

CHEMISTRY

BOOKS - PATHFINDER CHEMISTRY (BENGALI ENGLISH)

MOLE AND STOICHIOMETRY-II

Question Bank

1. Determine the oxidation number of the underlined element. $KMnO_4$,

 $K_4 \big[\underline{Fe}(CN)_6 \big]$

Watch Video Solution

2. Determine the oxidation number of S in H_2SO_4 .

3. What is the normality of 96~% solution of H_2SO_4 od specific gravity

1.84?

4. How many mL of $96~\%~h_2SO_4$ solution is necessary to prepare one litre

o.1 N h_2So_4 ?

Watch Video Solution

5. Determine the number of gram equivalents of solute in

100 mL of 5N HCl

6. Calculate equivalent mass (E) of the following-

K-Alum (molar mass = M_1)

7. Calculate equivalent mass (E) of the following -

 H_3PO_3 (molar mass = M_2) in the reaction :

 $H_3PO_3 + NaOH
ightarrow Na_2HPO_3 + H_2O$

Watch Video Solution

8. Calculate equivalent mass (E) of the following-

 FeS_2 (Molar mass = M_3) in the reaction :

 $FeS_2 + O_2
ightarrow Fe_2O_3 + SO_2$

Watch Video Solution

9. Calculate equivalent mass (E) of the following-

 $KMnO_4$ (Molar mass = M_4) as an oxidising agent in different medium

acidic

alkaline	
neutral.	
Watch Video Solution	

10. For the redox reaction,

 $MnO_{4}^{-} + C_{2}O_{4}^{2-} + H^{+}
ightarrow Mn^{2+} + CO_{2} + H_{2}O$ The correct

coefficients of the reactants for the balanced reaction are:

Watch Video Solution

11. Balance $Cl_2 + OH^-
ightarrow Cl^- + ClO_3^- + H_2O$

12. Balance the following equation by ion electron method : $Cr_2O_7^{2-} + H^+ + C_2O_4^2 \rightarrow + Cr^{3+}CO_2 + H_2O.$

13. Balance $ClO^- + CrO_2^- + OH^- ightarrow Cl^- + CrO_4^{2-} + H_2O$

> Watch Video Solution

14. 1 g of a mixture of NaOH and Na_2CO_3 and inert impurities was first titrated with phenolphthalein and N/10HCl, 17.5 mL of HCI was required at the end point. After this methyl orange was added and 2.5 mL of same HCI was again required . Find out percentage of NaOH and Na_2CO_3 in the mixture.

Watch Video Solution

15. 10 g of a sample of $Ca(OH)_2$ is dissolved in 10 mL of 0.5 N HCL solution . The excess of HCl was titrated with 0.2 N NaOH. The volume of NaOH used was 10 cc. Calculate the percentage of $Ca(OH)_2$ in the sample.

16. What is the mass of sodium bromate and molarity of the solution necessary to prepare 85.5 mL of 0.672 N solution when the half reaction is, $BrO_3^- + 6H^+ + 6e \rightarrow Br^- + 3H_2O$ (Atomic mass of Br = 80)

Watch Video Solution

17. What happens when barium azide is heated ?

Watch Video Solution

18. A solution of 0.1 M $KMnO_4$ is used for the reaction : $s_2O_3^{2-} + 2MnO_4^{-+}H_2O \rightarrow MnO_2 + SO_4^{2-} + OH^-$ What volume of solution in mL will be required to react with 0.158 g of $Na_2S_2O_3$?

19. 0.804 g sample of iron was dissolved in acid , Iron was reduced to +2 state and it required 47.2 mL of 0.112 N $KMnO_4$ solution for titration. Calculate the percentage of iron and Fe_3O_4 in the ore.

20. 1.325 g of anhydrous sodium carbonate is dissolved in water and the solution is made up to 250 mL. On titration 25 mL of this solution neutralises 20 mL of a solution of H_2SO_4 . HOW much water should be added to 450 mL of this acid solution to make it exactly $\frac{N}{12}$?

Watch Video Solution

21. 0.1 M $KMnO_4$ solution completely reacts with 0.05M $FeSO_4$ solution under acidic conditions. The volume of $FeSO_4$ used is 100 ml. What volume of KMnO4 was used ?

22. Give the Formula of *Dolomite*.

23. For the redox reaction,

 $MnO_4^{\,-}+C_2O_4^{2\,-}+H^{\,+}
ightarrow Mn^{2\,+}+CO_2+H_2O$ The correct

coefficients of the reactants for the balanced reaction are:

A.
$$MnO_4 - 2, C_2O_4^{2-}5, H^+16$$

B. $MnO_4 - 16, C_2O_4^{2-}5, H^+2$
C. $MnO_4 - 5, C_2O_4^{2-}16, H^+2$
D. $MnO_4 - 2, C_2O_4^{2-}16, H^+5$

Answer: A

24. In an experiment, 50 ml of 0.1 M solution of a salt reacted with 25 ml of 0.1 M solution of sodium sulphite. The half equation for the oxidation of sulphite ion :

 $SO_{3\,(\,aq)}\,H_2O
ightarrow SO^{2\,-}_{4\,(\,aq)} + 2H^{\,+}_{(\,aq)}$

If the oxidation number of the metal in the salt was 3, what would be the new oxidation number of the metal ?

A. 0

B.1

C. 2

D. 4

Answer: C

25. The number of moles of $K_2 C r_2 O_7$ reduced by one mole of $S n^{2+}$ ions

A. 1/3

B. 3

C.1/6

D. 6

Answer: A

Watch Video Solution

26. In a reaction, 4 moles of electrons are transferred to one mole of HNO_3 when acted as an oxidant. The possible reduction product is

A. 1.5 moles of N_2

B. 0.5 mole of N_2O

C. 1 mole of NO_2

D. 1 mole of NH_3

Answer: B

27. Equivalent mass of $Fe_{0.9}$ O in reaction with acidic $K_2Cr_2O_7$ is $\left(Fe^{2+}+Cr_2O_7^{2-}+14H^+
ightarrow 6Fe^{3+}+2Cr^{3+}+7H_2O
ight)$

A. 7m/10

B. 10m/7

C. 7m/9

D. 9m/7

Answer: B

Watch Video Solution

28. Equivalent weight of oxalic acid salt in following reaction is (O = 16, C =

12, K = 39)

$$H_2C_2O_4+Ca(OH)_2
ightarrow CaC_2O_4+H_2O$$

A. 90	
B.45	
C. 64	
D. 128	

Answer: B

Watch Video Solution

29. Which of the following is not a disproportionation reaction .

A.
$$P_4 + NaOH
ightarrow NaH_2PO_2 + PH_3$$

B. $BaC_2 + N_2
ightarrow Ba(CN)_2$

C. $Hg_2l_2
ightarrow Hgl_2 + Hg$

D.
$$Ca(OH)_2 + Cl_2
ightarrow CaOCl_2 + CaCl_2$$

Answer: B

30. The chloride of a metal contains 71% chlorine by weight and the vapour density of it is 50. The atomic weight of the metal will be

A. 29

B. 58

C. 35.5

D. 71

Answer: A

Watch Video Solution

31. 10 mL of 0.1 N HCI was added to 20 mL of 0.1 N KOH. .The excess of KOH was neutralised by 0.05 N H_2SO_4 . The amount of H_2SO_4 consumed was

A. 10.0 mL

:

B. 15.0 mL

C. 20.0 mL

D. 30.0 mL

Answer: C

Watch Video Solution

32. The number of moles of $KMnO_4$ required to oxidise one mole of

 FeC_2O_4 in an acidic medium is

A. 0.6

B. 1.67

C. 0.2

D. 0.4

Answer: A

33. The normality and the volume strength of the solution which made by

mixing of 5.6 V & 11.2 VH_2O_2 solution.

