

India's Number 1 Education App

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

BINOMIAL THEOREM

Question Bank

1. The number of terms in the expansion of $\left(x+\frac{1}{x}\right)^{29}$ is

A. a) 31

B. b) 30

C. c) 29

D. d) 27

Answer: B

- **2.** The index of a in the 12th term of the expansion of $\left(a+2b
 ight)^{20}$ is
 - A. a) 8
 - B. b) 7
 - C. c) 9
 - D. d) 10

Answer: C

3. The number of terms in the expansion of $\left(x+y\right)^5$ is

- A. a) 5
 - B. b) 4
 - C. c) 6

D.	d)	7
υ.	u,	,

Answer: C

Watch Video Solution

- **4.** The total number of terms in the expansion of $\left(1+2x+x^2\right)^2$ is
 - A. a) 2
 - B. b) 3
 - C. c) 4
 - D. d) 5

Answer: D

Watch Video Solution

5. In the expansion of $(1+x)^n$, coefficient of rth term from end is

B. nC_{n-r} C. $\hat{n}C_{r+1}$

A. $\hat{}$ nC_r

D. nC_{n-r+1}

Answer: D

Watch Video Solution

6. The middle term in $\left(2x-3y\right)^{12}$ is

A. 6th term

B. 7th term

D. 8th term

C. 5th term

Answer: B

Watch Video Solution

7. If n is a positive integer, then $\hat{\ } nC_1+^nC_2+....$ $+^nC_n$ is equal to

A.
$$2^n$$

$$B. 2^n - 1$$

C.
$$2^{n-1}$$

D. $1 - 2^n$

Answer: B

Watch Video Solution

8. if the coefficients of x^7 & x^8 in the expansion $\left(2+\frac{x}{3}\right)^n$ are equal then n is equal to

Answer: B

Watch Video Solution

- **9.** The coefficient of x^{-10} in the expansion of $\left(x^2-\frac{1}{x^3}\right)^{10}$ is
 - A. -252
 - B. 210
 - C. (5!)
 - D. -210

Answer: B

Watch Video Solution

10. If $a_1,\,a_2$ are the coefficients of x^n in the expansion of $\left(1+x\right)^{2n}$ & $(1+x)^{2n-1}$ respectively then a_1 : a_2 will be

B. 1:2

C. 1:1

D. 1:3

Answer: A

Watch Video Solution

coefficient of x^{10} in 11. The $1 + (1+x) + (1+x)^2 + \dots + (1+x)^{20}$ is

the expansion

of

- A. $19C_0$
- B. $^{\circ}20C_{10}$
 - C. $^{\circ} 21C_{11}$

D.
$$^{\circ} 22C_{12}$$

Answer: C

Watch Video Solution

- 12. The sum of the coefficients of the terms of the expansion of $(3x-2y)^n$ is
 - A. 2^n
 - B. 1
 - $c. 2^n 1$
 - D. 2^{n-1}

Answer: B

Watch Video Solution

13. The coefficient of the middle term of the expansion of $\left(1-2x+x^2
ight)^n$

is

A.
$$\frac{2n!}{n^2!}$$

$$\mathsf{B.} \ \frac{2n\,!}{n\,!^2} \big(\,-1\big)^n$$

C.
$$\dfrac{(2n+1)!}{(n+1)!(n-1)!}(-1)^{n+1}$$
D. $\dfrac{(2n+1)!}{(n+1)^2!}$

Answer: B

Watch Video Solution

14. The sum of the coefficients in the expansion of $\left(1-2x+2x^2\right)^{2014}$ is

A. 1

B. 0

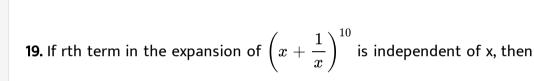
C. -1

Answer: A

Watch Video Solution

- **15.** The middle term of the expansion of $\left(4x+5y
 ight)^{18}$ is
 - A. a) 9th term
 - B.b) 10th term
 - C. c) 11th term
 - D. d) 12th term

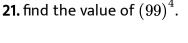
Answer: B



Watch Video Solution

16. The value of $(\hat{\ }8C_1+^8C_2+^8C_3+....+^8C_8)$ is

A. 256 B. 255 C. 257 D. 254 **Answer: B** Watch Video Solution 17. The value upto 3 decimal place of $\left(0.999\right)^3$ is (applying Binomial Theorem) A. 0.999 B. 0.998 C. 0.997 D. 0.995 **Answer: C**

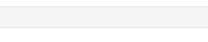

18. Find the 10th term of
$$\left(2x^2 + \frac{1}{x}\right)^{12}$$
.

20. Find the middle term in the expansion of $\left(x - \frac{1}{2n}\right)^{10}$.

find the value of r.

22. Find a, if 17th and 18th terms in the expansions of
$$\left(2+a\right)^{50}$$
 are equal.

23. If the 3rd term in the expansion of
$$\left(\frac{1}{x} + x^{\log_{10} x}\right)^5$$
 is 1000, then find x.



24. Determine the constant term in the expansion of
$$\left(x^3 - \frac{1}{x^2}\right)^{15}$$
.

25. Find the coefficient of
$$x^{20}$$
 in the expression of $(1+x^2)^{40} \left(x^2+2+rac{1}{x^2}
ight)^{-5}$.

26. Find the term independent of x in the expansion of
$$\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}$$
. Watch Video Solution

27. Find the coefficient of x in $\left(1-2x^3+3x^5\right)\left(1+x+rac{1}{x}\right)^{10}$.

that the coefficients of x^m and x^n are equal.

29. Determine the term independent of x in the expansion of
$$\left(3x^2-\frac{1}{2x^3}\right)^{10}$$
 .

28. In the expansion of $(1+x)^{m+n}$, where m & n are +ve integers, prove

30. Find the coefficient of x^5 in the expression of $\left(1+x^2\right)^5 \left(1+x\right)^4$.

31. Which term in the expansion of ${(1+x)}^p{\left(1+rac{1}{x}
ight)}^q$ is independent of

Determine the coefficient of x^4 in the expansion

x, where p,q are positive integers?

32.

 $(1+x+x^2+x^3)^n$.

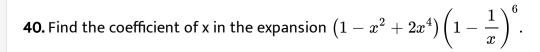
33. Determine the x-free term in
$$\left(\sqrt{x} - \frac{\sqrt{c}}{\sqrt{x}}\right)^{10}$$
.

34. Show that the sum of the coefficients of all odd terms in the expansion of $(1+x)^{2p}$ is 2^{2p-1} .

35. Find the fifth term form the end in the expansion of $\left(\frac{\sqrt{x}}{3} + \frac{2}{5}x\right)^{11}$.

36. Show that the middle term in the expansion of $(x+1)^{2n}$ is $\frac{1.3.5....(2n-1)}{n!}2^n.x^n.$

37. The first three terms in the binomial expansion of $(x+y)^n$ are 1,56 and 1372 respectively. Find the values of x and y.



38. If n be a positive integer, then by using binomial theorem show that $3^{2n+2}-8n-9$ is always divisible by 64.

39. Find the greatest value of the term independent of x in the expansion of $\Big(x\sin\alpha+rac{\cos\alpha}{x}\Big)^{10}$, where $\alpha\in R.$

41. If $\left(1+x+x^2\right)^n=a_0+a_1x+a_2x^2+......+a_{2n}x^{2n}$, then prove that $a_0+a_2+a_4+....+a_{2n}=rac{1}{2}(3^n+1).$

42. If the coefficients of 2nd, 3rd and 4th terms in the expansion of $\left(1+x\right)^{2n}$ are in A.p., then prove that $2n^2-9n+7=0$.

43. If the coefficients of four consecutive terms in the expansion of $(1+x)^n$ are a_1,a_2,a_3 and a_4 respectively. then prove that `a_1/(a_1+a_2)+a_3/(a_3+a_4)=2a_2/(a_2+a_3).

44. The 3rd,4th and fifth terms in the expansion of $(x+a)^n$ are 252, 1512, and 5670 respectively. Find the values of x,a & n.

45. The coefficient of three consecutive terms in the expansion of $(1+x)^n$ are a, b, c respectively prove that $\dfrac{2ac+b(a+c)}{b^2-ac}=n.$

46. Find the number of integral terms in the expansion of $\left(5^{\frac{1}{2}}+7^{\frac{1}{8}}\right)^{1024}$.

47. Show that the integral part of the value of $\left(9+4\sqrt{5}\right)^n$ is odd for positive integer .

- **48.** If the 3rd, 4th. 5th and sixth term in the expansion of $(x+\alpha)^n$ are a,b,c,d respectively, then prove that $\left(\frac{b^2-ac}{c^2-bd}\right)=\frac{5a}{3c}$.
 - Watch Video Solution

- **49.** If coefficient of x^2 and x^{11} are 27 and -192 respectively of $\left(1+ax+2x^2\right)^6$ then show that a=-1.
 - Watch Video Solution

- **50.** Find the coefficient of x^5 in the expansion of $(1+x)^{21}+(1+x)^{22}+...+(1+x)^{30}$.
 - Watch Video Solution

51. Determine the x-independent term in the expansion of $(1+4x)^p \left(1+\frac{1}{4x}\right)^q$ where p & q are positive integers.

