0 Hz. What frequency is monitored by the leading ship? Use $1520 \frac{m}{s}$ as the speed of sound in ocean water.
84. To permit measurement of her speed a sky
diver carries a buzzer emitting a steady tone at 1800 Hz . A friend on the ground at the landing site directly below listens to the amplified sound he receives. Assume the air is calm and the sound speed is $343 \frac{\mathrm{~m}}{\mathrm{~s}}$ independent of altitude. While the sky diver is
falling at terminal speed, his friend on the ground receives waves of frequency 2150 Hz .
(a) What is the sky diver's speed of descent?
(b) Suppose the sky diver can hear the sound
of the buzzer reflected from the ground. What frequency does she receive?

D Watch Video Solution

85. Two trains A and B simultaneously start moving along parallel tracks from a station along same direction. A starts with constant acceleration $2 \frac{m}{s^{2}}$ from rest, while B with the same acceleration but with initial velocity of
$40 \mathrm{~m} / \mathrm{s}$. Twenty seconds after the start, passenger of A hears whistle of B. If frequency
of whistle is 1194 Hz and velocity of sound in
air is $322 \mathrm{~m} / \mathrm{s}$, calculate frequency observed by the passenger.

D Watch Video Solution

86. A train approachign a railway crossing at a speed of $120 \mathrm{kmh}^{-1}$ sounds a short whistle at
frequency 640 Hz when it is 300 m away from
the crossing. The speed of sound in air is
$340 \mathrm{~ms}^{-1}$. What will be the frequency heard by
a person standing on a road perpendicular to
the track through the crossing at a distance of 400 m from the crossing ?

D Watch Video Solution

87. Your clock radio awakens you with a steady and irritating sound of frequency 600 Hz . On morning, it malfunction and cannot be turned off. In frustration, you drop the clock radio out of your fourth-story dorm wndow 15.0m from the ground. Assume the speed of sound is 343 m / s. As you listen to the falling clock radio,
what frequency do you hear just before you hear it striking the ground?

D Watch Video Solution

88. A submarin Travels through water at a speed of $8.00 \frac{m}{s}$, emitting a sonar wave at a frequency of 1400 Hz . The speed of sound in the water is $1533 \mathrm{~m} / \mathrm{s}$. What frequency is detected by an observer riding on submarine of velocity $9.00 \frac{\mathrm{~m}}{\mathrm{~s}}$ as the submarines approach each other?

Watch Video Solution

Examples

1. The sound level at a distance of 3.00 m from
a source is 120 dB . At what distance will the sound level be (a) 100 dB and (b) 10.0 dB ?

- Watch Video Solution

2. A student holds a tuning fork ocillating at

2456 Hz . He walks towards a wall at a constant
speed of $1.33 \frac{m}{s}$. (a) What beat frequency does the student observes between the tuning fork and its echo? (b) How fast must he walk away from the wall to observe a beat frequency of 5.00 Hz ?

D Watch Video Solution

3. Two train whistles have identical frequencies
of 180 Hz . When one train is at rest in the
station and the other is moving nearby, a passenger standing on the station platform
hears beats with a frequency of 2.00 beats $/ \mathrm{s}$ when the shistles operate together. What are the two possible speeds and direction the moving train can have? speed of sound is 343 m / s.

D Watch Video Solution

4. When a train is approaching the observer, the frequency of the whistle is 100 cps . When it has passed observer, it is 50 cps . Calculate
the frequncy when the observer moves with the train.

D Watch Video Solution

5.

A source S emitting sound of 300 Hz is fixed of block A which is attached to free end of a spring S_{A} as shown in the figure. The detector

D fixed on block B attached to the free end of spring S_{B} detects this sound.

The blocks A and B are simultaneously displaced towards each other through of 1.0 m
and then left to vibrate. Find the maximum
and minimum frequencies of sound detected
by D if the vibrational frequency of each block is 2 Hz (velocity of sound is $340 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

6. The frequency of sound produced by a bell
is 500 Hz the velocity of the source relative to
still air is $60 \mathrm{~m} / \mathrm{s}$. An observer moves at $30 \mathrm{~m} / \mathrm{s}$
along the same line as the source. Calculate the frequency of sound wave measured by the observer. Consider all possible cases (speed of sound $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.)

D Watch Video Solution

7. An observer standing on a railway crossing
receives frequencies 2.2 kHz and 1.8 kHz when
the tran approaches and recedes from the observer. Find the velocity of the train (speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$).

Watch Video Solution

8. A source of sound is moving along a circular orbit of radius 3 m with an angular velocity of
$10 \mathrm{rad} / \mathrm{s}$. A sound detector located far away
from the source is executing linear S.H.M.
along the line BD (see Fig. 14.4.13) with an amplitude $B C=C D=6 m$. The frequency of oscillation of the detector is $5 / \pi$ per second.

The source is at the point BA when the detector is at the point B . If the source epiits a continuous sound wave of frequency 340 Hz ,
find the maximum and the minimum frequencies recorded by the detector.

D Watch Video Solution

9. Two tuning forks with natural frequencies of 340 Hz each move relative to a stationary observer. One fork moves away form the observer, while the other moves towards him at the same speed. The observer hears beats
of frequency $3 H z$. Find the speed of the tuning fork.

D Watch Video Solution

10. A band playing music at a frequency v is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed
v_{m}.If v is the speed of sound, the expression for the beat frequency heard by the motorist is

D Watch Video Solution

11. A boat is travelling in a river with a speed $10 \mathrm{~m} / \mathrm{s}$ along with stream flowing $2 \mathrm{~m} / \mathrm{s}$. From this boat, a sound transmitter is lowered into the river through a rigid support. The wavelength of the sound emitted from the transmitter inside the water is 14.45 mm .

Assume that attenuation of sound in water and air is negligible.
(a) What will be the frequency detected by a receiver kept inside the river downstream?
(b) The transmitter and the receiver are now
pulled up into air. the air is blowing with a speed $5 \mathrm{~m} / \mathrm{s}$ in the direction opposite the river stream. Determine the frequency of the sound detected by the receiver.
(Temperature of the air and water $=20^{\circ} C$,
Density of river water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$,
Bulk modulus of the water $=2.088 \times 10^{9} \mathrm{~Pa}$,
gas constant $R=8.31 J / m o l-K$,
Mean molecular mass of air
$=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}, C_{P} / C_{V}$ for air
$=1.4)$
12. A sonometer wire under tension of 63 N
vibrating in its fundamental mode is in
resonance with a vibrating tuning fork. The
vibrating portion of that sonometer wire has a
length of 10 cm and a mass of 1 g . The
vibrating tuning fork isnow moved away from
the vibrating wire with a constant speed and an observer standing near the sonometer
hears one beat per second. Calculate the speed with which the tuning fork is moved if the pseed of sound in air is $300 \mathrm{~m} / \mathrm{s}$.
13. A train approaching a hill at a speed of 40 km / h sounds a whistle of frequency 580 Hz when it is at a distance of 1 km from the hill. A wind with a speed of $40 \mathrm{~km} / \mathrm{h}$ is blowing in the direction of motion of the train. Find the frequency of the whitle as heard by an observer on the hill.

D Watch Video Solution

14.

A train A crosses a station with a speed of 40
m / s and whitles a short pulse of natural
frequency $n_{0}=596 \mathrm{~Hz}$ another train B is
approaching towards the same station with
the same speed along a parallel track, Two
track are $d=99 m$ apart. When train A
whistles. train B is 152 m away from the station
as shown in Fig. If velocity of sound in air is
$v=300 \frac{m}{s}$. calculate frequency of the pulse heard by driver of train B.

D Watch Video Solution

15. The sound level at a distance of 3.00 m
from a source is 120 dB . At what distance will the sound level be (a) 100 dB and (b) 10.0 dB ?
16. A student holds a tuning fork ocillating at

2456 Hz . He walks towards a wall at a constant
speed of $1.33 \frac{m}{s}$. (a) What beat frequency does the student observes between the tuning fork and its echo? (b) How fast must he walk away from the wall to observe a beat frequency of 5.00 Hz ?
17. Two train whistles have identical
frequencies of 180 Hz . When one train is at rest in the station and the other is moving nearby, a passenger standing on the station platform hears beats with a frequency of 2.00 beats/s when the whistles operate together.

What are the two possible speeds and direction the moving train can have? speed of sound is $343 \mathrm{~m} / \mathrm{s}$.
18. When a train is approaching the observer, the frequency of the whistle is 100 cps . When it has passed observer, it is 50 cps . Calculate the frequncy when the observer moves with the train.

D Watch Video Solution

19.

A source S emitting sound of 300 Hz is fixed of block A which is attached to free end of a
spring S_{A} as shown in the figure. The detector

D fixed on block B attached to the free end of spring S_{B} detects this sound.

The blocks A and B are simultaneously displaced towards each other through of 1.0 m and then left to vibrate. Find the maximum and minimum frequencies of sound detected by D if the vibrational frequency of each block is 2 Hz (velocity of sound is $340 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

20. The frequency of sound produced by a bell
is 500 Hz the velocity of the source relative to
still air is $60 \mathrm{~m} / \mathrm{s}$. An observer moves at $30 \mathrm{~m} / \mathrm{s}$
along the same line as the source. Calculate
the frequency of sound wave measured by the observer. Consider all possible cases (speed of sound $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.)
21. An observer standing on a railway crossing receives frequencies 2.2 kHz and 1.8 kHz when
the tran approaches and recedes from the observer. Find the velocity of the train (speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

22. A source of sound is moving along a circular orbit of radius 3 m with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$. A sound detector located
far away from the source is executing linear
S.H.M. along the line BD (see Fig. 14.4.13) with
an amplitude $B C=C D=6 m$. The frequency of oscillation of the detector is $5 / \pi$ per second.

The source is at the point BA when the detector is at the point B. If the source epiits a continuous sound wave of frequency 340 Hz , find the maximum and the minimum frequencies recorded by the detector.

23. Two tuning forks with natural frequencies

340 Hz each move relative to a stationary
observer. One fork moves away from the observer, while the other moves towards the observer at the same speed. The observer hears beats of frequency 3 Hz . Find the speed of the tuning forks (speed of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$).
24. A band playing music at a frequency f is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed v_{m}. If v is the speed of sound, obtain an expression for the beat frequency heard by the motorist.

- Watch Video Solution

25. A boat is travelling in a river with a speed
$10 \mathrm{~m} / \mathrm{s}$ along the stream flowing with a speed
$2 m / s$. From this boat, a sound transmitter is
lowered into the river throught a rigid
support. The wavelength of the sound emitted
from the transmitter inside the water is
14.45 mm . Aassume that attenuation of
sound in water and air is neglisible.
(a) What will be the frequency delected by a receiver kept inside the river downstream ?
(b) The transmitter and the reciver are now pulled up into air. The air is blowing with a speed $5 m / s$ in the direction opposite the river stream. Determine the frequency of the sound delected by the reciver.
(Temperature of the air and water $=20^{\circ} C$,
Density of river water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, Bulk modulus of the water $=2.088 \times 10^{9} \mathrm{~Pa}$, Gas
constant, $\quad R=8.31 \mathrm{~J} / \mathrm{mol}-K \quad, \quad$ Mean molecular mass of air $=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$, C_{p} / C_{V} for air $=1.4$

D Watch Video Solution

26. A sonometer wire under tension of 63 N
vibrating in its fundamental mode is in resonance with a vibrating tuning fork. The
vibrating portion of that sonometer wire has a
length of 10 cm and a mass of 1 g . The vibrating tuning fork isnow moved away from the vibrating wire with a constant speed and an observer standing near the sonometer hears one beat per second. Calculate the speed with which the tuning fork is moved if the pseed of sound in air is $300 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

27. A train approaching a hill at a speed of
$40 \mathrm{~km} / \mathrm{hr}$ sounds a whistle of frequency

580 Hz when it is at a distance of 1 km from a
hill. A wind with a speed of $40 \mathrm{~km} / \mathrm{hr}$ is
blowing in the direction of motion of the train

Find
(i) the frequency of the whistle as heard by an observer on the hill,
(ii) the distance from the hill at which the echo
from the hill is heard by the driver and its
frequency.
(Velocity of sound in air $=1,200 k m / h r$)

- Watch Video Solution

28.

A train A crosses a station with a speed of 40 m / s and whitles a short pulse of natural frequency $n_{0}=596 \mathrm{~Hz}$ another train B is approaching towards the same station with the same speed along a parallel track, Two
track are $d=99 m$ apart. When train A whistles. train B is 152 m away from the station
as shown in Fig. If velocity of sound in air is
$v=300 \frac{m}{s}$. calculate frequency of the pulse heard by driver of train B.

D Watch Video Solution

29. The sound level at a distance of 3.00 m
from a source is 120 dB . At what distance will
the sound level be (a) 100 dB and (b) 10.0 dB ?
30. A student holds a tuning fork ocillating at

2456 Hz . He walks towards a wall at a constant
speed of $1.33 \frac{\mathrm{~m}}{\mathrm{~s}}$. (a) What beat frequency does the student observes between the tuning fork and its echo? (b) How fast must he walk away from the wall to observe a beat frequency of 5.00 Hz ?

D Watch Video Solution

31. Two train whistles have identical
frequencies of 180 Hz . When one train is at rest in the station and the other is moving nearby, a passenger standing on the station platform hears beats with a frequency of 2.00 beats/s when the shistles operate together.

What are the two possible speeds and direction the moving train can have? speed of sound is $343 \mathrm{~m} / \mathrm{s}$.
32. When a train is approaching the observer, the frequency of the whistle is 100 cps . When it has passed observer, it is 50 cps . Calculate the frequncy when the observer moves with the train.

D Watch Video Solution

33.

A source S emitting sound of 300 Hz is fixed of block A which is attached to free end of a
spring S_{A} as shown in the figure. The detector

D fixed on block B attached to the free end of spring S_{B} detects this sound.

The blocks A and B are simultaneously displaced towards each other through of 1.0 m and then left to vibrate. Find the maximum and minimum frequencies of sound detected by D if the vibrational frequency of each block is 2 Hz (velocity of sound is $340 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

34. The frequency of sound produced by a bell
is 500 Hz the velocity of the source relative to
still air is $60 \mathrm{~m} / \mathrm{s}$. An observer moves at $30 \mathrm{~m} / \mathrm{s}$
along the same line as the source. Calculate
the frequency of sound wave measured by the observer. Consider all possible cases (speed of sound $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.)
35. An observer standing on a railway crossing receives frequencies 2.2 kHz and 1.8 kHz when the tran approaches and recedes from the observer. Find the velocity of the train (speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

36. A source of sound is moving along a circular orbit of radius 3 m with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$. A sound detector located
far away from the source is executing linear
S.H.M. along the line BD (see Fig. 14.4.13) with
an amplitude $B C=C D=6 m$. The frequency of oscillation of the detector is $5 / \pi$ per second.

The source is at the point BA when the detector is at the point B. If the source epiits a continuous sound wave of frequency 340 Hz , find the maximum and the minimum frequencies recorded by the detector.

37. Two tuning forks with natural frequencies

340 Hz each move relative to a stationary
observer. One fork moves away from the observer, while the other moves towards the observer at the same speed. The observer hears beats of frequency 3 Hz . Find the speed of the tuning forks (speed of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$).
38. A band playing music at a frequency v is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed v_{m}.If v is the speed of sound, the expression for the beat frequency heard by the motorist is

- Watch Video Solution

39. A boat is travelling in a river with a speed
$10 \mathrm{~m} / \mathrm{s}$ along with stream flowing $2 \mathrm{~m} / \mathrm{s}$. From
this boat, a sound transmitter is lowered into
the river through a rigid support. The
wavelength of the sound emitted from the transmitter inside the water is 14.45 mm .

Assume that attenuation of sound in water and air is negligible.
(a) What will be the frequency detected by a receiver kept inside the river downstream?
(b) The transmitter and the receiver are now pulled up into air. the air is blowing with a speed $5 m / s$ in the direction opposite the river stream. Determine the frequency of the sound detected by the receiver.
(Temperature of the air and water $=20^{\circ} C$,
Density of river water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$,
Bulk modulus of the water $=2.088 \times 10^{9} \mathrm{~Pa}$, gas constant $R=8.31 J / m o l-K$,

Mean molecular mass of air
$=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}, \quad C_{P} / C_{V} \quad$ for \quad air

$=1.4)$

- Watch Video Solution

40. A sonometer wire under tension of 63 N
vibrating in its fundamental mode is in
resonance with a vibrating tuning fork. The vibrating portion of that sonometer wire has a length of 10 cm and a mass of 1 g . The vibrating tuning fork is now moved away from the vibrating wire with a constant speed and an observer standing near the sonometer hears one beat per second. Calculate the speed with which the tuning fork is moved if the speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$.
41. A train approaching a hill at a speed of 40
km / h sounds a whistle of frequency 580 Hz
when it is at a distance of 1 km from the hill. A
wind with a speed of $40 \mathrm{~km} / \mathrm{h}$ is blowing in the
direction of motion of the train. Find the
frequency of the whitle as heard by an observer on the hill.

- Watch Video Solution

42.

A train A crosses a station with a speed of 40
m / s and whitles a short pulse of natural
frequency $n_{0}=596 \mathrm{~Hz}$ another train B is approaching towards the same station with
the same speed along a parallel track, Two track are $d=99 m$ apart. When train A whistles. train B is 152 m away from the station
as shown in Fig. If velocity of sound in air is
$v=300 \frac{m}{s}$. calculate frequency of the pulse heard by driver of train B.

D Watch Video Solution

43. The sound level at a distance of 3.00 m
from a source is 120 dB . At what distance will the sound level be (a) 100 dB and (b) 10.0 dB ?
44. A student holds a tuning fork ocillating at

2456 Hz . He walks towards a wall at a constant
speed of $1.33 \frac{\mathrm{~m}}{\mathrm{~s}}$. (a) What beat frequency does the student observes between the tuning fork and its echo? (b) How fast must he walk away from the wall to observe a beat frequency of 5.00 Hz ?
45. Two train whistles have identical
frequencies of 180 Hz . When one train is at rest in the station and the other is moving nearby, a passenger standing on the station platform hears beats with a frequency of 2.00 beats/s when the shistles operate together.

What are the two possible speeds and direction the moving train can have? speed of sound is $343 \mathrm{~m} / \mathrm{s}$.
46. When a train is approaching the observer, the frequency of the whistle is 100 cps . When it has passed observer, it is 50 cps . Calculate the frequncy when the observer moves with the train.

D Watch Video Solution

47.

A source S emitting sound of 300 Hz is fixed of block A which is attached to free end of a
spring S_{A} as shown in the figure. The detector

D fixed on block B attached to the free end of spring S_{B} detects this sound.

The blocks A and B are simultaneously displaced towards each other through of 1.0 m and then left to vibrate. Find the maximum and minimum frequencies of sound detected by D if the vibrational frequency of each block is 2 Hz (velocity of sound is $340 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

48. The frequency of sound produced by a bell
is 500 Hz the velocity of the source relative to
still air is $60 \mathrm{~m} / \mathrm{s}$. An observer moves at $30 \mathrm{~m} / \mathrm{s}$
along the same line as the source. Calculate
the frequency of sound wave measured by the observer. Consider all possible cases (speed of sound $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.)
49. An observer standing on a railway crossing receives frequencies 2.2 kHz and 1.8 kHz when
the tran approaches and recedes from the observer. Find the velocity of the train (speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

50. A source of sound is moving along a circular orbit of radius 3 m with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$. A sound detector located
far away from the source is executing linear
S.H.M. along the line BD (see Fig. 14.4.13) with
an amplitude $B C=C D=6 m$. The frequency of oscillation of the detector is $5 / \pi$ per second.

The source is at the point BA when the detector is at the point B. If the source epiits a continuous sound wave of frequency 340 Hz , find the maximum and the minimum frequencies recorded by the detector.

51. Two tuning forks with natural frequencies

340 Hz each move relative to a stationary
observer. One fork moves away from the observer, while the other moves towards the observer at the same speed. The observer hears beats of frequency 3 Hz . Find the speed of the tuning forks (speed of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$).
52. A band playing music at a frequency v is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed v_{m}.If v is the speed of sound, the expression for the beat frequency heard by the motorist is

- Watch Video Solution

53. A boat is travelling in a river with a speed
$10 \mathrm{~m} / \mathrm{s}$ along with stream flowing $2 \mathrm{~m} / \mathrm{s}$. From
this boat, a sound transmitter is lowered into
the river through a rigid support. The
wavelength of the sound emitted from the transmitter inside the water is 14.45 mm .

Assume that attenuation of sound in water and air is negligible.
(a) What will be the frequency detected by a receiver kept inside the river downstream?
(b) The transmitter and the receiver are now pulled up into air. the air is blowing with a speed $5 m / s$ in the direction opposite the river stream. Determine the frequency of the sound detected by the receiver.
(Temperature of the air and water $=20^{\circ} C$,
Density of river water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$,
Bulk modulus of the water $=2.088 \times 10^{9} \mathrm{~Pa}$, gas constant $R=8.31 J / m o l-K$,

Mean molecular mass of air
$=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}, \quad C_{P} / C_{V} \quad$ for \quad air

$=1.4)$

D Watch Video Solution

54. A sonometer wire under tension of 63 N vibrating in its fundamental mode is in
resonance with a vibrating tuning fork. The vibrating portion of that sonometer wire has a length of 10 cm and a mass of 1 g . The vibrating tuning fork isnow moved away from the vibrating wire with a constant speed and an observer standing near the sonometer hears one beat per second. Calculate the speed with which the tuning fork is moved if the pseed of sound in air is $300 \mathrm{~m} / \mathrm{s}$.
55. A train approaching a hill at a speed of 40 km / h sounds a whistle of frequency 580 Hz when it is at a distance of 1 km from the hill. A wind with a speed of $40 \mathrm{~km} / \mathrm{h}$ is blowing in the direction of motion of the train. Find the frequency of the whitle as heard by an observer on the hill.

- Watch Video Solution

56.

A train A crosses a station with a speed of 40 m / s and whitles a short pulse of natural frequency $n_{0}=596 \mathrm{~Hz}$ another train B is approaching towards the same station with
the same speed along a parallel track, Two track are $d=99 m$ apart. When train A whistles. train B is 152 m away from the station
as shown in Fig. If velocity of sound in air is
$v=300 \frac{m}{s}$. calculate frequency of the pulse heard by driver of train B.

D Watch Video Solution

Exercise 6.1

1. Do displacement particle velocity and pressure variation in a longitudinal wave vary with the same phase?
2. Why is sound wave of intensity $10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$ and frequency 1000 Hz taken as the standard
for expressing the intensity level of all other sound waves?

- Watch Video Solution

3. What experimental evidence can be cited to
show that the speed of sound is the same for all wavelengths?
4. Explain why the speed of sound through a gas cannot be greater than the r.m.s. speed of the molecules of the gas.

D Watch Video Solution

5. Sound is more cleary heard with the wind How?

D Watch Video Solution

6. "When one person hammers at one end of a metal pipe, ifa listener places his ear at the other end of the pipe, two distinct sounds are heard." Why?.

D Watch Video Solution

7. Does the velocity of sound in a solid increase significantly on heating the solid?
8. A man stands on the ground at a fixed distance from a siren which emits sound of fixed amplitude. The man hears the sound to be louder on a clear night than on a clear day.

D Watch Video Solution

9. Two sound waves from two different sources
interfere at a point to yield a sound of varying
intensity. The intensity level between the maximum and minimum is 20 dB . What is the ratio of the intensities of the individual waves?
10. A sound differs by 6 dB from a sound of intensity equal to $10 \frac{n W}{\mathrm{~cm}^{2}}$. Find the absolute value of intensity of the sound.

- Watch Video Solution

11. Find the molecular weight for a gas in which the velocity of sound is $1260 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $0^{\circ} \mathrm{C}$ and whose γ is 1.4.

Watch Video Solution

12.7 g of nitrogen is mixed with 12 g of oxygen in a tube and then sealed. Calculate the velocity of sound through the tube at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

13. Calculate the increase in velocity of sound for $1^{\circ} \mathrm{C}$ rise of temperature if the velocity of sound at $0^{\circ} C$ is $332 \mathrm{~m} / \mathrm{s}$.
14. If the sound level in a room is increased from 50 dB to 60 dB , by what factor is the pressure amplitude increased ?

D Watch Video Solution

15. Do displacement, particle velocity and pressure variation in a longitudinal wave vary with the same phase?
16. Why is sound wave of intensity $10^{-12} \frac{W}{m^{2}}$ and frequency 1000 Hz taken as the standard for expressing the intensity level of all other sound waves?

D Watch Video Solution

17. What experimental evidence can be cited to
show that the speed of sound is the same for all wavelengths?
18. Explain why the speed of sound through a gas cannot be greater than the r.m.s. speed of the molecules of the gas.

D Watch Video Solution

19. Sound is more clearly heard with the wind How?
20. Explain: if an observer places his ear to one end of a long iron pipe line, he can distinctly
hear two sounds when a man hammers the other end of the pipeline.

- Watch Video Solution

21. Does the velocity of sound in a solid increase significantly on heating the solid?

- Watch Video Solution

22. A man stands on the ground at a fixed distance from a siren which emits sound of fixed amplitude. The man hears the sound to be louder on a clear night than on a clear day.

D Watch Video Solution

23. Two sound waves from two different
sources interfere at a point to yield a sound of
varying intensity. The intensity level between
the maximum and minimum is 20 dB . What is
the ratio of the intensities of the individual waves?

- Watch Video Solution

24. A sound differs by 6 dB from a sound of intensity equal to $10 \frac{\mathrm{nW}}{\mathrm{cm}^{2}}$. Find the absolute value of intensity of the sound.

D Watch Video Solution
25. Find the molecular weight for a gas in which the velocity of sound is $1260 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $0^{\circ} \mathrm{C}$ and whose γ is 1.4.

D Watch Video Solution

26. Seven grams of nitrogen is mixed with 12 g of oxygen in a tube and then sealed. Calculate
the velocity of sound through the tube at $27^{\circ} C$.
27. Calculate the increae velocity of sound for $1^{\circ} C$ rise of temperature if the velocity of sound at $0^{\circ} \mathrm{C}$ is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.

- Watch Video Solution

28. If the sound level in a room is increased
from 50 dB to 60 dB , by what factor is the pressure amplitude increased ?
29. Do displacement particle velocity and pressure variation in a longitudinal wave vary with the same phase?

D Watch Video Solution

30. Why is sound wave of intensity $10^{-12} \frac{W}{m^{2}}$ and frequency 1000 Hz taken as the standard
for expressing the intensity level of all other sound waves?
31. What experimental evidence can be cited to
show that the speed of sound is the same for all wavelengths?

D Watch Video Solution

32. Explain why the speed of sound through a gas cannot be greater than the r.m.s. speed of the molecules of the gas.
33. Sound is more cleary heard with the wind How?

D Watch Video Solution

34. Explain: if an obeserver places hisear to
one end of a long iron pipe line, he can
distinctly hear two sounds when a work man
hammers the other end of the pipeline.
35. Does the velocity of sound in a solid increase significantly on heating the solid?

- Watch Video Solution

36. A man stands on the ground at a fixed distance from a siren which emits a clear sound dirung night that during day. Explain Why?
37. Two sound waves from two different sources interfere at a point to yield a sound of
varying intensity. The intensity level between
the maximum and minimum is 20 dB . What is
the ratio of the intensities of the individual waves?

D Watch Video Solution

38. A sound differs by 6 dB from a sound of intensity equal to $10 \frac{\mathrm{nW}}{\mathrm{cm}^{2}}$. Find the absolute value of intensity of the sound.

Watch Video Solution

39. Find the molecular weight for a gas in which the velocity of sound is $1260 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $0^{\circ} \mathrm{C}$ and whose γ is 1.4 .

- Watch Video Solution

40. Seven grams of nitrogen is mixed with 12 g of oxygen in a tube and then sealed. Calculate the velocity of sound through the tube at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

41. Calculate the increase velocity of sound for
$1^{\circ} C$ rise of temperature if the velocity of sound at $0^{\circ} \mathrm{C}$ is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.

- Watch Video Solution

42. If the sound level in a room is increased
from 50 dB to 60 dB , by what factor is the pressure amplitude increased ?

Watch Video Solution

43. Do displacement particle velocity and pressure variation in a longitudinal wave vary with the same phase?

- Watch Video Solution

44. Why is sound wave of intensity $10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$ and frequency 1000 Hz taken as the standard
for expressing the intensity level of all other sound waves?
45. What experimental evidence can be cited to show that the speed of sound is the same for all wavelengths?

- Watch Video Solution

46. Explain why the speed of sound through a gas cannot be greater than the r.m.s. speed of the molecules of the gas.

Watch Video Solution

47. Sound is more cleary heard with the wind How?

D Watch Video Solution

48. Explain: if an obeserver places hisear to one end of a long iron pipe line, he can distinctly hear two sounds when a work man hammers the other end of the pipeline.
49. Does the velocity of sound in a solid increase significantly on heating the solid?

D Watch Video Solution

50. A man stands on the ground at a fixed distance from a siren which emits a clear sound dirung night that during day. Explain Why?
51. Two sound waves from two different sources interfere at a point to yield a sound of varying intensity. The intensity level between the maximum and minimum is 20 dB . What is the ratio of the intensities of the individual waves?
52. A sound differs by 6 dB from a sound of intensity equal to $10 \frac{\mathrm{nW}}{\mathrm{cm}^{2}}$. Find the absolute value of intensity of the sound.

D Watch Video Solution

53. Find the molecular weight for a gas in which the velocity of sound is $1260 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $0^{\circ} \mathrm{C}$ and whose γ is 1.4.

- Watch Video Solution

54. Seven grams of nitrogen is mixed with 12 g of oxygen in a tube and then sealed. Calculate the velocity of sound through the tube at $27^{\circ} C$.

- Watch Video Solution

55. Calculate the increae velocity of sound for
$1^{\circ} C$ rise of temperature if the velocity of
sound at $0^{\circ} C$ is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
56. If the sound level in a room is increased
from 50 dB to 60 dB , by what factor is the pressure amplitude increased ?

- Watch Video Solution

Exercise 6.2

1. A person riding on a merry go round emits a sound wave of a certain frequency Does a
person at the centre observe the Doppler effect?

D Watch Video Solution
2. Does the Doppler effect increase the intensity of wave when its source approaches
the observer?

- Watch Video Solution

3. The Doppler effect is a wave characteristic.

Light and sound are both wave motion. Is there any difference in the Doppler effect in light and sound?

- Watch Video Solution

4. Is there a Doppler effect in the case of
sound when the observer or the source moves
at right angles to the line joining them? How
then can we determine the Doppler effect
when the motion has a component at right angles to this line?

D Watch Video Solution

5. A source moves away from an obeserver with a certain speed, and the ratio of actual to
the apparent frequency as heard by the observer in η. If the two approach each other with the same speed, then find the ratio.
6. An engine blowing a whistle of frequency

133 Hz moves with a velocity of $60 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards
a hill from which an echo is heard. Calculate the frequency of the echo heard by the driver.
(velocity of sound in air in $340 \frac{\mathrm{~m}}{\mathrm{~s}}$.)

- Watch Video Solution

7. A source emits sound waves of frequency
$1000 H_{Z}$. The source moves to the right with a speed of $32 \mathrm{~m} / \mathrm{s}$ relative to ground. On the right a reflecting surface moves towards left
with a speed of $64 m / s$ relative to the ground.

The speed of sound in air is $332 m / s$. Find
(a) the wavelength of sound in aheed of the source,
(b) the number of waves arriving per second which meets the reflecting surface,
(c) the speed of reflected waves and (d) the wavelength of reflected waves.

D Watch Video Solution

8. A stationary source emits sound of frequency
$v=1200 \mathrm{~Hz}$. If a wind blows at the speed of 0.1c deduce (i) the percentage change in the wavelength and (ii) the change in the frequency for a stationary observer on the wind side of the source. What happens when there is no wind, but the observer moves at speed 0.1c towards the source?
9. A stationary observer receives sonic oscillations from two tuning forks one of which approaches and the other recedes with
the same velocity. As this takes place, the observer hears the beats of frequency $f=2.0 H_{Z}$. Find the velocity of each tuning fork if their oscillation frequency is $f_{o}=680 H_{Z}$ and the velocity of sound in air is $v=340 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

10. A stationary source sends forth
monochromatic sound. A wall approaches it
with velocity $33 \mathrm{~cm} / \mathrm{s}$. The propagation velocity
of sound in the medium is $c=330 \frac{m}{s}$. How
much, in per cent, does the wavelength of
sound change on reflection from the wall?

D Watch Video Solution

11. A source of sound with frequency 1000 Hz moves at right angles to a wall with a velocity
$u=17 \frac{\mathrm{~cm}}{\mathrm{~s}}$. Two stationary receivers R_{1} and
R_{2} are located on a straight line coinciding with the path of the source in the following succession: $\quad R_{1} \rightarrow$ source R_{2} wall. Which receiver registers beating and what is the beat frequency? The velocity of sound is $c=340 \frac{\mathrm{~m}}{\mathrm{~s}}$

D Watch Video Solution

12. A whitle of frequency 540 Hz rotates in a horizontal circle of radius 2 m at an angular
speed of $15 \frac{r a d}{\mathrm{~s}}$. What is the lowest and the highest frequency heard by a listener a long distance away at rest with respect to the centre of the circle? (Velocity of sound in air is
$\left.c=330 \frac{m}{s}.\right)$

D Watch Video Solution

13. A bat flies perpendicularly towards a wall
with a speed of $6 \mathrm{~m} / \mathrm{s}$, emitting sound of frequency 450 kHz . What is the frequency of
the wave reflected from the wall that it will hear? Given $c=340 \mathrm{~m} / \mathrm{s}$?