A. 8.4 V

B. 1.5 N

C. 4.8 V

D. 1 N

Answer: A::B

Watch Video Solution

34. 0.1 M solution of KI reacts with excess of H_2SO_4 and KIO_3 solutions, according to equation $5I^- + lO_3^- + 6H^+ \rightarrow 3l_2 + 3H_2O$, which of the following statement is correct

A. 200 ml of the KI solution react with 0.004 mole KlO_3

B. 100 ml of the Kl solution reacts with 0.006 mole of H_2SO_4

C. 0.5 litre of the Kl solution produced 0.005 mole of l_2

D. Equivalent weight of KlO_3 is equal to $\left(\frac{\text{Molecular Weight}}{5}\right)$

Answer: A::B::D

Watch Video Solution

35. In which of the following compound transition metal has zero oxidation state

A. CrO_5

 $\mathsf{B.}\, NH_2NH_2$

 $\mathsf{C.}\,Ni(CIO_4)_2$

 $\mathsf{D}.\left[Fe(CO)_5\right]$

Answer: D

36. It takes 0,15 mole of CIO^- to oxidize 12.6 g of chromium oxide of a specific formula to $Cr_2O_7^{2-}$. CIO^- became CL^- The formula of the oxide is (atomic weight Cr = 52, 0= 16)

A. CrP_3

 $\mathsf{B.}\, CrO_2$

 $C. CrO_4$

D. CrO

Answer: B

Watch Video Solution

37. 1 mol of ferrous oxalate is oxidized by x mol of MnO_4^- and also 1 mol of ferrous oxalate is oxidized by y mol of MnO_4^- in acidic medium. The ratio (x/y) is :

A. 2:1

B.5:6

C.3:1

D.6:5

Answer: D

Watch Video Solution

38. Which reaction does not involve neither oxidation nor reduction ?

A.
$$VO^{2+}
ightarrow V_2O_3$$

B. $Na
ightarrow Na^+$

C.
$$CrO_4^{2\,-}
ightarrow Cr_2O_7^{2\,-}$$

D. $Zn^{2+}
ightarrow Zn$

Answer: C

39. Consider the following reactions :

A. (i) & (ii) shows oxidation

B. (iii) & (iv) shows reduction

C. (i) & (iii) shows oxidation

D. (iii) & (iv) shows oxidation

Answer: C

40. Which of the following reaction represents disproportionation ?

A.
$$CrO_5 \rightarrow Cr^{3+} + O_2$$

B. $IO_3^- + I^- + H^+ \rightarrow l_2$
C. $CrO_2Cl_2 + NaOH \rightarrow NaCrO_4 + NaCl + H_2O$
D. $Na_2S_2O_3 + H_2SO_4 \rightarrow Na_2SO_4 + SO_2 + S_8 + H_2O$

Answer: D

Watch Video Solution

41. $6x10^{-3}$ mole $K_2Cr_2O_7$ reacts completely with $9x10^{-3}$ mole X^{n+} to give XO_3^{-1} and Cr^{3+} . the value of n is :

A. 3

B. 1

C. 0

D. 4

Answer: B

42. A certain ion X^{n+} is oxidized successively to XO_4^{2-} and then XO_4^{-} by a powerful oxidizing agent. If the number of moles of the oxidizing agent required in the successive steps of oxidation are in the ratio 4:1, n is :

A. 3 B. 1 C. 2 D. 4

Answer: C

Watch Video Solution

43. Write the common method of preparation of N_2O .

44. How many moles of electrons are needed for the reduction of each mole of Cr in the reaction,

 $CrO_5 + H_2 \, SO_4
ightarrow Cr_2 (SO_4)_3 + H_2O + O_2$

A. 4

B. 3

C. 5

D. 7

Answer: B

Watch Video Solution

45. What volume of H_2O_2 solution of 22,4 "vol strength" is required to

liberate 2240 mL of O_2 at NTP ?

A. 300 mL

B. 200 mL

C. 100 mL

D. 500 mL

Answer: C

Watch Video Solution

46. In the reaction, $2CuSO_4 + 4KI
ightarrow Cu_2l_2 + 2K_2SO_4 + I_2$ the ratio

of equivalent weight of $CuSO_4$ to its molecular weight is :

A. 1/8

B.1/4

C.1/2

D. 1

Answer: D

47. Hydroxylamine reduces iron (III) according to following equation $NH_2OH + Fe_2(SO_4)_3 \rightarrow N_2(g) + H_2O + FeSO_4 + H_2SO_4$ which statement is correct ?

A. n-factor for hydroxyl amine is 1

B. equivalent weight of $Fe_2(SO_4)_3$ is M/3

C. 6 meq of $Fe_2(SO_4)_3$ is contained in 3 millimoles of ferric sulphate

D. all of these

Answer: A

Watch Video Solution

48. In the following reaction (unbalanced) equivalent wt. of As_2S_3 is related to molecular wt. M By

 $As_2S_3 + H^+NO_3^-
ightarrow NO + H_2O + AsO_4^{3-} + SO_4^{2-}$

A. M/2

 $\mathsf{B}.\,M/4$

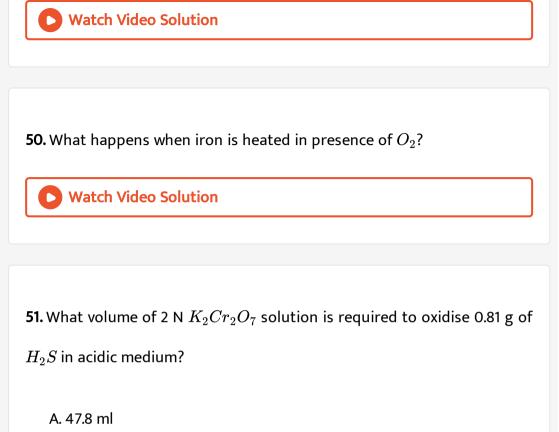
C.M/28

D. M/24

Answer: C

Watch Video Solution

49. 60 ml 0.1 M $KMnO_4$ is treated with excess FeC_2O_4 in presence of H_2SO_4 . The volume of CO_2 gas (measured at STP) obtained is :