- **52.** For $n \in N, 2^{3n}-1$ is divisible by
 - A. a) 7
 - B. b) 8
 - C. d) 6
 - D. d) 16

Answer: A

Answer: D Watch Video Solution **54.** For $n \in N, 3^{2n-1} + 2^{n+1}$ is always divisible by A. a) 5 B. d) 6 C. c) 7 D. d) 9 **Answer: C** Watch Video Solution

A. a) 6

B. b) 5

C. c) 4

D. d) 3

55. For $n \in N2^{3n} - 7n - 1$ is always divisible by

A. a) 49

B. b) 64

C. c) 36

D. d) 81

Answer: A

Watch Video Solution

56. The greatest positive integer divides (n+1)(n+2).....(n+r) is

A. a) r

B. b) r!

C. c) (n+r)

Answer: B

Watch Video Solution

57. Applying the principle of mathematical induction (P.M.I.) prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

58. Using mathematical induction show 7+77+777+.....+n terms

 $\frac{7}{81} (10^{n+1} - 9n - 10)$

59. Applying P.M.I. prove that $x^n - y^n$ is always divisible by x+y where n is a pos. even integer

60. Applying the principle mathematical induction (P.M.I.) show that $5^{2n+2}-24n-25$ is always divisible by 576 where n is a natural number.

61. Applying P.M.I. prove that $(1+x)^n$ gt 1+nx $wherenisapos \int e \geq r$ and nge2:xgt(-1)`

62. Prove that $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ by P.M.I. where n is a pos integer.

63. For which natural numbers n the inequality $2^n > 2n + 1$ is true?

64. For n being a natural number prove that $1.1!+2.2!+3.3!+\ldots + n. \ n!=(n+1)!-1$ by applying P.M.I

65. For $n \in N$, prove that $\left(\frac{n+1}{2}\right)^n > n!$

66. Show that $101^{50} > 99^{50} + 100^{50}$

67. Using P.M.I. prove that $2^n > n$ for all $n \geq 1$: $n \in N$

Watch Video Solution

68. If $n \geq 3$ is an integer prove that $2n + 1 < 2^n$ by P.M.I.

Watch Video Solution

69. If the binomial coefficient of the $(2r+4)^{th}$ term and $(r-2)^{th}$ term in the expansion of $(1+x)^{18}$ are equal find the value of r.

Watch Video Solution

70. Find the coefficient of x^7 in $\left(x^2+\left(rac{1}{x}
ight)
ight)^{11}$

Watch Video Solution

71. Find the greatest term in the expansion of $\left(2+3x\right)^9$ if x=3/2

Watch Video Solution

72. Show that if the greatest term in the expansion of $\left(1+x\right)^{2n}$ has also the greatest coefficient then x lies between n/n+1 and n+1/n

that

Watch Video Solution

73. If
$$(1+x)^n=\widehat{ }_{r=0}\sum_{r=0}^{\sum}nn\overset{\sum}{C}rx^r$$
 then prove $C_1+2C_2+3C_3+\ldots...nC_n=n2^{n-1}$

A.

В.

C.

D.

Answer:

74. If
$$(1+x)^n=\mathop{C}\limits_{r=0}^nx6r$$
 then prove that C_0+2 . C_1+3 . $C_2+\ldots\ldots+(n+1)C_n=2^{n-1}(n+2)$

75. $(1+x)^n=^nC_0+^nC_1x+^nC_2x^2+\ldots\dots+^nC_nx^n$ then find the value of ${}^{\hat{}}nC_1+\left(2^2\right)^nC_2+\ldots\dots+\left(n^2\right)^nC_n$

76. $(1+x)^n=^n C_0+^n C_1x+^n C_2x^2+\dots +^n C_nx^n$ then find the value of ${}^{\hat{}} nC_0+^n C_1/2+^n C_2/3+^n C_n/n+1$

Watch Video Solution

77. If $(1+x)^n=^nC_0+^nC_1x+\ldots+^nC_nx^n$ then find the value of ${}^{\hat{}}nC_0/1+^nC_2/3+^nC_4/5\ldots$

78. If
$$(1+x)^n=^n C_0+^n C_1x+\ldots +^n C_nx^n$$
 then find ${}^{\hat{}} nC_0/2+^n C_1/3+^n C_2/4+\ldots +^n C_n/(n+2)$

79. If $(1+x)^n = {}^n C_0 + {}^n C_1 x + \dots + {}^n C_n x^n$ then

find

 $\hat{D}_{0}^{n}C_{r} + ^{n}C_{1}^{n}C_{r-1} + ^{n}C_{n-r}(^{n}C_{r})$

80. If
$$(1+x)^n=^nC_0+^nC_1x+\ldots+^nC_nx^n$$
 then find ${}^{\hat{}} nC_0^2+^nC_1^2+^nC_2^2+^nC_n^2$

81. If
$$(1+x)^n=^nC_0+^nC_1x+\ldots+^nC_nx^n$$
 then find the value of $nC_1^2+2^nC_2^2+3^nC_3^2+\ldots+n^nC_n^2$

82. Let $R=\left(5\sqrt{5}+11\right)^{2n+1}$ and f=R-[R] where [] is the greatest integer

function. Prove that Rf= 4^{2n+1}

83. Last three digit of 27^{27}

85. If
$$n \in I^+$$
 show $2^{3n+3}-7n-8$ is divisible by 49.

86. Find the coefficient of x^7 in $\left(1+3x-2x^3 ight)^{10}$



87. Find the coefficient of $a^3b^4c^5$ in $(ab+bc+ca)^6$

88. Expand $\left(x^2+\left(rac{3}{x} ight) ight)^4, x eq 0$

Watch Video Solution

90. Using binomial theorem prove that 6^n-5n always leaves remainder I when divided by 25.

91. Find a, if 17th and 18th terms in the expansions of $\left(2+a\right)^{50}$ are equal.

92. Find the coefficient of x^6y^3 in the expansion of $\left(x+2y\right)^9$

93. Use the principle of mathematical induction to show that $5^{2+1}+3^{n+2}.2^{n-1}$ divisible by 19 for all natural number n.

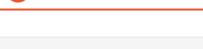
- **94.** Prove by mathematical induction that $\sum_{r=0}^{n} {}^{n}C_{r} = n \cdot 2^{n-1}$
 - Watch Video Solution

- **95.** For $n \in N$, prove that $\left(\frac{n+1}{2}\right)^n > n!$
 - Watch Video Solution

- **96.** Using mathematical induction to show that $p^{n+1}+(p+1)^{2n-1}$ is divisible by p^2+p+1 for all $n\in N$
 - Watch Video Solution

divisible by
$$2^n$$
 for all $n \in N$

98. Using the principle of mathematical induction show that
$$\tan^{-1}\left(\frac{x}{1+1.2.\ x^2}\right) + \tan^{-1}\left(\frac{x}{1+2.3.\ x^2}\right) + \dots \\ \tan^{-1}\left(\frac{x}{1+n(n+1)x}\right) + \dots$$


97. Prove by induction that the integer next greater than $(3+\sqrt{5})6n$ is

$$(1+x_1)(1+x_2)(1+x_3).....(1+x_n) \geq 1+x_1+x_2+.....+x_n$$

Watch Video Solution

99. Prove by induction that

for an
$$n \in N$$

101.
$$\left(x+\sqrt{x^3-1}
ight)^5+\left(x-\sqrt{x^3-1}
ight)^5$$
 is a polynomial of degree

- **A.** 5
- B. 6
- C. 7
- D. 8

Answer: C

Watch Video Solution

102. if the coefficients of x^7 & x^8 in the expansion $\left(2+\frac{x}{3}\right)^n$ are equal then n is equal to

- A. 56
- B. 15

C. 45

D. 55

Answer: D

Watch Video Solution

103. The term independent of x in $\left(\sqrt{\frac{x}{3}} + \sqrt{\frac{3}{2x^2}}\right)^{10}$ is

A. none

B. $^{1}0C_{1}$

C. 5/12

D. 1

Answer: A

104. The total number of terms in the expansion of
$$(x+y)^{100}+(x-y)^{100}$$
 after simplification is

B. 51

C. 202

D. none of these

Answer: B

105. The term independent of x in the expansion of $\left(1+x+2x^3\right)\left(\frac{3}{2}\left(x^2\right)-\frac{1}{3x}\right)^9$

106. 5th term from the end in the expansion of $\left(\left(\frac{x^3}{2}\right) - \left(\frac{2}{x^2}\right)\right)^{12}$ is

A.
$$-7920x^{-4}$$

B.
$$7920x^{-4}$$

C.
$$7920x^4$$

D.
$$-7920x^4$$

Answer: B

Watch Video Solution

107. The coefficient of x^3 in the expansion of $\left(1-x+x^2\right)^5$ is

- A. 10
- B. 8
- C. (-50)
- D. (-30)

Answer: D

Watch Video Solution

108. The coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3\right)^{11}$ is

- A. 990
- B. 605
- C. 810
- D. none of these

Answer: A

Watch Video Solution

109. The greatest term (numerically) in the expansion of $(3-5x)^{11}$ when x=1/5 is

A. $55 imes 3^9$

B. $46 imes 3^9$

C. $55 imes 3^6$

D. none of these

Answer: A

Watch Video Solution

A.
$$6^{2n} - 35n - 1$$

110. Which of the following expression is divisible by 1225?

B. $6^{2n} - 35n + 1$

C. $6^{2n} - 35n$

D. $6^{2n} - 35n + 2$

Answer: A

111. The value of where $\hat{\ } nC_r$ is

A.
$$\binom{30}{10}$$

B.
$$\binom{30}{15}$$

$$\mathsf{C.} \left(\frac{60}{30} \right)$$

D.
$$\binom{31}{10}$$

Answer: A

Watch Video Solution

112. If the sum of odd numbered terms and the sum of even numbered terms in the expansion of $(x+a)^n$ are A and B respectively . Then the value of $\left(x^2-a^2\right)^n$ is

