

India's Number 1 Education App

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

COMPLEX NUMBER

Question Bank

1. The amplitude of the complex no. z=1 is

A. a) π

B. b) 0

C. c) $-\pi$

D. d) undefined

Answer: D

washiyada a cabatan

watch video Solution

2. If
$$\omega$$
 be the imaginary cube root of unity then the value of ω^{241} will be

A. 0

B. 1

 $\mathsf{C}.\,\omega$

D. ω^2

Answer: C

Watch Video Solution

3. If $i=\sqrt{-1}$ then the value of $1+i+i^2+i^3+i^4$ will be

A. 0

B. 1

C. (-1)

D.	2

Answer: B

Watch Video Solution

- **4.** The modulus of complex no. (1+i)/(1-i) is
 - **A.** 0
 - B. 1
 - C. 2
 - D. none of these

Answer: B

Watch Video Solution

5. The square root of 2i is

A.
$$\pm (1+i)$$

 $B.\pm(1-i)$

$$\mathsf{C}.\pm i$$

D. none of these

Answer: A

Watch Video Solution

6. $z+ar{z}=0$ if and only if

C. BothRe(z)=0 and im(z)=0

D. none of these

Answer: B

7.
$$z=i^5$$
 then the value of $\left(z+z^2+z^3+z^4
ight)$

A. 1

B. (-i)

C. 0

D. (-1)

Answer: C

Watch Video Solution

8. Find the principal amplitude of (-1-i).

A.
$$\left(\frac{\pi}{4}\right)$$

$$\mathrm{B.}~\frac{-3\pi}{4}$$

C.
$$\frac{5\pi}{4}$$

D. none of these

Answer: B

Watch Video Solution

- **9.** If |x+3|=5 then the value of x is
 - A. `(+-4)
 - B. (± 5)
 - C. (± 3)
 - D. none of these

Answer: A

Watch Video Solution

10. If z=3i then the value of $z\bar{z}$ is

A. x=1 , y=2

B. x=1,y=0

C. x=2 , y=1

D. x=1 , y=(-1)

Answer: D

Watch Video Solution

Watch Video Solution

11. If (x+iy)(1+i)=2 then

A. 81

B. 27

C. 9

D. (-9)

Answer: C

- **12.** In argand plane the complex no. $\left(\frac{1+2i}{1+i}\right)$ lies in
 - A. ist quadrant
 - B. 2nd quadrant
 - C. 3rd quadrant
 - D. 4th quadrant

Answer: B

- 13. If the complex nos $(\sin x + i\cos 2x)$ and $(\cos x i\sin 2x)$ are conjugate to each other then the value of x is
 - A. 0
 - B. $\left(\frac{\pi}{2}\right)$
 - $\mathsf{C}.\,\pi$

D. none of these

Answer: D

Watch Video Solution

14. If
$$iz^3+z^2-z+i=0$$
 then the value of $|z|$ is

A. 2

B. 1

C. $\sqrt{2}$

D. none of these

Answer: B

Watch Video Solution

15. The value of $\left(\frac{1+\sqrt{-3}}{2}\right)^6+\left(\frac{1-\sqrt{-3}}{2}\right)^9$ is

A. 0

17. The complex no z=x+iy satisfying the condition
$$ampigg(rac{z-i}{z+i}igg)=rac{\pi}{4}$$

A. a st. line

lies on

- B. a circle
- C. an ellipse
- D. a hyperbola

Answer: B

- **18.** If z_1 and z_2 are two complex no. st $|z_1+z_2|$ = $|z_1|+|z_2|$ then
 - A. $arg(z_1) = arg(z_2)$
 - $\mathtt{B.}\,arg(z_1)+arg(z_2)=0$
 - $\mathsf{C.}\,arg(z_1z_2)=0$

D. none of these

Answer: A

Watch Video Solution

- **19.** Let z_1 and z_2 are two complex nos s.t. $|z_1|=|z_2|=1$ then $\Big|rac{z_1-z_2}{1-z_1ar{z}_2}\Big|$ is equal to
 - A. a. 2
 - B. b. 1/2
 - C. c. 1
 - D. d. none of these

Answer: D

21. The value of $(1-i)^{-2}-(1+i)^{-2}$ is

- A. (-i)
- B. 1

C. i

D. none of these

Answer: C

Watch Video Solution

- **22.** If p,q,r three complex nos. so that p+q+r =0 and |p|=|q|=|r|=1 then the value of $\left(\frac{1}{p}+\frac{1}{q}+\frac{1}{r}\right)$ is
 - A. 3
 - B. 1
 - C. 0
 - D. none of these

Answer: C

Watch Video Solution

23. The modulus of $(x-iy)^2$ is

B.
$$\left(x^2+y^2
ight)$$

C.
$$\left(x^2+4y^2
ight)$$

D. $\left(4x^2+y^2
ight)$

A. $\sqrt{x^2+y^2}$

Answer: B

Watch Video Solution

24. If
$$2i^2+6i^3+3i^{16}-6i^{19}+4i^{25}=x+iy$$
, then

D. d) x=1,y=4

Answer: D

The

value

of

$$\Big(\cos\Big(\frac{\pi}{10}\Big)+i\sin\Big(\frac{\pi}{10}\Big)\Big)\Big(\cos\Big(\frac{2\pi}{10}\Big)+i\sin\Big(\frac{2\pi}{10}\Big)\Big)\Big(\cos\Big(\frac{3\pi}{10}\Big)+i\sin\Big(\frac{2\pi}{10}\Big)\Big)\Big(\cos\Big(\frac{3\pi}{10}\Big)+i\sin\Big(\frac{3\pi}{10}\Big)\Big)\Big(\cos\Big(\frac{3\pi}{10}\Big)\Big)\Big)\Big(\cos\Big(\frac{3\pi}{10}\Big)\Big)$$

is

A. a) (-1)

B. b) 1

C.c)2

D. d) (-2)

Answer: A

Watch Video Solution

Watch Video Solution

26. If $\frac{\left(a+i\right)^2}{2a-1}=p+iq$ then find the values of $\left(p^2+q^2\right)$

27. If ω and ω^2 be the imaginary cube roots of unity then find the value of $\left(3+3\omega+5\omega^2\right)^6-\left(2+6\omega+2\omega^2\right)^3$

28. Value of $i^n+i^{n+1}+i^{n+2}+i^{n+3}$ (when $i=\sqrt{-1}$) -

29. If (1+i)(2+i)(3+i).....(n+i)=a+ib then show that

$$2.5.10.\ldots (n^2+1)=a^2+b^2$$

30. Find the least possible integral value of n so that $((1+i)/(1-i))^n$ is real

Match Video Solution

31. Find the amplitude of $(\sqrt{3}+i)$

- Watch Video Solution
- - Watch Video Solution

32. Find the value of $\sqrt{\left[-3+\sqrt{(\left\{-3+\sqrt{-3+...\text{to infinity}}\right\})}\right]}$

- 33. Express $\frac{1}{\left(1-i\right)^3}$ in the form A+iB
 - Watch Video Solution

34. Find the square root of (i)

- Watch Video Solution
- **35.** Show that $x^3-1=(x-1)(x-\omega)ig(x-\omega^2ig)$

36. Find 4th roots of 1

 $\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)$

37. Express each of the following expressions as the sum of two squares:

38. If |z|>1 then find the position of the complex no. of z in argand

plane.

40. If
$$z^2 + \left|z\right|^2 = 0$$
 then find the imaginary value of z

41. Show that in argand plane the complex number (1+4i),(2+7i)and

42. z_1 and z_2 are two different complex nos where $z_1
eq 0$ $z_2
eq 0$ prove

(3+10i) are collinear.

- **43.** If x=a+b , $y=a\omega+b\omega^2$, $z=a\omega^2+b\omega$ then show that $x^3 + y^3 + z^3 = 3(a^3 + b^3)$

that $(|z_1|+|z_2|)igg|rac{z_1}{|z_1|}+rac{z_2}{|z_2|}igg|\leq 2(|z_1|+|z_2|)$

44. Find the modulus and amplitude of the complex nos
$$\frac{1+\cos\alpha+i\sin\alpha}{1+\cos\alpha-i\sin\alpha}$$

45. Express the complex nos
$$\dfrac{1+7i}{\left(2-i
ight)^2}$$
 in polar form

46. Factorise $a^3 + b^3 + c^3 - 3abc$

47. Find the square roots : $x-i\sqrt{x^4+x^2+1}$

48. If ω is the imaginary cube root of 1 then prove that

$$\left(a+b\omega+c\omega^2
ight)^3+\left(a+b\omega^2+c\omega
ight)^3$$
=

- (2a-b-c)(2b-a-c)(2c-a-b)
 - Watch Video Solution

- **49.** If $y=\sqrt{x^2+6x+8}$ then show that one of the value of $\sqrt{1+iy}+\sqrt{1-iy}$ is $\sqrt{2x+8}$ $(i=\sqrt{-1})$
 - Watch Video Solution

- **50.** If $x=\cos lpha+i\sin lpha$ and $1+\sqrt{1-y^2}=ny$ then show that $rac{y}{2}n(1+nx)\Big(1+rac{n}{x}\Big)=1+$ ycosalpha`
 - Watch Video Solution

52. Show that complex numbers (2+i3), (2-i3), (3-i2), (3+i2) are concyclic in the argand plane

53. If in argand plane the vertices A,B,C of an isoceles triangle are represented by the complex nos z_1,z_2,z_3 respectively where $\angle C=90^\circ$ then show that $(z_1-z_2)^2=2(z_1-z_3)(z_3-z_2)$

54. If z_1,z_2,z_3 are three complex number then prove that $z_1Im(ar z_2,z_3)+z_2Im(ar z_3,z_1)+z_3Im(ar z_1,z_2)=0$

55. Prove that
$$(1-\omega^2)(1-\omega^2+\omega^4)(1-\omega^4+\omega^8)....$$
 to 2n terms = 2^{2n}

56. If
$$x-iy=\sqrt{rac{a+ib}{c-id}}$$
, prove that $\left(x^2+y^2
ight)^2=rac{a^2+b^2}{c^2+d^2}$

57. If z be complex no. and $\frac{z-1}{z+1}$ be purely imaginary show that z lies on the circle whose centre is at origin and the radius is 1

 z_1 and z_2 be two complex no. then prove that

$$\left|z_{1}+z_{2}
ight|^{2}+\left|z_{1}-z_{2}
ight|^{2}=2\Big[\left|z_{1}
ight|^{2}+\left|z_{2}
ight|^{2}\Big]$$

58.

