©゙doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (ENGLISH)

TRANSMISSION OF HEAT

Single Correct Answer Type

1. Two bars of thermal conductivities K and
$3 K$ and lengths 1 cm and 2 cm respectively
have equal cross-sectional area, they are
joined lengths wise as shown in the figure. If
the temperature at the ends of this composite br is $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively (see figure), then the temperature ϕ of the interface is

$$
\begin{aligned}
& \phi \\
& 0^{\circ} \mathrm{C}=\mathrm{K}=3 \mathrm{~K} \quad 100^{\circ} \mathrm{C}
\end{aligned}
$$

A. $50^{\circ} \mathrm{C}$
B. $\left(\frac{100}{3}\right)^{\circ} \mathrm{C}$
C. $60^{\circ} \mathrm{C}$
D. $\left(\frac{200}{3}\right)^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

2. A wall is made of equally thick layers A and B of different matierals. Thermal conduvtivity of

A is twice that of B. In the stedy state, the temperature difference across the wall is $36^{\circ} \mathrm{C}$. The temperature difference across the layer A is
A. $6^{\circ} \mathrm{C}$
B. $12^{\circ} \mathrm{C}$
C. $18^{\circ} \mathrm{C}$
D. $24^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

3. A cylinder of radius r made of a material of
thermal conductivity $K_{1}=K$ is surrounded bt cylendrical shell of inner radius R and outer radius $3 R$ made of a material of thermal
conductivity $K_{2}=2 K$. The two ends of the combined system are maintained at two different temperatures.
there is no loss of heat across the cylendrical
surface and system is in steadt state. what is
the effective thermal conductivity of the system?

A. $K_{1}+K_{2}$

$$
\text { B. } \frac{K_{1} K_{2}}{K_{1}+K_{2}}
$$

C. $\frac{K_{1}+3 K_{2}}{4}$
D. $\frac{3 K_{1}+K_{2}}{4}$

Answer: C

D Watch Video Solution

4. Three rods made of the same material and
having the same cross-section have been
joined as shown in the figure. Each rod is of
the same length. The left and right ends are kept at $0^{\circ} C$ and $90^{\circ} C$, respectively. The
temperature of junction of the three rods will be
(a) $45^{\circ} C$ (b) $60^{\circ} C$
(c) $30^{\circ} C$ (d) $20^{\circ} C$.

A. $45^{\circ} \mathrm{C}$
B. $60^{\circ} \mathrm{C}$
C. $30^{\circ} \mathrm{C}$

D. $20^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

5. Ice has formed on a shallow pond, and a steady state has been reached, with the air above the ice at $-5.0^{\circ} \mathrm{C}$ and the bottom of
the pond at $40^{\circ} \mathrm{C}$. If the total depth of ice + water is $1.4 m$, (Assume that the thermal conductivities of ice and water are 0.40 and
$0.12 \mathrm{cal} / \mathrm{mC}{ }^{\circ} \mathrm{s}$, respectively.)

The thickness of ice layer is
A. 1.1 m
B. 0.4 m
C. 2.1 m
D. 3.6 m

Answer: A
(Watch Video Solution
6. Two identical conducting rods are first connected independently to two vessels, one containing water at $100^{\circ} \mathrm{C}$ and the other containing ice at $0^{\circ} C$. In the second case, the rods are joined end to end and connected to the same vessels. Let q_{1} and q_{2} gram per second be the rate of melting of ice in the two cases respectively. The ratio $\frac{q_{1}}{q_{2}}$ is
(a) $\frac{1}{2}$ (b) $\frac{2}{1}$ (c) $\frac{4}{1}$ (d) $\frac{1}{4}$
A. $\frac{1}{2}$
B. $\frac{2}{1}$
C. $\frac{4}{1}$
D. $\frac{1}{4}$