D Watch Video Solution

14. The ratio of the apparent frequencies of a car when approaching and receding a stationary observer is 11:9 What is the speed of the car, if the velocity of sound in air is 330 m / s ?
15. A whistle emitting a sound of frequency

440 Hz is tied to a string of 1.5 m length and roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in the horizontal plane. Calculate the range of frequencies heard by an observer stationed at a larger distance from the whistle .(Speed of sound $=330 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

16. A siren emitting a sound of frequency 2000

Hz moves away from you towards a cliff at a
speed of $8 \mathrm{~m} / \mathrm{s}$.
(a) What is the frequency of the sound you hear coming directly from the siren.
(b) What is the frequency of sound you hear reflected off the cliff. Speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

17. A railroad train is travelling at $30 \mathrm{~m} / \mathrm{s}$ in
still air. The frequency of the note emitted by
locomotive whitle is 500 Hz . What is the
frequency of the sound waves heard by a stationary listener (a) in front of the train and
(b) behind the train? (speed of sound is $345 \mathrm{~m} / \mathrm{s}$.)

D Watch Video Solution

18. Two tuning forks A and B having a
frequency of 500 Hz each are placed with B to
the right of A. An observer in between the
forks in moving towards B with a speed of 25
m / s. The speed of sound is $345 \mathrm{~m} / \mathrm{s}$ and the
wind speed is $5 \mathrm{~m} / \mathrm{s}$ from A to B. Calculate the difference in the two frequencies heard by observer.

D Watch Video Solution

19. A person riding on a merry go round emits
a sound wave of a certain frequency Does a person at the centre observe the Doppler effect?

- Watch Video Solution

20. Does the Doppler effect increase the intensity of wave when its source approaches the observer?

- Watch Video Solution

21. The Doppler effect is a wave characteristic.

Light and sound are both wave motion. Is
there any difference in the Doppler effect in
light and sound?

D Watch Video Solution
22. Is there a Doppler effect in the case of sound when the observer or the source moves at right angles to the line joining them? How then can we determine the Doppler effect when the motion has a component at right angles to this line?

- Watch Video Solution

23. A source moves away from an obeserver with a certain speed, and the ratio of actual to
the apparent frequency as heard by the observer in η. If the two approach each other with the same speed, then find the ratio.

D Watch Video Solution

24. An engine blowing a whistle of frequency

133 Hz moves with a velocity of $60 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards
a hiss from which an echo is heard. Calculate
the frequency of the echo heard by the driver.
(velocity of sound in air in $340 \frac{\mathrm{~m}}{\mathrm{~s}}$.)
25. A source emits sound waves of frequency
$1000 H_{Z}$. The source moves to the right with a speed of $32 m / s$ relative to ground. On the right a reflecting surface moves towards left with a speed of $64 m / s$ relative to the ground.

The speed of sound in air is $332 \mathrm{~m} / \mathrm{s}$. Find
(a) the wavelength of sound in aheed of the source,
(b) the number of waves arriving per second which meets the reflecting surface,
(c) the speed of reflected waves and
(d) the wavelength of reflected waves.

D Watch Video Solution

26. A stationary source emits sound of frequency
$v=1200 H z$. If a wind blows at the speed of
0.1c deduce (i) the percentage change in the wavelength and (ii) the change in the frequency for a stationary observer on the wind side of the source. What happens when
there is no wind, but the observer moves at speed 0.1c towards the source?

D Watch Video Solution

27. A stationary observer receives sound waves
from two tuning forks, one of which approaches and the other recedes with the
same velocity. As this takes place, the observer hears beats of frequency $v=2 H z$. Find the velocity of each tuning fork if their oscillation
frequency is $v_{0}=680 \mathrm{~Hz}$ and the velocity of sound in air is $v_{s}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

28. A stationary source sends forth monochromatic sound. A wall approaches it with velocity $33 \mathrm{~cm} / \mathrm{s}$. The propagation velocity of sound in the medium is $c=330 \frac{m}{s}$. How much, in per cent, does the wavelength of sound change on reflection from the wall?
29. A source of sonic oscillations with
frequency $v_{0}=100 \mathrm{~Hz}$ moves at right angles
to the wall with a velocity $u=0.17 \mathrm{~m} / \mathrm{s}$. Two
stationary receivers R_{1} and R_{2} are located on
a straight line, coinciding with the trajectory of the source, in the following succession :
$R_{1}-$ source $-R_{2}-$ wall. Which receiver
registers the beatings and what is the beat frequency? The velocity of sound is equal to $v=340 m / s$.
30. A whistle of frequency 540 Hz rotates in a horizontal circle of radius 2 m at an angular speed of $15 \frac{\mathrm{rad}}{\mathrm{s}}$. What is the lowest and the highest frequency heard by a listener a long distance away at rest with respect to the centre of the circle? (Velocity of sound in air is
$\left.c=330 \frac{m}{s}.\right)$

- Watch Video Solution

31. A bat flies perpendicularly towards a wall with a speed of $6 \mathrm{~m} / \mathrm{s}$, emitting sound of frequency 450 kHz . What is the frequency of the wave reflected from the wall that it will hear? Given $c=340 \frac{\mathrm{~m}}{\mathrm{~s}}$?

- Watch Video Solution

32. The ratio of the apparent frequencies of a
car when approaching and receding a stationary observer is 11:9 What is the speed
of the car, if the velocity of sound in air is 330 m / s ?

- Watch Video Solution

33. A whistle emitting a sound of frequency

440 Hz is tied to a string of 1.5 m length and roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in
the horizontal plane. Calculate the range of frequencies heard by an observer stationed at a larger distance from the whistle .(Speed of sound $=330 \mathrm{~m} / \mathrm{s}$).
34. A siren emitting a sound of frequency 2000 Hz moves away from you towards a cliff at a speed of $8 \mathrm{~m} / \mathrm{s}$.
(a) What is the frequency of the sound you hear coming directly from the siren.
(b) What is the frequency of sound you hear reflected off the cliff. Speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.
35. A railroad train is travelling at $30 \mathrm{~m} / \mathrm{s}$ in
still air. The frequency of the note emitted by locomotive whistle is 500 Hz . What is the frequency of the sound waves heard by a stationary listener (a) in front of the train and
(b) behind the train? (speed of sound is $345 \mathrm{~m} / \mathrm{s}$.)

- Watch Video Solution

36. Two tuning forks A and B having a frequency of 500 Hz each are placed with B to
the right of A. An observer in between the forks in moving towards B with a speed of 25 m / s. The speed of sound is $345 \mathrm{~m} / \mathrm{s}$ and the wind speed is $5 \mathrm{~m} / \mathrm{s}$ from A to B. Calculate the difference in the two frequencies heard by observer.

D Watch Video Solution

37. A person riding on a merry go round emits
a sound wave of a certain frequency Does a
person at the centre observe the Doppler effect?

D Watch Video Solution
38. Does the Doppler effect increase the intensity of wave when its source approaches
the observer?

D Watch Video Solution
39. The Doppler effect is a wave characteristic.

Light and sound are both wave motion. Is there any difference in the Doppler effect in light and sound?

- Watch Video Solution

40. Is there a Doppler effect in the case of
sound when the observer or the source moves
at right angles to the line joining them? How
then can we determine the Doppler effect
when the motion has a component at right angles to this line?

D Watch Video Solution

41. A source moves away from an obeserver with a certain speed, and the ratio of actual to
the apparent frequency as heard by the observer in η. If the two approach each other with the same speed, then find the ratio.
42. An engine blowing a whistle of frequency

133 Hz moves with a velocity of $60 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards
a wall from which an echo is heard. Calculate
the frequency of the echo heard by the driver.
(velocity of sound in air in $340 \frac{\mathrm{~m}}{\mathrm{~s}}$.)

- Watch Video Solution

43. A source emits sound waves of frequency
$1000 H_{Z}$. The source moves to the right with a speed of $32 \mathrm{~m} / \mathrm{s}$ relative to ground. On the right a reflecting surface moves towards left
with a speed of $64 m / s$ relative to the ground.

The speed of sound in air is $332 m / s$. Find
(a) the wavelength of sound in aheed of the source,
(b) the number of waves arriving per second which meets the reflecting surface,
(c) the speed of reflected waves and (d) the wavelength of reflected waves.

D Watch Video Solution

44. A stationary source emits sound of frequency
$v=1200 \mathrm{~Hz}$. If a wind blows at the speed of 0.1c deduce (i) the percentage change in the wavelength and (ii) the change in the frequency for a stationary observer on the wind side of the source. What happens when there is no wind, but the observer moves at speed 0.1c towards the source?
45. A stationary observer receives sonic oscillations from two tuning forks one of which approaches and the other recedes with
the same velocity. As this takes place, the observer hears the beats of frequency $f=2.0 H_{Z}$. Find the velocity of each tuning fork if their oscillation frequency is $f_{o}=680 H_{Z}$ and the velocity of sound in air is $v=340 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

46. A stationary source sends forth
monochromatic sound. A wall approaches it
with velocity $33 \mathrm{~cm} / \mathrm{s}$. The propagation velocity
of sound in the medium is $c=330 \frac{m}{s}$. How
much, in per cent, does the wavelength of
sound change on reflection from the wall?

D Watch Video Solution

47. A source of sonic oscillations with
frequency $v_{0}=100 H z$ moves at right angles
to the wall with a velocity $u=0.17 \mathrm{~m} / \mathrm{s}$. Two
stationary receivers R_{1} and R_{2} are located on
a straight line, coinciding with the trajectory
of the source, in the following succession :
$R_{1}-$ source $-R_{2}-$ wall. Which receiver
registers the beatings and what is the beat frequency? The velocity of sound is equal to $v=340 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

48. A whistle of frequency 540 Hz rotates in a
horizontal circle of radius 2 m at an angular speed of $15 \frac{\mathrm{rad}}{\mathrm{s}}$. What is the lowest and the highest frequency heard by a listener a long distance away at rest with respect to the centre of the circle? (Velocity of sound in air is
$\left.c=330 \frac{\mathrm{~m}}{\mathrm{~s}}.\right)$

D Watch Video Solution

49. A bat flies perpendicularly towards a wall with a speed of $6 \mathrm{~m} / \mathrm{s}$, emitting sound of frequency 450 kHz . What is the frequency of the wave reflected from the wall that it will hear? Given $c=340 \frac{\mathrm{~m}}{\mathrm{~s}}$?

- Watch Video Solution

50. The ratio of the apparent frequencies of a
car when approaching and receding a stationary observer is 11:9 What is the speed
of the car, if the velocity of sound in air is 330 m / s ?

- Watch Video Solution

51. A whistle emitting a sound of frequency

440 Hz is tied to a string of 1.5 m length and roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in
the horizontal plane. Calculate the range of frequencies heard by an observer stationed at a larger distance from the whistle .(Speed of sound $=330 \mathrm{~m} / \mathrm{s}$).
52. A siren emitting a sound of frequency 2000 Hz moves away from you towards a cliff at a speed of $8 \mathrm{~m} / \mathrm{s}$.
(a) What is the frequency of the sound you hear coming directly from the siren.
(b) What is the frequency of sound you hear reflected off the cliff. Speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.
53. A railroad train is travelling at $30 \mathrm{~m} / \mathrm{s}$ in
still air. The frequency of the note emitted by locomotive whitle is 500 Hz . What is the frequency of the sound waves heard by a stationary listener (a) in front of the train and
(b) behind the train? (speed of sound is $345 \mathrm{~m} / \mathrm{s}$.)

- Watch Video Solution

54. Two tuning forks A and B having a frequency of 500 Hz each are placed with B to
the right of A. An observer in between the forks in moving towards B with a speed of 25 m / s. The speed of sound is $345 \mathrm{~m} / \mathrm{s}$ and the wind speed is $5 \mathrm{~m} / \mathrm{s}$ from A to B. Calculate the difference in the two frequencies heard by observer.

D Watch Video Solution

55. A person riding on a merry go round emits
a sound wave of a certain frequency Does a
person at the centre observe the Doppler effect?

- Watch Video Solution

56. Does the Doppler effect increase the intensity of wave when its source approaches
the observer?

- Watch Video Solution

57. The Doppler effect is a wave characteristic.

Light and sound are both wave motion. Is there any difference in the Doppler effect in light and sound?

- Watch Video Solution

58. Is there a Doppler effect in the case of sound when the observer or the source moves at right angles to the line joining them? How then can we determine the Doppler effect
when the motion has a component at right angles to this line?

D Watch Video Solution

59. A source moves away from an obeserver with a certain speed, and the ratio of actual to
the apparent frequency as heard by the observer in η. If the two approach each other with the same speed, then find the ratio.
60. An engine blowing a whistle of frequency

133 Hz moves with a velocity of $60 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards
a hiss from which an echo is heard. Calculate
the frequency of the echo heard by the driver.
(velocity of sound in air in $340 \frac{\mathrm{~m}}{\mathrm{~s}}$.)

- Watch Video Solution

61. A source emits sound waves of frequency
$1000 H_{Z}$. The source moves to the right with a speed of $32 \mathrm{~m} / \mathrm{s}$ relative to ground. On the right a reflecting surface moves towards left
with a speed of $64 m / s$ relative to the ground.

The speed of sound in air is $332 m / s$. Find
(a) the wavelength of sound in aheed of the source,
(b) the number of waves arriving per second which meets the reflecting surface,
(c) the speed of reflected waves and (d) the wavelength of reflected waves.

D Watch Video Solution

62. A stationary source emits sound of frequency
$v=1200 \mathrm{~Hz}$. If a wind blows at the speed of 0.1c deduce (i) the percentage change in the wavelength and (ii) the change in the frequency for a stationary observer on the wind side of the source. What happens when
there is no wind, but the observer moves at speed 0.1c towards the source?
63. A stationary observer receives sound waves
from tow tuning forks, one of which approaches and the other recedes with the same velocity. As this takes place, the observer hears beats of frequency $v=2 H z$. Find the velocity of each tuning fork if their oscillation
frequency is $v_{0}=680 \mathrm{~Hz}$ and the velocity of sound in air is $v_{s}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

64. A stationary source sends forth
monochromatic sound. A wall approaches it
with velocity $33 \mathrm{~cm} / \mathrm{s}$. The propagation velocity
of sound in the medium is $c=330 \frac{m}{s}$. How
much, in per cent, does the wavelength of
sound change on reflection from the wall?

D Watch Video Solution

65. A source of sound with frequency 1000 Hz
moves at right angles to a wall with a velocity
$u=17 \frac{\mathrm{~cm}}{\mathrm{~s}}$. Two stationary receivers R_{1} and
R_{2} are located on a straight line coinciding
with the path of the source in the following
succession: $\quad R_{1} \rightarrow$ source R_{2} wall. Which
receiver registers beating and what is the beat
frequency? The velocity of sound is $c=340 \frac{\mathrm{~m}}{\mathrm{~s}}$

D Watch Video Solution

66. A whistle of frequency 540 Hz rotates in a
horizontal circle of radius 2 m at an angular
speed of $15 \frac{r a d}{\mathrm{~s}}$. What is the lowest and the highest frequency heard by a listener a long distance away at rest with respect to the centre of the circle? (Velocity of sound in air is
$\left.c=330 \frac{m}{s}.\right)$

D Watch Video Solution

67. A bat flies perpendicularly towards a wall
with a speed of $6 \mathrm{~m} / \mathrm{s}$, emitting sound of frequency 450 kHz . What is the frequency of
the wave reflected from the wall that it will hear? Given $c=340 \frac{m}{s}$?

D Watch Video Solution

68. The ratio of the apparent frequencies of a
car when approaching and receding a stationary observer is 11:9 What is the speed of the car, if the velocity of sound in air is 330 m / s ?
69. A whistle emitting a sound of frequency

440 Hz is tied to a string of 1.5 m length and roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in
the horizontal plane. Calculate the range of
frequencies heard by an observer stationed at
a larger distance from the whistle .(Speed of sound $=330 \mathrm{~m} / \mathrm{s}$).

D Watch Video Solution

70. A siren emitting a sound of frequency 2000 Hz moves away from you towards a cliff at a
speed of $8 \mathrm{~m} / \mathrm{s}$.
(a) What is the frequency of the sound you hear coming directly from the siren.
(b) What is the frequency of sound you hear reflected off the cliff. Speed of sound in air is $330 \frac{m}{s}$.

D Watch Video Solution

71. A railroad train is travelling at $30 \mathrm{~m} / \mathrm{s}$ in
still air. The frequency of the note emitted by
locomotive whitle is 500 Hz . What is the
frequency of the sound waves heard by a stationary listener (a) in front of the train and
(b) behind the train? (speed of sound is $345 \mathrm{~m} / \mathrm{s}$.)

D Watch Video Solution

72. Two tuning forks A and B having a
frequency of 500 Hz each are placed with B to
the right of A. An observer in between the
forks in moving towards B with a speed of 25
m / s. The speed of sound is $345 \mathrm{~m} / \mathrm{s}$ and the
wind speed is $5 \mathrm{~m} / \mathrm{s}$ from A to B. Calculate the difference in the two frequencies heard by observer.

D Watch Video Solution

Subjective

1. In a car race sound signals emitted by two
cars are detected by the detector on the
straight track at the end point of the race.

Frequency observer is 330 Hz and 360 Hz and
the original frequency is 300 Hz of both cars.

Race ends with the separation of 100 m between the cars. Assume both cars move with constant velocity and velocity of sound is $330 \frac{m}{s}$. Find the time taken by wining car.

D Watch Video Solution

2. Airport authority has made the regulation
that maximum allowable intensity level detected by a microphone situated at the end of 1630 m long runway can be 100 dB . An
aeroplane when flying at a height of 200 m produces an intensity level of 100 dB on ground. while taking off, this aeroplane makes an angle of 30° with horizontal. Find the maximum distance this aeroplane can cover on the runway, so that the regulation are not violated (assume no reflection).

D Watch Video Solution

3. (a) The power of sound from the speaker of
a radio is 20 mW . By turning the knob of
volume control the power of sound is increased to 400 mW , What is the power increase in $d B$ as compared to original power?
(b) How much more intense is an 80 dB sound than a 20 dB whisper?

D Watch Video Solution

4. The sound level at a point is increased by 30 dB. What is factor is the pressure amplitude increased?
5. What is the maximum possible sound level in $d B$ of sound waves in air? Given that density
of air is $1.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, v=332 \frac{\mathrm{~m}}{\mathrm{~s}}$ and atmospheric
pressure $P=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.

D Watch Video Solution

6. A window whose area is $2 m^{2}$ opens on
street where the street noise result in an
intensity level at the window of 60 dB . How much acoustic power enters the window via
sound waves. Now if an acoustic absorber is
fitted at the window, how much energy from street will it collect in 5 h ?

D Watch Video Solution

7.

Two
tuning forks A and B are vibrating at the same frequency 256 Hz . A listener is standing
midway between the forks. If both tuning forks move to the right with a velocity of $5 \frac{m}{s}$, find the number of beats heard per second by the listerner (speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$).

D Watch Video Solution

8. A driver in a stationary car blows a horn
which produces monochromatic sound waves
of freqeuncy 1000 Hz normally towards a
reflecting wall. The wall approaches the car
with a speed of $3.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Watch Video Solution

9. The speed of sound in hydrogen gas at certain temperature is $\mathrm{v} \frac{\mathrm{m}}{\mathrm{s}}$ Find the speed of sound in a gaseous mixture containing 2 moles of oxygen and 1 mole of hydrogen gas, at the same temperature. Assume the gases do no react at the ordinary temperature.

- Watch Video Solution

10. A source of sound of frequency 256 Hz moves rapidly towards a wall with a velocity of
$5 m s^{-1}$. How many beats per second will be heard if sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$?

D Watch Video Solution

11. A vibrating tuning fork tied to the end of a
string 1.988 m long is whirled round a circle. If it makes two revolutions in a second, calculate the ratio of the frequencies of the highest and
the lowest notes heard by an observer situated in the plane of the tuning fork. Valocity of sound is $350 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

12. A source of sonic oscillations with
frequency $n=1700 \mathrm{~Hz}$ and a receiver are
located on the same normal to a wall. Both the source and receiver are stationary, and the
wall recedes from the source with velocity
$u=6.0 \frac{m}{s}$. Find the beat frequency
registered by the receiver. The velocity of sound is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

13. A locomotive approaching a crossing at a speed of $80 \mathrm{mi} / \mathrm{h}$ sounds a whistle of frequency 400 Hz when 1 mi from the crossing.

There is no wind, and the speed of sound in air is $0.200 \mathrm{mi} / \mathrm{s}$. What frequency is heard by an observer 0.60 mi from the crossing on the
straight road which crosses the railroad at right angles?

D Watch Video Solution

14. A whistle of frequency 540 Hz is moving in
a circle of radius 2 ft at a constant angular speed of $15 \mathrm{rad} / \mathrm{s}$. What are the lowest and highest frequencies heard by a listener standing at rest, a long distance away from the centre of the circle? (Velocity of sound in air is $1100 \mathrm{ft} / \mathrm{s}$)
15. In a car race sound signals emitted by two
cars are detected by the detector on the straight track at the end point of the race.

Frequency observer is 330 Hz and 360 Hz and the original frequency is 300 Hz of both cars.

Race ends with the separation of 100 m between the cars. Assume both cars move with constant velocity and velocity of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the time taken by wining car.
16. Airport authority has made the regulation that maximum allowable intensity level detected by a microphone situated at the end of 1630 m long runway can be 100 dB . An aeroplane when flying at a height of 200 m produces an intensity level of 100 dB on ground. while taking off, this aeroplane makes an angle of 30° with horizontal. Find the maximum distance this aeroplane can cover on the runway, so that the regulation are not violated (assume no reflection).

- Watch Video Solution

17. (a) The power of sound from the speaker of a radio is 20 mW . By turning the knob of volume control the power of sound is increased to 400 mW , What is the power increase in dB as compared to original power?
(b) How much more intense is an 80 dB sound than a 20 dB whisper?

- Watch Video Solution

18. The sound level at a point is increased by

30 dB . What is factor is the pressure amplitude increased?

D Watch Video Solution

19. What is the maximum possible sound level
in $d B$ of sound waves in air? Given that density
of air is $1.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, v=332 \frac{\mathrm{~m}}{\mathrm{~s}}$ and atmospheric pressure $P=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.
20. A window whose area is $2 m^{2}$ opens on street where the street noise result in an intensity level at the window of 60 dB . How much acoustic power enters the window via sound waves. Now if an acoustic absorber is
fitted at the window, how much energy from street will it collect in 5 h ?

- Watch Video Solution

21.

Two
tuning forks A and B are vibrating at the same frequency 256 Hz . A listener is standing midway between the forks. If both tuning forks move to the right with a velocity of $5 \frac{\mathrm{~m}}{\mathrm{~s}}$, find the number of beats heard per second by the listerner (speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$).

22.
driver in a stationary car horns which
produces monochromatic sound waves of
frequency $n=1000 H z$, normally towards a
reflecting wall. If the wall approaches the car
will a velocity $u=3.3 \frac{m}{s}$, calculate the
frequency of sound reflected from wall and
heard by the driver. What is the percentage
change of sound frequency of reflection from the wall?

D Watch Video Solution

23. The speed of sound in hydrogen gas at certain temperature is $\mathrm{v} \frac{m}{s}$ Find the speed of sound in a gaseous mixture containing 2 moles of oxygen and 1 mole of hydrogen gas, at the same temperature. Assume the gases do no react at the ordinary temperature.
24. A source of sound of frequency 256 Hz moves rapidly towards a wall with a velocity of
$5 m s^{-1}$. How many beats per second will be heard if sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$?

- Watch Video Solution

25. A vibrating tuning fork tied to the end of a string 1.988 m long is whirled round a circle. If it makes two revolutions in a second, calculate the ratio of the frequencies of the highest and
the lowest notes heard by an observer situated in the plane of the tuning fork. Valocity of sound is $350 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

26. A source of sonic oscillations with
frequency $n=1700 \mathrm{~Hz}$ and a receiver are
located on the same normal to a wall. Both the source and receiver are stationary, and the
wall recedes from the source with velocity
$u=6.0 \frac{m}{s}$. Find the beat frequency
registered by the receiver. The velocity of sound is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

27. A locomotive approaching a crossing at a speed of $80 \mathrm{mi} / \mathrm{h}$ sounds a whistle of frequency 400 Hz when 1 mi from the crossing.

There is no wind, and the speed of sound in air is $0.200 \mathrm{mi} / \mathrm{s}$. What frequency is heard by an observer 0.60 mi from the crossing on the
straight road which crosses the railroad at right angles?

D Watch Video Solution

28. A whistle of frequency 540 Hz is moving in
a circle of radius 2 ft at a constant angular speed of $15 \mathrm{rad} / \mathrm{s}$. What are the lowest and highest frequencies heard by a listener standing at rest, a long distance away from the centre of the circle? (Velocity of sound in air is $1100 \mathrm{ft} / \mathrm{s}$)
29. In a car race sound signals emitted by two
cars are detected by the detector on the straight track at the end point of the race.

Frequency observer is 330 Hz and 360 Hz and the original frequency is 300 Hz of both cars.

Race ends with the separation of 100 m between the cars. Assume both cars move with constant velocity and velocity of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the time taken by wining car.
30. Airport authority has made the regulation
that maximum allowable intensity level
detected by a microphone situated at the end of 1630 m long runway can be 100 dB . An aeroplane when flying at a height of 200 m produces an intensity level of 100 dB on ground. while taking off, this aeroplane makes an angle of 30° with horizontal. Find the maximum distance this aeroplane can cover on the runway, so that the regulation are not violated (assume no reflection).

- Watch Video Solution

31. (a) The power of sound from the speaker of a radio is 20 mW . By turning the knob of volume control the power of sound is increased to 400 mW , What is the power increase in dB as compared to original power?
(b) How much more intense is an 80 dB sound than a 20 dB whisper?

- Watch Video Solution

32. The sound level at a point is increased by

30 dB . What is factor is the pressure amplitude increased?

D Watch Video Solution

33. What is the maximum possible sound level in $d B$ of sound waves in air? Given that density
of air is $1.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, v=332 \frac{\mathrm{~m}}{\mathrm{~s}}$ and atmospheric pressure $P=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.
34. A window whose area is $2 m^{2}$ opens on street where the street noise result in an intensity level at the window of 60 dB . How much acoustic power enters the window via sound waves. Now if an acoustic absorber is
fitted at the window, how much energy from street will it collect in 5 h ?

- Watch Video Solution

Two
tuning forks A and B are vibrating at the same frequency 256 Hz . A listener is standing midway between the forks. If both tuning forks move to the right with a velocity of $5 \frac{\mathrm{~m}}{\mathrm{~s}}$, find the number of beats heard per second by the listerner (speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$).

36.
driver in a stationary car horns which
produces monochromatic sound waves of
frequency $n=1000 H z$, normally towards a
reflecting wall. If the wall approaches the car
will a velocity $u=3.3 \frac{m}{s}$, calculate the
frequency of sound reflected from wall and
heard by the driver. What is the percentage
change of sound frequency of reflection from the wall?

D Watch Video Solution

37. The speed of sound in hydrogen gas at certain temperature is $v \frac{m}{s}$ Find the speed of sound in a gaseous mixture containing 2 moles of oxygen and 1 mole of hydrogen gas, at the same temperature. Assume the gases do no react at the ordinary temperature.

D Watch Video Solution

38. A source of sound of frequency 256 Hz moves rapidly towards a wall with a velocity of
$5 m s^{-1}$. How many beats per second will be heard if sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$?

D Watch Video Solution

39. A vibrating tuning fork tied to the end of a string 1.988 m long is whirled round a circle. If it makes two revolutions in a second, calculate the ratio of the frequencies of the highest and
the lowest notes heard by an observer situated in the plane of the tuning fork. Valocity of sound is $350 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

40. A source of sonic oscillations with
frequency $n=1700 \mathrm{~Hz}$ and a receiver are
located on the same normal to a wall. Both the source and receiver are stationary, and the
wall recedes from the source with velocity
$u=6.0 \frac{m}{s}$. Find the beat frequency
registered by the receiver. The velocity of sound is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

41. A locomotive approaching a crossing at a speed of $80 \mathrm{mi} / \mathrm{h}$ sounds a whistle of frequency 400 Hz when 1 mi from the crossing.

There is no wind, and the speed of sound in air is $0.200 \mathrm{mi} / \mathrm{s}$. What frequency is heard by an observer 0.60 mi from the crossing on the
straight road which crosses the railroad at right angles?

D Watch Video Solution

42. A whistle of frequency 540 Hz is moving in
a circle of radius 2 ft at a constant angular speed of $15 \mathrm{rad} / \mathrm{s}$. What are the lowest and highest frequencies heard by a listener standing at rest, a long distance away from the centre of the circle? (Velocity of sound in air is $1100 \mathrm{ft} / \mathrm{s}$)

Watch Video Solution

43. In a car race sound signals emitted by two
cars are detected by the detector on the straight track at the end point of the race.

Frequency observer is 330 Hz and 360 Hz and the original frequency is 300 Hz of both cars.

Race ends with the separation of 100 m between the cars. Assume both cars move with constant velocity and velocity of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the time taken by wining car.
44. Airport authority has made the regulation that maximum allowable intensity level detected by a microphone situated at the end of 1630 m long runway can be 100 dB . An aeroplane when flying at a height of 200 m produces an intensity level of 100 dB on ground. while taking off, this aeroplane makes an angle of 30° with horizontal. Find the maximum distance this aeroplane can cover on the runway, so that the regulation are not violated (assume no reflection).

- Watch Video Solution

45. (a) The power of sound from the speaker of a radio is 20 mW . By turning the knob of volume control the power of sound is increased to 400 mW , What is the power increase in dB as compared to original power?
(b) How much more intense is an 80 dB sound than a 20 dB whisper?

- Watch Video Solution

46. The sound level at a point is increased by

30 dB . What is factor is the pressure amplitude increased?

D Watch Video Solution

47. What is the maximum possible sound level in $d B$ of sound waves in air? Given that density
of air is $1.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, v=332 \frac{\mathrm{~m}}{\mathrm{~s}}$ and atmospheric pressure $P=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.
48. A window whose area is $2 m^{2}$ opens on street where the street noise result in an intensity level at the window of 60 dB . How much acoustic power enters the window via sound waves. Now if an acoustic absorber is
fitted at the window, how much energy from street will it collect in 5 h ?

- Watch Video Solution

49.

Two
tuning forks A and B are vibrating at the same frequency 256 Hz . A listener is standing midway between the forks. If both tuning forks move to the right with a velocity of $5 \frac{\mathrm{~m}}{\mathrm{~s}}$, find the number of beats heard per second by the listerner (speed of sound in air is $330 \frac{m}{s}$).

50.
driver in a stationary car horns which
produces monochromatic sound waves of
frequency $n=1000 H z$, normally towards a
reflecting wall. If the wall approaches the car
will a velocity $u=3.3 \frac{m}{s}$, calculate the
frequency of sound reflected from wall and
heard by the driver. What is the percentage
change of sound frequency of reflection from the wall?

D Watch Video Solution

51. The speed of sound in hydrogen gas at certain temperature is $v \frac{m}{s}$ Find the speed of sound in a gaseous mixture containing 2 moles of oxygen and 1 mole of hydrogen gas, at the same temperature. Assume the gases do no react at the ordinary temperature.
52. A source of sound of frequency 256 Hz moves rapidly towards a wall with a velocity of
$5 m s^{-1}$. How many beats per second will be heard if sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$?

D Watch Video Solution

53. A vibrating tuning fork tied to the end of a string 1.988 m long is whirled round a circle. If it makes two revolutions in a second, calculate the ratio of the frequencies of the highest and
the lowest notes heard by an observer situated in the plane of the tuning fork. Valocity of sound is $350 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

54. A source of sonic oscillations with
frequency $n=1700 \mathrm{~Hz}$ and a receiver are
located on the same normal to a wall. Both the source and receiver are stationary, and the wall recedes from the source with velocity
$u=6.0 \frac{m}{s}$. Find the beat frequency
registered by the receiver. The velocity of sound is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

55. A locomotive approaching a crossing at a speed of $80 \mathrm{mi} / \mathrm{h}$ sounds a whistle of frequency 400 Hz when 1 mi from the crossing.

There is no wind, and the speed of sound in air is $0.200 \mathrm{mi} / \mathrm{s}$. What frequency is heard by an observer 0.60 mi from the crossing on the
straight road which crosses the railroad at right angles?