59. If $z=rac{3}{2+\cos heta+i\sin heta}$ then show that z lies on a circle in the complex plane

60. If
$$a=\cos\alpha+i\sin\alpha, b=\cos\beta+i\sin\beta, c=\cos\gamma+i\sin\gamma$$
 and $\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=1$, then $\cos(\beta-\gamma)+\cos(\gamma-\alpha)+\cos(\alpha-\beta)$ =

A. a)
$$\frac{3}{2}$$

$$\frac{1}{2}$$

B. b)
$$-\frac{3}{2}$$

Answer:

Watch Video Solution

61. If ω is the imaginary cube root of unity and a+b+c=0 then show that $\left(a+b\omega+c\omega^2\right)^3+\left(a+b\omega^2+c\omega\right)^3=27abc$

Watch Video Solution

62. If $z_1,\,z_2,\,z_3$ represent three vertices of an equilateral triangle in argand plane then show that $\dfrac{1}{z_1-z_2}+\dfrac{1}{z_2-z_3}+\dfrac{1}{z_3-z_1}=0$

Watch Video Solution

63. Prove that the complex numbers z_1,z_2 and the origin from an isoceles triangle with vertical angle $\frac{2\pi}{3}$ if $z_1^2+z_1z_2+z_2^2=0$

64. If
$$(1+x)^n=a_0+a_1x+a_2x^2+\ldots +a_nx^n$$
 then show that $(a_0-a_2+a_4-\ldots)^2+(a_1-a_3+a_5-\ldots)^2=a_0+a_1+a_2+\ldots$

65. If
$$z_1,z_2,z_3......z_n$$
 are n complex numbers s.t, $|z_1|=|z_2|=.....|z_n|=1$ then show that $|z_1+z_2+.....+z_n|=\left|\left(\frac{1}{z_1}\right)+\left(\frac{1}{z_2}\right)+.....+\left(\frac{1}{z_n}\right)\right|$

66. z_1 and z_2 be two complex no. then prove that

 $\left| {{z_1} + {z_2}} \right|^2 + \left| {{z_1} - {z_2}} \right|^2 = 2{\left\lceil {\left| {{z_1}} \right|^2 + \left| {{z_2}} \right|^2}
ight
ceil$

67. If $\cos\theta=\frac{1}{2}\bigg(a+\frac{1}{a}\bigg) \quad \cos(\phi)=\frac{1}{2}\bigg(b+\frac{1}{b}\bigg)$ show that one of the values of $2\cos(\theta-\phi)$ is $\bigg(\frac{a}{b}+\frac{b}{a}\bigg)$

68. If
$$x = -5 + 2\sqrt{-4}$$
, find the value of $x^2 + 4$.

69. Find the sum and product of the two complex numbers $z_1=2+3i$ and z=-1+5i.

70. Express $\dfrac{1}{1-\cos heta + i \sin heta}$ in the form a+ib

73. Find argument of:

74. Find argument of:

 $-1-\sqrt{3}i$

75. If
$$|z+3| \leq 4$$
, then the max. value of $|z|$ is

Answer: D

76. If z=x-iy and
$$z^{rac{1}{3}}=p+iq$$
 then $\dfrac{rac{x}{p}+rac{y}{q}}{p^2+q^2}$ is equal to

Answer: D

Watch Video Solution

77. Represent the given complex numbers in polar form:

$$iig(1-i\sqrt{3}ig)=i-i^2\sqrt{3}=\sqrt{3}+i$$

$\sin lpha - i \cos lpha (lpha a cute)$

79. If
$$z_1$$
 and z_2 be two complex numbers such that $\left|\frac{z_1-2z_2}{2-z_1\bar{z}_2}\right|=1$ and $|z_2|\neq 1$, what is the value of $|z_1|$?

78. Represent the given complex numbers in polar form:

80. If in argand plane the vertices A,B,C of an isoceles triangle are represented by the complex nos z_1,z_2,z_3 respectively where $\angle C=90^\circ$ then show that $(z_1-z_2)^2=2(z_1-z_3)(z_3-z_2)$

81. Find the square root of -7-24i

82. If $x_r = \cos\left(\frac{\pi}{3^r}\right) + i\sin\left(\frac{\pi}{3^r}\right)$: prove that $x_1x_2x_3$upto infinity=i

$$\frac{\alpha-1}{\beta-1} + \frac{\beta-1}{\gamma-1} + \frac{\gamma-1}{\alpha-1}$$

84. If
$$\alpha_1,\alpha_2....\alpha_{n-1}$$
 are the nth roots of unity then show that $(5-\alpha_1)(5-\alpha_2)(5-\alpha_3)...(5-\alpha_{n-1})=rac{5^n-1}{4}$

85. Show that the points represented by complex numbers (3+2i),(2-i),-7i

radius

of

circle

83. if α, β, γ are roots of $x^3 - 3x^2 + 3x + 7 = 0$, then find

are collinear.

86. Find the centre and
$$2|z|^2+(3-i)z+(3+i)ar{z}-7=0$$

87. Find all the circles which are orthogonal to ert z ert = 1 and ert z - 1 ert = 4

88. If z_1,z_2,z_3 are complex numbers such that $\frac{2}{z_1}=\frac{1}{z_2}+\frac{1}{z_3}$, show that the points represented by z_1,z_2,z_3 lie on a circle passing through the origin.

89. If 4x+i(3x-y)=3+i(-6), where x and y are real numbers, then find the values of x and y.

90. Find the multiplicative inverse of 2-3i.

Watch Video Solution

91. Convert the complex number $\dfrac{-16}{1+i\sqrt{3}}$ into polar form.

Watch Video Solution

92. Find real θ such that $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is purely real.

Watch Video Solution

93. Convert the complex number $z=rac{i-1}{\cos\left(rac{\pi}{3}
ight)+i\sin\left(rac{\pi}{3}
ight)}$ in the polar

form.

94.
$$\Big\{1+(\,-i)^{4n+3}\Big\}(1-i), (n\in N)$$
 equals

- A. 2
- B. (-2)
- C. 1 D. i

Answer: A

Watch Video Solution

- **95.** If $z_1,\,z_2$ are conjugate complex numbers and $z_3,\,z_4$ are also conjugate, then $arg\left(\frac{z_3}{z_2}\right) - arg\left(\frac{z_1}{z_4}\right)$ is equal to
 - A. 0

 $B. \pi$

- C. $\frac{\pi}{2}$
- D. None if these

Answer: A

Watch Video Solution

96. If
$$z=(1+i)rac{\left(1+\sqrt{3}i
ight)^2}{1-i}$$
 , then argz equal

- A. 2π
- B. 4π
- C. $2\pi+rac{\pi}{6}$
- D. $4\pi+rac{\pi}{6}$

Answer: D

Watch Video Solution

97. The equation $z^3=ar{z}$ has

A. no solution

B. two solution

C. four solution

D. an infinite number of solution

Answer: C

Watch Video Solution

98. In the argand plane ABCD is a square described in the anticlockwise sense. A and B represented by complex numbers 1+2i and 7-6i respectively.

Then vertices C and D of the square are.

A. (7-4i), (1+12i)

B. (7+4i), (1-12i)

C. (7-4i), (1+12i)

D. (7-4i), (1-12i)

Answer: A

99.
$$(-64)^{\frac{1}{4}}$$
 equals

A.
$$\pm 2(1+i)$$

B.
$$\pm 2(1-i)$$

$$\mathsf{C}.\pm 2(1\pm i)$$

D. None if these

Answer: C

Watch Video Solution

(where n is not a multiple of 3) is

100. If ω is an imaginary cube root of unity then the value of $\omega^n + \omega^{2n}$

A. 0

 $B.-\omega$

C.
$$\omega^2$$

D. (-1)

Answer: D

Watch Video Solution

101. Solve: $z^7 - 1 = 0$

Watch Video Solution

- $\log_{\frac{1}{2}}\!\left(rac{|z-1|+4}{3|z-1|-2}
 ight) > 1$

Watch Video Solution

103. If z_1, z_2, z_3 represent three vertices of an equilateral triangle in argand plane then show that $\dfrac{1}{z_1-z_2}+\dfrac{1}{z_2-z_3}+\dfrac{1}{z_3-z_1}=0$

102. Located the complex numbers z=x+iy for which:

104. Express the following expreeion in the form of a+ib :
$$\left(3+i\sqrt{5}\right)\left(3-i\sqrt{5}\right)$$

$$rac{\left(3+i\sqrt{5}
ight)\!\left(3-i\sqrt{5}
ight)}{\left(\sqrt{3}+\sqrt{2}i
ight)-\left(\sqrt{3}-i\sqrt{2}
ight)}$$