Answer: C

D Watch Video Solution

7. A solid cube and a solid sphere of the same

material have equal surface area. Both are at
the same temperature $120^{\circ} \mathrm{C}$, then
A. Both the cube and the sphere cool down
at the same rate
B. The cube cools down faster than sphere
C. The sphere cools down faster than the
cube
D. Whichever is having more mass will cool
down faster

Answer: B

8. The two opposite faces of a cubical piece of iron (thermal conductivity $=0.2$ CGS units) are at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ in ice. If the area of a surface is $4 \mathrm{~cm}^{2}$, then the mass of ice melted in 10 minutes will b
A. 30 gm
B. 300 gm
C. 5 gm
D. 50 gm

- Watch Video Solution

9. A conducting cylindrical rod of uniform cross-sectional area is kept between two large chambers which are at temperatures $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, respectively. The cconductivety of the rod increases with x , where x is distance from $100^{\circ} \mathrm{C}$ end. The temperature profile of the rod in steady -state will be as

D. ${ }^{(4)}$

Answer: B

- Watch Video Solution

Multiple Correct Answer Type

1. Figure, shown three different arrangements
of materials 1,2 and 3 to from a wall. Thermal
conductivities are $k_{1}>k_{2}>k_{3}$. The left side of the wall is $20^{\circ} \mathrm{C}$ higher than the right side.

The temperature difference ΔT across the material 1 has following relation in three cases

(a)

(b)
A. In steady state, the rate of energy conduction through the wall III is
greatest
B. In steady state, the rate of energy
conduction though all the walls
$(I),(I I)$ and $(I I I)$ are same
C. In steady state, temperature difference
across material I is greatest in wall $I I$.
D. In steady state, temperature differnce across material I is same in all the walls

Answer: B::D

2. The ends of a rod of uniform thermal conductivity are maintained at different (constant) temperatures. Afer the steady state is achieved:
A. heat flows in the rod from high
temperature to low temperature even if
the rod has the non-unform cross
sectional area
B. temperature gradient along length is
same even if the rod has the non-unform
cross sectional area
C. heat current is same even if the rod
hasnon-unform cross sectional area
D. If the rod has uniform cross-sectional
area the temperature is same all the point at rod.

Answer: A::C

Comprehension Type

1. Liquid water coats an active (growing) icicle and extends up a short, narrow tube along the central axis. Because the water-ice interface must have a temperature of $0^{\circ} \mathrm{C}$, the water in
the tube cannot lose energy through the sides
of the icicle or down through the tip because
there is no temperature change in those
directions. It can lose energy and freeze only
by sending energy up(through distance L) to
the top of the icicle, where the temperature T_{r}
can be below $0^{\circ} \mathrm{C}$. Take $\mathrm{L}=0.10 \mathrm{~m}$ and $T_{r}=-5^{\circ}$
C.Assume that the central tube and the upward conduction path both have crossesectional area $A=0.5 m^{2}$. The thermal conductivity of ice is $0.40 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, latent heat of fusion is $L_{F}=4.0 \times 10^{5} \mathrm{~J} / \mathrm{K}$ and the density of liquid water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

The rate at which mass converted from liquid to ice at the top of the central tube is

$$
\text { A. } 7.5 \times 10^{-3} \mathrm{~kg} / \mathrm{s}
$$

B. $2.5 \times 10^{-5} \mathrm{~kg} / \mathrm{s}$

$$
\begin{aligned}
& \text { C. } 5 \times 10^{-3} \mathrm{~kg} / \mathrm{s} \\
& \text { D. } 5 \times 10^{-5} \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Answer: B