A. 448 ml

B. 672 ml

C. 224 ml

D. 112 ml

Answer: A

C. 40 ml

B. 23.8 ml

D. 72 ml

Answer: B

52. 600 ml of a 0.1 (N) solution of $AgNO_3$ is added to 500 mL of 0.1 (N) KCI solution. The concentration of nitrate in the resulting solution is

A. 0.0545 (N)

B. 0.0455 (N)

C. 0.05 (N)

D. 0.1 (N)

Answer: A

Watch Video Solution

53. 1.60g of a metal were dissolved in HNO_3 to prepare its nitrate. The nitrate on strong heating gives 2g oxide. The equivalent weight of metal

is

A. 16

B. 32

C. 48

D. 12

Answer: B

Watch Video Solution

54. A100 ml solution of 0.1 N HCl was titrated with 0.2 N NaOH solution. The titration was discontinued after adding 30 ml of NaOH solution. The remaining titration was completed by adding 0.25 N KOH solution. The volume of KOH required for completing the titration is

A. 70 ml

B. 32 ml

C. 35 ml

D. 16 ml

Answer: D

55. What volume of 0.1 M $KMnO_4$ is needed to oxidize 100 mg of FeC_2O_4 in acidic solution ?

A. 4.1 mL

B. 8.2 mL

C. 10.2 mL

D. 4.6 mL

Answer: A

Watch Video Solution

56. The oxidation state of A, B and C in a compound are $+2, \ +5$ and -2

respectively. The compound is

A. $A_2(BC)_2$

B. $A_2(BC)_3$

C. $A_3(BC_4)_3$

D. $A_2(BC)_3$

Answer: C

Watch Video Solution

57. Which of the following is intermolecular redox reaction?

A. 2OCH-CHO- \rightarrow --OH-HOCH2-CH2OH

 $\begin{array}{c} \texttt{B.} \ 2C_6H_5CHO \ Al(OC_2H_5)_3C_6H_5COOH + C_6H_5CH_2OH \\ \hline \end{array} \\ \end{array} \\ \xrightarrow{} \end{array} \\ \end{array}$

 ${\rm C.}~4CrO_5+6H_2SO_4\to 2Cr_2(SO_4)_3+6H_2O+7O_2$

D. $As_2S_3 + HNO_3
ightarrow H_3AsO_4 + H_2SO_4 + NO$

Answer: B

58. In the standardisation of $Na_2S_2O_3$ using $K_2Cr_2O_7$ equivalent wt of

 $K_2 C r_2 O_7$ is

A. M/2

 $\mathsf{B}.\,M\,/\,6$

 $\mathsf{C}.M/3$

D. M

Answer: B

59.	Equivalent	weight	of
$As_2S_3 \hspace{0.1in} ext{in} \hspace{0.1in} A$	$s_2S_3 + HNO_3 o H_2S$	$O_4 + NO_2 + H_3 AsO_4 + O_4 + O_4$	- H_2O is
A. $M/28$			
B. $M/40$			
C.M/10			

 $\mathsf{D}.\,M\,/\,5$

Answer: B

60. For the reaction : $4CrO_5 + 6H_2SO_4 \rightarrow 2Cr_2(SO_4)_3 + 6H_2O + 7O_2$. Which statement is wrong?

A. It is disproportionation reaction

B. It is intramolecular redox

C. CrO_5 acts as oxidant and reductant both

D. Cr acts as oxidant whereas O acts as reductant

Answer: A

61. Titration of I_2 produced from 0.1045 g of primary standard KlO_3 require 30.72 mL of sodium thiosulphate as shown below : (Atomic mass of iodine = 127) $lO_3^- + 5l^- + 6H^+ \rightarrow 3l_2 + 3H_2O$ $l_2 + 2S_2O_3^{2-} \rightarrow 2l^- + S_4O_6^{2-}$ The molarity of sodium thiosulphate Ion is :

A. 0.095

B. 0.079

C. 0.084

D. 0.064

Answer: A

Watch Video Solution

62. What is wrong about 6.07~% strength H_2O_2 ?

A. Its normality is 3.57 N

B. Its molarity is 1.785 M

C. Its volume strength is 20 volume

D. Volume strength = 5.6 x molarity

Answer: D

Watch Video Solution

63. When BrO_3^- ion reacts with Br^- ion in acid medium, Br_2 is Ilberated. The equivalent weight of Br_2 in the reaction is

A.
$$\frac{5M}{3}$$

B.
$$\frac{3M}{6}$$

C.
$$\frac{4M}{6}$$

D.
$$\frac{5M}{8}$$

Answer: B

64. 1 mole of equimolar mixture of $Fe_2(C_2O_4)_3$ and FeC_2O_4 requires X mole of $KMnO_4$ In acid medium for complete oxidation. The value of X is

A. 0.9

B. 0.6

C. 1.2

D. 0.8

Answer: A

Watch Video Solution

65. The oxidation number of Cr is +6 in :

A. $K_2 Cr O_4$

 $\mathsf{B.}\, K_2 Cr_2 O_7$

 $C. KCrO_3Cl$

D. CrO_5

Answer: A::B::C::D

C	Watch	Video	Solution

66. Dichromate ion in acidic medium oxidizes stannous ion as $xSn^{2+}+yCr_2O_7^{2-}+zH^+ o aSn^{4+}+bCr^{3+}+cH_2O$

A. the value of x : y is 1 : 3

B. the value of x + y + z is 18

C. a : b is 3 : 2

D. the value of z-c is 7

Answer: B::C::D

67. " 20 volume" of H_2O_2 is equal to

A. $6.06~\%~H_2O_2(w\,/\,v)$

 $\mathsf{B}.\,3.57NH_2O_2$

 $\mathsf{C.}\, 20mlH_2O_2$

D. $3.57 M H_2 O_2$

Answer: A::B

Watch Video Solution

68. Draw the structure of $H_2S_2O_8$.

69. For the following balanced redox reaction, $2MnO_4^- + 4H^+ + BR_2 \rightarrow 2Mn^{2+} + 2BrO_3^- + 2H_2O$ if the molecular wt. of $MnO_4^-Br_2$ be M_xM_y respectively, then

A. equivalent wt. of MnO_4^- is $rac{M_x}{5}$

B. equivalent wt. of Br_2 is $rac{M_y}{10}$

C. the n-factor ratio of Mn^{2+} to BrO_3^- is 1 : 1

D. none of these

Answer: A::B::C

Watch Video Solution

70. x mmol of KIO3 reacts completely with y mmol of KI to give I2 quantitatively. If z mmol of hypo(Na2S2O3) are required for complete titration against this I2 then which relation is not correct ?