A. 4AB

B. A^2-B^2

 $C. A^2 + B^2$

D. none of these

Answer: B

Watch Video Solution

113. If
$$P(n)=2+4+6+\ldots +2n$$
 $n\in N$ then $P(k)=k(k+1)$

$$\Rightarrow \ P(k+1) = (k+1)(k+2)$$
 for all $k \in N.$ So we can conclude that

$$P(n) = n(n+1)$$
 for:

A. All $n \in N$

B. n > 1

 $\mathsf{C}.\,n>2$

D. Nothing can be said

Answer: D

114. The value of the natural numbers n such that the inequality

 $2^n>2n+1$ is valid is :

A. For $n \geq 3$

 $\mathsf{B.}\,\mathsf{For}n<3$

C. Forn>2

D. For any n

Answer: A

Watch Video Solution

115. When P is a natural number then $p^{n+1} + (p+1)^{2n-1}$ is divisible by

A. P

 $\mathsf{B.}\,P^2+P$

 $C. P^2 + P + 1$

D. $P^2 - 1$

Answer: C

Watch Video Solution

116. Let P(n) denote the statement that n^2+n is odd. It is seen that

$$P(n) \Rightarrow P(n+1)$$
 , P(n) is true for all

A. n > 1

B. n

 $\mathsf{C}.\,n>2$

D. None of these

Answer: D

117. For a positive integer n let a(n)=1+1/2+1/3+1/4+....+1/ $((2^n)-1)$ Then

A. $a(100) \leq 100$

B. a(100) > 100

 $\mathsf{C.}\,a(200) \leq 100$

D. $a(200) \leq 100$

Answer: A::D

118. Let $S(k) = 1 + 3 + 5 + \ldots + (2k - 1) = 3 + k^2$ Then which of the following is true:

A. Principle of mathematical induction can be used to prove the

B. S(k)=S(k+1)

formula

 $\mathsf{C.}\,S(k) = s(k+1)$

D. S(1) is correct

Answer: C

Watch Video Solution

119. Statement-1 for every natural number $n \geq 2$ $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n}$

statement -2 for every natural number $n \geq 2 \sqrt{n(n+1)} < n+1$

- A. Statement-1 is true statement-2 is true: Statement-2 is a correct explanation of statement-1
- B. Statement-1 is true statement-2 is true: Statement-2 is not a correct explanation of statement-1
- C. Statement-1 is true , Statement-2 is false
- D. Statement-1 is false, Statement-2 is true

Answer: B

120.
$$\left(1+x\right)^n-nx-1$$
 is divisible by $(wheren\in N)$

- A. 2x
- $B. x^2$
- $\mathsf{C.}\,2x^3$
- D. All of these

Answer: B

Watch Video Solution

121. Statement-1 : $11^{25}+12^{25}$ when divided by 23 leaves the remainder zero.

 a^n+b^n is always divisible by a+b $n\in N$

A. Statement-1 is true statement-2 is true: Statement-2 is a correct

explanation of statement-1

B. Statement-1 is true statement-2 is true: Statement-2 is not a correct

explanation of statement-1

C. Statement-1 is true, Statement-2 is false

D. Statement-1 is false, Statement-2 is true

Answer: C

Watch Video Solution

 $\sum_{n=0}^{\infty} \hat{\ \ } 100 C_m (x-3)^{100-m} 2^m$ is equal to

122. The coefficient of x^{53} in the expansion

of

A. $^{\hat{}}$ $100C_{47}$

B. ^ $100C_{53}$

 ${\sf C.} - ^{100}C_{53}$

D.
$$-^{100}\,C_{100}$$

Answer: C

Watch Video Solution

- **123.** The coefficient of y in the expansion of $\left(y^2 + \left(\frac{c}{u}\right)\right)^5$ is
 - A. $10c^{3}$
 - B. $20c^{2}$
 - $\mathsf{C}.\,10c$
 - D. 20c

Answer: A

Watch Video Solution

124. The term independent of x in $\left(x^2-\left(rac{1}{x}
ight)
ight)^9$ is

A. 1 B. (-1) C. 48 D. 84 **Answer: D** Watch Video Solution **125.** The coefficients of x^p and x^q in the expansion of $(1+x)^{p+q}$ are A. equal B. equal with opposite signs C. reciprocal to each other D. none of these Answer: A Watch Video Solution

126. If x^m occurs in the expansion of $\left(x+\left(\frac{1}{x^2}\right)\right)^{2n}$ then the coefficient

of
$$x^m$$
 is

A.
$$\frac{(2n)!}{\left(\left(\frac{2n-m}{3}\right)!\right)\left(\frac{4n+m}{3}\right)!}$$

B.
$$\frac{(2n)!}{n!(2n-m)!}$$

C.
$$(2n)!3!3\frac{!}{2n-m}!$$

D. none of these

Answer: A

Watch Video Solution

127. Sum of the series

$$2C_0 + rac{C_1}{2}2^2 + rac{C_2}{3}2^3 + \dots + rac{C_n}{n+1}2^{n+1}$$

A.
$$\frac{3^{n+1}-1}{n-1}$$

$$\mathsf{B.}\; \frac{3^{n+1}-1}{n+1}$$

C.
$$\dfrac{3^{n+1}+1}{n+1}$$
D. $\dfrac{3^{n-1}-1}{n+1}$

Answer: B

Watch Video Solution

128. The value of nC_0 . n C_n $+^n$ C_1 . n C_{n-1} + + \dots + n C_n . n C_0

A.
$$\hat{\ } 2nC_{n-2}$$

B.
$$\hat{}$$
 $(2n-1)C_n$

C.
$$(2n-1)C_{n-2}$$

D. none of these

Answer: C

If $(1+x)^{15}=C_0+C_1x+C_2x^2+\ldots\ldots+C_{15}x^{15}$ $,^{15}$ C_0^2 $-^{15}$ C_1^2 $+^{15}$ C_2^2 $-^{15}$ C_3^2 $+ \ldots \ldots -^{15}$ C_{15}^2 is equal to

130. If $s_n=\sum_{r=0}^n rac{1}{\hat{\ \ } nC_r}$ and $t_n=\sum_{r=0}^n rac{r}{^nC_r}$ then $rac{t_n}{s_n}$ is equal to

then

A. 0

B. 1

C. (-1)

D. none of these

Answer: A

Watch Video Solution

A. n-1

B. n/2-1

C. n/2

D. (2n-1)/2

Answer: C

Watch Video Solution

- **131.** The fractional part of = $\frac{2^{4n}}{15}$ is
 - A. 1/15
 - B. 2/15
 - C. 4/15
 - D. none of these

Answer: A

132. If the fourth term in the expansion of $\left(px + \left(\frac{1}{x}\right)\right)^n$ is independent of x then the value of term is

A.
$$5p^3$$

$$\mathrm{B.}\,10p^3$$

$$\mathsf{C.}\,20p^3$$

D. none of these

Answer: C

133. Find the coefficient of
$$x^{20}$$
 in the expression $\left(1+x^2\right)^{40}\left(x^2+2+rac{1}{x^2}\right)^{-5}.$

A.
$$(30)C_{10}$$

B.
$$(30)C_{25}$$

C. 1

D. none of these

Answer: B

Watch Video Solution

134. Let n be a positive integer such that

$$\left(1+x+x^2
ight)^n=a_0+a_1x+a_2x^2+\ldots\ldots+a_{2n}x^{2n}$$
 then $\sum_{r=0}^{2n}a_r$ is

 $A.3^n$

B. 3^{n-1}

c. $\frac{3^n}{2}$

D. none of these

Answer: A

135. Let n be a positive integer such that

$$\left(1+x+x^2
ight)^n=a_0+a_1x+a_2x^2+\ldots\ldots+a_{2n}x^{2n}$$
 then $\sum_{r=0}^{2n}a_r$ is

- A. $a_{2n}, 0 \geq re2n$
- B. $a_{2n-r}, 0 \leq r \leq 2n$
- C. a_{2n-r} , $0 \le r \le 2n$
- D. none of these

Answer: B

136. The greatest integer which divides the number $101^{100}-1$ is

- A. 100
- B. 1000
- C. 10000

D. 100000

Answer: C

Watch Video Solution

- **137.** Coefficient of x^{11} in the expansion of $\left(1+3x+2x^2\right)^6$ is equal to
 - A. 288
 - B. 576
 - C. 384
 - D. none of these

Answer: B

B. 'xlty'

C. x=y

D. x=2y

Answer: B

Watch Video Solution

139. The greatest term (numerically) in the expansion of $\left(2+3x\right)^9$ when x = 3/2 is

A.
$$rac{5 imes 3^{11}}{2}$$

B.
$$\frac{5 imes 3^{13}}{2}$$

C.
$$\frac{7 \times 3^{13}}{2}$$

D. none of these

Answer: C

140. If
$$a>0$$
 and coefficients of x^5 and x^{15} in the expansion of $\left(x^2+\frac{a}{x^3}\right)^{10}$ are equal then a=