Watch Video Solution

105. If
$$z_1=2-i, \, z_2=1+i, \, \, {\sf find} \left| rac{z_1+z_2+1}{z_1-z_2+i}
ight|$$

106. Find the real numbers x and y if (x-iy)(3+5i) is the conjugate of -6-24i.

107. If lpha and eta are different complex numbers with |eta|=1. then find

$$\frac{\beta - \alpha}{\beta - \alpha}$$

108. If (a+ib)(c+id)(e+if)(g+ih)=A+iB, then show that

$$\left(a^2+b^2
ight)\left(c^2+d^2
ight)\left(e^2+f^2
ight)\left(g^2+h^2
ight)=A^2+B^2$$

109. If $iz^3+z^2-z+i=0$ then the value of |z| is

A. 4

B. 3

C. 2

D. 1

Answer: D

Watch Video Solution

- **110.** If $z_1
 eq z_2$ and $|z_2| = 1$ the $\left| rac{z_1 z_2}{1 ar{z}_1 z_2}
 ight|$ =
 - A. (-1)
 - B. 0
 - C. 1
 - D. None of these

Answer: C

- **111.** If $|z+ar{z}|=|z-ar{z}|$, then the locus of z is
 - A. pair of straight lines

B. a rectangular hyperbola

C. a line

D. None of these

Answer: A

Watch Video Solution

112. If $\log_{ an 30^\circ}\left(rac{2|z|^2+2|z|-3}{|z|+1} ight)<(-2)$, then

A.
$$|z|<rac{3}{2}$$

B.
$$|z|>rac{3}{2}$$

$$\mathsf{C}.\,|z|>2$$

D.
$$|z| < 2$$

Answer: C

113. The number of solutions of the equation $z^2 + |z|^2 = 0$, where $z \in c$ is

A. one

B. two

C. three

D. infinite

Answer: D

Watch Video Solution

114. Let z, ω be complex numbers such that $ar{z}+i\overline{\omega}=0$ and $arg(z\omega)=\pi$, then argz equals

A.
$$\frac{3\pi}{4}$$

$$\mathsf{B.}\,\frac{3\pi}{2}$$

C.
$$\frac{\pi}{2}$$

D.
$$\frac{5\pi}{4}$$

Answer: A

Watch Video Solution

- **115.** The number of roots of the equation $z^{15}=1$ satisfying $|argz|<rac{\pi}{2}$ are
 - A. 6
 - B. 7
 - C. 8
 - D. None of these

Answer: B

116. If $A(z_1)$, $B(z_2)$, $C(z_3)$ are the vertices of an equilateral triangle ABC, then $argigg(rac{z_2+z_3-2z_1}{z_3-z_2}igg)$ is equal to

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{2}$$

D.
$$\frac{\pi}{6}$$

C. $\frac{\pi}{3}$

Answer: B

Watch Video Solution

117. If 1,
$$\omega$$
, ω^2 are the three cube roots of unity,
$$\left(1-\omega+\omega^2\right)\left(1-\omega^2+\omega^4\right)\left(1-\omega^4+\omega^8\right)$$
..... to 2n factors=

then

A.
$$2^n$$

B.
$$2^2n$$

$$\mathsf{C.}\ 2^4n$$

D. None of these

Answer: B

Watch Video Solution

118. If ω is the cube root of unity then $\cos\left[\left(\omega^{200}+\frac{1}{\omega^{200}}\right)\pi+\frac{\pi}{4}\right]$ equals

$$\mathsf{A.} - \frac{1}{\sqrt{2}}$$

$$\mathrm{B.} + \frac{1}{\sqrt{2}}$$

C. 1

D. 0

Answer: A

119. If ω is a complex cube root of unity and $\left(1+\omega\right)^7=A+B\omega$ then A and B are respectively.

- A. 0,1
- B. 1,1
- C. 1,0
- D. -1,1

Answer: B

Watch Video Solution

120. the area of the triangle formed by 1, $\omega,\,\omega^2$ where ω be the cube root of unity is

- A. $\sqrt{3}$

D. 9

Answer: C

Watch Video Solution

- **121.** The value of $i^{100} + i^{101} + i^{102} + i^{103}$
 - A. 1
 - B. i
 - C. 0
 - D. None of these

Answer: C

$${\rm B.}-\pi$$

$$\mathrm{C.}-\frac{\pi}{2}$$

D.
$$\frac{\pi}{2}$$

Answer: A

Watch Video Solution

123. If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers, then $argigg(rac{z_1}{z_4}igg) + argigg(rac{z_2}{z_3}igg)$ equals

A.
$$\frac{\pi}{2}$$

 $B. \pi$

C. $\frac{3\pi}{2}$

D. 0

Answer: D

124. The common roots of the equations $z^3+2z^2+2z+1=0$ and $z^{1985} + z^{100} + 1 = 0$ are

A.
$$-1$$
, ω^2

B.
$$-1, \omega$$

$$\mathsf{C}.\,\omega,\,\omega^2$$

D. None of these

Answer: C

Watch Video Solution

125. |z-6|<|z-2| its solution is given by

A.
$$Re(z)>0$$

B.
$$Re(z) < 0$$

 $\mathsf{C}.\,Re(z)>4$

D. Re(z) < 4

Answer: C

Watch Video Solution

126. If $|z^2 - 1| = |z|^2 + 1$, then z lies on

A. circle

B. a parabola

C. an ellipse

D. None of these

Answer: D

127. If
$$x_r = \cos\left(rac{\pi}{2^r}
ight) + i\sin\left(rac{\pi}{2^r}
ight)$$
 then $x_1x_2x_3.....\infty$ =

A. 0

B. -1

C. 1

D. None of these

Answer: B

Watch Video Solution

128. The value of $\left[\frac{1+\cos\left(\frac{\pi}{8}\right)+i\sin\left(\frac{\pi}{8}\right)}{1+\cos\left(\frac{\pi}{8}\right)-i\sin\left(\frac{\pi}{8}\right)} \right]^{\circ}$ is

B. i

C. 1

D. -1

Answer: D

Watch Video Solution

129. The area of the triangle in the complex plane formed by the points z, iz and z+iz is

- $\mathrm{A.}\left\vert z\right\vert ^{2}$
- $\operatorname{B.} \frac{1}{4}|z|^2$
- $\operatorname{C.}\frac{1}{2}|z|^2$
- D. $\frac{1}{2}z^2$

Answer: B

Watch Video Solution

130. The origin and the roots of the equation $z^2+pz+q=0$ form an equilateral triangle if

A.
$$p^2=3q$$

B.
$$p^2=q$$

C.
$$q^2=p$$

D. $q^2 = 3p$

Answer: A

Watch Video Solution

131. If n is a positive integer, then,
$$\left(1+i\sqrt{3}
ight)^n+\left(1-i\sqrt{3}
ight)^n=$$

A.
$$2^{n-1}$$
. $\cos\left(\frac{n\pi}{3}\right)$

B.
$$2^n$$
. $\cos\left(\frac{n\pi}{3}\right)$
C. 2^{n+1} . $\cos\left(\frac{n\pi}{3}\right)$

D. None of these

Answer: C

132. If $|z|_1=|z|_2=|z|_3=1$ and $z_1+z_2+z_3=0$, then z_1,z_2,z_3 are vertices of

A. a right angled triangle

B. an equilateral triangle

C. isosceles triangle

D. scalene triangle

Answer: B

Watch Video Solution

133. The locus of point z satisfying $Re\left(\frac{1}{z}\right)=k$, where k is a non-zero real number is

A. a straight line

B. a circle

- C. an ellipse
- D. a hyperbola

Answer: B

Watch Video Solution

134. If P represents z=x+iy in the argand plane and

$$|z+1-i|=|z+i-1|$$
 then locus of P is a/an

- A. straight line
- B. circle
- C. ellipse
- D. None of these

Answer: A

135. If
$$\frac{\alpha}{a}+\frac{\beta}{b}+\frac{\gamma}{c}=1+i$$
 and $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}=0$, then the value of $\frac{\alpha^2}{a^2}+\frac{\beta^2}{b^2}+\frac{\gamma^2}{c^2}$ is equal to

The number of solution of the system of equations

- A. 0
- B. -1
- C. 2i
- D. -2i

Answer: C

- $Reig(z^2ig)=0, |z|=2$ is
 - A. 4
 - B. 3
 - C. 2

Answer: A

Watch Video Solution

137. $z_1,\,z_2,\,z_3$ are three points lying on the circle |z|=1 , maximum value

of
$$\left|z_{1}-z_{2}\right|^{2}+\left|z_{2}-z_{3}\right|^{2}+\left|z_{3}-z_{1}\right|^{2}$$
 is

- A. 6
- B. 9
- C. 12
- D. 15

Answer: B

138. The system of equations $|z+1-i|=\sqrt{2}, |z|=3$ has

A. a unique solution

B. two solution

C. no solution

D. None of these

Answer: C

Watch Video Solution

139. If $z_1=a+ib$ and $z_2=c+id$ are complex numbers such that $|z_1|=|z_2|=1$ and $Re(z_1ar z_2)=0$, then the pair of complex numbers

$$\omega_1=a+ic$$
 and $\omega_2=b+id$ satisfies:

A.
$$Re(\omega_1\overline{\omega}_2)=1$$

B.
$$|\omega_1|=|\omega_2|=1$$

C.
$$|\omega_1|=|\omega_2|=0$$

D.
$$Re(\omega_1\overline{\omega}_2)
eq 0$$

Answer: B

Watch Video Solution

- **140.** If z_1 and z_2 be two complex numbers such that $|z|\leq 1,$ $|z|_{2}\leq 1,$ $|z_{1}+iz_{2}|=|z_{1}-iz_{2}|=2$, then z_{1} equals
 - A. i or i
 - B. i or -i
 - C. 1 or -1
 - D. i or -1