A. z = 6x

B. 6y = 5z

C. x = 5y

 $\mathsf{D}.\, x+y=z$

Answer: C::D

71. Which one is not correct about the reaction :

 $FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$

A. Eq. weight of FeS_2 is M/11

B. Eq. wt of $SO_2=M/5$

C. 1 mole of FeS_2 requires 7/4 mole of O_2

D. S has -2 oxidation state in FeS_2

Answer: A::B::C

72. Write the actual formula of bleaching powder.

View Text Solution

73. What happens when xenon and fluorine are reacted in the ratio 2:1

respectively?

74. Match Column-I with Column-II

	Column-l	Column-II	
(A)	NH ₃ →NO ₃	(P)	M/3
(B)	$FeC_2O_4 \rightarrow Fe^{3+} + 2CO_3^{2-}$	(Q)	M/6
(C)	H ₂ SO ₅ →S ₈	(R)	M/8
(D)	KMnO ₄ →Mn ²⁺	(S)	M/5
		(Τ)	reducing agent

75. Match Column-I with Column-II

Column-l	Ċ	o <u>lumn-ll</u>
(A) KMnO₄ — ^{H⁺} →Mn ⁺²	(P)	M/2
(B) $MgC_2O_4 \rightarrow Mg^{2+} + CO_2$	(Q)	M/5
(C) $K_2Cr_2O_7 \rightarrow Cr^{+3}$	(R)	M/6
(D) $CrO_5 \rightarrow Cr_2O_3$	(S)	M/3
	ጠ	Oxidising agent

Watch Video Solution

76. Match Column-I with Column-II

77. A solution containing 2.68 x 10^{-3} mol of a solution containing an A^{n+} ion requires 1.61x 10^{-3} mol of MnO_4^{-1} for the complete oxidation of A^{n+} to AO_3^- in acidic medium. What is the value of n ?

78. 1.575 g of oxalic acid $(COOH)_2$. xH_2O are dissolved in water and the volume made upto 250 mL. On titration 16.68 mL of this solution requires 25 mL of N/15 NaOH solution for complete neutralization. Calculate x.

Watch Video Solution

79. 0.63 g of dibasic acid was dissolved in water. The volume of the solution was made 100 mL 20 mL of this acid solution required 10 mL $\frac{N}{5}$ NaOH solution. What is the normality of acid.

Watch Video Solution

80. A 3M solution of $Na_2S_2O_3$ (Relative Formula Mass = 158) has density

of 1.25 g/mL. Calculated its molality.

81. To a 25 ml H_2O_2 solution, excess of acidified solution of potassium iodide was added. The iodine liberated required 20 mL of 0.3 N sodium thiosulphate solution. Calculate the volume strength of H_2O_2 solution.

82. In 100 ml sample of hard water, 100 ml of
$$\left(rac{N}{50}
ight)$$

 Na_2CO_3 was added and the mixture was boiled and filtered The filtrate was neutralized with 60 ml of $\left(\frac{N}{50}\right)$ HCI. Calculate the permanent hardness of water, (sp gr. of hard water = 1)

Watch Video Solution

83. A mixture of NaCI and Na_2CO_3 is given. On heating 12 g of the mixture with dil. HCI. 2.241 g of CO_2 is evolved at normal temperature. Calculate the amounts of each in the mixture

84. Brass is an alloy of Cu-Zn. A sample of brass weighing 5.793 g, when treated with excess of dil. H_2SO_4 gives 324 mi of dry H_2 at $20^{\circ}C$ and 750 mm pressure. What is the percentage of Cu by mass in the alloy ?

Watch Video Solution

85. 0.324 g of copper was dissolved in HNO_3 and the copper nitrate so produced was burnt till all copper nitrate converted to 0.406 g of copper oxide. Calculate the equivalent mass of copper.

86. 10 ml of $NaHC_2O_4$ solution is neutralized by 10 ml of 0.1 M NaOH solution. 10 ml of same $NaHC_2O_4$ solution is oxidised by 10 ml of $KMnO_4$ solution in acidic medium. Calculate the molarity of $KMnO_4$ solution.

87. A sample of a mixture of CaCl2 and NaCl weighing 4.22 g was treated to precipitate all the Ca as $CaCO_3$, which was then heated and quantitatively converted to 0.959 g of CaO. Calculate $CaCI_2 \%$ in the mixture.

Watch Video Solution

88. Calculate the concentration of $Na_2S_2O_{3.5}H_2O$ solution in gL^{-1} 10 ml of which just decolourised 15 ml of $\frac{N}{20}$ iodine solution.

Watch Video Solution

89. If the equivalent mass of a metal (M) is x and the formula of its oxide

is $M_m O_n$,then show that the atomic mass of M is $rac{2nx}{M}$

90. The oxidation number of sulphur in S_8, S_2F_2, H_2S and H_2SO_4 respectively are:

A. 0, +1, -2 and 6

B. +2, 0, +2 and 6

C. 0, +1, +2 and 4

 $\mathsf{D}.-2,\,0,\,+2\,\mathsf{and}\,\mathbf{6}$

Answer: A

Watch Video Solution

91. Calculate the oxidation no of the following

Cl in $CaOCl_2$ (Bleaching powder)

A. + 1 only

B. -1 only

 $\mathsf{C.}+1 \text{ and } -1$

D. none of these

Answer: C

92. Fe shows an oxidation state of +1 in

- A. $Fe(CO)_5$
- $\mathbf{B}.\left[Fe(H_2O)_5NO\right]SO_4$
- $\mathsf{C}.\,FE_4\big[Fe(CN)_6\big]_3$
- D. $FeCl_4^-$

Answer: B

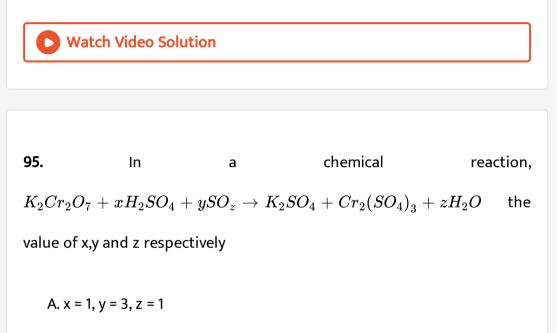
93. 2 mole of N_2H_4 loses 16 mole of election is being converted to a new compound X . Assuming that all of the N-appears in the new compound. What is the oxidation state of 'N' in X?