D Watch Video Solution

56. A whistle of frequency 540 Hz is moving in
a circle of radius 2 ft at a constant angular speed of $15 \mathrm{rad} / \mathrm{s}$. What are the lowest and highest frequencies heard by a listener standing at rest, a long distance away from the centre of the circle? (Velocity of sound in air is $1100 \mathrm{ft} / \mathrm{s}$)

Watch Video Solution

Single Correct

1. A man is watching two trains, one leaving and the other coming in with equal speed of 4 m / s. If they sound their whistles, each of
frequency 240 Hz , the number of beats heard by the man (velocity of sound in air is $320 \frac{\mathrm{~m}}{\mathrm{~s}}$) will be equal to
A. 6
B. 3
C. 0
D. 12

Answer: A

- Watch Video Solution

2. The intensity of a sound wave gets reduced by 20% on passing through a slab. The reduction intensity on passage through two such consecutive slabs
A. 40%
B. 36%
C. 30%
D. 50%

Answer: B

D Watch Video Solution

3. Two factories are sounding their sirens at 800 Hz . A man goes from one factory to the other at a speed of $2 \mathrm{~m} / \mathrm{s}$. The velocity of
sound is $320 \mathrm{~m} / \mathrm{s}$. The number of beats heard by the person is 1 s will be
A. 2
B. 4
C. 8
D. 10

Answer: D
(Watch Video Solution
4. Two sources A and B are sounding notes of frequency 680 Hz . A listener moves from A to B with a constant velocity u. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, What must be the value of u so that he hears 10 beats per second?

$$
\begin{aligned}
& \text { A. } 2.0 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { B. } 2.5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { C. } 30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 3.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

- Watch Video Solution

5. A train has just completed a U-curve in a trach which is a semi circle. The engine is at the forward end of the semi circular part of the trach while the last carriage is at the rear end of the semi circular track. The driver blows
a whistle of frequency 200 Hz . Velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then the apparent frequency as observed by a passenger in the middle of the train, when the speed of the train is 30 m / s, is
A. 219 Hz
B. 188 Hz
C. 200 Hz
D. 181 Hz

Answer: C

D Watch Video Solution
6. One train is approaching an observer at rest and another train is receding from him with
the same velocity $4 m / s$. Both trains blow
whistles of same frequency of $243 H_{Z}$. The beat frequency in H_{Z} as heard by observer is (speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$)
A. 10
B. 6
C. 4
D. 1

Answer: B

D Watch Video Solution
7. Two sound sources are moving in opposite directions with velocities v_{1} and $v_{2}\left(v_{1}>v_{2}\right)$. Both are moving away from a stationary observer. The frequency of both the sources is 900 Hz . What is the value of $v_{1}-v_{2}$ so that the beat frequency aboserved by the observer is 6 Hz . speed of sound $\mathrm{v}=300 \mathrm{~m} / \mathrm{s}$ given ,that v_{1} and $v_{2} \ll v$
A. $1 \frac{m}{s}$
B. $2 \frac{m}{s}$
C. $3 \frac{m}{s}$
D. $4 \frac{m}{s}$

Answer: B

D Watch Video Solution

8. the frequency changes by 10% as the source approaches a stationary observer with constant speed v_{s}. What would be the percentage change in frequency as the sources reaccedes the observer with the same
speed ? Given , that $v_{s} \ll v(\mathrm{v}=$ speed pf sound in air)
A. 14.3%
B. 20%
C. 16.7%
D. 10%

Answer: D
(Watch Video Solution
9. speed of sound wave is v. if a reflector moves
toward a stationary source emiting waves of
frequency with speed u, the wavelength of reflected wave will be

$$
\begin{aligned}
& \text { A. } \frac{v-u}{v+u} f \\
& \text { B. } \frac{v+u}{v} f \\
& \text { C. } \frac{v+u}{v-u} f \\
& \text { D. } \frac{v-u}{v} f
\end{aligned}
$$

Answer: C

10. An observer moves towards a stationary source of sound with a speed $\frac{1}{5}$ th of the speed of sound. The wavelength and frequency of the source emited are λ and f , respectively. The apparent frequency and wavelength recorded by the observer are, respectively-
(a) $f, 1.2 \lambda$
(b) $0.8 f, 0.8 \lambda$
(c) $1.2 f, 1.2 \lambda$
$1.2 f, \lambda$
(d)
A. $1.2 f$ and λ
B. f and 1.2λ
C. 0.8 and 0.8λ
D. $1.2 f$ and 1.2λ

Answer: A

D Watch Video Solution

11. A source of sound S is moving with a velocity of $50 \mathrm{~m} / \mathrm{s}$ towards a stationary observer. The observer measures the frequency of the source as 1000 Hz . What will
be the apparent frequency of the source when
it is moving away from the observer after crossing him? (take velocity of sound in air is $350 m / s$)
A. 750 Hz
B. 857 Hz
C. 1143 Hz
D. 1333 Hz

Answer: A

12. A whistle emitting a sound of frequency

440 Hz is tied to a string of 1.5 m length and
roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in
the horizontal plane. Calculate the range of
frequencies heard by an observer stationed at
a larger distance from the whistle .(Speed of sound $=330 \mathrm{~m} / \mathrm{s}$).
A. 400.0 Hz to 484.0 Hz
B. 403.3 Hz to 480.0 Hz
C. 400.0 Hz to 480.0 Hz

D. 403.3 Hz to 484.0 Hz

Answer: D

D Watch Video Solution

13. A band playing music at a frequency v is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed
v_{m}.If v is the speed of sound, the expression
for the beat frequency heard by the motorist is

$$
\begin{aligned}
& \text { A. } \frac{v+v_{m}}{v+v_{b}} f \\
& \text { B. } \frac{v+v_{m}}{v-v_{b}} f \\
& \text { C. } \frac{2 v_{b}\left(v+v_{m}\right)}{v^{2}-v_{b}^{2}} f \\
& \text { D. } \frac{2 v_{m}\left(v+v_{b}\right)}{v^{2}-v_{m}^{2}} f
\end{aligned}
$$

Answer: C

D Watch Video Solution

14. A man standing on a platform hears the sound of frequency 604 Hz coming from a frequency 550 Hz from a train whistle moving
towards the platform. If the velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, then what is the speed of train?

$$
\begin{aligned}
& \text { А. } 30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { В. } 35 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { С. } 40 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 45 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer: A
15. A vehicle, with a horn of frequency n is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction prependicular to the straight line joining the observer and the vehicle . The observer perceives the sound to have a grequency $\left(n+n_{1}\right)$. If the sound velocity in air is $330 m / s$, then

$$
\text { A. } n_{1}=10 n
$$

$$
\text { B. } n_{1}=-n
$$

$$
\text { C. } n_{1}=0.1 n
$$

$$
\text { D. } n_{1}=0
$$

Answer: D

D Watch Video Solution

16. An isotropic stationary source is emitting waves of frequency n and wind is blowing due north. An observer A is on north of the source while observer B is on south the source. IF both the observers are stationary, then
A. (a)frequency received by A is greater
than n
B. (b)frequency received by B is less than n
C. (c)freqeuency received by A equals to
that received by B
D. (d)frequencies received by A and B
cannot be calculated unless velocity of
waves in still air and velcity of wind are
known

- Watch Video Solution

17. A train is moving with a constant speed
along a cirular track. The engine of the train
emits a sound of frequency f. the frequcency
heard by the guard a rear end of the train/
A. is less than f
B. is greater than f
C. is equal to f

D. may be greater than less than or equal

to f depending on factors like speed of train, length of train and radius of circular track.

Answer: C

D Watch Video Solution

18. An observer moves towards a stationary source of sound with a velocity one-fifth of the
velocity of sound. What is the percentage increase in the apparent frequency?
A. 5%
B. 20%
C. 0%
D. 0.5%

Answer: B
(Watch Video Solution
19. An increase in intensity level of 1 dB implies
an increase in intensity of (given anti
$\left.\log _{10} 0.1=1.2589\right)$
A. 1%
B. 3.01%
C. 26%
D. 0.1%

Answer: C

- Watch Video Solution

20. In expressing sound intensity we take $10^{-12} \frac{W}{m^{2}}$ as the reference level. For ordinary conversation the intensity level is about $10^{-6} \frac{W}{m^{2}}$. Expressed in decibel, this is
A. 10^{6}
B. 6
C. 10^{5}
D. 10^{10}

Answer: C
21. The intensity level of two sounds are 100 dB and 50 dB . What is the ratio of their intensities?
A. 10^{1}
B. 10^{3}
C. 10^{5}
D. 10^{10}

Answer: C
22. An engine running at speed $\frac{v}{10}$ sounds a whistle of frequency 600 Hz . A passenger in a train coming from the oppsite side at speed of $\frac{v}{15}$ experiences this whistle to be of frequency f. If v is speed of sound in air and there is no wind. F is nearest to
A. 711 Hz
B. 630 Hz
C. 580 Hz

D. 510 Hz

Answer: A

D Watch Video Solution

23. A source of sound produces waves of wavelength 60 cm when it is stationary if the speed of sound in air is $320 \frac{m}{s}$ and source moves with speed $20 \frac{\mathrm{~m}}{\mathrm{~s}}$, the wavelength of sound in the forward direction will be nearest to
A. 56 cm
B. 60 cm
C. 64 cm
D. 68 cm

Answer: A

D Watch Video Solution

24. The apparent frequency of the whistle of an engine changes in the ratio 6:5 as the engine passes a stationary observer. If the
velocity of sound is $330 \frac{m}{s}$, then the velocity of the engine is
A. $3 \frac{m}{s}$
B. $30 \frac{m}{s}$
C. $0.33 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $660 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B
(Watch Video Solution

25.

A source of sound S is travelling at $\frac{100}{3} \frac{m}{s}$ along a road, towards a point A. When the
source is 3 m away from A, a person standint at a point O on a road perpendicular to AS
hears a sound of requency v^{\prime}. The distance of
O from A at that time is 4 m . If the original
frequency is 640 Hz , then the value of v^{\prime} is
(velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 620 Hz
B. 680 Hz
C. 720 Hz
D. 840 Hz

Answer: B
26. A source of sound is travelling with a velocity of $30 \frac{m}{s}$ towards a stationary observer. If actual frequency of source is 1000 Hz and the wind is blowing with velocity $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ in a direction at $60^{\circ} C$ with the direction of motion of source, then the apparent frequency heard by observer is (speed of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 1011 Hz
B. 1000 Hz

C. 1094 Hz

D. 1086 Hz

Answer: C

- Watch Video Solution

27. A source of sound emits $200 \pi W$ power which is uniformly distributed over a sphere of
radius 10 m . What is the loudness of sound on
the surface of the sphere?
A. 70 dB
B. 107 dB
C. 80 dB
D. 117 dB

Answer: D

D Watch Video Solution

28. Two cars are moving on two perpendicular roads towards a crossing with uniform speeds of $72 \frac{\mathrm{~km}}{\mathrm{~h}}$ and $36 \frac{\mathrm{~km}}{\mathrm{~h}}$. If second car blows born
of frequency 280 Hz , then the frequency of horn heard by the driver of first car when the
line joining the cars makes angle of $45^{\circ} \mathrm{C}$ with the roads, will be (velocity of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. (a) 321 Hz
B. (b) 298 Hz
C. (c) 289 Hz
D. (d) 280 Hz

Answer: B

29.

A tuning fork of frequency 380 Hz is moving towards a wall with a velocity of $4 \frac{\mathrm{~m}}{\mathrm{~s}}$ Then the number of beats heard by a stationary listener between direct and reflected sound will be (velocity of sound in air is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$) A. 0
B. 5
C. 7
D. 10

Answer: A

- Watch Video Solution

30.

A sound wave of frequency n travels horizontally to the right with speed with
speed c. It is reflected from a broad wall moving to the left with speed v. The number of beats heard by a stationary observer to the left of the wall is
A. zero
B. $\frac{n(c+v)}{c-v}$
C. $\frac{n v}{c-v}$
D. $\frac{2 n v}{c-v}$

Answer: D

D Watch Video Solution

31. A boy is walking away from a well at a speed of $1.0 \mathrm{~m} / \mathrm{s}$ in a direction at right angles
to the wall. As he walks, he below a whistle steadily. An observer towards whom the boy is
walking hears 4.0 beats per second. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, what is the frequency of the whistle?
A. 480 Hz
B. 680 Hz
C. 840 Hz
D. 1000 Hz

Answer: B

D Watch Video Solution
32. A source emitting a sound of frequency f is
placed at a large distance from an observer.
The source starts moving towards the observer with a uniform acceleration a. Find the frequency heard by the observer corresponding to the wave emitted just after the source starts. The speed of sound in the medium is v.
A. $\frac{v f^{2}}{2 v f-a}$
B. $\frac{2 v f^{2}}{2 v f+a}$
C. $\frac{2 v f^{2}}{3 v f-a}$
D. $\frac{2 v f^{2}}{2 v f-a}$

Answer: D

D Watch Video Solution

33. Due to a point isotropic sonic source,
loudness at a point is $L=60 d B$ If density of air is $\rho=\left(\frac{15}{11}\right) \frac{\mathrm{kg}}{\mathrm{m}^{3}}$ and velocity of sound in air is $v=33 \frac{m}{s}$, the pressure oscillation amplitude at the point of observation is

$$
\left[I_{0}=10^{-12} \frac{W}{m^{2}}\right]
$$

A. $0.3 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $0.03 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $3 \times 10^{-3} \frac{N}{m^{2}}$
D. $3 \times 10^{-4} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Answer: B

- Watch Video Solution

34. The frequency of a car horm is 400 Hz . If the horn is honked as the car moves with a speed $u_{S}=34 \frac{m}{s}$ through still air towards a
stationary receiver, the wavelength of the sound passing the receiver is [velocity of sound is $340 \frac{m}{s}$]
A. 0.765 m
B. 0.850 m
C. 0.935 m
D. 0.425 m

Answer: A

D Watch Video Solution
35. Spherical sound waves are emitted uniformly in all direction from a point source.

The variation in sound level SL. As a function of distance r from the source can be written as where a and b are positive constants.

$$
\begin{aligned}
& \text { A. } S L=-b \log r^{a} \\
& \text { B. } S L=a-b(\log r)^{2} \\
& \text { C. } S L=a-b \log r \\
& \text { D. } S L=\frac{a-b}{r^{2}}
\end{aligned}
$$

36. When a person wears a hearing aid, the sound intensity level increases by 30 dB . The sound intensity increases by
A. e^{2}
B. 10^{3}
C. 30
D. 10^{2}

- Watch Video Solution

37. A motorcycle starts from rest and accelerates along a straight line at $2.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. The speed of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$. A siren at the starting point remains stationary. When the driver hears the frequency of the siren at 90% of when motorcycle is stationary, the distance travelled by the motorcyclist is
A. ${ }^{1} 123.75 \mathrm{~m}$
B. 247.5 m

C. 495 m

D. 990 m

Answer: B

D Watch Video Solution

38. The difference in the speeds of sound in air
at $-5^{\circ} C, 60 \mathrm{~cm}$ pressure of mercury and
$30^{\circ} C, 75 \mathrm{~cm}$ pressure of mercury is (velocity
of sound in air at $0^{\circ} \mathrm{C}$ is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. $15.25 \frac{m}{s}$
B. $21.35 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $18.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $3.05 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

- Watch Video Solution

39.

A train is moving in an elliptical orbit in anticlockwise sense with a speed of $110 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Guard is also moving in the given direction with same speed as that of train. The ratio of the length of major and minor axes is $\frac{4}{3}$.

Driver blows a whistle of 1900 Hz at P, which is received by guard at S. The frequency received by guard is (velocity of sound $v=330 \frac{m}{s}$)

A. 1900 Hz

B. 1800 Hz

C. 2000 Hz
D. 1500 Hz

Answer: B

- Watch Video Solution

40.

A stationary observer receives a sound from a sound of freqeuency v_{0} moving with a constant velocity $v_{S}=30 \frac{m}{s}$ The apparent frequency varies with time as shown in figure.

Velocity of sound $v=300 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then which of the following is incorrect?
A. The minimum value of apparent
frequency is 889 Hz
B. The natural frequency of souce is 1000 Hz
C. The frequency time curve corresponds to
a source moving at an angle to the
stationary observer.
D. The maximum value of apparent
frequency is 1111 Hz

- Watch Video Solution

41. The sound from a very high burst of fireworks takes 5 s to arrive at the observer.

The burst occurs 1662 m above the observer and travels vertically through two stratifier layers of air, the top one of thickness d_{1} at $0^{\circ} C$ and the bottom one of thickness d_{2} at $20^{\circ} \mathrm{C}$. Then (assume velocity of sound at $0^{\circ} \mathrm{C}$ is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)

$$
\text { A. } d_{1}=342 m
$$

B. $d_{2}=1320 \mathrm{~m}$
C. $d_{1}=1485 m$
D. $d_{2}=342 m$

Answer: A

- Watch Video Solution

42. A car emitting sound of frequency 500 Hz speeds towards a fixed wall at $4 \frac{m}{s}$. An observer in the car hears both the source
frequency as well as the frequency of sound
reflected from the wall. If he hears 10 beats per second between the two sounds, the velocity of sound in air will be

> A. $330 \frac{\mathrm{~m}}{\mathrm{~s}}$
> В. $387 \frac{\mathrm{~m}}{\mathrm{~s}}$
> C. $404 \frac{\mathrm{~m}}{\mathrm{~s}}$
> D. $340 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: D

D Watch Video Solution

43.

In the figure shown, a source of sound of
frequency 510 Hz moves with constant velocity
$v_{S}=20 \frac{m}{s}$ in the direction shown. The wind is
blowing at a constant velocity $v_{W}=20 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards an observer who is at rest at point B.
corresponding to the sound emitted by the source at initial position A, the frequency
detected by the observer is equal to (speed of sound relative to air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 510 Hz
B. 500 Hz
C. 525 Hz
D. 550 Hz

Answer: C
(Watch Video Solution

44.

A wall is moving with velocity u and a source of sound moves with velocity $\frac{u}{2}$ in the same direction as shown in the figure. Assuming that the sound travels with velocity $10 u$, the ratio of incident sound wavelength on the wall to the reflected sound wavelength by the wall is equal to
A. 9:11
B. $11: 9$
C. $4: 5$
D. 5:4

Answer: C

- Watch Video Solution

45.

For a sound wave travelling towards $+x$ direction, sinusoidal longitudinal
displacement ε at a certain time is given as a
function of x (Fig). If bulk modulus of air is
$B=5 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$, the variation of pressure excess will be
A.

B.

C.

D.

Answer: A

D Watch Video Solution

46. If the source is moving towards right, wavefront of sound waves get modifies to

D. none of these

Answer: D

-
 Watch Video Solution

47. Consider a source of sound S and an observer P. The sound source is of frequency
n_{0}. The frequency observed be P is found to
be n_{1} if P approaches S at speed v and S is
stationary, n_{2} If S approaches P at a speed v
and P is stationary and n_{3} if each of P and S
has speed $\frac{v}{2}$ towards one another Now.
A. $f_{1} \neq f_{2} \neq f_{3}$
B. $f_{1}<f_{2}$
C. $f_{3}<f_{0}$
D. $f_{1}<f_{3}<f_{2}$

Answer: B

- Watch Video Solution

48. When source and detector are stationary
but the wind is blowing at speed v_{W}, the apparent wavelength λ^{\prime} on the wind side is related to actual wavelength λ by [take speed of sound is air as v]

$$
\text { A. } \lambda^{\prime}=\lambda
$$

$$
\text { B. } \lambda^{\prime}=\frac{v_{W}}{v} \lambda
$$

$$
\begin{aligned}
& \text { C. } \lambda^{\prime}=\frac{v_{W}+v}{v} \lambda \\
& \text { D. } \lambda^{\prime}=\frac{v}{v-v_{W}} \lambda
\end{aligned}
$$

Answer: C

- Watch Video Solution

Figure. Represents the displacement y versus
distance x along the direction of propagation of a longitudinal wave. The pressure is maximum at position marked
A. P
B. Q
C. R
D. S

Answer: C

D Watch Video Solution
50. The driver of a car approaching a vertical wall notices that the frequency of the horn of his car changes from 400 Hz to 450 Hz after being reflected from the wall. Assuming speed of sound to be $340 \frac{m}{s}$, the speed of approach of car towards the wall is
A. $10 \frac{m}{s}$
B. $20 \frac{m}{s}$
C. $30 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $40 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: C

D Watch Video Solution

51. The difference between the apparent frequency of a source of sound as perceived by the observer during its approach and recession is 2% of the natural frequency of the source. If the velocity of sound in air is 300 m / s, the velocity of the source is
A. $1.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
B. $3 \frac{m}{s}$
C. $6 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $12 \frac{m}{s}$

Answer: B

D Watch Video Solution

52. The freqency of a radar is 780 M hz . The
frequency of the reflected wave from an aerolane is increased by 2.6 kHz . The velocity of

> A. $2 \frac{\mathrm{~km}}{\mathrm{~s}}$
> B. $1 \frac{\mathrm{~km}}{\mathrm{~s}}$
> C. $0.5 \frac{\mathrm{~km}}{\mathrm{~s}}$
> D. $0.25 \frac{\mathrm{~km}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

53. A train moves towards a stationary observer with speed $34 m / s$. The train sound a whistle and its frequency registered by the
observer by the observer is f_{1}. If the train's
speed is reduced to $17 m / s$, the frequency
registered is f_{2}. If the speed of sound is
$340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is
A. $\frac{18}{19}$
B. $\frac{1}{2}$
C. 2
D. $\frac{19}{18}$

Answer: C

54. A siren placed at a railway platfrom is emitted sound of frequency $5 k H_{Z}, \mathrm{~A}$ passenger sitting in retun journey in a different train B he records a frequency of $6.0 k H_{Z}$ while approaching the same siren. The ratio of the velocity of train B to that of train A is

$$
\text { A. } \frac{242}{252}
$$

B. 2
C. $\frac{5}{6}$
D. $\frac{11}{6}$

Answer: D

D Watch Video Solution

55. A person speaking normally produces a sound intensity of 40 dB at a distance of 1 m . If the threshold intensity for reasonable audibility is 20 dB , the maximum distance at which a person can be heard clearly is (2x) meter. Find the value of x.
A. 4 m
B. 5 m
C. 10 m
D. 20 m

Answer: B

- Watch Video Solution

A police car moving at $22 m / s$, chases a motorcyclist, the police man sounds his horn at 176 Hz , while both of them move towards a stationary siren of frequency 165 Hz . Calculate the speed of the motorcycle, if it is given that he does not observes any beat

$$
\begin{aligned}
& \text { А. } 33 \frac{m}{s} \\
& \text { В. } 22 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

C. $11 \frac{m}{s}$
D. zero

Answer: C

D Watch Video Solution

57. In sport meet the timing of a 200 m straight dash is recorded at the finish point by
starting an accurate stop watch on hearing
the sound of starting gun firen at the starting
poing. The time recorded will be more accurate
A. (a)In winter
B. (b) in summer
C. (c)in all seasons
D. (d) none of these

Answer: B
(Watch Video Solution
58. When a source moves away from a stationary observer, the frequency is $\frac{6}{7}$ times the original frequency. Given: speed of sound $=330 \frac{\mathrm{~m}}{\mathrm{~s}}$. The speed of the source is
A. $40 \frac{m}{s}$
B. $55 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $330 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $165 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B
59. If v_{0} be the orbital velocity of an articial satellite orbital velocity of the same satellite orbiting at an altitude equal to earth's radius is
A. (a) $\sqrt{\frac{Y}{\rho n}}$
B. (b) $\sqrt{\frac{Y}{\rho^{\frac{1}{2}}}}$
c. (c) $\sqrt{\frac{Y}{\rho}}$
D. (d) $\sqrt{\frac{Y}{\rho n^{\frac{3}{2}}}}$

Answer: B

D Watch Video Solution

60. Source and observer start moving simulatneously along x and y-axis respectively.

The speed of source is twice the speed of observer V_{0}. If the ratio of observer frequency to the frequency of the source is 0.75 , find the velocity of sound.
A. (a) $\frac{11}{\sqrt{5}} V_{0}$

$$
\begin{aligned}
& \text { B. (b) } \frac{17}{\sqrt{5}} V_{0} \\
& \text { C. (c) } \frac{16}{\sqrt{5}} V_{0} \\
& \text { D. (d) } \frac{19}{\sqrt{5}} V_{0}
\end{aligned}
$$

Answer: C

D Watch Video Solution

61.

A statinary observer receives a sound of
frequency 2000 Hz . The variation of apparent
frequency and time is shown. Find the speed of source, if velocity of sound is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$
A. (a) $66.6 \frac{\mathrm{~m}}{\mathrm{~s}}$
B. (b) $33.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. (c) $27.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. (d) $59.3 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

- Watch Video Solution

A source of sound of frequency f_{1} is placed on the ground. A detector placed at a height is released from rest on this source. The observed frequency $f(\mathrm{~Hz})$ is plotted against time $t(\mathrm{sec})$. The speed of sound in air is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find $f_{1}\left(g=10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.
A. $0.5 \times 10^{3} \mathrm{~Hz}$
B. $2 \times 10^{3} \mathrm{~Hz}$
C. $0.25 \times 10^{3} \mathrm{~Hz}$
D. $0.2 \times 10^{3} \mathrm{~Hz}$

- Watch Video Solution

63. A sound wave of frequency f travels
horizontally to the right. It is teflected from a larger vertical plane surface moving to left
with a speed v. the speed of sound in medium
is c
(a) The number of waves striking the surface per second is $\frac{f(c+v)}{c}$
(b) The wavelength of reflected wave is $\frac{c(c-v)}{f(c+v)}$
(c) The frequency of the reflected wave is $\underline{f((c+v))}$
$(c+v)$
(d) The number of beats heard by a stationary
listener to the left of the reflecting surface is
$\frac{v f}{c-v}$
A. The number of wave striking the surface
per second is $\frac{f((c+v))}{c}$
B. The wavelength of reflected wave is

$$
\frac{c(c-v)}{f(c+v)}
$$

C. The frequency of reflected wave is

$$
\frac{f(c+v)}{c-v}
$$

D. The number of beats heard by a
stationary listener to the left to the
reflecting surface is $\frac{v f}{(c-v)}$
64. A man is watching two trains, one leaving and the other coming in with equal speed of 4
m / s. If they sound their whistles, each of
frequency 240 Hz , the number of beats heard by the man (velocity of sound in air is $320 \frac{\mathrm{~m}}{\mathrm{~s}}$) will be equal to
A. 6
B. 3
C. 0

D. 12

Answer: A

D Watch Video Solution

65. The intensity of a sound wave gets reduced
by 20% on passing through a slab. The reduction intensity on passage through two such consecutive slabs
A. 40%
B. 36%
C. 30%
D. 50%

Answer: B

D Watch Video Solution

66. Two factories are sounding their sirens at 800 Hz . A man goes from one factory to the other at a speed of $2 \mathrm{~m} / \mathrm{s}$. The velocity of
sound is $320 \mathrm{~m} / \mathrm{s}$. The number of beats heard by the person is 1 s will be
A. 2
B. 4
C. 8
D. 10

Answer: D
(Watch Video Solution
67. Two sources A and B are sounding notes of
frequency 680 Hz . A listener moves from A to B
with a constant velocity u. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, What must be the value of u so that he hears 10 beats per second?

$$
\begin{aligned}
& \text { A. } 2.0 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { B. } 2.5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { C. } 30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 3.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

- Watch Video Solution

68. A train has just completed a U-curve in a trach which is a semi circle. The engine is at the forward end of the semi circular part of the trach while the last carriage is at the rear end of the semi circular track. The driver blows
a whistle of frequency 200 Hz . Velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then the apparent frequency as observed by a passenger in the middle of the train, when the speed of the train is 30 m / s, is
A. 219 Hz
B. 188 Hz
C. 200 Hz
D. 181 Hz

Answer: C

D Watch Video Solution
69. One train is approaching an observer at rest and another train is receding from him with the same velocity $4 m / s$. Both trains
blow whistles of same frequency of $243 H_{Z}$.

The beat frequency in H_{Z} as heard by observer is (speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$)
A. 10
B. 6
C. 4
D. 1

Answer: B

D Watch Video Solution
70. Two sound sources are moving in opposite directions with velocities v_{1} and $v_{2}\left(v_{1}>v_{2}\right)$. Both are moving away from a stationary observer. The frequency of both the sources is 900 Hz . What is the value of $v_{1}-v_{2}$ so that the beat frequency aboserved by the observer is 6 Hz . speed of sound $v=300 \mathrm{~m} / \mathrm{s}$ given ,that v_{1} and $v_{2} \ll v$
A. $1 \frac{m}{s}$
B. $2 \frac{m}{s}$
C. $3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $4 \frac{m}{s}$

Answer: B

D Watch Video Solution

71. the frequency changes by 10% as the source approaches a stationary observer with constant speed v_{s}. What would be the percentage change in frequency as the sources reaccedes the observer with the same
speed ? Given , that $v_{s} \ll v(\mathrm{v}=$ speed pf sound in air)
A. 14.3%
B. 20%
C. 16.7%
D. 10%

Answer: D
(Watch Video Solution
72. speed of sound wave is v . if a reflector moves toward a stationary source emiting waves of frequency with speed u, the wavelength of reflected wave will be

$$
\begin{aligned}
& \text { A. } \frac{v-u}{v+u} f \\
& \text { B. } \frac{v+u}{v} f \\
& \text { C. } \frac{v+u}{v-u} f \\
& \text { D. } \frac{v-u}{v} f
\end{aligned}
$$

Answer: C

73. An observer moves towards a stationary source of sound with a speed $\left(\frac{1}{5}\right)$ th of the speed of sound. The wavelength and frequency of the source emitted are λ and f , respectively. The apparent frequency and wavelength recorded by the observer are, respectively.
A. $1.2 f$ and λ
B. f and 1.2λ
C. 0.8 and 0.8λ

D. $1.2 f$ and 1.2λ

Answer: A

- Watch Video Solution

74. A source of sound S is moving with a velocity of $50 \mathrm{~m} / \mathrm{s}$ towards a stationary observer. The observer measures the frequency of the source as 1000 Hz . What will be the apparent frequency of the source as

1000 Hz . What will be the apparent frequency of the source when it is moving away from the observer after crossing him? The velocity of the sound in the medium is $350 \mathrm{~m} / \mathrm{s}$
A. 750 Hz
B. 857 Hz
C. 1143 Hz
D. 1333 Hz

Answer: A

75. A whistle emitting a sound of frequency

440 Hz is tied to a string of 1.5 m length and
roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in
the horizontal plane. Calculate the range of frequencies heard by an observer stationed at
a larger distance from the whistle .(Speed of sound $=330 \mathrm{~m} / \mathrm{s}$).
A. 400.0 Hz to 484.0 Hz
B. 403.3 Hz to 480.0 Hz
C. 400.0 Hz to 480.0 Hz

D. 403.3 Hz to 484.0 Hz

Answer: D

D Watch Video Solution

76. A band playing music at a frequency v is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed v_{m}.If v is the speed of sound, the expression
for the beat frequency heard by the motorist is

$$
\begin{aligned}
& \text { A. } \frac{v+v_{m}}{v+v_{b}} f \\
& \text { B. } \frac{v+v_{m}}{v-v_{b}} f \\
& \text { C. } \frac{2 v_{b}\left(v+v_{m}\right)}{v^{2}-v_{b}^{2}} f \\
& \text { D. } \frac{2 v_{m}\left(v+v_{b}\right)}{v^{2}-v_{m}^{2}} f
\end{aligned}
$$

Answer: C

D Watch Video Solution

77. A man standing on a platform hears the sound of frequency 604 Hz coming from a frequency 550 Hz from a train whistle moving
towards the platform. If the velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, then what is the speed of train?

$$
\begin{aligned}
& \text { А. } 30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { В. } 35 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { С. } 40 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 45 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer: A
78. A vehicle, with a horn of frequency n is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction prependicular to the straight line joining the observer and the vehicle . The observer perceives the sound to have a grequency $\left(n+n_{1}\right)$. If the sound velocity in air is $330 \mathrm{~m} / \mathrm{s}$, then

$$
\text { A. } n_{1}=10 n
$$

$$
\text { B. } n_{1}=-n
$$

$$
\text { C. } n_{1}=0.1 n
$$

$$
\text { D. } n_{1}=0
$$

Answer: D

D Watch Video Solution

79. An isotropic stationary source is emitting waves of frequency n and wind is blowing due north. An observer A is on north of the source while observer B is on south the source. IF both the observers are stationary, then
A. frequency received by A is greater than n
B. frequency received by B is less than n
C. freqeuency received by A equals to that received by B
D. frequencies received by A and B cannot
be calculated unless velocity of waves in
still air and velcity of wind are known

Answer: C

D Watch Video Solution

80. A train is moving with a constant speed
along a cirular track. The engine of the train
emits a sound of frequency f. the frequcency heard by the guard a rear end of the train/
A. is less than f
B. is greater than f
C. is equal to f
D. may be greater than less than or equal
to f depending on factors like speed of
train, length of train and radius of circular track.

Answer: C

D Watch Video Solution

81. An observer moves towards a stationary source of sound with a velocity one-fifth of the
velocity of sound. What is the percentage increase in the apparent frequency?
A. 5%
B. 20%
C. 0%
D. 0.5%

Answer: B

D Watch Video Solution

82. An increase in intensity level of 1 dB implies
an increase in intensity of (given anti
$\left.\log _{10} 0.1=1.2589\right)$
A. 1%
B. 3.01%
C. 26%
D. 0.1%

Answer: C

D Watch Video Solution

83. In expressing sound intensity we take
$10^{-12} \frac{W}{m^{2}}$ as the reference level. For ordinary
conversation the intensity level is about
$10^{-6} \frac{W}{m^{2}}$. Expressed in decibel, this is
A. 10^{6}
B. 6
C. 10^{5}
D. 10^{10}

Answer: C

D Watch Video Solution
84. The intensity level of two sounds are 100
dB and 50 dB . What is the ratio of their intensities?
A. 10^{1}
B. 10^{3}
C. 10^{5}
D. 10^{10}

Answer: C

D Watch Video Solution
85. An engine running at speed $\frac{v}{10}$ sounds a whistle of frequency 600 Hz . A passenger in a train coming from the oppsite side at speed of $\frac{v}{15}$ experiences this whistle to be of frequency f. If v is speed of sound in air and there is no wind. F is nearest to
A. 711 Hz
B. 630 Hz
C. 580 Hz
D. 510 Hz

Answer: A

D Watch Video Solution

86. A source of sound produces waves of
wavelength 60 cm when it is stationary if the speed of sound in air is $320 \frac{\mathrm{~m}}{\mathrm{~s}}$ and source moves with speed $20 \frac{m}{s}$, the wavelength of sound in the forward direction will be nearest to
A. 56 cm
B. 60 cm
C. 64 cm
D. 68 cm

Answer: A

D Watch Video Solution

87. The apparent frequency of the whistle of an engine changes in the ratio 6:5 as the engine passes a stationary observer. If the
velocity of sound is $330 \frac{m}{s}$, then the velocity of the engine is
A. $3 \frac{m}{s}$
B. $30 \frac{m}{s}$
C. $0.33 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $660 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B
(Watch Video Solution

88.

