# ©゙doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

## LIMIT, CONTINUITY AND DIFFERENTIABILITY

## Question Bank

1. Evaluate the right hand limit and left hand limit of the function
$f(x)= \begin{cases}\frac{|x-4|}{x-4} & x \neq 4 \\ 0 & x=4\end{cases}$

- Watch Video Solution

2. Evaluate $\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$
3. Solve

$$
\lim _{x \rightarrow 1}\left[\sin ^{-1} x\right]
$$

(where [.] denotes greatest integer function.)

## - Watch Video Solution

4. Solve
$\lim _{x \rightarrow 0^{+}}\left[\frac{\sin x}{x}\right]$
(where [.] denotes greatest integer function.)

## - Watch Video Solution

5. Solve
$\lim _{x \rightarrow 0^{-}}\left[\frac{\sin x}{x}\right]$
(where [.] denotes greatest integer function.)
6. Solve

$$
\lim _{x \rightarrow 0^{+}}\left[\frac{\tan x}{x}\right]
$$

(where [.] denotes greatest integer function.)

## - Watch Video Solution

7. Solve

$$
\lim _{x \rightarrow 0^{-}}\left[\frac{\tan x}{x}\right]
$$

(where [.] denotes greatest integer function.)

## - Watch Video Solution

8. Evaluate $\lim _{x \rightarrow 1} \frac{x^{P+1}-(P+1) x+P}{(x+1)^{2}}$

## D Watch Video Solution

9. Evaluate $\lim _{x \rightarrow 0} \frac{\tan (2 x)}{x}$
10. Evaluate $\lim _{x \rightarrow a}\left(2-\frac{a}{x}\right)^{\tan \frac{\pi x}{2 a}}$

## - Watch Video Solution

11. The graph of function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ has a unique tangent at $\left(e^{a}, 0\right)$, through which the graph passes, then

$$
\lim _{x \rightarrow e^{a}} \frac{\log (1+7 f(x))-\sin (f(x))}{3 f(x)} \text { is equal to }
$$

A. 1
B. 2
C. 7
D. none of these

## Answer: B

12. Evaluate
$\lim _{n \rightarrow \infty} \frac{[x]+[2 x]+[3 x]+\ldots \ldots+[n x]}{n^{2}}$
where [.] denotes greatest integer function.

## - Watch Video Solution

13. Evaluate $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \cos t d t}{x \sin x}$

## - Watch Video Solution

14. Evaluate $\lim _{x \rightarrow 0} \frac{x-\int_{0}^{x} \cos t^{2} d t}{x^{3}-6 x}$

## - Watch Video Solution

15. Evaluate : $\lim _{x \rightarrow 0}\left\{\tan \left(\frac{\pi}{4}+x\right)\right\}^{\frac{1}{x}}$
16. If $\alpha$ and $\beta$ be the roots of the quadratic equation $a x^{2}+b x+c=0$ then evaluate
$\lim _{x \rightarrow \alpha} \frac{1-\cos \left(a x^{2}+b x+c\right)}{(x-\alpha)^{2}}$

## - Watch Video Solution

17. Let $\mathrm{a}=\min \left\{x^{2}+2 x+3, x \in R\right\}$ and $b=\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}}$. Then the value of $\sum_{r=0}^{n} a^{r} b^{n-r}$

## - Watch Video Solution

18. If $f(x)=\left\{\begin{array}{ll}2 x+3 & \text { when } \mathrm{x}<0 \\ 0 & \text { when } \mathrm{x}=0 \\ x^{2}+3 & \text { when } \mathrm{x}>0\end{array}\right.$ Discuss continuity at $\mathrm{x}=0$.

## - Watch Video Solution

19. Let $y=f(x)$ be defined parametrically as $y=t^{2}+t|t|, x=2 t-|t|, t \in R$, Discuss its continuity.

## Watch Video Solution

20. Let $f(x)$ be a continuous function defined for 1 le $x$ le 3 . If $f(x)$ takes rational values for all $x$ and $f(2)=10$, then $f(1,5)$ is equal to

## - Watch Video Solution

21. Find the points points of discontinuity of $y=\frac{1}{u^{2}+u-2}$ where $u=\frac{1}{x-1}$

## - Watch Video Solution

22. If $f(x)=[x]$, where [.] denotes greatest integer function. Then check the continuity on [1,2]
23. Let
$f(x)=\left\{\left(\{1+|\sin x|\}^{a /|\sin x|},-\pi / 6<x<0\right),(b, x=0),\left(e^{\tan 2 x / \tan 3}\right.\right.$
Determine $a$ and $b$ such that $f(x)$ is continuous at $x=0$

## - Watch Video Solution

24. Discuss the continuity of $f(x)=\left[\tan ^{-1} x\right]$

## - Watch Video Solution

25. Examine the function, $f(x)= \begin{cases}x-1 & x<0 \\ 1 / 4 & x=0 \\ x^{2}-1 & x>0\end{cases}$

Discuss the continuity, and if discontinuous remove the discontinuity.

## - Watch Video Solution

26. Show the function,
$f(x)= \begin{cases}\frac{e^{1 / x}-1}{e^{1 / x}+1} & \text { when } \mathrm{x} \leq 0 \\ 0 & \text { when } \mathrm{x}=0\end{cases}$
has non-removable discontinuity at $\mathrm{x}=0$

## - Watch Video Solution

27. A function $f(x)$ is defined by,
$\Rightarrow f(x)=f(x)=\left\{\begin{array}{l}\frac{\left[x^{2}\right]-1}{x^{2}-1} \text { for } x^{2} \neq 1 \\ \text { Ofor } x^{2}=1\end{array}\right.$
Discuss the continuity of $f(x)$ at $x=1$.

## - Watch Video Solution

28. Discuss the continuity of the function,
$f(x)=\lim _{n \rightarrow \infty} \frac{\log (2+x)-x^{2 n} \sin x}{1+x^{2 n}}$ at $\mathrm{x}=1$

## - Watch Video Solution

29. Discuss the continuity of $\mathrm{f}(\mathrm{x})$ where $f(x)=\lim _{n \rightarrow \infty}\left(\sin \frac{\pi x}{2}\right)^{2 n}$

## - Watch Video Solution

30. If $f(x)$ be continuous function for all real values of $x$ and satisfies, $x^{2}+\{f(x)-2\} x+2 \sqrt{3}-3-\sqrt{3} . f(x)=0, \forall x \in R$. Then find the value of $f(\sqrt{3})$.

## - Watch Video Solution

31. Which of the following functions is differentiable at $x=0$ ?
A. $\cos (|x|)+|x|$
B. $\cos (|x|)-|x|$
C. $\sin (|x|)+|x|$
D. $\sin (|x|)-|x|$

## Answer: D

32. Let
$f(x)= \begin{cases}x \exp \left[-\left(\frac{1}{|x|}+\frac{1}{x}\right)\right] & x \neq 0 \\ 0 & x=0\end{cases}$
Test whether
$f(x)$ is differentiable at $x=0$

## - Watch Video Solution

33. Let
$f(x)= \begin{cases}x \exp \left[-\left(\frac{1}{|x|}+\frac{1}{x}\right)\right] & x \neq 0 \\ 0 & x=0\end{cases}$
Test whether
$f(x)$ is differentiable at $x=0$

## Watch Video Solution

34. The left hand derivative of $\mathrm{f}(\mathrm{x})=[\mathrm{x}] \sin (\pi x)$ at $\mathrm{x}=\mathrm{k}, \mathrm{k}$ is an integer, is:
A. $(-1)^{k}(k-1) \pi$
B. $(-1)^{k-1}(k-1) \pi$
C. $(-1)^{k} k \pi$
D. $(-1)^{k-1} k \pi$

## Answer: A

## - Watch Video Solution

35. A function $f: R \rightarrow R$ satisfies the equation $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ for all $x, y \in R, f(x) \neq 0$. Suppose that the function is differentiable at $\mathrm{x}=0$ and $f^{\prime}(0)=2$. Prove that $f^{\prime}(x)=2 f(x)$.

## - Watch Video Solution

36. Let $f(x)= \begin{cases}-4 & -4 \leq x<0 \\ x^{2}-4 & 0 \leq x \leq 4\end{cases}$

Discuss the continuity and differentiability of $g(x)=f(|x|)+|f(x)|$
37. Let $\mathrm{f}(\mathrm{x})=[\mathrm{n}+\mathrm{p} \sin \mathrm{x}], x \in(0, \pi) n \in Z$ and p is a prime number, where [.] denotes the greatest integer function. Then find the number of points where $f(x)$ is not differentiable.

## - Watch Video Solution

38. If $\mathrm{f}(\mathrm{x})=\{|x|-|x-1|\}^{2}$, draw the graph of $\mathrm{f}(\mathrm{x})$ and discuss its continuity and differentiability of $f(x)$

## - Watch Video Solution

39. If $f(x)=|x+1|\{|x|+|x-1|\}$, then draw the graph of $f(x)$ in the interval $[-2,2]$ and discuss the continuity and differentiability in [-2, 2]

## - Watch Video Solution

40. The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \cos \left(t^{2}\right) d t}{x \sin x}$ is

## Watch Video Solution

41. The value of $\lim _{x \rightarrow 0} \frac{\left(1^{x}+2^{x}+3^{x}+\ldots+n^{x}\right)^{a / x}}{n}$, is:
A. $(n!)^{a / n}$
B. $n$ !
C. $a^{n!}$
D. doesn't exists

## Answer: A

## - Watch Video Solution

42. If $\lim _{x \rightarrow 0}\left(1+a x+b x^{2}\right)^{2 / x}=e^{3}$, then the value of a and b , is :
A. $a=\frac{3}{2}, b \in R$
B. $a=\frac{1}{2}, b \in R$
C. $a=R, b \in R$
D. none of these

## Answer: A

## - Watch Video Solution

43. A function is defined as,
$f(x)=\{(0$, wherexisrational $),(1$, wherexisirrational $)\}:$. Then $f(x)$ is
A. continuous for all $x \in R$
B. continuous for all $x \in R-\{0\}$
C. continuous for all $x \in R-\{0,1\}$
D. discontinuous for all $x \in R$

## - Watch Video Solution

44. If $f(x)=\left\{\begin{array}{ll}-1 & x<0 \\ 0 & x=0 \\ 1 & x>0\end{array}\right.$ and $g(x)=x\left(1-x^{2}\right)$, then, $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ is continuous for,
A. R
B. $R-\{0\}$
C. $\mathrm{R}-\{0,1\}$
D. $R-\{-1,0,1\}$

Answer: D
45. If $\mathrm{f}(\mathrm{x})=-1+|\mathrm{x}-2|, 0 \leq x \leq 4$
$\mathrm{g}(\mathrm{x})=2-|\mathrm{x}|,-1 \leq x \leq 3$
Then, $\operatorname{fog}(x)$ is continuous for $x$ belonging to
A. $[0,4]$
B. [-1.3]
C. $[0,3]$
D. $[-1,2]$

## Answer: D

## - Watch Video Solution

46. Let $\mathrm{f}(\mathrm{x})=[\sin \mathrm{x}+\cos \mathrm{x}], 0<x<2 \pi$, (where [.] denotes the greatest integer function). Then the number of points of discontinuity of $f(x)$ is :
A. 6
B. 5
C. 4
D. 3

## Answer: C

## - Watch Video Solution

47. If $f(x)=\left\{\begin{array}{ll}\frac{\sin \{\cos x\}}{x-\frac{\pi}{2}} & x \neq \frac{\pi}{2} \\ 1 & x=\frac{\pi}{2}\end{array}\right.$, where \{.\} denotes the fractional part of $x$, then $f(x)$ is :
A. continuous at $x=\frac{\pi}{2}$
B. $\lim _{x \rightarrow \frac{\pi}{2}} f(x)$, but $\mathrm{f}(\mathrm{x})$ is not continuous at $x=\frac{\pi}{2}$
C. $\lim _{x \rightarrow \frac{\pi}{2}}$ does not exists
D. $\lim f(x)=1$

$$
x \rightarrow \frac{\pi^{-}}{2}
$$

## Answer: B

48. If $f(x)=\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, x \neq 2$
$=k, x=2$
and if $f(x)$ is continuous at $x=2$, find the value of $k$.