D Watch Video Solution

2. Liquid water coats an active (growing) icicle and extends up a short, narrow tube along the central axis. Because the water-ice interface must have a temperature of $0^{\circ} \mathrm{C}$, the water in the tube cannot lose energy through the sides
of the icicle or down through the tip because
there is no temperature change in those directions. It can lose energy and freeze only by sending energy up(through distance L) to the top of the icicle, where the temperature T_{r} can be below $0^{\circ} \mathrm{C}$. Take $\mathrm{L}=0.10 \mathrm{~m}$ and $T_{r}=-5^{\circ}$
C.Assume that the central tube and the upward conduction path both have crossesectional area $A=0.5 m^{2}$. The thermal
conductivity of ice is $0.40 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, latent heat of fusion is $L_{F}=4.0 \times 10^{5} \mathrm{~J} / \mathrm{K}$ and the density of liquid water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

At what rate does the top of the tube move downward because of water freezing there?

$$
\begin{aligned}
& \text { A. } 5 \times 10^{-8} \mathrm{~m} / \mathrm{s} \\
& \text { B. } 2.5 \times 10^{-3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\text { C. } 2.5 \times 10^{-8} \mathrm{~m} / \mathrm{s}
$$

$$
\text { D. } 4.5 \times 10^{-2} \mathrm{~m} / \mathrm{s}
$$

Answer: C

D Watch Video Solution

3. The radiations emitted by the sun are analyzed and the spectral energy distribution
curve is plotted. as shown. The radius of the sun is R, the earth is situated a distance ' d ' from the sun. Treat the sun as perfectly black
body which radiates power at constant rate fill
till its store of hydrogen gets exhausted.
(Stefan's constant $=\sigma$, Wien's constant $=b$,
speed of light $=c$)

Assume the sun produces energy only by nuclear fusion of hydrogen nuclei and the fraction of nuclear mass of hydrogen that can
be converted to energy is η. How long will the
sun keep on emittied the energy if the mass of
hydrogen at present in Sun's core is m?

$$
\begin{aligned}
& \text { A. } \frac{\eta m c^{2} \lambda_{m}^{4}}{\pi R^{2} \sigma b^{4}} \\
& \text { B. } \frac{\eta m c^{2} \lambda_{m}^{4}}{4 \pi R^{2} \sigma b^{4}} \\
& \text { C. } \frac{\eta m c^{2} \lambda_{m}^{4}}{2 \pi R^{2} \sigma b^{4}} \\
& \text { D. } \frac{2 \eta m c^{2} \lambda_{m}^{4}}{\pi R^{2} \sigma b^{4}}
\end{aligned}
$$

Answer:

D Watch Video Solution

4. The radiations emitted by the sun are analyzeed and the spectral energy distribution
curve is plotted. as shown. The radius of the
sun is R, the earth is situated a distance ' d '
from the sun. Treat the sun as perfectly black body which radiates power at constant rate fill
till its store of hydrogen gets exhausted.
(Stefan's constant $=\sigma$, Wien's constant $=b$,
speed of light $=c$)

If the earth is at a distance ' d ' from the sun
the intensity of light falling on the earth
(called solar constant S) is

$$
\begin{aligned}
& \text { A. (A) } S=\sigma\left(\frac{R}{d}\right)^{2}\left(\frac{b}{\lambda_{m}}\right)^{4} \\
& \text { B. (B) } S=\sigma\left(\frac{R}{d}\right)\left(\frac{b}{\lambda_{m}}\right)^{4} \\
& \text { С. (C) } S=2 \sigma\left(\frac{R}{d}\right)^{2}\left(\frac{b}{\lambda_{m}}\right)^{4}
\end{aligned}
$$

D. (D) $S=\sigma / 2\left(\frac{R}{d}\right)^{2}\left(\frac{b}{\lambda_{m}}\right)^{4}$

Answer:

D Watch Video Solution

Fill In The Blanks Type

1. The thermal conductivity of a material in

CGS system is 0.4. In steady state, the rate of
flow of heat $10 \mathrm{cal} / \mathrm{sec}-\mathrm{cm}$, then the thermal gradient will be

- Watch Video Solution

2. Two vessels of different materials are similar in size in every respect. The same quantity of ice filled in them gets melted in 20 minutes and 40 minutes respectively. The ratio of thermal conductivities of the metals is