A source of sound S is travelling at $\frac{100}{3} \frac{m}{s}$ along a road, towards a point A. When the
source is 3 m away from A, a person standint at a point O on a road perpendicular to AS
hears a sound of requency v^{\prime}. The distance of
O from A at that time is 4 m . If the original
frequency is 640 Hz , then the value of v^{\prime} is
(velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 620 Hz
B. 680 Hz
C. 720 Hz
D. 840 Hz

Answer: B
89. A source of sound is travelling with a velocity of $30 \frac{m}{s}$ towards a stationary observer. If actual frequency of source is 1000 Hz and the wind is blowing with velocity $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ in a direction at $60^{\circ} C$ with the direction of motion of source, then the apparent frequency heard by observer is (speed of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 1011 Hz
B. 1000 Hz

C. 1094 Hz

D. 1086 Hz

Answer: C

D Watch Video Solution

90. A source of sound emits $200 \pi W$ power which is uniformly distributed over a sphere of
radius 10 m . What is the loudness of sound on
the surface of the sphere?
A. 70 dB
B. 107 dB
C. 80 dB
D. 117 dB

Answer: D

D Watch Video Solution

91. Two cars are moving on two perpendicular roads towards a crossing with uniform speeds of $72 \frac{\mathrm{~km}}{\mathrm{~h}}$ and $36 \frac{\mathrm{~km}}{\mathrm{~h}}$. If second car blows horn
of frequency 280 Hz , then the frequency of horn heard by the driver of first car when the
line joining the cars makes angle of $45^{\circ} \mathrm{C}$ with the roads, will be (velocity of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 321 Hz
B. 298 Hz
C. 289 Hz
D. 280 Hz

Answer: B

92.

A tuning fork of frequency 380 Hz is moving towards a wall with a velocity of $4 \frac{\mathrm{~m}}{\mathrm{~s}}$ Then the number of beats heard by a stationary listener between direct and reflected sound will be (velocity of sound in air is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$) A. 0
B. 5
C. 7
D. 10

Answer: A

- Watch Video Solution

93.

A sound wave of frequency n travels horizontally to the right with speed with
speed c. It is reflected from a broad wall moving to the left with speed v. The number of beats heard by a stationary observer to the left of the wall is
A. zero
B. $\frac{n(c+v)}{c-v}$
C. $\frac{n v}{c-v}$
D. $\frac{2 n v}{c-v}$

Answer: D

D Watch Video Solution

94. A boy is walking away from a well at a speed of $1.0 \mathrm{~m} / \mathrm{s}$ in a direction at right angles
to the wall. As he walks, he below a whistle steadily. An observer towards whom the boy is
walking hears 4.0 beats per second. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, what is the frequency of the whistle?
A. 480 Hz
B. 680 Hz
C. 840 Hz
D. 1000 Hz

Answer: B

D Watch Video Solution
95. A source emitting a sound of frequency f is
placed at a large distance from an observer.
The source starts moving towards the observer with a uniform acceleration a. Find
the frequency heard by the observer corresponding to the wave emitted just after the source starts. The speed of sound in the medium is v .
A. $\frac{v f^{2}}{2 v f-a}$
B. $\frac{2 v f^{2}}{2 v f+a}$
C. $\frac{2 v f^{2}}{3 v f-a}$
D. $\frac{2 v f^{2}}{2 v f-a}$

Answer: D

D Watch Video Solution

96. Due to a point isotropic sonic source,
loudness at a point is $L=60 d B$ If density of air is $\rho=\left(\frac{15}{11}\right) \frac{\mathrm{kg}}{\mathrm{m}^{3}}$ and velocity of sound in air is $v=33 \frac{m}{s}$, the pressure oscillation amplitude at the point of observation is

$$
\left[I_{0}=10^{-12} \frac{W}{m^{2}}\right]
$$

A. $0.3 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $0.03 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $3 \times 10^{-3} \frac{N}{m^{2}}$
D. $3 \times 10^{-4} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Answer: B

D Watch Video Solution

97. The frequency of a car horm is 400 Hz . If
the horn is honked as the car moves with a speed $u_{S}=34 \frac{m}{s}$ through still air towards a
stationary receiver, the wavelength of the sound passing the receiver is [velocity of sound is $340 \frac{m}{s}$]
A. 0.765 m
B. 0.850 m
C. 0.935 m
D. 0.425 m

Answer: A

D Watch Video Solution
98. Spherical sound waves are emitted uniformly in all direction from a point source.

The variation in sound level SL. As a function of distance r from the source can be written as where a and b are positive constants.

$$
\begin{aligned}
& \text { A. } S L=-b \log r^{a} \\
& \text { B. } S L=a-b(\log r)^{2} \\
& \text { C. } S L=a-b \log r \\
& \text { D. } S L=\frac{a-b}{r^{2}}
\end{aligned}
$$

99. When a person wears a hearing aid, the sound intensity level increases by 30 dB . The sound intensity increases by
A. e^{2}
B. 10^{3}
C. 30
D. 10^{2}

- Watch Video Solution

100. A motorcycle starts from rest and accelerates along a straight line at $2.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. The speed of sound is $330 \frac{m}{s}$. A siren at the starting point remains stationary. When the driver hears the frequency of the siren at 90% of when motorcycle is stationary, the distance travelled by the motorcyclist is
A. ${ }^{`} 123.75 \mathrm{~m}$
B. 247.5 m

C. 495 m

D. 990 m

Answer: B

D Watch Video Solution

101. The difference in the speeds of sound in
air at $-5^{\circ} C, 60 \mathrm{~cm}$ pressure of mercury and
$30^{\circ} C, 75 \mathrm{~cm}$ pressure of mercury is (velocity
of sound in air at $0^{\circ} C$ is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. $15.25 \frac{m}{s}$
B. $21.35 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $18.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $3.05 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

- Watch Video Solution

102.

A train is moving in an elliptical orbit in anticlockwise sense with a speed of $110 \frac{\mathrm{~m}}{\mathrm{~s}}$. Guard is also moving in the given direction with same speed as that of train. The ratio of the length of major and minor axes is $\frac{4}{3}$. Driver blows a whistle of 1900 Hz at P , which is received by guard at S . The frequency received by guard is (velocity of sound $v=330 \frac{\mathrm{~m}}{\mathrm{~s}}$)

A. 1900 Hz

B. 1800 Hz

C. 2000 Hz
D. 1500 Hz

Answer: B

- Watch Video Solution

103.

A stationary observer receives a sound from a sound of freqeuency v_{0} moving with a constant velocity $v_{S}=30 \frac{m}{s}$ The apparent frequency varies with time as shown in figure.

Velocity of sound $v=300 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then which of the following is incorrect?
A. The minimum value of apparent
frequency is 889 Hz
B. The natural frequency of souce is 1000 Hz
C. The frequency time curve corresponds to
a source moving at an angle to the
stationary observer.
D. The maximum value of apparent
frequency is 1111 Hz

- Watch Video Solution

104. The sound from a very high burst of fireworks takes 5 s to arrive at the observer.

The burst occurs 1662 m above the observer and travels vertically through two stratifier layers of air, the top one of thickness d_{1} at $0^{\circ} C$ and the bottom one of thickness d_{2} at $20^{\circ} \mathrm{C}$. Then (assume velocity of sound at $0^{\circ} \mathrm{C}$ is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)

$$
\text { A. } d_{1}=342 m
$$

B. $d_{2}=1320 \mathrm{~m}$
C. $d_{1}=1485 m$
D. $d_{2}=342 m$

Answer: A

D Watch Video Solution

105. A car emitting sound of frequency 500 Hz
speeds towards a fixed wall at $4 \frac{m}{s}$. An observer in the car hears both the source
frequency as well as the frequency of sound
reflected from the wall. If he hears 10 beats per second between the two sounds, the velocity of sound in air will be

> A. $330 \frac{\mathrm{~m}}{\mathrm{~s}}$
> В. $387 \frac{\mathrm{~m}}{\mathrm{~s}}$
> C. $404 \frac{\mathrm{~m}}{\mathrm{~s}}$
> D. $340 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: D

D Watch Video Solution

106.

In the figure shown, a source of sound of
frequency 510 Hz moves with constant velocity
$v_{S}=20 \frac{m}{s}$ in the direction shown. The wind is
blowing at a constant velocity $v_{W}=20 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards an observer who is at rest at point B.
corresponding to the sound emitted by the source at initial position A, the frequency
detected by the observer is equal to (speed of sound relative to air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 510 Hz
B. 500 Hz
C. 525 Hz
D. 550 Hz

Answer: C
(Watch Video Solution

107.

A wall is moving with velocity u and a source of sound moves with velocity $\frac{u}{2}$ in the same direction as shown in the figure. Assuming that the sound travels with velocity $10 u$, the ratio of incident sound wavelength on the wall to the reflected sound wavelength by the wall is equal to
A. 9:11
B. $11: 9$
C. $4: 5$
D. 5:4

Answer: C

- Watch Video Solution

108.

For a sound wave travelling towards $+x$ direction, sinusoidal longitudinal
displacement ε at a certain time is given as a
function of x (Fig). If bulk modulus of air is
$B=5 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$, the variation of pressure excess will be
A. a.
B. b.

C. c.

D.

Answer: A

D Watch Video Solution

109. If the source is moving towards right, wavefront of sound waves get modifies to

D. none of these

Answer: D

D
 Watch Video Solution

110. Consider a source of sound S and an observer P. The sound source is of frequency
n_{0}. The frequency observed be P is found to
be n_{1} if P approaches S at speed v and S is
stationary, n_{2} If S approaches P at a speed v
and P is stationary and n_{3} if each of P and S
has speed $\frac{v}{2}$ towards one another Now.
A. $f_{1} \neq f_{2} \neq f_{3}$
B. $f_{1}<f_{2}$
C. $f_{3}<f_{0}$
D. $f_{1}<f_{3}<f_{2}$

Answer: B

D Watch Video Solution

111. When source and detector are stationary
but the wind is blowing at speed v_{W}, the apparent wavelength λ^{\prime} on the wind side is related to actual wavelength λ by [take speed of sound is air as v]

$$
\text { A. } \lambda^{\prime}=\lambda
$$

$$
\text { B. } \lambda^{\prime}=\frac{v_{W}}{v} \lambda
$$

$$
\text { C. } \lambda^{\prime}=\frac{v_{W}+v}{v} \lambda
$$

D. $\lambda^{\prime}=\frac{v}{v-v_{W}} \lambda$

Answer: C

- Watch Video Solution

112.

Figure. Represents the displacement y versus
distance x along the direction of propagation of a longitudinal wave. The pressure is maximum at position marked
A. P
B. Q
C. R
D. S

Answer: C

D Watch Video Solution
113. The driver of a car approaching a vertical
wall notices that the frequency of the horn of
his car changes from 400 Hz to 450 Hz after being reflected from the wall. Assuming speed of sound to be $340 \frac{m}{s}$, the speed of approach of car towards the wall is
A. $10 \frac{m}{s}$
B. $20 \frac{m}{s}$
C. $30 \frac{m}{s}$
D. $40 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: C

D Watch Video Solution

114. The difference between the apparent
frequency of a source of sound as perceived by
the observer during its approach and recession is 2% of the natural frequency of the source. If the velocity of sound in air is 300 m / s, the velocity of the source is
A. $1.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
B. $3 \frac{m}{s}$
C. $6 \frac{m}{s}$
D. $12 \frac{m}{s}$

Answer: B

D Watch Video Solution

115. The frequency of a radar is 780 MHz . After getting reflected from an approaching aeroplane, the apparent frequency is more
than the actual frequency by 2.6 kHz . The aeroplane has a speed of

> A. $2 \frac{\mathrm{~km}}{\mathrm{~s}}$
> B. $1 \frac{\mathrm{~km}}{\mathrm{~s}}$
> C. $0.5 \frac{\mathrm{~km}}{\mathrm{~s}}$
> D. $0.25 \frac{\mathrm{~km}}{\mathrm{~s}}$

Answer: B
(Watch Video Solution
116. A train moves towards a stationary observer with speed $34 m / s$. The train sound a whistle and its frequency registered by the observer by the observer is f_{1}. If the train's speed is reduced to $17 m / s$, the frequency registered is f_{2}. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is
A. $\frac{18}{19}$
B. $\frac{1}{2}$
C. 2

D. $\frac{19}{18}$

Answer: C

D Watch Video Solution

117. A siren placed at a railway platfrom is emitted sound of frequency $5 k H_{Z}$, A passenger sitting in retun journey in a different train B he records a frequency of
$6.0 k H_{Z}$ while approaching the same siren. The
ratio of the velocity of train B to that of train
A is
A. $\frac{242}{252}$
B. 2
C. $\frac{5}{6}$
D. $\frac{11}{6}$

Answer: D

D Watch Video Solution
118. A person speaking normally produces a sound intensity of 40 dB at a distance of 1 m . If
the threshold intensity for reasonable audibility is $20 d B$, the maximum distance at which he can be heard cleary is.
A. 4 m
B. 5 m
C. 10 m
D. 20 m

Answer: B

- Watch Video Solution

A police car moving at $22 \frac{m}{s}$ chases a motorcyclist. The police man sounds his horn of frequency 176 Hz , while both of them move towards a stationary siren of frequency 165 Hz .

Calculate the speed of motorcyclist if it is
given that he does not hear any beat (speed of
sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. $33 \frac{m}{s}$
B. $22 \frac{m}{s}$
C. $11 \frac{m}{s}$
D. zero

Answer: C
(Watch Video Solution
120. In sport meet the timing of a 200 m
straight dash is recorded at the finish point by
starting an accurate stop watch on hearing
the sound of starting gun firen at the starting
poing. The time recorded will be more accurate
A. In winter
B. in summer
C. in all seasons
D. none of these

Answer: B

- Watch Video Solution

121. When a source moves away from a stationary observer, the frequency is $\frac{6}{7}$ times the original frequency. Given: speed of sound $=330 \frac{\mathrm{~m}}{\mathrm{~s}}$. The speed of the source is
A. $40 \frac{m}{s}$
B. $55 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $330 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $165 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

122. Length of a string of density ρ and

Young's modulus Y under tension is increased
by $\frac{1}{n}$ times of its original length if the velocity of transverse and longitudinal vibration of the string is same, find the value of such velocity.

$$
\text { A. } \sqrt{\frac{Y}{\rho n}}
$$

B. $\sqrt{\frac{Y}{\rho^{\frac{1}{2}}}}$
C. $\sqrt{\frac{Y}{\rho}}$
D. $\sqrt{\frac{Y}{\rho n^{\frac{3}{2}}}}$

Answer: B

D Watch Video Solution

123. Source and observer start moving simulatneously along x and y-axis respectively.

The speed of source is twice the speed of
observer V_{0}. If the ratio of observer frequency to the frequency of the source is 0.75 , find the
velocity of sound.

$$
\begin{aligned}
& \text { A. } \frac{11}{\sqrt{5}} V_{0} \\
& \text { B. } \frac{17}{\sqrt{5}} V_{0} \\
& \text { C. } \frac{16}{\sqrt{5}} V_{0} \\
& \text { D. } \frac{19}{\sqrt{5}} V_{0}
\end{aligned}
$$

Answer: C

D Watch Video Solution

124.

A statinary observer receives a sound of frequency 2000 Hz . The variation of apparent frequency and time is shown. Find the speed of source, if velocity of sound is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$
A. $66.6 \frac{\mathrm{~m}}{\mathrm{~s}}$
B. $33.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $27.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $59.3 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

- Watch Video Solution

125.

A source of sound of frequency f_{1} is placed on the ground. A detector placed at a height is released from rest on this source. The observed frequency $f(\mathrm{~Hz})$ is plotted against time $t(\mathrm{sec})$. The speed of sound in air is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find $f_{1}\left(g=10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.
A. $0.5 \times 10^{3} \mathrm{~Hz}$
B. $2 \times 10^{3} \mathrm{~Hz}$
C. $0.25 \times 10^{3} \mathrm{~Hz}$
D. $0.2 \times 10^{3} \mathrm{~Hz}$

D Watch Video Solution

126. A sound wave of frequency f travels
horizontally to the right. It is teflected from a larger vertical plane surface moving to left
with a speed v. the speed of sound in medium
is c
(a) The number of waves striking the surface per second is $\frac{f(c+v)}{c}$
(b) The wavelength of reflected wave is $\frac{c(c-v)}{f(c+v)}$
(c) The frequency of the reflected wave is $\underline{f((c+v))}$
$(c+v)$
(d) The number of beats heard by a stationary
listener to the left of the reflecting surface is
$\frac{v f}{c-v}$
A. The number of wave striking the surface
per second is $\frac{f((c+v))}{c}$
B. The wavelength of reflected wave is

$$
\frac{c(c-v)}{f(c+v)}
$$

C. The frequency of reflected wave is

$$
\frac{f(c+v)}{c-v}
$$

D. The number of beats heard by a
stationary listener to the left to the
reflecting surface is $\frac{v f}{(c-v)}$
127. A man is watching two trains, one leaving and the other coming in with equal speed of 4 m / s. If they sound their whistles, each of frequency 240 Hz , the number of beats heard by the man (velocity of sound in air is $320 \frac{\mathrm{~m}}{\mathrm{~s}}$) will be equal to
A. 6
B. 3
C. 0

D. 12

Answer: A

D Watch Video Solution

128. The intensity of a sound wave gets reduced by 20% on passing through a slab.

The reduction intensity on passage through two such consecutive slabs
A. 40%
B. 36%
C. 30%
D. 50%

Answer: B

D Watch Video Solution

129. Two factories are sounding their sirens at 800 Hz . A man goes from one factory to the other at a speed of $2 \mathrm{~m} / \mathrm{s}$. The velocity of
A. 2
B. 4
C. 8
D. 10

Answer: D
(Watch Video Solution
130. Two sources A and B are sounding notes
of frequency 680 Hz . A listener moves from A
to B with a constant velocity u. If the speed of
sound is $340 \mathrm{~m} / \mathrm{s}$, What must be the value of u
so that he hears 10 beats per second?

$$
\begin{aligned}
& \text { A. } 2.0 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { B. } 2.5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { C. } 30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 3.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

- Watch Video Solution

131. A train has just completed a U-curve in a trach which is a semi circle. The engine is at the forward end of the semi circular part of the trach while the last carriage is at the rear end of the semi circular track. The driver blows
a whistle of frequency 200 Hz . Velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then the apparent frequency as observed by a passenger in the middle of the train, when the speed of the train is 30 m / s, is
A. 219 Hz
B. 188 Hz
C. 200 Hz
D. 181 Hz

Answer: C

- Watch Video Solution

132. One train is approaching an observer at rest and another train is receding from him with the same velocity $4 m / s$. Both trains
blow whistles of same frequency of $243 H_{Z}$.

The beat frequency in H_{Z} as heard by observer is (speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$)
A. 10
B. 6
C. 4
D. 1

Answer: B

D Watch Video Solution
133. Two sound sources are moving in opposite directions with velocities
v_{1} and $v_{2}\left(v_{1}>v_{2}\right)$. Both are moving away
from a stationary observer. The frequency of both the sources is 900 Hz . What is the value of $v_{1}-v_{2}$ so that the beat frequency aboserved by the observer is 6 Hz . speed of
sound $v=300 \mathrm{~m} / \mathrm{s}$ given ,that
v_{1} and $v_{2} \ll v$

$$
\begin{aligned}
& \text { A. } 1 \frac{m}{s} \\
& \text { B. } 2 \frac{m}{s}
\end{aligned}
$$

C. $3 \frac{m}{s}$
D. $4 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

134. the frequency changes by 10% as the source approaches a stationary observer with constant speed v_{s}. What would be the percentage change in frequency as the sources reaccedes the observer with the same
speed ? Given , that $v_{s} \ll v(\mathrm{v}=$ speed pf sound in air)
A. 14.3%
B. 20%
C. 16.7%
D. 10%

Answer: D
(Watch Video Solution
135. speed of sound wave is v. if a reflector moves toward a stationary source emiting waves of frequency with speed u, the wavelength of reflected wave will be

$$
\begin{aligned}
& \text { A. } \frac{v-u}{v+u} f \\
& \text { B. } \frac{v+u}{v} f \\
& \text { C. } \frac{v+u}{v-u} f \\
& \text { D. } \frac{v-u}{v} f
\end{aligned}
$$

Answer: C

136. An observer moves towards a stationary source of sound with a speed $\left(\frac{1}{5}\right)$ th of the speed of sound. The wavelength and frequency of the source emitted are λ and f , respectively. The apparent frequency and wavelength recorded by the observer are, respectively.
A. $1.2 f$ and λ
B. f and 1.2λ
C. 0.8 and 0.8λ

$$
\text { D. } 1.2 f \text { and } 1.2 \lambda
$$

Answer: A

D Watch Video Solution

137. A source of sound S is moving with a velocity $50 \mathrm{~m} / \mathrm{s}$ towards a stationary observer.

He measures the frequency of the source as

1000 Hz . What will be the apparent frequency of the sound when it is moving away from the
observer after crossing him? The velocity of
the sound in the medium is $350 \frac{\mathrm{~m}}{\mathrm{~s}}$
A. 750 Hz
B. 857 Hz
C. 1143 Hz
D. 1333 Hz

Answer: A
(Watch Video Solution
138. A whistle emitting a sound of frequency

440 Hz is tied to a string of 1.5 m length and
roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in
the horizontal plane. Calculate the range of frequencies heard by an observer stationed at
a larger distance from the whistle .(Speed of sound $=330 \mathrm{~m} / \mathrm{s})$.
A. 400.0 Hz to 484.0 Hz
B. 403.3 Hz to 480.0 Hz
C. 400.0 Hz to 480.0 Hz

D. 403.3 Hz to 484.0 Hz

Answer: D

D Watch Video Solution

139. A band playing music at a frequency v is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed
v_{m}.If v is the speed of sound, the expression
for the beat frequency heard by the motorist is

$$
\begin{aligned}
& \text { A. } \frac{v+v_{m}}{v+v_{b}} f \\
& \text { B. } \frac{v+v_{m}}{v-v_{b}} f \\
& \text { C. } \frac{2 v_{b}\left(v+v_{m}\right)}{v^{2}-v_{b}^{2}} f \\
& \text { D. } \frac{2 v_{m}\left(v+v_{b}\right)}{v^{2}-v_{m}^{2}} f
\end{aligned}
$$

Answer: C

D Watch Video Solution

140. A man standing on a platform hears the sound of frequency 604 Hz coming from a frequency 550 Hz from a train whistle moving
towards the platform. If the velocity of sound
is $330 \mathrm{~m} / \mathrm{s}$, then what is the speed of train?

$$
\begin{aligned}
& \text { А. } 30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { В. } 35 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { С. } 40 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 45 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer: A
141. A vehicle, with a horn of frequency n is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction prependicular to the straight line joining the observer and the vehicle . The observer perceives the sound to have a grequency $\left(n+n_{1}\right)$. If the sound velocity in air is $330 \mathrm{~m} / \mathrm{s}$, then

$$
\text { A. } n_{1}=10 n
$$

$$
\text { B. } n_{1}=-n
$$

$$
\text { C. } n_{1}=0.1 n
$$

$$
\text { D. } n_{1}=0
$$

Answer: D

- Watch Video Solution

142. An isotropic stationary source is emitting waves of frequency n and wind is blowing due north. An observer A is on north of the source while observer B is on south the source. IF both the observers are stationary, then
A. frequency received by A is greater than n
B. frequency received by B is less than n
C. freqeuency received by A equals to that received by B
D. frequencies received by A and B cannot
be calculated unless velocity of waves in
still air and velcity of wind are known

Answer: C

D Watch Video Solution

143. A train is moving with a constant speed
along a cirular track. The engine of the train
emits a sound of frequency f. the frequcency heard by the guard a rear end of the train/
A. is less than f
B. is greater than f
C. is equal to f
D. may be greater than less than or equal
to f depending on factors like speed of
train, length of train and radius of circular track.

Answer: C

D Watch Video Solution

144. An observer moves towards a stationary source of sound with a velocity one-fifth of the
velocity of sound. What is the percentage increase in the apparent frequency?
A. 5%
B. 20%
C. 0%
D. 0.5%

Answer: B

D Watch Video Solution

145. An increase in intensity level of 1 dB implies an increase in intensity of (given anti $\left.\log _{10} 0.1=1.2589\right)$
A. 1%
B. 3.01%
C. 26%
D. 0.1%

Answer: C

D Watch Video Solution

146. In expressing sound intensity we take $10^{-12} \frac{W}{m^{2}}$ as the reference level. For ordinary
conversation the intensity level is about
$10^{-6} \frac{W}{m^{2}}$. Expressed in decibel, this is
A. 10^{6}
B. 6
C. 10^{5}
D. 10^{10}

Answer: C

D Watch Video Solution
147. The intensity level of two sounds are 100 dB and 50 dB . What is the ratio of their intensities?
A. 10^{1}
B. 10^{3}
C. 10^{5}
D. 10^{10}

Answer: C

- Watch Video Solution

148. An engine running at speed $\frac{v}{10}$ sounds a whistle of frequency 600 Hz . A passenger in a train coming from the oppsite side at speed of $\frac{v}{15}$ experiences this whistle to be of frequency f. If v is speed of sound in air and there is no wind. F is nearest to
A. 711 Hz
B. 630 Hz
C. 580 Hz
D. 510 Hz

Answer: A

D Watch Video Solution

149. A source of sound produces waves of wavelength 60 cm when it is stationary if the speed of sound in air is $320 \frac{\mathrm{~m}}{\mathrm{~s}}$ and source moves with speed $20 \frac{m}{s}$, the wavelength of sound in the forward direction will be nearest to
A. 56 cm
B. 60 cm
C. 64 cm
D. 68 cm

Answer: A

- Watch Video Solution

150. The apparent frequency of the whistle of an engine changes in the ratio 6:5 as the engine passes a stationary observer. If the
velocity of sound is $330 \frac{m}{s}$, then the velocity of the engine is
A. $3 \frac{m}{s}$
B. $30 \frac{m}{s}$
C. $0.33 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $660 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B
(Watch Video Solution

151.

A source of sound S is travelling at $\frac{100}{3} \frac{m}{s}$ along a road, towards a point A. When the
source is 3 m away from A, a person standint at a point O on a road perpendicular to AS
hears a sound of requency v^{\prime}. The distance of
O from A at that time is 4 m . If the original
frequency is 640 Hz , then the value of v^{\prime} is
(velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 620 Hz
B. 680 Hz
C. 720 Hz
D. 840 Hz

Answer: B
152. A source of sound is travelling with a velocity of $30 \frac{m}{s}$ towards a stationary observer. If actual frequency of source is 1000 Hz and the wind is blowing with velocity $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ in a direction at $60^{\circ} C$ with the direction of motion of source, then the apparent frequency heard by observer is (speed of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 1011 Hz
B. 1000 Hz

C. 1094 Hz

D. 1086 Hz

Answer: C

D Watch Video Solution

153. A source of sound emits $200 \pi W$ power which is uniformly distributed over a sphere of
radius 10 m . What is the loudness of sound on
the surface of the sphere?
A. 70 dB
B. 107 dB
C. 80 dB
D. 117 dB

Answer: D

D Watch Video Solution

154. Two cars are moving on two perpendicular roads towards a crossing with uniform speeds of $72 \frac{\mathrm{~km}}{\mathrm{~h}}$ and $36 \frac{\mathrm{~km}}{\mathrm{~h}}$. If second car blows horn
of frequency 280 Hz , then the frequency of horn heard by the driver of first car when the
line joining the cars makes angle of $45^{\circ} \mathrm{C}$ with
the roads, will be (velocity of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 321 Hz
B. 298 Hz
C. 289 Hz
D. 280 Hz

Answer: B

155.

A tuning fork of frequency 380 Hz is moving
towards a wall with a velocity of $4 \frac{\mathrm{~m}}{\mathrm{~s}}$ Then the number of beats heard by a stationary listener between direct and reflected sound will be (velocity of sound in air is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$) A. 0
B. 5
C. 7
D. 10

Answer: A

- Watch Video Solution

156.

A sound wave of frequency n travels horizontally to the right with speed with
speed c. It is reflected from a broad wall moving to the left with speed v. The number of beats heard by a stationary observer to the left of the wall is
A. zero
B. $\frac{n(c+v)}{c-v}$
C. $\frac{n v}{c-v}$
D. $\frac{2 n v}{c-v}$

Answer: D

D Watch Video Solution

157. A boy is walking away from a well at a speed of $1.0 \mathrm{~m} / \mathrm{s}$ in a direction at right angles
to the wall. As he walks, he below a whistle steadily. An observer towards whom the boy is
walking hears 4.0 beats per second. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, what is the frequency of the whistle?
A. 480 Hz
B. 680 Hz
C. 840 Hz
D. 1000 Hz

Answer: B

D Watch Video Solution
158. A source emitting a sound of frequency f is placed at a large distance from an observer.

The source starts moving towards the observer with a uniform acceleration a. Find the frequency heard by the observer corresponding to the wave emitted just after the source starts. The speed of sound in the medium is v .
A. $\frac{v f^{2}}{2 v f-a}$
B. $\frac{2 v f^{2}}{2 v f+a}$
C. $\frac{2 v f^{2}}{3 v f-a}$
D. $\frac{2 v f^{2}}{2 v f-a}$

Answer: D

D Watch Video Solution

159. Due to a point isotropic sonic source,
loudness at a point is $L=60 d B$ If density of air is $\rho=\left(\frac{15}{11}\right) \frac{\mathrm{kg}}{\mathrm{m}^{3}}$ and velocity of sound in air is $v=33 \frac{m}{s}$, the pressure oscillation amplitude at the point of observation is

$$
\left[I_{0}=10^{-12} \frac{W}{m^{2}}\right]
$$

A. $0.3 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $0.03 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $3 \times 10^{-3} \frac{N}{m^{2}}$
D. $3 \times 10^{-4} \frac{N}{m^{2}}$

Answer: B

D Watch Video Solution

160. The frequency of a car horm is 400 Hz . If
the horn is honked as the car moves with a speed $u_{S}=34 \frac{m}{s}$ through still air towards a
stationary receiver, the wavelength of the sound passing the receiver is [velocity of sound is $340 \frac{m}{s}$]
A. 0.765 m
B. 0.850 m
C. 0.935 m
D. 0.425 m

Answer: A

D Watch Video Solution
161. Spherical sound waves are emitted uniformly in all direction from a point source.

The variation in sound level SL. As a function of distance r from the source can be written as where a and b are positive constants.

$$
\begin{aligned}
& \text { A. } S L=-b \log r^{a} \\
& \text { B. } S L=a-b(\log r)^{2} \\
& \text { C. } S L=a-b \log r \\
& \text { D. } S L=\frac{a-b}{r^{2}}
\end{aligned}
$$

162. When a person wears a hearing aid, the sound intensity level increases by 30 dB . The sound intensity increases by
A. e^{2}
B. 10^{3}
C. 30
D. 10^{2}

- Watch Video Solution

163. A motorcycle starts from rest and accelerates along a straight line at $2.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. The speed of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$. A siren at the starting point remains stationary. When the driver hears the frequency of the siren at 90% of when motorcycle is stationary, the distance travelled by the motorcyclist is
A. ${ }^{1} 123.75 \mathrm{~m}$
B. 247.5 m

C. 495 m

D. 990 m

Answer: B

D Watch Video Solution

164. The difference in the speeds of sound in
air at $-5^{\circ} C, 60 \mathrm{~cm}$ pressure of mercury and
$30^{\circ} C, 75 \mathrm{~cm}$ pressure of mercury is (velocity
of sound in air at $0^{\circ} C$ is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. $15.25 \frac{m}{s}$
B. $21.35 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $18.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $3.05 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

- Watch Video Solution

165.

A train is moving in an elliptical orbit in anticlockwise sense with a speed of $110 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Guard is also moving in the given direction
with same speed as that of train. The ratio of
the length of major and minor axes is $\frac{4}{3}$.
Driver blows a whistle of 1900 Hz at P , which is
received by guard at S. The frequency received
by guard is (velocity of sound $v=330 \frac{m}{s}$)

A. 1900 Hz

B. 1800 Hz

C. 2000 Hz
D. 1500 Hz

Answer: B

- Watch Video Solution

166.

A statinary observer receives a sound of
frequency 2000 Hz . The variation of apparent
frequency and time is shown. Find the speed of source, if velocity of sound is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$
A. The minimum value of apparent
frequency is 889 Hz
B. The natural frequency of souce is 1000 Hz
C. The frequency time curve corresponds to
a source moving at an angle to the
stationary observer.
D. The maximum value of apparent
frequency is 1111 Hz

- Watch Video Solution

167. The sound from a very high burst of fireworks takes 5 s to arrive at the observer.

The burst occurs 1662 m above the observer and travels vertically through two stratifier layers of air, the top one of thickness d_{1} at $0^{\circ} C$ and the bottom one of thickness d_{2} at $20^{\circ} \mathrm{C}$. Then (assume velocity of sound at $0^{\circ} \mathrm{C}$ is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)

$$
\text { A. } d_{1}=342 m
$$

B. $d_{2}=1320 \mathrm{~m}$
C. $d_{1}=1485 m$
D. $d_{2}=342 m$

Answer: A

D Watch Video Solution

168. A car emitting sound of frequency 500 Hz speeds towards a fixed wall at $4 \frac{m}{s}$. An observer in the car hears both the source
frequency as well as the frequency of sound
reflected from the wall. If he hears 10 beats per second between the two sounds, the velocity of sound in air will be

> A. $330 \frac{\mathrm{~m}}{\mathrm{~s}}$
> В. $387 \frac{\mathrm{~m}}{\mathrm{~s}}$
> C. $404 \frac{\mathrm{~m}}{\mathrm{~s}}$
> D. $340 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: D

D Watch Video Solution

169.

In the figure shown, a source of sound of
frequency 510 Hz moves with constant velocity
$v_{S}=20 \frac{m}{s}$ in the direction shown. The wind is
blowing at a constant velocity $v_{W}=20 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards an observer who is at rest at point B.
corresponding to the sound emitted by the source at initial position A, the frequency
detected by the observer is equal to (speed of sound relative to air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 510 Hz
B. 500 Hz
C. 525 Hz
D. 550 Hz

Answer: C
(Watch Video Solution

170.

A wall is moving with velocity u and a source of sound moves with velocity $\frac{u}{2}$ in the same direction as shown in the figure. Assuming that the sound travels with velocity $10 u$, the ratio of incident sound wavelength on the wall to the reflected sound wavelength by the wall is equal to
A. 9:11
B. $11: 9$
C. $4: 5$
D. 5:4

Answer: C

- Watch Video Solution

171.

For a sound wave travelling towards $+x$ direction, sinusoidal longitudinal
displacement ε at a certain time is given as a
function of x (Fig). If bulk modulus of air is
$B=5 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$, the variation of pressure excess will be
B.