A.
$$\dfrac{1}{2+\sqrt{3}}$$

B.
$$\frac{1}{2\sqrt{3}}$$
C.
$$\frac{1}{\sqrt{3}}$$

Answer: B

141.
$$\frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-4)!} + \ldots$$
 is equal to

A.
$$\frac{2^{n-1}}{n!}$$

$$\mathsf{B.}\,\frac{2^n}{(n+1)\,!}$$

C.
$$\dfrac{2^n}{n!}$$
D. $\dfrac{2^{n-2}}{(n-1)!}$

Answer: A

Watch Video Solution

- **142.** The coefficients of x^n in $\left(1+rac{x}{1!}+rac{x^2}{2!}+\ldots\ldots+rac{x^n}{n!}
 ight)^2$ is
 - A. $\frac{2^n}{n!}$
 - $\mathsf{B.}\; \frac{2^{n+1}}{(n+1)\,!}$
 - $\mathsf{C.}\,\frac{2^{n+1}}{n!}$
 - D. $\frac{2^n}{(n+1)!}$

Answer: A

143. The sum of the coefficients of all the integral powers of x in the expansion of $\left(1+2\sqrt{x}\right)^{40}$ is

$$\mathsf{A.}\,3^{40}+1$$

$$\mathsf{B.}\,3^{40}-1$$

C.
$$\frac{1}{2} (3^{40} - 1)$$

D.
$$\frac{1}{2} (3^{40} + 1)$$

Answer: D

144. The coefficient of
$$x^m$$
 in $(1+x)^r+(1+x)^{r+1}+(1+x)^{r+2}+\ldots\ldots+(1+x)^n, r\leq m\leq n$ is

A.
$$\hat{\ }(n+1)C_{m+1}$$

B.
$$(n-1)C_{m-1}$$

C. $\hat{\ } nC_m$

D. nC_{m+1}

Answer: A

145.

Watch Video Solution

 $\{(1+x)(1+y)(x+y)\}^n$ is

coefficient of x^ny^n in the expansion

of

A.
$$\sum_{r=0}^n C_r^2$$

The

B.
$$\sum (r=0)^n C_r^3$$

C.
$$\sum_{r+s=0}^n \hat{\ } nC_r^nC_s^2$$

D. none of these

Answer: B

If
$$\log(1-x+x^2) = a_1x + a_2x^2 + a_3x^3 + \dots$$

 $a_3 + a_6 + a_9 + \dots$ is equal to

147. The greatest term in the expansion of $(1+x)^{10}$ when x=2/3 is

then

A. log2

D. 2log2

146.

B. 2/3 log2

C. 1/3 log2

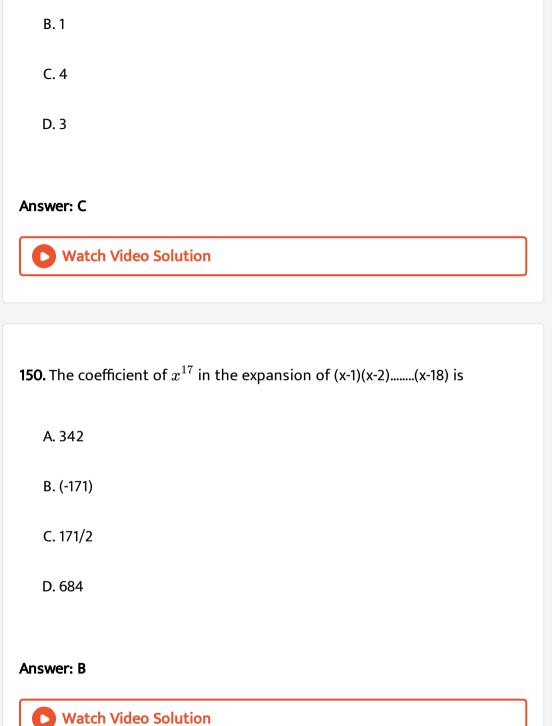
Answer: B

Watch Video Solution

B. $\left(\frac{2}{3}\right)^4$ c. $210 \left(\frac{1}{3}\right)^4$ D. $210\left(\frac{2}{3}\right)^6$

A. $210\left(\frac{2}{3}\right)^4$

Answer: A


Watch Video Solution

- **148.** The number of integral terms in the expansion of $\left(3^{rac{1}{2}}+2^{rac{1}{2}}
 ight)^{500}$ is
 - A. 128
 - B. 129
 - C. 251
 - D. 512

Answer: C

- **149.** The least (positive) remainder when 17^{30} is divided by 5 is
 - A. 2

151. The number of terms in the expansion of $(a+b+c)^n$ where $n\in N$ is

B. n+1

C. n+2

D. (n+1)n

Answer: A

Watch Video Solution

152. The sum of the rational terms in the expansion of $\left(\sqrt{2}+3^{rac{1}{5}}
ight)^{10}$ is

A. 46

B. 42

C. 41

D. none of these

Answer: C

Watch Video Solution

153. The greatest coefficient iin the expansion of $\left(x+y+z+t\right)^{15}$ is

- A. $\frac{15!}{3!(4!)^2}$
- B. $\frac{15!}{3!(4!)}$
- c. $\frac{5!}{3!(4!)^2}$
- D. $\frac{15!}{3!(4!)^3}$

Answer: D

Watch Video Solution

154. If $(1+x)^n = \sum_{r=0}^n .^n C_r x^r$ then $\sum_{r=m}^n .^r C_m$ is equal to

A. \cdot^{n+1} C_m

$$\mathsf{B..}^{n+1}\,C_{m+1}$$

C.
$$\cdot^{n+2}$$
 C_{m+1}

D. none of these

Answer: B

Watch Video Solution

155. Let
$$n$$
 be a positive integer such that $\left(1+x+x^2\right)^n=a_0+a_1x+a_2x^2+\ldots\ldots+a_{2n}x^{2n}$ then $\sum_{i=0}^{2n}a_i$ is

A.
$$\frac{3^n+1}{2}$$

$$\mathsf{B.}\,\frac{3^n-1}{2}$$

$$\mathsf{C.}\ \frac{1-3^n}{2}$$

$$\mathsf{D.}\,3^n + \left(\frac{1}{2}\right)$$

Answer: A

156. Give the integers r>1, n>2 and co-efficients of $(3r)^th$ and $(r+2)^{th}$ term in the binomial expansion of $(1+x)^{2n}$ are equal then

- A. n=2r
- B. n=3r
- C. n=2r+1
- D. none of these

Answer: A

Watch Video Solution

157. If
$$n \in I^+$$
 the value of $\sum_{k=1}^n k^3 \, rac{\hat{} \quad n C_k}{\left(\hat{} \quad n C_{k-1}
ight)^2}$

A.
$$\frac{n(n+1)^2(n+2)}{12}$$

B. (n(n+1)(n+2))/12

C.
$$\frac{n^2(n+1)(n+2)}{12}$$

D. none of these

Answer: A

Watch Video Solution

158. In a triangle ABC the value of $\sum_{r=0}^{50}$ $\hat{}$ $(50)C_ra^rb^{50-r}\cos(ext{Rb-(50-r)A})$ is

A.
$$c^{49}$$

B.
$$(a + b)^{50}$$

C.
$$(2s-a-b)^{50}$$

D. none of these

Answer: C

The

value $^{30}C_{0}.^{30} C_{10} + ^{30}C_{1}.^{30} C_{11} + ^{30}C_{2}.^{30} C_{12} + \ldots + ^{30}C_{20}.^{30} C_{30}$

of

of

A., 60 C_{20}

B., 30 C_{10}

 $C.,^{60}C_{30}$

D., ${}^{40}C_{30}$

Answer: B

Watch Video Solution

160.

A. 2n

The

B. 3n

C. 2n+1

 $\left(x^3+1+\left(rac{1}{x^3}
ight)
ight)\!: \xi nK^+$ and $n\in N$ is

number of distinct terms in the expansion

Answer: C

Watch Video Solution

- **161.** The number of integral of integral terms in the expansion of $\left(17^{rac{1}{3}}+35^{rac{1}{2}}
 ight)^{600}$ is
 - A. 100
 - B. 50
 - C. 150
 - D. 101

Answer: D

expression $\left(x+\sqrt{x^3-1}
ight)^7+\left(x-\sqrt{x^3-1}
ight)^7$ is a 162. The polynomial of degree