D Watch Video Solution

3. Two walls of thickness d_{1} and d_{2} and thermal conductivites K_{1} and K_{2} are in contact. In the steady state, if the temperature at the outer surfaces are T_{1} and T_{2} the temperature at the common wall is

D Watch Video Solution

4. Two identical plates of different metals are joined to form a single plate whose thickness
is double the thickness of each plate. If the
coefficients of conductivity of each plate are 2
and 3 respectively, Then the conductivity of composite plate will be

D Watch Video Solution

5. The ratio of the diameters of two metallic rods of the same material is $2: 1$ and their lengths are in the ratio $1: 4$. If the temperature difference between their ends are equal, the rate of flow of heat in them will be in the ratio
6. Two cylinders P and Q have the same length and diameter and are made of different materials having thermal conductivities in the ratio $2: 3$. These two cyinders ar combined to make a cylinder. One end of P is kept at $100^{\circ} \mathrm{C}$ and another end of Q at $0^{\circ} C$. THe temperature at the interface of P and Q is
7. Half part of ice block is covered with black cloth and rest half is covered with white cloth and then it is kept in sunlight. After some time clothes are removed to see the melted ice.

Which of the following statements is correct
A. Ice covered with white cloth will melt more.
B. Ice covered with black cloth will melt more.
C. Equal ice will melt under both clothes.
D. It will depend on the temperature of surroundings of ice.

Answer: (b)

D Watch Video Solution

2. Two thermometers A and B are exposed in sunlight. The bulb of A is painted black, But that of B is not painted. The correct statement regarding this case is
A. Temperature of A will rise faster than b
but the final temperature will be the
same in both
B. Both A and B show equal rise in
beginning
C. Temperature of A will remain more than B
D. Temperature of b will rise faster

Answer: (a)
3. If ' p ' calorie of heat energy is incident on a body and absorbs 'q' calories of heat absorbed then its coefficient of absorption is .
A. p / q
B. q / p
C. p^{2} / q^{2}
D. q^{2} / p^{2}

Answer: (b)

D Watch Video Solution
4. The total energy radiated from a block body source at constant temperature is collected
for one minute and is used to heat a quantity of water. The temperature of water is found to increase from $20^{\circ} \mathrm{C}$ to $20.5^{\circ} \mathrm{C}$. If the absolute temperature of the blackbody is doubled and the experiment is repeated with the same quantity of water of $20^{\circ} \mathrm{C}$, the temperature of water will be:

$$
\text { A. } 21^{\circ} \mathrm{C}
$$

B. $22^{\circ} C$
C. $24^{\circ} \mathrm{C}$
D. $28^{\circ} \mathrm{C}$

Answer: (d)

D Watch Video Solution

5. The surface temperature of the sun is T_{0} and it is at average distance d from a planet.

The radius of the sun is R. The temperature at which planet radiates the energy is
A. $T_{0} \sqrt{\frac{R}{2 d}}$
B. $T_{0} \sqrt{\frac{2 R}{d}}$
C. $T_{0} \sqrt{\frac{R}{d}}$
D. $T_{0}\left(\frac{R}{d}\right)^{1 / 4}$

Answer: (a)

- Watch Video Solution

6. In the previous problem, if θ is the angle
sbtended by the Sun at the planet, then
temperature at which planet radiates energy
is proportional to
A. θ
B. θ^{2}
C. $\theta^{1 / 2}$
D. $\theta^{-1 / 2}$

Answer: C
(Watch Video Solution
7. A black body radiates poer P and maximum
energy is radiated by it around a wavelength
λ_{0}. The temperature of the black body is now changed such that it radiates maximum energy around the wavelength $\frac{3 \lambda_{0}}{4}$. The power radiated by it now is
A. $4 / 3$
B. $16 / 9$
C. $64 / 27$
D. $256 / 81$

Answer: (d)