C.

D.

Answer: A

D Watch Video Solution

172. If the source is moving towards right, wavefront of sound waves get modifies to

D. none of these

Answer: D

(D)
Watch Video Solution
173. Consider a source of sound S and an observer P. The sound source is of frequency
n_{0}. The frequency observed be P is found to
be n_{1} if P approaches S at speed v and S is
stationary, n_{2} If S approaches P at a speed v
and P is stationary and n_{3} if each of P and S
has speed $\frac{v}{2}$ towards one another Now.
A. $f_{1} \neq f_{2} \neq f_{3}$
B. $f_{1}<f_{2}$
C. $f_{3}<f_{0}$
D. $f_{1}<f_{3}<f_{2}$

Answer: B

- Watch Video Solution

174. When source and detector are stationary
but the wind is blowing at speed v_{W}, the apparent wavelength λ^{\prime} on the wind side is related to actual wavelength λ by [take speed of sound is air as v]

$$
\text { A. } \lambda^{\prime}=\lambda
$$

$$
\text { B. } \lambda^{\prime}=\frac{v_{W}}{v} \lambda
$$

$$
\begin{aligned}
& \text { C. } \lambda^{\prime}=\frac{v_{W}+v}{v} \lambda \\
& \text { D. } \lambda^{\prime}=\frac{v}{v-v_{W}} \lambda
\end{aligned}
$$

Answer: C

- Watch Video Solution

175.

Figure. Represents the displacement y versus
distance x along the direction of propagation of a longitudinal wave. The pressure is maximum at position marked
A. P
B. Q
C. R
D. S

Answer: C

D Watch Video Solution
176. The driver of a car approaching a vertical wall notices that the frequency of the horn of
his car changes from 400 Hz to 450 Hz after being reflected from the wall. Assuming speed of sound to be $340 \frac{m}{s}$, the speed of approach of car towards the wall is
A. $10 \frac{m}{s}$
B. $20 \frac{m}{s}$
C. $30 \frac{m}{s}$
D. $40 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: C

D Watch Video Solution

177. The difference between the apparent frequency of a source of sound as perceived by the observer during its approach and recession is 2% of the natural frequency of the source. If the velocity of sound in air is 300 m / s, the velocity of the source is
A. $1.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
B. $3 \frac{m}{s}$
C. $6 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $12 \frac{m}{s}$

Answer: B

D Watch Video Solution

178. The freqency of a radar is 780 M hz . The frequency of the reflected wave from an aerolane is increased by 2.6 kHz . The velocity of aeroplane is
A. $2 \frac{k m}{s}$
B. $1 \frac{\mathrm{~km}}{\mathrm{~s}}$
C. $0.5 \frac{\mathrm{~km}}{\mathrm{~s}}$
D. $0.25 \frac{\mathrm{~km}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

179. A train moves towards a stationary observer with speed $34 m / s$. The train sound a whistle and its frequency registered by the
observer by the observer is f_{1}. If the train's
speed is reduced to $17 m / s$, the frequency
registered is f_{2}. If the speed of sound is
$340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is
A. $\frac{18}{19}$
B. $\frac{1}{2}$
C. 2
D. $\frac{19}{18}$

Answer: C

180. A siren placed at a railway platfrom is emitted sound of frequency $5 k H_{Z}$, A passenger sitting in retun journey in a different train B he records a frequency of
$6.0 \mathrm{kH}_{Z}$ while approaching the same siren. The ratio of the velocity of train B to that of train
A is

$$
\text { A. } \frac{242}{252}
$$

B. 2
C. $\frac{5}{6}$
D. $\frac{11}{6}$

Answer: D

D Watch Video Solution

181. A person speaking normally produces a sound intensity of 40 dB at a distance of 1 m . If
the threshold intensity for reasonable audibility is $20 d B$, the maximum distance at which he can be heard cleary is.
A. 4 m
B. 5 m
C. 10 m
D. 20 m

Answer: B

- Watch Video Solution

182.

A police car moving at $22 \frac{m}{s}$ chases a motorcyclist. The police man sounds his horn of frequency 176 Hz , while both of them move towards a stationary siren of frequency 165 Hz .

Calculate the speed of motorcyclist if it is given that he does not hear any beat (speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. $33 \frac{m}{s}$
B. $22 \frac{m}{s}$
C. $11 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. zero

Answer: C

D Watch Video Solution

183. In sport meet the timing of a 200 m
straight dash is recorded at the finish point by
starting an accurate stop watch on hearing
the sound of starting gun firen at the starting
poing. The time recorded will be more accurate
A. In winter
B. in summer
C. in all seasons

D. none of these

Answer: B

D Watch Video Solution
184. When a source moves away from a stationary observer, the frequency is $\frac{6}{7}$ times the original frequency. Given: speed of sound $=330 \frac{\mathrm{~m}}{s}$. The speed of the source is
A. $40 \frac{m}{s}$
B. $55 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $330 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $165 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B
185. Length of a string of density ρ and

Young's modulus Y under tension is increased
by $\frac{1}{n}$ times of its original length if the velocity of transverse and longitudinal vibration of the string is same, find the value of such velocity.
A. $\sqrt{\frac{Y}{\rho n}}$
B. $\sqrt{\frac{Y}{\rho^{\frac{1}{2}}}}$
C. $\sqrt{\frac{Y}{\rho}}$
D. $\sqrt{\frac{Y}{\rho n^{\frac{3}{2}}}}$

Answer: B

- Watch Video Solution

186. Source and observer start moving simulatneously along x and y-axis respectively.

The speed of source is twice the speed of observer V_{0}. If the ratio of observer frequency to the frequency of the source is 0.75 , find the velocity of sound.

$$
\text { A. } \frac{11}{\sqrt{5}} V_{0}
$$

B. $\frac{17}{\sqrt{5}} V_{0}$
C. $\frac{16}{\sqrt{5}} V_{0}$
D. $\frac{19}{\sqrt{5}} V_{0}$

Answer: C

- Watch Video Solution

187.

A statinary observer receives a sound of
frequency 2000 Hz . The variation of apparent
frequency and time is shown. Find the speed of source, if velocity of sound is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$
A. $66.6 \frac{m}{s}$
B. $33.3 \frac{m}{s}$
C. $27.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $59.3 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

A source of sound of frequency f_{1} is placed on the ground. A detector placed at a height is released from rest on this source. The observed frequency $f(\mathrm{~Hz})$ is plotted against time $t(\mathrm{sec})$. The speed of sound in air is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find $f_{1}\left(g=10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.
A. $0.5 \times 10^{3} \mathrm{~Hz}$
B. $2 \times 10^{3} \mathrm{~Hz}$
C. $0.25 \times 10^{3} \mathrm{~Hz}$
D. $0.2 \times 10^{3} \mathrm{~Hz}$

D Watch Video Solution

189. A sound wave of frequency f travels
horizontally to the right. It is teflected from a
larger vertical plane surface moving to left
with a speed v. the speed of sound in medium
is c
(a) The number of waves striking the surface per second is $\frac{f(c+v)}{c}$
(b) The wavelength of reflected wave is $\frac{c(c-v)}{f(c+v)}$
(c) The frequency of the reflected wave is $\underline{f((c+v))}$
$(c+v)$
(d) The number of beats heard by a stationary
listener to the left of the reflecting surface is
$\frac{v f}{c-v}$
A. The number of wave striking the surface
per second is $\frac{f((c+v))}{c}$
B. The wavelength of reflected wave is

$$
\frac{c(c-v)}{f(c+v)}
$$

C. The frequency of reflected wave is

$$
\frac{f(c+v)}{c-v}
$$

D. The number of beats heard by a
stationary listener to the left to the
reflecting surface is $\frac{v f}{(c-v)}$
190. A man is watching two trains, one leaving and the other coming in with equal speed of 4 m / s. If they sound their whistles, each of frequency 240 Hz , the number of beats heard by the man (velocity of sound in air is $320 \frac{\mathrm{~m}}{\mathrm{~s}}$) will be equal to
A. 6
B. 3
C. 0

D. 12

Answer: A

D Watch Video Solution

191. The intensity of a sound wave gets
reduced by 20% on passing through a slab.

The reduction intensity on passage through two such consecutive slabs
A. 40%
B. 36%
C. 30%
D. 50%

Answer: B

D Watch Video Solution

192. Two factories are sounding their sirens at 800 Hz . A man goes from one factory to the other at a speed of $2 \mathrm{~m} / \mathrm{s}$. The velocity of
sound is $320 \mathrm{~m} / \mathrm{s}$. The number of beats heard by the person is 1 s will be
A. 2
B. 4
C. 8
D. 10

Answer: D
(Watch Video Solution
193. Two sources A and B are sounding notes
of frequency 680 Hz . A listener moves from A
to B with a constant velocity u. If the speed of
sound is $340 \mathrm{~m} / \mathrm{s}$, What must be the value of u
so that he hears 10 beats per second?

$$
\begin{aligned}
& \text { A. } 2.0 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { B. } 2.5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { C. } 30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 3.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

- Watch Video Solution

194. A train has just completed a U-curve in a trach which is a semi circle. The engine is at the forward end of the semi circular part of the trach while the last carriage is at the rear end of the semi circular track. The driver blows
a whistle of frequency 200 Hz . Velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then the apparent frequency as observed by a passenger in the middle of the train, when the speed of the train is 30 m / s, is
A. 219 Hz
B. 188 Hz
C. 200 Hz
D. 181 Hz

Answer: C

D Watch Video Solution
195. One train is approaching an observer at rest and another train is receding from him with the same velocity $4 m / s$. Both trains
blow whistles of same frequency of $243 H_{Z}$.

The beat frequency in H_{Z} as heard by observer is (speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$)
A. 10
B. 6
C. 4
D. 1

Answer: B

D Watch Video Solution
196. Two sound sources are moving in opposite directions with velocities
v_{1} and $v_{2}\left(v_{1}>v_{2}\right)$. Both are moving away
from a stationary observer. The frequency of both the sources is 900 Hz . What is the value of $v_{1}-v_{2}$ so that the beat frequency aboserved by the observer is 6 Hz . speed of sound $v=300 \mathrm{~m} / \mathrm{s}$ given ,that
v_{1} and $v_{2} \ll v$
A. $1 \frac{m}{s}$
B. $2 \frac{m}{s}$
C. $3 \frac{m}{s}$
D. $4 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

197. the frequency changes by 10% as the source approaches a stationary observer with constant speed v_{s}. What would be the percentage change in frequency as the sources reaccedes the observer with the same
speed ? Given , that $v_{s} \ll v(\mathrm{v}=$ speed pf sound in air)
A. 14.3%
B. 20%
C. 16.7%
D. 10%

Answer: D
(Watch Video Solution
198. speed of sound wave is v. if a reflector moves toward a stationary source emiting waves of frequency with speed u, the wavelength of reflected wave will be

$$
\begin{aligned}
& \text { A. } \frac{v-u}{v+u} f \\
& \text { B. } \frac{v+u}{v} f \\
& \text { C. } \frac{v+u}{v-u} f \\
& \text { D. } \frac{v-u}{v} f
\end{aligned}
$$

Answer: C

199. An observer moves towards a stationary source of sound with a speed $\left(\frac{1}{5}\right)$ th of the speed of sound. The wavelength and frequency of the source emitted are λ and f , respectively. The apparent frequency and wavelength recorded by the observer are, respectively.
A. $1.2 f$ and λ
B. f and 1.2λ
C. 0.8 and 0.8λ

$$
\text { D. } 1.2 f \text { and } 1.2 \lambda
$$

Answer: A

D Watch Video Solution

200. A source of sound S is moving with a velocity $50 \mathrm{~m} / \mathrm{s}$ towards a stationary observer.

He measures the frequency of the source as

1000 Hz . What will be the apparent frequency of the sound when it is moving away from the
observer after crossing him? The velocity of
the sound in the medium is $350 \frac{\mathrm{~m}}{\mathrm{~s}}$
A. 750 Hz
B. 857 Hz
C. 1143 Hz
D. 1333 Hz

Answer: A
(Watch Video Solution
201. A whistle emitting a sound of frequency

440 Hz is tied to a string of 1.5 m length and
roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in
the horizontal plane. Calculate the range of frequencies heard by an observer stationed at
a larger distance from the whistle .(Speed of sound $=330 \mathrm{~m} / \mathrm{s})$.
A. 400.0 Hz to 484.0 Hz
B. 403.3 Hz to 480.0 Hz
C. 400.0 Hz to 480.0 Hz

D. 403.3 Hz to 484.0 Hz

Answer: D

D Watch Video Solution

202. A band playing music at a frequency v is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed
v_{m}.If v is the speed of sound, the expression
for the beat frequency heard by the motorist is

$$
\begin{aligned}
& \text { A. } \frac{v+v_{m}}{v+v_{b}} f \\
& \text { B. } \frac{v+v_{m}}{v-v_{b}} f \\
& \text { C. } \frac{2 v_{b}\left(v+v_{m}\right)}{v^{2}-v_{b}^{2}} f \\
& \text { D. } \frac{2 v_{m}\left(v+v_{b}\right)}{v^{2}-v_{m}^{2}} f
\end{aligned}
$$

Answer: C

D Watch Video Solution

203. A man standing on a platform hears the sound of frequency 604 Hz coming from a frequency 550 Hz from a train whistle moving
towards the platform. If the velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, then what is the speed of train?

$$
\begin{aligned}
& \text { А. } 30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { В. } 35 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { С. } 40 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 45 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer: A
204. A vehicle, with a horn of frequency n is
moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction
prependicular to the straight line joining the observer and the vehicle . The observer perceives the sound to have a grequency $\left(n+n_{1}\right)$. If the sound velocity in air is $330 m / s$, then

$$
\text { A. } n_{1}=10 n
$$

$$
\text { B. } n_{1}=-n
$$

$$
\text { C. } n_{1}=0.1 n
$$

$$
\text { D. } n_{1}=0
$$

Answer: D

D Watch Video Solution

205. An isotropic stationary source is emitting waves of frequency n and wind is blowing due north. An observer A is on north of the source while observer B is on south the source. IF both the observers are stationary, then
A. frequency received by A is greater than n
B. frequency received by B is less than n
C. freqeuency received by A equals to that received by B
D. frequencies received by A and B cannot
be calculated unless velocity of waves in
still air and velcity of wind are known

Answer: C

D Watch Video Solution

206. A train is moving with a constant speed
along a cirular track. The engine of the train
emits a sound of frequency f. the frequcency heard by the guard a rear end of the train/
A. is less than f
B. is greater than f
C. is equal to f
D. may be greater than less than or equal
to f depending on factors like speed of
train, length of train and radius of circular track.

Answer: C

D Watch Video Solution

207. An observer moves towards a stationary source of sound with a velocity one-fifth of the
velocity of sound. What is the percentage increase in the apparent frequency?
A. 5%
B. 20%
C. 0%
D. 0.5%

Answer: B

D Watch Video Solution

208. An increase in intensity level of 1 dB
implies an increase in intensity of (given anti
$\left.\log _{10} 0.1=1.2589\right)$
A. 1%
B. 3.01%
C. 26%
D. 0.1%

Answer: C

D Watch Video Solution
209. In expressing sound intensity we take
$10^{-12} \frac{W}{m^{2}}$ as the reference level. For ordinary
conversation the intensity level is about
$10^{-6} \frac{W}{m^{2}}$. Expressed in decibel, this is
A. 10^{6}
B. 6
C. 10^{5}
D. 10^{10}

Answer: C
(Watch Video Solution
210. The intensity level of two sounds are 100
dB and 50 dB . What is the ratio of their intensities?
A. 10^{1}
B. 10^{3}
C. 10^{5}
D. 10^{10}

Answer: C

D Watch Video Solution
211. An engine running at speed $\frac{v}{10}$ sounds a whistle of frequency 600 Hz . A passenger in a train coming from the oppsite side at speed of $\frac{v}{15}$ experiences this whistle to be of frequency f. If v is speed of sound in air and there is no wind. F is nearest to
A. 711 Hz
B. 630 Hz
C. 580 Hz
D. 510 Hz

Answer: A

- Watch Video Solution

212. A source of sound produces waves of wavelength 60 cm when it is stationary if the speed of sound in air is $320 \frac{\mathrm{~m}}{\mathrm{~s}}$ and source moves with speed $20 \frac{m}{s}$, the wavelength of sound in the forward direction will be nearest to
A. 56 cm
B. 60 cm
C. 64 cm
D. 68 cm

Answer: A

- Watch Video Solution

213. The apparent frequency of the whistle of an engine changes in the ratio 6:5 as the engine passes a stationary observer. If the
velocity of sound is $330 \frac{m}{s}$, then the velocity of the engine is
A. $3 \frac{m}{s}$
B. $30 \frac{m}{s}$
C. $0.33 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $660 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B
(Watch Video Solution

214.

A source of sound S is travelling at $\frac{100}{3} \frac{m}{s}$ along a road, towards a point A . When the
source is 3 m away from A, a person standint at a point O on a road perpendicular to AS
hears a sound of requency v^{\prime}. The distance of
O from A at that time is 4 m . If the original
frequency is 640 Hz , then the value of v^{\prime} is
(velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 620 Hz
B. 680 Hz
C. 720 Hz
D. 840 Hz

Answer: B
215. A source of sound is travelling with a velocity of $30 \frac{m}{s}$ towards a stationary observer. If actual frequency of source is 1000 Hz and the wind is blowing with velocity $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ in a direction at $60^{\circ} C$ with the direction of motion of source, then the apparent frequency heard by observer is (speed of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 1011 Hz
B. 1000 Hz

C. 1094 Hz

D. 1086 Hz

Answer: C

D Watch Video Solution

216. A source of sound emits $200 \pi W$ power which is uniformly distributed over a sphere of
radius 10 m . What is the loudness of sound on
the surface of the sphere?
A. 70 dB
B. 107 dB
C. 80 dB
D. 117 dB

Answer: D

D Watch Video Solution

217. Two cars are moving on two perpendicular roads towards a crossing with uniform speeds of $72 \frac{\mathrm{~km}}{\mathrm{~h}}$ and $36 \frac{\mathrm{~km}}{\mathrm{~h}}$. If second car blows horn
of frequency 280 Hz , then the frequency of horn heard by the driver of first car when the
line joining the cars makes angle of $45^{\circ} \mathrm{C}$ with the roads, will be (velocity of sound is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 321 Hz
B. 298 Hz
C. 289 Hz
D. 280 Hz

Answer: B

218.

A tuning fork of frequency 380 Hz is moving towards a wall with a velocity of $4 \frac{\mathrm{~m}}{\mathrm{~s}}$ Then the number of beats heard by a stationary listener between direct and reflected sound will be (velocity of sound in air is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$) A. 0
B. 5
C. 7
D. 10

Answer: A

- Watch Video Solution

219.

A sound wave of frequency n travels horizontally to the right with speed with
speed c. It is reflected from a broad wall moving to the left with speed v. The number of beats heard by a stationary observer to the left of the wall is
A. zero
B. $\frac{n(c+v)}{c-v}$
C. $\frac{n v}{c-v}$
D. $\frac{2 n v}{c-v}$

Answer: D

D Watch Video Solution

220. A boy is walking away from a well at a speed of $1.0 \mathrm{~m} / \mathrm{s}$ in a direction at right angles
to the wall. As he walks, he below a whistle steadily. An observer towards whom the boy is
walking hears 4.0 beats per second. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, what is the frequency of the whistle?
A. 480 Hz
B. 680 Hz
C. 840 Hz
D. 1000 Hz

Answer: B

D Watch Video Solution
221. A source emitting a sound of frequency f is placed at a large distance from an observer.

The source starts moving towards the observer with a uniform acceleration a. Find
the frequency heard by the observer corresponding to the wave emitted just after the source starts. The speed of sound in the medium is v .
A. $\frac{v f^{2}}{2 v f-a}$
B. $\frac{2 v f^{2}}{2 v f+a}$
C. $\frac{2 v f^{2}}{3 v f-a}$
D. $\frac{2 v f^{2}}{2 v f-a}$

Answer: D

D Watch Video Solution

222. Due to a point isotropic sonic source,
loudness at a point is $L=60 d B$ If density of air is $\rho=\left(\frac{15}{11}\right) \frac{\mathrm{kg}}{\mathrm{m}^{3}}$ and velocity of sound in air is $v=33 \frac{m}{s}$, the pressure oscillation amplitude at the point of observation is

$$
\left[I_{0}=10^{-12} \frac{W}{m^{2}}\right]
$$

A. $0.3 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $0.03 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $3 \times 10^{-3} \frac{N}{m^{2}}$
D. $3 \times 10^{-4} \frac{N}{m^{2}}$

Answer: B

D Watch Video Solution

223. The frequency of a car horm is 400 Hz . If
the horn is honked as the car moves with a speed $u_{S}=34 \frac{m}{s}$ through still air towards a
stationary receiver, the wavelength of the sound passing the receiver is [velocity of sound is $340 \frac{m}{s}$]
A. 0.765 m
B. 0.850 m
C. 0.935 m
D. 0.425 m

Answer: A

D Watch Video Solution
224. Spherical sound waves are emitted uniformly in all direction from a point source.

The variation in sound level SL. As a function of distance r from the source can be written as where a and b are positive constants.

$$
\begin{aligned}
& \text { A. } S L=-b \log r^{a} \\
& \text { B. } S L=a-b(\log r)^{2} \\
& \text { C. } S L=a-b \log r \\
& \text { D. } S L=\frac{a-b}{r^{2}}
\end{aligned}
$$

225. When a person wears a hearing aid, the sound intensity level increases by 30 dB . The sound intensity increases by
A. e^{2}
B. 10^{3}
C. 30
D. 10^{2}

- Watch Video Solution

226. A motorcycle starts from rest and accelerates along a straight line at $2.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. The speed of sound is $330 \frac{m}{s}$. A siren at the starting point remains stationary. When the driver hears the frequency of the siren at 90% of when motorcycle is stationary, the distance travelled by the motorcyclist is
A. ${ }^{`} 123.75 \mathrm{~m}$
B. 247.5 m

C. 495 m

D. 990 m

Answer: B

D Watch Video Solution

227. The difference in the speeds of sound in
air at $-5^{\circ} C, 60 \mathrm{~cm}$ pressure of mercury and
$30^{\circ} C, 75 \mathrm{~cm}$ pressure of mercury is (velocity
of sound in air at $0^{\circ} C$ is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. $15.25 \frac{m}{s}$
B. $21.35 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $18.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $3.05 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

- Watch Video Solution

228.

A train is moving in an elliptical orbit in anticlockwise sense with a speed of $110 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Guard is also moving in the given direction
with same speed as that of train. The ratio of
the length of major and minor axes is $\frac{4}{3}$.
Driver blows a whistle of 1900 Hz at P , which is
received by guard at S. The frequency received
by guard is (velocity of sound $v=330 \frac{m}{s}$)

A. 1900 Hz

B. 1800 Hz

C. 2000 Hz
D. 1500 Hz

Answer: B

- Watch Video Solution

229.

A stationary observer receives a sound from a sound of freqeuency v_{0} moving with a constant velocity $v_{S}=30 \frac{m}{s}$ The apparent frequency varies with time as shown in figure.

Velocity of sound $v=300 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then which of the following is incorrect?
A. The minimum value of apparent
frequency is 889 Hz
B. The natural frequency of souce is 1000 Hz
C. The frequency time curve corresponds to
a source moving at an angle to the
stationary observer.
D. The maximum value of apparent
frequency is 1111 Hz

- Watch Video Solution

230. The sound from a very high burst of fireworks takes 5 s to arrive at the observer.

The burst occurs 1662 m above the observer and travels vertically through two stratifier layers of air, the top one of thickness d_{1} at $0^{\circ} C$ and the bottom one of thickness d_{2} at $20^{\circ} \mathrm{C}$. Then (assume velocity of sound at $0^{\circ} \mathrm{C}$ is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)

$$
\text { A. } d_{1}=342 m
$$

B. $d_{2}=1320 \mathrm{~m}$
C. $d_{1}=1485 m$
D. $d_{2}=342 m$

Answer: A

D Watch Video Solution

231. A car emitting sound of frequency 500 Hz
speeds towards a fixed wall at $4 \frac{m}{s}$. An observer in the car hears both the source
frequency as well as the frequency of sound
reflected from the wall. If he hears 10 beats per second between the two sounds, the velocity of sound in air will be

> A. $330 \frac{\mathrm{~m}}{\mathrm{~s}}$
> В. $387 \frac{\mathrm{~m}}{\mathrm{~s}}$
> C. $404 \frac{\mathrm{~m}}{\mathrm{~s}}$
> D. $340 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: D

D Watch Video Solution

232.

In the figure shown, a source of sound of
frequency 510 Hz moves with constant velocity
$v_{S}=20 \frac{m}{s}$ in the direction shown. The wind is
blowing at a constant velocity $v_{W}=20 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards an observer who is at rest at point B.
corresponding to the sound emitted by the source at initial position A, the frequency
detected by the observer is equal to (speed of sound relative to air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)
A. 510 Hz
B. 500 Hz
C. 525 Hz
D. 550 Hz

Answer: C
(Watch Video Solution

233.

A wall is moving with velocity u and a source of sound moves with velocity $\frac{u}{2}$ in the same direction as shown in the figure. Assuming that the sound travels with velocity $10 u$, the ratio of incident sound wavelength on the wall to the reflected sound wavelength by the wall is equal to
A. 9:11
B. $11: 9$
C. $4: 5$
D. 5:4

Answer: C

- Watch Video Solution

234.

For a sound wave travelling towards $+x$ direction, sinusoidal longitudinal
displacement ε at a certain time is given as a
function of x (Fig). If bulk modulus of air is
$B=5 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$, the variation of pressure excess will be
B.

C.

D.

Answer: A

D Watch Video Solution

235. If the source is moving towards right,

 wavefront of sound waves get modifies to
D. none of these

Answer: D

-

236. Consider a source of sound S and an observer P. The sound source is of frequency
n_{0}. The frequency observed be P is found to
be n_{1} if P approaches S at speed v and S is
stationary, n_{2} If S approaches P at a speed v
and P is stationary and n_{3} if each of P and S
has speed $\frac{v}{2}$ towards one another Now.
A. $f_{1} \neq f_{2} \neq f_{3}$
B. $f_{1}<f_{2}$
C. $f_{3}<f_{0}$
D. $f_{1}<f_{3}<f_{2}$

Answer: B

D Watch Video Solution

237. When source and detector are stationary
but the wind is blowing at speed v_{W}, the apparent wavelength λ^{\prime} on the wind side is related to actual wavelength λ by [take speed of sound is air as v]

$$
\text { A. } \lambda^{\prime}=\lambda
$$

$$
\text { B. } \lambda^{\prime}=\frac{v_{W}}{v} \lambda
$$

$$
\begin{aligned}
& \text { C. } \lambda^{\prime}=\frac{v_{W}+v}{v} \lambda \\
& \text { D. } \lambda^{\prime}=\frac{v}{v-v_{W}} \lambda
\end{aligned}
$$

Answer: C

- Watch Video Solution

Figure. Represents the displacement y versus
distance x along the direction of propagation of a longitudinal wave. The pressure is maximum at position marked
A. P
B. Q
C. R
D. S

Answer: C

D Watch Video Solution
239. The driver of a car approaching a vertical
wall notices that the frequency of the horn of
his car changes from 400 Hz to 450 Hz after being reflected from the wall. Assuming speed of sound to be $340 \frac{m}{s}$, the speed of approach of car towards the wall is
A. $10 \frac{m}{s}$
B. $20 \frac{m}{s}$
C. $30 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $40 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: C

D Watch Video Solution

240. The difference between the apparent frequency of a source of sound as perceived by the observer during its approach and recession is 2% of the natural frequency of the source. If the velocity of sound in air is 300 m / s, the velocity of the source is
A. $1.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
B. $3 \frac{m}{s}$
C. $6 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $12 \frac{m}{s}$

Answer: B

D Watch Video Solution

241. The freqency of a radar is 780 M hz . The frequency of the reflected wave from an aerolane is increased by 2.6 kHz . The velocity of
A. $2 \frac{k m}{s}$
B. $1 \frac{\mathrm{~km}}{\mathrm{~s}}$
C. $0.5 \frac{\mathrm{~km}}{\mathrm{~s}}$
D. $0.25 \frac{\mathrm{~km}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

242. A train moves towards a stationary observer with speed $34 m / s$. The train sound a whistle and its frequency registered by the
observer by the observer is f_{1}. If the train's
speed is reduced to $17 m / s$, the frequency
registered is f_{2}. If the speed of sound is
$340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is
A. $\frac{18}{19}$
B. $\frac{1}{2}$
C. 2
D. $\frac{19}{18}$

Answer: C

243. A siren placed at a railway platfrom is emitted sound of frequency $5 k H_{Z}$, A passenger sitting in retun journey in a different train B he records a frequency of $6.0 \mathrm{kH}_{Z}$ while approaching the same siren. The ratio of the velocity of train B to that of train
A is

$$
\text { A. } \frac{242}{252}
$$

B. 2
C. $\frac{5}{6}$
D. $\frac{11}{6}$

Answer: D

D Watch Video Solution

244. A person speaking normally produces a sound of intensity 40 dB at a distance of 1 m . If
the threshold intensity for reasonable audibility is 20 dB . The maximum distance at which he can heard cleary is
A. 4 m
B. 5 m
C. 10 m
D. 20 m

Answer: B

- Watch Video Solution

A police car moving at $22 \frac{m}{s}$ chases a motorcyclist. The police man sounds his horn of frequency 176 Hz , while both of them move towards a stationary siren of frequency 165 Hz .

Calculate the speed of motorcyclist if it is given that he does not hear any beat (speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$)

$$
\text { A. } 33 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

B. $22 \frac{m}{s}$
C. $11 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. zero

Answer: C

D Watch Video Solution

246. In sport meet the timing of a 200 m straight dash is recorded at the finish point by
starting an accurate stop watch on hearing the sound of starting gun firen at the starting
poing. The time recorded will be more accurate
A. In winter
B. in summer
C. in all seasons

D. none of these

Answer: B

D Watch Video Solution
247. When a source moves away from a stationary observer, the frequency is $\frac{6}{7}$ times the original frequency. Given: speed of sound $=330 \frac{\mathrm{~m}}{\mathrm{~s}}$. The speed of the source is
A. $40 \frac{m}{s}$
B. $55 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $330 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $165 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B
248. Length of a string of density ρ and Young's modulus Y under tension is increased
by $\frac{1}{n}$ times of its original length If the velocity of transverse and longitudinal vibration of the string is same, find the value of such velocity.
A. $\sqrt{\frac{Y}{\rho n}}$
B. $\sqrt{\frac{Y}{\rho^{\frac{1}{2}}}}$
c. $\sqrt{\frac{Y}{\rho}}$
D. $\sqrt{\frac{Y}{\rho n^{\frac{3}{2}}}}$

Answer: B

- Watch Video Solution

249. Source and observer start moving simulatneously along x and y-axis respectively.

The speed of source is twice the speed of observer V_{0}. If the ratio of observer frequency to the frequency of the source is 0.75 , find the velocity of sound.

$$
\text { A. } \frac{11}{\sqrt{5}} V_{0}
$$

B. $\frac{17}{\sqrt{5}} V_{0}$
C. $\frac{16}{\sqrt{5}} V_{0}$
D. $\frac{19}{\sqrt{5}} V_{0}$

Answer: C

- Watch Video Solution

250.

A statinary observer receives a sound of frequency 2000 Hz . The variation of apparent frequency and time is shown. Find the speed of source, if velocity of sound is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\text { A. } 66.6 \frac{m}{s}
$$

B. $33.3 \frac{m}{s}$
C. $27.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
D. $59.3 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

$$
\begin{aligned}
& f(\mathrm{~Hz}) \\
& 2 \times 10^{3} \text { (} \\
& \text { 251. }
\end{aligned}
$$

A source of sound of frequency f_{1} is placed on the ground. A detector placed at a height is released from rest on this source. The observed frequency $f(\mathrm{~Hz})$ is plotted against time $t(\mathrm{sec})$. The speed of sound in air is $300 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find $f_{1}\left(g=10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$.
A. $0.5 \times 10^{3} \mathrm{~Hz}$
B. $2 \times 10^{3} \mathrm{~Hz}$
C. $0.25 \times 10^{3} \mathrm{~Hz}$
D. $0.2 \times 10^{3} \mathrm{~Hz}$

D Watch Video Solution

252. A sound wave of frequency f travels horizontally to the right. It is teflected from a larger vertical plane surface moving to left
with a speed v. the speed of sound in medium
is c
(a) The number of waves striking the surface per second is $\frac{f(c+v)}{c}$
(b) The wavelength of reflected wave is $\frac{c(c-v)}{f(c+v)}$
(c) The frequency of the reflected wave is $\underline{f((c+v))}$
$(c+v)$
(d) The number of beats heard by a stationary
listener to the left of the reflecting surface is
$\frac{v f}{c-v}$
A. The number of wave striking the surface
per second is $\frac{f((c+v))}{c}$
B. The wavelength of reflected wave is

$$
\frac{c(c-v)}{f(c+v)}
$$

C. The frequency of reflected wave is

$$
\frac{f(c+v)}{c-v}
$$

D. The number of beats heard by a
stationary listener to the left to the
reflecting surface is $\frac{v f}{(c-v)}$

Multiple Correct

1. Which of the following statements are incorrect?
A. Wave pulses in strings are transverse
waves.
B. Sound waves in air are transverse waves
of compression and rarefaction.
C. The speed of sound in air at $20^{\circ} \mathrm{C}$ is twice that at $5^{\circ} C$.
D. A 60 dB sound has twice the intensity of

$$
\text { a } 30 \mathrm{~dB} \text { sound. }
$$

Answer: B::C::D

D Watch Video Solution

2. A source S of sound wave of fixed frequency
N and an observer O are located in air initially
at the space points A and B, a fixed distance
apart. State in which of the following cases, the observer will NOT see any Doppler effect and will receive the same frequency N as produced by the source.
A. Both the source S and observer O remain stationary but a wind blows with
a constant speed in an arbitrary
direction.
B. The observer remains stationary but the
source S moves parallel to and in the
same direction and with the same speed
as the wind.
C. The source remains stationary but the
observer and the wind have the same
speed away from the source.
D. The source and the observer move
directly against the wind but both with
the same speed.

