

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

BINOMIAL THEOREM AND PRINCIPLE OF MATHEMATICAL INDUCTION

Question Bank

1. The number of terms in the expansion of

$$\left(x+rac{1}{x}
ight)^{29}$$
is

A. a) 31

B. b) 30

C. c) 29

D. d) 27

Answer: B

2. The index of a in the 12th term of the expansion of $(a+2b)^{20}$ is

A. a) 8

B. b) 7

C. c) 9

D. d) 10

Answer: C

Vatch Video Solution

3. The number of terms in the expansion of $(x + y)^5$ is

A. a) 5

B. b) 4

C. c) 6

D. d) 7

Answer: C

4. The total number of terms in the expansion of $\left(1+2x+x^2 ight)^2$ is

A. a) 2

B. b) 3

D. d) 5

Answer: D

Watch Video Solution

5. In the expansion of $(1+x)^n$, coefficient of rth term from end is

A.
$$\hat{n}C_r$$

B. î
$$nC_{n-r}$$

C. $\hat{} nC_{r+1}$

D.
$$\hat{} nC_{n-r+1}$$

6. The middle term in $(2x - 3y)^{12}$ is

A. 6th term

B. 7th term

C. 5th term

D. 8th term

8. if the coefficients of $x^7 \& x^8$ in the expansion

$$\left(2+rac{x}{3}
ight)^n$$
 are equal then n is equal to

A. 56

B. 55

C. 15

D. 45

9. The coefficient of x^{-10} in the expansion of

$$\left(x^2-rac{1}{x^3}
ight)^{10}$$
 is

A. -252

B. 210

C. - (5!)

D. -210

10. If a_1, a_2 are the coefficients of x^n in the expansion of $(1+x)^{2n}$ & $(1+x)^{2n-1}$ respectively then $a_1:a_2$ will be

A. 2:1

B. 1:2

C. 1:1

D. 1:3

Answer: A

11. The coefficient of x^{10} in the expansion of $1+(1+x)+(1+x)^2+\ldots$. $+(1+x)^{20}$ is

- A. ^ $19C_9$
- B. ^ $20C_{10}$
- C. ^ $21C_{11}$
- D. ^ $22C_{12}$

Answer: C

12. The sum of the coefficients of the terms of the

expansion of $\left(3x-2y
ight)^n$ is

A. 2^n

B. 1

 $C. 2^n - 1$

D. 2^{n-1}

13. The coefficient of the middle term of the expansion of $\left(1-2x+x^2
ight)^n$ is

A.
$$\frac{2n!}{n^2 !}$$

B. $\frac{2n!}{n!^2} (-1)^n$
C. $\frac{(2n+1)!}{(n+1)!(n-1)!} (-1)^{n+1}$
D. $\frac{(2n+1)!}{(n+1)^2 !}$

Answer: B

14. The sum of the coefficients in the expansion of

 $ig(1-2x+2x^2ig)^{2014}$ is

A. 1

B. 0

C. -1

D. 2

Answer: A

15. The middle term of the expansion of $\left(4x+5y
ight)^{18}$ is

A. a) 9th term

B. b) 10th term

C. c) 11th term

D. d) 12th term

Answer: B

16.	The	value	of
(^	$8C_1 + {}^8C_2 + {}^8C_3 + \dots$	$+^8 C_8 ig)$ is	
	A. 256		
	3. 255		
(C. 257		
I	D. 254		
Answer: B			
Watch Video Solution			

17. The value upto 3 decimal place of $(0.999)^3$ is (applying Binomial Theorem)

A. 0.999

B. 0.998

C. 0.997

D. 0.995

Answer: C

of $\left(2+a
ight)^{50}$ are equal.

23. If the 3rd term in the expansion of
$$\left(\frac{1}{x} + x^{\log_{10} x}\right)^5$$
 is 1000, then find x.

24. Determine the constant term in the expansion

of
$$\left(x^3-rac{1}{x^2}
ight)^{15}$$

25. Find the coefficient of x^{20} in the expression of

$$ig(1+x^2ig)^{40}ig(x^2+2+rac{1}{x^2}ig)^{-5}$$

Watch Video Solution

26. Find the term independent of x in the expansion of $\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}$. **(Note: Watch Video Solution**

27. Find the coefficient of x in
$$(1-2x^3+3x^5)\left(1+x+rac{1}{x}
ight)^{10}.$$

Watch Video Solution

28. In the expansion of $(1+x)^{m+n}$, where m & n

are +ve integers, prove that the coefficients of x^m

and x^n are equal.

29. Determine the term independent of x in the

expansion of
$$\left(3x^2-rac{1}{2x^3}
ight)^{10}$$

Watch Video Solution

30. Find the coefficient of x^5 in the expression of $\left(1+x^2
ight)^5\left(1+x
ight)^4.$

Watch Video Solution

31. Which term in the expansion of $(1+x)^p \left(1+rac{1}{x}\right)^q$ is independent of x, where p,q

34. Show that the sum of the coefficients of all odd terms in the expansion of $(1 + x)^{2p}$ is 2^{2p-1} .

36. Show that the middle term in the expansion of

$$(x+1)^{2n}$$
 is $rac{1.3.5....(2n-1)}{n!}2^n$. x^n .

37. The first three terms in the binomial expansion of $(x + y)^n$ are 1,56 and 1372 respectively. Find the values of x and y.

Watch Video Solution

38. If n be a positive integer, then by using binomial theorem show that $3^{2n+2} - 8n - 9$ is always divisible by 64.

39. Find the greatest value of the term independent of x in the expansion of $\left(x\sinlpha+rac{\coslpha}{x}
ight)^{10}$, where $lpha\in R.$

Watch Video Solution

40. Find the coefficient of x in the expansion

$$\left(1-x^2+2x^4
ight) \left(1-rac{1}{x}
ight)^6.$$

41.

 $ig(1+x+x^2ig)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, then prove that $a_0 + a_2 + a_4 + \dots + a_{2n} = rac{1}{2}(3^n + 1).$

42. If the coefficients of 2nd, 3rd and 4th terms in

the expansion of $\left(1+x
ight)^{2n}$ are in A.p., then prove

that $2n^2 - 9n + 7 = 0$.

Watch Video Solution

lf

43. If the coefficients of four consecutive terms in the expansion of $(1 + x)^n$ are a_1, a_2, a_3 and a_4 respectively. then prove that `a_1/(a_1+a_2)+a_3/(a_3+a_4)=2a_2/(a_2+a_3).

44. The 3rd,4th and fifth terms in the expansion of

 $\left(x+a
ight)^n$ are 252, 1512, and 5670 respectively. Find

the values of x,a & n.

45. The coefficient of three consecutive terms in the expansion of $(1 + x)^n$ are a, b, c respectively prove that $\frac{2ac + b(a + c)}{b^2 - ac} = n.$

Watch Video Solution

46. Find the number of integral terms in the expansion of $\left(5^{\frac{1}{2}} + 7^{\frac{1}{8}}\right)^{1024}$.

Watch Video Solution

47. Show that the integral part of the value of $\left(9+4\sqrt{5}
ight)^n$ is odd for positive integer .

48. If the 3rd, 4th. 5th and sixth term in the expansion of $(x + \alpha)^n$ are a,b,c,d respectively, then prove that $\left(\frac{b^2 - ac}{c^2 - bd}\right) = \frac{5a}{3c}$.

Watch Video Solution

49. If coefficient of x^2 and x^{11} are 27 and -192 respectively of $\left(1+ax+2x^2
ight)^6$ then show that

a=-1.

50. Find the coefficient of x^5 in the expansion of $(1+x)^{21} + (1+x)^{22} + ... + (1+x)^{30}$.

Watch Video Solution

51. Determine the x-independent term in the expansion of $(1+4x)^p \left(1+rac{1}{4x}
ight)^q$ where p & q

are positive integers.

52. For $n \in N, 2^{3n}-1$ is divisible by

A. a) 7

B. b) 8

C. d) 6

D. d) 16

Answer: A

53. For
$$n\in N,$$
 n^3+2n is divisible by

A. a) 6

B. b) 5

C. c) 4

D. d) 3

Answer: D

Watch Video Solution

54. For
$$n \in N, 3^{2n-1} + 2^{n+1}$$
 is always divisible by

A. a) 5

B. d) 6

C. c) 7

D. d) 9

Answer: C

Watch Video Solution

55. For $n \in N2^{3n} - 7n - 1$ is always divisible by

A. a) 49

B.b) 64

C. c) 36

D. d) 81

56. The greatest positive integer divides (n+1) (n+2).....(n+r) is

A. a) r

B. b) r!

C. c) (n+r)

D. d) (r+1)

Watch Video Solution

58. Using mathematical induction show 7+77+777+.....+n terms = $\frac{7}{81} (10^{n+1} - 9n - 10)$

59. Applying P.M.I. prove that $x^n - y^n$ is always divisible by x+y where n is a pos. even integer **Watch Video Solution**

60. Applying the principle mathematical induction (P.M.I.) show that $5^{2n+2} - 24n - 25$ is always divisible by 576 where n is a natural number.

61. Applying P.M.I. prove that $(1+x)^n$ gt 1+nx $where nisapos \int e \ge r$ and nge2:xgt(-1)`

Watch Video Solution

62. Prove that
$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$$
 by P.M.I. where n is a pos integer.

63. For which natural numbers n the inequality $2^n > 2n + 1$ is true? Watch Video Solution

64. For n being a natural number prove that 1.1! + 2.2! + 3.3! + ... + n. n! = (n + 1)! - 1 by applying P.M.I

65. For
$$n \in N$$
, prove that $\left(rac{n+1}{2}
ight)^n > \,$ n!

68. If $n \geq 3$ is an integer prove that $2n+1 < 2^n$

by P.M.I.