- Watch Video Solution

Multiple Correct Answer

1. A heated body emits radiation which has
maximum intensity at frequency v_{m} If the temperature of the body is doubled:
A. the maximum intensity radiation will be
at frequency $2 v_{m}$
B. the maximum intensity radiation will be
at frequency $(1 / 2) v_{m}$
C. the total emitted energy will increase by
a factor16
D. the total emitted energy will increase by
a factor 2

Answer: (A, C)

D Watch Video Solution
2. The solar constant for a planet is S. The surface temperature of the sun is TK. The sun
subtends an angle θ at the planet:
A. $S \propto T^{4}$
B. $S \propto T^{\theta}$
C. $S \propto \theta^{2}$
D. $S \propto \theta$

Answer: (A, C)

D Watch Video Solution

1. A body is kept inside a cotainer the temperature of the body is T_{1} and the temperature of container is T_{2}. The rate at which body absorbs the energy is α. The emissivity of the body is e. The radiation striking the body is either absorbed or reflected.

A good absorber is
A. T_{1}
B. T_{2}
C. $T_{1}+\frac{\left(T_{2}-T_{1}\right)}{2}$
D. None the these

Answer: (b)

- Watch Video Solution

2. A body is kept inside a container the temperature of the body is T_{1} and the temperature of the container is T_{2} the rate at which body absorbs the energy is α The
emissivity of the body is e The radiation striking the body is either absorbed or reflected

At what rate of body will absorb the radiant energy.
A. if t is the time, rate is $\left(T_{1}-T_{2}\right) / t$
B. e
C. Both of the above
D. None the above

Answer: (b)
3. A body is kept inside a container the temperature of the body is T_{1} and the temperature of the container is T_{2} the rate at which body absorbs the energy is α The emissivity of the body is e The radiation
striking the body is either absorbed or reflected

At what rate of body will absorb the radiant energy .
A. α, but $\alpha \neq e$
B. $\left(T_{1}-T_{2}\right) / t$, where t is the time
C. e , but $\mathrm{e}=\alpha$
D. None of above

Answer: C

D Watch Video Solution

4. A body is kept inside a container the temperature of the body is T_{1} and the temperature of the container is T_{2} the rate at which body absorbs the energy is α The
emissivity of the body is The radiation striking
the body is either absorbed or reflected

A good absorber is .
A. good reflector
B. poor reflector
C. average reflector
D. Assessment not possible

Answer: (b)

D Watch Video Solution

1. If wavelength of maximum intensity of radiation emitted by sun and moon are $0.5 \times 10^{-6} \mathrm{~m}$ and $10^{-4} \mathrm{~m}$ respectively then the ratio of the temperature is

- Watch Video Solution

2. A black body emits radiations of maximum intensity at a wavelength of $\AA \AA 5000$, when the temperature of the body is $1227^{\circ} \mathrm{C}$. If the
temperature of the body is increased by $1000^{\circ} C$, the maximum intensity of emitted radiation would be observed at

D Watch Video Solution

3. The intensity of radiation emitted by the
sun has its maximum value at a wavelength of

510 nm and that emitted by the North star has
the maximum value at 350 nm . If these stars
behave like black bodies, then the ratio of the
surface temperature of the sun and North star is

D Watch Video Solution

4. A black body radiates energy at the rate of E
W / m at a high temperature TK. When the temperature is reduced to $\frac{T}{2} K$, the radiant energy will b
5. Energy is being emitted from the surface of
a black body at $127^{\circ} \mathrm{C}$ temperature at the
rate of $1.0 \times 10^{6} \mathrm{~J} / \mathrm{sec}-\mathrm{m}^{2}$. Temperature of
the black at which the rate of energy emission
is $16.0 \times 10^{6} \mathrm{~J} / \mathrm{sec}-m^{2}$ will be