Answer: C

141. If $z^4=\left(z-1\right)^4$, then the roots are represented in the Argand plane by the points that are:

- A. Collinear
- B. Concyclic
- C. Vertices of a parellelogram
- D. None of these

Answer: A

Watch Video Solution

142. Let $z=1-t+i\sqrt{t^2+t+2}$, where t is real parameter. The locus of z in the argand plane is

- A. a hyperbola
- B. an ellipse
- C. a straight line

D. None of these

Answer: A

Watch Video Solution

143. If $|z| = \min \{|z-1|, |z+1|\}$, then

A.
$$|z+ar{z}|=rac{1}{2}$$

 $\mathtt{B.}\,z+\bar{z}=1$

 $\mathsf{C}.\,|z+\bar{z}|=1$

D. None of these

Answer: C

144. If
$$z_1$$
 and z_2 be two complex numbers such that $|z_1+z_2|=|z_1|+|z_2|$ then the value of $argz_1-argz_2$ is equal to

A.
$$\frac{\pi}{2}$$

A.
$$\frac{\pi}{2}$$
B. $\frac{3\pi}{2}$

Answer: A

145. if
$$z^2+z+1=0$$
, then the value of
$$\left(z+\frac{1}{z}\right)^2+\left(z^2+\frac{1}{z^2}\right)^2+\left(z^3+\frac{1}{z^3}\right)^2+\ldots\ldots+\left(z^{21}+\frac{1}{z^{21}}\right)^2$$
 is

D. None of these

Answer: B

Watch Video Solution

146. If ω is the imaginary cube root of 1 then prove that

$$\left(a+b\omega+c\omega^2\right)^3+\left(a+b\omega^2+c\omega\right)^3$$
=

$$(2a - b - c)(2b - a - c)(2c - a - b)$$

A.
$$(a+b-c)(b+c-a)(c+a-b)$$

D. None of these

Answer: C

B. $|\alpha|-2\neq 1$ C. $Re(\alpha - 1\overline{\alpha}_2 = 0)$

D. $Re(\alpha - 1\overline{\alpha}_2 = 1)$

A. $|\alpha|-1\neq 1$

, thenf or alpha 1=a+ic and alpha 2=b+id`,

147.

lf

The

sum

 $z_1=a+ib$ and z 2=c+id, a, b,

, $betwocomp \le x \nu mberssucht$ absz_1=absz_2=1 and Re(z_1barz_2)=0

dinR

c,

$$2(\omega+1)ig(\omega^2+1ig)+3(2\omega+1)ig(2\omega^2+1ig)+4(3\omega+1)ig(3\omega^2+1ig)+$$
 ...n

terms is

148.

$$(n+1)\setminus^2$$

A.
$$\left(rac{n(n+1)}{2}
ight)^2$$

B.
$$\left(\frac{n(n+1)}{2}\right)^2-n$$

$$\Big)^2-n$$

$$-n$$

$$-n$$

$$\mathsf{C.}\left(\frac{n(n+1)}{2}\right)^2+n$$

D. None of these

Answer: C

Watch Video Solution

149. If |z-2-2i|=1, then the minimum value of |z| is

A.
$$2\sqrt{2}-1$$

$$\mathsf{B.}\ 2\sqrt{2}$$

$$\mathsf{C.}\,2\sqrt{2}+1$$

D.
$$2\sqrt{2}-2$$

Answer: A

150. The point represented by the complex number 2-i is rotated about origin through an angle $\frac{\pi}{2}$ in the clockwise direction. the complex number corresponding to new position of the point is

- A. 1+2i
- B. -1-2i
- C. 2+i
- D. -1+2i

Answer: B

Watch Video Solution

151. z_1 and z_2 be two complex no. then prove that

$$|z_1+z_2|^2+|z_1-z_2|^2=2\Big[|z_1|^2+|z_2|^2\Big]$$

A.
$$|z|_2 = 1$$

$$\mathtt{B.}\,z_2=0$$

$$\mathsf{C}.\,|z|_2=lpha$$

D.
$$|z|_2 < \alpha$$

Answer: A

Watch Video Solution

152. For all complex numbers z_1, z_2 satisfying $|z|_1 = 12$ and

$$|z_2-3-4i|=5$$
, the minimum value of $|z_1-z_2|$ is

A. 0

B. 2

C. 7

D. 17

Answer: B

153. if z and w are two non-zero complex numbers such that |z|=|w| and $argz+argw=\pi$, then z=

A. \overline{w}

B. -barw

C. w

D.-w

Answer: B

Watch Video Solution

154. If $z_1,\,z_2,\,z_3,\,z_4$ represent the vertices of a rhombus in anticlockwise order, then

A.
$$z_1-z_2+z_3-z_4=0$$

B.
$$z_1 + z_2 = z_3 + z_4$$

C.
$$amprac{z_2-z_4}{z_1-z_3}=rac{\pi}{2}$$

D.
$$amprac{z_1-z_2}{z_3-z_4}=rac{\pi}{2}$$

Answer: A::C

Watch Video Solution

155. If $\left(x+iy ight)^7=a+ib$, then $\left(y+ix ight)^7$ is equal to

A. b+ia

B. -(b+ia)

C. -i(a+ib)

D. -a+ib

Answer:

Watch Video Solution

156. $(1+i)^{n_1}+\left(1+i^3\right)^{n_1}+\left(1+i^5\right)^{n_2}+\left(1+i^7\right)^{n_2}$ is a real number if

A. n_1 is a positive integer

B. n_2 is a positive integer

$$\mathsf{C.}\, n-1+1=n_2$$

D.
$$n_1=n+2+1$$

Answer: A::B

Watch Video Solution

157. The value of
$$\sum_{k=1}^{10} \left(-\sin\!\left(\frac{2k\pi}{11}\right) + i\cos\!\left(\frac{2k\pi}{11}\right)\right)$$
 =

- A. 0
- B. -i
- $\mathsf{C}.\,i^3$
- D. i

Answer: B::C

valcii video Solution

158. If $\mathsf{amp}(z_1z_2) = 0$ and $|z|_1 = |z|_2 = 1$, then

A.
$$z_1 + z_2 = 0$$

$$\mathsf{B.}\,z+1=\bar{z}_2$$

$$C. z_1 z_2 = 1$$

D.
$$z_1 z_2 = 1 - i$$

Answer: B::C

Watch Video Solution

159. if $z_1,\,z_2,\,z_3$ are the vertices pf an equilateral triangle inscribed in the circle |z|=1 and $z_1=i$, then

A.
$$z_2= \ -\left(rac{\sqrt{3}+i}{2}
ight)$$

$$\operatorname{B.}z_3=\frac{\sqrt{3}}{2}+\frac{i}{2}$$

$$ext{C.} \ z_2 = \ - \ rac{1}{2} - i rac{\sqrt{3}}{2}$$

D. 'z 3=(sqrt3-i)/2

Answer: A::D

Watch Video Solution

160. if amp $\frac{z-1}{z+1}=\frac{\pi}{3}$, then the locus of z is

C. major segment of a circle whose chord substends a angle $\frac{2\pi}{3}$ at its

A. a straight line

B. an arc of a circle

centre

D. a pair of lines

Answer: B::C

161. If $e^{i\alpha}=\cos \alpha+i\sin \alpha$, then for the ΔABC , the value of $e^{\frac{iA}{2}}e^{\frac{iB}{2}}e^{\frac{iC}{2}}=$

В. -i

C. 1

D. -1/i

Answer: A::D

Watch Video Solution

162. The equation $z\bar{z}+(4-3i)z+(4+3i)\bar{z}+5=0$ represents a circle of radius

A.
$$2\sqrt{5}$$

B.
$$\sqrt{5}$$

Answer: A::D

Watch Video Solution

163. Let z_1 and z_2 be two distinct complex numbers and let $z=(1-t)z_1+tz_2$ for some real number t with 0< t<1. If Arg(w) denotes the principal argument of a non-zero complex number w, then

A.
$$|z-z_1|+|z-z_2|=|z_1-z_2|$$

$$B. Arg(z-z_1) = arg(z-z_2)$$

C.
$$\begin{bmatrix} z-z_1 \\ z_2-z_1 \end{bmatrix} \begin{bmatrix} \bar{z}-\bar{z}_1 \\ \bar{z}_2-z_1 \end{bmatrix} = 0$$

D.
$$Arg(z - z_1) = arg(z_2 - z_1)$$

Answer: A::C::D

164. The roots of the equation $Z^3+1=0$ are called cube roots of unity. Clearly Z=-1 is a root and the other roots are complex comjugate $\omega = \cos\!\left(rac{2\pi}{3}
ight) + i\sin\!\left(rac{2\pi}{3}
ight)$ and they are root and

root and they are
$$\omega^2=\cos\left(rac{4\pi}{3}
ight)+i\sin\left(rac{4\pi}{3}
ight)$$
 $1+\omega+\omega^2=0$

$$\left(1+\omega^2
ight)^7+\left(1+\omega
ight)^7$$
 equals

Answer: B

Watch Video Solution

165. The roots of the equation $Z^3+1=0$ are called cube roots of unity.Clearly Z=-1 is a root and the other roots are complex comjugate

are $\omega = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$

and

root

and

 $1+\omega+\omega^2=0$

A. 0

B. 1

C. (-1)

D. (-i)

 $\omega^2 = \cos\!\left(rac{4\pi}{3}
ight) + i\sin\!\left(rac{4\pi}{3}
ight)$

 $(1+\omega^2)^7 + (1+\omega)^7$ equals

they

166. Let $A(z_1),\,B(z_2)$ and $C(z_3)$ be the three points in Argands plane

The point A B and C are collinear if

A.
$$z_1 + z_2 + z_3 = 0$$

$$\mathsf{B.}\,|z_3-z_1|=|z_3-z_2|$$

C.
$$z_3 - z_1 = z_2 - z_3$$

D. None of these

Answer: B

Watch Video Solution

167. Let $A(z_1),\,B(z_2)$ and $C(z_3)$ be the three points in Argands plane

The point A B and C are collinear if

A.
$$|z_3-z_1|=|z_3-z_2|$$

B.
$$z_1 + z_2 + z_3 = 0$$

C.
$$arg((z 3-z 1)/(z 2-z 1))=0$$

D. None of these

Answer: C

List-II List - I

- (1) Circular plate is expanded by (P) 4 heat from radius 5 cm to 5.06 cm. Approximate increase in area is
- (2) If an edge of a cube increases by (Q) 0.6π 1%, then percentage increase in volume is
- (3) If the rate of decrease of (R) 3 $\frac{x^2}{2}$ -2x + 5 is twice the rate of decrease of x, then x is equal to (rate of decreases is non-zero)
- (4) Rate of increase in area of equilateral triangle of side 15 cm, when each side is increasing at the rate of 0.1 cm/s, is

volume is

List - I

List-II

(1) Circular plate is expanded by (P) 4 heat from radius 5 cm to 5.06 cm.

