

India's Number 1 Education App

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

FUNCTION

Question Bank

1. Let the question
$$f(x) = \log x^2$$
 and $\phi(x) = 2\log x$, then

A. a)
$$f(x) \leq \phi(x)$$

B. b)
$$f(x)
eq \phi(x)$$

C. c)
$$f=\phi$$

D. d)
$$f
eq \phi$$

Answer: D

2. If
$$f(x)=(p-x^n)^{\frac{1}{n}}, \, p>0$$
 and n is positive integer, then the value of $f[f(x)]$

B. b)
$$x^2$$

Answer: C

Watch Video Solution

3. The range of the function $\frac{x}{2+x^2}$ is

A.
$$\left| \frac{1}{2\sqrt{2}}, -\frac{1}{2\sqrt{2}} \right|$$

A.
$$\left[rac{1}{2\sqrt{2}}, \, -rac{1}{2\sqrt{2}}
ight]$$
B. $\left[-rac{1}{2\sqrt{2}}, \, -rac{1}{2\sqrt{2}}
ight]$

C.
$$\left[-\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}\right]$$
D. $\left[\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}\right]$

Answer: C

Watch Video Solution

- **4.** The function x and $\frac{x^2}{x}$ are identical for
 - A. x > 0
 - $\mathrm{B.}\,x\leq 0$
 - $\mathsf{C}.\,x>0\,\mathsf{or}\,x<0$
 - D. x = 0

Answer: C

- **5.** The inverse function of $\log_e x$ is
 - A. a) e^x
 - B. b) 1/x
 - C. c) $\frac{1}{\log_e x}$
 - D. d) $\frac{x}{\log_e x}$

Answer: A

- 6. If f(x + y) = f(x) + f(y), then the value of f(0)
 - A. a) -1
 - B. b) 0
 - C. c) 1
 - D. d) None of these

Answer: B

Watch Video Solution

- If the function f(x) satisfies the condition $f\left(x+\frac{1}{x}\right)$ = $x^2+rac{1}{x^2}, x
 eq 0$ then f(x) is
 - A. a) $x^2 + 2$
 - B. b) $x^2 2$
 - C. c) $2-x^2$
 - D. d) $\frac{x^2}{2}$

Answer: B

Watch Video Solution

8. The domain of definition of f(x) $=\sin^{-1}\left(\frac{\log_3 x}{3}\right)$ is

A. a)
$$1 \leq x \leq 9$$

B. b) $0 \le x \le 9$

C. c)
$$3 \leq x < 9$$

D. d)
$$1 < x < 9$$

Answer: A

Watch Video Solution

9. The domain of definition of f(x) =
$$\sqrt{\log_e\left(\frac{4x-x^2}{3}\right)}$$
 is

$$\mathsf{A.}\,0 < x < 3$$

B.
$$x > 1$$

$$\mathsf{C.}\,1 \leq x \leq 3$$

D.
$$x < 3$$

Answer: C

watch video Solution

10. The range of the function $f(x) = \sin x + \cos x$ is

A. a)
$$-\sqrt{2} < f(x) < \sqrt{2}$$

$$\mathsf{B.\,b}) - \sqrt{2} \le f(x) \le \sqrt{2}$$

C. c)
$$f(x) \leq \sqrt{2}$$

D. d)
$$0 < f(x) < \sqrt{2}$$

Answer: B

11. If f(x) =
$$\frac{a^x+a^{-x}}{2}$$
, $(a>2)$ then the value of $f(x+y)+f(x-y)$ is equal to

A. a)
$$2f(x) \cdot f(y)$$

B. b)
$$f(x) \cdot f(y)$$

C. c)
$$\frac{f(x)}{f(y)}$$

D. d) f (xy)

Answer: A

Watch Video Solution

- **12.** If $f(x) = \frac{1}{1-x}$, then $f[f\{f(x)\}]$ is
 - A. a) 0
 - B. b) x
 - C. c) -x
 - D. d) $\frac{1}{1+x}$

Answer: B

13. If $f(x) = x^2$ and $g(x) = \sqrt{x}$, then the correct relation will be

A.
$$g\{f(4)\} = 4$$

B.
$$g\{f(3)\} = 6$$

C.
$$g\{f(-2)\} = -2$$

D.
$$g\{f(2)\}=4$$

Answer: A

Watch Video Solution

14. If f(x) = $\frac{e^x - e^{-x}}{e^x + e^{-x}} + 2$, then the inverse function will be

A.
$$\frac{1}{2} \frac{\log_e(x-2)}{x-1}$$

$$\mathsf{B.} \; \frac{1}{2} \frac{\log_e(x-1)}{3-x}$$

$$\mathsf{C.} \ \frac{1}{2} \frac{\log_e x}{2-x}$$

$$\mathsf{D.} - 2\log_e \left(\frac{x-1}{1+x}\right)$$

Answer: B

Watch Video Solution

- **15.** If $f(x + 2) = 2x^2 + 5x + 7$, then the value of f(1)
 - A. 0
 - B. -2
 - C. 2
 - D. 4

Answer: D

- **16.** The range of the function $f(x) = \frac{1}{4 + 2\sin x}$ is
 - A. (1/6,1/2)

B. [1/6,1/2)

C. [1/6,1/2]

D. (1/6,1/2]

Answer: C

Watch Video Solution

17. Domain of definition of f(x) = $\sin^{-1} \left(\frac{3-2x}{5} \right)$

A. a) [-1,4]

B. b) (-1,4)

C. c) $[0,\infty]$

D. d) $(-\infty,4)$

Answer: A

18. If f(x)= $\frac{Kx}{1+x}$, $x \neq -1$ and f{f(x)} = x, then the value of k

A. a)
$$-\sqrt{2}$$

B. b) -1

C. c) 1

D. d) $\sqrt{2}$

Answer: B

Watch Video Solution

19. If f(x) + 2f(1 - x) = $x^2+2, \ \forall x \in R$, then f(x) is

A. a)
$$x^2-2$$

B. b) 1

C. c)
$$rac{1}{3}(x-2)^2$$

D. d) 1/2 (x - 2)

Answer: C

Watch Video Solution

20. Let f : $(-\infty,1] o (-\infty,1]$ such that $\mathsf{f}(\mathsf{x})$ = x(2 -x), then $f^{-1}(x)$ is

A.
$$1+\sqrt{1-x}$$

$$B. 1 - \sqrt{1-x}$$

$$\mathsf{C.}\,\sqrt{1-x}$$

D.
$$\sqrt{1 + x}$$

Answer: B

Watch Video Solution

21. Let f be a function such that $f(x + y) = f(x) + f(y) \ \forall x, y \in R$, if f(1) = k, then show that f(n) is equal to nk.

22. f is a function such that f(x + y) = f(x) .f(y), $\forall x,y \in R$, if f(1) = 3, then find $\sum_{i=1}^n f(r)$.

- **23.** Find domain of f(x) = $\sqrt{1 \sqrt{1 x^2}}$.
 - Watch Video Solution

- **24.** If f(x) = $\sin x + \cos x$, g(x) = $x^2 1$ then show that g(f(x)) is invertible in the domain $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$.
 - Watch Video Solution

- **25.** If $f(x) = \frac{4^x}{4^x + 2}$, then find f(x) + f(1 x).
 - Watch Video Solution

26. If $2f(x) - 3f(1/x) = x^2 (x \neq 0)$, then find f(2).

27. If $f(x) = \cos\left[\pi^2\right]x + \cos\left[-\pi^2\right]x$, where [x] stands for the greatest integer function, then find $f\left(\frac{\pi}{2}\right), f\left(\frac{\pi}{4}\right)$.

28. Find the range of f(x)= $\frac{x^2+x+2}{x^2+x+1}(-\infty < x < \infty)$

29. Find the domain of definition of the function $f(x) = \frac{1}{\sqrt{|x|+x}}$.

30. If $f: R \to R$ such that f(x) = x - [x], where [p] denotes the greatest integar less than or equal to p, then find $f^{-1}(x)$, if exists.

- **31.** Find the range of the function $f(x) = x^2 + \frac{1}{x^2 + 1}$.
 - Watch Video Solution

- **32.** Find the range of the function ϕ where $\phi(x) = \cos^{-1} \bigg(\frac{x^2}{1+x^2} \bigg)$.
 - Watch Video Solution

- **33.** Find the range of the function f(x) =|x-1|+|x-2| , $-1\leq x\leq 3$
 - Watch Video Solution

34. Find the range of the function $y = \log_3 \left(5 + 4x - x^2\right)$.

35. If f(x+y) = f(x) - f(y), $\forall\, x,\, y\in R$, then show that f(3) = f(1)

36. Find the range of the function $f(x) = (e^x - e^{-x})$.

37. Find the inverse function of the function $f(x) = \left[4 - (x - 7)^3\right]^{\frac{1}{5}}$.

38. If $f(x) = e^{x+a}$, $g(x) = x^{b^2}$ and $h(x) = e^{b^2x}$, then find the value of $g\{f(x)\}$

 $\frac{g\{f(x)\}}{h(x)}$

- **39.** Find domain of the function $f(x) = 2^{\sin x} (-1)x + 1/sqrt(x-2)$.
 - Watch Video Solution

- **40.** Prove that the domain of $g(x) = \frac{\cot^{-1} x}{\sqrt{x^2 [x]}}, x \in R$ is
- $R-ig\{\sqrt{n}\!:\!n\geq 0,n\in zig\}.$
 - Watch Video Solution

- **41.** Find the range of the function $y = \frac{1}{2 \cos 2x}$.
 - Watch Video Solution

42. Find the range of the function
$$y=rac{\log_2\Bigl(\sin x+\cos x+3\sqrt{2}\Bigr)}{\sqrt{2}}$$

- **43.** Find the value of x which $f(x) = \frac{1}{\sqrt{|x| x}}$ is not defined.
 - Watch Video Solution

- **44.** Find the range of $y = \frac{x}{1+x^2}$
 - Watch Video Solution

- **45.** If $f(x) = \cos(\log_e x)$, then find the value of f(x) $\cdot f(y) \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$
 - Watch Video Solution

46. Find the domain of $f(x) = \sin^{-1} \left\lceil \log_9 \left(\frac{x^2}{4} \right)
ight
ceil$

Without using graph paper the graph of the function 47. y=f(x)=|x-1|+|x+1| for $-2\leq x\leq 2$ and examine whether the function has any point of discontinuty.

48. Without using graph paper draw a sketch graph of the function $f(x) = x^2 + 1$

 $2+|x^2-4|.$

49.

$$an^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1}$$

Find the domain of the function F(x)

50. Find the range of the function
$$f(x) = \frac{\sec^2 x - \tan x}{\sec^2 x + \tan x}, \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right).$$

51. Find the domain of function
$$f(x) = \cos^{-1}\left(\frac{2-|x|}{4}\right) + \frac{1}{\log(3-x)} + \sqrt{x}$$
.

52. If 2f(x) + 3f(-x) = 15 - 4x for all real values of x, then show that f(x) = 3 + 4x

4x.

53. If
$$2f(x-1) - f\left(\frac{1-x}{x}\right) = x$$
 find $f(x)$.

54. Find the inverse function of the function $f(x) = \left[4 - (x - 7)^3\right]^{\frac{1}{5}}$.

55. If $f(n + 1) = \frac{2f(n) + 1}{2}$, $n = 1, 2, 3, \ldots$ and f(1) = 2, then find the value of f(101)

56. f(x) = $\frac{\alpha x}{x+1}(x \neq -1)$, then for what value of α , $f\{f(x)\} = x$?

57. Find the range of $f(x) = {}^{7-x} P_{x-3}$.

Watch Video Solution

58. Find the inverse function of the function $f(x) = 2^{x(x-1)} (x > 0)$.

Watch Video Solution

59. If f(x) =log e $\frac{1+x}{1-x}$ and $g(x)=\frac{3x+x^3}{1+3x^2}$, then prove that f[g(x)] = $3 \cdot f(x)$.

Watch Video Solution

60. If $f(x) = ax^2 + bx + c$ find a, b so that f(x + 1) = f(x) + x + 1 may hold identically.

61. c is any real number and $c \neq 0$. Prove that |f(c) - f(-c)| = 2,

where
$$f(x) = \frac{|x|}{x}$$

62. Find the range of f(x) = $3\sin\sqrt{\frac{\pi^2}{16}-x^2}$.

63. 2f(1/x) - f(x) = 5x, find the value of f(x + 1/x).

64. Find the Domain of definition of the function f(x)

$$\sqrt{\log_{10}\!\left(rac{3x-x^2}{2}
ight)+\sqrt{x-rac{3}{2}}}.$$

65. If $g(x) = \frac{1}{x^2}$, show that , $g(x) - g(x + 1) = \frac{2x + 1}{x^2(x + 1)^2}$.

 $\log_{10}\log_{10}\log_{10}\{(x+1)(x-2)\}.$

67. For which y can be a function of x.
$$(x \in R, y \in R)$$
 $(x-h)^2 + (y-k)^2 = r^2$

 $u^2 = 4ax$

Watch Video Solution

68. For which y can be a function of x. $(x \in R, y \in R)$

69. For which y can be a function of x.
$$(x \in R, y \in R)$$

 $x^4 = y^2$

Watch Video Solution

70. For which y can be a function of x. $(x \in R, y \in R)$

 $x^6 = y^3$

Watch Video Solution

71. For which y can be a function of x. $(x \in R, y \in R)$

$$3y = (\log x)^2$$

73. Let
$$f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$$
, where f(x)=sinx. Find whether f(x) is one-one or not.

74. Show $f\!:\!R o R$ defined by f(x)= x^2 + x for all $x\in R$ is many one.

75. Find number of surjection from A to B where A={1,2,3,4}, B={a,b}

76.
$$f(x)=rac{x^5}{5}-rac{8}{3}x^3+(16+c)x$$
, then find the range of c, so that function is one-one function.

77. Find Domain of the following function :

$$f(x) = \sqrt{\log_{0.4}\!\left(rac{x-1}{x+5}
ight)}$$

78. Find Domain of the following function:

$$f(x) = \sin^{-1}\!\left(\log_2\!\left(rac{x^2}{2}
ight)
ight)$$

79. Find Domain of the following function:

$$f(x) = \log_{x-4}(x^2 - 11x + 24)$$

80. Find Domain of the following function :

$$f(x)=\sin^{-1}igl[2x^2-3igr]$$
 , where [.] devotes G.I.F.

81. Find the range of the following function

82. Find the range of the following function

$$f(x) = x^2 - 3x + 2$$

$f(x) = \sin^2 x - 5\sin x - 6$

83. Find the range of the following function

$$f(x) = (x-[x])/(1+x-[x])$$

84. Find the range of the following function

$$y=\log_3\Bigl(\log_{1/2}\bigl(x^2+4x+4\bigr)\Bigr)$$

85. Find the range of the following function

$$f(x) = \log_2 \left(rac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}}
ight)$$

86. Find the range of the following function

$$f(x)=\sin^{-1}igg[x^2+rac{1}{2}igg]+\cos^{-1}igg[x^2-rac{1}{2}igg]$$
, [.] denotes the Greatest integer function.

87. Let $f(x) = \sqrt{x-2}$, $g(x) = \sqrt{5-x}$ find f(x) + g(x), f(x) - g(x), f.g., (f/g)

Watch Video Solution

88. Find which of the following functions is even or odd?

$$f(x) = x^2 + |\sin x| + \cos x$$

Watch Video Solution

89. Find which of the following functions is even or odd?

$$f(x) = \log\Bigl(x + \sqrt{1 + x^2}\Bigr)$$

Watch Video Solution

90. Find which of the following functions is even or odd?

$$f(x) = \log \left(rac{a+x}{a-x}
ight)$$

91. Find which of the following functions is even or odd?

f(x)=cos(1+cosx)+cos(1+sinx)

Watch Video Solution

92. If f is an even function defined in the interval (-5,5), find four real values of x satisfying the equation $f(x) = figg(rac{x+1}{x+2}igg)$

Watch Video Solution

93. If $f(x+y)+f(x-y)=2f(x).f(y) \forall x, y \in R$. $f(0) \neq 0$, find if f(x) is even or odd function.

94. Find whether the given function is even or odd function, where

$$f(x)=rac{x(\sin x+ an x)}{\left\lceilrac{x+\pi}{\pi}-rac{1}{2}
ight
ceil}$$
 , where, [.] denotes greatest integer function.

95. If $f\colon [-20,20] o R$ defined by $f(x)=\left[\frac{x^2}{a}\right]\sin x + \cos x$ is an even function. Then evaluate the set of values of 'a'

96. Find the period of $f(x)=\sin x + \tan \frac{x}{2} + \sin \frac{x}{2^2} \tan \frac{x}{2^3} + ... + \sin \frac{x}{2^{n-1}} + \tan \frac{x}{2^n}$

97. Find the period of the real valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6)

98. Let g(x)=1+x-[x] and
$$f(x)==\begin{cases} -1 & x<0\\ 0 & x=0 \end{cases}$$
 Then for all x find f(g(x)) $1 & x>0$

99. Two functions are defined as under,
$$f(x)=egin{cases} x+1&x\leq 1\\ 2x+1&1< x\leq 2 \end{cases}$$
 $g(x)=egin{cases} x^2&-1\leq x<2\\ x+2&2\leq x\leq 3 \end{cases}$

Find fog and gof

100. If $f\colon [1,\infty) \to [2,\infty)$ given by f(x)=x+1/x then find $f^{-1}(x)$, (assume bijective).

of f(x). Hence or otherwise solve the equation, $x^2-x+1=rac{1}{2}+\sqrt{x-3/4}$ Watch Video Solution

101. Let $f{:}\left[1/2,\infty
ight)
ightarrow\left[3/4,\infty
ight)$ where f(x)= x^2-x+1 . Find the inverse

102. Let g(x) be the inverse of f(x) and
$$f'(x)=\dfrac{1}{1+x^3}.$$
 Then find g'(x) in terms of g(x).

103. If the function
$$f\colon R o A$$
 is given by $f(x)=rac{e^x-e^{-|x|}}{e^x+e^{|x|}}$ is surjective, find A.

104. Let
$$f\colon R \to R$$
 defined by $f(x) = \dfrac{x^2}{1+x^2}.$ Prove that f is neither injective nor surjective.

105. Let A=R-{3}, B=R-{1} and $f\colon A\to B$ defined by $f(x)=\dfrac{x-2}{x-3}.$ Is 'f' bijective ? Give reason.

106. Let $f\colon X o Y$ be a function defined by $f(x)=a\sin\Bigl(x+rac{\pi}{4}\Bigr)+b\cos x+c.$ If f is both one-one and onto, find sets X and Y.

107. Find the domain of the following:

$$f(x) = ^{16-x} C_{2x-1} + ^{20-3x} P_{4x-5}$$

 $\textbf{108.} \ \mathsf{Find} \ \mathsf{the} \ \mathsf{domain} \ \mathsf{of} \ \mathsf{the} \ \mathsf{following}:$

$$f(x) = \sin^{-1}\!\left(\frac{3-2x}{5}\right) + \sqrt{3-x}$$

 $\textbf{109.} \ \mathsf{Find} \ \mathsf{the} \ \mathsf{domain} \ \mathsf{of} \ \mathsf{the} \ \mathsf{following}:$

$$f(x)=\sqrt{x^2-|x|-2}$$

110. Find the domain of the following:

$$f(x) = rac{\log_{2x} 3}{\cos^{-1}(2x-1)}$$

111. Find the range of the following function

f(x)=max{sinx, cosx}

112. Find the range of the following function

$$f(x) = |x-1| + |x-2|, \; -1 \leq x \leq 3$$
 is

113. Find the domain and range for
$$f(x) = \left[\log\Bigl(\sin^{-1}\sqrt{x^2+3x+2}\Bigr)
ight]$$
,

114. Determine whether even or odd:

$$f(x) = x igg(rac{a^x+1}{a^x-1}igg)$$

$$f(x) = \left\{ egin{array}{ll} x|x| & 0 \leq x < 1 \ 2x & x \geq 1 \end{array}
ight.$$
 How is f defined for $x < 0$

If f is even

Watch Video Solution

116. A function is defined for all real numbers is defined for x>0 as follows:

$$f(x) = egin{cases} x|x| & 0 \leq x < 1 \ 2x & x \geq 1 \end{cases}$$
 How is f defined for $x < 0$

If f is odd

Watch Video Solution

117. Show that the function $f(x)=rac{2x(\sin x+\tan x)}{2\left\lceil rac{x+21\pi}{\pi}
ight
ceil}$ is symmetric

about origin.

118. Find the period of following function

$$f(x)=[\sin 3x]+[\cos 6x]$$

119. Find the period of following function

$$f(x) = rac{1}{2}igg\{rac{|\sin x|}{\cos x} + rac{|\cos x|}{\sin x}igg\}$$

120. Find the period of following function

$$f(x) = e^{\ln{(\sin x)}} + \tan^3 x - \csc(3x - 5)$$

121. Let $f(x+p)=1+\{2-3f(x)+3(f(x))^2-(f(x)^3\}^(1//3), \text{ for all } x \text{ in } R \text{ } where \text{ } p>0\text{`},$ then prove f(x) is periodic.

122. Let f(x) be defined on [-2,2] and is given by

$$f(x) = \left\{egin{array}{ll} -1 & -2 \leq x < 0 \ x-1 & 0 \leq x \leq 2 \end{array}
ight.$$
 and

g(x)=f(|x|)+|f(x)|, then find g(x).

123.
$$f(x)= \left\{ egin{array}{ll} x-1 & -1 \leq x < 0 \ x^2 & 0 < x \leq 1 \end{array}
ight.$$
 and g(x)=sin x. Then find

h(x)=f(|g(x)|)+|f(g(x))|

124. Find the inverse of the following function:

$$f(x) = \sin^{-1}\left(\frac{x}{3}\right), x \in [-3, 3]$$

125. Find the inverse of the following function:

$$f(x) = \log_e(x^2 + 3x + 1), x \in [1, 3]$$

Watch Video Solution

126. Find the inverse of the following function:

$$f(x) = \log_e\Bigl(x + \sqrt{x^2 + 1}\Bigr)$$

Watch Video Solution

127. If the function $f{:}\left[1,\infty
ight)
ightarrow\left[1,\infty
ight)$ is defined by $f(x)=2^{x\,(\,x\,-\,1\,)}$, then find $f^{-1}(x)$

Watch Video Solution

128. $f(x) = \sin^{-1}(x-1) + \cos^{-1}(x-2)$, then domain of f(x) is

A. [0,2]

B. [1,2]

C. [0,3]

D. [1,3]

Answer: D

Watch Video Solution

$2^x + 2^y = 2$ is

129. The domain of definition of the function y(x) given by the equation

A.
$$0 < x \le 1$$

B. $0 \le x < 1$

 $\mathsf{C.} - \infty < x \leq 0$

 $D.-\infty < x < 1$

Answer: D

130. Domain of the function
$$f(x)=rac{1}{\sqrt{\ \hat{\ }\ 10C_{x-1}-3.^{10}\ C_x}}$$
 contains the points

A. {9,10,11}

B. {9,10,12}

C. all natural numbers

D. none of these

Answer: D

131. Domain of the function
$$f(x) = \frac{x}{\sqrt{\sin(Inx) - \cos(Inx)}}$$
 is

A.
$$\left(e^2n\pi,\,e^{3n\,+\,rac{1}{2}}\pi
ight)$$

A.
$$\left(e^{2n\pi},e^{3n+\frac{1}{2}\pi}\right)$$
B. $\left(e^{2n+\frac{1}{4}\pi},e^{2n-\frac{5}{4}\pi}\right)$

C.
$$\left(e^{\left(2n+rac{1}{4}
ight)\pi},e^{\left(2n+rac{5}{4}
ight)\pi}
ight)$$

D. none of these

Answer: C

Watch Video Solution

- **132.** If $f(X) = \sqrt{\sec^{-1}\!\left(rac{2-|x|}{4}
 ight)}$, then the domain of f(x) is
 - A. [-2,2]
 - B. [-6,6]
 - C. $(-\infty, -6] \cup [6, \infty)$
 - D. $[-6, -2] \cup [2, 6]$

Answer: C

133. The range of the function $f(x) = \sin^{-1}(\log[x]) + \log(\sin^{-1}[x])$,

If

C.
$$\left\{\log\left(\frac{\pi}{2}\right)\right\}$$

B. [1,2)

D. $\{ -\sin 1 \}$

Answer: C

Watch Video Solution

134.

$$f(X) = \lim \left[rac{x}{x+1} + rac{x}{(x+1)(2x+1)} + rac{x}{(2x+1)(3x+1)} + \ldots +
ight]$$

A. {0, 1}

C. {-1, 1}

D. [-1,1]

Answer: A

Watch Video Solution

135. Find the range of the following function

$$f(x) = \log_2 \left(rac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}}
ight)$$

A. [1,2]

B. [0,1]

C. (1,2)

D. (0,1)

Answer: A

136. If $-rac{\pi}{2} < x < rac{\pi}{2}$, then the range of the function $f(x) = \cos[x]$ is

137. If $f\!:\!R o Risdef\in edbyf(x)=rac{1}{2-\cos3x}$ for each $x\in R$, then

B. {cos 1, -cos1, 1}

D. {-1,1}

C. {-1,0,1}

Answer: A

Watch Video Solution

A. (1/3, 1)

the range of f is

B. [1/3, 1]

C. (1,2)

D. [1,2]

Answer: B

Watch Video Solution

 $Iff(x+y)=f(x)f(y)\, orall x,y\in R, f(0)
eq 0$ 138. $F(x) = \left\{ rac{f(x)}{\left(1 + \left(f(x)
ight)
ight)^2}
ight.$ is

B. odd

C. both even or odd

D. neither even nor odd

Answer: A

139.

Watch Video Solution

 $f(x+y)=f(x)+f(y),\ \forall x,y\in R$ then f is

A function satisfies

conditions

the

then

A. an even function

B. an odd function

C. neither even or odd

D. none of these

Answer: B

Watch Video Solution

140. If the function $f(x) = [3.5 + b \sin x]$ (where[.] denotes the greatest integer function) is an even function then complete set of values of 'b' is:

A. (-0.5, 0.5)

B. [-0.5, 0.5]

C.(0,1)

D. [-1, 1]

Answer: A

141. Function
$$f(x) = \log ig(x^3 + \sqrt{1} + x^6ig)$$
 is

- A. even function
- B. odd function
- C. algebraic function
- D. discontinuous function

Answer: B

Watch Video Solution

142. If the function f satisfies the relation $f(x+y)+f(x-y)=2f(x) imes f(y),\ orall x,y,\ \in R \ ext{and}\ f(0)
eq 0$, then

A. an even function

B. an odd function

C. neither even or odd

D. none of these

Answer: A

Watch Video Solution

143. If $\sum_{k=0}^n f(x+ka)=0$ where a>0, then the period of f(x) is

A. a

B. (n + 1)a

 $\mathsf{C.}\,\frac{a}{n}+1$

D. f(x) is non-periodic

Answer: B

144. Function f satisfies the equation $f(x+a) = \left\{ rac{1+f(x)}{1-f(x)}
ight\} orall x \in R$ then the period of the function is

A. a

B. 2a

C. 4a

D. 8a

Answer: C

Watch Video Solution

145. If
$$f'(x)=\Big\{rac{1-2\sin^2x}{f(x)}\Big\}, f(x)\geq 0, \ orall x\in R \ ext{and f(0)=1, then f (x)}$$
 is a periodic function with the fundamental period

 $A. \pi$

B. 2π

C.
$$\frac{\pi}{2}$$

D. none of these

Answer: A

Watch Video Solution

- **146.** If a, b be two fixed positive integers such that $f(a+x)=b+\left[b^3+1-3b^2f(x)+3bf(x)^2-(f(x))^3\right]^{\frac{1}{3}} \text{ for all real x,}$ then f(x) is a periodic function with period.
 - A. a
 - B. 2a
 - C.b
 - D. 2b

Answer: B

147. Period of $f(x)=\sin, \frac{\pi}{2}x+2\cos, \frac{\pi}{3}x-\tan, \frac{\pi}{4}x$ is equal to

A. 4

B. 8

C. 12

D. 16

Answer: C

Watch Video Solution

148. Polynomial function f(x) satisfying the condition

$$f(x), f\Bigl(rac{1}{x}\Bigr) = f(x) + f\Bigl(rac{1}{x}\Bigr)$$
. If f(10)=1001, then f(20) is

A. 7001

B. 8001

C. 8000

D. none of these

Answer: B

Watch Video Solution

149. The function f(x) is defined for all real x. If $f(a+b)=f(ab)\ orall a$ and b and $f\left(-\frac{1}{2}
ight)=-\frac{1}{2}$, then f(2009) equals

$$C. - \frac{1}{2}$$

$$\mathsf{D.}-\frac{2000}{2}$$

Answer: C

$$f''(x) = -f(x)$$
 and $g(x) = -f'(x)$ and $F(x) = \left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$

150.

and given that f(5)=5, then f(10) is equal to

If

B. 10

A. 5

C. 0

D. 15

Answer: A

Watch Video Solution

- A. $f(x) = \sqrt{\sin x}$, $g(x) = x^2$
 - B. $f(x) = |x|, g(x) = \sin x$
 - C. $f(x) = \sqrt{x}, q(x) = \sin^2 x$

151. If $fog = |\sin x|$ and $gof = \sin^2 \sqrt{x}$ then f(x) and f(x) are

D.
$$f(x) = \sin \sqrt{x}, g(x) = x^2$$

Answer: C

Watch Video Solution

- If f is a function such that f(0)=2, f(1)=3and f(x+2)=2f(x)-f(x+1) for every real x then f (5) is
 - A. 7
 - B. 13
 - C. 1
 - D. 5

Answer: B

153. Let $f(x)=egin{cases} -1+\sin K_1\pi x & xis rational \ 1+\cos K_2\pi x & xis irrational \end{cases}$ If f(x) is periodic

function, then:

A. either $K_1, K_2 \in rational$ or $K_1, K_2 \in irrational$

B. $K_1, K_2 \in \,$ rational only

C. K_1 and $K_2 \in \mathsf{irrational}$ only

D. K_1 and $K_2 \in$ irrational such $\dfrac{K_1}{K_2}$ is rational.

Answer: B

154. Let
$$f(1)=1$$
 and $f(n)=2\sum_{r=1}^{n-1}f(r)$. Then $\sum_{n=1}^mf(n)$ is equal to

A.
$$3^{m-1} - 1$$

$$B.3^m-1$$

$$\mathsf{C.}\,3^m-1$$

D. none of these

Answer: B

Watch Video Solution

155. Given $f(x)=In\Big\{\frac{1+x}{1-x}\Big\}$ and $g(x)=\Big\{\frac{3x+x^3}{1+3x^2}\Big\}$. Then f(g(x)is equal to

$$A.-f(x)$$

B.3f(x)

C. $\left[f(x)
ight]^2$

D. none of these

Answer: B

156. If $f\colon [2,3) o [0,1)$ is defined by f(x) = x - [x], the fractional part of x, then $f^{-1}(x)$

B. equals x-2

C. does not exist

D. none of these

Answer: A

Watch Video Solution

157. The domain of $y=\cos^{-1}\!\left(rac{1-2|x|}{3}
ight)+\log_{|x-1|}x$ is

A.(0,2)

B. $(0,1) \cup (1,2)$

C. (1,3)

Answer: B

Watch Video Solution

158. Let $f:\left[-\frac{\pi}{3},2\frac{\pi}{3}\right] o [0,4]$ be a function defined as $f(x)=\sqrt{3}\sin x-\cos x+2$. Then $f^{-1}(x)$ is given by

A.
$$\sin^{-1}\!\left(\frac{x-2}{2}\right)-\frac{\pi}{6}$$

$$\mathsf{B.}\sin^{-1}\!\left(\frac{x+2}{2}\right) + \frac{\pi}{6}$$

$$\mathsf{C.}\,2\frac{\pi}{3}-\cos^{-1}\!\left(\frac{x-2}{2}\right)$$

D. none of these

Answer: C

159. Let n be a positive integer with $f(n)=1!+2!+3!+\ldots+n!$ and P(x) and Q(x) be polynomials in x such that f(n+2)=Q(n)f(n)+P(n)f(n+1). Find P(2).

A.
$$P(x)=x+3$$

B.
$$Q(x)=-1+2$$

D.
$$Q(x)=x+3$$

Answer: A

Watch Video Solution

160. A function $f\colon R\to R$ is defined by $f(x+y)-kxy=f(x)+2y^2,\ \forall xy\in R\ ext{and}\ f(1)=2,f(2)=8,$ where k is some constant, then $f(x+y).\ f\Big(rac{1}{x+y}\Big)$ is equal to (where x+y
eq y)

161. If $f(x) = 1 + x^2$ and $[g(x)] = 1 + x^2 - 2x^3 + x^4, \, g(2) = 2$, then A. g(x) is one -one B. g(2)=2C. g(x)=xD. none of these **Answer: B**

D. none of these

A. 1

B. 4

C. f(1)

Answer: B

Watch Video Solution

162. π is the FUNDAMENTAL period of

A.
$$\frac{1+\sin x}{\cos x(1+\cos ecx)}$$

$$\mathsf{B.}\left|\sin x\right|+\left|\cos x\right|$$

$$\mathsf{C}.\cos(\sin x) + \cos(\cos x)$$

D. none of these

Answer: A

Watch Video Solution

163. If the range of the function $y=\frac{x-1}{a-x^2+1}$ does not contain any values belonging to the interval $\left[-1,\ -\frac{1}{3}\right]$ then the integral value(s) of a can be

- A. 5
- B. 1

C. -5

D. none of these

Answer: C

Watch Video Solution

164. Let $f\!:\!d o R$ be defined by f(X)=In(In(In(Inx))) then

A. f(X) is into

B. f(x) is many one

C. $D=(e^e,\infty)$

D. none of these

Answer: C

165.

 $f(x) = \max \{1 + \sin x, 1, 1 - \cos x\}, \xi n[0, 2\pi] \text{ and } g(x) = \max \{1, |x|\}$, then

Let

A. g(f(0))=10

C. f(g(1))=1

D. none of these

B. $f(g(0))=1+\sin 1$

Answer: B

Watch Video Solution

166. Let $f(x)=rac{e^{-x}}{1+[x]}$, then

A. Domain of definition of f(X) is R-[-1,0)

B. Range od definition of f(x) is (-1/e, 1]

C. f(x) is one-one in its domain

D. none of these

Answer: A

Watch Video Solution

- **167.** The value(s) of a, for which $\dfrac{x^3-6x^2+11x-6}{x^3+x^2-10x+8}+\dfrac{a}{30}=0$ does not
- have real solution is/are

A. -10

B. -12

C. 5

D. none of these

Answer: C

168.
$$f(\mathsf{x})$$
 is real valued function, $f(x+y)+f(x-y)=2f(X),\,f(y)f \,\,\mathrm{or}\,\,\,ally
eq R$, then

satisfying

real

C. f(x) is odd if f(0)=0

B. f(x) is even if f(0) = 1

D. f(x) is even if f(0)=0

Answer: B::C

168.

169. If S is the set of all real numbers x for which $\frac{2x-1}{2x^3+3x^2+x}>0$, and P is the subset of S, then then P can be

A.
$$\left(\frac{3}{2},2\right)$$

$$\mathsf{B.}\left(-\frac{1}{2},0\right)$$

 $\mathsf{C.}\left(\frac{1}{2},3\right)$

 $D.(0,\infty)$

Answer: A::B::C

Watch Video Solution

170. If $f'(x)=rac{1-2\sin^2x}{f(x)},$ $(f(x)\geq0,\ orall x\in R$ and f(0)=1) then f(x) is a periodic function with the period

Α. π

B. 2π

 $\operatorname{C.}\frac{\pi}{2}$

D. none of these

Answer:

then

171.

If

as

 $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cdot \cos \left(x + \frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$,

A.
$$f\left(\frac{\pi}{12}\right) = \frac{5}{4}$$

B.
$$gof\left(\frac{\pi}{10}\right) = 1$$

C. gof is a constant function

D. fog is a constant function

Answer: A::B::C::D

Watch Video Solution

172. Let $f: \left[-\frac{\pi}{2}, 2\frac{\pi}{2}\right] \to [0, 4]$ be a function defined $f(x) = \sqrt{3}\sin x - \cos x + 2$. Then $f^{-1}(x)$ is given by

A.
$$\sin^{-1}\!\left(x-rac{2}{2}
ight)-rac{\pi}{6}$$
B. $\sin^{-1}\!\left(rac{x-2}{2}
ight)+rac{\pi}{6}$

C.
$$2\frac{\pi}{3} - \cos^{-1}\left(\frac{x-2}{2}\right)$$
D. none of these

Answer: B::C

Watch Video Solution

173. If
$$f(x)=rac{x}{x^2+1}$$
 and $f(A)=\left\{y\colon -rac{1}{2}\leq y<0
ight\}$, then set A is

A.
$$[-1, 0)$$

B.
$$(-\infty, -1]$$

$$\mathsf{C.}\,(\,-\infty,0)$$

D.
$$(-\infty,\infty)$$

Answer: A::B::C

174. If $f(x)=\cos\left(\left[\pi^2\mid x\right)+\cos\left(\left[-\pi^2\mid x\right)
ight)$, where [x] stands for the greatest integer function, then

A.
$$f\left(\frac{\pi}{2}\right) = -1$$

B.
$$f(\pi)=1$$

C.
$$f(\,-\pi)=0$$

D.
$$f\left(\frac{\pi}{4}\right) = 1$$

Answer: A::C

175. Domain of $f(x) = \sin^{-1} \left[2 - 4x^2 \right]$ is ([.] denotes the greatest integer function)

A.
$$\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right] \sim \{0\}$$

B.
$$\left[-\frac{\sqrt{3}}{2},0\right)$$

C.
$$\left[-\frac{\sqrt{3}}{2},0
ight) \cup \left(0,\frac{\sqrt{3}}{2}
ight]$$

D. $\left[-\frac{\sqrt{3}}{2},8
ight]$

Answer: A::C

Watch Video Solution

176.
$$f(x)=\cos^2x+\cos^2\Bigl(rac{\pi}{3}+x\Bigr)-\cos x\cos\Bigl(rac{\pi}{3}+x\Bigr)$$
 is

A. an odd function

B. an even function

C. a periodic function

Answer: B::C::D

D. f(0)=f(1)

177. If [x] denotes the greatest integer less than or equal to x, the extreme

$$f(x) = [1+\sin x] + [1+\sin 2x] + [1+\sin 3x] + \ldots + [1+\sin nx], n \in \mathbb{I}$$

are

C. n+1

Answer: B::C

Watch Video Solution

178. Let y=f(x) is a parabola whose vertex is at $\left(\frac{3}{4}, -\frac{1}{4}\right)$, the length of latus rectum is 1 and axis is parallel to positive direction of y-axis

Let g(x) = f(|x|),h(x)=|g(x)|

Answer the following questions are based on above passage:

If g(x)+a=0 has exactly two roots, then a belongs to

- A. 2
- B. 3
- C. 4
- D. 6

Answer: C

Watch Video Solution

179. Let y=f(x) is a parabola whose vertex is at $\left(\frac{3}{4}, -\frac{1}{4}\right)$, the length of

latus rectum is 1 and axis is parallel to positive direction of y-axis

Let
$$g(x) = f(|x|),h(x)=|g(x)|$$

Answer the following questions are based on above passage:

If g(x)+a=0 has exactly two roots, then a belongs to

A.
$$(0, 2)$$

B.
$$(-\infty, -2)$$

$$\mathsf{C}.\left(2,\infty\right)$$

Answer: B

Watch Video Solution

180. Let y=f(x) is a parabola whose vertex is at $\left(\frac{3}{4}, -\frac{1}{4}\right)$, the length of

latus rectum is 1 and axis is parallel to positive direction of y-axis

Let
$$g(x) = f(|x|),h(x)=|g(x)|$$

Answer the following questions are based on above passage:

The number of solution of h'(x)=0 is

A. one

B. two

C. three

D. four

Watch Video Solution

181. Let $x \in R$ be any real number such that xlies between any two consecutive integers say n-1 and n, i.e., $n-1 < x \le n$ then we can always find this unique integer n.

Let us call this n as super integral value of x.

We denote it symbolically as (x)

For example: if x=2.63, then (x)=3, if x=-2.63, then (x)=-2

Answer the following questions are based on above passage:The range of the function y= $y=rac{(x)}{x}$ if $x\in (-\infty,0)$,is

A.
$$(-\infty, 0]$$

Watch Video Solution

182. Let $x \in R$ be any real number such that xlies between any two consecutive integers say n-1 and n, i.e., $n-1 < x \le n$ then we can always find this unique integer n.

Let us call this n as super integral value of x.

We denote it symbolically as (x)

For example: if x=2.63, then (x)=3, if x=-2.63, then (x)=-2

Answer the following questions are based on above passage:The range of the function y= $y=rac{(x)}{x}$ if $x\in (-\infty,0)$,is

- A. 0
- B. 1
- C. 2
- D. -1

Answer: B

Watch Video Solution

183. If $f(x)=\cosigl[\pi^2igr]x+\cosigl[-\pi^2igr]x$ then the value of $f\Bigl(rac{\pi}{4}\Bigr)+f\Bigl(rac{\pi}{2}\Bigr)$

A.
$$\frac{1}{\sqrt{2}}$$

$$\texttt{B.}\,1+\frac{1}{\sqrt{2}}$$

$$\mathsf{C.}\,1-\frac{1}{\sqrt{2}}$$

$$\mathsf{D.} - 1 + \frac{1}{\sqrt{2}}$$

Answer: D

	<u>List - I</u>		List - II
(1)	Circular plate is expanded by heat from radius 5 cm to 5.06 cm. Approximate increase in area is	(P)	4
(2)	If an edge of a cube increases by 1%, then percentage increase in volume is	(Q)	0.6 π
(3)	If the rate of decrease of $\frac{x^2}{2} - 2x + 5$ is twice the rate of decrease of x, then x is equal to (rate of decreases is non-zero)	(R)	3
(4)	Rate of increase in area of equilateral triangle of side 15 cm,	(S)	$\frac{3\sqrt{3}}{4}$

Watch Video Solution

the rate of 0.1 cm/s, is

when each side is increasing at

List - I

<u>List-II</u>

Circular plate is expanded by (P) 4
 heat from radius 5 cm to 5.06 cm.

Approximate increase in area is

(2) If an edge of a cube increases by (Q) 0.6π 1%, then percentage increase in

volume is

(3) If the rate of decrease of (R) 3 $\frac{x^2}{2} - 2x + 5$ is twice the rate of

decrease of x, then x is equal to

(rate of decreases is non-zero)

(4) Rate of increase in area of (S) $\frac{3\sqrt{4}}{4}$ equilateral triangle of side 15 cm,

when each side is increasing at the rate of 0.1 cm/s, is

Watch Video Solution

186. The number of solutions of 2{x} - 1 = nx where $n \in (2, \infty)$ and {.} represents fraction part of x is

187. Let f(x) and g(x) be one-one onto functions where $f\colon\{a,b,c,d\}\to\{1,2,3,4\}$ and $g\colon\{3,4,5,6\}\to\{w,x,y,z\}$ respectively. The number of elements in the range set of g (f(x)) are

188. A polynomial f(x0 satisfies the condition f(x). $f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ and f(10) = 1001, then the value of f(2) =?

189. The number of solutions of $\sin\!\left(\frac{x}{2}\right) + 2\pi x = x^2 + \pi^2 + 1$ must be

190. Let f be a function from the set of positive integers to the set of real number i.e f:N o R, such that `f(1) = 1 and r=1 to n Σ

 $rf(r)=n(n+1)f(n), \forall n \geq 2'$

then the value of 2126f(1063)

Watch Video Solution

191. Let f be a function from the set of positive integers to the set of real

 $f\!:\!N o R$, such

that

 $f(1) + 2f\{2\} + 3f\{3\} + \ldots + nf\{n\} = n(n+1)f(n)$ for $n \geq 2$

Then the of $\frac{1}{f(4)}$ must be

i.e

number

Watch Video Solution

192. A function $f: R \to R$ is defined as $f(x) = \frac{\alpha x^2 + 6x - 8}{\alpha + 6x - 8x^2}$. Find the set of values of α for which is onto.

193. Find the domain of the following function:

$$f(x) = \sqrt{\sin^{-1}(\log_2 x)} + \sqrt{\cos(\sin x)} + \sin^{1-}\left(rac{1+x^2}{2x}
ight)$$

Watch Video Solution

194. Range of
$$f(x)=rac{\sin^2x+\sin x-1}{\sin^2x-\sin x+2}$$

195. If p and q are positive integers, f is a function defined for positive number and attain only positive value such that $f(xf(y))=x^py^q$, prove that $q=p^2$

whether

$$f(x+\lambda)=1+\sqrt{2f(x)-f^2(x)}\,orall x\in R$$
 is a periodic or not.

the

function

defined

Check

196.

197. Let f(x, y) be a periodic function satisfying the condition f(x, y) = f(2x + y)2y), (2y - 2x) $\forall x,y \in R$. Now define a function g by $g(x)=f(2^x,0)$. Then prove that g(x) is periodic function, find its period.

198. If f(x)=2x+|x|, $g(x)=rac{1}{3}(2x-|x|)$ and h(x) = f(g(x)), then find the domain of $\frac{\sin^{1-}(h(h(h(h...h(x)...))))}{ntimes}$

199. Find the domain and range of h(x) = g(f(x)), where

$$f(x) = \left\{egin{array}{ll} [x] & -2 \leq x \leq -1 \ |x|+1 & -1 < x \leq 2 \end{array}
ight. ext{ and } g(x) = \left\{egin{array}{ll} [x] & -\pi \leq x \leq 0 \ \sin x & 0 < x < \pi \end{array}
ight.$$

200. Determine all functions $f\colon R o R$ satisfying $f(x-f(y))=f(f(y))+xf(y)+f(x)-1\,orall x,\,y\in R$

201. Let $R \to f(x) = x^3 + ax^2 + bx + c\sin x, a, b, c \in R$ Find the condition that should be imposed on a, b, c so that the given function becomes invertible ?

202. If f(x) satisfies the relation $f(x+y) = f(x) + f(y) \, orall x, \, y \in R$ and

f(1) = 5, Find $\sum_{i=1}^{m} f(x)$ Also prove that f(x) is an odd function.

Watch Video Solution

203. In the function f(x) is defined for $x \in [0, 1]$ then the function f(2x+3) is defined for

A. $(-\infty, \infty)$

B. [-3/2,-1]

C. [-2/3,1]

D. x > 0

Answer: B

204. The domain of the function
$$f(x) = rac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$$
 is

B. [2,3)

C. [2,3]

D. (1,2)

Answer: B

- **205.** The domain of the real valued function $f(x) = 3e^{\sqrt{x^2-1}}\log(x-1)$ is
 - A. R-{1}
 - B. R-[-1,1]
 - $C.[1,\infty)$

 $D.(1,\infty)$

Answer: D

Watch Video Solution

- **206.** Domain of the function $f(x)=\sin^{-1}\left(rac{2-|x|}{4}
 ight)+\cos^{-1}\left(rac{2-|x|}{4}
 ight)+ an^{-1}\left(rac{2-|x|}{4}
 ight)$ is
 - A. R-{1}
 - B. [0, 6]
 - C. [-6, 6]
 - D. [-3, 3]

Answer: C

207.

The domain of the

function

 $f(x) = \sin^{-1}rac{1}{|x^2-1|} + rac{1}{\sqrt{\sin^2 x + \sin x + 1}}$ is :

A. $(-\infty, \infty)$

B. $(-\infty, -\sqrt{2}] \cup [\sqrt{2}, -\infty)$

208. The range of function $f(x) = \sqrt{x^2 + 4x} C_{2x^2 + 3}$

C. $(-\infty, -\sqrt{2}] \cup [\sqrt{2}, \infty) \cup \{0\}$

D. None of these

Answer: C

Watch Video Solution

A. $\{1, 2\sqrt{3}\}$

B. $\{1, 2\sqrt{3}, 3\sqrt{5}\}$

C. {1, 2, 3}

Answer: A

Watch Video Solution

- **209.** Let n be a natural number. Then the range of the function $f(n)=^{8-n}P_{n-4}, 4\leq n\leq 6$, is
 - A. {1, 2, 3, 4}
 - B. {1, 2, 3, 4, 5, 6}
 - C. {1, 2, 3}
 - D. {1, 2, 3, 4, 5}

Answer: C

210. If
$$x^2+y^2+z^2=1$$
, then ${\sf xy+yz+zx}$ lies in

Answer: A

Watch Video Solution

211. The range of the function

 $f(x)=\sin^{-1}\Bigl[x^2+rac{1}{2}\Bigr]+\cos^{-1}\Bigl[x^2-rac{1}{2}\Bigr]$, where [.] is the greatest integer function, is

A.
$$\left\{\frac{\pi}{2},\pi\right\}$$

$$\mathrm{B.}\left\{0,\,\frac{\pi}{2}\right\}$$

$$\mathsf{C}.\left\{ \pi\right\}$$

D.
$$\left(0, \frac{\pi}{2}\right)$$

Answer: C

Watch Video Solution

212. The range of the function $f(x) = \sqrt{3x^2 - 4x + 5}$ is

A.
$$\left[-\infty,\sqrt{\frac{11}{3}}\right]$$

B.
$$\left(-\infty, \sqrt{\frac{11}{3}}\right)$$

$$\mathsf{C.}\left[\sqrt{\frac{11}{3}},\infty\right)$$

D.
$$\left(\sqrt{\frac{11}{3}},\infty\right)$$

Answer: C

213. If the graph of the function $f(x)=rac{a^x-1}{x^n(a^x+1)}$ is symmetric about y-axis, then n equals

B. 1/2

C. 1/4

D. -1/3

Answer: D

Watch Video Solution

214. If the graph of the function f(x) is symmetrical about x = 20 then

A. f(x+20)=f(20-x)

B. f(x)=f(-x)

C. f(x+20)=f(x-20)

D. None of these

Answer: A

Watch Video Solution

215. If f is even function defined on the interval (-5, 5), then real values of x satisfying the equation $f(x)=f\Big(rac{x+1}{x+2}\Big)$ are

A. `(3-sqrt5)/2), (3+sqrt5)/2 '

B. `(-5-sqrt3)/2 ,(-3+sqrt5)/2 ,

C. (-3-sqrt5)/2, (5+sqrt3)/2`

D. 3-sqrt5, 3+sqrt5

Answer: A

216. Which of the following function is even function

A.
$$f(x)=rac{a^x+1}{a^x-1}$$

B.
$$f(x) = x \left(rac{a^x-1}{a^x+1}
ight)$$

$$\mathsf{C.}\, f(x) = \frac{a^x - a^{-x}}{a^x + a^{-x}}$$

D. $f(x) = \sin x$

Answer: B

Watch Video Solution

217. If f(x) and g(x) be two given function with all real numbers as their domain, then $h(x)=\{f(x)+f(-x)\}\{g(x)-g(-x)\}$ is

A. an even function

B. an odd function

C. even as well as odd function

D. None of these

Answer: B

Watch Video Solution

218. Period of f(x)=[x]+[x+1/3]+[x+2/3]-3x+10, where [.] denotes the greatest integer function.

- A. 1
- B. 0.6666666666667
- C. 0.33333333333333
- D. 0.5

Answer: C

Watch Video Solution

219. The function $f(x)=rac{1}{2}igg\{rac{|\sin x|}{\cos x}+rac{\sin x}{|\cos x|}igg\}$ is periodic with period

$$\operatorname{B.}\frac{\pi}{2}$$

C.
$$2\pi$$

D.
$$3\pi$$

Answer: C

Watch Video Solution

220. The value of $n\in {1}$, for which the function $f(x)=rac{\sin nx}{\sinrac{x}{n}}$ has 4π as its period is equal to

- A. 2
- B. 3 C. 5
- - D. 4

Answer: A

221. If
$$f(x) = is$$
 an odd periodic function with period 2, then $f(4)$ equals

222. Period of $f(x) = \cos 2\pi \{x\}$ is , where {x} denote the fractional part

Answer: A

.

of x)

.
$$\frac{}{2}$$

D. π

Answer:

Watch Video Solution

223. The period of $\sin\!\left(\frac{\pi\{x\}}{12}\right) + \cos\!\left(\frac{\pi x}{8}\right) + \tan\!\left(\frac{\pi\{x\}}{3}\right)$

A. 12

B. 4

C. 3

D. 144

Answer: D

Let

$$(4,6)
ightarrow (6,8) be a function def \in edby f(x)x + \left[rac{x}{2}
ight] igg(where ext{[.]}de \,
egether$$

f

 $f^{(-1)}(x)$ is equal to

D. $\frac{1}{x + \left\lceil \frac{\pi}{2} \right\rceil}$

Watch Video Solution

where $f(x) = bx^2 + cx + d$, are

225. The value of b and c for which the identity f(x+1)-f(x)=8x+3 is satisfied,

A. 4, 1

B. 4, -1

C. -1, 4

D. None of these

Answer: B

Watch Video Solution

226. If $f(x)=\sin\sqrt{[a]}x$, (where [.] denotes the greatest integer function), has π as it's fundamental period, then

A.
$$a = 1$$

B.
$$a \in [1, 2)$$

$$\mathsf{C}.\,a\in[2,3)$$

D.
$$a \in [4,9)$$

Answer: D

227. If $f\colon R\to [-1,1]$, where $f(x)=\sin\Bigl(\frac{\pi}{2}[x]\Bigr)$ (where [.] denotes the greatest integer function), then the range of f(x) is

A. [-1, 1]

B. {-1, 1}

C. {-1, 0, 1}

D. None of these

Answer: C

- **228.** If $[x]^2 5[x] + 6 = 0$ (where [.] denotes the greatest integer function), then x belongs to
 - A. [2,4)
 - B. [2,4)-{3}
 - C. {3}

D. {2}

Answer: A

Watch Video Solution

- **229.** Let $f\colon (\,-\infty,\,1] o (\,-\infty,\,1]$ such that f(x)=x(2-x). Then $f^{\,-1}(x)$
 - A. $1 + \sqrt{1 x}$
 - B. $1 \sqrt{1 x}$
 - C. $\sqrt{1-x}$
 - D. None of these

Answer: B

230. Let $f\!:\!R o R$ be a function such that $f(x)=x^3+x^2+3x+\sin x$

. Then

A. f is one-one and into

B. f is one-one and onto

C. f is many-one and into

D. f is many-one and onto

Answer: B

Watch Video Solution

231. Let
$$f{:}\left[-rac{\pi}{3},rac{2\pi}{3}
ight]
ightarrow [0,4]$$
 be a function definition $f(x)=\sqrt{3}\sin x-\cos x+2$. Then $f^{-1}(x)$ is given by

defined

as

A.
$$\sin^{-1}\left(\frac{x-2}{2}\right) - \frac{\pi}{6}$$

B.
$$\sin^{-1}\!\left(\frac{x-2}{2}\right) + \frac{\pi}{6}$$
C. $\frac{2\pi}{3} + \cos^{-1}\!\left(\frac{x-2}{2}\right)$

D. None of these

Answer: B

Watch Video Solution

232. Let $f(x) = (ax+b) \cos x + (cx+d) \sin x$ and $f'(x) = x \cos x$ be an identity in x then

A. a = 5, b = 2

B. a = 5, b = 1

C. a = 5, b = -5

D. b = 1, c = 1

Answer: D

233. If
$$f(x)=\cos |x|+\left[\left|\frac{\sin x}{2}\right|\right]$$
 (where [.] denotes the greatest integer function), then f (x) is

234. The number of points (x, y), where the curves $|y| = \ln|x|$ and

A. even

B. odd

C. odd as well as even

D. None of these

Answer: A

- $\left(x-1
 ight)^{2}+y^{2}-4=0$ cut each other, is
 - A. 2

 - B. 3
 - C. 1

Answer: B

Watch Video Solution

- **235.** Let $f(x)=\left[\frac{1}{2}+\frac{n}{100}\right]$, where [.] denotes the greatest integer function, then the value of $\sum_{n=1}^{151}f(n)$ is
 - A. 101
 - B. 102
 - C. 100
 - D. 103

Answer: B

236. If
$$y = \sqrt{e^{\sin^{-1}(\log_2 x^2)}}$$
 , then y is real if

A.
$$x \in R - \{0\}$$

B.
$$x \in ig[-\sqrt{2},\sqrt{2}ig]$$

$$\mathsf{C.}\,x \in \left(-\infty,\,-rac{1}{\sqrt{2}}
ight] \cup \left[rac{1}{\sqrt{2}},\infty
ight]$$
 $\mathsf{D.}\,x \in \left[-\sqrt{2},\,-rac{1}{\sqrt{2}}
ight] \cup \left[rac{1}{\sqrt{2}},\sqrt{2}
ight]$

Answer: D

237. If
$$[2\sin x]+[\cos x]=-3$$
 then the range of the function $f(x)=\sin x+\sqrt{3}\cos x$ in $[0,2\pi]$ is, (where [.] denotes the greatest integer function)

A.
$$(0.2\pi)$$

D. None of these

Answer: B

Watch Video Solution

238. If
$$F(x+1)=rac{2F(x)+1}{2}$$
, n = 1,2,3....and F(1) = 2 then F(101)

A. 52

B. 49

C. 48

D. 51

Answer: A

239. If $f\!:\!R o R$ satisfies f(x+y)=f(x)+f(y)f or $all x,y\in R$ and

f(1)=7 , then
$$\sum_{r=1}^n f(r)$$

A.
$$\dfrac{7n(n+1)}{2}$$

B.
$$\frac{7n}{2}$$

$$\mathsf{C.}\,\frac{7(n+1)}{2}$$

D. 7n(n + 1)

Answer: A

Watch Video Solution

240. If f(x+y,x-y)=xy then the arithmetic mean of f(y,x) & f(x,y)

A. 0

B. x

C. y

D.
$$\frac{x+y}{2}$$

Answer: A

Watch Video Solution

241.
$$f(x) = \sqrt{[\sin 2x] - [\cos 2x]}$$
 :[.]GIF, then range of f(x)

A. {0}

B. {1}

C. {0, 1}

D. $\left\{0,1,\sqrt{2}\right\}$

Answer: A

A.
$$x^2$$
 for $x \geq 0$, x for $x < 0$

 $\mathrm{B.}\,x^4\mathrm{for}x\geq 0, x^2\mathrm{for}x<0$

 $\mathsf{C.}\,x^4\mathrm{for}x>0,\,\mathrm{for}x<0$

D. $x^4 \mathrm{for} x \geq 0$, $x \mathrm{for} x < 0$

Answer: D

Watch Video Solution

243. Domain of f(x) is [-1, 2] then domain of $fig([x]-x^2+4ig)$ where [.] denotes the greatest integer function, is

A.
$$\left[-1,\sqrt{7}\right]$$

B. $[-\sqrt{3}, -1] \cup [\sqrt{3}, \sqrt{7}]$

C. $(-1, \sqrt{7}]$

D. $\left[-\sqrt{3}, -1\right) \cup \left[\sqrt{3}, \sqrt{7}\right]$

Answer: B

244. Number of solution of the equation $x^2-2-2[x]=0([.\,]$ denotes the greatest integer function is

A. one

B. two

C. zero

D. infinity

Answer: A

Watch Video Solution

245. Let $S_n=\sum_{t=1}^n r!(n>6)$, then $S_n-7\Big[\frac{S_n}{7}\Big]$ (where [.] denotes the greatest integer function) is equal to

A.
$$\left[\frac{n}{7}\right]$$

Answer: C

C. 5

D. 3

Watch Video Solution

 $\mathsf{B.}\,n! - 7 \bigg\lceil \frac{n!}{7} \bigg\rceil$

Range of
$$f(x)=[1+\sin x]+\left[2+\sin\frac{x}{2}\right]+\left[3+\sin\frac{x}{3}\right]+.....+\left[n+\sin\frac{x}{n}\right]$$

A.
$$\left\{rac{n^2+n-2}{2},rac{n(n+1)}{2}
ight\}$$

A.
$$\left\{\frac{n(n+1)}{2}, \frac{n(n+1)}{2}\right\}$$

B.
$$\left\{\frac{n^2+n-2}{2}\right\}$$
C. $\left\{\frac{n^2+n-2}{2},\frac{n(n+1)}{2},\frac{n^2+n+2}{2}\right\}$
D. $\left\{\frac{n(n+1)}{2},\frac{n^2+n+2}{2}\right\}$

Range

of

247. The number of solutions of
$$\log_{\sin x} 2^{\tan x} > 0$$
 in the interval $\left(0, \frac{\pi}{2}\right)$ is

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

248. If
$$f(x) = \ln\!\left(\frac{x^2+e}{x^2+1}\right)$$
, then range of f(x) is

B. [0, 1]

- C. [0, 1)
- D. (0, 1]

Answer: D

Watch Video Solution

249. If $f(x) = \{x\} + \sin ax$ (where $\{.\}$ denotes the fractional part function) is periodic then

- A. a' is a rational multiple of π
- B. a' is a natural number
- C. a' is any real number
- D. a' is any positive real number

Answer: A

250. The value of a for which the range of the function x=1

$$f(x)=rac{x-1}{1-x^2-a}$$
 does not contain the interval [-1, 1]

A. 1

В. О

C. -1

D. None of these

Answer: D

Watch Video Solution

251. If the graph of the function f(x) is symmetrical about two lines x = a and x = b then f(x) must be period

A.
$$\frac{b-a}{2}$$

B. b - a

C. 2(b - a)

D. None of these

Answer: C

Watch Video Solution

- **252.** If $f(x)=27x^3+rac{1}{x^3}$ and $lpha,\,eta$ are the roots of $3x+rac{1}{x}=2$ then
 - A. f(lpha)=f(eta)
 - $\mathrm{B.}\,f(\alpha)=10$
 - C. f(eta)=12
 - D. None of these

Answer: A

253. If $A=\left\{x\colon \frac{\pi}{6}\leq x\leq \frac{\pi}{3}\right\}$ and $f(x)=\cos x-x(1+x)$ then f(A) is equal to-

A. [pi/6, pi/3]`

$$\mathrm{B.}\left[\,-\,\frac{\pi}{3},\,-\,\frac{\pi}{6}\right]$$

$$\begin{aligned} &\text{C.} \left[\frac{1}{2} - \frac{\pi}{3} \Big(1 + \frac{\pi}{3} \Big), \frac{\sqrt{3}}{2} - \frac{\pi}{6} \Big(1 + \frac{\pi}{6} \Big) \right] \\ &\text{D.} \left[\frac{1}{2} + \frac{\pi}{3} \Big(1 - \frac{\pi}{3} \Big), \frac{\sqrt{3}}{2} + \frac{\pi}{6} \Big(1 - \frac{\pi}{6} \Big) \right] \end{aligned}$$

Answer: C

Watch Video Solution

254. Find the domain of the function

$$f(x)=rac{\cos^{-1}ig(1+x^2ig)}{2x}+\sqrt{\sin(\cos x)}$$

A. [-1, 1]

B. ϕ

Answer: C

Watch Video Solution

255. Consider the following relations R = {(x,y) | x, y are real number and x = wy for some rational number w}, $S = \left\{ \frac{m}{n} \quad \frac{p}{q} \right\}$ m,n,p and q are integers such that $n, q \neq 0$ and qm = pn}. Then

- A. R is an equivalence relation but S is not an equivalence relation
- B. Neither R nor S is an equivalence relation
- C. S is an equivalence relation but R is not an equivalence relation
- D. R and S both are equivalence relations.

Answer: C

256. Let W denotes the words in the English dictionary Define the relation

R by $R=\{(x,y)\in W imes W: ext{the words x and y have a least one letter in common} \}$ Then, R is

A. reflexive, symmetric and not transitive

B. reflexive, symmetric and transitive

C. reflexive, not symmetric and transitive

D. not reflexive, symmetric and transitive

Answer: A

Watch Video Solution

257. If $f(x) = \sin x + \cos x, g(x) = x^2 - 1$ then g(f(x)) is invertible in the domain

A.
$$0, \frac{\pi}{2}$$

B.
$$\Big[-rac{\pi}{4},rac{\pi}{4}\Big]$$

$$\mathsf{C.}\left[\,-\,\frac{\pi}{2},\,\frac{\pi}{2}\right]$$

D. $[0, \pi]$

Answer: B

Watch Video Solution

258. The domain of the function $f(x) = \dfrac{1}{|x|-x}$

A.R

B. cannot contain a positive real

C. $(-\infty,0)$

 $D.(0,\infty)$

Answer: B::C

259. If a function satisfies (x-y) f(x+y)-(x+y) f(x-y) = $2ig(x^2y-y^3ig),\ orall x,y\in R$

and f(1) = 2, then

A. f(x)must be polynomial function

B. f(3) = 12

C. f(0) = 0

D. f(x) may not be differentiable

Answer: A::B::C

Watch Video Solution

260. If f(x) = ax + b and g(x) = cx + d, then f(g(x)) = g(f(x)) implies

A. f(a) = g(c)

B. f(b) = g(b)

C. f(d) = g(b)

D. ad + b = bc + d

Answer: C::D

Watch Video Solution

261. Which of the following functions is not injective?

A.
$$f(x) = |x+1|, x ext{ in [-1, 0)}`$$

B.
$$f(x)=x+rac{1}{x}, x\in [0,\infty)$$

C.
$$f(x) = x^2 + 4x - 5$$

D.
$$f(x)=e^{-x}, x\in [0,\infty)$$

Answer: B::C

262. If f(x) is defined on [0, 1) by
$$f(x)=\begin{cases}x& \text{if }xisrational\\1-x& \text{if }xisirrational\end{cases}$$
 then for all `x in [0,1], f(f(x)) is

A. real B.1 + xC. x D. None of these Answer: A::C Watch Video Solution **263.** The function $f(x) = [x] + \sin x$ ([x] denotes greatest integer $\leq x$) A. can not take all real value B. cannot take all the value 1 C. can take all real value D. is defined for all x Answer: A::B::D Watch Video Solution

264. Let
$$f\!:\!R o R$$
 be defined by f(x) = [x] and $g(x)=rac{3-2x}{4}$ then

A. f is neither one-one nor onto

B. g is one-one but f is not one-one

C. f is one-one and g is onto

D. neither f nor g is onto

Answer: A::B

Watch Video Solution

A. Domain of f = R

B. Range of $f = \{1\}$

C. Domain of f = $[2n\pi, (2n+1)\pi]$

265. If $f(x) = \frac{1}{\sqrt{[\cos x] - [\sin x]}}$ ((x) denotes greatest integer \leq x))

D. Domain of
$$f=\left[2n\pi=rac{\pi}{2},2n\pi
ight]$$

Answer: B::D

Watch Video Solution

- **266.** The graph of the equation y + |y| x |x| = 0 is represented by
 - A. the x-axis
 - B. the bisector line of the first quadrant
 - C. a pair of lines bisecting all the quadrants
 - D. all point of the third quadrant

Answer: B::D

267. If $f\!:\!R o R$, defined as $f(x)=rac{\sin([x]\pi)}{x^2+x_2+1}$, where <code>[x]</code> is the greatest integer less than or equal to x, then

A. f is one-one

B. f is many-one

C. f is into

D. f is onto

Answer: B::C

Watch Video Solution

268. Let g(x) be a function defined on [-1, 1] so that the area of the equilateral triangle with two of its vertices at (0, 0) and (x, g(x)) is $\frac{\sqrt{3}}{4}$.

The function g(x) I equal to

A.
$$\sqrt{1-x^2}$$

A.
$$\sqrt{1-x^2}$$
 B. $-\sqrt{1-x^2}$

C.
$$\frac{1}{2}\sqrt{1-x^2}$$

D.
$$\frac{\sqrt{3}}{8}\sqrt{1-x^2}$$

Answer: A::B

Watch Video Solution

269. Let $f(x)=rac{x}{1+x^2}$ and $g(x)=rac{e^{-x}}{1+[x]},$ where [x] is the greatest

integer less than or equal to x. Then

A.
$$dom(f+g)=R ilde{}_{ au}[2,0)$$

B.
$$dom(f extstyle g) = R extstyle [-1,0)$$

C. range f
$$\cap$$
 range g = [-2, 1/2]

D. range of $f \cap range g = R$

Answer: B::D

270. Let
$$f(x) = \frac{\log_{100X}(2\log_{10}X+2)}{-X}$$
 and g(X) = {X}, where {x} denotes

the fractional part of x. If the function fog(x) exists then the domain of f(x) contains

D.
$$(1, \infty)$$

Answer: A::B

271. If
$$y=f(x)=rac{x+2}{x-1}$$
 then

$$A. x = f(y)$$

B.
$$f(1) = 3$$

C. y increases with x for
$$x < 1$$

D. f is a rational function of x

Answer: A::D

Watch Video Solution

272. Let f(x) be a real valued function satisfying the functional equation f(x) + f(1 - x) = k for all $x \in Q$, where k is a constant quantity. To evaluate the p and value at a point we use the relations to get the value of that function

Answer the following question based on above passage:

If
$$f(x)=rac{4^X}{4^X+2}$$
 where $x\in Q$ then

$$f(1/2007) + f(2/2007) + + f(2006/2007)$$
 equals to

A. 1003

B. 2006

C. 2007

D. None of these

Answer: A

Watch Video Solution

273. Let f(x) be a real valued function satisfying the functional equation f(x) + f(1 - x) = k for all $x \in Q$, where k is a constant quantity. To evaluate the p and value at a point we use the relations to get the value of that function

Answer the following question based on above passage:

If $f(x) = 3^(x-3)/(3^(1-x) + 3^x)f$ or alx in Q, then the value of the sum f(1/55) + f(2/55) + + f(54/55) is

- A. 1
- B. 27
- C. 54
- D. 55

Answer: A

274. Let f(x) be a real valued function satisfying the functional equation f(x) + f(1 - x) = k for all $x \in Q$, where k is a constant quantity. To evaluate the p and value at a point we use the relations to get the value of that function

Answer the following question based on above passage:

If $f(x) = a^x/(a^x + sqrta)(a gt 0)$ (a gt 0), then underset (r=1) overset (2n -

- 1) sum 2f(r/2n) is equal to
 - A. 1
 - B. 2n
 - C. 2n-1
 - D. $\frac{(2n-1)a}{2}$

Answer: C

275. Let (x)
$$f_1(x) - 2f_2(x)$$

where $f_1(x)=\min\{x^2,|x|\}$ for $-1\leq x\leq 1$

$$\mathsf{max}ig\{x^2,|x|\mathsf{for}|x|>1$$
 $f_2(x)=\mathsf{max}\{x^2,|x|\}\mathsf{for}-1 \leq x \leq 1$

 $\min \{x^2, |x|\} f \text{ or } |x| > 1$

nin
$$\{x^{-},|x|\}f$$
 or $|x|>$
$$\pmod{f(t)}:-$$

 $g(x) = \left\{egin{array}{l} \min \ \{f(t) \colon -3 \le t \le x, \ -3 \le x \le o \} \ \max \ \{f(t) \colon 0 \le t \le x, \ 0 \le x \le 3 \} \end{array}
ight.$ Answerthefollow $\in g(x)$

$$) = \begin{cases} \min \{f(t) : -3 \\ \max \{f(t) : 0 \le 1 \end{cases}$$

-3 le x le -1', range of g(x) is

$$\max \{f(t): 0 \le x \text{ le -1', range of g(x) is}$$

B. [-1 + 15] C. [-1, 9]

D. None of these

Answer: A

276. Let (x) $f_1(x) - 2f_2(x)$

where $f_1(x) = \minig\{x^2, |x|ig\} ext{for } -1 \le x \le 1$

 $\max\{x^2, |x| \text{for} |x| > 1$

 $f_2(x) = \max\{x^2, |x|\}$ for -1 < x < 1

min $\{x^2, |x|\} f$ or |x| > 1

 $g(x) = {(min\{f(t) : -3 le t le x, -3 le x le o\}),(max\{f(t) : 0 le t le x, 0 le x le 3\}):}$

Answer the following question based on above passage:

Number of critical points of f(x) is

A. 1

B. 2

C. 3

D. None of these

Answer: C

277. Let (x)
$$f_1(x) - 2f_2(x)$$

where
$$f_1(x)=\min\{x^2,|x|\}$$
 f

where $f_1(x)=\minig\{x^2,|x|ig\}$ for $-1\leq x\leq 1$

$$\mathsf{max}ig\{x^2, |x| \mathsf{for} |x| > 1$$

$$f_2(x) = \max\{x^2, |x|\} ext{for } -1 \leq x \leq 1$$

$$\min \left\{ x^2, |x| \right\} f \text{ or } |x| > 1$$

$$g(x) = \begin{cases} \min \{f(t) : -3 \\ \max \{f(t) : 0 < 3 \end{cases} \end{cases}$$

$$g(x) = \left\{egin{array}{l} \min \ \{f(t) \colon -3 \le t \le x, \ -3 \le x \le o \} \ \max \ \{f(t) \colon 0 \le t \le x, \ 0 \le x \le 3 \} \end{array}
ight. Answerthefollow \in g(x)$$

$$g(x) = \begin{cases} \min \{f(t): -3 \\ \max \{f(t): 0 \le 1 \end{cases}$$

$$f(t) = \begin{cases} & \text{max } \{f(t) : 0 \le t \end{cases}$$

$$\int \int \max \{f(t): 0 \le (1,0), f(x) = g(x) \text{ is }$$

$$\max \{f(t): 0 \le x \text{ in (-1, 0), f(x) - g(x) is }$$

A.
$$x^2-2x+1$$

$$\mathsf{B.}\,x^2+2x-1$$

$$\mathsf{C.}\,x^2+2x+1$$

D.
$$x^2-2x-1$$

Answer: C

278. Let
$$f(x)=rac{1}{2}igg[f(xy)+figg(rac{x}{y}igg)igg]$$
 for $x,y\in R^+$ such that f(1) = 0 f'(1) = 2

Answer the following question based on above passage:

f(x) - f(y) is equal to

A.
$$f\left(\frac{y}{x}\right)$$

B.
$$f\left(\frac{x}{y}\right)$$

Answer: B

Watch Video Solution

279. Let $f(x)=rac{1}{2}iggl[f(xy)+figgl(rac{x}{y}iggr)iggr]$ for $x,y\in R^+$ such that f(1) = 0

f'(1) = 2

Answer the following question based on above passage :

f'(3) is equal to

Answer: B

Watch Video Solution

280. Let
$$f(x)=rac{1}{2}igg[f(xy)+figg(rac{x}{y}igg)igg]$$
 for $x,y\in R^+$ such that f(1) = 0 f'(1) = 2

Answer the following question based on above passage:

f€ is equal to

D. 4

Watch Video Solution

281. For all real values of x and y, $2f(x) \cos y = f(x + y) + f(x - y)$ and b are arbitrary constants.

Answer the following question based on above passage :

$$f(x) + f(\pi - x) =$$

- A. 2b sinx
- B. -2b sinx
- C. 2b cosx
- D. -2b cosx

Answer: C

282. For all real values of x and y, $2f(x) \cos y = f(x + y) + f(x - y)$ and b are arbitrary constants.

Answer the following question based on above passage:

$$f(-x) + f(\pi - x) =$$

- A. 2b sinx
- B. -2b sinx
- C. 2b cosx
- D. None of these

Answer: D

Watch Video Solution

283. For all real values of x and y, $2f(x) \cos y = f(x + y) + f(x - y)$ and b are arbitrary constants.

Answer the following question based on above passage :

f(x) + f(-x) =

- A. 0
- B. 2b cosx
- C. 2b sinx
- D. None of these

Answer: C

<u>List-II</u>

- (1) Circular plate is expanded by (P) 4
 heat from radius 5 cm to 5.06 cm.
 Approximate increase in area is
- (2) If an edge of a cube increases by $(Q) 0.6 \pi$ 1%, then percentage increase in volume is
- (3) If the rate of decrease of (R) 3 $\frac{x^2}{2} 2x + 5$ is twice the rate of decrease of x, then x is equal to
- (4) Rate of increase in area of (S) $\frac{3\sqrt{3}}{4}$ equilateral triangle of side 15 cm,
 - when each side is increasing at the rate of 0.1 cm/s, is

(rate of decreases is non-zero)

volume is

List - I

<u>List-II</u>

(1) Circular plate is expanded by (P) 4 heat from radius 5 cm to 5.06 cm.

Approximate increase in area is

(2) If an edge of a cube increases by $(Q) 0.6 \pi$ 1%, then percentage increase in

(3) If the rate of decrease of (R) 3

 $\frac{x^2}{2}$ -2x + 5 is twice the rate of

decrease of x, then x is equal to (rate of decreases is non-zero)

(4) Rate of increase in area of (S) 3√3 equilateral triangle of side 15 cm, when each side is increasing at

the rate of 0.1 cm/s, is

Watch Video Solution

286. Let f(x) be function such that

 $f(x+2) - 5f(x+1) + 6f(x) = 0 \, orall x \in R$ match the following List-I

View Text Solution

287. Match List - I with List-II

<u>List-II</u>

- (1) Circular plate is expanded by (P) 4
 heat from radius 5 cm to 5.06 cm.
 Approximate increase in area is
- (2) If an edge of a cube increases by (Q) 0.6 π 1%, then percentage increase in volume is
- (3) If the rate of decrease of (R) 3 $\frac{x^2}{2} 2x + 5$ is twice the rate of decrease of x, then x is equal to
 - (rate of decreases is non-zero)
- (4) Rate of increase in area of (S) $\frac{3\sqrt{3}}{4}$ equilateral triangle of side 15 cm, when each side is increasing at the rate of 0.1 cm/s, is

288. If maximum and minimum value of $f(x) = ^xC_(2x-1) + ^(20-3x)C_(4x-1) + ^(20-3x)C$ 5) are lambda and mure spectively, then the value of (lambda+mu)/470`

must be(where[.] denotes the greatest integer function)

Watch Video Solution

289. Let f be the function from the set of positive integers to the set of real number such that

$$f(1) = 1$$

$$\sum_{r=1}^n rf(r) = n(n+1), \ orall n \geq 2$$
,then find the value of 2126f(1063)

Watch Video Solution

period of the The function 290. least $\sin\!\left(rac{x[x]}{12}
ight) + \cos\!\left(rac{nx}{4}
ight) + \tan\!\left(rac{\pi(x)}{3}
ight)$ is λ ,then the value of $\left(rac{\lambda}{3}
ight)$ must be (where[.] denotes the greatest integer function)

291. If maximum and minimum value of $f(x) = ^xC_(2x-1) + ^(20-3x)C_(4x-5)$ are lambda and mure spectively, then the value of (lambda+mu)/470 must be (where [.] denotes the greatest integer function)

292. If the period of the function $\cos(nx)\sin\left(\frac{5x}{n}\right)$ is 3π ,then the number of integral values of must be

293. If f(x+y)=f(x)+f(y)-xy-1'f or allx,y in R and f(1)=1, then the value of-sum_(r=1)^5 f(r)/3` must be

Watch Video Solution

to B must be M. Then $\sqrt{\frac{M}{10}}$ is equal to ?

then sgn (f(x)) equals

296. Let
$$f\colon [0,1] o [0,1]$$
 defined by $f(x) = \dfrac{1-x}{1+x}$ for $0 \le x \le 1$ and let

294. Let n(A)=4 and n(B)=6 ,then the number of one one functions from A

295. If $f(x)f(y) + 2 = f(x) + f(y) + f(xy) \, orall x, \, y \in R$ and f(1)=f'(1)=2,

(x)is [lpha,eta],then lpha+eta equals

g:[0,1]rarr[0,1] defined by $g(x)=4x(1-x), 0 \leq x \leq 1$.if range of fog

$$f(x).\ f(y)=f(x)+f(y)+f(xy)=2,\ orall x,y\in Ritisgivent$$

$$(1)=2,f(3)=10&f(4)=10 k_1+k_2. Thenk_2$$
 is

Watch Video Solution

299. Find the domain of each of the following functions:

$$f(x) = \sqrt{x+2}$$

Watch Video Solution

300. Find the domain of each of the following functions:

$$f(x) = \frac{1}{\sqrt{2x^2 - 7x - 4}}$$

301. Find the domain of each of the following functions:

$$f(x) = \sqrt{x^2 - 3x + 2}$$

Watch Video Solution

302. Find the renge of each of the following functions:

$$f(x) = \left(x^2 - 5x + 6\right)$$

$f(x) = \sqrt{\sin x - 1}$

304. Find the domain of each of the following functions:

303. Find the domain of each of the following functions:

$$f(x) = \frac{1}{\sqrt{x-1}}$$

305. Find the range of the following function :

$$f(x) = \left(x^2 + 2x + 3\right)$$

306. Find the range of the following function:

307. Find the range of the following function:

$$f(x)=\sqrt{x^2-x+1}$$

 $f(x) = 3\sin x + 4\cos x - 5$

308. Find the range of the following function:

f(x) = In(x - [x]), where [.] denotes the greatest integer function.

Watch Video Solution

309. Which of the following functions are even/odd, and which are neither even or odd?

$$f(x) = rac{x^2 + 1}{\left(x^4 + 1
ight)^2}$$

Watch Video Solution

310. Which of the following functions are even/odd, and which are neither even or odd?

$$f(x) = x^3 + \sec x$$

311. Which of the following functions are even/odd, and which are neither

even or odd?

$$f(x) = \log \frac{1+x}{1-x}$$

Watch Video Solution

312. Which of the following functions are even/odd, and which are neither even or odd?

$$f(x) = \begin{cases} 0 & \text{if x is rational} \\ 1 & \text{if x is irrational} \end{cases}$$

Watch Video Solution

313. Examine whether the following functions are periodic or not. Write the periods of the following periodic functions.

 $f(x)=\sin(3x+5)+\cos(2x-5)$

314. Examine whether the following functions are periodic or not. Write the periods of the following periodic functions.

$$f(x) = f(x) = e^{3\{x - [x]\}}$$

Watch Video Solution

315. Examine whether the following functions are periodic or not. Write the periods of the following periodic functions.

$$f(x) = \cos[\pi^2]x - \cos[-\pi^2]x$$

Watch Video Solution

316. Examine whether the following functions are periodic or not. Write the periods of the following periodic functions.

$$f(x) = e^{ax} \sin bx$$

317. Let $g\colon [1,3] o Ybaeafunctiondef \in edas$ g(x)=ln(x^2+3x+1)`.Then

Watch Video Solution

Determine whether g(x) is one -one or many one.

318. Let
$$g{:}\left[1,3\right] o Ybeafunctiondef \in edas$$
 g(x)=ln(x^2+3x+1)`.Then

Let $g: [1, 3] \rightarrow Ybeafunctiondef \in edas$ $g(x)=\ln(x^2+3x+1)$

Watch Video Solution

Find the set of Y so that g(x) in onto.

319.

.
$$Thenf \in d\mathsf{g}$$
 ^(-1)(x)` if it exist.

320. Solve the following equations

 $|x^2 - 4 - [x]| = 0$

321. Solve the following equations

$$\left[x^{2}
ight]+2[x]=3x,0\leq x\leq 2$$

322. If the functions of f and g are defined from the set of real numbers R to R such that $f(x)=e^x,\,g(x)=3x-2$,then find the functions fog and gof . Define co-domain of fog and gof so that they become invertible and also $(gof)^{-1}$ and $(fog)^{-1}$.

323. Sketch the graph of the following functions:

$$f(x) = x + |x|$$

324. Sketch the graph of the following functions:

325. Sketch the graph of the following functions:

326. Sketch the graph of the following functions:

$$f(x) = \sqrt{4-x^2}$$

Watch Video Solution

 $f(x) = \sqrt{2x+2}$

 $f(x) = I \neq x^2$

Watch Video Solution

327. Sketch the graph of the following functions:

 $f(x) = \sin|x|$

328. Sketch the graph of the following functions:

$$f(x) = \sin \lvert x
vert$$

329. Sketch the graph of the following functions:

330. Sketch the graph of the following functions:

$$f(x) = |\sin|x|$$

 $f(x) = In(1+x^2)$

331. Sketch the graph of the following functions:

$$f(x) = e^{|x|}$$

Watch Video Solution

332. Sketch the graph of the following functions:

$$f(x) = |In|x|$$

Watch Video Solution

333. Sketch the graph of the following functions:

$$f(x) = \frac{8}{2+x^2}$$

Watch Video Solution

334. Sketch the graph of the following functions:

$$f(x) = f(x) =$$

335. Find the integral solutions to the equation [x][y] = x + y. Show that all the non-integral solution lie on exactly two lines.

336. Let
$$f:\left[\frac{1}{2},\infty\right) o \left[\frac{3}{4},\infty\right)$$
, where $f(x)=x^2-x+1$. Find the inverse of $f(x)$. Hence or otherwise solve the equation, $x^2-x+1=\frac{1}{2}+\sqrt{x-\frac{3}{4}}$.

337. Find the domain of the function $f(x)=rac{1}{[|x-1|]+[|7-x|]-6}$,

[.] greatest integer functions.

338. If f(x) is a real valued function which satisfied f(x+3/2)+f(x)+f(x+1)+f(x+1/2) and |f(x)| le2AAx inR, $thenprovedt^f(x)$ is periodic.

Watch Video Solution

339. Let $f(x)=\sin\Bigl(\frac{\pi}{6}\sin\Bigl(\frac{\pi}{2}\sin x\Bigr)\Bigr)$ for all $x\in\mathbb{R}$ and $g(x)=\frac{\pi}{2}\sin x$ for all $x\in\mathbb{R}$. Let (f o g)(x)denote f(g(x)) and (g o f)(x) $de^{-1}eg(f(x))$. Then which of the following is (are) true ?

A. Range of f is
$$\left[-\frac{1}{2},\frac{1}{2}\right]$$

B. Range of
$$fog$$
 is $\left[-rac{1}{2},rac{1}{2}
ight]$

C.
$$\lim_{x o 0} rac{f(x)}{g(x)} = rac{\pi}{6}$$

D. There is an
$$x \in \mathbb{R}$$
 such that $(gof)(x) = 1$

Answer: 1,2,3

340. If $[0,\pi/2) o R$ is defined as

$$f(0) = egin{bmatrix} 1 & an heta & 1 \ - an heta & 1 & an heta \ 1 & an heta & 1 \end{bmatrix}$$

A.
$$(2,\infty)$$

B.
$$(-\infty, -2]$$

C.
$$[2,\infty)$$

D.
$$(-\infty,2]$$

Answer: 3

341.
$$\{x\in R\!:\! |\!\cos x|\geq \sin x\}\cap \left[0,rac{3\pi}{2}
ight]=$$

A.
$$\left[0, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \frac{3\pi}{2}\right]$$

$$\mathtt{B.}\left[0,\frac{\pi}{4}\right] \cup \left[\frac{\pi}{2},\frac{3\pi}{2}\right]$$

$$\mathsf{C.}\left[0,\frac{\pi}{4}\right] \cup \left[\frac{5\pi}{4},\frac{3\pi}{2}\right]$$

D.
$$\left[0, \frac{3\pi}{2}\right]$$

Answer: 1

Watch Video Solution

342. Let $f[\,-2,2] o R$ be a continuous function such that f(x)assumes only irrational values. If $fig(\sqrt{2}ig)=\sqrt{2}$,

A.
$$f(0) = 0$$

B.
$$f(\sqrt{2}-1)=\sqrt{2}-1$$

C.
$$f(\sqrt{2}-1)=\sqrt{2}+1$$

D.
$$f(\sqrt{2}-1)=\sqrt{2}$$

Answer: 4

343. Let $f\!:\!N o R$ be such that f(1)=1and

$$f(1)+2f(2)+3f(3)+.....+nf(n)=n(n+1)f(n)$$
 for all $n\in N$, $n\geq 2$, where N is the set of natural numbers and R is the set of real numbers . Then the value of (500) is

- A. 1000
- B. 500
- c. $\frac{1}{500}$
- D. $\frac{1}{1000}$

Answer: 4

Watch Video Solution

344. For the function $f(x)=\left[\frac{1}{[x]}\right]$, where [x] denotes the greatest integer less than or equal to x , which of the following statements are true ?

A. The domain is (-infty, infty)

B. The range is $\{0\} \cup \{-1\} \cup \{1\}$

C. The range is (-infty,0)cup[1,infty)

D. The range is $\{0\}$ cup $\{1\}$

Answer: 2,3

Then

Watch Video Solution

A. f(x) is an odd function

345. Let $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)
ightarrow \mathsf{R} beginner by \mathsf{f(x)=(log)(secx+tan x))^3}$

B. f(x) is a one-one function

C. f(x) is a onto function

D. f(x) is an even function

Answer: 1,2,3

346. If $a \in R$ and the equation

$$-3(x-[x])^2+2(x-[x])+a^2=0$$

then all possible values of a lie in the interval:

(where [x] denotes the greatest integer $\leq x$) has no integral solution,

A.
$$(-2, -1)$$

B.
$$(\,-\infty,\,-2)\cup(2,\infty)$$

C.
$$(-1,0) \cup (0,1)$$

Answer: 3

Watch Video Solution

347. Let R be the set of all real numbers $f\!:\!R o R$ be given by $f(x)=3x^2+1$.Then the set $f^{-1},(1,6)$ is

A.
$$\left\{-\frac{\sqrt{5}}{3}, 0, \frac{\sqrt{5}}{3}\right\}$$
B. $\left\{-\frac{\sqrt{5}}{3}, \frac{\sqrt{5}}{3}\right\}$
C. $\left\{-\frac{\sqrt{1}}{3}, \frac{\sqrt{1}}{3}\right\}$
D. $\left(-\frac{\sqrt{5}}{3}, \frac{\sqrt{5}}{3}\right)$

_

Answer: 2

describes

Watch Video Solution

B. onto mapping

C. not one-to-one but onto mapping

348. The function $f(x)=x^2+bx+c$, where b and c real constants ,

D. neither one-to-one nor onto mapping

349. The range of the function $y=\left(rac{\pi^2}{16}+x^2
ight)$ is ?

Watch Video Solution

350. Let $f(x) = 2^{100}x + 1$, $g(x) = 3^{100}x + 1$

Then the set of real numbers x such that f(g(x)) = x is

A. empty

B. a singleton

C. a finite set with more than one element

D. infinite

Answer: 2

351. Which of the following real valued functions is/are not even functions?

A.
$$f(x) = x^3 \sin x$$

$$B. f(x) = x^2 \cos x$$

$$\mathsf{C.}\,f(x)=e^xx^3\sin x$$

D.
$$f(x) = x - [x]$$
 ,where $[x]$ denotes the greatest integer less than or equal to x

Answer: 3,4

Watch Video Solution

352. Let $f\colon R o R$ be such that f is injective and f(x)f(y)=f(x+y)f or $all x,y\in R.$ If f(x),f(y),f(z) are in G. P. , then x,y,z are in

A.
$$A. P. always$$

B. G. P. always

C. $A.\ P.\ depend \in gonthevalues of x, y, z`$

D. $G.\ P.\ depend \in gonthevalues of x,y,z`$

Answer: 1

Watch Video Solution

353. The function f[0,3] o [1,29], defined by $f(x) = 2x^3 - 15x^2 + 36x + 1$, is

A. one-one and onto

B. onto but not one-one

C. one-one but not onto

D. neither one-one nor onto

Answer: 2

354. Let $f(x)=ax^2+bx+c,$ $g(x)=px^2+qx+r$ such that f(1)=g(1), f(2)=g(2) and f(3)-g(3)=2. Then f(4)-g(4) is

A. 4

B. 5

C. 6

D. 7

Answer: 3

Watch Video Solution

355. The total number of infections (one-one into mappings) from $\{a_1,a_2,a_3,a_4\}$ to $\{b_1,b_2,b_3,b_4,b_5,b_6,b_7\}$ is

A. 400

B. 420

C. 800

D. 840

Answer: 4

Watch Video Solution

356. Let R be the set of real numbers and the functions $f\colon R\to R$ and $g\colon R\to R$ be defined $f(x)=x^2+2x-3$ and g(x)=x+1. Then the value of x for which f(g(x))=g(f(x)) is

A. - 1

B. 0

C. 1

D. 2

Answer: 1

357. Let $f(x)=x^2$ and $g(x)=\sin x$ for all xIR then the set of all x satisfying (fogogof), (x)=(gogof), (x) , where (fog), (x)=f(g(x)), is

A.
$$\pm\sqrt{n}\pi,$$
 $n\in\{0,1,2,...\}$

B.
$$\pm \sqrt{n}\pi, n \in \{1,2,...\}$$

C.
$$\frac{\pi}{2}+2n\pi, n\in\{...,\ -2,\ -1,0,1,2,...\}$$

D.
$$2n\pi,\,n\in\{...,\,-2,\,-1,0,1,2,...\}$$

Answer: A

Watch Video Solution

358. Let $f\colon (0,1) o R$ be defined by $f(x) = b - rac{x}{1} - bx$, where b is a constant such that 0 < b < 1 Then

A.
$$fis \neg \in vertib \leq on$$
(0,1)`

B. $f \neq f^{-1}on(0, 1)$ and f(b)=1/(f'(0))

C. $f = f^{-1}on(0, 1)$ and f(b)=1/(f'(0))

D. f^{-1} is differentiable on (0,1)

Answer: A

Watch Video Solution

359. The domain of the function $f(x) = \sin^{-1}\!\left(\frac{8(3)^{x-2}}{1-3^{2(x-1)}} ight)$ is

A.
$$(-\infty, -1) \cup (1, \infty)$$

B.
$$(-\infty,0)\cup(0,\infty)$$

C.
$$[2,\infty)$$

D.
$$(-\infty,0)\cup(2,\infty)$$

Answer: D

360. The domain of the function $f(x) = \dfrac{1}{\sqrt{|x|-x}}$ is

A.
$$(0, \infty)$$

B.
$$(-\infty,0)$$

$$\mathsf{C.}\,(\,-\infty,\infty)-\{0\}$$

D.
$$(-\infty, \infty)$$

Answer: B

Watch Video Solution

361. The even function of the following is

A.
$$f(x)=rac{a^x+a^{-x}}{a^x-a^{-x}}$$

$$\texttt{B.}\, f(x) = \frac{a^x+1}{a^x-1}$$

$$\mathsf{C}.\, f(x) = x.\, \frac{a^x-1}{a^x+1}$$

D.
$$f(x) = \log_2\Bigl(x + \sqrt{x^2 + 1}$$

Answer: C

Watch Video Solution

362. If f(x+2y,x-2y) =xy, then f(x,y) is equal to

- A. $\frac{1}{4}xy$
- B. $\frac{1}{4} \left(x^2 y^2\right)$
- C. $\frac{1}{8} \left(x^2 y^2\right)$
- D. $\frac{1}{8} \left(x^2 + y^2\right)$

Answer: C