## - Watch Video Solution

49. In the function
$' f(x)=\left[(x-2)^{\wedge} 3 / a\right] \sin (x-2)+a \cos (x-2)$, (where [.] denotes the greatest integer function ) is continuous and differentiable in $(4,6)$, then
A. $a \in[8,64]$
B. $a \in[0,8]$
C. $a \in[64, \infty]$
D. none of these

## Answer: C

50. Let $\mathrm{f}(\mathrm{x})=|\mathrm{x}|+|\sin \mathrm{x}|, x \in\left(-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. Then, f is :
A. continuous, $\forall x \in R-\{0\}$
B. continuous and differentiable everywhere
C. nowhere differentiable
D. not differentiable at $\mathrm{x}=0$

## Answer: D

## - Watch Video Solution

51. If $f$ is a periodic function, then
A. $\mathrm{f}^{\prime}$ and f " are also periodic
B. $\mathrm{f}^{\prime}$ is periodic but $\mathrm{f}^{\prime \prime}$ is not periodic
C. $\mathrm{f}^{\prime \prime}$ is periodic but $\mathrm{f}^{\prime}$ is not periodic
D. none of the above

## D Watch Video Solution

52. If $\mathrm{f}(\mathrm{x})=\left[\sin ^{2} x\right]$ (where [.] denotes the greatest integer function ) then :
A. $f$ is everywhere continuous
B. $f$ is everywhere differentiable
C. f is a constant function
D. none of the above

## Answer: D

## - Watch Video Solution

53. Let $f(x)$ be a polynomial of degree one and $f(x)$ be a function defined by
$f(x)= \begin{cases}g(x) & x \leq 0 \\ \frac{1+x}{(2+x)^{1 / x}} & x>0\end{cases}$
If $f(x)$ is continuous at $x=0$ and $f(-1)=f^{\prime}(1)$, then $g(x)$ is equal to :
A. $-\frac{1}{9}\left(1+6 \log _{e} 3\right) x$
B. $\frac{1}{9}\left(1+6 \log _{e} 3\right) x$
C. $-\frac{1}{9}\left(1+6 \log _{e} 3\right) x$
D. none of these

## Answer: A

## Watch Video Solution

54. $\lim _{x \rightarrow 0} \frac{e^{\cot x}-e^{\cos x}}{\cot x-\cos x}$ is
A. -1
B. 1
C. 0
D. none of these

## Answer: B

## - Watch Video Solution

55. value of $\lim _{x \rightarrow \infty}\left(\frac{x+1}{x+2}\right)^{2 x+1}$ is
A. $e^{2}$
B. $e^{-2}$
C. 1/e
D. e

## Answer: B

## D Watch Video Solution

56. $\lim _{x \rightarrow \infty} \frac{3^{x}+4^{x+1}+5^{x}}{5^{x}+3^{x+1}}$ is
A. $\frac{1}{2}$
B. $\frac{3}{5}$
C. $\frac{4}{3}$
D. 1

## Answer: D

## - Watch Video Solution

57. $\lim _{x \rightarrow \infty}\left[\frac{(2+x)^{40}(4+x)^{5}}{(2-x)^{45}}\right]$ equals
A. -1
B. 1
C. 16
D. 32

## Answer: A

58. $\lim _{x \rightarrow 5} \frac{x-5}{|x-5|}$ equals to
A. 2
B. 0
C. -2
D. none of these

## Answer: D

## - Watch Video Solution

59. $\lim _{x \rightarrow \frac{\pi}{3}} \frac{\sin \left(\frac{\pi}{3}-x\right)}{2 \cos x-1}$ is equal to
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{3}$
D. $\frac{2}{\sqrt{3}}$

## D Watch Video Solution

60. If $f(x)=\left(\frac{x^{2}+5 x+3}{x^{2}+x+2}\right)^{x}$ then $\lim _{x \rightarrow \infty} f(x)=$
A. $e^{4}$
B. $e^{3}$
C. $e^{2}$
D. $2^{4}$

## Answer: A

61. If $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+1}{x+1}-p x-q\right)=0$, then
A. $p=0, q=0$
B. $p=1, q=-1$
C. $p=-1, q=1$
D. $p=2, q=-1$

## Answer: B

## - Watch Video Solution

62. Thevalueoflim_(xrarrinfty)frac $\left(x^{\wedge} 3 \sin (1 / x)-2 x^{\wedge} 2\right)\left(1+3 x^{\wedge} 2\right)$ is
A. 0
B. $-\frac{1}{3}$
C. -1
D. $-\frac{2}{3}$

## Answer: B

63. If $f(x)=\left\{\begin{array}{ll}\frac{\sin [x]}{[x]} & \text { for }[x] \neq 0 \\ 0 & \text { for }[x]=0\end{array}\right.$ where $[\mathrm{x}]$ denotes greatest integer function, then $\lim _{x \rightarrow 0} f(x)$ is
A. 1
B. 0
C. -1
D. Limit does not exist

## Answer: D

## - Watch Video Solution

64. The number of points at which the function $f(x)=\frac{1}{\log }|x|$ is discontinuous is
A. 1
B. 2
C. 3
D. 4

## Answer: C

## - Watch Video Solution

65. The function $f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}$ is not defined at x $=0$. The value which should be assigned to $f(x)$ at $x=0$, So that it is continuous at $\mathrm{x}=0$ is
A. a-b
B. $a+b$
C. $\log a+\log b$
D. none of these

## Answer: B

66. A function $\mathrm{f}(\mathrm{x})$ is defined as $f(x)=\left\{\begin{array}{ll}\frac{1-\cos 3 x}{x^{2}} & x \neq 0 \\ b^{2}+4 & x=0\end{array}\right.$ If $\mathrm{f}(\mathrm{x})$ is continuous at $x=0$, then $b$ equals to
A. $\pm \frac{2}{\sqrt{3}}$
B. $\pm \frac{3}{\sqrt{2}}$
C. $\pm \frac{1}{\sqrt{2}}$
D. $\pm \frac{\sqrt{3}}{2}$

## Answer: C

## - Watch Video Solution

67. If $f(x)=\left\{\begin{array}{ll}(\cos x)^{\frac{1}{\sin x}} & \text { for } x \neq 0 \\ k & \text { for } x=0\end{array}\right.$ The value of K , so that f is continuous at $\mathrm{x}=0$ is
A. 0
B. 1
C. $\frac{1}{2}$
D. none of these

## Answer: B

## - Watch Video Solution

68. Points of discontinuities of the function
$f(x)=4 x+7[x]+2 \log (1+x)$, where $[x]$ denotes the integral part of $x$, is
A. 0
B. 1
C. $-\frac{3}{2}$
D. all of these

## Answer: D

69. The function $f(x)=|x| a t x=0$ is:
A. Continuous but non-differentiable
B. Discontinuous and differentiable
C. Discontinuous and non-differentiable
D. Continuous and differentiable

## Answer: A

## - Watch Video Solution

70. $g(x)=x|x|$ theng" $(\mathrm{x})$
A. does not exist at $x=0$
B. is always positive
C. is always non-negative
D. is always non-zero

## - Watch Video Solution

71. The function defined by $f(x)=\left\{\begin{array}{ll}(\mid x-3) & x \geq 1 \\ \frac{1}{4} x^{2}-\frac{3}{2} x+\frac{13}{4} & x<1\end{array}\right.$ is
A. continuous at $x=1$
B. Continuous at $\mathrm{x}=3$
C. Differentiable at $x=1$
D. all of these

## Answer: D

## D Watch Video Solution

72. If $f(x)=\left\{\begin{array}{ll}\frac{x-1}{2 x^{2}-7 x+5} & f \text { or } x \neq 1 \\ -\frac{1}{3} & f \text { or } x=1\end{array}\right.$ then $\mathrm{f}(1)=$
A. $-\frac{1}{9}$
B. $-\frac{2}{9}$
C. $-\frac{1}{3}$
D. $\frac{1}{3}$

## Answer: B

## - Watch Video Solution

73. Let $\mathrm{h}(\mathrm{x})=\max \left\{-x, 1, x^{2}\right\}$ for every real x , then number of points of non-differentiability of $h(x)$ is
A. 1
B. 2
C. 3
D. 4

## Answer: B

74. $\lim _{n \rightarrow \infty} \frac{n^{k} \sin ^{2} n!}{n+1}=0$ for
A. all $k$
B. $o \leq k<1$
C. $k=1$
D. kgt1

## Answer: B

## - Watch Video Solution

75. If $f(x)=\frac{\sin \left(2 \pi\left[\pi^{2} x\right]\right)}{5+\left[x^{2}\right]}$ denotes the greatest integer function), then $f(x)$ is
A. discontinuous at some $x$
B. continuous at all x , but the derivative $f^{\prime}(x)$ doesn't exist for some x
C. $f^{\prime}(x) \exists f$ or allx, butf $\mathrm{f}^{\prime}(\mathrm{x})^{\prime}$ doesn't for some x
D. ' ${ }^{\prime}$ " $(x)$ exists for all $x$.