Approximate increase in area is

(2) If an edge of a cube increases by $\,$ (Q) $\,$ 0.6 π 1%, then percentage increase in

(3) If the rate of decrease of (R) 3 $\frac{x^2}{2} - 2x + 5$ is twice the rate of

decrease of x, then x is equal to

(rate of decreases is non-zero)

(4) Rate of increase in area of (S) 3√3/4 equilateral triangle of side 15 cm, when each side is increasing at

the rate of 0.1 cm/s, is

Watch Video Solution

170. If Argz < 0 then $\dfrac{Arg(\,-z) - Arg(z)}{\pi \Big(\cos \Big(rac{\pi}{3} \Big) \Big)}$ is equal to

Water video Solution

171. If $s(n)=i^n+i^{-n}$ where $i=\sqrt{-1}$ and n is an integer then the total number of distinct values of S(n) is

172. Let ω be the complex number $\cos\left(2\frac{\pi}{3}\right)+i\sin\left(2\frac{\pi}{3}\right)$ Then the number of distinct complex numbers z satisfying

$$\left|egin{array}{cccc} z+1 & \omega & \omega^2 \ \omega & \left(z+\omega^2
ight) & 1 \ \omega^2 & 1 & z+\omega \end{array}
ight|=0$$
 is equals to

173. if z is any complex number satisfying $|z-3-2i| \leq 2$ then the minimum value of |2z-6+5i| is

174. If ω is a nonreal cube root of unity then

$$rac{a+b\omega+cw^2}{c+a\omega+b\omega^2}+rac{c+a\omega+b\omega^2}{a+b\omega+c\omega^2}+rac{b+c\omega+a\omega^2}{b+c\omega^4+a\omega^5}$$
 is equal to

Watch Video Solution

175. If $(\cos \alpha + \cos \beta + \cos \gamma) = 0$, $\sin \alpha + \sin \beta + \sin \gamma = 0$ then show

 $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$

that

Watch Video Solution

176. If $(\cos \alpha + \cos \beta + \cos \gamma) = 0$, $\sin \alpha + \sin \beta + \sin \gamma = 0$ then show

 $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$

that

177. If 1,2,3 and 4 are the roots of the equation $x^4 + ax^3 + bx^2 + cx + d$

=0 then a+2b+c=

179. If 1,
$$\alpha$$
, α^2 α^{n-1} are the nth roots of unity then prove that

 $(1-\alpha)(1-\alpha^2).....(1-\alpha^{n-1})=n$

180. Prove that if
$$z_1,\,z_2$$
 are two complex numbers and $c>0$ then $\left|(z_1+z_2)^2\right|\leq (1+c)\Big|(z_1)^2\Big|+\left(1+\left(rac{1}{c}
ight)\right)|z_2|^2$

181. If $z_1,\,z_2,\,z_3$ are the vertices of an equilateral triangle with z_0 as its circum centre, the changing origin to z_0 new vertices become $z_1{\,}',\,z_2{\,}',\,z_3{\,}'$ show that $z_1{\,}'^2\,+z_2{\,}'^2\,+z_3{\,}'^2\,=0$

182. If $\left|z+\left(\frac{1}{z}\right)\right|=a$ where z is a complex number find the least and the greatest values of |z| also find a for which the greatest and the least values of |z| are equal

183. $A(z_1), B(z_2), C(z_3)$ are the vertices a triangle ABC inscribed in the circle |z|=2 internal angle bosector of the angle A meet the circumference again at $D(z_4)$ then prove $z_4^2=z_2z_3$

184. The roots z_1, z_2, z_3 of the equation $x^3 + 3ax^2 + 3bx + c = 0$ in which a,b,c are complex number correspond to the points A,B,C on the gaussian pllane. Find the centroid of the triangle ABC and show that it will equilateral if $a^2 = b$

Watch Video Solution

185. Ifa,b,c,p,q,r be six complex numbers such that $\dfrac{a}{p}+\dfrac{b}{a}+\dfrac{c}{r}=0$ and

$$rac{p}{a}+rac{q}{b}+rac{r}{c}=1-i$$
 then prove that $\left(p^2
ight)+\left(q^2
ight)+\left(r^2
ight)=2i$

Watch Video Solution

186. The solution of the equation |z|-z=1+2i is

A. 2-3/2i

B. 3/2-2i

C. 3/2+2i

D. (-2)+3/2i

Answer: B

Watch Video Solution

187. The amplitude of $1+i\tan 3\frac{\pi}{5}$ is

A. $\frac{2\pi}{5}$

 $\mathsf{B.}\,\frac{\pi}{2}$

 $\mathsf{C.}\,\frac{-2\pi}{5}$

D. $\frac{-\pi}{2}$

Answer: C

188. The locus represented by the equation |z-1|=|z-i| is

A. a circle of radius 1

B. an ellipse with foci 1 and (-1)

C. a line through the origin

D. a circle on the line joining 1 and (-1) as diameter

Answer: C

Watch Video Solution

189. if
$$x=9^{\frac{1}{3}}9^{\frac{1}{9}}9^{\frac{1}{27}}....\infty, y=4^{\frac{1}{3}}4^{\frac{1}{9}}4^{\frac{1}{27}}....\infty$$
 and $z=\sum_{r=1}^{\infty}\left(1+i\right)^{-r}$

then arg(x+yz) is equal to

A. 0

B.
$$\pi - \tan^{-1} \left(\frac{\sqrt{2}}{3} \right)$$

$$\mathsf{C.}\left(-\tan^{-1}\!\left(\frac{\sqrt{2}}{3}\right)\right)$$

D. None of these

Answer: C

Watch Video Solution

- **190.** If the fourth roots of unity are $z_1,\,z_2,\,z_3,\,z_4$ then $z_1^2+z_2^2+z_3^2+z_4^2$ is equal to
 - A. 1
 - В. О
 - C. i
 - D. none of these

Answer: B

191. If
$$i=\sqrt{-1}$$
 then $4+5igg(-rac{1}{2}+rac{i\sqrt{3}}{2}igg)^{334}+3igg(-rac{1}{2}+rac{i\sqrt{3}}{2}igg)^{365}$

is equal to

A.
$$1-i\sqrt{3}$$

B.
$$(-1)+i\sqrt{3}$$

C.
$$i\sqrt{3}$$

D.
$$(-1)\sqrt{3}$$

Answer: C

192. Let z_1 and z_2 be the nth roots of unity which subtend a right angle at the origin then n must be the form

C. 4k+3

D. 4k

Answer: D

Watch Video Solution

193. If $x^5=(4-3i)^5$ thrn the product of all of its roots (where

$$heta = - an^{-1}igg(rac{3}{4}igg)$$

A.
$$5^5(\cos 5\theta + i\sin 5\theta)$$

$$\mathsf{B.}\,(\,-5)^5(\cos 5\theta + i\sin 5\theta)$$

C.
$$5^5(\cos 5 heta - i\sin 5 heta)$$

$$D. (-5)^5 (\cos 5\theta - i \sin 5\theta)$$

Answer: B

194. If ω is an imaginary x^n root of unit then $\sum_{r=1}^n{(ar+b)\omega^{r-1}}$ is

A.
$$n(n+1)rac{a}{\omega}$$

B. nb/(1-n)

C.
$$n \frac{a}{\omega - 1}$$

D. none of these

Answer: C

Watch Video Solution

195. If $\omega(\neq 1)$ be a cube root of unity and $\left(1+\omega^2\right)^n=\left(1+\omega^4\right)^n$ then the least positive value of n is

A. 2

B. 3

C. 5

D. 6

Answer: B

Watch Video Solution

196. If |z|=1 and $z
eq \pm 1$ then all the values of $\dfrac{z}{1-z^2}$ lie on

A. a line not passing through the origin

B.
$$|z|=\sqrt{2}$$

C. the x axis

D. the y axis

Answer: D

Watch Video Solution

197. If $\dfrac{1+2i}{2+i}=r(\cos heta+i\sin heta)$ then

A. r=1,
$$heta= an^{-1}igg(rac{3}{4}igg)$$

B. $r=\sqrt{5}$,theta=tan^(-1)4/3`

C. r=1, $heta=rac{ an^{-1}4}{3}$

D. none of these

Answer: A

Watch Video Solution

198. If $z_1=a+ib$ and $z_2=c+id$ are two complex numbers lying on the circle $x^2+y^2=1$ in the argand diagram and $Re(z_1\bar{z}_2)=0$ then the complex numbers $\omega_1=(a+ic)$ and $\omega_2=b+id$ are such that