A. 10

B. 9

C. 8

D. 7

Answer: A

Watch Video Solution

163. The coefficient of x^{50} in $\left(1+x
ight)^{41} \left(1-x+x^2
ight)^{40}$ is

A. 1

B. 2

C. 3

Answer: D

Watch Video Solution

164. The coefficient of x^n in the expansion

$$(2x+3)^n - (2x+3)^{n-1}(5-2x) + (2x+3)^{n-2}(5-2x)^2 + \dots$$

- A. 2^{n-3}
- B. $(n+1)2^n$
- C. $(n+1)2^{n-3}$
- D. $(-n+1)2^{n-2}$

Answer: B

165. The coefficient of x^{65} in the expansion of $(1+x)^{131}ig(x^2-x+1ig)^{30}$ is

A.
$$^{\hat{}}$$
 $130C_{65}$ $+^{129}$ C_{66}

B. ^ $130C_{65}$ $+^{129}$ C_{55}

C. ^ $130C_{66} + ^{129}C_{65}$

D. none of these

Answer: D

Watch Video Solution

166. Remainder when 5^{40} is divided by 11.

A. 2

B. 3

C. 1

D. 0

Answer: C

Watch Video Solution

167. If $\left(1+x-2x^2\right)^6=1+a_1x+a_2x^2+\ldots\ldots+a_{12}x^{12}$ then

A.
$$a_2 + a_4 + a_6 + \ldots + a_{12} = 31$$

B.
$$a_1 + a_3 + a_5 + \ldots + a_{11} = -32$$

C.
$$a_1 + a_2 + a_3 + \ldots + a_{12} = -1$$

D. none of these

Answer: A::B::C

Watch Video Solution

168. Number of values of r satisfying the equation $,^{69}$ C_{3r-1} $-^{69}$ C_{r^2} $=^{69}$ C_{r^2-1} $-^{69}$ C_{3r} is

B. 2

C. 3

D. 7

Answer: C::D

Watch Video Solution

169. In the expansion of
$$\left(x+\left(\frac{a}{x^2}\right)\right)^n$$
, $(a\neq 0)$ if term independent of x does not exist then n must be

B. 16

C. 15

D. 10

Answer: A::B::D

170. If
$$f(n)=\sum_{r=1}^n \left[rig(n^{n-1}C_{r-1}-r^{\mathsf{C}_r})+(2\mathsf{r+1})\ \hat{\ } nC_r
ight]$$

$$\mathsf{A}.\, f(n) = n^2 - 1$$

$$\mathsf{B.}\, f(n) = \left(n+1\right)^2 - 1$$

C.
$$\sum_{n=1}^{10} f(n) = 495$$

D.
$$\sum_{n=1}^{10} f(n) = 374$$

Answer: B::C

Watch Video Solution

171. The value of $,^n$ C_0 $+^{n+1}$ C_1 $+^{n+2}$ C_2 + \dots $+^{n+k}$ C_k is equal to

A.,
$$^{n+k+1}$$
 C_k

B.,
$$^{n+k+1}$$
 C_{n+1}

$$\mathsf{C.\,},^{n+k}C_{n+1}$$

D. none of these

Answer: A::B

Watch Video Solution

172. If the expansion of $\left(x+\left(\frac{\alpha}{x}\right)\right)^n$ and $\left(x+\left(\frac{\beta}{x^2}\right)\right)^n$ in powers of n

have one term independent of x then n is divisible by

A. 2

B. 3

C. 1

D. none of these

Answer: A::B

173. The coefficient of the middle term in the expansion of $\left(1+x\right)^{2n}$ is

A.
$$2^nC_n$$

$$\mathsf{B.} \ \frac{1.3.5.\ldots.\,(2n-1)}{n!}$$

C. 2.6...(4n-2)

D.
$$\frac{(2n)!}{(n!)(n!)}$$

Answer: B::D

Watch Video Solution

174. If the term independent of x in the expansion of $(\sqrt{x^2})^10$ is

405 then value of k must be

A. 3

B. (-3)

C. 9

D. (-9)

Answer: A::B

Watch Video Solution

175. If n is a positive integer then in the trinomial expansion of $\left(x^2+2x+2\right)^n$ coefficient is

A. x is 2^n . n

B. x^2 is $n^2 \cdot 2^{n-1}$

C. x^3 is $2^n.^{n+1}$ C_3

D. All of these

Answer: A::B::C::D

Watch Video Solution

176. Which of the following will not be true?

A. The last two digits of 3^{100} will be 73

B. The last two digits of 3^{50} will be 51

C. The last two digits of 3^{50} will be 49

D. The last two digits of 3^{50} will be 249

Answer: C::D

Watch Video Solution

177. Consider following two infinite series in real r and 0

$$C=1+r\cos heta+rac{r^2\cos heta}{2}!+r^3rac{\cos(3 heta)}{3}!+\ldots.$$

$$S=r\sin heta+rac{r^2\sin2 heta}{2}!+r^3\sin3rac{ heta}{3}!+\ldots.$$

If θ remains constant and r varies then

The expression CdC/dr+SdS/dr is equal to

A.
$$C^2+S^2$$

B.
$$(C^2+S^2)\cos heta$$

C.
$$\left(C^2+S^2
ight)\sin^2 heta$$

Answer: B

Watch Video Solution

178. Consider following two infinite series in real r and 0

$$C=1+r\cos heta+rac{r^2\cos heta}{2}!+r^3rac{\cos(3 heta)}{3}!+\ldots.$$

$$S=r\sin heta+rac{r^2\sin2 heta}{2}!+r^3\sin3rac{ heta}{3}!+\ldots.$$

If θ remains constant and r varies then

The expression CdS/dr-SdC/dr is equal to

A.
$$C^2 + S^2$$

B.
$$\left(C^2+S^2\right)\cos heta$$

C.
$$\left(C^2+S^2
ight)\sin^2 heta$$

D. CS

Answer: C

watch video Solution

179. First three terms in the expansion of
$$\left(x+a\right)^n$$
 are respectively 128,

The value of $\left(a-x
ight)^n$ is equal to

B. 3^{7}

 $C.7^{7}$

A. $(-3)^7$

2240 and 16800

D. none of these

Answer: B

Watch Video Solution

180. The sum of even terms in the expansion of $\left(x+a\right)^n$ is

A.
$$\frac{1}{2} \left(7^7 + 3^7 \right)$$

B. $\frac{1}{2} \left(7^7 - 3^7 \right)$

C.
$$rac{1}{4}\Big(7^7+3^7\Big)$$
D. $rac{1}{4}\Big(7^7-3^7\Big)$

Answer: A

List - I

List-II

(R) 3

- (1) Circular plate is expanded by (P) 4
 heat from radius 5 cm to 5.06 cm.
 Approximate increase in area is
- (2) If an edge of a cube increases by (Q) 0.6 π 1%, then percentage increase in volume is
- (3) If the rate of decrease of
 \frac{x^2}{2} 2x + 5 is twice the rate of
 decrease of x, then x is equal to
 (rate of decreases is non-zero)
- (4) Rate of increase in area of (S) $\frac{3\sqrt{4}}{4}$ equilateral triangle of side 15 cm, when each side is increasing at the rate of 0.1 cm/s, is

183. If the second term of the expansion $a^{\frac{1}{13}} + \left(\frac{a}{\sqrt{a^{-1}}}\right) is 14a^{(5/2)}$ and $thevalue of(\^nC_3)/(\^nC_2)=\lambda$ then λ is

 $(1+x)(1+x+x^2)(1+x+x^2+x^3).....(1+x+x^2+.....+x^{10})$

185. The value of $\left\{\frac{3^{2003}}{28}\right\} = \frac{a}{b}$ where $\{\}$ denotes the fractional part

184.

when written in the ascending power of x then the highest exponent of x is
$$\lambda(1010)$$
 then λ is ____

- then (b-a) is equal to ____.
 - **Watch Video Solution**

186. The coefficient of
$$x^4$$
 in the expansion of $\left(1+x+x^2+x^3\right)^{11}$ is λ .

Then the number of divisors of λ of the form 9k ____

187. The fractional part of the sum of all the rational terms in the expansion of $\left(3^{\frac{1}{4}}+4^{\frac{1}{3}}\right)^{12}$ is _____

188. Find the last three digits of $\left(17\right)^{256}$

189. Find the term independent of x in the expansion of $\left[(t^{-1}-1)x + (t^{-1}+1)^{-1}x^{-1} \right]^8$

190. If
$$a_k=rac{1}{k(k+1)}$$
 for k=1 ,2.....,n then prove that $\left(\sum_{k=1}^n a_k
ight)^2=rac{n^2}{\left(n+1
ight)^2}$

191. Find the unit digit in the number $17^{1995}+11^{1995}-7^{1995}$

192. If
$$\left(\frac{1+x}{1-x}\right)^n=1+a_1x+a_2x^2+\ldots\ldots+a_rx^r+\ldots\ldots$$
 then prove that $a_1+a_2+a_3=\frac{4n^3+6n^2+8n}{3}$

194.
$$If(1+x)^n=a_0+a_1x+a_2x^2+\ldots\ldots+a_nx^n$$
 then prove that

$$\left(1+\left(rac{a}{a_0}
ight)
ight)\left(1+rac{a_2}{a_1}
ight)+\ldots\ldots \left(1+rac{a_n}{a_{n-1}}
ight)=rac{\left(n+1
ight)^n}{n!}$$

195. Prove that the following identity about binomial coefficients

$$inom{n}{0}+inom{n+1}{1}+inom{n+2}{2}+.....inom{n+r}{r}=inom{n+r+1}{r}$$

196. The terms independent of x in
$$\left(\frac{3}{2}(x^2) - \frac{1}{3x}\right)^s$$
 is

A. T_5

B. T_6

 $\mathsf{C}.\,T_7$

D. None of these

Answer: C

Watch Video Solution

197. The 10^{th} term in the expansion of $\left(2x^2+rac{1}{x}
ight)^{12}$ is

A.
$$\frac{1760}{x^3}$$

$$\mathrm{B.}-\frac{1760}{x^3}$$

c.
$$\frac{1760}{x^2}$$

D. None of these

Answer: A

198. If the 6th term in the expansion of $\left(\frac{1}{x^{8/3}} + x^2 \log_{10} x\right)^8$ is 5600, then x equals

- A. 1
- B. $\log_e 10$
- C. 10
- D. x does not exist

Answer: C

- **199.** The coefficient of x^5 in the expansion of $\left(x^2-x-2\right)^5$ is
 - A. -83
 - B. -82
 - C. -81