## Answer: D

## - Watch Video Solution

76. If $f(x)=|x-25|$ and $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x}))$ then for $x>50, g^{\prime}(x)$ is equal to
A. 0
B. 1
C. 25
D. None of these

## Answer: B

## - Watch Video Solution

77. Let $f(x)=\left[\tan ^{2} x\right]$, where [.]denotes the greatest integer function. Then
A. $\lim _{x \rightarrow 0} f(x)$ doesn't exist
B. $f(x)$ is continuous at $x=0$
C. $f(x)$ is not differentiable at $x=0$
D. $f^{\prime}(0)=1$

## Answer: B

## - Watch Video Solution

78. If $f(x+y)=f(x)$. $f(y)$ for all $x$ and $y$ and $f(5)=2, f^{\prime}(0)=4$, then $f^{\prime}(5)$ will be
A. 2
B. 4
C. 6
D. 8

## Answer: D

## - Watch Video Solution

79. if $f(x)=[\sqrt{2} \sin x]$, where $[\mathrm{x}]$ denotes the greatest integer function, then
A. $f(x)$ is continuous at $x=0$
B. maximum value of $f(x)$ is 1 in interval $[-2 \pi, 2 \pi]$
C. $\mathrm{f}(\mathrm{x})$ is discontinuous at $X=\frac{n \pi}{2}+\frac{\pi}{4}, n \in I$
D. $\mathrm{f}(\mathrm{x})$ is differentiable at $x=n \pi, n \in I$

## Answer: B

## - Watch Video Solution

80. $f(x)=[x]+|x-1|$ then $f(x)$, where [.] denotes greatest integer function) is
A. Continuous at $\mathrm{x}=0$
B. not differentiable at $x=1 / 2$
C. discontinuous at $x=2$
D. differentiable at $x=-2$

## Answer: C

## - Watch Video Solution

81. If $f(x)=\left\{\begin{array}{ll}-x & x \leq 1 \\ 3+x & x>1\end{array}, g(x)=\left\{\begin{array}{ll}x^{2} & x \leq 1 \\ 2-x & x>1\end{array}\right.\right.$ then $\lim _{x \rightarrow 1^{+}} f(g(x))$ equal to
A. 1
B. -1
C. 5
D. 2
82. If $\{x\}$ denotes the fractional part of x , then $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$ is
A. 0
B. 1
C. $\infty$
D. none of these

## Answer: D

## - Watch Video Solution

83. Consider $f(x)= \begin{cases}\frac{x^{2}}{|x|} & x \neq 0 \\ 0 & x=0\end{cases}$
A. $\mathrm{f}(\mathrm{x})$ is discontinuous everywhere
B. $f(x)$ is continuous everywhere
C. $f(x)$ exists in $(-1,1)$
D. $f(x)$ exists in $(-2,2)$

## Answer: B

## - Watch Video Solution

84. Value of $\lim _{x \rightarrow 3} \frac{\sin \left(e^{x-3}-1\right)}{\log (x-2)}$ is
A. 2
B. 1
C. -1
D. -2

## Answer: B

85. $\lim _{x \rightarrow 1} x^{1 / 1-x}$ is
A.e
B. $1 / \mathrm{e}$
C. 1
D. None of these

## Answer: B

## D Watch Video Solution

86. $\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1-\tan x}\right)^{\frac{1}{x}}$ is
A. 0
B. 1
C. $e^{2}$
D. None of these

## D Watch Video Solution

87. The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sec ^{2} t d t}{x \sin x}$ is :
A. 2
B. 1
C. 0
D. 3

Answer: B

Watch Video Solution
88. The value of $\lim _{x \rightarrow 0} \frac{|\cos x+\sin x|}{x^{2}}$ is equal to
A. 0
B. 1
C. $\frac{\pi}{2}$
D. None of these

## Answer: A

## - Watch Video Solution

89. $\lim _{x \rightarrow \infty} \frac{\sqrt[2]{x^{2}+1}-\sqrt[3]{x^{2}+1}}{\sqrt[4]{x^{2}+1}-\sqrt[5]{x^{4}-1}}$ is equal to
A. 1
B. -1
C. 0
D. None of these

## Answer: A

90. The value of $a, b$ and $c$ such that

$$
\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2 \text { are }
$$

A. $a=1, b=-2, c=1$
B. $a=1, b=2, c=-1$
C. $a=1, b=2, c=1$
D. $a=-1, b=2, c=1$

## Answer: C

## - Watch Video Solution

91. Let $f(x)=\lim _{-}(n$ rarr infty $)(\sin x)^{\wedge}(2 n)^{\prime}$, then $f$ is
A. continuous at $x=\frac{\pi}{2}$
B. discontinuous at $x=(2 k+1) \frac{\pi}{2}, k \in Z$
C. continuous at $x=-\frac{\pi}{2}$
D. continuous at infinite number of points

## Answer: B

## - Watch Video Solution

92. The set of all points where the function $f(x)=x /(1+|x|)^{\prime}$ is differentiable, is
A. `(- infty, infty)
B. $(0, \infty)$
C. $(-\infty, 0) \cup(0, \infty)$
D. None of these

## Answer: A

## - Watch Video Solution

93. Let $f(x)=\frac{x(1+a \cos x)-b \sin x}{x^{2}}, x \neq 0$ and $\mathrm{f}(0)=1$
A. $5 / 2,3 / 2$
B. $5 / 2,-3 / 2$
C. $-5 / 2,-3 / 2$
D. None of these

## Answer: C

## - Watch Video Solution

94. If $x+|y|=2 y$, then y as a function of x is:
A. defined for all real $x$
B. continuous at $x=0$
C. differentiable for all $x$
D. such that $\frac{d y}{d x}=\frac{1}{3} f$ or $x<0$

## - Watch Video Solution

95. Let $[x]$ denotes the greatest integer less than or equal to $x$, If $(x)=$ [ $x \sin \pi x$ ], then $\mathrm{f}(\mathrm{x})$ is :
A. continuous at $\mathrm{x}=0$
B. continuous in ( $-1,0$ )
C. differentiable at $\mathrm{x}=1$
D. differentiable in ( $-1,1$ )

## Answer: A::B::D

## - Watch Video Solution

96. The function

$$
f(x)= \begin{cases}|x-3| & x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4} & x<1\end{cases}
$$

A. continuous at $x=1$
B. differentiable at $x=1$
C. discontinuous at $x=1$
D. differentiable at $x=3$

## Answer: A::B

## - Watch Video Solution

97. Which of the following functions are continuous on $(0, \pi)$ :
A. $\tan x$
B. $\int_{0}^{x} t \sin \frac{1}{t} d t$
C. $f(x)= \begin{cases}1 & 0 \leq x \leq \frac{3 \pi}{2} \\ 2 \frac{\sin 2}{9} x & \frac{3 \pi}{4}<x<\pi\end{cases}$
D. $f(x)= \begin{cases}x \sin x & 0<x \leq \frac{\pi}{2} \\ \frac{\pi}{2} \sin (\pi+x) & \frac{\pi}{2}<x \pi\end{cases}$

## Answer: B::C

98. If $f(x)=\min \left\{1, x^{2}, x^{3}\right\}$ then :
A. $f(x)$ is continuous everyone
B. $f(x)$ is continuous and differentiable everywhere
C. $f(x)$ is not differentiable at two points
D. $f(x)$ is not differentiable at one point

## Answer: A::D

## D Watch Video Solution

99. Let $f(x)$ be defined in [-2, 2] by
$f(x)=\operatorname{maximum}\left(\sqrt{4-x^{2}}, \sqrt{1+x^{2}},-2 \leq x \leq 0\right.$
minimum $\left(\sqrt{\left(4-x^{2}\right), \sqrt{1+x^{2}}, 0<x \leq 2}\right.$, then $\mathrm{f}(\mathrm{x})$
A. is continuous at all points
B. has a point of discontinuity
C. is not differentiable only one point
D. is not differentiable at more than one point

## Answer: B::D

## - Watch Video Solution

100. If $\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{\frac{\lambda}{x}},(a, b, c, \lambda>o)$ is equal to
A. 1, if $\lambda=1$
B. abc, if $\lambda=1$
C. abc, if $\lambda=3$
D. $(a b c)^{\frac{2}{3}}$, if $\lambda=1$

## Answer: C::D

101. If $f(x)=\left(\frac{|x|}{2+|x|}\right)^{2 x}$, then
A. $\lim _{x \rightarrow \infty} f(x)=e^{-4}$
B. $\lim _{x \rightarrow-\infty} f(x)=e^{4}$
C. $\lim _{x \rightarrow-\infty} f(x)=\infty$
D. $\lim _{x \rightarrow-\infty} f(x)=1$

## Answer: A::B

## ( Watch Video Solution

102. Let $f(x)= \begin{cases}1+\frac{2 x}{\lambda} & o \leq x \leq 1 \\ \lambda x & 1 \leq x \leq 2\end{cases}$
if $\lim _{x \rightarrow 1} f(x)$ exists, then $\lambda$ is
A. -2
B. -1
C. 1

## D. 2

Answer: B::D

## - Watch Video Solution

103. If $m, n$ in $N$, lim $x$ tends to $0 '\left(\sin \left(x^{\wedge} m\right) / \sin \left(x^{\wedge} n\right)\right)^{\prime}(m, n \in N)=0$, If
A. 1, if $n=m$
B. 0 if $n>m$
C. $\infty$, if $n<m$
D. $\frac{n}{m}$, if $n<m$

## Answer: A::B::C

## - Watch Video Solution

104. Let $f(x)=\frac{1-\cos 4 x}{x^{2}}, g(x) \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}$ and
$\phi(x)= \begin{cases}f(x) & x<0 \\ a & x=0 \\ g(x) & x>\end{cases}$
Answer the following question based on above passage :
$\lim _{x \rightarrow 0} f(x)$ is equal to
A. $1 / 2$
B. 2
C. $1 / 8$
D. 8

## Answer: D

## - Watch Video Solution

105. Let $f(x)=\frac{1-\cos 4 x}{x^{2}}, g(x) \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}$ and
$\phi(x)= \begin{cases}f(x) & x<0 \\ a & x=0 \\ g(x) & x>\end{cases}$

Answer the following question based on above passage :
$\lim _{x \rightarrow 0} g(x)$ is equal to
A. $1 / 8$
B. 8
C. 2
D. $1 / 2$

## Answer: B

## - Watch Video Solution

106. Let $f(X)=\lfloor x\rfloor-\lceil x\rceil$ for all $x \in R$

Answer the following question based on above passage :
$\lim _{x \rightarrow 0} f(x)=$
A. 0
B. 1
C. -1
D. none of these

## Answer: C

## - Watch Video Solution

107. Let $f(X)=\lfloor x\rfloor-\lceil x\rceil$ for all $x \in R$

Answer the fllowing question based on above passage :
Domain of continuity of $f(x)$ is
A. R
B. $\mathrm{R}-1$
C. 1
D. none of these

## Answer: B

## - Watch Video Solution

108. Match List - I with List-II

## List - I

(1) Circular plate is expanded by heat from radius 5 cm to 5.06 cm .
Approximate increase in area is
(2) If an edge of a cube increases by $1 \%$, then percentage increase in volume is
(3) If the rate of decrease of $\frac{x^{2}}{2}-2 x+5$ is twice the rate of decrease of $x$, then $x$ is equal to (rate of decreases is non-zero)
(4) Rate of increase in area of equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is

## List - 1

## List-II

(1) Circular plate is expanced by
(P) 4
heat from radius 5 cm to 5.06 cm .
Approximate increase in area is
(2) If an edge of a cube increases by $1 \%$, then percentage increase in volume is
(3) If the rate of decrease of
(Q) $0.6 \pi$
$\frac{x^{2}}{2}-2 x+5$ is twice the rate of
decrease of $x$, then $x$ is equal to (rate of decreases is non-zero)
(4) Rate of increase in area of equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is

## - Watch Video Solution

110. Let $f$ and $g$ be two continuous and let $h$ be defined as
$h(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n} f(x)_{x}^{2 m} g(x)}{1+x^{2 n}}$
where $m$ is a fixed positive integer
If lim_( x rarr 1 ) $h(x)^{\prime}$ exists then a real root of $f(x)-g(x)=0$ is

## - Watch Video Solution

111. If $\lim _{x \rightarrow 5}\left(\frac{x^{k}-5^{k}}{x-5}\right)=500$, then k is equal to

## - Watch Video Solution

112. Evaluate the following limits (if exists), where \{\} denotes the fractional part of $x$ and [,] denotes the greatest integer part $\lim _{x \rightarrow 0}\left\{\frac{\sin x}{x}\right\}$