A. -1

- $\mathsf{B.}-2$
- $\mathsf{C.}+2$
- $\mathsf{D.}+4$

Answer: C

Watch Video Solution


94. $N_2+3H_2
ightarrow 2NH_3$ Molecular weight of NH_3 and N_2 are X, and X_2 , their equivalent masses are $\ \ \ Y1$ and Y_2 . Then (Y_1-Y_2) is

A.
$$\left(rac{2X_1-X_2}{6}
ight)$$
B. (x_1-x_2)

$$\mathsf{C}.\left(3x_1-x_2\right)$$

D. $(x_1 - 3x_2)$

Answer: A

B. x = 4, y = 1, z = 4

C. x = 3, y = 2, z = 1

D. x = 2, y =, z = 1

Answer: A

96. For the redox reaction,

 $MnO_{4}^{-} + C_{2}O_{4}^{2-} + H^{+}
ightarrow Mn^{2+} + CO_{2} + H_{2}O$ The correct

coefficients of the reactants for the balanced reaction are:

A. 2, 5,16

B. 16, 3, 12

C. 15,16, 12

D. 2,16,5

Answer: A

Watch Video Solution

97. Ratio of moles of Fe (II) oxidised by equal volumes of equimolar $KMnO_4$ and $K_2Cr_2O_7$ solutions in acidic medium will be :

A. 5:3

B.1:1

C.1:2

D. 5:6

Answer: D

Watch Video Solution

98. CrO_7^{2-} is reduced to Cr^{3+} by Fe^{2+} . Identify the incorrect statement from the following.

A. 6 moles of Fe^{2+} are oxidised to Fe^{3+} ions.

B. The solution becomes yellow.

C. The solution becomes green.

D. It is a redox reaction.

Answer: B

99. $6x10^{-3}$ mole $K_2Cr_2O_7$ reacts completely with $9x10^{-3}$ mole X^{n+} to give XO_3^{-1} and Cr^{3+} . the value of n is :

A. 1 B. 2 C. 3

D. None of these

Answer: A

Watch Video Solution

100. In a reaction, 4 moles of electrons are transferred to one mole of HNO_3 when acted as an oxidant. The possible reduction product is

A. 1 mol of NH_3

B. 1 mol of NO_2

C.
$$rac{1}{2}$$
 mol of N_2
D. $rac{1}{2}$ mol of N_2O

Answer: D

Watch Video Solution

101. W_1 g of an element combines with oxygen forming W_2 g of its oxide.

The equivalent weight of the element is :

A.
$$\left[\frac{W_1}{W_2}\right] \times 8$$

B. $\left[\frac{W_1}{W_1 - W_2}\right] \times 8$
C. $\left[\frac{W_2 - W_1}{W_1}\right] \times 8$
D. $\left[\frac{W_1}{W_1 - W_2}\right] \times 8$

Answer: B

102. Equivalent weight of H_3PO_2 when it disproportionate into PH_3 and H_3PO_3 is :

A. M

 $\mathsf{B}.\,M/2$

C.M/4

D. 3M/4

Answer: D

Watch Video Solution

103. When BrO_3^- ion reacts with Br^- in acid medium, Br_2 is liberated. The equivalnt weight of Br_2 in this reaction is : [M = molecular wt of bromine]

A.
$$5\frac{M}{8}$$

B. $5\frac{M}{3}$

C.
$$3\frac{M}{5}$$

D. $4\frac{M}{6}$

Answer: C

Watch Video Solution

104. A metal oxide has the formula A_2O_3 It can be reduced by hydrogen to give free metal and water 0.1596 g of this metal oxide required 6 mg of hydrogen for complete reduction. What is the atomic weight of metal ?

A. 15.58

B. 155.8

C. 5.58

D. 55.8

Answer: D

105. 0.3 g of an oxalate salt was dissolved in 100 ml solution. The solution required 90 ml of $\frac{N}{20}KMnO_4$ for complete oxidation. The % of oxalate ion in salt is

A. 33~%

 $\mathsf{B.}\,66~\%$

 $\mathsf{C}.\,70\,\%$

D. 40~%

Answer: B

Watch Video Solution

106. When potassium permanganate is titrated against ferrous ammonium sulphate in acidic medium, the equivalent weight of potassium permanganate is :

A. $\frac{\text{molecular weight}}{3}$ B. $\frac{\text{molecular weight}}{5}$ C. $\frac{\text{molecular weight}}{2}$ D. $\frac{\text{molecular weight}}{10}$

Answer: B

Watch Video Solution

107. The volume of 0.2M solution of MnO_4^- which will react with 50.0 ml of 0.1 M solution of $C_2O_4^{2-}$ in acidic medium is $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$

A. 1 ml

B. 5 ml

C. 100 ml

D. 10 ml

Answer: D

Watch Video Solution

108. in an attempt to establish the formula of an oxide of nitrogen , a known volume of the pure gas was mixed with hydrogen and passed over a catalyst at a suitable temperature. 100% conversion of the oxide to ammonia and water was shown to have taken place. NxHy gives xNH3 + YH20 2400 cm3 of the nitrogen oxide measured at rtp produced 7.20g of water.The ammonia produced was neutralised by 200 cm3 of 1 mol per dm3. What was the oxidation number of the nitrogen in the nitrogen oxide ?

A. + 1

 $\mathsf{B.}+2$

C.+3

D.+4

Answer: D

109. 3.92 g of a sample of Mohr's salt (ferrous ammonium sulphate, Mol. wt.-392) reacts completely with 50 ml of $\frac{N}{10}KMnO_4$ solution in an acidic medium. The percentage purity of the sample is

Watch Video Solution

110. 2.75 g Na_2CO_3 . xH_2O is dissolved in water and diluted upto 250 ml. 10 ml of this solution is completely neutralised with 15 ml (N/19.5) HCI. The value of x is

A. 12

B. 2

C. 10

D. 9

Answer: C

Watch Video Solution

111. V ml solution of Fe^{2+} can be oxidised by 60 ml of $KMnO_4$ in acidic medium. What will be the volume of $K_2Cr_2O_7$ required to oxidise V ml of the same Fe^{2+} solution in an acidic medium ? Consider the molarity of $KMnO_4$ and $K_2Cr_2O_7$ to be the same.

A. 50 ml

B. 60 ml

C. 72 ml

D. 25 ml

Answer: A

112. 2 ml of 5 M H_3PO_4 is mixed with 3 ml of 2 M $Ca(OH)_2$. What will be

the strength of the resulting solution ?