A. only ω_1 lies on the circle $x^2+y^2=1$

B. only ω_2 lies on the circle $x^2+y^2=1$

C. $Re(\omega_1\omega_2)=0$

D. none of these

Answer: C

199. Number of solution(s) of the equation $\left|z\right|^2+7z=0$ is/are

200. If $z_1=9y^2-4-10ix,$ $z_2=8y^2-20i$ where $z_1=ar{z}_2$ then z=x+iy

Answer: B

Watch Video Solution

is equal to

C. (-2)+-i

D. none of these

Answer: B

Watch Video Solution

201. Let z_1,z_2,z_3 be three points on |z|=1 let θ_1,θ_2 and θ_3 be the argument of z_1,z_2,z_3 then $\cos(\theta_1-\theta_2)+\cos(\theta_2-\theta_3)+\cos(\theta_3-\theta_2)$

A.
$$\geq \left(-rac{3}{2}
ight)$$

$$\mathsf{B.} \, \leq \left(\, -\, \frac{3}{2} \right)$$

$$\mathsf{C.} \, \geq \frac{3}{2}$$

D. none of these

Answer: A

202. If z_1, z_2 are two non zero complex numbers such that $\dfrac{z_1}{z_2} + \dfrac{z_2}{z_1} = 1$

then $z_1,\,z_2$ and the origin are

A. collinear

B. from right angled triangle

C. form the right angle isosceles triangle

D. form an equilateral triangle

Answer: D

Watch Video Solution

203. The complex numbers z_1, z_2 and z_3 satisfying $\frac{z_1-z_3}{z_2-z_3}=\frac{1-i\sqrt{3}}{2}$ are the verticles of a triangle which is:

A. of area zero

B. right angled isosceles

C. equilateral

D. obtuse angled isosceles

Answer: C

Watch Video Solution

204. Let $A(z_1), A_2(ar{z}_1)$ are the adjacent vertices of a regular polygon if

$$rac{Im(ar{z}_1)}{Re(z_1)}=1-\sqrt{2}$$
 then number of sides of the polygon is equal to

A. 6

B. 8

C. 12

D. 16

Answer: B

205. If the points A(z),B(-z),C(1-z) are the vertices of an equilateral triangle

ABC then Re(z) is

$$\mathsf{B.}\,\frac{\sqrt{3}}{2} \Bigg)$$

D. none of these

Answer: A

Watch Video Solution

206. Let $z_1 \neq z_2$ are two points in the Argand plane if $a|z_1| = b|z_2|$ then point $\frac{az_1 - bz_2}{az_1 + bz_2}$ lies

A. in 1st quadrant

B. in 2nd quadrant

C. on real axis

D. on imaginary axis

Answer: D

Watch Video Solution

207. The least positive integer n for which

$$\displaystyle \left(rac{1+i}{1-i}
ight)^n = rac{2}{\pi} {
m sin}^{-1} igg(rac{1+x^2}{2x}igg)(x \geq 0)$$
 is

A. 0

B. 2

C. 4

D. 8

Answer: C

208. If x=2+5i then the value of the expression $x^3-5x^2+33x-49$ is

A. (-20)

B. 10

C. 20

D. (-29)

Answer: A

Watch Video Solution

209. The square root of (1+i) is

A.
$$\pm \frac{1+i}{\sqrt{2}}$$

$$\mathsf{B.}\pm\frac{\sqrt{2}+1+i\Big(\sqrt{2}-1\Big)}{\sqrt{2}}$$

$$\mathsf{B.}\pmrac{\sqrt{2}+1+i\Big(\sqrt{2}-1\Big)}{\sqrt{2}} \ \mathsf{C.}\pmrac{\sqrt{\sqrt{2}-1}-i\sqrt{\sqrt{2}+1}}{\sqrt{2}}$$

D. none of these

Answer: D

Watch Video Solution

210. The curve represented by $Im(z^2)=c^2$ is

A. rectangular hyperbola

B. a circle

C. a parabola

D. an ellipse

Answer: A

Watch Video Solution

211. If z be a complex number satisfying $z^4+z^3+2z^2+z+1=0$ then

|z| is equal to

B.(3/4)

C. 1

D. none of these

Answer: C

Watch Video Solution

212. If ω is complex cube root of unity

 $\left(3+5\omega+3\omega^2
ight)^2+\left(3+3\omega+5\omega^2
ight)^2$ is equal to

then

A. 4

C. (-4)

B. 0

D. none of these

Answer: C

213. Let
$$0 \le \alpha \le \frac{\pi}{2}$$
 be a fixed angle.if $p=(\cos\theta,\sin\theta)$ and $Q=(\cos(\alpha-\theta),\sin(\alpha-\theta))$ then Q is obtained from P by

A. clockwise rotation around origin through angle $\boldsymbol{\alpha}$

B. anticlockwise rotation around origin through an angle $\!\alpha$

C. reflection in the line through origin will slope an heta

D. reflection in the line through origin with slope $\tan\left(\frac{\alpha}{2}\right)$

Answer: D

Watch Video Solution

214. A man walks a distance of 3 units from the origin towards the north east $(N45^{\circ}E)$ direction.from there he walks a distance of 4 units towards the north west $(N45^{\circ}W)$ direction of reach a point P then the position of P in the Argand plane is :

B. $(3-4i)e^{rac{i\pi}{4}}$

C. $(4+3i)e^{rac{i\pi}{4}}$

D. $(3+4i)e^{rac{i\pi}{4}}$

Answer: D

D. none of these

Answer: C

C. a pair of staright line

Watch Video Solution

215. $z^2 + z|z| + |z|^2 = 0$ then the locus of z is

216. The polynomial $x^6+4x^5+3x^4+2x^3+x+1$ is divisible by

A.
$$x + \omega$$

B.
$$x + \omega^2$$

C.
$$(x+\omega)(x+\omega^2)$$

D.
$$(x-\omega)(x-\omega^2)$$

Answer: D

Watch Video Solution

217. If z_1, z_2, z_3 are three complex numbers and A=

A.
$$arg(z_1+z_2+z_3)$$

B.
$$arg(z_1z_2z_3)$$

C. all numbers

D. cannot say

Answer: B

Watch Video Solution

218. If $|z-i| \leq 2$ and $z_0 = 5 + 3i$ then the maximum value of $||i|z + z_0|$

is

A.
$$2 + \sqrt{31}$$

B. 7

c.
$$\sqrt{31} - 2$$

D. none of these

Answer: B

219. If $z(Rez \neq 2)$ be a complex number such that $z^2 - 4z = |z|^2 + \frac{16}{|z|^3}$ then the value of $|z|^4$ is

- A. 2
- B. 4
- C. 8
- D. 1

Answer: B

- **220.** Let z=x+iy be a complex number where x and y are integers then the area of the rectangle whose vertices are the roots of the equation $z\bar{z}^3+\bar{z}z^3=350 \text{ is}$
 - A. 48
 - B. 32

C. 40

D. 80

Answer: A

Watch Video Solution

221. If z and w are two nonzero complex numbers such the |zw|=1 and

 $arg(z)-arg(w)=rac{\pi}{2}$ then $ar{z}w$ is equal to

A. 1

B. (-1)

C. i

D. (-i)

Answer: D

222. if $\log_{\frac{1}{2}}\!\left(rac{|z|^2+2|z|+4}{2|z|^2+1}
ight)<0$ then the region traced by z is

A.
$$|z| < 3$$

$$\mathrm{B.}\,1<|z|<3$$

D.
$$|z| < 2$$

Answer: A

Watch Video Solution

223. If $|z-2-i|=|z| \Big| \mathrm{sin} \Big(rac{\pi}{4} - argz \Big) \Big|$ then locus of z is

A. a pair of straight lines

B. circle

C. parabola

D. ellipse

Answer: C

Watch Video Solution

224. If $z=\dfrac{3}{2+\cos \theta+i\sin \theta}$ then show that z lies on a circle in the complex plane

- A. a straight line
- B. a circle having centre on y axis
- C. a parabola
- D. a circle having centre on x axis

Answer: D

B. (-2)

C. 2i

D. (-2i)

Answer: A

Watch Video Solution

226. If lpha is the nth root of unity then $1+2lpha+3lpha^2+\ldots$ to n terms equal to

A.
$$\frac{-n}{\left(1-lpha
ight)^2}$$

B.
$$\frac{-n}{1-\alpha}$$

$$\mathsf{C.}\,\frac{-2n}{1-\alpha}$$

D.
$$\frac{-2n}{\left(1-lpha
ight)^2}$$

Answer: B

227. If
$$a=\cos lpha+i\sin lpha,\,b=\cos eta+i\sin eta,\,c=\cos \gamma+i\sin \gamma$$
 and

$$rac{b}{c}+rac{c}{a}+rac{a}{b}=$$
 1, then $\cos(eta-\gamma)+\cos(\gamma-lpha)+\cos(lpha-eta)$ =

228. If $lpha=\cos\Bigl(rac{8\pi}{11}+i\sin\Bigl(rac{8\pi}{11}$ then $Re\bigl(lpha+lpha^2+lpha^3+lpha^4+lpha^5\bigr)$ is

Answer: D

C.	. 0
D.	n

D. none of these

Answer: B

Watch Video Solution

229. If z be any complex number such that |3z-2|+|3z+2|=4 then

locus of z is

A. an ellipse

B. a circle

C. a line segment

D. none of these

Answer: C

230.
$$x^{3m} + x^{3n-1} + x^{3r-2}$$
 where m,n,r in N` is divisible by

A.
$$x^2 - x + 1$$

B.
$$x^2 + x + 1$$

C.
$$x^2 + x - 1$$

D.
$$x^2 - x - 1$$

Answer: B

Watch Video Solution

231. A fourth root of -1 is

A.
$$\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}i$$

$$\mathsf{B.}\,\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$$

$$\mathsf{C.}\left(-\frac{1}{\sqrt{2}}\right) - \frac{1}{\sqrt{2}}i$$

D.
$$\left(-\frac{1}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}}i$$

Answer: A::B::C::D

Watch Video Solution

232. If $z_1=a+ib$ and $z_2=c+id$ are complex numbers such that $|z_1|=|z_2|=1$ and $Re(z_1\bar{z}_2)=0$, then the pair of complex numbers $\omega_1=a+ic$ and $\omega_2=b+id$ satisfies:

A.
$$|\omega|_1=1$$

B.
$$|\omega|_2=1$$

C.
$$Re(\omega_1\overline{\omega}_2)=0$$

D. none of these

Answer: A::B::C

233. Let z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $|z|_1 = |z|_2$ if z_1 has positive real part then $\dfrac{z_1+z_2}{z_1-z_2}$ may be

A. zero

B. real and positive

C. real and negative

D. purely imaginary

Answer: A::D

Watch Video Solution

234. If
$$(x+2)^3-27=0$$
 then a value of x is

A.
$$(\,-2)+3\omega^2$$

C.
$$(\,-2)+3\omega$$

D. ω

B. 1

Answer: A::B::C

Watch Video Solution

235. If $|\omega|=1$ then the set of points $z=\omega+rac{1}{\omega}$ is contained in or equal to

A. an ellipse with eccentrity4/5

B. the set of points z satisfying Imz=0

C. the set of points z satisfying $|R|ez \leq 2$

D. none of these

Answer: A::C

Watch Video Solution

236. If z_1 lies on |z|=1 and z_2 lies on |z|=2 then

A.
$$3 \leq |z_1-2z_2| \leq 5$$

B. $1 < |z_1 + z_2| < 3$

 $|z_1 - 3z_2| < 5$

D. $2 < |z_1 + z_2| < 4$

Answer: A::B::C

Watch Video Solution

then

237. If $A(z_1), B(z_2), C(z_3)$ and $D(z_4)$ be the vertices of the square ABCD

A.
$$|z_3 - z_1| = |z_4 \ _z_2|$$

B. (z 1-z 2)/(z 3-z 4) is purely real

C. (z 1-z 2)/(z 3-z 2) is purely imaginary

D. (z 1-z 3)/(z 2-z 4)is purely imaginary

Answer: A::B::C::D

238. If z_1 and z_2 are non zero complex numbers such that

$$|z_1 - z_2| = |z|_1 + |z|_2$$
 then

B.
$$|argz_1 - argz_2| = \pi$$

C.
$$z_1+kz_2=0$$
 for some positive real k

D.
$$z_1ar{z}_2+ar{z}_1z_2<0$$

Answer: B

Watch Video Solution

239. The reflection of the complex number (2-i)/(3+i) where $(i=\sqrt{-1}$ in the straight line $z(1+i)=\bar{z}(i-1)$ is

B. (-1+i)/2

C. i(i+1)/2

D. (-1)/(1+i)

Answer: B::C::D

Watch Video Solution

240. If lpha is a complex constant such that $\alpha z^2 + z + \overline{\alpha} = 0$ has areal root then

A. $\alpha + b\alpha = 1$

 $B. \alpha + \overline{\alpha} = 0$

 $C. \alpha + \overline{\alpha} = (-1)$

D. the absolute value of the real root is 1

Answer: D

241. Let A,B,C b ethree sets of complex numbers as defined

$$A=\{z\!:\!Imz\geq 1\}$$

$$B = \{z\!:\!|z-2-i| = 3\}$$

$$C = \left\{z : Re((1-i)z) = \sqrt{2}\right\}$$

The number of elements in the set $A \cap B \cap C$ is

A. 0

B. 1

C. 2

 $D. \, \infty$

Answer: B

Watch Video Solution

242. Let A,B,C b ethree sets of complex numbers as defined

 $A=\{z\!:\!Imz\geq 1\}$

C. 35 and 39

 $B = \{z : |z - 2 - i| = 3\}$

between

A. 25 and 29

B. 30 and 34

D. 40 and 44

 $C = \{z : Re((1-i)z) = \sqrt{2}\}$

Watch Video Solution

243. Let lpha+ieta be a complex number and let $x+iy=e^{lpha+ieta}$ where $(x,y,lpha,eta\in R)$ then we define $\log_e(x+iy)=lpha+ieta$

Let z be any point in $A\cap B\cap C$ then $|z+1-i|^2+|z-5-i|^2$ lies

 $x+iy=re^{i heta}$,where

 $r=\sqrt{x^2+y^2}, heta= an^{-1}\Big(rac{y}{x}\Big), lpha+ieta=\log_e(x+iy)=\log_e\Big(r.\,e^{i heta}=\log_e(x+iy)$ so $\log_e(x+iy)=\log_er+i heta$

if $\sin(\log_e i) = a + ib$ then value of a and b is

 $\log_a(z) = \log_a|z| + iarq(z)$

C. a=0,b=(-1)

Answer: A

Watch Video Solution

244. Let
$$lpha+ieta$$
 be a complex number and let $x+iy=e^{lpha+ieta}$ where

 $(x,y,lpha,eta\in R)$ then we define $\log_e(x+iy)=lpha+ieta$

$$x+iy=re^{i heta}$$
,where $r=\sqrt{x^2+y^2}, heta= an^{-1}\Bigl(rac{y}{x}\Bigr), lpha+ieta=\log_e(x+iy)=\log_e\Bigl(r.\ e^{i heta}=\log_e(x+iy)\Bigr)$

so
$$\log_e(x+iy) = \log_e r + i heta$$

 $\log_e(z) = \log_e|z| + iarg(z)$

$$\log_e(\ -i)$$
 equals

C.
$$\frac{-\pi i}{2}$$

A. $\frac{\pi i}{2}$

B. πi

Answer: C

Watch Video Solution

245. If
$$\alpha$$
 is non real fourth root of unity , then value of,
$$\alpha^{4n-1}+\alpha^{4n-2}+\alpha^{4n-3}$$
 , n \in N

- A. 0
- B. 3
 - C. -1
- D. none of these

Answer: B

246. Let lpha
eq 1 be an nth root of unity where n is a prime natural number

$$(3+lpha)(3+lpha_2)(3+lpha_3).\dots(3+lpha_{n-1})$$
 is equal to

247. If
$$\cos\left(\frac{\pi}{7}\right)$$
, $\cos\left(\frac{3\pi}{7}\right)$, $\cos\left(\frac{5\pi}{7}\right)$ are the roots of the equation

$$8x^3 - 4x^2 - 4x + 1 = 0$$

The value of
$$\sec\left(\frac{\pi}{7}\right) + \sec\left(\frac{3\pi}{7}\right) + \sec\left(\frac{5\pi}{7}\right)$$
 is

248. The complex numbers z is simultaneously satisfy the equations

$$\frac{|z-12|}{|z-8i|} = \frac{5}{3}, \frac{|z-4|}{|z-8|} = 1$$
 then the Re(z) is

249. The smallest positiv einteger n for which $\left(\frac{1+i}{1-i}\right)^n=1$ where

$$i=\sqrt{-1}$$
 is

250. If $|z| \geq 3$ then the least value of $\left|z + \frac{i}{z}\right|$ is $\frac{\lambda}{3}$ then the value of λ is

251. If $|z-1|+|z+3|\leq 8$ then possible value of |z-4| is

252. A complex number z is said to be unimodular if |z|=1 suppose z_1 and z_2 are complex numbers such that $\frac{z_1-2z_2}{2-z_1z_2}$ is unimodular and z_2 in not unimodular then the point z_1 lies on a

253. It is given that n is an odd integer greater than 3 but n is not a multiple of 3 prove that $x^3 + x^2 + x$ is a factor of $(x+1)^n - x^n - 1$:

254. Find the real values of x and y for which the following equation is satisfied: $\frac{(1+i)x-2i}{3+i}+\frac{(2-3i)y+i}{3-i}=i$

255. Let the complex numbers z_1,z_2 and z_3 be the vertices of an equilateral triangle let z_0 be the circumcentre of the triangle then prove that $z_1^2+z_2^2+z_3^2=3z_0^2$

256. If in argand plane the vertices A,B,C of an isoceles triangle are represented by the complex nos z_1, z_2, z_3 respectively where $\angle C = 90^\circ$ then show that $\left(z_{1}-z_{2}
ight)^{2}=2(z_{1}-z_{3})(z_{3}-z_{2})$

Watch Video Solution

257. let $z_1=10+6i$ and $z_2=4+6i$ if z is nay complex number such that argument of $rac{z-z_1}{z-z_2}$ is $rac{\pi}{4}$ the prove that $|z-7-9i|=3\sqrt{2}$

258. if $iz^3+z^2-z+i=0$ then show that |z|=1

Watch Video Solution

259. let z_1 and z_2 be roots of the equation $z^2+pz+q=0$ where the coefficients p and q may be complex numbers let A and B represents z_1

and z_2 in the complex plane if $\angle AOB=lpha
eq 0$ and OA=OB where 0 is the origin prove that $p^2=4q\cos^2\left(rac{lpha}{2}
ight)$

260. For complex numbers z and w prove that $|z|^2w-|w|^2z=z-w$ if and only if z=w or $z\overline{w}=1$

261. if z_1 and z_2 are two complex numbers such that $|z|_1<1<|z|_2$ then prove that $\frac{|1-z_1\bar{z}_2|}{|z_1-z_2|}<1$