## - Watch Video Solution

113. Evaluate the following limits (if exists), where \{,\} denotes the fractional part of x and [,] denotes the greatest integer part

$$
\lim _{x \rightarrow 0} \frac{e^{x}-e^{x \cos x}}{x+\sin x}
$$

## (D) Watch Video Solution

114. Evaluate the following limits (if exists), where \{,\} denotes the fractional part of x and [,] denotes the greatest integer part $\lim _{x \rightarrow 1} \frac{1-x+\ln x}{1+\cos \pi x}$

## - Watch Video Solution

115. Evaluate the following limits (if exists), where \{\} denotes the fractional part of $x$ and [,] denotes the greatest integer part

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{a_{1}}\right)\left(1+\frac{1}{a_{2}}\right) \ldots\left(1+\frac{1}{a_{n}}\right), \quad \text { where } \quad a_{1}=1 \quad \text { and }
$$

$a_{n}=n\left(1+a_{n-1}\right) \forall n \geq 2$

## - Watch Video Solution

116. Evaluate the following limits (if exists), where \{,\} denotes the fractional part of $x$ and [,] denotes the greatest integer part

$$
\lim _{x \rightarrow 4} \frac{(\cos \alpha)^{x}-(\sin \alpha)^{x}-\cos 2 \alpha}{(x-4)}, a \in(0, \pi / 2)
$$

## - Watch Video Solution

117. Evaluate the following limits (if exists), where $\}$ denotes the fractional part of $x$ and [,] denotes the greatest integer part

$$
\lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{x}}+e(x-1)}{x}
$$

## - Watch Video Solution

118. Evaluate the following limits (if exists), where \{,\} denotes the fractional part of $x$ and [,] denotes the greatest integer part $\left.\lim _{x \rightarrow 0} \frac{\cos ^{2}\left(1-\cos ^{2}\left(1-\cos ^{2} \ldots \ldots \cos ^{2}(x) \ldots \ldots\right)\right)}{\sin \left[\pi\left(\frac{\sqrt{x+4}-2}{x}\right)\right.}\right]$

## - Watch Video Solution

119. If $x$ is a real number in $[0,1]$. Then find the value of $\lim (m \rightarrow \infty) \lim (n \rightarrow \infty)\left[1+\cos ^{2 m}(n!\pi x)\right]$

## Watch Video Solution

120. Let $\alpha \in R$,Prove that a function $f: R \rightarrow R$ is differentiable at $\alpha$, if and only if there is a function $g: R \rightarrow R$ which is continuous at $\alpha$ and satisfies $f(x)-f(\alpha)-g(x)(x-\alpha)$ for all $x \in R$

## - Watch Video Solution

121. Suppose

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} .
$$ $|p(x)| \leq\left|e^{x-1}-1\right| \leq 1$ then prove $\mid \mathrm{a} 1+2 \mathrm{a} 2+\ldots . . .+\mathrm{n}$ an $\mid \leq 1$.

## - Watch Video Solution

122. Let $f(x)= \begin{cases}\frac{a(1-\sin x)+b \cdot \cos x+5}{x^{2}} & x<0 \\ 3 & x=0 \text { find } \mathrm{a} \text { and } \mathrm{b} \\ \left(1+\left(\frac{c x+d x^{3}}{x^{2}}\right)\right)^{1 / x} & x>0\end{cases}$

## - Watch Video Solution

123. about to only mathematics

## - Watch Video Solution

124. Let $f(x)$ be a continuous function in $[-1,1]$ and satisfies $f\left(2 x^{2}-1\right)=2 x f \forall x \in[-1,1]$. Prove that $\mathrm{f}(\mathrm{x})$ is identically zero for all $x \in[-1,1]$

## - Watch Video Solution

125. Let $g(x)=\int_{0}^{x} f(t) d t$ where f is such that $1 / 2 \leq f(t) \leq 1$ for $t \in[0,1]$ and $0 \leq f(t) \leq 1 / 2$ for 'tin[1, 2]

Then the interval in which $\mathrm{g}(2)$ lies.

## - Watch Video Solution

126. Determine the values of $x$ for which the following functions fails to be continuous or differentiable
$f(x)= \begin{cases}(1-x) & x<1 \\ (1-x)(2-x) & 1 \leq x \leq 2 \\ (3-x) & x>2\end{cases}$

## - Watch Video Solution

127. In a function $f:[-2 a, 2 a] \rightarrow R$ is an odd function such that $f(x)=f(2 a-x)$ for $x \in[a, 2 a]$ and the left hand derivative at $\mathrm{x}=\mathrm{a}$ is 0 , then find the left hand derivative at $x=-a$,

## - Watch Video Solution

128. $\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos 2 x}}{\sqrt{2} x}$ is equal to
A. 1
B. -1
C. 0
D. none of these

## Answer: A

## D Watch Video Solution

129. $\lim _{x \rightarrow 2}(-1)^{x}$ (where $[\mathrm{x}]$ is the greatest integer function), is equal to
A. 1
B. -1
C. 1
D. none of these

## Answer: D

130. $\lim _{x \rightarrow 1([x]+[x])}$, (where [.] denotes the greatest integer function )
A. is equal to 0
$B$. is equal to 1
C. does not exist
D. none of these

## Answer: C

## - Watch Video Solution

131. If $z_{r}=\cos \left(r \frac{\alpha}{n^{2}}\right)+i \sin \left(r \frac{\alpha}{n^{2}}\right)$, where $\quad \mathrm{r}=1,2,3, \ldots \mathrm{n}$, then $\lim _{n \rightarrow \infty} z_{1} z_{2} \ldots z_{n}$ is equal to
A. $\cos \alpha+i \sin \alpha$
B. $\cos \left(\frac{\alpha}{2}\right)-i \sin \left(\frac{\alpha}{2}\right)$
C. $e^{i \alpha / 2}$
D. $r \infty t(3)\left(e^{i \alpha}\right)$

## Answer: C

## - Watch Video Solution

132. $\lim$ is given by

$$
(x \rightarrow \infty)((x+1))^{x / 3}
$$

A. 1
B. $e^{3}$
C.e
D. $e^{4}$

## Answer: D

133. If $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x+1}-a x-b\right)=0$ then the values of $a$ and $b$ are given by
A. $a=-1, \quad b=\operatorname{frac}(1)(2)$
B. $a=1, b=\frac{1}{2}$
C. $\mathrm{a}=1 \mathrm{~b}=-\mathrm{frac}(1)(2)$
D. none of these

## Answer: A

## - Watch Video Solution

134. $\left.\lim _{x \rightarrow 0}\left[\frac{I n \cos x}{\left(1+x^{2}\right)^{\frac{1}{4}}-1}\right)\right]$ is equal to
A. 2
B. -2
C. 1
D. -1

## Answer: B

## - Watch Video Solution

135. If $\lim _{n \rightarrow \infty}\left(a n-\frac{1+n^{2}}{1+n}\right)=b$ a finite number then
A. $a=1, b=1$
B. $a=1, b=0$
C. $a=-1, b=1$
D. none of these

## Answer: A

136. The integer n for which $\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}$ is a finite non-zero number is :
A. 1
B. 2
C. 3
D. 4

## Answer: C

## - Watch Video Solution

137. The value of $\lim _{x \rightarrow \infty} \frac{x+\cos x}{x+\sin x}$ is
A. -1
B. 0
C. 1
D. none of these

## Answer: C

## - Watch Video Solution

138. The value of $\mathrm{f}(0)$ so that the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at each point in its domain is equal to
A. 2
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $-\frac{1}{3}$

## Answer: B

139. Which of the following function has finite number of points of discontinuity?
A. $\tan x$
B. $x[x]$
C. $\left(\frac{[x]}{x}\right)$
D. $\sin [n \pi x]$

## Answer: C

## - Watch Video Solution

140. Let $f(x)=[3+2 \cos x], x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ where [.] denotes the greatest integer function The number of points of discontinuity of $f(x)$ is
A. 3
B. 2
C. 5
D. none of these

## Answer: A

## - Watch Video Solution

141. If $y=\frac{1}{t^{2}-t-6}$ and $t=\frac{1}{x-2}$ then the values of x which make the function y discontinuous, are
A. $2, \frac{2}{3}, \frac{7}{3}$
B. $2, \frac{3}{2}, \frac{7}{3}$
C. $2, \frac{3}{2}, \frac{3}{7}$
D. none of these

## Answer: B

## - Watch Video Solution

142. The function $f(x)=[x]^{2}-\left[x^{2}\right]$ (where [.] denotes the greatest integer function ) is discontinuous at
A. all integers
B. all integers except 0 and 1
C. all integers except 1
D. all integers except 0

## Answer: C

## - Watch Video Solution

143. $f+g$ may be continuous function, if
A. $f$ is continuous and $g$ is discontinuous
B. $f$ is discontinuous and $g$ is continuous
C. fand both are continuous
D. none of these

## - Watch Video Solution

144. If $\mathrm{f}(\mathrm{x})$ is continuous function $\forall x \in R$ and the range of $f(x)=(2, \sqrt{26})$ and $g(x)=\left[\frac{f(x)}{a}\right]$ is continuous $\forall x \in R$ Then least positive integral value of $a$ is
A. 2
B. 3
C. 6
D. 5

## Answer: C

## - Watch Video Solution

145. Let $f(x)$ be a continuous function defined for 1 le $x$ le 3 . If $f(x)$ takes rational values for all $x$ and $f(2)=10$, then $f(1,5)$ is equal to
A. 0
B. 10
C. not defined
D. any constant

## Answer: B

## - Watch Video Solution

146. If alpha, beta (alpha < beta) are the points of discontinuity of the function $\mathrm{f}\left(\mathrm{f}(\mathrm{x})\right.$ ), where $f(x)=\frac{1}{1-x}$ then the set of values of a for which the points ( alpha , beta) and ( $a, a^{2}$ ) lie on the same side of the line $x+2 y-$ $3=0$ is
A. $-\left(\frac{3}{2,}, 1\right)$
B. $-\left(\frac{3}{2,}, 1\right)$
C. $[1, \infty]$
D. $\left[-\infty, \frac{3}{2}\right]$

## Answer: A

## - Watch Video Solution

147. If $f(x)=\sec 2 x+\operatorname{cosec} 2 x$, then $f(x)$ is discontinuous at all points in
A. $\{n \pi|n \in N|\}$
B. $\left\{\left.(2 n+1) \frac{\pi}{4} \right\rvert\, n \in I\right\}$
C. $\left\{\frac{n \pi}{4}, n \in I\right\}$
D. All olf these

## Answer: D

148. For a real number $y$, let [y] denotes the greatest integer less than or equal to $y$. Then the function $f(x)=\frac{\tan [(x-\pi) \pi]}{1+[x]^{2}}$ is :
A. discontinuous at some $x$
B. continuous at all $x$, but the derivative $f^{\prime}(x)$ does not exist for some $x$
C. $f^{\prime}(x)$ exist for all $x$, but the derivative $f^{\prime \prime}(x)$ does not exist for some $x$
D. $\mathrm{f}^{\prime \prime}(\mathrm{x})$ exists for all x .