A. 7 N

B. 3.5 N

C. 3.6 N

D. 7.2 N

Answer: C

View Text Solution

113. Equal volumes of 1 M each of $KMnO_4$ and $K_2Cr_2O_7$ are used to oxidize Fe(II) solution in acidic medium. The amount of Fe oxidized will be

A. more with $KMnO_4$

B. more with $K_2 C r_2 O_7$

C. equal with both oxidizing agents

D. cannot be determined

Answer: B

114. Which one is not correct about the change given below?

 $K_4ig[Fe(CN)_6ig]
ightarrow Fe^{3\,+} + CO_2 + NO_3^-$

A. Fe is oxidised Fe^{2+} to Fe^{3+}

B. Carbon is oxidised from $C^{2\,+}$ to $C^{4\,+}$

C. N is oxidised from $N^{3\,-}$ to $N^{5\,+}$

D. Carbon is not oxidised

Answer:

115. For the redox reaction,

$$MnO_4^- + C_2O_4^{2-} + H^+
ightarrow Mn^{2+} + CO_2 + H_2O$$
 The correct

coefficients of the reactants for the balanced reaction are:

A.
$$MnO_4^-=2, C_2O_4^{2\,-}=5, H^+=16$$

- B. $MnO_4^- = 16, C_2O_4^{2-} = 5, H^+ = 2$
- C. $MnO_4^- = 5, C_2O_4^{2-} = 16, H^+ = 2$

D.
$$MnO_4^{\,-}=2, C_2O_4^{2\,-}=16, H^{\,+}=5$$

Answer:

Watch Video Solution

116. How many moles of $KMnO_4$ are needed to oxidise a mixture of 1 mole each of $FeSO_4$, FeC_2O_4 and $Fe_2(C_2O_4)_3$ completely in acid medium :

В	•	2

C. 4

D. 6

Answer:

Watch Video Solution

117. If a g is the mass of $NaHC_2O_4$ required to neutralize 100mL of 0.2M NaOH and b g that required to reduce 100mL of 0.02M $KMnO_4$ in acidic medium then:

A. a = b

B. 2a = b

C. a = 2b

D. b = 4a

Answer:

_

118. The number of moles of $KMnO_4$ that will be needed to react with one mole of sulfite ions in acidic solutions

A. 2/5

B. 3/5

C.4/5

D. 1

Answer:

Watch Video Solution

119. The weight of 1 g-equivalent of V_2O_5 used in the reaction $Zn+V_2O_5
ightarrow ZnO+V$ is : (at wt of V = A)

A. $\frac{A}{5}$

B.
$$\frac{A+80}{5}$$

C. $\frac{2A+80}{5}$
D. $\frac{2A+80}{10}$

Answer:

Watch Video Solution

120. Dichromate ion in acidic medium oxidizes stannous ion as $xSn^{2+}+yCr_2O_7^{2-}+zH^+ o aSn^{4+}+bCr^{3+}+cH_2O$

A. the value of x:y is 1:3

B. the value of x + y + z is 18

C. a : b is 3 :2

D. the value of z - c is 7

Answer:

121. The equation for a reaction is shown below : $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 8H_2O + 5O_2$ Which of the following statements about this reaction are correct ?

A. Hydrogen ions are oxidised to water.

B. Hydrogen peroxide is oxidised to oxygen.

C. The oxidation number of manganese changes by 6.

D. Hydrogen peroxide is reduced to water.

Answer:

Watch Video Solution

122. $Cr_2O_7^{2-}$ is reduced to Cr^{3+} by Fe^{+2} . Identify the incorrect

statement from the following

A. 6 moles of Fe^{+2} are oxidised to Fe^{3+} ions

B. The solution becomes yellow

C. The solution becomes green

D. 3 moles of Fe^{+2} get oxidised to Fe^{3+}

Answer:

Watch Video Solution

123. A solution of $KMnO_4$ to be used in acidic medium is prepared by

dissolving $1, 58gL^{-1}$. The solution is

A.
$$\frac{M}{100}$$

B.
$$\frac{N}{20}$$

C.
$$\frac{M}{50}$$

D.
$$\frac{N}{50}$$

Answer:

124. In the titration of $K_2Cr_2O_7$ and $FeSO_4$ following data is obtained V_1 of $1.0M_1K_2Cr_2O_7$ requires V_2 ml of $1.0M_2FeSO_4$ Which of the following relation is / are true for the above titration

A.
$$6M_1V_1=M_2V_2$$

B. $M_1V_1=6M_2V_2$
C. $N_1V_1=N_2V_2$

D. $M_1V_1 = M_2V_2$

Answer:

Watch Video Solution

125. When a equimolar mixture of Cu_2S and CuS is titrated with $Ba(MnO_4)_2$ in acidic medium, the final product contains $Cu^{2+}S0_2$ and Mn^{2+} . If the mol. wt. of Cu_2S , CuS and $Ba(MnO_4)_2$ are M_1M_2 and M_3 respectively then:

A. eq. wt of
$$Cu_2S$$
 is $\frac{M_1}{8}$
B. eq. wt od CuS is $\frac{M_2}{6}$
C. eq. wt. of $Ba(MnO_4)_2$ is $\frac{M_3}{5}$

D. Cu_2S nad CuS both have same equivalents in mixture

Answer:

Watch Video Solution

126. If 1 mole of H_3PO_4 is reacted with 1 mole of $X(OH)_2$ as: $H_3PO_4 + X(OH)2 o XHPO_4 + 2H_2O$ then

A. The equivalent weight of base is $\frac{\text{molwt}}{2}$

B. The eq. wt. of
$$H_3PO_4$$
 is $\displaystyle rac{98}{3}$

C. The resulting solution is required 1 mofe NaOH for complete neutralization

D. Minimum 1 mole of $X(OH)_2$ more required for complete

neutralization of $XHPO_4$

Answer:

Watch Video Solution

127. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement -I : Copper forms complexes $[CuCl_4]^{2-}$ but not $[Cul_4]^{2-}$ Statement - II : $[Cul_4]^{2-}$ is not stable because Cu^{2+} is oxidant and l^- is reductant.

A. Statement - I is true, Statement - II us true, Statement = II is a correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Watch Video Solution

128. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

2. Statement - I : Oxidation number of metals in metal carbonyls is zero.

Statement - II : The oxidation number of CO has been taken to be zero.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Watch Video Solution

129. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement - I: In the reaction, $3As_2S_3+28HNO_3+4H_2O
ightarrow 6H_3AsO_4+9H_2SO_4+28NO$ electrons transferred are 84.

Statement - II :As is oxidised from +3 to +5 and sulphur from -2 to +6

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Watch Video Solution

130. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement - I : The equivalent weight of NaCN in its conversion to NaOCN

by $KMnO_4$ is M/2

Statement - II: The reaction is : $C^{2+}
ightarrow C^{4+} + ze$

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Watch Video Solution

131. What happens when xenon and fluorine are reacted in the ratio 1:5 respectively?

Watch Video Solution

132. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement - I : BrO_3^- shows two reactions as:

$$SeO_3^{2\,-} + BrO_3^{-} + H^+
ightarrow SeO_4^{2\,-} + Br_2 + H_2O$$
 $AsO_2^{2\,-} + BrO_3^{-} + H^+
ightarrow Br^- + AsO_4^{-} + H_2O$

Statement - II: The ratio of equivalent weights of BrO_3^- in (i) and (ii) reactions is 5/6

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Watch Video Solution

133. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement - I : One equivalent of MnO2 reacts with 2 equivalent of HCI in

the reaction:

 $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$

Statement - II : One equivalent of MnO_2 reacts with one equivalent of HCI.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

134. This question has Statement I and Statement II. Of the four choices

given after the Statements, choose the one that best describes the two

Statements.