Answer: A::D

3. A vibrating tuning fork is first held in the hand and then its end is broght in contact with a table. Which of the following statement (s) is are correct in respect of this situation?
A. The sound is louder when the tuning
fork is held in hand
B. The sound is louder when the tuning
fork is in contact with table.
C. The sound dies away sooner when tuning fork is brought in contact with the table.

D. The sound remains for a longer duration

when turning fork is held in hand.

Answer: B::C::D

- Watch Video Solution

4.

A source of sound and detector are moving as
shown in Fig. at $t=0$. Take velocity of sound
wave to be v. For this situation mark out the correct statement(s).
A. (a)The frequency received by the
detector is always greater than f_{0}
B. (b)Initially, frequency received by the
detector is greater than f_{0}, becomes
equal to f_{0}, and then decreases with the
time.
C. (c)Frequency received by the detector is
equal to f_{0} at $t=\frac{d \cot \theta_{0}}{\left(2 v_{0}\right)}$.
D. (d)Frequency received by the detector
can never be equal to f_{0}

Answer: B::C

5. Which of the following statements are correct?
A. (a)Changes inair temperature have no
effect on the speed of sound.
B. (b)Changes in air pressure have no effect
on the speed of sound.
C. (c)The speed of sound in water is higher
that in air.

D. (d)The speed of sound in water is lower

 than in air.
Answer: B::C

D Watch Video Solution

6. Consider a souce of sound S, and an observer/detector D. The source emits a sound wave of frequency f_{0}. The frequency observed by D is found to be (i) f_{1}, if D approaches S and S is stationary
(ii) f_{2}, if S approaches S and S is stationary
(iii) f_{3},if both S and D and D is stationary

Speed

In all three cases, relative velocity of S wrt D is
the same. For this situation which is incorrect?
A. $n_{1}=n_{2}=n_{3}$
B. $n_{1}<n_{2}$
C. $n_{3}>n_{0}$
D. n_{3} lies between n_{1} and n_{2}

Answer: B::C::D
7. An observer A is moving directly towards a stationary sound source while another observer B is moving away from the source with the same velocity. Which of the following statements are correct?
A. (a)Average of freqeuncies recorded by A
and B is equal to natural frequency of
the source
B. (b)Wavelength of wave received by A is
less than that of waves received by B.
C. (c)Wavelength of waves received by two observers will be same.
D. (d)Both the observers will observe the
wave travelling with same speed.

Answer: A::C

D Watch Video Solution

8. A sonic source, located in a uniform medium, emits waves of frequency n. If intensity, energy density (energy per unit volume of the medium) and maximum speed of oscillations of medium particle are, respectively, I, E and u_{0} at a point, then which of the following graphs are correct?

Answer: A::C::D

D Watch Video Solution

9. Plane harmonic waves of frequency 500 Hz
are produced in air with displacement amplitude of $10 \mu \mathrm{~m}$. Given that density of air is
$1.29 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and speed of sound in air is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then
A. the pressure amplitude is $13.8 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. the energy density is $6.4 \times 10^{-4} \frac{\mathrm{~J}}{\mathrm{~m}^{3}}$
C. the energy flux is $0.22 \frac{\mathrm{~J}}{\left(\mathrm{~m}^{2} s\right)}$
D. only (a) and (c) are correct

Answer: A::B::C

- Watch Video Solution

10. A driver in a stationary car blows a horn which produces monochromatic sound waves of freqeuncy 1000 Hz normally towards a reflecting wall. The wall approaches the car with a speed of $3.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A. The frequency of sound reflected from
wall and heard by the driver is 1020 Hz
B. The frequency of sound reflected from
wall and heard by the deriver is 980 Hz
C. The percentage increase in frequency of
sound after reflection from wall is 2%
D. The percentage decrease in freqeuncy of sound after reflection from wall is 2%

Answer: A::C

D Watch Video Solution

11.

In the figure shown, an observer O_{1} floats
(static) on water surface with ears in air while another observer O_{2} is moving upwards with constant velocity $V_{1}=\frac{V}{5}$ in water. The source moves down with constant velocity $V_{S}=\frac{V}{5}$ and emits sound of freqeuncy f. The
velocity of sound in air is V and that in water is $4 V$. For the situation shown in figure.
A. (a)The wavelength of the sound received
by O_{1} is $\frac{4 V}{5 f}$
B. (b)The wavelength of the sound received
by O_{1} is $\frac{V}{f}$
C. (c)The frequency of the sound received
by O_{2} is $\frac{21 f}{16}$
D. (d)The wavelength of the sound received
by O_{2} is $\frac{16 \mathrm{~V}}{5 f}$

Answer: A::C::D

- Watch Video Solution

12. Which of the following statements are incorrect?
A. Wave pulses in strings are transverse
waves.
B. Sound waves in air are transverse waves
of compression and rarefaction.
C. The speed of sound in air at $20^{\circ} \mathrm{C}$ is twice that at $5^{\circ} C$.
D. A 60 dB sound has twice the intensity of

$$
\text { a } 30 \mathrm{~dB} \text { sound. }
$$

Answer: B::C::D

D Watch Video Solution

13. A source S of sound wave of fixed frequency N and an observer O are located in air initially at the space points A and B, a
fixed distance apart. State in which of the following cases, the observer will NOT see any Doppler effect and will receive the same frequency N as produced by the source.
A. Both the source S and observer O remain stationary but a wind blows with
a constant speed in an arbitrary
direction.
B. The observer remains stationary but the
source S moves parallel to and in the
same direction and with the same speed
as the wind.
C. The source remains stationary but the
observer and the wind have the same
speed away from the source.
D. The source and the observer move
directly against the wind but both with
the same speed.

Answer: A::D

14. A vibrating tuning fork is first held in the
hand and then its end is broght in contact with a table. Which of the following statement
(s) is are correct in respect of this situation?
A. The sound is louder when the tuning
fork is held in hand
B. The sound is louder when the tuning
fork is in contact with table.
C. The sound dies away sooner when tuning fork is brought in contact with the table.

D. The sound remains for a longer duration

when turning fork is held in hand.

Answer: B::C::D

- Watch Video Solution

15.

A source of sound and detector are moving as
shown in Fig. at $t=0$. Take velocity of sound
wave to be v. For this situation mark out the correct statement(s).
A. The frequency received by the detector is always greater than f_{0}
B. Initially, frequency received by the
detector is greater than f_{0}, becomes
equal to f_{0}, and then decreases with the
time.
C. Frequency received by the detector is
equal to f_{0} at $t=\frac{d \cot \theta_{0}}{\left(2 v_{0}\right)}$.
D. Frequency received by the detector can
never be equal to f_{0}

Answer: B::C

16. Which of the following statements are correct?
A. Changes inair temperature have no
effect on the speed of sound.
B. Changes in air pressure have no effect
on the speed of sound.
C. The speed of sound in water is higher
that in air.
D. The speed of sound in water is lower than in air.

Answer: B::C

D Watch Video Solution

17. Consider a source of sound S and an observer P. The sound source is of frequency
n_{0}. The frequency observed be P is found to be n_{1} if P approaches S at speed v and S is stationary, n_{2} If S approaches P at a speed v
and P is stationary and n_{3} if each of P and S
has speed $\frac{v}{2}$ towards one another Now.

$$
\begin{aligned}
& \text { A. } n_{1}=n_{2}=n_{3} \\
& \text { B. } n_{1}<n_{2} \\
& \text { C. } n_{3}>n_{0} \\
& \text { D. } n_{3} \text { lies between } n_{1} \text { and } n_{2}
\end{aligned}
$$

Answer: B::C::D

D Watch Video Solution

18. An observer A is moving directly towards a stationary sound source while another observer B is moving away from the source with the same velocity. Which of the following statements are correct?
A. Average of freqeuncies recorded by A
and B is equal to natural frequency of
the source

B. Wavelength of wave received by A is less

than that of waves received by B.
C. Wavelength of waves received by two observers will be same.

D. Both the observers will observe the wave travelling with same speed.

Answer: A::C

D Watch Video Solution

19. A sonic source, located in a uniform medium, emits waves of frequency n. If intensity, energy density (energy per unit
volume of the medium) and maximum speed of oscillations of medium particle are, respectively, I, E and u_{0} at a point, then which of the following graphs are correct?

B. ${ }^{\text {a. }}$

C. ${ }^{\text {a. }}$

D. ${ }^{\text {a. }}$

Answer: A::C::D

- Watch Video Solution

20. Plane harmonic waves of frequency 500 Hz are produced in air with displacement amplitude of $10 \mu \mathrm{~m}$. Given that density of air is
$1.29 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and speed of sound in air is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Then
A. the pressure amplitude is $13.8 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. the energy density is $6.4 \times 10^{-4} \frac{\mathrm{~J}}{\mathrm{~m}^{3}}$
C. the energy flux is $0.22 \frac{J}{\left(m^{2} s\right)}$
D. only (a) and (c) are correct

Answer: A::B::C

D Watch Video Solution

21. A driver in a stationary car blows a horn which produces monochromatic sound waves of freqeuncy 1000 Hz normally towards a
reflecting wall. The wall approaches the car with a speed of $3.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A. The frequency of sound reflected from
wall and heard by the driver is 1020 Hz
B. The frequency of sound reflected from
wall and heard by the deriver is 980 Hz
C. The percentage increase in frequency of
sound after reflection from wall is 2%
D. The percentage decrease in freqeuncy of
sound after reflection from wall is 2%

Answer: A::C

D Watch Video Solution

22.

In the figure shown, an observer O_{1} floats
(static) on water surface with ears in air while
another observer O_{2} is moving upwards with constant velocity $V_{1}=\frac{V}{5}$ in water. The source moves down with constant velocity $V_{S}=\frac{V}{5}$ and emits sound of freqeuncy f. The velocity of sound in air is V and that in water is $4 V$. For the situation shown in figure.
A. The wavelength of the sound received by

$$
O_{1} \text { is } \frac{4 V}{5 f}
$$

B. The wavelength of the sound received by
O_{1} is $\frac{V}{f}$
C. The frequency of the sound received by

$$
O_{2} \text { is } \frac{21 f}{16}
$$

D. The wavelength of the sound received by

$$
O_{2} \text { is } \frac{16 \mathrm{~V}}{5 f}
$$

Answer: A::C::D

D Watch Video Solution

23. Which of the following statements are incorrect?
A. Wave pulses in strings are transverse waves.
B. Sound waves in air are transverse waves
of compression and rarefaction.
C. The speed of sound in air at $20^{\circ} \mathrm{C}$ is
twice that at $5^{\circ} \mathrm{C}$.
D. A 60 dB sound has twice the intensity of a 30 dB sound.

Answer: B::C::D

24. A source S of sound wave of fixed frequency N and an observer O are located in air initially at the space points A and B, a fixed distance apart. State in which of the following cases, the observer will NOT see any Doppler effect and will receive the same frequency N as produced by the source.
A. Both the source S and observer O remain stationary but a wind blows with
a constant speed in an arbitrary
direction.
B. The observer remains stationary but the
source S moves parallel to and in the
same direction and with the same speed
as the wind.
C. The source remains stationary but the observer and the wind have the same
speed away from the source.
D. The source and the observer move
directly against the wind but both with
the same speed.

Answer: A::D

D Watch Video Solution

25. A vibrating tuning fork is first held in the hand and then its end is broght in contact with a table. Which of the following statement
(s) is are correct in respect of this situation?
A. The sound is louder when the tuning
fork is held in hand
B. The sound is louder when the tuning
fork is in contact with table.
C. The sound dies away sooner when
tuning fork is brought in contact with
the table.

D. The sound remains for a longer duration

when turning fork is held in hand.

26.

A source of sound and detector are moving as
shown in Fig. at $t=0$. Take velocity of sound
wave to be v. For this situation mark out the correct statement(s).
A. The frequency received by the detector
is always greater than f_{0}
B. Initially, frequency received by the
detector is greater than f_{0}, becomes
equal to f_{0}, and then decreases with the
time.
C. Frequency received by the detector is
equal to f_{0} at $t=\frac{d \cot \theta_{0}}{\left(2 v_{0}\right)}$.
D. Frequency received by the detector can

Answer: B::C

D Watch Video Solution

27. Which of the following statements are correct?
A. Changes inair temperature have no
effect on the speed of sound.
B. Changes in air pressure have no effect on the speed of sound.
C. The speed of sound in water is higher that in air.
D. The speed of sound in water is lower than in air.

Answer: B::C

D Watch Video Solution

28. Consider a source of sound S and an observer P. The sound source is of frequency n_{0}. The frequency observed be P is found to
be n_{1} if P approaches S at speed v and S is
stationary, n_{2} If S approaches P at a speed v
and P is stationary and n_{3} if each of P and S
has speed $\frac{v}{2}$ towards one another Now.
A. $n_{1}=n_{2}=n_{3}$
B. $n_{1}<n_{2}$
C. $n_{3}>n_{0}$
D. n_{3} lies between n_{1} and n_{2}

Answer: B::C::D

29. An observer A is moving directly towards a stationary sound source while another observer B is moving away from the source with the same velocity. Which of the following statements are correct?
A. Average of freqeuncies recorded by A
and B is equal to natural frequency of
the source
B. Wavelength of wave received by A is less
than that of waves received by B.
C. Wavelength of waves received by two observers will be same.

D. Both the observers will observe the wave travelling with same speed.

Answer: A::C

D Watch Video Solution

30. A sonic source, located in a uniform medium, emits waves of frequency n. If intensity, energy density (energy per unit
volume of the medium) and maximum speed of oscillations of medium particle are, respectively, I, E and u_{0} at a point, then which of the following graphs are correct?

B. ${ }^{\text {a. }}$

C. ${ }^{\text {a. }}$

D. ${ }^{\text {a. }}$

Answer: A::C::D

- Watch Video Solution

31. Plane harmonic waves of frequency 500 Hz
are produced in air with displacement amplitude of $10 \mu \mathrm{~m}$. Given that density of air is
$1.29 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and speed of sound in air is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Then
A. the pressure amplitude is $13.8 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. the energy density is $6.4 \times 10^{-4} \frac{\mathrm{~J}}{\mathrm{~m}^{3}}$
C. the energy flux is $0.22 \frac{J}{\left(m^{2} s\right)}$
D. only (a) and (c) are correct

Answer: A::B::C

- Watch Video Solution

32. A driver in a stationary car blows a horn which produces monochromatic sound waves of freqeuncy 1000 Hz normally towards a
reflecting wall. The wall approaches the car with a speed of $3.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A. The frequency of sound reflected from
wall and heard by the driver is 1020 Hz
B. The frequency of sound reflected from
wall and heard by the deriver is 980 Hz
C. The percentage increase in frequency of
sound after reflection from wall is 2%
D. The percentage decrease in freqeuncy of
sound after reflection from wall is 2%

Answer: A::C

D Watch Video Solution

33.

In the figure shown, an observer O_{1} floats
(static) on water surface with ears in air while
another observer O_{2} is moving upwards with constant velocity $V_{1}=\frac{V}{5}$ in water. The source moves down with constant velocity $V_{S}=\frac{V}{5}$ and emits sound of freqeuncy f. The velocity of sound in air is V and that in water is $4 V$. For the situation shown in figure.
A. The wavelength of the sound received by

$$
O_{1} \text { is } \frac{4 V}{5 f}
$$

B. The wavelength of the sound received by
O_{1} is $\frac{V}{f}$
C. The frequency of the sound received by

$$
O_{2} \text { is } \frac{21 f}{16}
$$

D. The wavelength of the sound received by

$$
O_{2} \text { is } \frac{16 \mathrm{~V}}{5 f}
$$

Answer: A::C::D

D Watch Video Solution

34. Which of the following statements are incorrect?
A. Wave pulses in strings are transverse waves.
B. Sound waves in air are transverse waves
of compression and rarefaction.
C. The speed of sound in air at $20^{\circ} \mathrm{C}$ is
twice that at $5^{\circ} \mathrm{C}$.
D. A 60 dB sound has twice the intensity of
a 30 dB sound.

Answer: B::C::D

35. A source S of sound wave of fixed frequency N and an observer O are located in air initially at the space points A and B, a fixed distance apart. State in which of the following cases, the observer will NOT see any Doppler effect and will receive the same frequency N as produced by the source.
A. Both the source S and observer O remain stationary but a wind blows with
a constant speed in an arbitrary
direction.
B. The observer remains stationary but the
source S moves parallel to and in the
same direction and with the same speed
as the wind.
C. The source remains stationary but the observer and the wind have the same
speed away from the source.
D. The source and the observer move
directly against the wind but both with
the same speed.

Answer: A::D

D Watch Video Solution

36. A vibrating tuning fork is first held in the hand and then its end is broght in contact with a table. Which of the following statement
(s) is are correct in respect of this situation?
A. The sound is louder when the tuning
fork is held in hand
B. The sound is louder when the tuning
fork is in contact with table.
C. The sound dies away sooner when
tuning fork is brought in contact with
the table.

D. The sound remains for a longer duration

when turning fork is held in hand.

- Watch Video Solution

37.

A source of sound and detector are moving as
shown in Fig. at $t=0$. Take velocity of sound
wave to be v. For this situation mark out the correct statement(s).
A. The frequency received by the detector
is always greater than f_{0}
B. Initially, frequency received by the
detector is greater than f_{0}, becomes
equal to f_{0}, and then decreases with the
time.
C. Frequency received by the detector is
equal to f_{0} at $t=\frac{d \cot \theta_{0}}{\left(2 v_{0}\right)}$.
D. Frequency received by the detector can

Answer: B::C

- Watch Video Solution

38. Which of the following statements are correct?
A. Changes inair temperature have no
effect on the speed of sound.
B. Changes in air pressure have no effect on the speed of sound.
C. The speed of sound in water is higher that in air.
D. The speed of sound in water is lower than in air.

Answer: B::C

D Watch Video Solution

39. Consider a source of sound S and an observer P. The sound source is of frequency n_{0}. The frequency observed be P is found to
be n_{1} if P approaches S at speed v and S is
stationary, n_{2} If S approaches P at a speed v
and P is stationary and n_{3} if each of P and S
has speed $\frac{v}{2}$ towards one another Now.
A. $n_{1}=n_{2}=n_{3}$
B. $n_{1}<n_{2}$
C. $n_{3}>n_{0}$
D. n_{3} lies between n_{1} and n_{2}

Answer: B::C::D

40. An observer A is moving directly towards a stationary sound source while another observer B is moving away from the source with the same velocity. Which of the following statements are correct?
A. Average of freqeuncies recorded by A
and B is equal to natural frequency of
the source
B. Wavelength of wave received by A is less
than that of waves received by B.
C. Wavelength of waves received by two observers will be same.

D. Both the observers will observe the wave travelling with same speed.

Answer: A::C

D Watch Video Solution

41. A sonic source, located in a uniform medium, emits waves of frequency n. If intensity, energy density (energy per unit
volume of the medium) and maximum speed of oscillations of medium particle are, respectively, I, E and u_{0} at a point, then which of the following graphs are correct?

B. ${ }^{\text {a. }}$

C. ${ }^{\text {a. }}$

D. ${ }^{\text {a. }}$

Answer: A::C::D

D Watch Video Solution

42. Plane harmonic waves of frequency 500 Hz
are produced in air with displacement amplitude of $10 \mu \mathrm{~m}$. Given that density of air is
$1.29 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and speed of sound in air is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Then
A. the pressure amplitude is $13.8 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. the energy density is $6.4 \times 10^{-4} \frac{\mathrm{~J}}{\mathrm{~m}^{3}}$
C. the energy flux is $0.22 \frac{J}{\left(m^{2} s\right)}$
D. only (a) and (c) are correct

Answer: A::B::C

D Watch Video Solution

43. A driver in a stationary car blows a horn which produces monochromatic sound waves of freqeuncy 1000 Hz normally towards a
reflecting wall. The wall approaches the car with a speed of $3.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A. The frequency of sound reflected from
wall and heard by the driver is 1020 Hz
B. The frequency of sound reflected from
wall and heard by the deriver is 980 Hz
C. The percentage increase in frequency of
sound after reflection from wall is 2%
D. The percentage decrease in freqeuncy of
sound after reflection from wall is 2%

Answer: A::C

D Watch Video Solution

44.

In the figure shown, an observer O_{1} floats
(static) on water surface with ears in air while
another observer O_{2} is moving upwards with constant velocity $V_{1}=\frac{V}{5}$ in water. The source moves down with constant velocity $V_{S}=\frac{V}{5}$ and emits sound of freqeuncy f. The velocity of sound in air is V and that in water is $4 V$. For the situation shown in figure.
A. The wavelength of the sound received by

$$
O_{1} \text { is } \frac{4 V}{5 f}
$$

B. The wavelength of the sound received by
O_{1} is $\frac{V}{f}$
C. The frequency of the sound received by

$$
O_{2} \text { is } \frac{21 f}{16}
$$

D. The wavelength of the sound received by

$$
O_{2} \text { is } \frac{16 \mathrm{~V}}{5 f}
$$

Answer: A::C::D
(Watch Video Solution

Assertion-Reasoning

1. Statement I: A tuning fork is considered as a source of an acoustic wave of a single
frequency as marked on its body. Statement II:
The tuning fork cannot produce any of its
harmonics due to its special nature of construction.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: A

- Watch Video Solution

2. Statement I: The apparent freqeuncy which
is the frequency as noted by an observer or an observing detection device of the acoustic wave that moves from the source to the observer propagating in a medium may be different from its true frequency.

Statement II: A source in motion relative to an
observer sends out less or more number of
waves per metre distance in the medium and an observer in motion collects less or more number of waves per second that when both of them remain at rest relatively.
A. (a)Statement I is true, Statement II is
true: Statement II is a correct
explanation for statement I.
B. (b)Statement I is true, Statement II is
true, Statement II is NOT a correct
explanation for Statement I.
C. (c)Statement I is true, Statement II is
false
D. (d)Statement I is false: Statement II is

Answer: C

D Watch Video Solution

3. Statement I: If two people talk simulaneously and each creates an intensity of 60 dB at a point P, then total intensity level at the point P is $120 d B$

Statement II: sound level is defined on a nonlinear scale.
A. (a)Statement I is true, Statement II is
true: Statement II is a correct
explanation for statement I.
B. (b)Statement I is true, Statement II is
true, Statement II is NOT a correct
explanation for Statement I.
C. (c)Statement I is true, Statement II is
false
D. (d)Statement I is false: Statement II is

Answer: D

- Watch Video Solution

4. Assertion: Intensity of sound wave does not
change when the listener moves towards or away from stationary source.

Reason : The motion of listener causes the apparent change in wavelength
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for
statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: C

D Watch Video Solution

5. Statement $\mathrm{I}: \mathrm{A} 80 \mathrm{~dB}$ sound has twice the intensity of a 40 dB sound.

Statement II: Loudness of a sound of a certain intensity I is defined as
$L($ in $d B)=10 \log _{10}=\frac{I}{I_{0}}$
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution

6. Statement I: A person is standing near a railway trach. A train is moving on the track. As the train is approaching the person, apparent freqeuncy keeps on increasing and when the
train has passed the person, then apparent freqeuncy keeps on decreasing.

Statement II: When train is approaching the person then,
$f=f_{0}\left[\frac{c}{c-u}\right]$
and when train is moving away from person
$f=f_{0}\left[\frac{c}{c+u}\right]$
Here, c is velocity of sound u is velocity of train
and f_{0} is original frequency of whistle.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for
statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution

7. Statement I: A tuning fork is considered as a

 source of an acoustic wave of a singlefrequency as marked on its body. Statement II:
The tuning fork cannot produce any of its
harmonics due to its special nature of construction.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: A

D Watch Video Solution

8. Statement I: The apparent freqeuncy which
is the frequency as noted by an observer or an observing detection device of the acoustic wave that moves from the source to the observer propagating in a medium may be different from its true frequency.

Statement II: A source in motion relative to an
observer sends out less or more number of
waves per metre distance in the medium and an observer in motion collects less or more number of waves per second that when both of them remain at rest relatively.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: C

9. Statement I: If two people talk simulaneously and each creates an intensity of

60 dB at a point P, then total intensity level at the point P is 120 dB

Statement II: sound level is defined on a non-
linear scale.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution

10. Assertion: Intensity of sound wave does not change when the listener moves towards or away from stationary source.

Reason : The motion of listener causes the apparent change in wavelength
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: C

- Watch Video Solution

11. Statement I: A 80 dB sound has twice the intensity of a 40 dB sound.

Statement II: Loudness of a sound of a certain
intensity I is defined as
$L($ in $d B)=10 \log _{10}\left(\frac{I}{I_{0}}\right)$
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution

12. Statement I: A person is standing near a railway track. A train is moving on the track. As
the train is approaching the person, apparent
frequency keeps on increasing and when the train has passed the person, then apparent frequency keeps on decreasing.

Statement II: When train is approaching the person then,
$f=f_{0}\left[\frac{c}{c-u}\right]$
and when train is moving away from person
$f=f_{0}\left[\frac{c}{c+u}\right]$
Here, c is velocity of sound u is velocity of train
and f_{0} is original frequency of whistle.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false

D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution

13. Statement I: A tuning fork is considered as
a source of an acoustic wave of a single
frequency as marked on its body. Statement II:
The tuning fork cannot produce any of its
harmonics due to its special nature of construction.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: A

- Watch Video Solution

14. Statement I: The apparent freqeuncy which
is the frequency as noted by an observer or an
observing detection device of the acoustic wave that moves from the source to the observer propagating in a medium may be different from its true frequency.

Statement II: A source in motion relative to an
observer sends out less or more number of
waves per metre distance in the medium and
an observer in motion collects less or more number of waves per second that when both of them remain at rest relatively.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false

D. Statement I is falce: Statement II is true

Answer: C

D Watch Video Solution

15. Statement I: If two people talk simulaneously and each creates an intensity of 60 dB at a point P, then total intensity level at the point P is $120 d B$

Statement II: sound level is defined on a nonlinear scale.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D
16. Assertion: Intensity of sound wave does not
change when the listener moves towards or away from stationary source.

Reason : The motion of listener causes the apparent change in wavelength
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: C

D Watch Video Solution

17. Statement I: A 80 dB sound has twice the intensity of a 40 dB sound.

Statement II: Loudness of a sound of a certain intensity I is defined as
$L($ in $d B)=10 \log _{10}\left(\frac{I}{I_{0}}\right)$
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution

18. Statement I: A person is standing near a
railway track. A train is moving on the track. As
the train is approaching the person, apparent frequency keeps on increasing and when the
train has passed the person, then apparent frequency keeps on decreasing.

Statement II: When train is approaching the person then,
$f=f_{0}\left[\frac{c}{c-u}\right]$
and when train is moving away from person
$f=f_{0}\left[\frac{c}{c+u}\right]$
Here, c is velocity of sound u is velocity of train
and f_{0} is original frequency of whistle.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for
statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution
19. StatementI: A tuning fork is considered as a source of an acoustic wave of a single
frequency as marked on its body.
StatementII: The tuning fork cannot produce any of its harmonics due to its special nature of construction.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: A

D Watch Video Solution

20. Statement I: The apparent freqeuncy which
is the frequency as noted by an observer or an observing detection device of the acoustic wave that moves from the source to the observer propagating in a medium may be different from its true frequency.

Statement II: A source in motion relative to an
observer sends out less or more number of
waves per metre distance in the medium and an observer in motion collects less or more number of waves per second that when both of them remain at rest relatively.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: C

21. Statement l: If two people talk simulaneously and each creates an intensity of

60 dB at a point P, then total intensity level at the point P is 120 dB

Statement II: sound level is defined on a nonlinear scale.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution

22. Statement I: Intensity of sound wave changes when the listener moves towards or away from the stationary source.

Statement II: The motion of listener causes the apparent change in wavelength.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: C

D Watch Video Solution

23. Statement I: A 80 dB sound has twice the intensity of a 40 dB sound.

Statement II: Loudness of a sound of a certain
intensity I is defined as
$L($ in $d B)=10 \log _{10}\left(\frac{I}{I_{0}}\right)$
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.
C. Statement I is true, Statement II is false
D. Statement I is falce: Statement II is true

Answer: D

- Watch Video Solution

24. Statement I: A person is standing near a railway track. A train is moving on the track. As
the train is approaching the person, apparent frequency keeps on increasing and when the train has passed the person, then apparent frequency keeps on decreasing.

Statement II: When train is approaching the person then,
$f=f_{0}\left[\frac{c}{c-u}\right]$
and when train is moving away from person
$f=f_{0}\left[\frac{c}{c+u}\right]$
Here, c is velocity of sound u is velocity of train
and f_{0} is original frequency of whistle.
A. Statement I is true, Statement II is true:

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is NOT a correct explanation
for Statement I.

C. Statement I is true, Statement II is false

D. Statement I is falce: Statement II is true

Answer: D

D Watch Video Solution

Comprehension

1. A railroad train is travelling at $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ in still air. The frequency of the note emitted by
locomotive whistle is 500 Hz . Speed of sound
is $345 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. What is the frequency of the sound waves
heard by a stationary listener in front of the train?
A. $547.6 H z$
B. 690.6 Hz
C. 590.9 Hz
D. 520.3 Hz

Answer: A
2. A railroad train is travelling at $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ in still
air. The frequency of the note emitted by
locomotive whistle is 500 Hz . Speed of sound is $345 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. What is the frequency of the sound waves
heard by a stationary listener in front of the train?
A. 420 Hz
B. 460 Hz
C. 480 Hz

D. 430 Hz

Answer: B

D Watch Video Solution

3. A source of sonic oscillation with frequency
$n_{0}=600 H z$ moves away and at right angles
to a wall with velocity $u=30 \frac{m}{s}$. A stationary
reciever is located on the line of source in

$$
\begin{aligned}
& \text { succession wall } \rightarrow \text { source } \rightarrow \text { receiver. If } \\
& \text { velocity of osund propagation is } v=330 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

then
Q. The beat frequency recorded by the receiver is

A. (a) 110 Hz
B. (b) 210 Hz
C. (c) 150 Hz
D. (d) 220 Hz

Answer: A

D Watch Video Solution
4. A source of sonic oscillation with frequency
$n_{0}=600 \mathrm{~Hz}$ moves away and at right angles
to a wall with velocity $u=30 \frac{m}{s}$. A stationary
reciever is located on the line of source in
succession wall \rightarrow source \rightarrow receiver. If
velocity of osund propagation is $v=330 \frac{\mathrm{~m}}{\mathrm{~s}}$,
then
Q. The wavelength of direct waves received by the receiver is
A. (a) 50 cm
B. (b) 100 cm
C. (c) 150 cm
D. (d) 90 cm

Answer: A

D Watch Video Solution

5. A source of sonic oscillation with frequency
$n_{0}=600 H z$ moves away and at right angles
to a wall with velocity $u=30 \frac{m}{s}$. A stationary reciever is located on the line of source in
velocity of osund propagation is $v=330 \frac{\mathrm{~m}}{\mathrm{~s}}$,
then
Q. The wavelength of reflected waves received by the receiver is
A. (a) 120 cm
B. (b) 50 cm
C. (c) 90 cm
D. (d) 60 cm

Answer: D

6. A source S of acoustic wave of the frequency $v_{0}=1700 \mathrm{~Hz}$ and a receiver R are located at the same point. At the instant $t=0$, the source start from rest to move away from the receiver with a constant acceleration ω.

The velocity of sound in air is $v=340 \frac{m}{s}$.
If $\omega=10 \frac{m}{s^{2}}$ for 10 s and then $\omega=0$ for
$t>10 s$, the apparent frequency recorded by
the receiver at $t=15 \mathrm{~s}$
A. $1700 H z$
B. 1.35 Hz
C. 850 Hz
D. 1.27 Hz

Answer: B

D Watch Video Solution

7. A source S of acoustic wave of the frequency
$v_{0}=1700 \mathrm{~Hz}$ and a receiver R are located at
the same point. At the instant $t=0$, the
source start from rest to move away from the
receiver with a constant acceleration ω. The velocity of sound in air is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.
If $\omega=10 \frac{m}{s^{2}}$ for 10 s and then $\omega=0$ for
$t>10 s$, the apparent frequency recorded by
the receiver at $t=15 \mathrm{~s}$
A. 1700 Hz
B. $1313 H z$
C. 850 Hz
D. 1.23 Hz

Answer: B
8. A small source of sound vibrating frequency

500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5.0 revolutions per second. The speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. For an observer situated at a great distance on a straight line perpendicular to the plane of the circle, through its centre, the apparent frequency of the source will be
B. smaller than 500 Hz
C. always remain 500 Hz
D. greater for half the circle and smaller during the other half

Answer: C

D Watch Video Solution

9. A small source of sound vibrating frequency

500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5.0 revolutions
per second. The speed of sound in air is $330 \frac{m}{s}$.
Q. For half the circle and smaller during the other half for an observer who is at rest at a great distance from the centre of the circle but nearly in the same plane, the minimum
$f_{\text {min }}$ and the maximum $f_{\text {max }}$ of the range of values of the apparent frequency heard by him will be
A. $f_{\min }=455 H z, f_{\max }=535 H z$
B. $f_{\min }=484 H z, f_{\max }=515 H z$
C. $f_{\min }=484 H z, f_{\max }=500 H z$

$$
\text { D. } f_{\min }=500 H z, f_{\max }=515 H z
$$

Answer: B

D Watch Video Solution

10. A small source of sound vibrating
frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5.0 revolutions per second. The speed of sound in air is $330 \frac{m}{s}$.
Q. If the observer moves towards the source
with a constant speed of $20 \frac{\mathrm{~m}}{\mathrm{~s}}$, along the radial line to the centre, the fractional change in the apparent frequency over the frequency that the source will have if considered at reat at the centre will be
A. 6%
B. 3%
C. 2%
D. 9%

Answer: A
11. An indian submarine is moving in the Arabian sea with constant velocity. To detect enemy it sends out sonar waves which travel with velocity $1050 \frac{m}{s}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves are detected by the submarine and found to be 10% greater than the sent waves.