## Answer: D

## - Watch Video Solution

149. If $f(x)= \begin{cases}x^{3} & x>0 \\ 0 & x=0 \\ -x^{3} & x<0\end{cases}$
A. $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$
B. $f(x)$ is continuous but not differentiable at $x 0$
C. Left hand derivative of $f(x)$ at $X=0$ is 1
D. none of these

## Answer: A

## - Watch Video Solution

150. Leth $(x)=\min \left\{x, x^{2}\right\}, \mathrm{x}$ in R then $\mathrm{h}(\mathrm{x})$ is
A. differentiable everywhere
B. non-differentiable at three values of $x$
C. non-differentiable at two values of $x$
D. none of these

## Answer: C

## - Watch Video Solution

151. The set of all points where the function $f(x)=\frac{x}{1+|x|}$ is differentiable is :
A. $(-\infty, \infty)$
B. $[0, \infty)$
C. $(-\infty .0) \cup(0, \infty)$
D. $(0, \infty)$

## Answer: A

## - Watch Video Solution

152. Let $f(x)=a+b|x|+c|x|^{4}$ where a , b and continuous are real constants . Then, $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$, if
A. $a=0$
B. $b=0$
C. $c=0$
D. none of these

## Answer: B

## - Watch Video Solution

153. If $f(x)=\sqrt{1-\sqrt{1}-x^{2}}$, then at $\mathrm{x}=0$
A. $f(x)$ is differentiable as well as continuous
B. $f(x)$ is differentiable but not continuous
C. $f(x)$ is continuous but not differentiable
D. $f(x)$ is neither continuous nor differentiable

## Answer: A

## ( Watch Video Solution

154. If $f(x)=2 x+\left|x-x^{2}\right|,-1 \leq x \leq 1$ then $\mathrm{f}(\mathrm{x})$ is
A. continuous but not differentiable in $[-1,1]$
B. continuous as well as differentiable in [ $-1,1$ ]
C. differentiable but not continuous in [ $-1,1]$
D. neither differentiable nor continuous in [ $-1,1]$

## Answer: A

## - Watch Video Solution

155. Let $f(x+y)=f(x) . f(y)$ for all $x, y$ where $f(0) \neq 0$. If $f(5)=2$ and $f^{\prime}(0)=3$, then $f^{\prime}(5)$ is equal to
A. 6
B. 0
C. 1
D. none of these
156. If f is an even function such that $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$ has some finite non-zero value, then
A. f is continuous and derivable at $\mathrm{h}=0$
B. $f$ is continuous but not derivable at $x=0$
C. f may be discontinuous at $\mathrm{x}=0$
D. none of these

## Answer: A

## - Watch Video Solution

157. The values of constants $a$ and $b$ so as to make the function $f(x)=\left\{\begin{array}{ll}\frac{1}{|x|} & |x| \geq 1 \\ a x^{2}+b & |x|<1\end{array}\right.$, continuous as well as differentiable for all x, are
A. $a=-\frac{1}{2}, b=\frac{3}{2}$
B. $a=\frac{1}{2}, b=\frac{3}{2}$
C. $a=-\frac{1}{2}, b=-\frac{3}{2}$
D. none of these

## Answer: A

## D Watch Video Solution

158. If $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$, then $\lim _{x \rightarrow \infty} f(x)$ is
A. 0
B. $\infty$
C. 1
D. none of these

## Answer: C

159. Number of points at which $f(x)=\left|x^{2}+x\right|+|x-1|$ is nondifferentiable is
A. 0
B. 1
C. 2
D. 3

## Answer: D

## - Watch Video Solution

160. If $\lim _{x \rightarrow 0} \frac{((a-n) n x-\tan x) \sin n x}{x^{2}}=0$, where n is non zero real number, then a is equal to:
A. $\frac{1}{n}$
B. $\frac{n+1}{n}$
C. n
D. $n+\frac{1}{n}$

## Answer: D

## - Watch Video Solution

161. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\int_{2}^{\sec ^{2} x} f(t) d t}{x^{2}-\frac{\pi^{2}}{16}}$
A. $\frac{8}{\pi} f(2)$
B. $\frac{2}{\pi} f(2)$
C. $\frac{2}{\pi} f \frac{1}{2}$
D. $4 \mathrm{f}(2)$

## Answer: A

162. The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \cos t^{2} d t}{x \sin x}$ is
A. $\frac{3}{2}$
B. 1
C. -1
D. none of these

## Answer: B

## - Watch Video Solution

163. If $f(x)=\frac{1}{3}\left\{f(x+1)+\frac{5}{f(x+2)}\right\}$ and $f(x)>0$ for all $x \in R$, then $\lim _{x \rightarrow \infty} f(x)$ is
A. $\sqrt{\frac{2}{5}}$
B. $\sqrt{\frac{5}{2}}$
C. $\infty$
D. none of these

Answer: B

## - Watch Video Solution

164. If $\phi(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n} f(x)+g(x)}{1+x^{2 n}}$, then
A. $\phi(x)=g(x)$ for all $x \in R$
B. $\phi(x)=f(x)$ for $x \in R$
C. $\phi(x)= \begin{cases}g(x) & \text { for }-1<x<1 \\ f(x) & \text { for }|\mathrm{x}| \geq 1\end{cases}$
D. $\phi(x)= \begin{cases}g(x) & \text { for }|\mathrm{x}|<1 \\ f(x) & \text { for }|\mathrm{x}|>1 \\ \frac{f(x)+g(x)}{2} & \text { for }|\mathrm{x}|=1\end{cases}$

## Answer: D

## - Watch Video Solution

165. Let $f(x)=\left[x^{3}-3\right]$ where [.] denotes the greatest integer function Then the number of points in the interval ( 1,2 ) where the function is discontinuous, is
A. 4
B. 2
C. 6
D. none of these

## Answer: C

## - Watch Video Solution

166. If $f(x)=\left\{\begin{array}{ll}x[x] & 0 \leq x<2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\right.$, where [.] denotes the greatest integer function, then
A. both $f^{\prime}(1)$ and $f^{\prime}(2)$ do not exist
B. $f^{\prime}(1)$ exists but $f^{\prime}(2)$ does not exist
C. $f^{\prime}(2)$ exists but $f^{\prime}(1)$ does not exist
D. both $f^{\prime}(1)$ and $f^{\prime}(2)$ exists

## Answer: A

## - Watch Video Solution

167. If ${ }^{\prime} f(x)=\left\{(4,-3|t x| t-1),(5+x,-1 l e x \mid t 0),(5-x, 0\right.$ lex|t 2$\left.),\left(x^{\wedge} 2+x-3,2 l e x \mid t 3\right):\right\}$ then $f(|x|)$ is
A. differentiable but not continuous in $(-3,3)$
B. continuous but not differentiable in $(-3,3)$
C. continuous as well as differentiable in $(-3,3)$
D. neither continuous nor differentiable in ( $-3,3$ )

## Answer: B

## - Watch Video Solution

168. Let $f(x)=\left\{\begin{array}{ll}\frac{x-4}{|x-4|}+a & x<4 \\ a+b & x=4 \\ \frac{x-4}{|x-4|}+b & x>4\end{array}\right.$ Then, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=4$,
when
A. $a=0, b=0$
B. $a=1, b=1$
C. $a=-1, b=1$
D. $a=1, b=-1$

## Answer: D

## - Watch Video Solution

169. Let $f(x)=\left\{\begin{array}{ll}a \frac{\left|x^{2}-x-2\right|}{2+x-x^{2}} & x<2 \\ b & x=2 \\ \frac{x-[x]}{x-2} & x>2\end{array}\right.$ If $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=2$,
(where [.] denotes greatest integer function) : then $(a, b)$ is,
B. $(1,2)$
C. (2,!)
D. $(2,2)$

## Answer: A

## - Watch Video Solution

170. The value of $f(0)$, so that function
$f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$ becomes continuous for all x , is given by
A. $a^{\frac{3}{2}}$
B. $a^{\frac{1}{2}}$
C. $-a^{\frac{1}{2}}$
D. $-a^{\frac{3}{2}}$
171. Let $f(x)=|x|-1 \mid$, then points where $\mathrm{f}(\mathrm{x})$, is not differentiable is/are :
A. $0,+-1$
B. -1
C. o
D. 1

## Answer: A

## - Watch Video Solution

172. Let $f$ be twice differentiable function satisfying $f(1)=1, f(2)=4, f(3)=9$ then :
A. $f^{\prime \prime}(x)=2, A A x$ in $R$
B. $f^{\prime}(x)=5=f^{\prime \prime}(x)$, for some $x$ in $(1,3)$
C. There exists at least one $x$ in $(1,3)$ such that $f^{\prime \prime}(x)=2$
D. none of these

## Answer: C

## D Watch Video Solution

173. $f(x)=\min \{1, \cos x, 1-\sin x\},-\pi \leq x \leq \pi$ then
A. $f(x)$ is not differentiable at ' 0 '
B. $f(x)$ is differentiable at $\frac{\pi}{2}$
C. $f(x)$ is not differentiable at $\pi$
D. none of these

## Answer: A

174. Let $f: R \rightarrow R$ be any function. Define $g: R \rightarrow R$ by $\mathrm{g}(\mathrm{x})=|\mathrm{f}(\mathrm{x})|$ for all x . Then g is:
A. onto if onto
B. one-one if is one-one
C. continuous if $f$ is continuous
D. differentiable if f is differentiable

## Answer: C

## - Watch Video Solution

175. If $f(x)=\lim _{n \rightarrow \infty}(\sin x)^{2 n}$ where $n \in l^{+}$then $\mathrm{f}(\mathrm{x})$ is
A. continuous at $x=\frac{\pi}{2}$
B. discontinuous at $x=\frac{\pi}{2}$
C. discontinuous at $x=(\pi)$
D. none of these

## - Watch Video Solution

176. The function $f(x)=(\sin 2 x)^{\tan ^{2} 2 x}$ is not defined at $x=\frac{\pi}{4}$. The value of $f\left(\frac{\pi}{4}\right)$ so that f is continuous at $x=\frac{\pi}{4}$
A. $\sqrt{e}$
B. $\frac{1}{\sqrt{e}}$
C. 2
D. none of these

## Answer: B

## D Watch Video Solution

177. Let $f: R \rightarrow R$ be a differentiable function having $\mathrm{f}(2)=6$, $f^{\prime}(2)=\left(\frac{1}{48}\right)$. Then $\lim _{x \rightarrow 2} \frac{\int_{2}^{f(x)} f\left(4 t^{3}\right) d t}{x-2}$ is equals
A. 18
B. 12
C. 36
D. 24

## Answer: A

## D Watch Video Solution

178. The value of $\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \frac{t \log (1+t)}{t^{4}+4} \mathrm{dt}$ is
A. 0
B. $\frac{1}{12}$
C. $\frac{1}{24}$
D. $\frac{1}{64}$

## Answer: B

179. Let $f: R \rightarrow R$ be such that $\mathrm{f}(1)=3$ and $\mathrm{f}^{\prime}(1)=6$ Then, $\lim _{x \rightarrow 0}\left(\frac{f(1+x)}{f(1)}\right)^{\frac{1}{x}}$ equals
A. 1
B. $e^{\frac{1}{2}}$
C. $e^{2}$
D. $e^{3}$

## Answer: C

## - Watch Video Solution

180. If $\lim _{x \rightarrow 0}\left(1+a x+b x^{2}\right)^{2 / x}=e^{3}$ then
A. $a=3, b=0$
B. $a=\frac{3}{2}, b=1$
C. $\frac{3}{2}, b=4$
D. $a=2, b=3$