262. find the centre and radius of the circle formed by all the points represented by z=x+iy satisfying the relation $\left|\frac{z-\alpha}{z-\beta}\right|=k(k\neq 1)$ where

$$lpha=lpha_1+Ilpha_2,eta=eta+ieta_2$$

Watch Video Solution

263. Let $\omega \neq 1$ be a complex cube root of unity if $\left(3-3\omega+2\omega^{2}
ight)^{4n+3}+\left(2+3\omega-3\omega^{2}
ight)^{4n+3}+\left(-3+2\omega+3\omega^{2}
ight)^{4n+3}=0$

and β are constant complex numbers given by

- A. 1
- B. 2
- C. 4
- D. 3

Answer: D

264. For any integer k let
$$lpha_k=\cos\left(rac{k\pi}{7}
ight)+i\sin\!\left(rac{k\pi}{7}
ight)$$
 where $i=\sqrt{-1}$

the value of expression
$$\dfrac{\sum_{k=1}^{12}|lpha_{k+1}-lpha_k|}{\sum_{k=1}^3|(lpha_{4k-1}-lpha_{4k-2})|}$$

0

Watch Video Solution

265. A complex number z is said to be unimodular if |z|=1 suppose z_1 and z_2 are complex numbers such that $\frac{z_1-2z_2}{2-z_1z_2}$ is unimodular and z_2 in not unimodular then the point z_1 lies on a

A. straight line parallel to y axis

B. circle of radius 2

C. circle of radius $\sqrt{2}$

D. straight line parallel to x axis

Answer: B

266. The value of
$$\left(rac{1+\sqrt{3}i}{1-\sqrt{3}i}
ight)^{64}+\left(rac{1-\sqrt{3}i}{1+\sqrt{3}i}
ight)^{64}$$

A. zero

B. (-1)

C. 1

D. i

Answer: B

Watch Video Solution

267. Find the maximum value of |z| when $\left|z-rac{3}{z}
ight|=2$,z being a complex number

A. $1+\sqrt{3}$

B. 3

 $\mathsf{C.}\,1+\sqrt{2}$

Answer: B

Watch Video Solution

268. If z is a complex number such that $|z| \geq 2$ then the minimum value of $\left|z + \frac{1}{2}\right|$

A. is strictly greater than 5/2

B. is strictly greater than 3/2 but less than 5/2

C. is equal to 5/2

D. lies in the interval (1,2)

Answer: D

269. Let z_1,z_2 be two fixed complex numbers in the Argand plane and z be an arbitary point satisfying $|z-z_1|+|z-z_2|=2|z_1-z_2|$ then the locus of z will be

- A. an ellipse
- B. a straight line joining z_1and z_2
- C. a parabola
- D. a bisector of the line segment joining z_1 and z_2

Answer: A

- **270.** In the Argand plane the distinct roots of $1+z+z^3+z^4=0$ (z is a complex number) represent vertices of
 - A. a square
 - B. an equilateral triangle

C. a rhombus

D. a rectangle

Answer: B

Watch Video Solution

271. Suppose that z_1,z_2,z_3 are three vertices of an equilateral triangle in the Argand plane let $\alpha=\frac{1}{2}\big(\sqrt{3}+i\big)$ and β be a non zero complex number the point $\alpha z_1+\beta, \, \alpha z_2+\beta, \, \alpha z_3+\beta$ wil be

A. the vertices of an equilateral triangle

B. the vertices of an isosceles triangle

C. collinear

D. the vertices of a scalene triangle

Answer: A

272. The value of $\left|z\right|^2+\left|z-3\right|^2+\left|z-i\right|^2$ is minimum when z equals

- A. 2-(2/3)i
- B. 45+3i
- C. 1+(i/3)
- D. 1-(i/3)

Answer: C

Watch Video Solution

273. Let z_1 be a fixed point on the circle of radius 1 centered at the origin in the Argand plane and $z_1 \neq \pm 1$ consider an equilateral triangle inscribed in the circle with z_1, z_2, z_3 as the vertices taken in the counter clockwise directtion then $z_1z_2z_3$ is equal to

A. z_1^2

B. z_1^3

C. z_1^4

D. z 1

Answer: B

Watch Video Solution

274. Let lpha, eta denote the cube roots of unity other than 1 and lpha eq eta let

$$S = \sum_{n=0}^{302} {(-1)^n} {\left(rac{lpha}{eta}
ight)^n}$$
 then the value of S is

A. either -2ω or $-2\omega^2$

B. $either(-2\omega)$ or $2\omega^2$

C. either $2\omega\,\,{
m or}\,\,ig(\,-\,2\omega^2ig)$

D. either 2ω or $2\omega^2$

Answer: A

275. Let complex numbers lpha and $rac{1}{lpha^-}$ lie on circles $(x-x_0)^2+(y-y_0)^2=r^2$ and $(x-x_0)^2+(y-y_0)^2=4r^2$ respectively if $z_0=x_0+iy_0$ satisfies the equation $2|z|_0^2=r^2+2$ then |lpha|=

A.
$$\frac{1}{\sqrt{2}}$$

B. (1/2)

$$\operatorname{C.}\frac{1}{\sqrt{7}}$$

D. (1/3)

Answer: C

Watch Video Solution

276. If z is a complex number of unit modulus and argument theta then arg((1+z)/(1+zbar)) equals

A.
$$\frac{\pi}{2} - \theta$$

B. θ

C.
$$\pi - \theta$$

D. $(-\theta)$

Answer: B

Watch Video Solution

277. Let $z_1=2+3i$ and $z_2=3+4i$ be two points on the complex plane then the set of complex numbers z satisfying $|z-z_1|^2+|z-z_2|^2=|z_1-z_2|^2$ represents

A. a straight line

B. a point

C. a circle

D. a pair of straight lines

Answer: C

Watch Video Solution

278. Suppose z=x+iy where x and y are real numbers and $i=\sqrt{-1}$ the points (x,y) for which (z-1)/(z-i) is real lie on

- A. an ellipse
- B. a circle
- C. a parabola
- D. a straight line

Answer: D

Watch Video Solution

279. If P,Q,R are angles of an isosceles triangle and $\angle p = \frac{\pi}{2}$ then the value

D. (-1)

is equal to

A. i

Watch Video Solution

280. Let z be a complex number such that the imaginary part of z is non zero and $a=z^2+z+1$ is real then a cannot take the value

 $\left(\cos\left(rac{p}{3}
ight)-i\sin\left(rac{p}{3}
ight)
ight)^3+(\cos Q+i\sin Q)(\cos R-i\sin R)+(\cos P_i\sin R)$

- A. (-1) B.(1/3)
 - C.(1/2)

D. (3/4)

Answer: D

Watch Video Solution

281. If $z \neq 1$ and $\dfrac{z^2}{z-1}$ is real then the point represented by the complex number z lies

A. either on the real axis or on a circle passing through the origin

B. on a circle with centre at the origin

C. either on the real axis or on a circle not passing through the orogin

D. on the imaginary axis

Answer: A

282. The maximum value of |z| when the complex number z satisfies the condition $\left|z-\left(\frac{2}{z}\right)\right|$ =2 is

A.
$$\sqrt{3}$$

B.
$$\sqrt{3} + \sqrt{2}$$

C.
$$\sqrt{3} + 1$$

D.
$$\sqrt{3} - 1$$

Answer: C

Watch Video Solution

283. If
$$\left(\frac{3}{2}+i\frac{\sqrt{3}}{2}\right)^{50}=3^{25}(x+iy)$$
 where x and y are real then the

order Pair (x,y) is

D.
$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

Answer: D

Watch Video Solution

284. If (z-1)/(z+1) is purely imaginary then

A.
$$|z|=rac{1}{2}$$

B.
$$|z| = 1$$

$$\mathsf{C.}\left|z\right|=2$$

$$\mathsf{D}.\,|z|=3$$

Answer: B

285. The points representing the complex number z for which
$$arg\Big(\frac{z-2}{z+2}\Big)=\frac{\pi}{3}$$
 lie on

A. a circle

B. a straight line

C. an ellipse

D. parabola

Answer: A

286. if z is any complex number satisfying $|z-3-2i| \leq 2$ then the minimum value of |2z-6+5i| is

287. Let $\omega=e^{i\frac{\pi}{3}}$,and a,b,c,x,y,z be non zero complex numbers such that

$$a+b+c=x$$

$$a+b\omega+c\omega^2=y$$

$$a+b\omega^2+c\omega=z$$
 then the value of $rac{{{{\left| x
ight|}^2}+{{\left| y
ight|}^2}+{{\left| z
ight|}^2}}}{{{{\left| a
ight|}^2}+{{\left| b
ight|}^2}+{{\left| c
ight|}^2}}$ is

288. If $\omega(\,
eq 1)$ is a cube root of unity and $\left(1+\omega
ight)^7=A+B_\omega$ then (A,B) equals

B. (1,0)

C. (-1,1)

D. (0,1)

Answer: A

289. For the real parameter t,the locus of the complex number

$$z=\left(1-t^2
ight)+i\sqrt{1+t^2}$$
 in the complex plane is

A. an ellipse

B. a parabola

C. a circle

D. a hyperbola

Answer: B

Watch Video Solution

290. If $x+\left(rac{1}{x}
ight)=2\cos heta$ then for any integer n, $x^n+rac{1}{x^n}=$

A.
$$2\cos n\theta$$

$$\mathtt{B.}\,2\sin n\theta$$

C.
$$2i\cos n\theta$$

Answer: A

Watch Video Solution

291. If $\omega \neq 1$ is a cube root of unity then the sum of the series

$$S=1+2\omega+3\omega^2+\ldots +3n\omega^{3n-1}$$
 is

A.
$$3\frac{n}{\omega-1}$$

B.
$$3n(\omega-1)$$

C.
$$\frac{\omega-1}{3}n$$

D. 0

Answer: A