Statement - I : The equivalence point refers the condition where equivalents of one species react with same number of equivalent of other species.

Statement -II : The end point of titration is exactly equal to equivalence point.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Statement - I : In acidic medium, equivalent weight of $K_2 C r_2 O_7$ is 49

Statement - II : $\left(Cr^{6\,+}
ight)_2 + 6e
ightarrow 2Cr^{3\,+}$, Thus, $E - rac{M}{6}$

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

10. Statement -I : The redox titrations in which liberated I_2 is used as oxidant are called as iodometric titration.

Statement - II : Addition of KI of $CuSO_4$ liberates I_2 which is estimated against hypo solution.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Statement -I : The oxidation state of S in $H_2S_2O_8$ is 6.

Statement - II : Max. oxidation state of S is 6 because the max. oxidation state of an element is it's no. of valence electron.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Statement - I : In the balanced redox reaction,

 $xAs_2S_3+yNO_3^-+4H_2O o aAsO_4^{3-}+bNO+cSO_4^{2-}8H^+$ the n-factor of As_2S_3 and NO^- is 28 and 3 respectively.

Statement - II: Molar ratio is reciprocal of n-factor's ratio sox: yis3 : 28.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Statement -I : MnO_2 can act as an oxidizing agent as well as reducing agent.

Statement - II : Oxidation state of Mn lies between highest and lowest oxidation state.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Statement - I : Equivalent volume of H_2 is 11.2 Lat1 atm and 273 K.

Statement - II: 1/2 mole H_2 has produced when 1 mole of H^+ (aq) accepted 1 mole of e^-

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Statement -I : $\left[Fe(CN)_6\right]^{4-} \to Fe^{3+} + CO_2 + NO_3^-$ the equivalent weight of reactant is 3.74.

Statement - II: Equivalent weight of reactant $= \frac{Mol.wt}{61}$

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Statement - I : In the titrations of Na_2CO_3 with HCI using methyl orange indicator, the volume required at the equivalence point is twice that of acid required using phenolphthalein indicator.

Statement - II: Two moles of HCI are required for complete neutralization of one mole of Na_2CO_3 .

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

- C. Statement I is true, Statement II is false
- D. Statement I is false, Statement II is true

Answer:

17. Statement-I: in the roasting of FeS_2 , ore is converted into ferric oxide and SO_2 gas.The equivalent mass of FeS_2 is equal to molecular weight/11

Statement - II: The n-factor for reducing agent is total net change in oxidation number per formula unit.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

> Watch Video Solution

144. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement -I : For the reaction, $Na_2CO_3 + HCI \rightarrow NaCI + NaHCO_3$, the suitable indicator is phenolphthalein.

Statement - II: Phenolphthalein provide it's colour in acidic medium.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

Watch Video Solution

145. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement - I : H_3PO_3 is a dibasic acid and its salt Na_3PO_3 does not exist

Statement - II : Being dibasic nature, only two H are replaceable.

A. Statement - I is true, Statement - II us true, Statement = II is a

correct explanation of Statement - I

B. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation of Statement - 1.

C. Statement - I is true, Statement - II is false

D. Statement - I is false, Statement - II is true

Answer:

146. On heating a litre of $\frac{N}{2}HCI$ solution, 2-750 g of HCI is lost and the volume of solution becomes 750 ml. The normality of resulting solution will be.

A. 0.57

B. 0.75

C. 0.057

D. 5.7

Answer: A

147. The volume of 0 -1M $Ca(OH)_2$ required to neutralize 10 ml of 0 -1N

HCI will be

A. 10ml

B. 20 ml

C. 5 ml

D. 40 ml

Answer: C

Watch Video Solution

148. n-factor of ${\rm Ba}(MnO_4)_2$ in acidic medium is :

A. 2

B. 6

C. 10

D. None of these

Answer: C

149. In the reaction, $xVO+yFe_2O_3
ightarrow FeO+V_2O_5.$ What is the value

of x and y respectively ?

A. 1, 1

B. 2, 3

C. 3, 2

D. None of these

Answer: B

150. Match Column-I with Column-II

Column-l		Column-II	
(A)	$\text{FeC}_2\text{O}_4 \rightarrow \text{Fe}^{3+} + \text{CO}_2$	(P)	<u>M</u> 8
(B)	$Cu_2S \rightarrow Cu^{2+} + SO_2$	(Q)	M 11
(C)	$\text{FeS}_2 \rightarrow \text{Fe}^{3+} + \text{SO}_2$	(R)	<u>M</u> 3
(D)	$\mathrm{Fe(NO_3)}_3 \rightarrow \mathrm{Fe}^{2+} + \mathrm{NO}$	(S)	M 10
		(T)	Intramolecularre- dox reaction
C	Watch Video Solution		

151. Match Column-I with Column-II

	Column-l		Column-ll
(A)	Iodimetric	(P)	AgNO3 vs. KCI
(B)	Iodometric	(Q)	N ₂ H ₄ vs. I ₂
(C)	Redox	(R)	CuSO ₄ vs. Kl
(D)	Acid-Base	(S)	H2C2O4 vs. KMnO4
(E)	Precipitation	(T)	H ₂ C ₂ O ₄ vs. NaOH
	_		

Watch Video Solution

152. Match Column-I with Column-II

	Column-I		Column-II
(A)	$O_2^- \rightarrow O_2^+ O_2^{2-}$	(P)	Redox reaction
(B)	${\rm CrO_4^{2-}+H^+} \rightarrow$	(Q)	One of the products
			has trigonal planar
			structure
(C)	$MnO_4^- + NO_2^- + H^+ \rightarrow$	(R)	Dimeric bridged
			tetra-hedral metal ion
(D)	$NO_{3}^{-} + H_{2}SO_{4} +$	(S)	Disproportionation
	$Fe^{2+} \rightarrow$		

153. 1.9 gm of CH_3Br_y has the same number of atoms as in 0.6 gm of

 H_2O . The value of y is :

> Watch Video Solution

154. 2.0g of polybasic organic acid(Molecular wt. = 600) required 100 mL of a $\frac{M}{6}$ NaOH solution for complete neutralisation. Find the basicity of acid.

Watch Video Solution

155. A mixture contains 1.0 mole each of NaOH, Na2CO3 and NaHCO3. When half of mixture is titrated with HCI.it required x mole of HCI in presence of phenolphthalein. In another experiment, half of mixture required y mole of same HCI in presence of methyl orange. Find the value

of(x + y)

D Watch Video Solution

156. What happens when xenon and fluorine are reacted in the ratio 1:20

respectively?

157. A 2.76g impure sample of copper ore is dissolved and Cu^{2+} is titrated with KI solution. l_2 liberated required 40 mLof $0.1MNa_2S_2O_3$ solution for titration. What is the % impurity present in the ore ?