## Answer: B::C

## - Watch Video Solution

181. If $x+|y|=2 y$, then $y$ as a function of $x$ is
A. defined for all real x
B. continuous at $\mathrm{x}=0$
C. differentiable all x
D. such that $\frac{d y}{d x}=\frac{1}{3}$ for $\mathrm{x}<0$

## Answer: A::B::D

182. On the interval $\mathrm{I}=[-2,2]$, the function
$f(x)= \begin{cases}(x+1) e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)} & x \neq 0 \\ 0 & x=0\end{cases}$
A. is continuous for all $x \in I$
B. is continuous for all $x \in I-\{0\}$
C. assumes all intermediate values from $f(-2)$ to $f(2)$
D. has a maximum value equal to ( $3 / e$ )

## Answer: B::C::D

## - Watch Video Solution

183. In the interval $0<x<2 \pi$, the function $\mathrm{f}(\mathrm{x})=|\sin 2 \mathrm{x}|$ is not differentiable at
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\pi$
D. $\frac{3 \pi}{2}$

## Answer: B::C::D

## - Watch Video Solution

184. If $\lim _{x \rightarrow 0} 4\left(\frac{x+1}{2 x+1}\right)=y^{2}+4 y+5$ then y can be equal to
A. 1
B. -1
C. -4
D. -3

## Answer: B::D

## D Watch Video Solution

185. At the point $\mathrm{x}=0$, for the function $f(x)=\frac{1}{2-|x|}$ the following are true ?
A. $f(x)$ is continuous
B. $\mathrm{f}(\mathrm{x})$ discontinuous
C. $\mathrm{f}(\mathrm{x})$ is differentiable
D. $f(x)$ is not differentiable

## Answer: A: D

## - Watch Video Solution

186. If $f(x)=\left|\log _{10} x\right|$ then at $\mathrm{x}=1$
A. $\mathrm{f}(\mathrm{x})$ is continuous and $f^{\prime}\left(1^{+}\right)=\log _{10} e$
B. $\mathrm{f}(\mathrm{x})$ is continuous and $f^{\prime}\left(1^{+}\right)=\log _{e} 10$
C. $\mathrm{f}(\mathrm{x})$ is continuous and $f^{\prime}\left(1^{+}\right)=\log _{e} 10$
D. $f(x)$ is continuous and $f^{\prime}\left(1^{+}\right)=\log _{10} e$

## Answer: A::D

## - Watch Video Solution

187. A function is defined as $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}e^{x} & x \leq 0 \\ |x-1| & x>0\end{array}\right.$, then $\mathrm{f}(\mathrm{x})$ is
A. continuous at $x=0$
B. continuous at $x=1$
C. differentiable all $\mathrm{x}=0$
D. differentiable at $\mathrm{x}=1$

## Answer: A::B

## - Watch Video Solution

188. If $f(x)=|x-a| \phi(x)$, where $\phi(x)$ is continuous function, then
A. $f^{\prime}\left(a^{+}\right)=\phi(a)$
B. $f^{\prime}(a-)=-\phi(a)$
C. $f^{\prime}\left(a^{+}\right)=f^{\prime}\left(a^{-}\right)$
D. None of these

## Answer: A::B

## D Watch Video Solution

189. If $f(x)=\min \left\{1, \mathrm{x}^{\wedge} 2, \mathrm{x}^{\wedge} 3\right\}^{\prime}$ then
A. $f(x)$ is continuous everywhere
B. $f(x)$ is continuous and differentiable everywhere
C. $f(x)$ is not differentiable at two points
D. $f(x)$ is not differentiable at one point

## Answer:

190. Let $\mathrm{L}=\lim _{x \rightarrow 0} \frac{a-\sqrt{a^{2}-x^{2}}-\frac{x^{2}}{4}}{x^{4}}, a>0$. If L is finite, then
A. $a=2$
B. $a=1$
C. $a=4$
D. $a=3$

## Answer:

## - Watch Video Solution

191. For function $f(x)=x \cos \frac{1}{x}, x \geq 1$
A. for at least one x in interval $[1, \infty), f(x+2)-f(x)>2$
B. $\lim _{x \rightarrow \infty} f^{\prime}(x)=1$
C. for all x in the interval $[1, \infty), f(x+2)-f(x)<2$
D. $f^{\prime}(x)$ is strictly decreasing in the interval $[1, \infty)$

## Answer:

## - Watch Video Solution

192. মান নির্ণয় করো $\cos \sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

## - Watch Video Solution

193. The function $y=\sin ^{-1}(\cos x)$ is not differentiable at
A. $x=\pi$
B. $x=-2 \pi$
C. $x=2 \pi$
D. $x=\frac{\pi}{2}$
194. If $\mathrm{f}(\mathrm{x})=0$ for $x<0$ and $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$ then for $x>0$, $f(x)$ may be
A. $x^{2}$
B. $x$
C. $-x$
D. $-x^{3}$

## Answer: A

## - Watch Video Solution

195. Let $f$ be a polynomial function such that $f(x) f(y)+2=f(x)+f(y)+f(x y) \forall x, y \in R^{+} \cup\{0\}$ and $\mathrm{f}(\mathrm{x})$ is oneone $\forall x, y \in R^{+}$with $\mathrm{f}(\mathrm{O})=1$ and $\mathrm{f}(1)=2$

Answer the following questions based on above passage:
The function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is given by
A. $x^{1 / 3}-1$
B. $1+\frac{2 x^{3}}{3}$
C. $1+x^{2}$
D. $1-x^{2}$

## Answer: C

## - Watch Video Solution

196. Let $f$ be a polynomial function such that
$f(x) f(y)+2=f(x)+f(y)+f(x y) \forall x, y \in R^{+} \cup\{0\}$ and $\mathrm{f}(\mathrm{x})$ is oneone $\forall x, y \in R^{+}$with $\mathrm{f}(0)=1$ and $\mathrm{f}(1)=2$

Answer the following questions based on above passage:
The function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is given by
A. $\frac{\pi}{2}-\frac{1}{3}$ sq. units
B. $\pi-\frac{1}{3}$ sq. units
C. $\frac{\pi}{2}-\frac{1}{6}$ sq. units
D. $\pi-\frac{2}{3}$ sq. units

## Answer: D

## - Watch Video Solution

197. Let $f$ be a polynomial function such that $f(x) f(y)+2=f(x)+f(y)+f(x y) \forall x, y \in R^{+} \cup\{0\}$ and $\mathrm{f}(\mathrm{x})$ is oneone $\forall x, y \in R^{+}$with $\mathrm{f}(\mathrm{O})=1$ and $\mathrm{f}(1)=2$

Answer the following questions based on above passage:
A. 3
B. 4
C. 5
D. 6

## - View Text Solution

198. Newton-Leinbnitz's formula states that

$$
\frac{d}{d x}\left(\int_{\phi(x)}^{\psi(x)} f(t) d t\right)=f(\psi(x))\left\{\frac{d}{d x} \psi(x)\right\}-f(\phi(x))\left\{\frac{d}{d x} \phi(x)\right\}
$$

Answer the following questions based on above passage:
Let $f(x)$ be a differentiable function and $f(1)=2$, If $\lim _{x \rightarrow 1} \int_{2}^{f(x)} \frac{2 t}{x-1} d t=4$, then the value of $f^{\prime}(1)$ is equal to
A. 1
B. 2
C. 3
D. 4

## Answer: A

$\frac{d}{d x}\left(\int_{\phi(x)}^{\psi(x)} f(t) d t\right)=f(\psi(x))\left\{\frac{d}{d x} \psi(x)\right\}-f(\phi(x))\left\{\frac{d}{d x} \phi(x)\right\}$
Answer the following questions based on above passage:
If $\lim _{x \rightarrow 0} \int_{0}^{x} \frac{t^{2} d t}{(x-\sin x) \sqrt{a+t}}=1$, then the value of $a$ is
A. 1
B. 2
C. 3
D. 4

## Answer: D

## - Watch Video Solution

200. 

Answer the following questions based on above passage:

$$
\lim _{x \rightarrow 0} \int_{0}^{x^{2}} \frac{(\cos t)^{2} d t}{(x \sin x)}=
$$

A. 0
B. 1
C. 2
D. 3

## Answer: B

## - Watch Video Solution

201. $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=\mathrm{c}$ if either $L f^{\prime}(c) \neq R f^{\prime}(c)$ [if they both exist]
or $L f^{\prime}(\mathrm{c})$ exists but $\mathrm{Rf}^{\prime}(\mathrm{c})$ does not exist,
or $L f^{\prime}(c)$ does not exists, $R f^{\prime}$ exists, then $f(x)$ is not continuous $x=c$.

Answer the following questions based on above passage:
Let $f(x)=\sin |x|-|x|$, then $L f^{\prime}(0)$ is equal to
A. continuous as well as differentiable at $x=0$
B. continuous at $x=0$, but not differentiable at $x=0$
C. neither continuous at $\mathrm{x}=0$ nor differentiable at $\mathrm{x}=0$
D. none of these

## Answer: B

## - Watch Video Solution

202. If $f(x)=\left\{\begin{array}{ll}x[x] & 0 \leq x<2 \\ (x-1)[x] & 2 \leq x \leq 3\end{array}\right.$, then $\mathrm{f}(\mathrm{x})$ is
A. both $f^{\prime}(1)$ and $f^{\prime}(2)$ do not exist
B. $f^{\prime}(1)$ exists but $f^{\prime}(2)$ does not exist
C. $f^{\prime}(2)$ exists but $f^{\prime}(1)$ does not exist
D. both $f^{\prime}(1)$ and $f^{\prime}(2)$ exists

## Answer: A

203. $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=\mathrm{c}$ if either $L f^{\prime}(c) \neq R f^{\prime}(c)$ [if they both exist]
or Lf'( c ) exists but Rf'(c)does not exist, or $L f^{\prime}(c)$ does not exists, $R f$ ' exists, then $f(x)$ is not continuous $x=c$.

Answer the following questions based on above passage:
Let $f(x)=\sin |x|-|x|$, then $L f^{\prime}(0)$ is equal to
A. 1
B. 2
C. 0
D. None of these

## Answer: C

## - Watch Video Solution

204. Let $f(x)$ be a polynomial satisfying $f(0)=2, f^{\prime}(0)=3$ and $f^{\prime \prime}(x)=f(x)$.

Answer the following the question based on above passage:
$f(x)$ is given by
A. 4
B. 5
C. 7
D. 6

## Answer: D

## - Watch Video Solution

205. Match List - I with List-II

## List - 1

## List-1I

(1) Circular plate is expancied by
(P) 4
heat from radius 5 cm to 5.06 cm .
Approximate increase in area is
(2) If an edge of a cube increases by
(Q) $0.6 \pi$
$1 \%$, then percentage increase in volume is
(3) If the rate of decrease of
(R) 3
$\frac{x^{2}}{2}-2 x+5$ is twice the rate of
decrease of $x$, then $x$ is equal to (rate of decreases is non-zero)
(4) Rate of increase in area of equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is

## - Watch Video Solution

206. If $[\mathrm{x}]$ denotes greatest integer $\leq x$, then match the following limits and their values:

## - View Text Solution

207. Match List - I with List-II

## List - 1

## List-II

(1) Circular plate is expanded by
(P) 4
heat from radius 5 cm to 5.06 cm .
Approximate increase in area is
(2) If an edge of a cube increases by
(Q) $0.6 \pi$
$1 \%$, then percentage increase in volume is
(3) If the rate of decrease of
(R) 3
$\frac{x^{2}}{2}-2 x+5$ is twice the rate of
decrease of $x$, then $x$ is equal to
(rate of decreases is non-zero)
(4) Rate of increase in area of
(S) $\frac{3 \sqrt{3}}{4}$ equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is
208. The value of $\lim _{x \rightarrow 1} \frac{x+x^{2}+x^{3}+\ldots+x^{97}-97}{(x-1)}$ must be $M$. The last digit of $M$ is :

## - Watch Video Solution

209. If $\lim _{x \rightarrow 0} \frac{1}{x^{2}}\left(e^{a x}-e^{x}-x\right)=\frac{3}{2}$, then the value of $|\alpha|$ must be

## (D) Watch Video Solution

210. If $f(x)=\left\{\begin{array}{ll}\frac{\left(1-\sin ^{3} x\right)}{3 \cos ^{2} x} & x<\frac{\pi}{2} \\ a & x=\frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2 x)^{2}} & x>\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then the value of $\left(\frac{b}{a}\right)^{\frac{1}{3}}$ is

## - Watch Video Solution

211. Given, $f(x)=\left\{\begin{array}{ll}\frac{x^{4}-256}{x-4} & x \neq 4 \\ \lambda & x=4\end{array}\right.$. If f is continuous at $\mathrm{x}=4$, then the value of ^ $\sqrt[4]{\lambda}$ must be

## - Watch Video Solution

212. If $f(x)=\left\{\begin{array}{ll}\frac{8^{x}-4^{x}-2^{x}+1^{x}}{x^{2}} & x>0 \\ e^{x} \sin x+\pi x+\lambda \operatorname{In} 4 & x \leq 0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then the value of $e^{\lambda}$ must be

## - Watch Video Solution

213. If $f(x)=\left\{\begin{array}{ll}\frac{(\exp \{(x+3) \ln 27\})^{\frac{1}{27}[x]}-9}{3^{x}-27} & x<3 \\ \lambda \cdot \frac{(1-\cos (x-3))}{(x-3) \tan (x-3)} & x>3\end{array}\right.$ is continuous at $\mathrm{x}=3$,
then the value of $9 \lambda$ must be

## - Watch Video Solution

214. If $f(x)=\left\{\begin{array}{ll}5+x^{2} & x<1 \\ x-4 & x \geq 1\end{array}\right.$ is jump discontinuous, then the number of jumps must be

## - Watch Video Solution

215. A function $f: R \rightarrow R$ satisfies the equation $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})$ for all $x, y \in R, f(x) \neq 0$. Suppose that the function is differentiable at $\mathrm{x}=0$ and $\mathrm{f}^{\prime}(0)=2$. Find $\frac{f^{\prime}(x)}{f(x)}$

## Watch Video Solution

216. If $\mathrm{f}(\mathrm{x})$ is continuous and $\mathrm{f}(9 / 2)=2 / 9$, then find $\lim _{x \rightarrow 0} 9 f\left(\frac{1-\cos 3 x}{x^{2}}\right)$

## - Watch Video Solution

217. If $f(x) f(y)+2=f(x)+f(y)+f(x y)$ and $f(1)=2, f^{\prime}(1)=2$, then find $f(x)$.
218. Let $f(x)=x+\cos x+2$ and $g(x)$ be the inverse function of $f(x)$, then $g^{\prime}(3)$ equals _

## - Watch Video Solution

219. Number of point of discontinuity of $f(x)=\tan ^{2} x-\sec ^{2} x$ in $(0,2 \pi)$ is

## - Watch Video Solution

220. Evaluate the following limits :

$$
\lim _{x \rightarrow 0} \frac{5^{x}-4^{x}}{3^{x}-1}
$$

221. Evaluate the following limits :
$\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{2 n^{3}}$

## - Watch Video Solution

222. Evaluate the following limits :

$$
\lim _{x \rightarrow \frac{\pi}{2}}(\sec x-\tan x)
$$

## Watch Video Solution

223. Evaluate the following limits :
$\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+x}\right)$

## - Watch Video Solution

224. Evaluate the following limits :
$\lim _{x \rightarrow 0} \sqrt{\frac{\frac{1}{2}(1-\cos 2 x)}{x}}$
225. Evaluate the following limits :

$$
\lim _{x \rightarrow 0}(1+|\sin x|)^{\frac{1}{x}}
$$

## - Watch Video Solution

226. Evaluate the following limits :

$$
\lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}
$$

## - Watch Video Solution

227. Evaluate the following limits:

$$
\lim _{x \rightarrow \infty} x\left(e^{\frac{1}{x}}-1\right)
$$

228. Evaluate the following limits :
$\lim ^{\sin \left(\frac{\pi}{3}-x\right)}$
$\lim _{x \rightarrow \frac{\pi}{3}} 2 \cos x-1$

## - Watch Video Solution

229. Evaluate the following limits :

$$
\lim _{n \rightarrow \infty} n\left(x^{\frac{1}{n}}-1\right), x>0
$$

## - Watch Video Solution

230. Find the set of points where the following functions are discontinuous
$f(x)=\tan 2 x$
231. Find the set of points where the following functions are discontinuous
$f(x)=\{3 x\}$

## - Watch Video Solution

232. Find the set of points where the following functions are discontinuous
$f(x)=x / \sin x$

## - Watch Video Solution

233. Find the set of points where the following functions are discontinuous
$f(x)=\tan x$
234. Find the set of points where the following functions are discontinuous
$f(x)=\frac{1}{1-e^{\frac{x-1}{x-2}}}$

## - Watch Video Solution

235. Find the set of points where the following functions are discontinuous
$f(x)=\frac{3 \sin ^{2} x+\cos ^{2} x+1}{2 \cos ^{2} x-1}$

## - Watch Video Solution

236. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x+2} & x<-3 \\ \text { Ina } & x=-3 \\ a+b x & x>-3\end{array}\right.$. For what value of a and b is $\mathrm{f}(\mathrm{x})$ continuous on the real line?

## - Watch Video Solution

237. Let $f(x)=\left\{\begin{array}{ll}a x+1 & x<1 \\ 3 & x=1 \\ b x^{2}+1 & x>1\end{array}\right.$. For what values of $a$ and b is $\mathrm{f}(\mathrm{x})$ continuous at $\mathrm{x}=1$ ?

## - Watch Video Solution

238. Let $f$ be a twice differentiable function such that $f^{\prime \prime}(x)=-f(x)$, and $f^{\prime}(x)$
$=g(\mathrm{x}), h(x)=[f(x)]^{2}+[g(x)]^{2}$ Find $\mathrm{h}(10)$, if $\mathrm{h}(5)=11$

## - Watch Video Solution

239. If $|c| \leq \frac{1}{2}$ and $\mathrm{f}(\mathrm{x})$ is a differentiable function at $\mathrm{x}=0$ given by $f(x)= \begin{cases}b \sin ^{-1}\left(\frac{c+x}{2}\right) & -\frac{1}{2}<x<0 \\ \frac{1}{2} & x=0 \\ \frac{e^{\frac{a x}{2}}-1}{x} & 0<x<\frac{1}{2}\end{cases}$

Find the value of 'a' '
240. Let

$$
f(x)=\left\{\begin{array}{l}
x+a \quad \text { if } \quad x<0 \\
|x-1| \quad \text { if } \quad x \geq 0
\end{array}\right.
$$

$g(x)=\left\{\begin{array}{l}x+1 \text { if } x<0 \\ (x-1)^{2}+b \text { if } x \geq 0\end{array}\right.$, where a and b are non-negative real numbers. Determine the composite function gof. If (gof) (x) is continuous for all real $x$, determine the values of $a$ and $b$. Further, for these values of $a$ and $b$, is gof differentiable at $x=0$ ?

## - Watch Video Solution

241. f is a function such that $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) . \mathrm{f}(\mathrm{y}), \forall x, y \in R$, if $\mathrm{f}(1)=3$, then find $\sum_{r=1}^{n} f(r)$.

## - Watch Video Solution

242. A real valued function satisfies the relation
$f(x+y)=f(x)+f(y)+\left(e^{x}-1\right)\left(e^{y}-1\right), \forall x, y \in R$. If $f^{\prime}(0)=2$, find $f(x)$.
243. If $f(x) f(y)+2=f(x)+f(y)+f(x y)$ and $f(1)=2, f^{\prime}(1)=2$, then find $f(x)$.

## - Watch Video Solution

244. Let $f(x)= \begin{cases}1+x & 0 \leq x \leq 2 \\ 3-x & 2<x<3\end{cases}$

Determine the form of $g(x)=f[f(x)]$ and hence find the points of discontinuity of g , if any.

## - Watch Video Solution

245. Let $f(x)= \begin{cases}1+x & 0 \leq x \leq 2 \\ 3-x & 2<x<3\end{cases}$

Discuss the continuity of $\mathrm{f}, \mathrm{f}$ ' on $[\mathrm{O}, 2]$.

## - Watch Video Solution

246. Let
$f(x)= \begin{cases}x \exp \left[-\left(\frac{1}{|x|}+\frac{1}{x}\right)\right] & x \neq 0 \\ 0 & x=0\end{cases}$
Test whether
$f(x)$ is differentiable at $x=0$
A. $f$ is differentiable at $x=0$
B. $h$ is differentiable at $x=0$
C. $(f \circ h)$ is differentiable at $\mathrm{x}=0$
D. $(h \circ f)$ is differentiable at $\mathrm{x}=0$

## Answer: A: D

## - Watch Video Solution

247. Let $a$ and $b$ be real numbers such the the function
$f(x)= \begin{cases}-3 a x^{2}-2 & x<1 \\ b x+a^{2} & x \geq 1\end{cases}$
is differentiable for all $x \in R$. The positive value(s) of a is (are)
248. Let m and n be two positive integers greater than 1 . if $\lim _{\alpha \rightarrow 0}\left(\frac{e^{\cos \left(a^{n}\right)}-e}{\alpha^{m}}\right)=-\left(\frac{e}{2}\right)$,then the value of $\mathrm{m} / \mathrm{n}$ is

## - Watch Video Solution

249. The correct statement(s) is (are)
A. $f(1)<0$
B. $f(2)<0$
C. $f(x) \neq 0$ for any $x \in(1,3)$
D. $f(x)=0$ for some $x \in(1,3)$

## Answer: A::B::C

250. Let $f(x)$ be a polynomial of degree four having extreme values at $x=1$ and $\mathrm{x}=2 . \lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x^{2}}\right]=3$, then $\mathrm{f}(2)$ is equal to:
A. -4
B. 0
C. 4
D.

## Answer: B

## - Watch Video Solution

251. $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$ is equal to:
A. 3
B. 2
C. 44198
D.