D Watch Video Solution

6. The rectangular surface of area $8 \mathrm{~cm} \times 4 \mathrm{~cm}$ of a black body at temperature of $127^{\circ} \mathrm{C}$ emits energy at the rate of E per second. If the
length and breadth of the surface are each
reduced to half of the initial value and the temperature is raised to $327^{\circ} \mathrm{C}$, the rate of emission of energy will become

D Watch Video Solution

Single Correct

1. Consider two hot bodies B_{1} and B_{2} which
have temperature $100^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$
respectively at $t=0$. The temperature of
surroundings is $40^{\circ} \mathrm{C}$. The ratio of the respective rates of cooling R_{1} and R_{2} of these two bodies at $t=0$ will be
A. $R_{1}: R_{2}=3: 2$
B. $R_{1}: R_{2}=5: 4$
C. $R_{1}: R_{2}=2: 3$
D. $R_{1}: R_{2}=4: 5$

Answer:

D Watch Video Solution
2. Equal masses of two liquids are filled in two similar calorimeters. The rate of cooling will
A. Depend on the nature of the liquids
B. Depend on the specific heats of liquids
C. Be same for both the liquids
D. Depend on the mass of the liquids

Answer:

D Watch Video Solution
3. A body takes 4 minutes to cool from $100^{\circ} \mathrm{C}$
to $70^{\circ} C$. To cool from $70^{\circ} C$ to $40^{\circ} C$ it will
take (room temperture os $15^{\circ} \mathrm{C}$)
A. 7 min
B. 6 min
C. 5 min
D. 4 min

Answer:

D Watch Video Solution
4. A body cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 min . If
room temperature is $95^{\circ} \mathrm{C}$. Temperature of body at the end of next 10 min , will be
A. $38.5^{\circ} \mathrm{C}$
B. $40^{\circ} \mathrm{C}$
C. $42.85^{2} \mathrm{C}$
D. $45^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

5. The temperature of a liquid drops from 365

K to 361 K in 2 minutes. Find the time during
which temperature of the liquid drops from
344 K to 342 K .Temperature of room is 293 K
A. 84 sec
B. 72 sec
C. 66 sec
D. 60 sec

Answer:

6. Hot water kept in a beaker placed in a room
cools from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 4 minutes. The time taken by it to cool from $69^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$ will be
A. The same 4 minutes
B. More than 4 minutes
C. Less than 4 minutes
D. We cannot say definitely

Answer:

D Watch Video Solution

7. In a room, where the temperature is $30^{\circ} \mathrm{C}$ a
body cools from $61^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$ in 4 minutes.

The time taken by the body to cool from $51^{\circ} \mathrm{C}$ to $49^{\circ} \mathrm{C}$ will be
A. 4 min
B. 6 min
C. 5 min

D. 8 min

Answer:

D Watch Video Solution

8. A calorimeter of mass 0.2 kg and specific
heat $900 \mathrm{~J} / \mathrm{kg}-K$. Containing 0.5 kg of a
liquid of specific heat $2400 \mathrm{~J} / \mathrm{kg}-K$. Its temperature falls from $60^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ in one minute. Find the rate of cooling.

$$
\text { A. } 5 \mathrm{~J} / \mathrm{s}
$$

B. $15 \mathrm{~J} / \mathrm{s}$
C. $100 \mathrm{~J} / \mathrm{s}$
D. $115 \mathrm{~J} / \mathrm{s}$

Answer:

D Watch Video Solution

9. A cane is taken out from a refrigerator at $0^{\circ} \mathrm{C}$. The atmospheric temperature is $25^{\circ} \mathrm{C}$. If t 1 is the time taken to heat from $0^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ and t_{2} is the time taken from $10^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$,
then the wrong statements are
(1) $t_{1}>t_{2}$
(2) $t_{1}=t_{2}$
(3) There is no relation
(4) $t_{1}<t_{2}$
A. $t_{1}>t_{2}$
B. $t_{1}<t_{2}$
C. $t_{1}=t_{2}$
D. There is no relation

Answer:

