© 'doubtnut

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

CARTESIAN COORDINATES AND STRAIGHT LINE

Question Bank

1. Divide the join of points $P(2,5)$ and $Q(-7,4)$ in the ratio $1: 2$ internally

- Watch Video Solution

2. Divide the join of points $P(2,5)$ and $Q(-7,4)$ in the ratio $1: 2$ externally

- Watch Video Solution

3. In what ratio does x-axis divide the line segment joining (2, -3) and (5, 6)

- Watch Video Solution

4. Find the area of the pentagon whose vertices are $A(1,1)$, $B(7,21), C(7,-3) D(12,2)$ and $E(0,-3)$.

- Watch Video Solution

5. The midpoints of the sides of a triangle are (1,5,-1), (0,4,-2) \& (2,3,4). Find its vertices

- Watch Video Solution

6. Prove that the co-ordinates of the vertices of an equilateral triangle can not be rational.

- Watch Video Solution

7. Find the equation of the curve $x^{2}+y^{2}-3 x+5 y-8=0$ when the origin is shifted to $(1,2)$ without changing the direction of axes.

- Watch Video Solution

8. Find the angle through which the axis may be turned about origin, so that the equation of curve $4 x^{2}+2 \sqrt{3} x y+2 y^{2}=1$ must not have term containing 'xy'

- Watch Video Solution

9. Find the locus of a point which moves such that it distances
from the point $(0,0)$ is thrice its distance from the y axis

- Watch Video Solution

10. A ladder of length I rest against the wall of the room, if the
ladder begins to slide on floor, find the locus of the point of which divides the ladder in ratio (2:1)

- Watch Video Solution

11. A particle is moving in a vertical line whose equation of motion is given by $s=32+46 t+9 t^{2}$ where 's' is measured in meters and ' t ' is measured in seconds. Find the velocity and acceleration of the particle at $\mathrm{t}=3 \mathrm{sec}$.

- Watch Video Solution

12. Find the equation of the line whose perpendicular distance
from the origin is 4 units and the angle which the normal makes with positive direction of x -axis is 15°

- Watch Video Solution

13. Equation of a line is $3 x-4 y+10=0$

Find its slope

- Watch Video Solution

14. Equation of a line is $3 x-4 y+10=0$

Find its x - and y -intercepts

- Watch Video Solution

15. Find the equation of the right bisector of the line joining (1,
1) and (3,5)

- Watch Video Solution

16. Find the angle between the lines $y-\sqrt{3} x-5=0$ and
$\sqrt{3} y-x+6=0$

- Watch Video Solution

17. Find the equation of the line which passes through the point
$(3,4)$ and the sum if their respective intercepts on the axes is 14

- Watch Video Solution

18. A line passes through(2,3), makes an angle $\left(\frac{\pi}{4}\right)$ with the positive direction of x-axis, find the length of line segment cut off between $(2,3)$ and the line $x+y-7=0$

- Watch Video Solution

19. Find the value of a if the points $(1,2)$ and $(3,4)$ are of opposite side of the line $3 x-4 y+a=0$

- Watch Video Solution

20. Find the equation of the straight lines passing through the point $(2,3)$ and inclined at $\frac{\pi}{4}$ radian to the line $2 x+3 y-5=0$

D Watch Video Solution

21. Line through the points $(-2,6)$ and $(4,8)$ is perpendicular to the line through the points $(8,12)$ and $(x, 24)$. Find the value of x

- Watch Video Solution

22. Find the distance between the lines $5 x-12 y+2=0$ and $-5 x+$ $12 y+3=0$

- Watch Video Solution

23. Find the equations of line parallel to $3 x+4 y+2=0$, at a distance 4 units from given line.

- Watch Video Solution

24. Find the foot of perpendicular drawn from the point $(2,2)$ to the line $3 x-4 y+5=0$

- Watch Video Solution

25. Find the bisector of the angle containing the point ($1,-2$) between the lines $3 x-4 y=0$ and $5 x+12 y+7=0$

- Watch Video Solution

26. Find the bisector of the angle containing the point ($1,-2$) between the lines $3 x-4 y=0$ and $5 x+12 y+7=0$

- Watch Video Solution

27. If $a+2 b+3 c=0$, the family of straight lines $a x+b y+c=0$ passes through a fixed point, find the co-ordinates of fixed point.

- Watch Video Solution

28. Find the equation of the straight line passing through the point $(2,0)$ and through the point of intersection of the lines $x+$ $2 y=3$ and $2 x-3 y=4$

- Watch Video Solution

29. The pair of lines joining the origin to the points of intersection of the curves
$a x^{2}+2 h x y+b y^{2}+2 g x=0$ and
$a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$
will be at right angles to one another, if

- Watch Video Solution

30. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel lines, prove that

$$
\frac{a}{h}=\frac{h}{b}=\frac{g}{f}
$$

- Watch Video Solution

31. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel lines, prove that
The distance between them is $2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$

D Watch Video Solution

32. The three points $(-2,2),(8,-2)$ and $(-4,-3)$ are the vertices of :
A. an isosceles triangle
B. an equilateral triangle
C. a right angled triangle
D. none of these

Answer: C

- Watch Video Solution

33. The distance between the points $\left(3, \frac{\pi}{4}\right)$ and $\left(7, \frac{5 \pi}{4}\right)$ is :
A. 8
B. 10
C. 12
D. 14

(-) Watch Video Solution

34. Let $A(6,-1), B(1,3)$ and $C(x, 8)$ be three points such that $A B=$ $B C$ then the value of x are :
A. 3, 5
B. $-3,5$
C. $3,-5$
D. $-3,-5$

Answer: B

- Watch Video Solution

35. The points $(a+1,1),(2 a+1,3)$ and $(2 a+2,2 a)$ are collinear, if:
A. $a=-1,2$
B. $a=\frac{1}{2}, 2$
C. $a=2,1$
D. $a=-\frac{1}{2}, 2$

Answer:

D Watch Video Solution

36. If $A=(3,4)$ and B is a variable point on the lines $|x|=6$ If $A B \leq 4$ then the number of positions of B with integral coordinates is :
A. 5
B. 6
C. 10
D. 12

Answer: A

- Watch Video Solution

37. The point of the axis of y which its equidistant from $(-1,2)$ and $(3,4)$ is :
A. $(0,3)$
B. $(0,4)$
C. $(0,5)$
D. $(0,-8)$

Answer: C

38. The co-ordinates of the middle points of the sides of a triangle are $(4,2),(3,2)$ and $(2,2)$ then co-ordinates of centroid are :
A. $(3,2)$
B. $(3,3)$
C. $(4,3)$
D. $(3,4)$

Answer: A

D Watch Video Solution

39. The incentre of the triangle whose vertices are ($-36,7$), $(20,7)$ and $(0,-8)$ is :
A. $(0,-1)$
B. (-1, 0)
C. $(1,1)$
D. $(1 / 2,1)$

Answer: B

D Watch Video Solution

40. If the orthocentre and centroid of a triangle are $(-3,5)$ and (3 ,
3) then its circumcentre is :
A. $(6,2)$
B. $(3,-1)$
C. $(-3,5)$
D. $(-3,1)$

- Watch Video Solution

41. $\mathrm{A}(\mathrm{a}, \mathrm{b}), B\left(x_{1}, y_{1}\right)$ and $C\left(x_{2}, y_{2}\right)$ are the vertices of a triangle.

If a, x_{1}, x_{2} are in GP with common ratio r and b, y_{1}, y_{2} are in GP with common ratio s, then area of $\triangle A B C$ is :
A. $a b(r-1)(s-1)(s-r)$
B. $1 / 2 a b(r+1)(s+1)(s-r)$
C. $1 / 2 \mathrm{ab}(\mathrm{r}-1)(\mathrm{s}-1)(\mathrm{s}-\mathrm{r})$
D. $a b(r+1)(s+1)(r-s)$

Answer: C

- Watch Video Solution

42. The equation of the locus of points equidistant from $(-1,-1)$ and $(4,2)$ is :
A. $3 x-5 y-7=0$
B. $5 x+3 y-9=0$
C. $4 x+3 y-2=0$
D. $x-3 y+5=0$

Answer: B

- Watch Video Solution

43. The equation of the locus of a point which moves so that its distance from the point ($a k, 0$) is k times its distance from the point $\left(\frac{a}{k}, 0\right),(k \neq 1)$ is :
A. $x^{2}-y^{2}=a^{2}$
B. $2 x^{2}-y^{2}=2 a^{2}$
C. $x y=a^{2}$
D. $x^{2}+y^{2}=a^{2}$

Answer: D

D Watch Video Solution

44. If the co-ordinates of a variable point P be $\left(t+\frac{1}{t}, t-\frac{1}{t}\right)$ where t is the variable quantity, then the locus of P is :
A. $x y=8$
B. $2 x^{2}-y^{2}=8$
C. $x^{2}-y^{2}=4$
D. $2 x^{2}+3 y^{2}=a^{2}$

Answer: C

- Watch Video Solution

45. If the co-ordinates of a variable point P be $(\cos \theta+\sin \theta, \sin \theta-\cos \theta)$ where θ is the perimeter, then the locus of P is :
A. $x^{2}-y^{2}=4$
B. $x^{2}+y^{2}=2$
C. $x y=3$
D. $x^{2}+2 y^{2}=3$

Answer: B
46. Transform the equation $x^{2}-3 x y+11 x-12 y+36=0$ to parallel axes through the point $(-4,1)$ becomes $a x^{2}+b x y+1=0$ then $b^{2}-a=$
A. 1/4
B. 1/16
C. 1/64
D. $1 / 256$

Answer: C

D Watch Video Solution

47. The distance of the point $(3,5)$ from the line $2 x+3 y-14=0$ measured parallel to the line $x-2 y=1$ is :
A. $\frac{7}{\sqrt{5}}$
B. $\frac{7}{\sqrt{13}}$
C. $\sqrt{5}$
D. $\sqrt{13}$

Answer: C

- Watch Video Solution

48. The lines $x \cos \alpha+y \sin \alpha=p_{1}$ and $x \cos \beta+y \sin \beta=p_{2}$ will be perpendicular, if :
A. $\alpha=\beta$
B. $|\alpha-\beta|=\frac{\pi}{2}$
C. $\alpha=\frac{\pi}{2}$
D. $\alpha \pm \beta=\frac{\pi}{2}$

Answer: B

- Watch Video Solution

49. If each of the points $\left(x_{1}, 4\right),\left(-2, y_{1}\right)$ lies on the line joining the points $(2,-1),(5,-3)$, then the points $P\left(x_{1}, y_{1}\right)$ lies on the line :
A. $6(x+y)-25=0$
B. $2 x+6 y+1=0$
C. $2 x+3 y-6=0$
D. $6(x+y)+25=0$

- Watch Video Solution

50. The angle between the lines $2 x-y+3=0$ and $x+2 y+3=0$
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

51. Equation to the straight line cutting off an intercept 2 from negative direction of the axis of y and inclined at 30° to the positive direction of axis of x is :
A. $y+x-\sqrt{3}=0$
B. $y-x+2=0$
C. $y-x \sqrt{3}-2=0$
D. $y \sqrt{3}-x+2 \sqrt{3}=0$

Answer: D

- Watch Video Solution

52. The number of lines that are parallel to $2 x+6 y-7=0$ and have an intercept 10 between the co-ordinates axis is:
A. 1
B. 2
C. 4
D. infinitely many

Answer: B

D Watch Video Solution

53. If the quadrilateral formed by the lines $a x+b y+c=0, a ' x+$ $b^{\prime} y+c^{\prime}=0, a x+b y+c^{\prime}=0, a^{\prime} x+b ' y+c=0$ have perpendicular diagonals, then :
A. $b^{2}+c^{2}=b^{2}+c^{2}$
B. $c^{2}+a^{2}=c^{\prime 2}+a^{2}$
C. $a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$
D. none of these

Answer: C

- Watch Video Solution

54. The co-ordinates of a point on the line $y=x$ where perpendicular distance from the line $3 x+4 y=12$ is 4 units, are :
A. $\left(\frac{3}{7}, \frac{5}{7}\right)$
B. $\left(\frac{3}{2}, \frac{3}{2}\right)$
C. $\left(-\frac{8}{7}, \frac{8}{7}\right)$
D. $\left(\frac{32}{7}, \frac{32}{7}\right)$

Answer: C::D
55. If the points $(1,2)$ and $(3,4)$ are on the opposite side of the line $3 x-5 y+a=0$, then :
A. $7<a<11$
B. $a=7$
C. $a=11$
D. $a<7$ or $a>1$

Answer: D

- Watch Video Solution

56. If $k x^{2}+10 x y+3 y^{2}-15 x-21 y+18=0$ represents a pair of straight lines. Then the value of k is :
A. -3
B. 3
C. 4
D. -4

Answer: B

D Watch Video Solution

57. The point of intersection of the straight lines given by the equation $3 y^{2}-8 x y-3 x^{2}-29 x-3 y+18=0$ is:
A. $\left(1, \frac{1}{2}\right)$
B. $\left(1,-\frac{1}{2}\right)$
C. $\left(-\frac{3}{2}, \frac{5}{2}\right)$
D. $\left(-\frac{3}{2},-\frac{5}{2}\right)$

- Watch Video Solution

58. If the equation $12 x^{2}+7 x y-p y^{2}-18 x q y+6=0$ represent two perpendicular lines, then the value of p and q are
A. 12,1
B. $12,-1$
C. $12, \frac{23}{1}$
D. $12,-\frac{23}{2}$

Answer: A: D

59. If the angle between the two lines represented by $2 x^{2}+5 x y+3 y^{2}+7 y+4=0$ is $\tan ^{-1}(m)$. Then ' m ' is equal to :
A. $-1 / 5$
B. $1 / 5$
C. $-3 / 5$
D. $3 / 5$

Answer: B

D Watch Video Solution

60. The equation of second degree

$$
x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0 \text { represents a pair of }
$$

straight lines, the distance between them is :
A. 2
B. $2 \sqrt{3}$
C. 4
D. $4 \sqrt{3}$

Answer: A

D Watch Video Solution

61. The point $(4,1)$ undergoes the following transformation successively
(i) Reflection about the line $\mathrm{y}=\mathrm{x}$
(ii) Translation through a distance 2 unit along the positive direction (x-axis)
(iii)Rotation through on angle $\pi / 4$ about origin in anticlockwise

direction.

Then the co-ordinates of the final points
A. $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
B. $\left.\frac{-1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
C. $\left.\frac{-1}{\sqrt{2}}, \frac{-7}{\sqrt{2}}\right)$
D. none of these

Answer: B

- Watch Video Solution

62. Mixed term $x y$ is to be removed from the general equation of second degree $a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$,one should rotate the axes through an angle θ given by $\tan 2 \theta$ equal to
A. $\frac{a-b}{2 h}$
B. $\frac{2 h}{a+b}$
C. $\frac{a+b}{2 h}$
D. $\frac{2 h}{a-b}$

Answer: D

- Watch Video Solution

63. For points $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ of the co-ordinate plane a new distance $\mathrm{d}(\mathrm{P}, \mathrm{Q})=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ is defined .Let $O(0,0)$ and $A(3,2)$. The set of points in first quadrant which are equidistant from O and A is
A. Square
B. An infinite ray
C. Union of a line segment and an infinite ray
D. none of these

Answer: C

- Watch Video Solution

64. The orthocentre of the triangle formed by the lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0$ lies in
A. I quadrant
B. II quadrant
C. III quadrant
D. IV quadrant
65. A straight line L with negative slope passes through the point $(8,2)$ and cuts the positive coordinate axes at points P and Q. As L varies, the absolute minimum value of $O P+O Q$ is $(O$ is origin)
A. 10
B. 18
C. 16
D. 12

Answer: B

D Watch Video Solution

66. The distance between the circumcentre and orthocentre of the triangle whose vertices are (0,0),(6,8) and ($-4,3$) is
A. $\frac{125}{8}$ unit
B. $\frac{\sqrt{5}}{2}$ unit
C. $\frac{5 \sqrt{5}}{2}$ unit
D. $5 \sqrt{5}$ unit

Answer: C

- Watch Video Solution

67. If $P\left(1+\frac{\alpha}{\sqrt{2}}, 2+\frac{\alpha}{\sqrt{2}}\right)$ be any point on a line, then the range of values of α for which the point P lies between the parallel lines $x+2 y=1$ and $2 x+4 y=15$ is
A. $-4 \frac{\sqrt{2}}{3}<\alpha<5 \frac{\sqrt{2}}{6}$
B. $0<\alpha<5 \frac{\sqrt{2}}{6}$
C. $-4 \frac{\sqrt{2}}{3}<\alpha<0$
D. none of these

Answer: A

D Watch Video Solution

68. If the point (a, a) fall between the lines $|x+y|=2$, then
A. $|a|=2$
B. $|a|=1$
C. $|a|<1$
D. $|1 a|<\frac{1}{2}$

Answer: C

- Watch Video Solution

69. Two fixed point A and B are taken on the cordinate axes such that $O A=a$ and $O B=b$. Two variable points A^{\prime} and B^{\prime} are taken on the same axes such that $O A^{\prime}+O B^{\prime}=O A+O B$. Find the locus of the point of intersection of $A B^{\prime}$ and $A^{\prime} B$.
A. $x+y=a+b$
B. $x+y=0$
C. $x-y=a+b$
D. $x-y=0$

Answer: A

70. A variable line through the point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$, meets the co-ordinate axes in A and B, then the locus of mid point of $A B$ is
A. $(x+y) a b=2 x y(a+b)$
B. $x+y=2 x y$
C. $(x+y) a b=x y(a+b)$
D. none of these

Answer: A

- Watch Video Solution

71. The equations of the line passing through the point of intersection of the lines $x-3 y+1=0$ and $2 x+5 y-9=0$,
whose distance from the origin is $\sqrt{5}$.
A. $2 x-y+5=0$
B. $2 x+y+5=0$
C. $2 x+y-5=0$
D. none of these

Answer: C

D Watch Video Solution

72. A ray of light travelling along the line $2 x-3 y+5=0$, after striking a plane mirror lying along the line $x+y-2=0$ gets reflected then equation of the reflected straight line is
A. $3 x-2 y+3=0$
B. $3 x-2 y+5=0$
C. $2 x-3 y=3=0$
D. none of these

Answer: A

- Watch Video Solution

73. Line L has intercepts a and b on the coordinate axes. When the axes are rotated through given angle, keeping the origin fixed, the same line L has intercepts p and q, then
A. $a^{2}+b^{2}=p^{2}+q^{2}$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
C. $a^{2}+p^{2}=b^{2}+q^{2}$
D. $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

- Watch Video Solution

74. Consider the point $A(3,4)$ and $B(7,13)$.If P be a point on the line $y=x$, the co-ordinate of point P if $P A+P B$ is minimum.
A. $\left(\frac{13}{7}\right),\left(\frac{13}{7}\right)$
B. $\left(\frac{22}{7}\right),\left(\frac{23}{7}\right)$
C. $\left(\frac{31}{7}\right),\left(\frac{31}{7}\right)$
D. $\left(\frac{33}{7}\right),\left(\frac{33}{7}\right)$

Answer: C

75. Consider the point $A(3,4)$ and $B(7,13)$.If P be a point on the line $y=x$, the co-ordinate of point P if $P A+P B$ is minimum.
A. $\left(\frac{31}{7}\right),\left(\frac{31}{7}\right)$
B. $\left(\frac{11}{5}\right),\left(\frac{11}{5}\right)$
C. $\left(\frac{13}{5}\right),\left(\frac{13}{5}\right)$
D. none of these

Answer: B

- Watch Video Solution

76. The number of integral values of ' m ' for which the x coordinate of the point of intersection of the lines $3 x+4 y=9$ and
$y=m x+1$ is also an integer is
A. 2
B. 0
C. 4
D. 1

Answer: A

D Watch Video Solution

77. The diagonals of the parallelogram whose sides are $|x+m y+n=0| x+,m y+n^{\prime}=0, m x+l y+n=0, m x+l y+n^{\prime}=0$ include an angle
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\tan ^{-1}\left(\frac{l^{2}-m^{2}}{l^{2}+m^{2}}\right)$
D. $\tan ^{-1}\left(\frac{2 l m}{l^{2}+m^{2}}\right)$

- Watch Video Solution

78. Let $P Q R$ be a right angled isosceles triangle, right angled at $P(2,1)$. if the equation of the line $O R$ is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is
A. $3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0$
B. $3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
C. $3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0$
D. $3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0$

Answer: B

- Watch Video Solution

79. The equation of straight line passing through the origin and making an angle α with the straight line $x+y=0$ is
A. $y=(\tan \alpha) x$
B. $x^{2}+y^{2}+2 x y \sec 2 \alpha=0$
C. $x^{2}+y^{2}+2 x y=0$
D. none of these

Answer: B

- Watch Video Solution

80. If pairs of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair ,then
A. $p q=1$
B. $p q=-1$
C. $p+q=1$
D. $p+q=-1$

Answer: B

D Watch Video Solution

81. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel lines, then the distance between them is
A. $2 \sqrt{\frac{g^{2}-a c}{h^{2}+a^{2}}}$
B. $2 \sqrt{\frac{g^{2}+a c}{h^{2}+a^{2}}}$
c. $3 \sqrt{\left(\frac{g^{2}+a c}{a(a+b)}\right)}$
D. $3 \sqrt{\left(\frac{g^{2}-a c}{a(a+b)}\right)}$

Answer: A

D Watch Video Solution

82. If the angle between the lines represented by $2 x^{2}+5 x y+3 y^{2}+7 x+13 y-3=0$ is $\tan ^{-1}(m)$, then m is equal to
A. $\left|\frac{1}{5}\right|$
B. -1
C. $\frac{2}{3}$
D. none of these

- Watch Video Solution

83. The combine equation of the lines passing through the origin and having slpoes $1+\sqrt{3}$ and $1-\sqrt{3}$ is

- Watch Video Solution

84.

If $\alpha, \beta>0$
and $\alpha<\beta$
and $a x^{2}+4 \gamma x y+\beta y^{2}+4 p(x+y+1)=0$ represent a pair of straight lines, then
A. $\alpha \leq p \leq \beta$
B. $P \leq \alpha$
C. $p \leq \alpha$
D. $p \leq \alpha$ or $p \geq \beta$

Answer: D

D View Text Solution

85. The equation of image of pair of lines $y=|x-1|$ in y-axis is
A. $x^{2}+y^{2}+2 x+1=0$
B. $x^{2}-y^{2}+2 x-1=0$
C. $x^{2}-y^{2}+2 x+1=0$
D. none of these

Answer: C

86. For all real values of a and b lines
$(2 a+b) x+(a+3 b) y+(b-3 a)=0$ and $\mathrm{mx}+2 \mathrm{y}+6=0$ are concurrent, then m is equal to
A. -2
B. -3
C. -4
D. -5

Answer: A

- Watch Video Solution

87. If $5 a+4 b+20 c=t$, then the value of t for which the line $a x+b y+c-$ $1=0$ always passes through a fixed point is
A. 0
B. 20
C. 30
D. none of these

Answer: B

D Watch Video Solution

88. Find the area of the region bounded by $y^{2}+x y+10|x|-100=0$ in $x-y$ plane
A. 100 sq. units
B. 200 sq. units
C. 400 sq. units
D. none of these

- Watch Video Solution

89. Find the incentre of the triangle with vertices $(0,0),(0,21)$ and
$(21,0)$ is
A. $(7,7)$
B. $(3,9)$
C. $(3,7)$
D. $(1,5)$

Answer: A

90. Area of the parallelogram formed by the lines $y=m x, y=m x+1, y=n x$ and $y=n x$ and $y=n x+1$ equals
A. $\frac{|m+n|}{(m-n)^{2}}$
B. $\frac{2}{|m-n|}$
C. $\frac{1}{|m+n|}$
D. $\frac{1}{|m-n|}$

Answer: D

- Watch Video Solution

91. If $\frac{2}{1!9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{2^{m}}{n!}$, then orthocentre of the triangle having sides $x-y+1=0, x+y+3=0$ and $2 x+5 y-2=0$ is
A. $(2 m-2 n, m-n)$
B. $(2 m-2 n, n-m)$
C. ($2 m-n, m+n$)
D. $(2 m-n, m-n)$

Answer: A

- Watch Video Solution

92. Draw from origin are two mutually perpendicular lines forming an isosceles triangle together with the straight line $2 x+y=a$, then the area of this triangle is
A. $\frac{a^{2}}{2}$ sq unit
B. $\frac{a^{2}}{3}$ sq unit
C. $\frac{a^{2}}{5}$ sq unit
D. none of these

Answer: C

- Watch Video Solution

93. If the distance of any point (x, y) from origin is defined as
$d(x, y)=\max \{|x|,|y|\}$, then the locus $\mathrm{d}(\mathrm{x}, \mathrm{y})=1$ is a
A. circle of area π sq unit
B. square of area 1 sq unit
C. square of area 2 sq unit
D. none of these

Answer: C

94. If $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$,forall $x, y, \in R$ and $\mathrm{f}(1)=2$, then area enclosed by $3|x|+2|y| \leq 8$ is
A. $f(4)$ sq unit
B. $(1 / 2) f(6) s q$ unit
C. $\frac{1}{3} f(6)$ sq unit
D. $\frac{1}{3} f(5)$ sq unit

Answer: C

- Watch Video Solution

95. If the point $(\cos \theta, \sin \theta)$ does not fall in that angle between the lines $y=|x-1|$ in which the origin lies, then θ belongs to
A. $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
B. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
C. (0,pi)
D. none of these

Answer: B

- Watch Video Solution

96. The pair of lines joining the origin to the points of intersection of the curves
$a x^{2}+2 h x y+b y^{2}+2 g x=0$ and
$a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$
will be at right angles to one another , if
A. $g\left(a^{\prime}+b^{\prime}\right)=g^{\prime}(a+b)$
B. $g(a+b)=g^{\prime}\left(a^{\prime}+b^{\prime}\right)$
C. $g g^{\prime}=(a+b)\left(a^{\prime}+b^{\prime}\right)$
D. none of the above

Answer: A

- Watch Video Solution

97. Given the family of lines, $a(3 x+4 y+6)+b(x+y+2)=0$. The line of the family situated at the greatest distance from the point $P(2,3)$
has equation
A. $4 x+3 y+8$
B. $5 x+3 Y+10=0$
C. $15 x+8 y+30=0$
D. none of these

- Watch Video Solution

98. A ray of light passing through the point $A(1,2)$ is reflected at a point B on the x-axis and then passes through $(5,3)$. Then the equation of $A B$ is:
A. $5 x+4 y=13$
B. $5 x-4 y=-3$
C. $4 x+5 y=14$
D. $4 x-5 y=-6$

Answer: A

99. A ray of light coming from the point $(1,2)$ is reflected at a point A on the x-axis and then passes through the point $(5,3)$.

The coordinates of the point A are

A. $\left(\frac{13}{5}, 0\right)$
B. $\left(\frac{5}{13}, 0\right)$
C. $(-7,0)$
D. none of these

Answer: A

- Watch Video Solution

100. A pair of perpendicular straight lines drawn through the origin from an isosceles triangle with line $2 x+3 y=6$, then area of the triangle so formed is
A. $36 / 13$
B.
C. $13 / 5$
D. 17/13

Answer: A

D Watch Video Solution

101. A line passing through the point $(2,2)$ and the axes enclose an area λ. The intercepts on the axes made by the line are given by the two roots of
A. $x^{2}-2|\lambda| x+|\lambda|=0$
B. $x^{2}+|\lambda| x+2|\lambda|=0$
C. $x^{2}-|\lambda| x+2|\lambda|=0$
D. none of these

Answer: C

- Watch Video Solution

102. The distance of the line $2 x-3 y=4$ from the point $(1,1)$ in the direction of the line $x+y=1$ is
A. $\sqrt{2}$
B. $5 \sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. none of these

Answer: A

103. If one of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between coordinate axes in positive quadrant, then
A. $a+b=2|h|$
B. $a+b=-2 h$
C. $a-b=2|h|$
D. $(a-b)^{2}=4 h^{2}$

Answer: B

- Watch Video Solution

104. The limiting position of the point of intersection of the straight lines $3 \mathrm{x}+5 \mathrm{y}=1$ and $(2+c) x+5 c^{2} y=1$ as c tends to one is:
A. $\left(\frac{2}{5},-\frac{1}{25}\right)$
B. $\left(\frac{1}{2},-\frac{1}{10}\right)$
C. $\left(\frac{3}{8},-\frac{1}{40}\right)$
D. none of these

Answer: A

- Watch Video Solution

105. If in triangle $A B C, A=(1,10)$, circumcentre $=\left(-\frac{1}{3}, \frac{2}{3}\right)$ and orthocentre $=\left(\frac{11}{3}, \frac{4}{3}\right)$ then the co-ordinates of mid-point of side opposite to A is:
A. $\left(1,-\frac{11}{3}\right)$
B. $(1,5)$
C. $(1,-3)$
D. $(1,6)$

Answer: A

- Watch Video Solution

106. The points $(p+1,1),(2 p+1,3)$ and $(2 p+2,2 p)$ are collinear, if
A. $p=-1$
B. $p=\frac{1}{2}$
C. $p=2$
D. $p=-\frac{1}{2}$

Answer: C::D

(D) Watch Video Solution
107. If the coordinates of the vertices of a triangle are rational numbers, then which of the following points of the triangle will always have rational coordinates
A. Centroid
B. incentre
C. circumcentre
D. orthocentre

Answer: A::C::D

- Watch Video Solution

108. If one vertex of an equilateral triangle of side a, lies at the origin and the other lies on the line $x-\sqrt{3} y=0$, the coordinates of the third vertex are
A. $(0, a)$
B. $\left(\sqrt{3} \frac{a}{2},-\frac{a}{2}\right)$
C. (0,-a)
D. $\left(-\sqrt{3} \frac{a}{2}, \frac{a}{2}\right)$

Answer: A::B::C::D

D Watch Video Solution

109. Consider the straight lines $x+2 y+4=0$ and $4 x+2 y-1=0$. The line $6 x+6 y+7=0$ is
A. bisector of the angle including origin
B. bisector of acute angle
C. bisector of obtuse angle
D. none of the above

- Watch Video Solution

110. If $6 a^{2}-3 b^{2}-c^{2}+7 a b-a c+4 b c=0$, then the family of lines ax+by+c=0 is concurrent at
A. $(-2,-3)$
B. $(3,-1)$
C. $(2,3)$
D. $(-3,1)$

Answer: A::B

111. The point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ lies on
A. $x-y=0$
B. $(x+y)(a+b)=2 a b$
C. $(\mid x+m y)(a+b)=(l+m) a b$
D. $(1 x-m y)(a+b)=(1-m) a b$

Answer: A::B::C::D

- Watch Video Solution

112. If the point $P(x, y)$ be equidistant from the points $A(a+b, a-b)$ and $B(a-b, a+b)$, then
A. $a x=b y$
B. $b x=a y$
C. $x^{2}-y^{2}=2(a x+b y)$
D. P can be (a,b)

Answer: B::D

D Watch Video Solution

113. If the lines $a x+b y+c=0, b x+c y+a=0$ and $C x+a y+b=0$ are concurrent $(a+b+c \neq 0)$ then
A. $a^{3}+b^{3}+c^{3}-3 a b c=0$
B. $a=b$
C. $a=b=c$
D. $a^{2}+b^{2}+c^{2}-b c-c a-a b=0$

- Watch Video Solution

114. Type of quadrilateral formed by the two pairs of lines
$6 x^{2}-5 x y-6 Y^{2}=0$
$6 x^{2}-5 x y-6 Y^{2}+x+5 y-1=0$ is
A. square
B. rhombus
C. parallelogram
D. rectangle

Answer: A::D

115. The combined equation of three sides of a triangle is $\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0$ if $(-2, \mathrm{a})$ is an interior point and $(b, 1)$ is an exterior point of the triangle, then
A. $2<a<\frac{10}{3}$
B. $-2<a<\frac{10}{3}$
C. $-1<b<\frac{9}{2}$
D. $-1<b<1$

Answer: A::D

D Watch Video Solution

116. For points $P \equiv\left(x_{1} y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)$ is defined by d

$$
(P, Q)=\left|X_{1}-X_{2}\right|+\left|y_{1}-y_{2}\right|
$$

$O=(0,0), A=(1,2), B \equiv(2,3)$ and $C \equiv(4,3) \quad$ are four fixed points on $x-y$ plane

Answer the following questions based on above passage:
Let $R(x, y)$, such that R is equidistant from the points O and A
with respect to new distance and if $0<x<1$ and $0<y<2$ then R lie on a line segment whose equation is
A. $x+y=3$
B. $x+2 y=3$
C. $2 x+y=3$
D. $2 x+2 y=3$

Answer: D

- Watch Video Solution

117. For points $P \equiv\left(x_{1} y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)$ is defined by d $(P, Q)=\left|X_{1}-X_{2}\right|+\left|y_{1}-y_{2}\right|$
$O=(0,0), A=(1,2), B \equiv(2,3)$ and $C \equiv(4,3) \quad$ are four fixed points on $x-y$ plane

Answer the following questions based on above passage:
Let $S(x, y)$, such that S is equidistant from the points O and B with respect to new distance and if $x \geq 2$ and $0 \leq y<3$, then locus of S is
A. a line segment of finite length
B. a line of infinite length
C. a ray of finite length
D. a ray of infinite length

- Watch Video Solution

118. Let $f_{1}(x, y) \equiv a x^{2}+2 h x y+b y^{2}=0$ and let $f_{i+1}=0$ denotes the equation of the bisectors of $f_{i}(x, y)=0$ for all $i=1,2,3 \ldots$.

Answer the following question based on above passage:
Equation $f_{2}(x, y)=0$ is
A. $h x^{2}-(a-b) x y+h y^{2}=0$
B. $h x^{2}-(a-b) x y-h y^{2}=0$
C. $h x^{2}+(a-b) x y+h y^{2}=0$
D. $h x^{2}+(a-b) x y-h y^{2}=0$

Answer: B

119. Let $f_{1}(x, y) \equiv a x^{2}+2 h x y+b y^{2}=0$ and let $f_{i+1}=0$ denotes the equation of the bisectors of $f_{i}(x, y)=0$ for all $i=1,2,3 \ldots$.

Answer the following question based on above passage:
Equation $f_{3}(x, y)=0$ is
A. $(a-b) x^{2}-4 h x y+(a-b) y^{2}=0$
B. $(a-b) x^{2}-4 h x y-(a-b) y^{2}=0$
C. $(a-b) x^{2}+4 h x y-(b-a) y^{2}=0$
D. $(a-b) x^{2}+4 h x y-(a-b) y^{2}=0$

Answer: D

D Watch Video Solution

120. Match List - I with List-II

List-I

(1) Circular plate is expanded by heat from radius 5 cm to 5.06 cm .

Approximate increase in area is
(2) If an edge of a cube increases by
1%, then percentage increase in volume is
(3) If the rate of decrease of
$\frac{x^{2}}{2}-2 x+5$ is twice the rate of
decrease of x, then x is equal to
(rate of decreases is non-zero)
(4) Rate of increase in area of equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is
(R) 3

List-II

(P) 4
(Q) 0.6π
) \qquad
121. Match the List I with List II and select the correct option.

List I	List II
A Protozoa	Pennatula
B Aschelminthes	Beroe
C Porifera	Monocystis
D Ctenophora	Wuchereria
E Cnidaria	Cliona

- Watch Video Solution

122. If the lines $a x+b y+c=0, b x+c y+a=0$ and $C x+a y+b=0$ are concurrent $(a+b+c \neq 0)$ then

- Watch Video Solution

123. If the lines $\mathrm{x}-2 \mathrm{y}-6=0,3 \mathrm{x}+\mathrm{y}-4=0$ and $\lambda x+4 y+\lambda^{2}=0$ and concurrent, and it is given that $\lambda \in R^{+}, \lambda=$

- Watch Video Solution

124. Let, $a x+b y+c=0$ be a variable straight line, where, a, b, c are $1^{s t}, 3^{r d}$ and $7^{\text {th }}$ terms of an increasing AP, then the variable straight line always pases through a fixed point, whose abscissa is:

- Watch Video Solution

125. The length of the largest altitude of triangle formed by the straight lines $7 x-2 y+10=0,7 x+2 y-10=0$ and $9 x+y+2=0$ is

D Watch Video Solution

126. The area of the triangle formed by the axes and the line $e^{-\alpha} x+e^{\alpha} y=2$ is

D Watch Video Solution

127. The only integral value of α, such that the point $P(\alpha, 2)$ lines inside the triangle formed by the axis, $x+y=4$ and $x-y=4$ is :

- Watch Video Solution

128. The vertices of a triangle are
$\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right],\left[a t_{2} t_{3}, a\left(t_{2}+t_{3}\right)\right],\left[a t_{3} t_{1}, a\left(t_{3}+t_{1}\right)\right]$
Find the orthocentre of the triangle.
129. One diagonal of a square is the intercept of the line $\frac{x}{a}+\frac{y}{b}=1$ between the axes. Find the coordinates of other two vertices

- Watch Video Solution

130. Find α if $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle having sides along the lines $2 x+3 y=1, x+2 y-3=0,6 y=5 x-1$.

- Watch Video Solution

131. If the lines $a x+y+1=0, x+b y+1=0, x+y+c=0,(a, b, c$ are distinct and not equal to 1), are concurrent, then find the value of
$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$
132. Prove that all lines represented by the equation $(2 \cos \theta+3 \sin \theta) x+(3 \cos \theta-5 \sin \theta) y=5 \cos \theta-2 \sin \theta \ldots(1)$ pass through a fixed point and its reflection in the line $x+y=\sqrt{2}$? Prove that all lines through reflection point can be represented by the equation
$(2 \cos \theta+3 \sin \theta) x+(3 \cos \theta-5 \sin \theta) y=$
$(\sqrt{2}-1)(5 \cos \theta-2 \sin \theta)$

- Watch Video Solution

133. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0$ and $x-y-5=0$ at the points B, C and D respectively. If $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.
134. Given n straight line and a fixed point O, a straight line is drawn through O meeting these lines in the points $R_{1}, R_{2}, R_{3} \ldots \ldots R_{n}$. If R is the point on the line such that $\frac{n}{O R}=\frac{1}{O R_{1}}+\frac{1}{O R_{2}}+\ldots+\frac{1}{O R_{n}}$, then show that the locus of R is a straight line.

- Watch Video Solution

135. Find the condition that two of the three lines represented by $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=0$ may be at right angle.

- Watch Video Solution

136. If the equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents a pair of parallel lines, prove that
$h=\sqrt{a b}$ and $g \sqrt{b}=f \sqrt{a}$ or $(h=-\sqrt{a b}$ and $g \sqrt{b}=-f \sqrt{a})$

- Watch Video Solution

137. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents a pair of parallel lines, prove that
The distance between them is $2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$

- Watch Video Solution

138. prove that the product of the perpendiculars drawn from the point $\left(x_{1}, y_{1}\right)$ to the pair of straight lines
$a x^{2}+2 h x y+b y^{2}=0$ is $\left|\frac{a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}\right|$
139. The orthocentre of a triangle whose vertices are $(0,0),(\sqrt{3}, 0)$ and $(0, \sqrt{6})$ is
A. $(2,1)$
B. $(3,2)$
C. $(4,1)$
D. none of these

Answer: D

- Watch Video Solution

140. The image of the point $(3,8)$ with respect to the line $x+3 y=7$
A. $(-1,-4)$
B. $(-1,4)$
C. $(1,4)$
D. none of these

Answer: A

D Watch Video Solution

141. The equations of the lines representing the sides of a triangle are $3 x-4 y=0, x+y=0$ and $2 x-3 y=7$. The line $3 x+2 y=0$ always passes through the
A. Incentre
B. centroid
C. circumcentre

Answer: D

- Watch Video Solution

142. The point $(4,1)$ undergoes the following three transformations successively
(a) Reflection about the line $y=x$
(b)Translation through a distance 2 units along the positive direction of the x-axis
(c) Rotation through an angle $\pi / 4$ about the origin in the anti clockwise direction.

The final position of the point is given by the co-ordinates
A. $\left(\frac{4}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
B. $\left(-\frac{7}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
C. $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
D. $\left(\frac{3}{\sqrt{2}}, \frac{4}{\sqrt{2}}\right)$

Answer: B

(D) Watch Video Solution

143. A is $(a, 0)$ and B is $(-a, 0)$. If P is a point such that $\angle P A B-\angle P B A=90^{\circ}$, then the locus of P is
A. $x^{2}-3 y^{2}=2 a x-a^{2}=0$
B. $2 x^{2}-y^{2}+3 a x-a^{2}=0$
C. $3 x^{2}-y^{2}+2 a x-a^{2}=0$
D. $x^{2}-y^{2}=a^{2}$
144. The points (-a,-b). $(0,0),(\mathrm{a}, \mathrm{b})$ and $\left(a^{2}, a b\right)$ are
A. collinear
B. vertices of a parallelogram
C. vertices of a rectangle
D. none of these

Answer: A

- Watch Video Solution

145. The medians $A D$ and $B E$ of a triangle $A B C$ with vertices $A(0$,
b), $\mathrm{B}(0,0)$ and $\mathrm{C}(\mathrm{a}, 0)$ are perpendicular to each other if $a^{2}: b^{2}$ is
A. $2: 1$
B. 1:2
C. 1:3
D. 1:1

Answer: A

D Watch Video Solution

146. The vertices of a rhombus taken in order are $(2,-1),(3,4)$,
$(-2,3)$, then $4^{\text {th }}$ vertex is
A. $(-3,2)$
B. $(3,-2)$
C. $(-3,-2)$
D. none of these

- Watch Video Solution

147. The coordinates of the point P on the lines $2 x+3 y+1=0$, such that $|P A-P B|$ is maximum, where A is $(2,0)$ and B is $(0,2)$ is
A. $(5,-3)$
B. $(7,-5)$
C. $(9,-7)$
D. $(11-9)$

Answer: B

148. One vertex of the equilateral triangle with centroid at the origin and one side as $x+y-2=0$ is
A. $(-1,-1)$
B. $(2,2)$
C. $(-2,-2)$
D. none of these

Answer: C

- Watch Video Solution

149. If t_{1}, t_{2} and t_{3} are distinct, the points $\left(t_{1}, 2 a t_{1}+a t_{1}^{3}\right),\left(t_{2}, 2 a t_{2}+a t_{2}^{3}\right) \quad$ and $\quad\left(t_{3}, 2 a t_{3}+a t_{3}^{3}\right) \quad$ are collinear if
A. $t_{1} t_{2} t_{3}=-1$
B. $t_{1}+t_{2}+t_{3}=t_{1} t_{2} t_{3}$
C. $t_{1}+t_{2}+t_{3}=0$
D. $t_{1}+t_{2}+t_{3}=-1$

Answer: C

D Watch Video Solution

150. If $(-6,-4),(3,5),(-2,1)$ are the vertices of a parallelogram, then remaining vertex cannot be
A. $(0,1)$
B. $(-1,0)$
C. (-11,-8)
D. $(7,10)$

- Watch Video Solution

151. A line passing through the point $P(4,2)$ meets the x and y axis at A and B respectively. If O is the origin, then locus of the centre of the circumcircle of $\triangle O A B$ is
A. $x^{-1}+y^{-1}=2$
B. $2 x^{-1}+y^{-1}=1$
C. $x^{-1}+2 y^{-1}=1$
D. $2 x^{-1}+2 y^{-1}=1$

Answer: B

- Watch Video Solution

152. If $P \equiv(1,0), Q \equiv(-1,0), R \equiv(2,0)$ are three given points, then the locus of the point S satisfying the condition $S Q^{2}+S R^{2}=2 S P^{2}$ is
A. a straight line parallel to the x-axis
B. a circle passing through the origin
C. a circle with centre at origin
D. a straight line parallel to the y-axis

Answer: D

D Watch Video Solution

153. A straight line segment $A B$ of length 'a' moves with its ends on the axes. Then the locus of the point P which divides the line in the ratio $1: 2$ is
A. $9\left(x^{2}+y^{2}\right)=4 a^{2}$
B. $9\left(x^{2}+4 y^{2}\right)=4 a^{2}$
C. $9\left(y^{2}+4 x^{2}\right)=4 a^{2}$
D. $9 x^{2}+4 y^{2}=a^{2}$

Answer: B

D Watch Video Solution

154. Let A be any variable point on the X-axis and B the point $(2,3)$. The perpendicular at A to the line $A B$ meets the Y-axis at C. Then the locus of the mid-point of the segment AC as A moves is given by the equation
A. $2 x^{2}-2 x+3 y=0$
B. $3 x^{2}-3 x+2 y=0$
C. $3 x^{2}-3 x-2 y=0$
D. $2 x-2 x^{2}+3 y=0$

Answer: A

(D) Watch Video Solution

155. Let $A B$ be a line segment of length 4 unit with the point A on the line $y=2 x$ and B on the line $y=x$. Then locus of middle point of all such line segment is
A. a parabola
B. an ellipse
C. a hyperbola
D. a circle

- Watch Video Solution

156. The equation of the diagonal, through the origin, of the quadrilateral formed by the lines $x=0, y=0, x+y=1$ and $6 x+y=3$ is given by
A. $3 x-y=0$
B. $3 x-2 y=0$
C. $x-y=0$
D. $3 x-4 y=0$

Answer: B

157. The number of integral values of ' m ' for which the x coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is
A. 2
B. 0
C. 4
D. 1

Answer: A

D Watch Video Solution

158. Let $2 \mathrm{x}-3 \mathrm{y}=0$ be a given line and $P(\sin \theta, 0)$ and $Q(0, \cos \theta)$ be the two points. Then P and Q lie on the same side of the given line, if θ lies in
A. $1^{\text {st }}$ or $4^{\text {th }}$ quadrant
B. $2^{\text {nd }}$ or $4^{\text {th }}$ quadrant
C. $1^{\text {st }}$ or $2^{\text {nd }}$ quadrant
D. $2^{\text {nd }}$ or $3^{\text {rd }}$ quadrant

Answer: B

- Watch Video Solution

159. The equations of the lines through ($-1,-1$) and making angle 45° with the line $\mathrm{x}+\mathrm{y}=0$ are given by
A. $x^{2}-x y+x-y=0$
B. $x y-y^{2}+x-y=0$
C. $x y+x+y=0$
D. $x y+x+y+1=0$

- Watch Video Solution

160. The equations of the lines through the point $(1,2)$ whose distance from the point $(3,1)$ has the highest possible value is
A. $y=x$
B. $y=2 x$
C. $y=-2 x$
D. $y=-x$

Answer: B

161. The line segment joining the points $(1,2)$ and $(-2,1)$ is divided by the line $3 x+4 y=7$ in the ratio
A. $3: 4$
B. $4: 3$
C. 9: 4
D. $4: 9$

Answer: D

- Watch Video Solution

162. If a ray travelling the line $x=1$ gets reflected the line $x+y=1$, then the equation of the line along which the reflected ray travels is
A. $y=0$
B. $x-y=1$
C. $x=0$
D. none of these

Answer: A

D Watch Video Solution

163. The value of λ so that the equation $\lambda x^{2}+2 x y+\lambda y^{2}+4 x+4 y+3=0$ represent a pair of straight lines is
A. $\frac{5}{3}$
B. $\frac{5}{31}$
C. 1
D. none of these

Answer: C

- Watch Video Solution

164. If pairs of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair ,then
A. $m n+1=0$
B. $m n-1=0$
C. $\frac{1}{m}+\frac{1}{n b}=0$
D. $\frac{1}{m}+\frac{1}{n}=0$

Answer: A
165.
$\sqrt{\left\{(x-2)^{2}+y^{2}\right\}}+\sqrt{\left\{(x+2)^{2}+y^{2}\right\}}=4$ represents

- Watch Video Solution

166. If the lines represented by $x^{2}-2 p x y-y^{2}=0$ are rotated about the origin through an angle θ, one clockwise direction and other in anti-clockwise direction, then the equation of the bisectors of the angle between the lines in the new position is
A. $p x^{2}+2 p x y-p y^{2}=0$
B. $p x^{2}-2 x y+p y^{2}=0$
C. $x^{2}-2 p x y+y^{2}=0$
D. none of these

- Watch Video Solution

167. Product of the perpendiculars from (α, β) to the lines

$$
a x^{2}+2 h x y+b y^{2}=0 \text { is }
$$

A. $\frac{\left|a \alpha^{2}-2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{\left\{4 h^{2}+(a+b)^{2}\right\}}}$
B. $\frac{\left|a \alpha^{2}-2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{\left\{4 h^{2}-(a-b)^{2}\right\}}}$
C. $\frac{\left|a \alpha^{2}-2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{\left\{4 h^{2}-(a+b)^{2}\right\}}}$
D. none of these

Answer: D

168. The gradient of one of the lines $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, then
A. $h^{2}=a b$
B. $h=a+b$
C. $8 h^{2}=9 a b$
D. $a h^{2}=4 a b$

Answer: C

- Watch Video Solution

169. If pairs of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair ,then
A. $m n+1=0$
B. $m n-1=0$
C. $\frac{1}{m}+\frac{1}{n}=0$
D. $\frac{1}{m}-\frac{1}{n}=0$

Answer: A

(D) Watch Video Solution

170. If one of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between positive directions of the axes, a, b, h satisfy the relation
A. $a+b=2|h|$
B. $a+b=-2 h$
C. $a-b=2|h|$
D. $(a-b)^{2}=4 h^{2}$

Answer: B

- Watch Video Solution

171. If the quadratic equation $a x^{2}+b x+c=0$ has -2 as one of its roots, then $a x+b y+c=0$ represents
A. a family of concurrent lines
B. a family of parallel lines
C. a line parallel to x-axis
D. a line perpendicular to x-axis

Answer: A

172. The lines $2 x-y-1=0, a x+3 y-3=0$ and $3 x+2 y-2=0$ are concurrent for
A. all $a \in R$
B. $a=4$ only
C. $-1 \leq a \leq 3$
D. $a>0$ only

Answer: A

- Watch Video Solution

173. Given the family of lines, $a(3 x+4 y+6)+b(x+y+2)=0$. The line of the family situated at the greatest distance from the point $P(2,3)$
has equation
A. $15 x+8 y+30=0$
B. $4 x+3 y+8=0$
C. $5 x+3 y+6=0$
D. $5 x+3 y+10=0$

Answer: B

D Watch Video Solution

174. If $3 a+2 b+6 c=0$, the family of straight lines $a x+b y+c=0$ passes through a fixed point whose coordinates are given by
A. $(1 / 2,1 / 3)$
B. $(2,3)$
C. $(3,2)$
D. ${ }^{`}(1 / / 3,1 / / 2)$

- Watch Video Solution

175.

Consider
the
family
of
lines
$(x+y-1)+\lambda(2 x+3 y-5)=0 \quad$ and $\quad(3 \mathrm{x}+2 \mathrm{y}-4)+$
$\mu(x+2 y-6)=0$, equation of a straight line that belongs to both the families is
A. $x-2 y-8=0$
B. $x-2 y+8=0$
C. $2 x+y-8=0$
D. $2 x-y-8=0$

Answer: B
176. $P(3,1), Q(6,5)$ and $R(x, y)$ are three points such that the angle PRQ is a right angle and the area of $\triangle R P Q=7$. Then the number of such points R is
A. 0
B. 1
C. 2
D. infinity

Answer: A

- Watch Video Solution

177. The area of the triangle having vertices $(-2,1),(2,1)$ and $\left(\lim _{m \rightarrow \infty \rightarrow \infty} \cos ^{2 m}(n!\pi x), \mathrm{x}\right.$ is rational
$\lim _{m \rightarrow \infty \rightarrow \infty} \cos ^{2 m}(n!\pi x)$, where x is irrational) is
A. 2
B. 3
C. 4
D. none of these

Answer: A

D Watch Video Solution

178. If $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$,forall $x, y, \in R$ and $\mathrm{f}(1)=2$, then area enclosed by $3|x|+2|y| \leq 8$ is
A. $f(4)$ sq. unit
B. $(1 / 2) f(6)$ sq unit
C. $1 / 3 f(6)$ sq unit
D. $1 / 3 \mathrm{f}(5)$ sq unit

Answer: C

(D) Watch Video Solution

179. The difference of the tangents of the angles which the lines $x^{2}\left(\sec ^{2} \theta-\sin ^{2} \theta\right)-2 x y \tan \theta+y^{2} \sin ^{2} \theta=0$ makes with the x-axis is
A. $2 \tan \theta$
B. 2
C. $2 \cot \theta$
D. $\sin 2 \theta$

- Watch Video Solution

180. Mixed term $x y$ is to be removed from the general equation of second degree $a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$,one should rotate the axes through an angle θ given by $\tan 2 \theta$ equal to
A. $\frac{a-b}{2 h}$
B. $\frac{2 h}{a+b}$
C. $\frac{a+b}{2 h}$
D. $2 \frac{h}{a-b}$

Answer: D

181. Two of the straight lines given
$3 x^{3}+3 x^{2} y-3 x y^{2}+d y^{3}=0$ are at right angles, if
A. $d=-1 / 3$
B. $d=1 / 3$
C. $d=-3$
D. $d=3$

Answer: C

D Watch Video Solution

182. The vertices of a triangle are $A\left(x_{1}, x_{1} \tan \alpha\right),\left(B x_{2}, x_{2} \tan \beta\right)$ and $C\left(x_{3}, x_{3} \tan \gamma\right)$. If the
circumcentre of $\triangle A B C$ coincides with the origin and $\mathrm{H}(\mathrm{a}, \mathrm{b})$ be its orthocentre, then a / b is equal to
A. $\frac{\cos \alpha+\cos \beta+\cos \gamma}{\cos \alpha \cos \beta \cos \gamma}$
B. $\frac{\sin \alpha+\sin \beta+\sin \gamma}{\sin \alpha \sin \beta \sin \gamma}$
C. $\frac{\tan \alpha+\tan \beta+\tan \gamma}{\tan \alpha \tan \beta \tan \gamma}$
D. $\frac{\cos \alpha+\cos \beta+\cos \gamma}{\sin \alpha+\sin \beta+\sin \gamma}$

Answer: D

- Watch Video Solution

183. If the distance of any point (x, y) from origin is defined as
$d(x, y)=\max \{|x|,|y|\}$, then the locus $\mathrm{d}(\mathrm{x}, \mathrm{y})=1$ is a
A. circle of area π sq unit
B. square of area 1 sq unit
C. square of area 2 sq unit
D. none of these

Answer: C

(D) Watch Video Solution

184. For all real values of a and b lines
$(2 a+b) x+(a+3 b) y+(b-3 a)=0$ and $\mathrm{mx}+2 \mathrm{y}+6=0$ are concurrent, then m is equal to
A. -2
B. -3
C. -4
D. -5

- Watch Video Solution

185. A man starts from the point $P(-3,4)$ and reaches point $Q(0,1)$ touching x axis at R such that $P R+R Q$ is minimum, then the point R is
A. $(3 / 5,0)$
B. $(-3 / 5,0)$
C. $(-2 / 5,0)$
D. $(-2,0)$

Answer: B

186. A beam light is sent along the line $x-y=1$, which after refraction from the x-axis enters the opposite side by turning through 30° towards the normal at the point of incidence on the x-axis. Then the equation of the refracted ray is
A. $(2-\sqrt{3}) x+y=2+\sqrt{3}$
B. $(2+\sqrt{3}) x-y=2+\sqrt{3}$
C. $(2-\sqrt{3}) x+y=(2+\sqrt{3})$
D. none of these

Answer: B

- Watch Video Solution

187. Area of the parallelogram formed by the lines $y=m x, y=m x+1, y=n x$ and $y=n x$ and $y=n x+1$ equals
A. $\frac{|m+n|}{(m+n)^{2}}$
B. $\frac{2}{|m+n|}$
C. $\frac{1}{|m+n|}$
D. $\frac{1}{|m-n|}$

Answer: D

D Watch Video Solution

188. Given a family of lines $(2 x+y+4)+k(x-2 y-3)=0$, the number of lines belonging to the family at a distance $\sqrt{10}$ from $P(2,-3)$ is
A. 0
B. 1
C. 2
D. 4

Answer: B

- Watch Video Solution

189. All points lying inside the triangle formed by the points
$(1,3),(5,0)$ and $(-1,2)$ satisfy
A. $3 x+2 y \geq 0$
B. $2 x+y-13 \geq 0$
C. $2 x-3 y-12 \leq 0$
D. $-2 x+y \geq 0$

Answer: A::C
190. Let S_{1}, S_{2}, ,", be squares such that for each $n \geq 1$ the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a sides of S_{1} is 10 cm , then for which of the following values of n in the ares of S_{n} less than $1 \mathrm{sq} . \mathrm{cm}$?
A. 7
B. 8
C. 9
D. 10

Answer: B::C::D

- Watch Video Solution

191. Let L_{1} be a straight line passing through the origin and L_{2} be the straight line $x+y=1$. If the intercepts made by the circle $x^{2}+y^{2}-x+3 y=0$ on L_{1} and L_{2} are equal then which of the following equations can represent L_{1} ?
A. $x+y=0$
B. $x-y=0$
C. $x-b+a=0$
D. $y-a+b=0$

Answer: B::C

- Watch Video Solution

192. Two sides of a triangle are the lines
$(a+b) x+(a-b) y-2 a b=0$
and
$(a-b) x+(a+b) y-2 a b=0$. If the triangle is isosceles and the third side passes through point ${ }^{`}(b-a, a-b)$ then the equation of third side can be :
A. $x+y=0$
B. $x=y+2(b-a)$
C. $x-b+a=0$
D. $y-a+b=0$

Answer: A::B

- Watch Video Solution

193. A and B are two fixed points whose co-ordinates are $(3,2)$ and $(5,4)$ respectively. The co-ordinates of a point P if $A B P$ is an equilateral triangle, are :
A. $(4-\sqrt{3}, 3+\sqrt{3})$
B. $(4+\sqrt{3}, 3-\sqrt{3})$
C. $(3-\sqrt{3}, 4-\sqrt{3})$
D. $(3+\sqrt{3}, 4-\sqrt{3})$

Answer: A::B

D Watch Video Solution

194. If one diagonal of square is the portion of the line $\frac{x}{a}+\frac{y}{b}=1$ intercepted by the axes, then the extremities of the other diagonal of the square are :
A. $\left(\frac{a+b}{2}, \frac{a+b}{2}\right)$
B. $\left(\frac{a-b}{2}, \frac{a+b}{2}\right)$
C. $((a-b) / 2,(b-a) / 2)^{\prime}$
D. $\left(\frac{a+b}{2}, \frac{b-a}{2}\right)$

Answer: A::C

- Watch Video Solution

195. Two lines are given by $(x-2 y)^{2}+k(x-2 y)=0$. The value of k so that the distance between them is 3 , is
A. $k=0$
B. $k=3 \sqrt{5}$
C. $k=-3 \sqrt{5}$
D. $k=3$

Answer: B::C

196. Let

$$
L_{1} \equiv a x+b y+a \sqrt[3]{b}=0
$$

$L_{2} \equiv b x+a y+a \sqrt[3]{a}=0$ be two straight lines. The equations of the bisectors of the angle formed by the lines whose equations are $\lambda_{1} L_{1}-\lambda_{2} L_{2}=0$ and $\lambda_{1} L_{1}+\lambda_{2} L_{2}=0$ and λ_{1} and λ_{2} being non zero real numbers, are given by
A. $L_{1}=0$
B. $L_{2}=0$
C. $\lambda_{2} L_{1}+\lambda_{1} L_{2}=0$
D. $\lambda_{2} L_{1}-\lambda_{1} L_{2}=0$

Answer: A::B

197. A vector \vec{a} has components $2 p$ and 1 with respect to a rectangular Cartesian system, this system is rotated through a certain clockwise sense, if we write the new system \vec{a} has components $(\mathrm{p}+1)$ and 1 then
A. $p=0$
B. $p=1$
C. $p=-1 / 3$
D. $p=-1$

Answer: B::C

- Watch Video Solution

198. If $a^{2}-b^{2}-c^{2}-2 a b=0$, then the family of lines $a x+b y+c=0$ are concurrent at the points
A. $(1,-1)$
B. $(-1,1)$
C. $(1,1)$
D. $(-1,-1)$

Answer: B::C

D Watch Video Solution

199. $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are the vertices of a triangle $A B C$. $1 x+m y+n=0$ is an equation of the line L.

Answer the following questions based on above passage :
If L intersects the sides $B C, C A$ and $A B$ of the triangle $A B C$ at P, Q,
R respectively then $\frac{B P}{P C} \times \frac{C Q}{Q A} \times \frac{A R}{R B}$ is equal to
B. $-1 / 2$
C. ${ }^{`} 1 / / 2$
D. 1

Answer: A

- Watch Video Solution

200. $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are the vertices of a triangle $A B C$. $1 x+m y+n=0$ is an equation of the line L.

Answer the following questions based on above passage :
If the centroid of the triangle $A B C$ is at the origin and algebraic
sum of the length of the perpendiculars from the vertices of the triangle $A B C$ on the line L is equal to 1 then sum of the squares of the intercepts made by L on the coordinate axes is equal to
B. 4
C. 9
D. 16

Answer: C

- Watch Video Solution

201. Let $f_{1}(x, y) \equiv a x^{2}+2 h x y+b y^{2}=0$ and let $f_{i+1}=0$ denotes the equation of the bisectors of $f_{i}(x, y)=0$ for all i=1,2,3....

Answer the following question based on above passage:
Equation $f_{2}(x, y)=0$ is
A. $h x^{2}-(a-b) x y+h y^{2}=0$
B. $h x^{2}-(a-b) x y-h y^{2}=0$
C. $h x^{2}+(a-b) x y+h y^{2}=0$
D. $h x^{2}+(a-b) x y-h y^{2}=0$

Answer: B

- Watch Video Solution

202. Let $f_{1}(x, y) \equiv a x^{2}+2 h x y+b y^{2}=0$ and let $f_{i+1}=0$ denotes the equation of the bisectors of $f_{i}(x, y)=0$ for all $\mathrm{i}=1,2,3 \ldots$.

Answer the following question based on above passage:
Equation $f_{3}(x, y)=0$ is
A. $(a-b) x^{2}-4 h x y+(a-b) y^{2}=0$
B. $(a-b) x^{2}-4 h x y+(a-b) y^{2}=0$
C. $(a-b) x^{2}+4 h x y+(b-a) y^{2}=0$
D. $(a-b) x^{2}-4 h x y-(a-b) y^{2}=0$

Answer: D

- Watch Video Solution

203. For points $P \equiv\left(x_{1} y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)$ is defined by d

$$
(P, Q)=\left|X_{1}-X_{2}\right|+\left|y_{1}-y_{2}\right|
$$

$O=(0,0), A=(1,2), B \equiv(2,3)$ and $C \equiv(4,3)$ are four fixed points on $x-y$ plane

Answer the following questions based on above passage:
Let $R(x, y)$, such that R is equidistant from the points O and A with respect to new distance and if $0<x<1$ and $0<y<2$ then R lie on a line segment whose equation is
A. $x+y=3$
B. $x+2 y=3$
C. $2 x+y=3$
D. $2 x+2 y=3$

Answer: D

- Watch Video Solution

204. For points $P \equiv\left(x_{1} y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)$ is defined by d $(P, Q)=\left|X_{1}-X_{2}\right|+\left|y_{1}-y_{2}\right|$
$O=(0,0), A=(1,2), B \equiv(2,3)$ and $C \equiv(4,3) \quad$ are four fixed points on $x-y$ plane

Answer the following questions based on above passage:
Let $S(x, y)$, such that S is equidistant from the points O and B
with respect to new distance and if $x \geq 2$ and $0 \leq y<3$, then locus of S is
A. a line segment of finite length
B. a line of infinite length
C. a ray of finite length
D. a ray of infinite length

Answer: D

- Watch Video Solution

205. If \triangle denotes the area of the triangle with vertices $(p+1,1)$,
$(2 p+1,3)$ and $(2 p+2,2 p)$
206. Match List - I with List-II

Let the functions defined in List - I have domain $(-\pi / 2, \pi / 2)$

List-I
(1) $x+\sin x$
(2) $\sec x$
(Q) decreasing
(3) e^{-x}
(R) neither increasing nor decreasing

D Watch Video Solution

207. Match List - I with List-II

Let the functions defined in List - I have domain ($-\pi / 2, \pi / 2$)

List-I

List-II

(1) $x+\sin x$
(P) increasing
(2) $\sec x$
(Q) decreasing
(3) e^{-x}
(R) neither increasing nor decreasing

- Watch Video Solution

208. Given that shortest distance of the bisector of $x y=0$ from the point $(3,0)$ is $\frac{3}{2} \sqrt{k}$ Then, the value of k is :

- Watch Video Solution

209. If the point $P\left[X_{1}+t\left(X_{2}-X_{1}\right), y_{1}+t\left(y_{2}-y_{1}\right]\right.$ divides AB internally where $\left(X_{1}, Y_{1}\right)$ and $\mathrm{B} \mathrm{B}\left(X_{2}, Y_{2}\right)$ then, if $t \in(0, k)$, find k
210. A line is such that its segment between the lines $5 x-y-4=0$ and $3 x+4 y-4=0$ is bisected at the point $(1,5)$. If the slope of the straight line is m, then [m] = [.] is G.I.F

- Watch Video Solution

211. Point A is symmetric to $B(4,-1)$ with respect to the bisector of the 1st quadrant Then [length of $A B$] is [.] is G.I.F

- Watch Video Solution

212. If ' k ' is the ordinate of the point P on the line $3 x+2 y+10=0$
such that \mid PA-PB |is maximum, where A is $(4,2)$ and B is $(2,4)$,

- Watch Video Solution

213. The equation of second degree
$x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0$ represents a pair of
straight lines, the distance between them is :

- Watch Video Solution

214. If $x^{2}-3 x y+\lambda y^{2}+3 x-5 y+2=0$,represent a pair of straight lines, then the value of λ is

- Watch Video Solution

215. The equation $x^{2}-3 x y+\lambda y^{2}+3 x-5 y+2=0$ where λ is a real number, represents a pair of straight lines If θ is the
angle between the line, then $\frac{\cos e c^{2} \theta}{2}$ is

D Watch Video Solution

216. The pair of straight lines joining the origin to the points of intersection of $X^{2}+Y^{2}=4$ and $y=3 X+c$ are perpendicular, if $\frac{c^{2}}{4}=$

- Watch Video Solution

217. If the angle between the pair of straight lines represented
by the equation $x^{2}-3 x y+\lambda y^{2}+3 x-5 y+2=0 \quad$ is $\tan ^{-1}(1 / 3)$ where $\lambda \geq 0$, then λ is

D Watch Video Solution

218. A rectangle $P Q R S$ has its side $P Q$ parallel to the line $y=m x$ and vertices P, Q and S on the lines $y=a, x=b$ and $x=-b$ respectively, Find the locus of the vertex R.

- Watch Video Solution

219. A straight lines L through the origin meets the lines $x+y=1$ and $x+y=3$ at P and Q respectively. Through P and Q two straight lines L_{1} and L_{2} are drawn, parallel to $2 x-y=5$ and $3 x+y=5$ respectively. Line L_{1} and L_{2} intersect at R. Show that the locus of R as L varies is a straight line.

- Watch Video Solution

220. A variable line is at constant distance p from the origin and meets the co-ordinate axes in A, B. Show that the locus of the centroid of the $\triangle O A B$ is $x^{-2}+y^{-2}=9 p^{-2}$

- Watch Video Solution

221. The line segment joining $A(3,0)$ and $B(5,2)$ is rotated about A is the anticlockwise direction through and angle of 45° so that B goes to C. If D is the reflection of C in y-axis, find the coordinates of D.

- Watch Video Solution

222. A straight line L with negative slope passes through the point $(8,2)$ and cuts the positive coordinate axes at points P and
Q. As L varies, the absolute minimum value of $O P+O Q$ is $(O$ is origin)

- Watch Video Solution

223. Find the condition in a, b such that the portion of the line $a x+b y=1$, intercepted between the lines $a x+y=0$ and $x+b y=0$ sustains a right angle at origin.

- Watch Video Solution

224. Find the set of values of λ, for which the point $\left(\sqrt{4-\lambda^{2}}, \lambda\right)$ lies outside the triangle formed by the lines $(y-3)^{2}=3 x^{2}$ and $y+\sqrt{3}=0$

- Watch Video Solution

225. Prove that two of the four lines represented by the joint equation
$a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+a y^{4}=0$
will bisect the angles between the other two if $c+6 a=0$ and $b+d=0$

- Watch Video Solution

226. A variable line makes intercepts on the co-ordinate axes, the sum of whose squares is constant and equal to k^{2}. Show that the locus of the foot of the perpendicular from the origin to this line is $\left(x^{2}+y^{2}\right)^{2}\left(x^{-2}+y^{-2}\right)=k^{2}$.
227. The pair of lines joining the origin to the points of intersection of the curves

$$
a x^{2}+2 h x y+b y^{2}+2 g x=0 \text { and }
$$

$a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$
will be at right angles to one another , if

- Watch Video Solution

228. The number of points, having both co-ordinates as integers, that lie in the interior of triangle with vertices $(0,0),(0,41)$, and $(41,0)$ is :
A. 861
B. 820
C. 780
D. 901

Answer: C

- Watch Video Solution

229. Locus of the image of the point $(2,3)$ in the line
$(2 x-3 y+4)+k(x-2 y+3)=0, k \in R$, is a
A. straight lines parallel to y-axis.
B. circle of radius $\sqrt{2}$
C. circle of radius $\sqrt{3}$
D. straight lines parallel to x-axis

Answer: B

230. The least positive value of t so that the lines $x=t+\alpha, y+16=0$ and $y=\alpha x$ are concurrent is
A. 2
B. 4
C. 16
D. 8

Answer: D

- Watch Video Solution

231. If the point $(2 \cos \theta, 2 \sin \theta)$, for $\theta \in(0,2 \pi)$ lies in the region between the lines $x+y=2$ and $x-y=2$ containing origin, then θ lies in
A. $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right)$
B. $[0, \pi]$
C. $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
D. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

Answer: C

D Watch Video Solution

232. Number of points having distance $\sqrt{5}$ from the straight line $x-2 y+1=0$ and a distance $\sqrt{13}$ from the line $2 x+3 y-1=0$ is
A. 1
B. 2
C. 4
D. 5

- Watch Video Solution

233. For $a>b>c>0$, the distance between (1,1) and the point of intersection of the lines $a x+b y+c=0$ and $b x+a y+c=$ 0 is less than $2 \sqrt{2}$, then
A. $a+b-c>0$
B. $a-b+c<0$
C. $a-b+c g t 0$
D. $a+b-c<0$

Answer: A

234. A ray light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching the x-axis, the equation of the reflected ray is
A. $\sqrt{3} y=x-1$
B. $y=\sqrt{3} x-\sqrt{3}$
C. $\sqrt{3} y=x-\sqrt{3}$
D. $y=x+\sqrt{3}$

Answer: C

- Watch Video Solution

235. The x co -ordinate of the incentre of the triangle that has the coordinates of mid - points of its sides as $(0,1),(1,1)$ and (1
,0) is 'a/(2+sqrt2)'. Find a.
A. $2-\sqrt{2}$
B. $1+\sqrt{2}$
C. $1-\sqrt{2}$
D. $2+\sqrt{2}$

Answer: A

D Watch Video Solution

236. The equation $2 x^{2}+5 x y-12 y^{2}=0$ represents a
A. circle
B. pair of non- perpendicular intersecting straight lines
C. pair of perpendicular straight lines
D. hyperbola

- Watch Video Solution

237. The number of lines which pass through the point $(2,-3)$ and are the distance 8 from the point $(-1,2)$ is
A. infinite
B. 4
C. 2
D. 0

Answer: D

238. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points $(1,1)$ and $(2,4)$ in the ratio $3: 2$, then k equals
A. $\frac{29}{5}$
B. 5
C. 6
D. $\frac{11}{5}$

Answer: C

- Watch Video Solution

239. A line is drawn through the point $(1,2)$ to meet the coordinate axes at P and Q such that it forms a triangle OPQ ,
where O is the origin. If the area of the triangle OPQ is least, then the slope of the line $P Q$ is
A. $\frac{1}{4}$
B. -4
C. -2
D. $-\frac{1}{2}$

Answer: C

- Watch Video Solution

240. Let $P(2,3), Q(-2,1)$ be the vertices of the triangle $P Q R$.If the centroid of $\triangle P Q R$ lies on the line $2 \mathrm{x}+3 \mathrm{y}=1$, them locus of R is
A. $2 x+3 y+9=0$
B. $2 x-3 y=9$
C. $3 x+2 y=5$
D. $3 x-2 y=5$

Answer: A

- Watch Video Solution

241. The number of integral values of ' m ' for which the x coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is
A. 0
B. 2
C. 4
D. 1

- Watch Video Solution

242. If a straight line passes through the point (α, β) and the portion of the line intercepted between the axes is divided equally at that point, them $\frac{x}{\alpha}+\frac{y}{\beta}$ is
A. 0
B. 1
C. 2
D. 4

Answer: C

243. The line joining $\mathrm{A}(b \cos \alpha, b \sin \alpha)$ and $\mathrm{B}(a \cos \beta, a \sin \beta)$, where $a \neq b$, is produced to the point $M(x, y)$ so that $A M: M B=b$:a Then $x \cos \frac{\alpha+\beta}{2}+y \sin \frac{\alpha+\beta}{2}$
A. 0
B. 1
C. -1
D. $a^{2}+b^{2}$

Answer: A

- Watch Video Solution

244. A straight line through the point of intersection of the lines $x+2 y=4$ and $2 x+y=4$ meets the coordinates axes at A and B. The locus of the midpoint of $A B$ is
A. $3(x+y)=2 x y$
B. $2(x+y)=3 x y$
C. $2(x+y)=x y$
D. $x+y=3 x y$

Answer: B

- Watch Video Solution

245. A straight lines L through the point $(3,2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$. If L also intersects the x axis, then the equation of L is
A. $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y-\sqrt{3} x-2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer: A

- Watch Video Solution

246. The lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line L_{3} :
$y+2=0$ at P and Q respectively. The bisector of the acute angle between L_{1} and L_{2} intersects L_{3} at R

Statement - 1 : The ratio $\mathrm{PR}: \mathrm{PQ}$ equals $2 \sqrt{2}: \sqrt{5}$
Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangle
A. statement -1 is true, Statement -2 is true :

Statement -2 is not correct explanation for statement -1
B. Statement -1 is true, Statement -2 is false
C. Statement -1 is false, statement -2 is true
D. Statement -1 is true statement -2 is true, Statement- 2 is a correct explanation for Statement -1

Answer: B

- Watch Video Solution

247. The coordinates of the two points lying on $x+y=4$ and at a unit distance from the straight line $4 x+3 y=10$ are
A. $(-3,1),(7,11)$
B. $(3,1),(-7,11)$
C. $(3,1),(7,11)$
D. $(5,3),(-1,2)$

- Watch Video Solution

248. If the three points $A(1,6), B(3,-4)$ and $C(x, y)$ are collinear then the equation satisfying by x and y is
A. $5 x+y-11=0$
B. $5 x+13 y+5=0$
C. $5 x-13 y+5=0$
D. $13 x-5 y+5=0$

Answer: A

249. Find the image of the point $(-8,12)$ which respect to the line

$$
4 x+7 y+13=0
$$

- Watch Video Solution