Now an enemy ship comes in front, due to
which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The speed of indian submarine is

A. $10 \frac{m}{s}$
B. $50 \frac{m}{s}$
C. $100 \frac{m}{s}$
D. $20 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

- Watch Video Solution

12. An indian submarine is moving in the Arabian sea with constant velocity. To detect enemy it sends out sonar waves which travel with velocity $1050 \frac{\mathrm{~m}}{\mathrm{~s}}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The velocity of enemy ship should be

A. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards indian submarine
B. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ away from indian submarine
C. $100 \frac{\mathrm{~m}}{2}$ towards indian submarine

D. $100 \frac{m}{s}$ away from indian submarine

Answer: A

- Watch Video Solution

13. An indian submarine is moving in the

Arabian sea with constant velocity. To detect
enemy it sends out sonar waves which travel
with velocity $1050 \frac{\mathrm{~m}}{\mathrm{~s}}$ in water. Initially the
waves are getting reflected from a fixed island
and the reflected waves are coming back to
submarine. The frequency of reflected waves
are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The speed of indian submarine is

A. 1
B. 1.1
C. 1.2
D. 2

Answer: B

D Watch Video Solution

14. An indian submarine is moving in the

Arabian sea with constant velocity. To detect
enemy it sends out sonar waves which travel
with velocity $1050 \frac{m}{s}$ in water. Initially the
waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves are detected by the submarine and found to be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. Bulk modulus of sea water should be
approximately $\left(\rho=_{\text {water }}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$

A. $10^{8} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
D. $10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Answer: B
15. Due to point isotropic sound source, theintensity at a point is observed as 40 dB .

The density of air is $\rho=\left(\frac{15}{11}\right) \frac{k g}{\mathrm{~m}^{3}}$ and velocity of sound in air is $330 \frac{m}{s}$. Based on this information answer the following questions.
Q. The pressure amplitude at the observation point is

$$
\begin{aligned}
& \text { А. } 3 \frac{N}{m^{2}} \\
& \text { В. } 3 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \text { С. } 3 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

D. $6 \times 10^{-2} \frac{N}{m^{2}}$

Answer: C

D Watch Video Solution

16. Due to a point isotropic sonic source,
loudness at a point is $L=60 d B$ If density of air is $\rho=\left(\frac{15}{11}\right) \frac{\mathrm{kg}}{\mathrm{m}^{3}}$ and velocity of sound in air is $v=33 \frac{m}{s}$, the pressure oscillation amplitude at the point of observation is

$$
\left[I_{0}=10^{-12} \frac{W}{m^{2}}\right]
$$

A. 3.22×10^{-6}
B. 3.22×10^{-12}
C. 3.22×10^{-9}
D. 1.07×10^{-10}

Answer: C

- Watch Video Solution

17.

In the figure shown below, a source of sound having power $12 \times 10^{-6} W$ is kept at O, which is emitting sound waves in the directions as shown. Two surfaces are labelled as 1 and 2 having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. find the intensity at both the surfaces.

$$
\begin{aligned}
& \text { A. } I_{1}=12 \times 10^{-6} \frac{W}{m^{2}} \\
& \qquad I_{2}=12 \times 10^{-6} \frac{W}{m^{2}} \\
& \text { B. } I_{1}=6 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=12 \times 10^{-9} \frac{W}{m^{2}} \\
& \text { C. } I_{1}=6 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=3 \times 10^{-9} \frac{W}{m^{2}} \\
& \text { D. } I_{1}=12 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=3 \times 10^{-9} \frac{W}{m^{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

A uniform rod of mass $m=2 k g$ and length
$l=0.5 m$ is sliding along two mutually perpendicular smooth walls with the two ends

P and Q having velocities $U_{P}=4 m / s$ and
$v_{Q}=3 m / s$ as shown then
A. Both will hear same sound.

B. A will bear a quiter sound

C. B will hear a quiter sound
D. information is not sufficient

Answer: C

- Watch Video Solution

19.

In the figure shown below, a source of sound
having power $12 \times 10^{-6} W$ is kept at O, which
is emitting sound waves in the directions as
shown. Two surfaces are labelled as 1 and 2
having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. If two persons (having almost same physique) A and B are standing at the
location of surfaces 1 and 2, respectively, then who will hear a quiter sound?
A. A will hear a quiter sound.
B. B will hear quiter sound
C. Both will hear the same sound.
D. Cannot say anything.

Answer: C

D Watch Video Solution

20.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by
ossicles on the inner ear. Consider a sound
wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{m}{s}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} \mathrm{~Pa}$.
Q. Find the pressure amplitude of given sound wave in the fluid of inner ear.
A. $0.03 P a$
B. $0.04 P a$
C. $0.3 P a$
D. $0.4 P a$

Answer: D

- Watch Video Solution

21.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by
ossicles on the inner ear. Consider a sound
wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} \mathrm{~Pa}$.
Q. Find the displacement amplitude of given sound wave in the fluid of inner ear.

$$
\text { A. (a) } 4.4 \times 10^{-11} \mathrm{~m}
$$

B. (b) $8 \times 10^{11} \mathrm{~m}$
C. (c) $3.65 \times 10^{-11} m$
D. (d) $8.1 \times 10^{-12} m$

Answer: C

- Watch Video Solution

22.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by
ossicles on the inner ear. Consider a sound
wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{m}{s}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} \mathrm{~Pa}$.
Q. If the person is using an hearing aid, which increase the sound intensity level by 30 dB ,
then by what factor the intensity of given
sound wave change as perceived by inner ear?
A. 1000
B. 100
C. 10000
D. none of these

Answer: A
(Watch Video Solution

23.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by
ossicles on the inner ear. Consider a sound
wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{m}{s}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} \mathrm{~Pa}$.
Q. This person (without hearing aid machine) is sitting inside a busy restaurant where average sound intensity is $3.2 \times 10^{-5} \frac{W}{m^{2}}$.

How much energy in the form of sound is taken up by the person in his meal time of 1 h ?

> A. $1.2 \times 10^{-5} J$
> B. $1.8 \times 10^{-4} J$
> C. $2.4 \times 10^{-5} J$
> D. $3.6 \times 10^{-4} J$

Answer: A
(Watch Video Solution

24.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by
ossicles on the inner ear. Consider a sound
wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is
$1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} \mathrm{~Pa}$.
Q. With respect to information provided above, mark the correct statement.
A. The person will hear more intense sound, if area of stirrup is reduced.
B. The person will hear more intense sound, if area of stirrup is increase.
C. If mass of ossicles is not negligible, then
intensity of sound heard by the person increase.
D. If amss of ossicles is not negligible, then
intensity of sound heard by the person
remains same.

Answer: A

D Watch Video Solution

25.

A source of sound and detector are arranged
as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start
from the shown location in anticlockwise

direction at $t=0$

(Take velocity of sound in air as v)

What is the frequency as received by detector, when it rotates by an angle $\frac{\pi}{2}$?
A. f

$$
\text { B. } \frac{v-\omega R}{v} \times f
$$

C. $\frac{v-\frac{\omega}{R}}{v} \times f$
D. $v-\frac{\omega R \times \frac{2}{\sqrt{5}}}{v} \times f$

Answer: D

26.

A source of sound and detector are arranged as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start from the shown location in anticlockwise direction at $t=0$
(Take velocity of sound in air as v)
Q. Find the time at which the detector will hear the maximum frequency for the first time.

$$
\begin{aligned}
& \text { A. } \frac{\pi}{(3 \omega)} \\
& \text { B. } \frac{5 \pi}{(3 \omega)} \\
& \text { C. } \frac{4 \pi}{(3 \omega)} \\
& \text { D. } \frac{\pi}{\omega}
\end{aligned}
$$

Answer: B

27.

A source of sound and detector are arranged as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start from the shown location in anticlockwise direction at $t=0$
(Take velocity of sound in air as v)

Find the time interval between minimum and
maximum frequency as received by the detector.

> A. $\frac{\pi}{(3 \omega)}$
> B. $\frac{5 \pi}{(3 \omega)}$
> C. $\frac{4 \pi}{(3 \omega)}$
> D. $\frac{\pi}{\omega}$

Answer: C
(Watch Video Solution

28.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. Suppose that a listener is located at rest between the tuning fork and the wall. Number
of beats heard by the listener per second will be
A. 4
B. 3
C. 0
D. 1

Answer: B

D Watch Video Solution

29.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. If the listener is at rest and located such
that the tuning fork is moving between the
listener and the wall, number of beats heard by the listerner per second will be nearly
A. 0
B. 6
C. 8
D. 4

Answer: D
(Watch Video Solution

30.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s} \quad$ and answer the following questions.
Q. If the listener, along with the source, is moving towards the wall with the same speed i.e., $2 \frac{m}{s}$, such that the source remains
between the listerner and the wall, number of beats heard by the listerner per second will be
A. 4
B. 8
C. 0
D. 6

Answer: D
(Watch Video Solution

31.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s} \quad$ and answer the following questions.
Q. If the listerner along with the source is moving towards the wall with the same speed i.e., $2 \frac{m}{s}$, such that he (listener) remains
between the source and the wall, number of beats heard by him will be
A. 2
B. 6
C. 8
D. 4

Answer: D
(Watch Video Solution
32. A source of sound with natural frequency
$f_{0}=1800 \mathrm{~Hz}$ moves uniformly along a
straight line separated from a stationary observer by a distance $l=250 \mathrm{~m}$. The velocity of the source is equal to $\eta=0.80$ fraction of the velocity of the sound.
Q. Find the frequency of osund received by the observer at the moment when the source gets
closest to him.

A. 2000 Hz
B. 6000 Hz
C. 3000 Hz
D. 5000 Hz

Answer: C

- Watch Video Solution

33. A source of sound with natural frequency
$f_{0}=1800 \mathrm{~Hz}$ moves uniformly along a straight line separated from a stationary observer by a distance $l=250 \mathrm{~m}$. The velocity of the source is equal to $\eta=0.80$ fraction of the velocity of the sound.
Q. The distance between the source and the observer at the moment when the observer
receives a frequency $f=f_{0}$ is

A. 640 m
B. 420 m
C. $320 m$
D. 250 m

Answer: A

- Watch Video Solution

34.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity v_{0} in vertical upward directon and reflector starts moving down with constant velocity v_{0}

At $t-0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Frequency of sound waves emitted by
source at $t=\frac{v_{0}}{2 g}$ is
A. f_{0}
B. $f_{0}\left[\frac{v}{v}+\frac{v_{0}}{2}\right]$

$$
\begin{aligned}
& \text { C. } f_{0}\left[\frac{\left(\frac{v-v_{0}}{2}\right)^{2}}{v}\right] \\
& \text { D. } f_{0}\left[\frac{\frac{v-v_{0}}{v+v_{0}}}{2}\right]
\end{aligned}
$$

Answer: B

D Watch Video Solution

35.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}
At $t-0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Wavelength of sound waves as received by detector before reflection at $t=\frac{v_{0}}{2 g}$ is
A. $\frac{v}{f_{0}}$
B. $\frac{\frac{v+v_{0}}{2}}{f_{0}}$
C. $\frac{\left(\frac{v-v_{0}}{2}\right)^{2}}{v f_{0}}$
D. none of these

Answer: C

D Watch Video Solution

36.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}
At $t=0$, the vertical separation between the
reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed
of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the
frequency of sound waves emitted by source.
Based on above information answer the following questions.
Q. Frequency of sound received by detector after being reflected by reflector at $t=\frac{v_{0}}{2 g}$ is

$$
\text { A. } \frac{2 f_{0}\left(v+v_{0}\right)}{2 v-v_{0}}
$$

> B. $\frac{2 f_{0} v}{v-v_{0}}$
> C. $2 f_{0}\left[\frac{v+v_{0}}{2 v-v_{0}}\right] \times\left[\frac{v}{v-v_{0}}\right]$
> D. $2 f_{0} \times \frac{v+v_{0}}{v-v_{0}}$

Answer: C

D Watch Video Solution

37. A railroad train is travelling at $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ in still air. The frequency of the note emitted by
locomotive whistle is 500 Hz . Speed of sound is $345 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. What is the frequency of the sound waves
heard by a stationary listener in front of the train?
A. 547.6 Hz
B. 690.6 Hz
C. 590.9 Hz
D. 520.3 Hz

Answer: A

- Watch Video Solution

38. A railroad train is travelling at $30 \mathrm{~m} / \mathrm{s}$ in
still air. The frequency of the note emitted by
locomotive whitle is 500 Hz . What is the
frequency of the sound waves heard by a stationary listener (a) in front of the train and
(b) behind the train? (speed of sound is $345 \mathrm{~m} / \mathrm{s}$.)
A. 420 Hz
B. 460 Hz
C. 480 Hz
D. 430 Hz

Answer: B

- Watch Video Solution

39. A source of sonic oscillation with frequency
$n_{0}=600 \mathrm{~Hz}$ moves away and at right angles
to a wall with velocity $u=30 \frac{\mathrm{~m}}{\mathrm{~s}}$. A stationary
reciever is located on the line of source in succession wall \rightarrow source \rightarrow receiver. If
velocity of osund propagation is $v=330 \frac{\mathrm{~m}}{\mathrm{~s}}$, then
Q. The beat frequency recorded by the receiver is
A. 110 Hz
B. 210 Hz
C. 150 Hz
D. 220 Hz

Answer: A
(Watch Video Solution
40. A source of sonic oscillation with
frequency $n_{0}=600 \mathrm{~Hz}$ moves away and at
right angles to a wall with velocity $u=30 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A stationary reciever is located on the line of source in succession wall \rightarrow source \rightarrow
receiver. If velocity of osund propagation is
$v=330 \frac{m}{s}$, then
Q. The wavelength of direct waves received by the receiver is
A. 50 cm
B. 100 cm
C. 150 cm
D. 90 cm

Answer: A

D Watch Video Solution

41. A source of sonic oscillation with frequency
$n_{0}=600 H z$ moves away and at right angles
to a wall with velocity $u=30 \frac{m}{s}$. A stationary reciever is located on the line of source in
velocity of osund propagation is $v=330 \frac{\mathrm{~m}}{\mathrm{~s}}$,
then
Q. The wavelength of reflected waves received by the receiver is
A. 120 cm
B. 50 cm
C. 90 cm
D. 60 cm

Answer: D

42. A source S of acoustic wave of the frequency $v_{0}=1700 \mathrm{~Hz}$ and a receiver R are located at the same point. At the instant $t=0$, the source start from rest to move away from the receiver with a constant acceleration ω.

The velocity of sound in air is $v=340 \frac{m}{s}$.
If $\omega=10 \frac{m}{s^{2}}$ for 10 s and then $\omega=0$ for
$t>10 s$, the apparent frequency recorded by
the receiver at $t=15 \mathrm{~s}$
A. 1700 Hz
B. 1.35 Hz
C. 850 Hz
D. 1.27 Hz

Answer: B

D Watch Video Solution

43. A source S of acoustic wave of the frequency $v_{0}=1700 \mathrm{~Hz}$ and a receiver R are located at the same point. At the instant $t=0$, the source start from rest to move away from
the receiver with a constant acceleration ω.
The velocity of sound in air is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.
If $\omega=10 \frac{m}{s^{2}}$ for 10 s and then $\omega=0$ for
$t>10 s$, the apparent frequency recorded by
the receiver at $t=15 \mathrm{~s}$
A. 1700 Hz
B. $1313 H z$
C. 850 Hz
D. $1.23 H z$

Answer: B
44. A small source of sound vibrating frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5.0 revolutions per second. The speed of sound in air is $330 \frac{m}{s}$.
Q. For an observer situated at a great distance on a straight line perpendicular to the plane of the circle, through its centre, the apparent frequency of the source will be
B. smaller than 500 Hz
C. always remain 500 Hz
D. greater for half the circle and smaller during the other half

Answer: C

D Watch Video Solution

45. A small source of sound vibrating frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of
5.0 revolutions per second. The speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. For an observer who is at rest at a great distance from the centre of the circle but nearly in the same plane, the minimum $f_{\text {min }}$ and the maximum $f_{\max }$ of the range of values of the apparent frequency heard by him will be
A. $f_{\min }=455 \mathrm{~Hz}, f_{\max }=535 \mathrm{~Hz}$
B. $f_{\min }=484 H z, f_{\max }=515 H z$
C. $f_{\min }=484 H z, f_{\max }=500 H z$
D. $f_{\min }=500 H z, f_{\max }=515 H z$

Answer: B

- Watch Video Solution

46. A small source of sound vibrating
frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5.0 revolutions per second. The speed of sound in air is $330 \frac{m}{s}$.
Q. If the observer moves towards the source with a constant speed of $20 \frac{\mathrm{~m}}{\mathrm{~s}}$, along the radial line to the centre, the fractional change
in the apparent frequency over the frequency
that the source will have if considered at reat at the centre will be
A. 6%
B. 3%
C. 2%
D. 9%

Answer: A

D Watch Video Solution
47. An indian submarine is moving in the

Arabian sea with constant velocity. To detect
enemy it sends out sonar waves which travel
with velocity $1050 \frac{m}{s}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves
are detected by the submarine and found to be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21 \% greater
than the sent waves.
Q. The speed of indian submarine is

A. $10 \frac{m}{s}$
B. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$
C. $100 \frac{m}{s}$
D. $20 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B
48. An indian submarine is moving in the Arabian sea with constant velocity. To detect enemy it sends out sonar waves which travel with velocity $1050 \frac{\mathrm{~m}}{\mathrm{~s}}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves are detected by the submarine and found to be 10% greater than the sent waves.

Now an enemy ship comes in front, due to
which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The velocity of enemy ship should be

A. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards indian submarine
B. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ away from indian submarine
C. $100 \frac{\mathrm{~m}}{2}$ towards indian submarine
D. $100 \frac{\mathrm{~m}}{\mathrm{~s}}$ away from indian submarine

Answer: A

D Watch Video Solution

49. An indian submarine is moving in the Arabian sea with constant velocity. To detect enemy it sends out sonar waves which travel with velocity $1050 \frac{m}{s}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The speed of indian submarine is

A. 1
B. 1.1
C. 1.2
D. 2

Answer: B

D Watch Video Solution

50. An indian submarine is moving in the Arabian sea with constant velocity. To detect enemy it sends out sonar waves which travel with velocity $1050 \frac{m}{s}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to
submarine. The frequency of reflected waves
are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. Bulk modulus of sea water should be approximately $\left(\rho={ }_{\text {water }}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$

A. $10^{8} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
D. $10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Answer: B

D Watch Video Solution

51. Due to point isotropic sound source, theintensity at a point is observed as 40 dB .

The density of air is $\rho=\left(\frac{15}{11}\right) \frac{k g}{m^{3}}$ and velocity of sound in air is $330 \frac{m}{s}$. Based on this information answer the following questions.
Q. The pressure amplitude at the observation point is

$$
\begin{aligned}
& \text { A. } 3 \frac{N}{m^{2}} \\
& \text { В. } 3 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \text { C. } 3 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \text { D. } 6 \times 10^{-2} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

Answer: C

Watch Video Solution

52. Due to point isotropic sound source, the intensity at a point is observed as 40 dB . The density of air is $\rho=\left(\frac{15}{11}\right) \frac{\mathrm{kg}}{\mathrm{m}^{3}}$ and velocity of sound in air is $330 \frac{m}{s}$. Based on this information answer the following questions.
Q. The ratio of displacement amplitude of wave at observation point to wavelength of sound waves is

$$
\text { A. } 3.22 \times 10^{-6}
$$

B. 3.22×10^{-12}
C. 3.22×10^{-9}
D. 1.07×10^{-10}

Answer: C

- Watch Video Solution

53.

In the figure shown below, a source of sound having power $12 \times 10^{-6} W$ is kept at O, which is emitting sound waves in the directions as shown. Two surfaces are labelled as 1 and 2 having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. find the intensity at both the surfaces.

$$
\begin{aligned}
& \text { A. } I_{1}=12 \times 10^{-6} \frac{W}{m^{2}} \\
& \qquad I_{2}=12 \times 10^{-6} \frac{W}{m^{2}} \\
& \text { B. } I_{1}=6 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=12 \times 10^{-9} \frac{W}{m^{2}} \\
& \text { C. } I_{1}=6 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=3 \times 10^{-9} \frac{W}{m^{2}} \\
& \text { D. } I_{1}=12 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=3 \times 10^{-9} \frac{W}{m^{2}}
\end{aligned}
$$

Answer: C

54.

In the figure shown below, a source of sound having power $12 \times 10^{-6} W$ is kept at O, which is emitting sound waves in the directions as shown. Two surfaces are labelled as 1 and 2 having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. If two persons (having almost same physique) A and B are standing at the
location of surfaces 1 and 2, respectively, then who will hear a quiter sound?
A. Both will hear same sound.
B. A will bear a quiter sound
C. B will hear a quiter sound
D. information is not sufficient

Answer: C

D Watch Video Solution

55.

In the figure shown below, a source of sound having power $12 \times 10^{-6} W$ is kept at O, which is emitting sound waves in the directions as shown. Two surfaces are labelled as 1 and 2 having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. Let the areas of the eardrums of persons A and B be $A_{A}=2 m m^{2}$ and $A_{B}=4 m^{2}$,
respectively. Then who will hear a quiter sound?
A. A will hear a quiter sound.
B. B will hear quiter sound
C. Both will hear the same sound.
D. Cannot say anything.

Answer: C

D Watch Video Solution

56.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. Find the pressure amplitude of given sound wave in the fluid of inner ear.
A. (a) $0.03 P a$
B. (b) $0.04 P a$
C. (c) $0.3 P a$
D. (d) $0.4 P a$

Answer: D

- Watch Video Solution

57.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. Find the displacement amplitude of given sound wave in the fluid of inner ear.

$$
\text { A. (a) } 4.4 \times 10^{-11} \mathrm{~m}
$$

B. (b) $8 \times 10^{11} \mathrm{~m}$
C. (c) $3.65 \times 10^{-11} m$
D. (d) $8.1 \times 10^{-12} m$

Answer: C

- Watch Video Solution

58.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. If the person is using an hearing aid, which increase the sound intensity level by 30 dB ,
then by what factor the intensity of given sound wave change as perceived by inner ear?
A. 1000
B. 100
C. 10000
D. none of these

Answer: A
(Watch Video Solution

59.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by
ossicles on the inner ear. Consider a sound
wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{m}{s}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} \mathrm{~Pa}$.
Q. This person (without hearing aid machine) is sitting inside a busy restaurant where average sound intensity is $3.2 \times 10^{-5} \frac{W}{m^{2}}$.

How much energy in the form of sound is taken up by the person in his meal time of 1 h ?

> A. $1.2 \times 10^{-5} J$
> B. $1.8 \times 10^{-4} J$
> C. $2.4 \times 10^{-5} J$
> D. $3.6 \times 10^{-4} J$

Answer: A

D Watch Video Solution

60.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is
$1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is
$2.18 \times 10^{9} P a$.
Q. With respect to information provided above, mark the correct statement.
A. The person will hear more intense sound, if area of stirrup is reduced.
B. The person will hear more intense sound, if area of stirrup is increase.
C. If mass of ossicles is not negligible, then
intensity of sound heard by the person increase.
D. If amss of ossicles is not negligible, then
intensity of sound heard by the person
remains same.

Answer: A

- Watch Video Solution

61.

A source of sound and detector are arranged
as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start from the shown location in anticlockwise

direction at $t=0$

(Take velocity of sound in air as v)

What is the frequency as received by detector, when it rotates by an angle $\frac{\pi}{2}$?
A. f
B. $\frac{v-\omega R}{v} \times f$
C. $\frac{v-\frac{\omega}{R}}{v} \times f$
D. $v-\frac{\omega R \times \frac{2}{\sqrt{5}}}{v} \times f$

Answer: D

D Watch Video Solution

62.

A source of sound and detector are arranged as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start from the shown location in anticlockwise direction at $t=0$
(Take velocity of sound in air as v)

Find the time interval between minimum and
maximum frequency as received by the detector.

> A. $\frac{\pi}{(3 \omega)}$
> B. $\frac{5 \pi}{(3 \omega)}$
> C. $\frac{4 \pi}{(3 \omega)}$
> D. $\frac{\pi}{\omega}$

Answer: B
(Watch Video Solution

63.

A source of sound and detector are arranged as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start from the shown location in anticlockwise direction at $t=0$
(Take velocity of sound in air as v)

Find the time interval between minimum and
maximum frequency as received by the detector.

> A. $\frac{\pi}{(3 \omega)}$
> B. $\frac{5 \pi}{(3 \omega)}$
> C. $\frac{4 \pi}{(3 \omega)}$
> D. $\frac{\pi}{\omega}$

Answer: C

D Watch Video Solution

64.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. Suppose that a listener is located at rest between the tuning fork and the wall. Number
of beats heard by the listener per second will be
A. 4
B. 3
C. 0
D. 1

Answer: B
(Watch Video Solution

65.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. If the listener is at rest and located such
that the tuning fork is moving between the
listener and the wall, number of beats heard by the listerner per second will be nearly
A. 0
B. 6
C. 8
D. 4

Answer: D
(Watch Video Solution

66.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. If the listener, along with the source, is moving towards the wall with the same speed i.e., $2 \frac{m}{s}$, such that the source remains
between the listerner and the wall, number of beats heard by the listerner per second will be
A. 4
B. 8
C. 0
D. 6

Answer: B
(Watch Video Solution

67.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. If the listerner along with the source is moving towards the wall with the same speed i.e., $2 \frac{m}{s}$, such that he (listener) remains
between the source and the wall, number of beats heard by him will be
A. 2
B. 6
C. 8
D. 4

Answer: D
(Watch Video Solution
68. A source of sound with natural frequency
$f_{0}=1800 H z$ moves uniformly along a
straight line separated from a stationary
observer by a distance $l=250 \mathrm{~m}$. The velocity
of the source is equal to $\eta=0.80$ fraction of
the velocity of the sound.
Q. Find the frequency of osund received by the observer at the moment when the source gets
closest to him.

A. 2000 Hz
B. 6000 Hz
C. 3000 Hz
D. 5000 Hz

Answer: C

- Watch Video Solution

69. A source of sound with natural frequency
$f_{0}=1800 \mathrm{~Hz}$ moves uniformly along a straight line separated from a stationary observer by a distance $l=250 \mathrm{~m}$. The velocity of the source is equal to $\eta=0.80$ fraction of the velocity of the sound.
Q. The distance between the source and the observer at the moment when the observer
receives a frequency $f=f_{0}$ is

A. 640 m
B. 420 m
C. 320 m
D. 250 m

Answer: A

- Watch Video Solution

70.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}

At $t-0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the
frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Frequency of sound waves emitted by source at $t=\frac{v_{0}}{2 g}$ is
A. f_{0}
B. $f_{0}\left[\frac{v}{v}+\frac{v_{0}}{2}\right]$

$$
\begin{aligned}
& \text { C. } f_{0}\left[\frac{\left(\frac{v-v_{0}}{2}\right)^{2}}{v}\right] \\
& \text { D. } f_{0}\left[\frac{\frac{v-v_{0}}{v+v_{0}}}{2}\right]
\end{aligned}
$$

Answer: B

D Watch Video Solution

71.2

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}
At $t-0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Wavelength of sound waves as received by detector before reflection at $t=\frac{v_{0}}{2 g}$ is
A. $\frac{v}{f_{0}}$
B. $\frac{\frac{v+v_{0}}{2}}{f_{0}}$
C. $\frac{\left(\frac{v-v_{0}}{2}\right)^{2}}{v f_{0}}$
D. none of these

Answer: C

D Watch Video Solution

72.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}
At $t=0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the
frequency of sound waves emitted by source.
Based on above information answer the following questions.
Q. Frequency of sound received by detector after being reflected by reflector at $t=\frac{v_{0}}{2 g}$ is

$$
\text { A. } \frac{2 f_{0}\left(v+v_{0}\right)}{2 v-v_{0}}
$$

> B. $\frac{2 f_{0} v}{v-v_{0}}$
> C. $2 f_{0}\left[\frac{v+v_{0}}{2 v-v_{0}}\right] \times\left[\frac{v}{v-v_{0}}\right]$
> D. $2 f_{0} \times \frac{v+v_{0}}{v-v_{0}}$

Answer: C

D Watch Video Solution

73. A railroad train is travelling at $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ in still air. The frequency of the note emitted by locomotive whistle is 500 Hz . Speed of sound is $345 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. What is the frequency of the sound waves
heard by a stationary listener in front of the train?
A. 547.6 Hz
B. 690.6 Hz
C. 590.9 Hz
D. 520.3 Hz

Answer: A

- Watch Video Solution

74. A railroad train is travelling at $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ in still air. The frequency of the note emitted by locomotive whistle is 500 Hz . Speed of sound is $345 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. What is the frequency of the sound waves
heard by a stationary listener behind the train?
A. 420 Hz
B. 460 Hz
C. 480 Hz
D. 430 Hz

Answer: B

D Watch Video Solution

75. A source of sonic oscillation with frequency
$n_{0}=600 \mathrm{~Hz}$ moves away and at right angles
to a wall with velocity $u=30 \frac{\mathrm{~m}}{\mathrm{~s}}$. A stationary
reciever is located on the line of source in succession wall \rightarrow source \rightarrow receiver. If
velocity of osund propagation is $v=330 \frac{\mathrm{~m}}{\mathrm{~s}}$, then
Q. The beat frequency recorded by the receiver is
A. 110 Hz
B. 210 Hz
C. 150 Hz
D. 220 Hz

Answer: A
(Watch Video Solution
76. A source of sonic oscillation with frequency
$n_{0}=600 \mathrm{~Hz}$ moves away and at right angles
to a wall with velocity $u=30 \frac{\mathrm{~m}}{\mathrm{~s}}$. A stationary
reciever is located on the line of source in succession wall \rightarrow source \rightarrow receiver. If
velocity of osund propagation is $v=330 \frac{\mathrm{~m}}{\mathrm{~s}}$, then
Q. The wavelength of direct waves received by the receiver is
A. 50 cm
B. 100 cm
C. 150 cm
D. 90 cm

Answer: A

D Watch Video Solution

77. A source of sonic oscillation with frequency
$n_{0}=600 H z$ moves away and at right angles
to a wall with velocity $u=30 \frac{m}{s}$. A stationary reciever is located on the line of source in
velocity of osund propagation is $v=330 \frac{\mathrm{~m}}{\mathrm{~s}}$,
then
Q. The wavelength of reflected waves received by the receiver is
A. 120 cm
B. 50 cm
C. 90 cm
D. 60 cm

Answer: D

78. A source S of acoustic wave of the frequency $v_{0}=1700 \mathrm{~Hz}$ and a receiver R are
located at the same point. At the instant $t=0$
, the source start from rest to move away from
the receiver with a constant acceleration ω.
The velocity of sound in air is $v=340 \frac{m}{s}$.
Q. If $\omega=10 \frac{m}{s^{2}}$, the apparent frequency that
will be recorded by the stationary receiver at
$t=10 s$ will be
A. 1700 Hz
B. 1.35 Hz
C. 850 Hz
D. 1.27 Hz

Answer: B

D Watch Video Solution

79. A source S of acoustic wave of the frequency $v_{0}=1700 \mathrm{~Hz}$ and a receiver R are located at the same point. At the instant $t=0$, the source start from rest to move away from
the receiver with a constant acceleration ω.
The velocity of sound in air is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.
If $\omega=10 \frac{m}{s^{2}}$ for 10 s and then $\omega=0$ for
$t>10 s$, the apparent frequency recorded by
the receiver at $t=15 \mathrm{~s}$
A. 1700 Hz
B. $1313 H z$
C. 850 Hz
D. $1.23 H z$

Answer: B
80. A small source of sound vibrating
frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5.0 revolutions per second. The speed of sound in air is $330 \frac{m}{s}$.
Q. For an observer situated at a great distance on a straight line perpendicular to the plane of the circle, through its centre, the apparent frequency of the source will be
B. smaller than 500 Hz
C. always remain 500 Hz
D. greater for half the circle and smaller during the other half

Answer: C

D Watch Video Solution

81. A small source of sound vibrating frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of
5.0 revolutions per second. The speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. For half the circle and smaller during the other half for an observer who is at rest at a great distance from the centre of the circle but nearly in the same plane, the minimum
$f_{\text {min }}$ and the maximum $f_{\max }$ of the range of values of the apparent frequency heard by him will be
A. $f_{\min }=455 H z, f_{\max }=535 H z$
B. $f_{\text {min }}=484 H z, f_{\max }=515 H z$
C. $f_{\text {min }}=484 H z, f_{\max }=500 H z$

$$
\text { D. } f_{\min }=500 H z, f_{\max }=515 H z
$$

Answer: B

- Watch Video Solution

82. A small source of sound vibrating
frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5.0 revolutions per second. The speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. If the observer moves towards the source
with a constant speed of $20 \frac{\mathrm{~m}}{\mathrm{~s}}$, along the radial line to the centre, the fractional change in the apparent frequency over the frequency that the source will have if considered at reat at the centre will be
A. 6%
B. 3%
C. 2%
D. 9%

Answer: A
83. An indian submarine is moving in the Arabian sea with constant velocity. To detect enemy it sends out sonar waves which travel with velocity $1050 \frac{m}{s}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves are detected by the submarine and found to be 10% greater than the sent waves.

Now an enemy ship comes in front, due to
which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The speed of indian submarine is

A. $10 \frac{\mathrm{~m}}{\mathrm{~s}}$
B. $50 \frac{m}{s}$
C. $100 \frac{m}{s}$
D. $20 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

D Watch Video Solution

84. An indian submarine is moving in the

Arabian sea with constant velocity. To detect
enemy it sends out sonar waves which travel
with velocity $1050 \frac{\mathrm{~m}}{\mathrm{~s}}$ in water. Initially the
waves are getting reflected from a fixed island
and the reflected waves are coming back to
submarine. The frequency of reflected waves
are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The velocity of enemy ship should be

A. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards indian submarine
B. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ away from indian submarine
C. $100 \frac{m}{2}$ towards indian submarine

D. $100 \frac{\mathrm{~m}}{\mathrm{~s}}$ away from indian submarine

Answer: A

D Watch Video Solution

85. An indian submarine is moving in the

Arabian sea with constant velocity. To detect
enemy it sends out sonar waves which travel
with velocity $1050 \frac{m}{s}$ in water. Initially the
waves are getting reflected from a fixed island
and the reflected waves are coming back to
submarine. The frequency of reflected waves
are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The speed of indian submarine is

A. 1
B. 1.1
C. 1.2
D. 2

Answer: B

D Watch Video Solution

86. An indian submarine is moving in the

Arabian sea with constant velocity. To detect
enemy it sends out sonar waves which travel
with velocity $1050 \frac{m}{s}$ in water. Initially the
waves are getting reflected from a fixed island
and the reflected waves are coming back to
submarine. The frequency of reflected waves
are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21 \% greater than the sent waves.
Q. Bulk modulus of sea water should be
approximately $\left(\rho=_{\text {water }}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$

A. $10^{8} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
D. $10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Answer: B
87. Due to point isotropic sound source, theintensity at a point is observed as 40 dB .

The density of air is $\rho=\left(\frac{15}{11}\right) \frac{\mathrm{kg}}{\mathrm{m}^{3}}$ and velocity of sound in air is $330 \frac{m}{s}$. Based on this information answer the following questions.
Q. The pressure amplitude at the observation point is

$$
\begin{aligned}
& \text { А. } 3 \frac{N}{m^{2}} \\
& \text { В. } 3 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \text { С. } 3 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

D. $6 \times 10^{-2} \frac{N}{m^{2}}$

Answer: C

D Watch Video Solution

88. Due to point isotropic sound source,
theintensity at a point is observed as 40 dB .
The density of air is $\rho=\left(\frac{15}{11}\right) \frac{\mathrm{kg}}{\mathrm{m}^{3}}$ and velocity of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$. Based on this information answer the following questions.
Q. The ratio of displacement amplitude of
wave at observation point to wavelength of sound waves is

A. 3.22×10^{-6}
B. 3.22×10^{-12}
C. 3.22×10^{-9}
D. 1.07×10^{-10}

Answer: C

D Watch Video Solution

89.

In the figure shown below, a source of sound
having power $12 \times 10^{-6} W$ is kept at O, which
is emitting sound waves in the directions as
shown. Two surfaces are labelled as 1 and 2
having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. find the intensity at both the surfaces.

$$
\begin{aligned}
& \text { A. } I_{1}=12 \times 10^{-6} \frac{W}{m^{2}} \\
& \qquad I_{2}=12 \times 10^{-6} \frac{W}{m^{2}} \\
& \text { B. } I_{1}=6 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=12 \times 10^{-9} \frac{W}{m^{2}} \\
& \text { C. } I_{1}=6 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=3 \times 10^{-9} \frac{W}{m^{2}} \\
& \text { D. } I_{1}=12 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=3 \times 10^{-9} \frac{W}{m^{2}}
\end{aligned}
$$

Answer: C

90.

In the figure shown below, a source of sound having power $12 \times 10^{-6} W$ is kept at O, which is emitting sound waves in the directions as shown. Two surfaces are labelled as 1 and 2 having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. find the intensity at both the surfaces.
A. Both will hear same sound.
B. A will bear a quiter sound
C. B will hear a quiter sound
D. information is not sufficient

Answer: C

D Watch Video Solution

91.

In the figure shown below, a source of sound having power $12 \times 10^{-6} W$ is kept at O, which is emitting sound waves in the directions as shown. Two surfaces are labelled as 1 and 2 having areas $A_{1}=2 \times 10^{3} \mathrm{~m}^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. find the intensity at both the surfaces.
A. A will hear a quiter sound.
B. B will hear quiter sound
C. Both will hear the same sound.
D. Cannot say anything.

Answer: C

D Watch Video Solution

92.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. Find the pressure amplitude of given sound wave in the fluid of inner ear.
A. $0.03 P a$
B. $0.04 P a$
C. $0.3 P a$
D. $0.4 P a$

Answer: D

- Watch Video Solution

93.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. Find the displacement amplitude of given sound wave in the fluid of inner ear.
A. $4.4 \times 10^{-11} m$
B. $8 \times 10^{11} \mathrm{~m}$
C. $3.65 \times 10^{-11} \mathrm{~m}$
D. $8.1 \times 10^{-12} m$

Answer: C

- Watch Video Solution

94.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. Find the pressure amplitude of given sound wave in the fluid of inner ear.
A. 1000
B. 100

C. 10000

D. none of these

Answer: A

- Watch Video Solution

95.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by
ossicles on the inner ear. Consider a sound
wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{m}{s}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} \mathrm{~Pa}$.
Q. This person (without hearing aid machine) is sitting inside a busy restaurant where average sound intensity is $3.2 \times 10^{-5} \frac{W}{m^{2}}$.

How much energy in the form of sound is taken up by the person in his meal time of 1 h ?

> A. $1.2 \times 10^{-5} J$
> B. $1.8 \times 10^{-4} J$
> C. $2.4 \times 10^{-5} J$
> D. $3.6 \times 10^{-4} J$

Answer: A

D Watch Video Solution

96.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is
$1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is
$2.18 \times 10^{9} P a$.
Q. With respect to information provided above, mark the correct statement.
A. The person will hear more intense sound, if area of stirrup is reduced.
B. The person will hear more intense sound, if area of stirrup is increase.
C. If mass of ossicles is not negligible, then
intensity of sound heard by the person increase.
D. If amss of ossicles is not negligible, then
intensity of sound heard by the person
remains same.

Answer: A

- Watch Video Solution

97.

A source of sound and detector are arranged
as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start
from the shown location in anticlockwise

direction at $t=0$

(Take velocity of sound in air as v)

What is the frequency as received by detector, when it rotates by an angle $\frac{\pi}{2}$?
A. f
B. $\frac{v-\omega R}{v} \times f$
C. $\frac{v-\frac{\omega}{R}}{v} \times f$
D. $v-\frac{\omega R \times \frac{2}{\sqrt{5}}}{v} \times f$

Answer: D

D Watch Video Solution

98.

A source of sound and detector are arranged as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start from the shown location in anticlockwise direction at $t=0$
(Take velocity of sound in air as v)
Q. Find the time at which the detector will hear the maximum frequency for the first time.
A. $\frac{\pi}{(3 \omega)}$
B. $\frac{5 \pi}{(3 \omega)}$
C. $\frac{4 \pi}{(3 \omega)}$
D. $\frac{\pi}{\omega}$

Answer: B

99.

A source of sound and detector are arranged as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start from the shown location in anticlockwise direction at $t=0$
(Take velocity of sound in air as v)

Find the time interval between minimum and
maximum frequency as received by the detector.

> A. $\frac{\pi}{(3 \omega)}$
> B. $\frac{5 \pi}{(3 \omega)}$
> C. $\frac{4 \pi}{(3 \omega)}$
> D. $\frac{\pi}{\omega}$

Answer: C

D Watch Video Solution

100.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$ and answer the following questions.
Q. Suppose that a listener is located at rest between the tuning fork and the wall. Number
of beats heard by the listener per second will be
A. 4
B. 3
C. 0
D. 1

Answer: B
(Watch Video Solution

101.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$ and answer the following questions.
Q. If the listener is at rest and located such
that the tuning fork is moving between the
listener and the wall, number of beats heard by the listerner per second will be nearly
A. 0
B. 6
C. 8
D. 4

Answer: D
(Watch Video Solution

102.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$ and answer the following questions.
Q. If the listener, along with the source, is moving towards the wall with the same speed i.e., $2 \frac{m}{s}$, such that the source remains
between the listerner and the wall, number of beats heard by the listerner per second will be
A. 4
B. 8
C. 0
D. 6

Answer: B
(Watch Video Solution

103.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{\mathrm{~m}}{\mathrm{~s}}$. Take speed of sound as $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$ and answer the following questions.
Q. If the listener, along with the source, is moving towards the wall with the same speed i.e., $2 \frac{m}{s}$, such that the source remains
between the listerner and the wall, number of beats heard by the listerner per second will be
A. 2
B. 6
C. 8
D. 4

Answer: D
(Watch Video Solution
104. A source of sound with natural frequency
$f_{0}=1800 H z$ moves uniformly along a
straight line separated from a stationary
observer by a distance $l=250 \mathrm{~m}$. The velocity
of the source is equal to $\eta=0.80$ fraction of
the velocity of the sound.
Q. Find the frequency of osund received by the observer at the moment when the source gets
closest to him.

A. 2000 Hz
B. 6000 Hz
C. 3000 Hz
D. 5000 Hz

Answer: C

- Watch Video Solution

105. A source of sound with natural frequency
$f_{0}=1800 \mathrm{~Hz}$ moves uniformly along a straight line separated from a stationary observer by a distance $l=250 \mathrm{~m}$. The velocity of the source is equal to $\eta=0.80$ fraction of the velocity of the sound.
Q. The distance between the source and the observer at the moment when the observer
receives a frequency $f=f_{0}$ is

A. 640 m
B. 420 m
C. 320 m
D. 250 m

Answer: A

106.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}

At $t-0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the
frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Frequency of sound waves emitted by source at $t=\frac{v_{0}}{2 g}$ is
A. f_{0}
B. $f_{0}\left[\frac{v}{v}+\frac{v_{0}}{2}\right]$

$$
\begin{aligned}
& \text { C. } f_{0}\left[\frac{\left(\frac{v-v_{0}}{2}\right)^{2}}{v}\right] \\
& \text { D. } f_{0}\left[\frac{\frac{v-v_{0}}{v+v_{0}}}{2}\right]
\end{aligned}
$$

Answer: B

D Watch Video Solution

107.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}
At $t-0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Wavelength of sound waves as received by detector before reflection at $t=\frac{v_{0}}{2 g}$ is
A. $\frac{v}{f_{0}}$
B. $\frac{\frac{v+v_{0}}{2}}{f_{0}}$
C. $\frac{\left(\frac{v-v_{0}}{2}\right)^{2}}{v f_{0}}$
D. none of these

Answer: C

D Watch Video Solution

108.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}

At $t-0$, the vertical separation between the
reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed
of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Frequency of sound waves emitted by
source at $t=\frac{v_{0}}{2 g}$ is
A. $\frac{2 f_{0}\left(v+v_{0}\right)}{2 v-v_{0}}$
B. $\frac{2 f_{0} v}{v-v_{0}}$
C. $2 f_{0}\left[\frac{v+v_{0}}{2 v-v_{0}}\right] \times\left[\frac{v}{v-v_{0}}\right]$
D. $2 f_{0} \times \frac{v+v_{0}}{v-v_{0}}$

- Watch Video Solution

109. A railroad train is travelling at $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ in still air. The frequency of the note emitted by locomotive whistle is 500 Hz . Speed of sound is $345 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. What is the frequency of the sound waves
heard by a stationary listener in front of the train?
A. 547.6 Hz
B. 690.6 Hz
C. 590.9 Hz
D. 520.3 Hz

Answer: A

D Watch Video Solution

110. A railroad train is travelling at $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ in still air. The frequency of the note emitted by
locomotive whistle is 500 Hz . Speed of sound is $345 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. What is the frequency of the sound waves
heard by a stationary listener behind the train?
A. 420 Hz
B. 460 Hz
C. 480 Hz
D. 430 Hz

Answer: B
(Watch Video Solution
111. A source of sonic oscillation with
frequency $n_{0}=600 \mathrm{~Hz}$ moves away and at
right angles to a wall with velocity $u=30 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A stationary reciever is located on the line of source in succession wall \rightarrow source \rightarrow
receiver. If velocity of osund propagation is
$v=330 \frac{m}{s}$, then
Q. The beat frequency recorded by the receiver is
A. $110 H z$
B. 210 Hz
C. 150 Hz
D. 220 Hz

Answer: A

D Watch Video Solution

112. A source of sonic oscillation with
frequency $n_{0}=600 \mathrm{~Hz}$ moves away and at right angles to a wall with velocity $u=30 \frac{\mathrm{~m}}{\mathrm{~s}}$.

A stationary reciever is located on the line of source in succession wall \rightarrow source \rightarrow
receiver. If velocity of osund propagation is
$v=330 \frac{m}{s}$, then
Q. The wavelength of direct waves received by the receiver is
A. 50 cm
B. 100 cm
C. 150 cm
D. 90 cm

Answer: A
113. A source of sonic oscillation with
frequency $n_{0}=600 \mathrm{~Hz}$ moves away and at
right angles to a wall with velocity $u=30 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A stationary reciever is located on the line of source in succession wall \rightarrow source \rightarrow
receiver. If velocity of osund propagation is
$v=330 \frac{m}{s}$, then
Q. The wavelength of reflected waves received by the receiver is
A. 120 cm
B. 50 cm
C. 90 cm
D. 60 cm

Answer: D

- Watch Video Solution

114. A source S of acoustic wave of the frequency $v_{0}=1700 \mathrm{~Hz}$ and a receiver R are located at the same point. At the instant $t=0$, the source start from rest to move away from
the receiver with a constant acceleration ω.
The velocity of sound in air is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.
If $\omega=10 \frac{m}{s^{2}}$ for 10 s and then $\omega=0$ for
$t>10 s$, the apparent frequency recorded by
the receiver at $t=15 \mathrm{~s}$
A. 1700 Hz
B. $1.35 H z$
C. 850 Hz
D. $1.27 H z$

Answer: B
115. A source S of acoustic wave of the frequency $v_{0}=1700 \mathrm{~Hz}$ and a receiver R are located at the same point. At the instant $t=0$, the source start from rest to move away from the receiver with a constant acceleration ω.

The velocity of sound in air is $v=340 \frac{m}{s}$. If $\omega=10 \frac{m}{s^{2}}$ for 10 s and then $\omega=0$ for
$t>10 s$, the apparent frequency recorded by the receiver at $t=15 \mathrm{~s}$
A. 1700 Hz
B. $1313 H z$
C. 850 Hz
D. 1.23 Hz

Answer: B

D Watch Video Solution

116. A small source of sound vibrating frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5.0 revolutions per second. The speed of
sound in air is $330 \frac{m}{s}$.
Q. For an observer situated at a great distance on a straight line perpendicular to the plane of the circle, through its centre, the apparent frequency of the source will be
A. greater that 500 Hx
B. smaller than 500 Hz
C. always remain 500 Hz
D. greater for half the circle and smaller
during the other half

Answer: C

- Watch Video Solution

117. A small source of sound vibrating
frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of
5.0 revolutions per second. The speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. For an observer who is at rest at a great distance from the centre of the circle but nearly in the same plane, the minimum $f_{\text {min }}$
and the maximum $f_{\max }$ of the range of values of the apparent frequency heard by him will be
A. $f_{\text {min }}=455 H z, f_{\max }=535 \mathrm{~Hz}$
B. $f_{\min }=484 H z, f_{\max }=515 H z$
C. $f_{\min }=484 H z, f_{\max }=500 H z$
D. $f_{\min }=500 H z, f_{\max }=515 H z$

Answer: B

D Watch Video Solution

118. A small source of sound vibrating
frequency 500 Hz is rotated in a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of
5.0 revolutions per second. The speed of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Q. If the observer moves towards the source with a constant speed of $20 \frac{\mathrm{~m}}{\mathrm{~s}}$, along the radial line to the centre, the fractional change in the apparent frequency over the frequency that the source will have if considered at reat at the centre will be
A. 6%
B. 3%
C. 2%
D. 9%

Answer: A

D Watch Video Solution

119. An indian submarine is moving in the

Arabian sea with constant velocity. To detect
with velocity $1050 \frac{m}{s}$ in water. Initially the
waves are getting reflected from a fixed island
and the reflected waves are coming back to
submarine. The frequency of reflected waves
are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. The speed of indian submarine is

> A. $10 \frac{\mathrm{~m}}{\mathrm{~s}}$
> В. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$
> C. $100 \frac{\mathrm{~m}}{\mathrm{~s}}$
> D. $20 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer: B

- Watch Video Solution

120. An indian submarine is moving in the Arabian sea with constant velocity. To detect enemy it sends out sonar waves which travel with velocity $1050 \frac{m}{s}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves are detected by the submarine and found to be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater
than the sent waves.

Q. The velocity of enemy ship should be

A. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards indian submarine
B. $50 \frac{\mathrm{~m}}{\mathrm{~s}}$ away from indian submarine
C. $100 \frac{\mathrm{~m}}{2}$ towards indian submarine
D. $100 \frac{\mathrm{~m}}{\mathrm{~s}}$ away from indian submarine

Answer: A

121. An indian submarine is moving in the Arabian sea with constant velocity. To detect enemy it sends out sonar waves which travel with velocity $1050 \frac{m}{s}$ in water. Initially the waves are getting reflected from a fixed island and the reflected waves are coming back to submarine. The frequency of reflected waves are detected by the submarine and found to be 10% greater than the sent waves.

Now an enemy ship comes in front, due to
which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.

Q If the wavelength received by enemy ship is
λ^{\prime} and wavelength of reflected waves received by submarine is $\lambda^{\prime \prime}$, then $\left(\frac{\lambda^{\prime}}{\lambda^{\prime \prime}}\right)$ equals

A. 1
B. 1.1
C. 1.2
D. 2

Answer: B

- Watch Video Solution

122. An indian submarine is moving in the

Arabian sea with constant velocity. To detect
enemy it sends out sonar waves which travel
with velocity $1050 \frac{m}{s}$ in water. Initially the
waves are getting reflected from a fixed island
and the reflected waves are coming back to
submarine. The frequency of reflected waves
are detected by the submarine and found to
be 10% greater than the sent waves.

Now an enemy ship comes in front, due to which the frequency of reflected waves detected by submarine becomes 21% greater than the sent waves.
Q. Bulk modulus of sea water should be approximately $\left(\rho={ }_{\text {water }}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$

A. $10^{8} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
D. $10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Answer: B

D Watch Video Solution
123. Due to point isotropic sound source,
theintensity at a point is observed as 40 dB .

The density of air is $\rho=\left(\frac{15}{11}\right) \frac{k g}{m^{3}}$ and velocity of sound in air is $330 \frac{m}{s}$. Based on this information answer the following questions.
Q. The pressure amplitude at the observation point is

$$
\begin{aligned}
& \text { A. } 3 \frac{N}{m^{2}} \\
& \text { В. } 3 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \text { C. } 3 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \text { D. } 6 \times 10^{-2} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

Answer: C

Watch Video Solution

124. Due to point isotropic sound source, theintensity at a point is observed as 40 dB .

The density of air is $\rho=\left(\frac{15}{11}\right) \frac{k g}{\mathrm{~m}^{3}}$ and velocity of sound in air is $330 \frac{\mathrm{~m}}{\mathrm{~s}}$. Based on this information answer the following questions.
Q. The ratio of displacement amplitude of wave at observation point to wavelength of sound waves is

$$
\text { A. } 3.22 \times 10^{-6}
$$

B. 3.22×10^{-12}
C. 3.22×10^{-9}
D. 1.07×10^{-10}

Answer: C

- Watch Video Solution

125.

In the figure shown below, a source of sound having power $12 \times 10^{-6} W$ is kept at O, which is emitting sound waves in the directions as shown. Two surfaces are labelled as 1 and 2 having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. find the intensity at both the surfaces.

$$
\begin{aligned}
& \text { A. } I_{1}=12 \times 10^{-6} \frac{W}{m^{2}} \\
& \qquad I_{2}=12 \times 10^{-6} \frac{W}{m^{2}} \\
& \text { B. } I_{1}=6 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=12 \times 10^{-9} \frac{W}{m^{2}} \\
& \text { C. } I_{1}=6 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=3 \times 10^{-9} \frac{W}{m^{2}} \\
& \text { D. } I_{1}=12 \times 10^{-9} \frac{W}{m^{2}}, I_{2}=3 \times 10^{-9} \frac{W}{m^{2}}
\end{aligned}
$$

Answer: C

126.

In the figure shown below, a source of sound
having power $12 \times 10^{-6} W$ is kept at O, which
is emitting sound waves in the directions as
shown. Two surfaces are labelled as 1 and 2
having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. If two persons (having almost same physique) A and B are standing at the
location of surfaces 1 and 2, respectively, then who will hear a quiter sound?
A. Both will hear same sound.
B. A will bear a quiter sound
C. B will hear a quiter sound
D. information is not sufficient

Answer: C

D Watch Video Solution

127.

In the figure shown below, a source of sound having power $12 \times 10^{-6} W$ is kept at O, which is emitting sound waves in the directions as shown. Two surfaces are labelled as 1 and 2 having areas $\quad A_{1}=2 \times 10^{3} m^{2} \quad$ and
$A_{2}=4 \times 10^{3} \mathrm{~m}^{2}$, respectively
Q. If two persons (having almost same physique) A and B are standing at the
location of surfaces 1 and 2, respectively, then who will hear a quiter sound?
A. A will hear a quiter sound.
B. B will hear quiter sound
C. Both will hear the same sound.
D. Cannot say anything.

Answer: C

D Watch Video Solution

128.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. Find the pressure amplitude of given sound wave in the fluid of inner ear.
A. $0.03 P a$
B. $0.04 P a$
C. $0.3 P a$
D. $0.4 P a$

Answer: D

- Watch Video Solution

129.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. Find the displacement amplitude of given sound wave in the fluid of inner ear.
A. $4.4 \times 10^{-11} m$
B. $8 \times 10^{11} \mathrm{~m}$
C. $3.65 \times 10^{-11} \mathrm{~m}$
D. $8.1 \times 10^{-12} m$

Answer: C

- Watch Video Solution

130.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{\mathrm{~m}}{\mathrm{~s}}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} P a$.
Q. If the person is using an hearing aid, which increase the sound intensity level by 30 dB ,
then by what factor the intensity of given sound wave change as perceived by inner ear?

A. 1000

B. 100
C. 10000
D. none of these

Answer: A
(Watch Video Solution

131.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by
ossicles on the inner ear. Consider a sound
wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{m}{s}$. Bulk modulus of air is $1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is $2.18 \times 10^{9} \mathrm{~Pa}$.
Q. This person (without hearing aid machine) is sitting inside a busy restaurant where average sound intensity is $3.2 \times 10^{-5} \frac{W}{m^{2}}$.

How much energy in the form of sound is taken up by the person in his meal time of 1 h ?

> A. $1.2 \times 10^{-5} J$
> B. $1.8 \times 10^{-4} J$
> C. $2.4 \times 10^{-5} J$
> D. $3.6 \times 10^{-4} J$

Answer: A

D Watch Video Solution

132.

When a sound wave enters the ear, it sets the eardrum into oscillation, which in turn causes
oscillation of 3 tiny bones in the middle ear called ossicles. This oscillation is finally transmitted to the fluid filled in inner portion of the ear termed as inner ear, the motion of the fluid disturbs hair cells within the inner ear which transmit nerve impulses to the brain
with the information that a sound is present.

The theree bones present in the middle ear are named as hammer, anvil and stirrup. Out of these the stirrup is the smallest one and
this only connects the middle ear to inner ear
as shown in the figure below. The area of stirrup and its extent of connection with the
inner ear limits the sensitivity of the human
ear consider a person's ear whose moving part
of the eardrum has an area of about $50 \mathrm{~mm}^{2}$
and the area of stirrup is about $5 \mathrm{~mm}^{2}$. The mass of ossicles is negligible. As a result, force exerted by sound wave in air on eardum and
ossicles is same as the force exerted by ossicles on the inner ear. Consider a sound wave having maximum pressure fluctuation of
$4 \times 10^{-2} P a$ from its normal equilibrium pressure value which is equal to $10^{5} \mathrm{~Pa}$.

Frequency of sound wave in air is $332 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Velocity of sound wave in fluid (present in inner ear) is $1500 \frac{m}{s}$. Bulk modulus of air is
$1.42 \times 10^{5} \mathrm{~Pa}$. Bulk modulus of fluid is
$2.18 \times 10^{9} P a$.
Q. With respect to information provided above, mark the correct statement.
A. The person will hear more intense sound, if area of stirrup is reduced.
B. The person will hear more intense sound, if area of stirrup is increase.
C. If mass of ossicles is not negligible, then
intensity of sound heard by the person increase.
D. If amss of ossicles is not negligible, then
intensity of sound heard by the person
remains same.

Answer: A

- Watch Video Solution

133.

A source of sound and detector are arranged
as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start
from the shown location in anticlockwise

direction at $t=0$

(Take velocity of sound in air as v)

What is the frequency as received by detector, when it rotates by an angle $\frac{\pi}{2}$?
A. f
B. $\frac{v-\omega R}{v} \times f$
C. $\frac{v-\frac{\omega}{R}}{v} \times f$
D. $v-\frac{\omega R \times \frac{2}{\sqrt{5}}}{v} \times f$

Answer: D

D Watch Video Solution

134.

A source of sound and detector are arranged as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start
from the shown location in anticlockwise direction at $t=0$
(Take velocity of sound in air as v)
Q. Find the time at which the detector will hear the maximum frequency for the first time.
A. $\frac{\pi}{(3 \omega)}$
B. $\frac{5 \pi}{(3 \omega)}$
C. $\frac{4 \pi}{(3 \omega)}$
D. $\frac{\pi}{\omega}$

Answer: B

135.

A source of sound and detector are arranged as shown in Fig. The detector is moving along
a circle with constant angular speed ω. It start from the shown location in anticlockwise direction at $t=0$
(Take velocity of sound in air as v)

Find the time interval between minimum and
maximum frequency as received by the detector.

> A. $\frac{\pi}{(3 \omega)}$
> B. $\frac{5 \pi}{(3 \omega)}$
> C. $\frac{4 \pi}{(3 \omega)}$
> D. $\frac{\pi}{\omega}$

Answer: C

D Watch Video Solution

136.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. Suppose that a listener is located at rest between the tuning fork and the wall. Number
of beats heard by the listener per second will be
A. 4
B. 3
C. 0
D. 1

Answer: B
(Watch Video Solution

137.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. Suppose that a listener is located at rest between the tuning fork and the wall. Number
of beats heard by the listener per second will be
A. 0
B. 6
C. 8
D. 4

Answer: D
(Watch Video Solution

138.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. If the listener, along with the source, is moving towards the wall with the same speed i.e., $2 \frac{m}{s}$, such that the source remains
between the listerner and the wall, number of beats heard by the listerner per second will be
A. 4
B. 8
C. 0
D. 6

Answer: B
(Watch Video Solution

139.

As shown if Fig. a vibrating tuning fork of frequency 512 Hz is moving towards the wall with a speed $2 \frac{m}{s}$. Take speed of sound as $v=340 \frac{m}{s}$ and answer the following questions.
Q. If the listener, along with the source, is moving towards the wall with the same speed i.e., $2 \frac{m}{s}$, such that the source remains
between the listerner and the wall, number of beats heard by the listerner per second will be
A. 2
B. 6
C. 8
D. 4

Answer: D

D Watch Video Solution
140. A source of sound with natural frequency
$f_{0}=1800 H z$ moves uniformly along a
straight line separated from a stationary observer by a distance $l=250 \mathrm{~m}$. The velocity of the source is equal to $\eta=0.80$ fraction of the velocity of the sound.
Q. Find the frequency of osund received by the observer at the moment when the source gets
closest to him.

A. 2000 Hz
B. 6000 Hz
C. 3000 Hz
D. 5000 Hz

Answer: C

- Watch Video Solution

141. A source of sound with natural frequency
$f_{0}=1800 \mathrm{~Hz}$ moves uniformly along a straight line separated from a stationary observer by a distance $l=250 \mathrm{~m}$. The velocity of the source is equal to $\eta=0.80$ fraction of the velocity of the sound.
Q. The distance between the source and the observer at the moment when the observer
receives a frequency $f=f_{0}$ is

A. 640 m
B. 420 m
C. 320 m
D. 250 m

Answer: A

142.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity v_{0} in vertical upward directon and reflector starts moving down with constant velocity v_{0}

At $t-0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the
frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Frequency of sound waves emitted by
source at $t=\frac{v_{0}}{2 g}$ is
A. f_{0}
B. $f_{0}\left[\frac{v}{v}+\frac{v_{0}}{2}\right]$

$$
\begin{aligned}
& \text { C. } f_{0}\left[\frac{\left(\frac{v-v_{0}}{2}\right)^{2}}{v}\right] \\
& \text { D. } f_{0}\left[\frac{\frac{v-v_{0}}{v+v_{0}}}{2}\right]
\end{aligned}
$$

Answer: B

- Watch Video Solution

143.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}
At $t-0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the frequency of sound waves emitted by source. Based on above information answer the following questions.
Q. Wavelength of sound waves as received by detector before reflection at $t=\frac{v_{0}}{2 g}$ is
A. $\frac{v}{f_{0}}$
B. $\frac{\frac{v+v_{0}}{2}}{f_{0}}$
C. $\frac{\left(\frac{v-v_{0}}{2}\right)^{2}}{v f_{0}}$
D. none of these

Answer: C

D Watch Video Solution

144.

A source of sound and a detector are placed at
the same place on ground At $t=0$, the source
S is projected towards reflector with velocity
v_{0} in vertical upward directon and reflector
starts moving down with constant velocity v_{0}
At $t=0$, the vertical separation between the reflector and source is $H\left(\frac{>v_{0}^{2}}{2 g}\right)$. The speed of sound in air is $v\left(\gg v_{0}\right)$, Take f_{0} as the
frequency of sound waves emitted by source.
Based on above information answer the following questions.
Q. Frequency of sound received by detector after being reflected by reflector at $t=\frac{v_{0}}{2 g}$ is

$$
\text { A. } \frac{2 f_{0}\left(v+v_{0}\right)}{2 v-v_{0}}
$$

B. $\frac{2 f_{0} v}{v-v_{0}}$
C. $2 f_{0}\left[\frac{v+v_{0}}{2 v-v_{0}}\right] \times\left[\frac{v}{v-v_{0}}\right]$
D. $2 f_{0} \times \frac{v+v_{0}}{v-v_{0}}$

Answer: C

D Watch Video Solution

Integer

1. The average power transmitted across a cross section by two sound waves moving in
the same direction are equal. The wavelength
of two sound waves are in the ratio of $1: 2$,
then find the ratio of their pressure amplitudes.

- Watch Video Solution

2. Loudness of sound from an isotropic point source at a distace of 70 cm is $20 d B$. What is
the distance (in m) at which it is not heard.

D Watch Video Solution

3. Two sound sources are moving away from a stationary observer in opposite direction with velocities V_{1} and $V_{2}\left(V_{1}>V_{2}\right)$. The frequency of both the sources is $900 \mathrm{~Hz} . V_{1}$ and V_{2} are both quite less than speed of sound, $V=300 \frac{m}{s}$. Find the value of $\left(V_{1}-V_{2}\right)$ so that beat frequency observed by observer is 9 Hz . (in m / s).

D Watch Video Solution

4. The resultant loudness at a point P is $n d B$ higher than the loudness of S_{1} whoch is one of the two identical sound sources S_{1} and S_{2} reaching at that point in phase. Find the value of n.

D Watch Video Solution

5. The average power transmitted across a cross section by two sound waves moving in the same direction are equal. The wavelength
of two sound waves are in the ratio of $1: 2$, then find the ratio of their pressure amplitudes.

D Watch Video Solution

6. Loudness of sound from an isotropic point source at a distace of 70 cm is $20 d B$. What is
the distance (in m) at which it is not heard.
7. Two sound sources are moving away from a stationary observer in opposite direction with
velocities V_{1} and $V_{2}\left(V_{1}>V_{2}\right)$. The frequency of both the sources is $900 \mathrm{~Hz} . V_{1}$ and V_{2} are both quite less than speed of sound, $V=300 \frac{m}{s}$. Find the value of $\left(V_{1}-V_{2}\right)$ so that beat frequency observed by observer is 9 Hz . (in m / s).

D Watch Video Solution

8. The resultant loudness at a point P is $n d B$
higher than the loudness of S_{1} which is one of the two identical sound sources S_{1} and S_{2} reaching at that point in phase. Find the value of n.

D Watch Video Solution

9. The average power transmitted across a cross section by two sound waves moving in
the same direction are equal. The wavelength
of two sound waves are in the ratio of $1: 2$, then find the ratio of their pressure amplitudes.

D Watch Video Solution

10. Loudness of sound from an isotropic point source at a distace of 70 cm is 20 dB . What is
the distance (in m) at which it is not heard.
11. Two sound sources are moving away from a
stationary observer in opposite direction with
velocities V_{1} and $V_{2}\left(V_{1}>V_{2}\right)$. The frequency of both the sources is $900 \mathrm{~Hz} . V_{1}$ and V_{2} are both quite less than speed of sound, $V=300 \frac{m}{s}$. Find the value of $\left(V_{1}-V_{2}\right)$ so that beat frequency observed by observer is 9 Hz . (in m / s).

D Watch Video Solution

12. The resultant loudness at a point P is $n d B$
higher than the loudness of S_{1} which is one of the two identical sound sources S_{1} and S_{2} reaching at that point in phase. Find the value of n.

D Watch Video Solution

13. The average power transmitted across a cross section by two sound waves moving in
the same direction are equal. The wavelength
of two sound waves are in the ratio of $1: 2$, then find the ratio of their pressure amplitudes.

- Watch Video Solution

14. Loudness of sound from an isotropic point source at a distace of 70 cm is $20 d B$. What is
the distance (in m) at which it is not heard.
15. Two sound sources are moving away from a
stationary observer in opposite direction with
velocities V_{1} and $V_{2}\left(V_{1}>V_{2}\right)$. The frequency of both the sources is $900 \mathrm{~Hz} . V_{1}$ and V_{2} are both quite less than speed of sound, $V=300 \frac{m}{s}$. Find the value of $\left(V_{1}-V_{2}\right)$ so that beat frequency observed by observer is 9 Hz . (in m / s).

D Watch Video Solution

16. The resultant loudness at a point P is $n d B$
higher than the loudness of S_{1} which is one of
the two identical sound sources S_{1} and S_{2}
reaching at that point in phase. Find the value of n.

- Watch Video Solution