Answer: C

Watch Video Solution

200. The sum of series $,^{20}$ C_0 $-^{20}$ C_1 $+^{20}$ C_2 $-^{20}$ C_3 + $+^{20}$ C_{10} is

A.
$$\left(rac{1}{2}
ight)^{20}C_{10}$$

B. 0

 $\mathsf{c.}\,,^{20}C_{10}$

D., $-^{20} C_{10}$

Answer: A

A. 2^8

B. $2^8 - 2$

 $c. 2^8 - 10$

D. None of these

Answer: C

Watch Video Solution

202. $.^{18}$ C_{15} + $2 \big(.^{18}$ $C_{16} \big)$ $+^{17}$ C_{16} + 1 $=^n$ C_3 , then n is equal to

A. 19

B. 20

C. 10

D. 24

Answer: B

203. The value of $1^2 \cdot C_1 + 3^2 \cdot C_3 + 5^2 \cdot C_5 +$, is

A.
$$n(n-1)2^{n-2}+n\cdot 2^{n-1}$$

B.
$$n(n-1)2^{n-2}$$

C.
$$n(n+1)2^{n-3}$$

D. None of these

Answer: C

Watch Video Solution

204. Let [x] denotes the greatest integer less then or equal to x. If $x=\left(\sqrt{3}+1\right)^5$, then [x] is equal to

A. 75

B. 50

C. 152

Answer: C

Watch Video Solution

- **205.** The fractional part of = $\frac{2^{4n}}{15}$ is
 - A. $\frac{15}{2}$
 - $\operatorname{B.}\frac{15}{3}$
 - $\mathsf{C.}\ \frac{15}{4}$

D. None of these

Answer: A

206. If $p = \left(8 + 3\sqrt{7}\right)^n$ and f=p-[p], where [.] denotes the greatest integer function, then the value of p(1-f) is equal to

- A. 1
- B. 2
- $\mathsf{C}.\,2^n$
- D. 2^{2n}

Answer: A

- **207.** Maximum sum of coefficient in the expansion of $\left(1-x\sin\theta+x^2\right)^n$ is
 - A. 1
 - $B. 2^n$
 - $C.3^n$

D. 0

Answer: C

Watch Video Solution

208. If $n \in N$ then value of $S = \sum_{r=0}^n \left(-1\right)^r ((\text{`nC_r)/(} \, \hat{} \, \, (r+2)C_r))$ is

A. 1/n+2

B. n+2

C. 2/n+2

D. n+2/2

Answer: C

Watch Video Solution

209. The value of the expression $.^{47}$ C_4 + $\sum_{j=1}^{5} .^{52-j}$ C_3 is equal to

A.
$$^{\hat{}}$$
 $47C_6$

B.
$$^{\hat{}}$$
 $52C_5$

C.
$$^{\hat{}}$$
 $52C_4$

D. None of these

Answer: C

Watch Video Solution

210. The sum of
$$1+nigg(1-rac{1}{x}igg)+rac{n(n+1)}{2!}igg(1-rac{1}{x}igg)^2+.....\infty$$

A. x^n

B. x^{-n}

D. None of these

 $\mathsf{C.} \left(1 - \frac{1}{x}\right)^n$

Answer: A

211. Determine the coefficient of
$$x^4$$
 in the expansion of $\left(1+x+x^2+x^3\right)^n$.

A.
$$\hat{\ } nC_4$$

B.
$$^{\hat{}}$$
 $nC_4 + ^{\hat{}}$ nC_2 $^{\hat{}}$

C.
$$^{\hat{}}$$
 nC_4 + $^{\hat{}}$ nC_2+ $^{\hat{}}$ nC_4 . $^{\hat{}}$ nC_2 $^{\hat{}}$

D.
$$^{\hat{}}$$
 nC_4 + $^{\hat{}}$ nC_2+ $^{\hat{}}$ nC_1 . $^{\hat{}}$ nC_2 $^{\hat{}}$

Answer: D

212. If
$$a_n = \sum_{r=0}^n \frac{1}{2} \text{nC_r}, then \text{sum_(r=0)^nr/(n } nC_r)$$
 equals

A.
$$(n-1)a_n$$

B.
$$na_n$$

C.
$$\frac{1}{2}na_n$$

D. None of these

Answer: C

Watch Video Solution

213. The number of real negative terms in the binomial expansion of

$$(1+ix)^{4n-2}, n\in N, x>0$$
 is

A. n

B. n+1

C. n-1

D. 2n

Answer: A

214. Let $f(n)=10^n+3$. $4^{n+2}+5$, $n\in N$. The greatest integer which divides f(n) for all n is

A. 27

В. 9

C. 3

D. None of these

Answer: B

Watch Video Solution

215. The value of the sum of the series $3 \cdot {^{ extstyle n}} extstyle c - n extstyle C_1 + 13 \cdot$

- ^nC_2-18cdot ^ $nC_3+\ldots$. upto (n+1) terms is
 - A. 0
 - $B.3^n$
 - $\mathsf{C.}\,5^n$

D. None of these

Answer: A

Watch Video Solution

- **216.** For natural numbers m, n if $(1-y)^m(1+y)^n=1+a_1y+a_2y^2+...$ and $a_1=a_2=10$ then (m, n) is
 - A. 45, 35
 - B. 35, 45
 - C. 20, 45
 - D. 35, 20

Answer: B

217. The coefficient of the term independent of x in the expansion of

$$\left[rac{(x+1)}{x^{2/3}-x^{1/3}+1}-rac{(x-1)}{x-x^{1/2}}
ight]^{10}$$
 is

- A. 210
- B. 105
- C. 70
- D. 4

Answer: A

Watch Video Solution

218. The coefficient of a^3b^4c in the expansion of $\left(1+a-b+c\right)^9$ is equal to

- A. $\frac{9!}{3!6!}$
 - B. $\frac{9!}{4!5!}$
 - c. $\frac{9!}{3!5!}$

D.
$$\frac{9!}{3!4!}$$

Answer: D

Watch Video Solution

- **219.** The remainder when 9^{103} is divided by 25 is equal to
 - A. 5
 - B. 6
 - C. 4
 - D. None of these

Answer: C

 $\left(3+x^{2008}+x^{2009}
ight)^{2010}=a_0+a_1x^2+....\ +a_nx^n, a_0-rac{1}{2}a_1-rac{1}{2}a_2+a_3$

If

of

.... is

 $C. 2^{2010}$

D. None of these

Answer: C

Watch Video Solution

221.

coefficient of $x^n y^n$ in the expansion The $\{(1+x)(1+y)(x+y)\}^n$ is

A.
$$\sum_{r=0}^{n} (^{n}C_r)^2$$

B.
$$\sum_{n=0}^{n} (^nC_(r+2))^2$$

C.
$$\sum_{r=0}^{n} (\text{^nC_(r+3))^2}$$
D. $\sum_{r=0}^{n} (\text{^nC_r)^3}$

Answer: D

222. The remainder when $x=5^{5^{5\cdots}}$ (23 times 5) is divided by 24 is

- **A.** 1
- B. 3

C. 5

D. 23

Answer: C

223. For integer n > 1, the digit at units place in the number

$$\sum_{r=0}^{100} r! + 2^{2^n}$$
 is

A. 0

B. 1

C. 2

D. None of these

Answer: A

Watch Video Solution

224. In the expansion of $\left(1+x+x^2+x^3\right)^6$, the coefficient of x^{14} is

A. 130

B. 120

C. 128

D. 125

Answer: B

Watch Video Solution

- **225.** The coefficient of x^{3l+2} in the expression $(a+x)^l(b+x)^{l+1}(c+x)^{l+2}$ is
 - A. I(a+b+c)
 - B. I(a+b+c)+b+2c
 - C. l(a+b+c)+a+2b+3c
 - D. None of these

Answer: B

226. The interval in which x must lie so that greatest term in the expansion of $(1+x)^{2n}$ has the greatest coefficient is

A.
$$\left(\frac{n-1}{n}, \frac{n}{n-1}\right)$$

$$\mathtt{B.}\left(\frac{n}{n+1},\frac{n+1}{n}\right)$$

$$\mathsf{C.}\left(\frac{n}{n+2},\frac{n+2}{n}\right)$$

D. None of these

Answer: B

Watch Video Solution

227. The digit in the unit place in the number

 $(19)^{2005} + (11)^{2005} - (9)^{2005}$ is

A. 2

B. 1

C. 0

Answer: B

Watch Video Solution

228. If $n and p is prime and N = <math>.^{2n}$ C_n , then

A. p divides N

B. p^2 divides N

C. p cannot divide N

D. None of these

Answer: A

A. 12632

B. 1260

C. 126

A. $\frac{27}{128}x^3$

B. $-\frac{27}{128}x^3$

 $\mathsf{C.}\ \frac{81}{256}x^3$

Answer: A

D. None of these

Watch Video Solution

230. The sum of rational in $\left(\sqrt{2}+\sqrt[3]{3}+\sqrt[6]{5}\right)^{10}$ is equal to

D. None of these

Answer: D

Let
$$f(x)=a_0+a_1x+a_2x^2+\ldots\ldots+a_nx^n+$$
and

$$rac{f(x)}{1-x}=b_0+b_1x+b_2x^2+\ldots\ldots+b_nx^n+$$
, then

A.
$$b_n+b_{n-1}=a_n$$

$$B.\,b_n-b_{n-1}=a_n$$

C.
$$rac{b_n}{b_{n-1}}=a_n$$

D. None of these

Answer: B

Watch Video Solution

232. If $\left(1-x^2\right)^n=\sum_{r=0}^n a_r x^r (1-x)^{2n-r}$, then a_r is equal to

A.
$$\hat{\ } nC_r$$

B.
$$\hat{}$$
 nC_r3^r

C.
$$\hat{\ }(2n)C_r$$

D. $\hat{}$ nC_r2^r

Answer: D

Watch Video Solution

- **233.** The largest term in the expansion of $\left(3+2x\right)^{50}$, where x=1/5, is
 - A. 5th
 - B. 6th
 - C. 8th
 - D. None of these