158. The volume of 0.2M solution of MnO_4^- which will react with 50.0 ml

of 0.1 M solution of $C_2 O_4^{2-}$ in acidic medium is

 $2MnO_4^{-} + 5C_2O_4^{2-} + 16H^+
ightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$

Watch Video Solution

159. Titration of 0.2121g of pure $Na_2C_O \ _ 4 ig(134 gmol^{-1} ig)$ require 43.31 ml

of $KMnO_4$ solution. What is the molarity of $KMnO_4$ solution ?

 $2MnO_4^{-+}5C_2O_4^{--+}16H^+
ightarrow 2Mn^+ + + 10CO_2 + 8H_2O$

Watch Video Solution

160. 1.44g pure FeC_2O_4 was dissolved in dil. H_2SO_4 and solution diluted to 100 ml. Calculate volume of 0.01 M $KMnO_4$ required to oxidise FeC_2O_4 solution completely.

161. 0.592 g of calcium oxalate was dissolved in dilute acid and the solution was made up to 250 mL. 25 mL of this solution required 8.375 mL

of 0.1 N $KMnO_4$ solution for complete oxidation. Calculate the percentage of calcium oxalate in calcium oxalate sample.

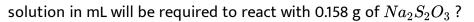
Watch Video Solution

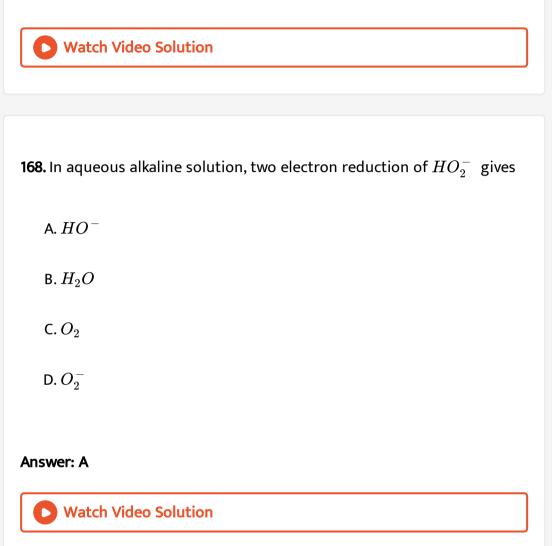
162. 10 mL of a blood sample (contains calcium oxalate) is dissolved in acid, It required 20 mL of 0.001 M $KMnO_4$ (Which oxidases oxalate to carbon dioxide). What is the amount of Ca^+ + ion in 10 mL blood ?

Watch Video Solution

163. What is molality of equimolar mixture of water and ethanol?

164. 0.56 g of limestone was treated with oxalic acid to give CaC_2O_4 . The precipitate decolorized 45 ml of 0.2 N $KMnO_4$ in acid medium. Calculate % of CaO in limestone.


165. A, B and C have oxidation number of +6, -2 and -1 respectively. What will be the possible molecular formula when these atoms combine together ?


Watch Video Solution

166. 5.7 g of bleaching powder was suspended in 500 ml of water. 25 ml of this suspension on treatment with KI and HC1 liberated iodine which reacted with 24.35 ml of $N/10Na_2S_2O_3$. Calculate % of available Cl_2 in bleaching powder.

167. A solution of 0.1 M $KMnO_4$ is used for the reaction : $s_2O_3^{2-}+2MnO_4^{-+}H_2O o MnO_2+SO_4^{2-}+OH^-$ What volume of

169. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified $KMnO_4$ for complete oxidation

A. $FeSO_4$

B. $FeSO_3$

 $\mathsf{C}.\,FeC_2O_4$

D. $Fe(NO_2)_2$

Answer: A

Watch Video Solution

170. The equation which is balanced and represents the correct product(s) is :

A. $Li_2O + 2KCI
ightarrow 2LiCI + K_2O$

B. [CoCl(NH_3)_5]^(+) +5H^(+) rarrCo^(2+)+5NH_4^(+)+Cl^-`Cl_

C.

 $igg[Mg(H_2O)_6igg]^{2+} + (EDTA)^{4-} \stackrel{excessNaOH}{\longrightarrow} \Big[Mg(?(edta)]^{2+} + 6H_2O$ D. $CuSO_4 + 4KCN o K_2 ig[Cu(CN)_4ig] + K_2SO_4$

Answer: B

171. If Cl_2 is passed through hot aqueous NaOH, the products formed have Cl in different oxidation states. These are indicated as

A. -1 and +1

B. -1 and +5

C. +1 and +5,

D. -1 and +3

Answer: B

172. The equivalent weight of $K_2 C r_2 O_7$ in acidic medium is expressed in

terms.of its molecular weight M.as—

A.
$$\frac{M}{3}$$

B. $\frac{M}{4}$
C. $\frac{M}{6}$
D. $\frac{M}{7}$

Answer: C

173. 5 moles of $Ba(OH)_2$ are treated with excess of CO_2 How much $BaCO_3$ will be formed ?

A. 39.4 g

B. 197 g

C. 580 g

D. 985 g

Answer: C

174. The equivalent weight of potassium permangante in alkaline solution is equal to

A.
$$\frac{1}{5}$$
 th of the molar mass of $KMnO_4$
B. $\frac{1}{6}$ th of the molar mass of $KMnQ_4$
C. $\frac{1}{3}$ rd of the molar mass of $KMnO_4$
D. $\frac{1}{10}$ th of the molar mass of $KMnO_4$

Answer: C

Watch Video Solution

175. The mass of potassium dichromate crystals required to oxidise 750 cm^3 of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt=392)

A. 0.49 g

B. 0.45 g

C. 22.05 g

D. 2.2 g

Answer: C

176. An aqueous solution containing 6.5 g of NaCI of 90% purity was subjected to electrolysis. After the complete electrolysis, the solution was evaporated to get solid NaOH. The volume of 1 M acetic acid required to neutralise NaOH obtained above is

A. 1000 *cm*³ B. 2000 *cm*³

C. 100 cm^{3}

D. 200 cm^3

Answer: C

Watch Video Solution

177. Excess of carbon dioxide is passed through 50 mL of 0.5 M calcium hydroxide solution. After the completion of the reaction, the solution was evaporated to dryness. The solid calcium carbonate was completely neutralised with 0.1 N hydrochloric acid. The volume of hydrochloric acid required is (Atomic mass of calcium = 40)

A. 300 cm^3

B. 200 cm^{3}

C. 500 cm^3

D. 400 cm^3

Answer: C

178. Consider the following list of reagents : Acidified $K_2Cr_2O_7$, alkaline $KMnO_4$, $CuSO_4$, H_2O_2 , Cl_2 . O3, $FeCI_3$, HNO_3 and $Na_2S_2O_3$. The total number of reagents that can oxidise aqueous iodide to iodine is