Answer: C

of

$$\left\{2^{\log_2 \sqrt[5]{9^{x-1}+7}} + rac{1}{2^{rac{1}{2}\log_2\left(3^{x-1}+1
ight)}}
ight\}^7$$
 is 84 when x=

- A. 4
- B. 3
- C. 2 or 1
- D. None of these

Answer: C

235. The value of $\sum_{r=0}^{20} r(20-r)(^{(20)}C_r)^2$ is equal to ?

236. The value of $\sum_{r=1}^{n+1} \left(\sum_{k=1}^{n} {\rm ^{h}KC_{r-1})} (where{\rm ^{r},k,n~in~N'})$ is equal to

A.
$$2^{n+1}-2$$

B.
$$2^{n+1} - 1$$

$$c. 2^{n+1}$$

D. None of these

Answer: A

237.
$$\sum_{r=0}^{300}a_rx^r=\left(1+x+x^2+x^3\right)^{100}$$
. If $a=\sum_{r=0}^{300}a_r$, then $\sum_{r=0}^{300}ra_r$ is equal to

- A. 300a
- B. 100a
- C. 150a

D. 75a

Answer: C

Watch Video Solution

238. Coefficient of x^{50} in $(1+x)^{1000} + 2x(1+x)^{999} + 3x^2(1+x)^{998} + + 1001x^{1000}$ is

A.
$$\hat{\ }(1001)C_{50}$$

B.
$$(1000)C_{50}$$

C.
$$(1002)C_{50}$$

D.
$$(1002)C_{51}$$

Answer: C

239.
$$rac{C_0}{2} - rac{C_1}{3} + rac{C_2}{4} - rac{C_3}{5} +$$
 is equal to

- A. 1/n+1
- B. 1/n(n+1)
- C. 1/(n+1)(n+2)
- D. None of these

Answer: C

- **240.** The coefficient of x^7 in the expansion of $\left(1-x-x^2+x^3\right)^6$ is
 - A. -132
 - B. -144
 - C. 132
 - D. 144

Answer: B

Watch Video Solution

241. Let $(1+x^2)^2(1+x)^n=\sum_{k=0}^{n+4}a_kx^k$.. If a_1,a_2 and a_3 aer in arithmetic progression, then the possible value/values of n is/are

- A. 5
- B. 4
- C. 3
- D. 2

Answer: B::C::D

Watch Video Solution

242. Coefficient of x^n in the expansion of $\left(1+x\right)^{2n}$ is

A., $^{2n}C_n$

 $B. 2^n$

 $\mathsf{C.}\,\frac{2n!}{\left(n!\right)^2}$

D. $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2$

Answer: A::C::D

Watch Video Solution

243. If
$$\left(1+x+x^2\right)^n = a_0 + a_1 x + ... + a_{2n} x^{2n}$$
 then

A.
$$a_0 + a_1 + a_4 + ... = rac{3^n + 1}{2}$$

B.
$$a_0-a_2+a_4-a_6+...=\cos\Bigl(rac{n\pi}{2}\Bigr)$$

C.
$$a_0-a_2+a_4-a_6+...=\sin\Bigl(rac{n\pi}{2}\Bigr)$$

D.
$$a_1-a_3+a_5-a_7+...=0$$
 if n even

Answer: A::B::D

244. The coefficients of
$$x^7$$
 in the expansion of $\left(x^3+3x+\frac{3}{x}+\frac{1}{x^3}\right)^5$ is

A. odd number

B. even number

C., 15 C_4

D., 10 C_5

Answer: A::C

Watch Video Solution

245. $3^{2n+2} - 8n - 9$ is divisible by

A. 8

B. 64

C. 16

Answer: A::B::C

Watch Video Solution

246. If
$$\left(x+rac{1}{x}+x^2+rac{1}{x^2}
ight)^{11}=a_0x^{-22}+a_1x^{-21}+\ldots\ldots+a_{44}x^{22}$$
,

then $a_0+a_2+a_4+...+a_{44}$ is a multiple of

A. 2^{20}

B. 2^{21}

 $c. 2^{10}$

D. 2^{11}

Answer: A::B::C

247. If $\left(8+3\sqrt{7}\right)^n=P+F$, where P is an integer and F is a proper fraction, then

A. P is an odd integer

B. P is an even integer

 $\mathsf{C.}\,F\cdot(P+F)=1$

D. (1-F)(P+F)=1

Answer: A::D

Watch Video Solution

248. Let $n = 3^{100}$, then for n

A. Unit's digit is 1

B. Ten's digit is 0

C. Unit's digit is 7

D. Ten's digit is 2

Answer: A::B

Watch Video Solution

249. Let
$$a_n=rac{{{{(1000)}^n}}}{{n!}}$$
 for $n\in N.$ Then a_n is greatest, when

- A. n=998
- B. n=999
- C. n=1000
- D. n=1001

Answer: B::C

Watch Video Solution

250. Which of the following is/are correct

A.
$$101^{50} - 99^{50} > 100^{50}$$

B. 101⁵⁰-100⁵⁰ gt 99⁵⁰

 $\mathsf{C.} \, (1000)^{1000} > (1001)^{999}$

 $\mathsf{D.} \left(1001\right)^{999} > \left(1000\right)^{1000}$

Answer: A::B::C

Watch Video Solution

251.

Answer the following question based on above passage:

The coefficient of x^{99} in the expansion of (x-1)(x-2).....(x-99)(x-100) is

A. -5050

C. -5000

B. 4950

D. None of these

Answer: A

252. 📝

Answer the following question based on above passage:

The coefficient of x^{99} in the expansion of (x-1)(x-2).....(x-99)(x-100) is

Watch Video Solution

253. Let
$$P = \sum_{r=1}^{50} (^{(50+r)}C_r(2r-1))/(^{(50)}C_r(50+r)), Q = \sum_{r=1}^{50} (^{(50+r)}C_r(2r-1))/(^{(50)}C_r(50+r))$$

^50C_r)^2, R=sum_(r=0)^(100)(-1)^r($\hat{\ } (100)C_r)^2$

Answer the following question based on above passage:

The value of P-Q is equal to

A. 1

B. -1

C. 2^{50}

D. 2^{100}

Answer: B

Watch Video Solution

254.

Let

$$P = \sum_{r=1}^{50} rac{(50+r)C_r(2r-1)}{(50)C_r(50+r)}, Q = \sum_{r=1}^{50} (50C_r)^2, R = \sum_{r=0}^{100} (-1)^r (100C_r)^2$$

Answer the following question based on above passage:

The value of P-R is equal to

A. 1

B. -1

 $\mathsf{C.}\ 2^{50}$

 $\mathsf{D.}\ 2^{100}$

Answer: B

255. In reference to the expansion $(1+x)^n=\sum_{r=0}^n C_r x^r, n\in N$, match

the series given in List-I with their sums given in List-II

<u>List-I</u> <u>List-II</u>

- (1) Circular plate is expanded by (P) 4 heat from radius 5 cm to 5.06 cm.

 Approximate increase in area is
- (2) If an edge of a cube increases by $(Q) 0.6 \pi$ 1%, then percentage increase in volume is
- (3) If the rate of decrease of (R) 3 $\frac{x^2}{2} 2x + 5$ is twice the rate of decrease of x, then x is equal to
- (4) Rate of increase in area of (S) $\frac{3\sqrt{3}}{4}$ equilateral triangle of side 15 cm,

when each side is increasing at

(rate of decreases is non-zero)

the rate of 0.1 cm/s, is

List - I

<u>List-II</u>

Circular plate is expanded by (P) 4
 heat from radius 5 cm to 5.06 cm.

Approximate increase in area is

(2) If an edge of a cube increases by $(Q) 0.6 \pi$ 1%, then percentage increase in

volume is

(3) If the rate of decrease of (R) 3

 $\frac{x^2}{2}$ -2x + 5 is twice the rate of

decrease of x, then x is equal to

(rate of decreases is non-zero)

(4) Rate of increase in area of

equilateral triangle of side 15 cm,

when each side is increasing at the rate of 0.1 cm/s, is

Watch Video Solution

258. If $6^{83}+8^{83}$ is divided by 49, then the sum of the digits of remainder

is

259. Given
$$\left(1-2x+5x^2-10x^3\right)(1+x)^n=1+a_1x+a_2x^2+....$$
 and that $a_1^2=2a_2$, then the value of n is

260. The digit in the units place of the decimal representation of 7^{1000} is

261. The remainder, if $1 + 2 + 2^2 + 2^3 + \dots + 2^{1999}$ in divided by 5 is

. . .

262. The sum of possible values of x for which the fifth term in the expansion of $\left(1+x\right)^{11}$ is 24 times the third term is ?

263. Find the coefficient of
$$x^{24}$$
 in $\left(x^2 + \frac{3a}{x}\right)^{15}$

264. If in the expansion of $\left(1+x\right)^{43}$ the coefficient of $\left(2r+1\right)^{th}$ term in equal to the coefficient of $\left(r+2\right)^{th}$ term find r.

265. The coefficient of the middle term of the expansion of $\left(1-2x+x^2\right)^n$ is

267. If the coefficients of four consecutive terms in the expansion of $(1+x)^n$ are a_1,a_2,a_3 and a_4 respectively. then prove that `a_1/(a_1+a_2)+a_3/(a_3+a_4)=2a_2/(a_2+a_3).

268. If
$$(1+x)^n=\sum_{r=0}^n C_r x^r$$
 prove that $rac{2^2C_0}{1.\ 2}+rac{2^3C_1}{2.\ 3}+.... +rac{2^{n+2}C_n}{(n+1)(n+2)}=rac{3^{n+2}-2n-5}{(n+1)(n+2)}$

269. If p+q=1, then show that
$$\sum_{r=0}^n r^2 \ \hat{\ } nC_r p^r q^{n-r} = npq + n^2 p^2$$

270. Prove that
$$C_1+C_5+C_9+....=rac{1}{2}\Big(2^{n-1}+2^{n/2}\sin\!\Big(rac{n\pi}{4}\Big)\Big)$$

271. Prove that
$$C_1+C_4+C_7+...$$
 $=rac{1}{3}iggl[2^n-2\cos\Bigl(rac{n+1}{3}\pi\Bigr)\Bigr]$

 $(2nC_0)^2 - (2nC_1)^2 + (2nC_2)^2 + \dots + (2nC_2n)^2 = (-1)^n 2nC_n$

273. The coefficient of x^9 in the expansion of $(1+x)(1+x^2)(1+x^3)....(1+x^{100})$ is

274. The sum of coefficient of integral powers of x in the binomial expansion of $\left(1-2\sqrt{x}\right)^{50}$ is:

- A. $\frac{1}{2}(3^{50})$
- B. $\frac{1}{2}(3^{50}-1)$
- C. $rac{1}{2}ig(2^{50}+1ig)$
- D. $\frac{1}{2} (3^{50} + 1)$

Answer: D

Watch Video Solution

275. Number of irrational terms in the binomial expansion of $\left(3^{1/5}+7^{1/3}
ight)^{100}$ is

- A. 94
- B. 88

C. 93

ח	95
υ.	90

Answer: A

Watch Video Solution

- **276.** Coefficient of x^{11} in the expansion of $\left(1+x^2\right)^4\!\left(1+x^3\right)^7\!\left(1+x^4\right)^{12}$
- is
- A. 1051
- B. 1106
- C. 1113
- D. 1120

Answer: C

277. Let $S=\frac{2}{1} \text{^nC_0+2^2/2 ^n} nC_1 + \frac{2^3}{3} \text{^nC_2+....+2^n(n+1)/(n+1) ^n} nC_n$.

278. The coefficient of x^3 in the infinite series expansion of

Then S equals

A.
$$\dfrac{2^{n+1}-1}{n+1}$$
B. $\dfrac{3^{n+1}-1}{n+1}$

$$n+1$$
 C. $\dfrac{3^n-1}{n}$

D.
$$\dfrac{2^n-1}{n}$$

Answer: B

Watch Video Solution

- $rac{2}{(1-x)(2-x)}$, for |x|<1, is
 - - B. 15/8

A. -0.0625

C. -0.125

D. 15/16

Answer: B

Watch Video Solution

- **279.** The value of sum (nC1)^2+(nC2)^2+(nC_3) $^2+....+$ (nCn)^2` is
 - A. $\binom{2n}{n}^2$
 - B. $(2n)C_n$
 - C. $(2n)C_n+1$
 - D. $(2n)C_n-1$

Answer: D

280. If the coefficient of x^8 in $\left(ax^2+\frac{1}{bx}\right)^{13}$ is equal to the coefficient of x^{-8} in $\left(ax-\frac{1}{bx^2}\right)^{13}$, then a and b will satisfy the relation

B. ab=1

C. a=1-b

D. a+b=-1

Answer: A

281. The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio 5:10:14. Then n=

282. The coefficient of the term independent of \boldsymbol{x} in the expansion of

$$\left[rac{(x+1)}{x^{2/3}-x^{1/3}+1}-rac{(x-1)}{x-x^{1/2}}
ight]^{10}$$
 is

- A. 120
- B. 4
- C. 210
- D. 310

Answer: C

Watch Video Solution

283. Let n be a positive even integer. The ratio of the largest coefficient and the 2^{th} largest coefficient in the expansion of $(1+x)^n$ is 11:10. Then the number of terms in the expansion of $(1+X)^n$ is

- A. 20
- B. 21

C. 10

D. 11

Answer: B

Watch Video Solution

284. The sum of the series $\frac{1}{1x2}$ *(25)CO+1/(2x3) \cdot 25 C_1 + $\frac{1}{3x4}$

25C2+....+1/(26x27) $25C_{25}$

A.
$$\dfrac{2^{27}-1}{26 imes27}$$

B.
$$\frac{2^{27}-28}{26\times27}$$

C.
$$\frac{1}{2}$$
 $\left(\frac{2^{27}-28}{26\times27}\right)$

D.
$$\frac{2^{26}-1}{52}$$

Answer: B

285. If n is a possible integer, then $\left(\sqrt{3}+1\right)^{2n}-\left(\sqrt{3}-1\right)^{2n}$ is

A. an irrational number

B. an odd positive integer

C. an even positive integer

D. a rational number other than positive integers

Answer: A

Watch Video Solution

286. Let the coefficients of powers of x in the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(1+x)^n$, where n is a positive integer, be in arithmetic progression. Then the sum of the coefficients of odd powers of x in the expansion is

A. 32

B. 64

C. 128

D. 256

Answer: B

Watch Video Solution

287. The of the series sum

$$1+\left(rac{1}{2}
ight)^nC_1+\left(rac{1}{3}
ight)^nC_2+....\ +\left(rac{1}{n+1}
ight)^nC_n$$
 is equal to

A.
$$\frac{2^{n+1}-1}{n+1}$$

B.
$$\dfrac{3(2^n-1)}{2n}$$

c.
$$\frac{2^n + 1}{n + 1}$$

D.
$$\frac{2^{n}+1}{2n}$$

Answer: A

288. Let
$$(1+x)^{10}=\sum_{r=0}^{10}c_rx^r$$
 and $(1+x)^7=\sum_{r=0}^7d_rx^r$. If $P=\sum_{r=0}^5c_{2r}$ and $Q=\sum_{r=0}^3d_{2r+1}$, then P/Q is equal to

of x^{10}

in

the expansion

of

B. 8

C. 16

D. 32

Answer: B

289.

289. The coefficient of
$$1+(1+x)+....+(1+x)^{20}$$
 is

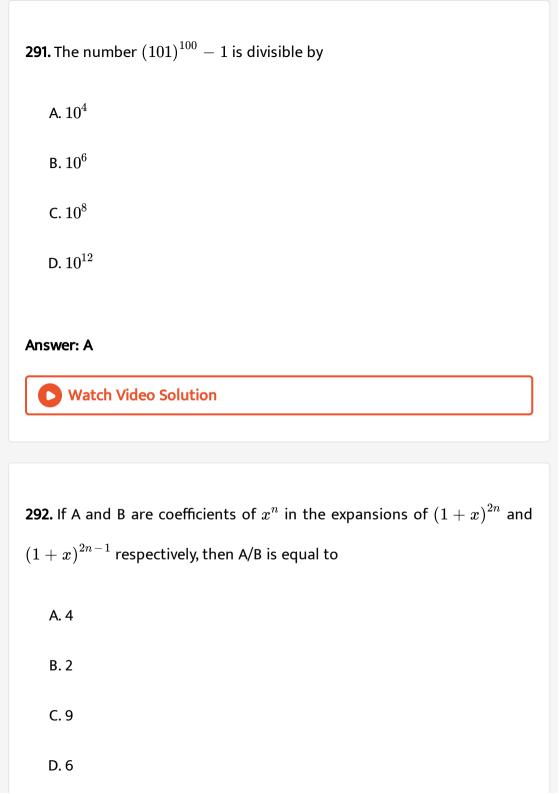
A.
$$^{\hat{}}$$
 $19C_{9}$

B.
$$^{\hat{}}~20C_{10}$$

C.
$$^{\hat{}}$$
 $21C_{11}$

D. ^
$$22C_{12}$$

Answer: C


Watch Video Solution

290. The coefficient of x^7 in the expansion of $\left(1-x-x^2+x^3\right)^6$ is

- A. -132
- B. -144
- C. 132
- D. 144

Answer: B

Answer: B

Watch Video Solution

293. If n>1 is an integer and x
eq 0, then $(1+x)^n-nx-1$ is divisible

A. nx^3

by

B. n^3x

C. x

D. nx

Answer: C