## Answer: B

## - Watch Video Solution

252. If the function .
$g(x)=\left\{\begin{array}{ll}k \sqrt{x+1} & 0 \leq x \leq 3 \\ m x+2 & 3<x \leq 5\end{array}\right.$ is differentiable, then the value of $\mathrm{k}+\mathrm{m}$ is

## - Watch Video Solution

253. Let $f: R \rightarrow R$ be defined as .
$f(x)=\left\{\begin{array}{ll}0 & \mathrm{x} \text { is irrational } \\ \sin |x| & \mathrm{x} \text { is irrational }\end{array}\right.$ Then which of the following is true?
A. f is discontinuous for all x
B. $f$ is continuous for all $x$
C. f is discontinuous at $x=k \pi$, where kis an integer
D. f is continuous at $x=k \pi$, where kis an integer

## Answer: D

## Watch Video Solution

254. If $\lim _{x \rightarrow 0} \frac{a x e^{x}-b \log (1+x)}{x^{2}}=3$, then the values of $a, b$ are respectively
A. 2,2
B. 1,2
C. 2,1
D. 2,0

## Answer: A

## - Watch Video Solution

255. Let $[x]$ denote the greatest integer less than or equal to $x$. Then the value of $\alpha$ for which the function $f(x)=\left\{\begin{array}{ll}\frac{\sin \left[-x^{2}\right]}{x^{2}} & x \neq 0 \\ \alpha & x=0\end{array}\right.$ is continuous at $x=0$ is
A. $\alpha=0$
B. $\alpha=\sin (-1)$
C. $\alpha=\sin (1)$
D. $\alpha=1$

## Answer: C

## - Watch Video Solution

256. Let $f: R \rightarrow R$ be differentiable at $x=0$. If $f(0)=0$ and $f^{\prime}(0)=2$
,then the value of
$\lim _{x \rightarrow 0} \frac{1}{x}[f(x)+f(2 x)+f(3 x)+\ldots .+f(2015 x)]$ is
A. 2015
B. O(zero)
C. $2015 \times 2016$
D. $2015 \times 2014$

## D Watch Video Solution

257. Let $f: R \rightarrow R$ be such that $f(2 x-1)=f(x)$ for all $x \in R$. If $f$ is continuous at $x=1$ and $‘(1)=1$, Then
A. $f(2)=1$
B. $f(2)=2$
C. $f(x)$ is continuous at $x=1$
D. ' $f$ is continuous at all points

## Answer: A: D

## - Watch Video Solution

258. Let $f$ be any continuously differentiable function on $[a, b]$ and twice differentiable on $(a, b)$ such that $f(a)=f^{\prime}(a)=0$. Then
A. $x$
B. $f^{\prime}(x)=0$ for some $x \in(a, b)$
C. $f^{\prime \prime}(x)=0$ for some $x \in(a, b)$
D. $f^{\prime \prime}{ }^{\prime}(x)=0$ for some $x \in(a, b)$

## Answer: B::C

## - Watch Video Solution

259. Let $f:[a, b] \rightarrow[1, \infty)$ be a continuous function and It $g: R \rightarrow R$ be defined as
$g(x)= \begin{cases}0 & \text { if } \mathrm{x} \leq a \\ \int_{a}^{x} f(t) d t & \text { if } \mathrm{a} \leq x \leq b \\ \int_{a}^{b} f(t) d t & \text { if } \mathrm{x}>b\end{cases}$
Then
A. $g(x)$ is continuous but not differentiable at a
B. $g(x)$ is differentiable on $R$
C. $g(x)$ is continuous but no differentiable at $b$
D. $\mathrm{g}(\mathrm{x})$ is continuous and differentiable at either a or b but not both

## Answer: A: C

## - Watch Video Solution

260. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be respectively given by
$f(x)=|x|+1$ and $g(x)=x^{2}+1$. Define $h: R \rightarrow R$ by
$h(x)=\left\{\begin{array}{lll}\max \{f(x), g(x)\} & \text { if } & x \leq 0 \\ \min \{f(x), g(x)\} & \text { if } & x>0\end{array}\right.$
The number of points at which $h(x)$ is not differentiable is

## - Watch Video Solution

261. The largest value of the non-negative integer a for which lim_(xrarr1) $\{(-a x+\sin (x-1)+a) /(x+\sin (x-1)-1)\}^{\wedge}((1-x) /(1-s q r t x)\}=1 / 4$

## - Watch Video Solution

262. Let $f_{1}: R \rightarrow R, f_{2}:[0, \infty) \rightarrow R, f_{3}: R \rightarrow R$ and $f_{4}: R \rightarrow[0, \infty)$ be defined by
and $f_{4}(x)=\left\{\begin{array}{l}f_{2}\left(f_{1}(x)\right) \text { if } x<0 \\ f_{2}\left(f_{1}(x)\right)-1 \quad \text { if } x \geq 0\end{array}\right.$

## D View Text Solution

263. $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ is equal to :
A. $-\pi$
B. $\pi$
C. $\frac{\pi}{2}$
D. 1

## Answer: B

264. If $g$ is the inverse of $a$ function $f$ and $f(x)=\frac{1}{1+x^{5}}$, Then $g^{\prime}(x) \mathrm{i}$ equal to :
A. $\frac{1}{1+\{g(x)\}^{5}}$
B. $1+\{g(x)\}^{5}$
C. $1+x^{5}$
D. $5 x^{4}$

## Answer: B

## - Watch Video Solution

265. The function $f(x)=\frac{\tan \left\{\pi\left[x-\frac{\pi}{2}\right]\right\}}{2+\left[x^{2}\right]}$, where $[\mathrm{x}]$ denotes the greatest integer $\leq x$, is
A. continuous for all values of $x$
B. discontinuous at $x=\frac{\pi}{2}$
C. not differentiable for some values of $x$
D. discontinuous at $x=-2$

## Answer: A

## - Watch Video Solution

266. Let $f(x)$ be a differentiable function and $f^{\prime}(4)=5$. Then
$\lim _{x \rightarrow 2} \frac{f(4)-f\left(x^{2}\right)}{x-2}$ equals
A. 0
B. 5
C. 20
D. -20

## Answer: D

267. The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \cos \left(t^{2}\right) d t}{x \sin x}$ is
A. 1
B. -1
C. 2
D. $\log _{e} 2$

## Answer: A

## Watch Video Solution

268. If $\lim$ _(xrarrO) (2asin $x-\sin 2 x) / \tan ^{\wedge} 3 x^{\wedge}$ exists and is equal to 1 , then thee
value of $a$ is
A. 2
B. 1
C. 0
D. 1

## Answer: B

## - Watch Video Solution

269. The function $f(x)=a \sin |x|+b e^{|x|}$ is differentiable at $x=0$ when
A. $3 a+b=0$
B. $3 a-b=0$
C. $a+b=0$
D. $a-b=0$

## Answer: C

## - Watch Video Solution

270. let $f(x)= \begin{cases}\int_{0}^{x}|1-t| d t & x>1 \\ x-\frac{1}{2} & x \leq 1\end{cases}$
then
A. $f(x)$ is continuous at $x=1$
B. $f(x)$ is not continuous at $x=1$
C. $f(x)$ is differentiable $x=1$
D. $f(x)$ is not differentiable at $x=1$

## Answer: A::D

## - Watch Video Solution

271. The number of points in $(-\infty, \infty)$, for which $x^{3}-x \sin x-\cos x=0$, is
A. 6
B. 4
C. 2
D. 0

## Answer: C

## - Watch Video Solution

272. $\lim _{x \rightarrow 0} \frac{(1-\cos 2)(3+\cos x)}{x \tan 4 x}$ is equal to
A. 44198
B. 1
C. 2
D. $-\frac{1}{4}$

## Answer: C

273. The limit of $x \sin \left(\mathrm{e}^{\wedge}(1 / / \mathrm{x})\right) a s x \mathrm{xrarrO}^{`}$
A. is equal to 0
$B$. is equal to 1
C. is equal to $e / 2$
D. does not exist

## Answer: A

## - Watch Video Solution

274. Let $f(x)=\left\{\mathrm{f}\left(\mathrm{x}=\left\{\left(\mathrm{x}^{\wedge} 3-3 \mathrm{x}+2, \mathrm{xlt} 2\right),\left(\mathrm{x}^{\wedge} 3-6 \mathrm{x}^{\wedge} 2+9 \mathrm{x}+2, \mathrm{xge} 2\right):\right\}\right.\right.$

Then
A. $\lim _{x \rightarrow 2} f(x)$ does not exist
B. fis not continuous at $x=2$
C. fiscont $\in$ uousbut $\neg d \Leftrightarrow$ erentiab $\leq a t x=2^{`}$
D. fiscont $\in$ uous and $d \Leftrightarrow$ erentiab $\leq a t x=2^{`}$

## Answer: C

## - Watch Video Solution

275. The limit of $\sum_{n=1}^{1000}(-1)^{n} x^{n}$ as $x \rightarrow \infty$
A. does not exist
B. exists and equals to 0
C. exists and approaches $+\infty$
D. exists and approaches $-\infty$

## Answer: C

## - Watch Video Solution

276. The limit of $\left[\frac{1}{x^{2}}+\frac{(2013)^{x}}{e^{x}-1}-\frac{1}{e^{x}-1}\right]$ as $x \rightarrow 0$
A. approaches $+\infty$
B. approaches- $\infty$
C. is equal to $\log _{e}(2013)$
D. does not exist

## Answer: A

## D Watch Video Solution

277. The limit of $\left\{\frac{1}{x} \sqrt{1+x}-\sqrt{1+\frac{1}{x^{2}}}\right.$ as $x \rightarrow 0$
A. does not exist
B. is equal to $1 / 2$
C. is equal to 0
D. is equal to 1

## Answer: A

278. If $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4$,then
A. $a=1, b=4$
B. $a=1, b=-4$
C. $a=2, b=-3$
D. $a=2, b=3$

## Answer: B

## - Watch Video Solution

279. Let $f(x)=\left\{\begin{array}{ll}x^{2}\left|\cos \frac{\pi}{x}\right| & x \neq 0 \\ 0 & x=0\end{array}, x \in R\right.$, then f is
A. differentiable both at $\mathrm{x}=0$ and at $\mathrm{x}=2$
B. differentiable at $\mathrm{x}=0$ but not differentiable at $\mathrm{x}=2$
C. not differentiable at $\mathrm{x}=0$ but differentiable at $\mathrm{x}=2$
D. differentiable neither at $\mathrm{x}=0$ nor at $\mathrm{x}=2$

## - Watch Video Solution

280. Let $\alpha(a)$ and $\beta(b)$ be the roots of the equation,
$(\sqrt[3]{1+a}-1) x^{2}+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0$
where
$a>-1$. Then $\lim _{x \rightarrow 0^{+}} \alpha(a)$ and $\lim _{x \rightarrow 0^{+}} \beta(a)$ are
A. $-5 / 2$ and 1
B. $-1 / 2$ and -1
C. $-\frac{7}{2}$ and 2
D. $-\frac{9}{2}$ and 3

## Answer: B

281. For every integer n , let $a_{n}$ and $b_{n}$ be real numbers Let function $f: R \rightarrow R$ be given by
$f(x)= \begin{cases}a_{n}+\sin \pi x & \text { for } x \in[2 n, 2 n+1] \\ b_{n}+\cos \pi x & \text { for } x \in(2 n-1,2 n)\end{cases}$
for all integers n If f is continuous, then which of the following hold(s) for all $n$ ?
A. $a_{n-1}-b_{n-1}=0$
B. $a_{n}-b_{n}=1$
C. $a_{n}-b_{n+1}=1$
D. $a_{n-1}-b_{n}=1$

## Answer: B::D

## - Watch Video Solution

282. If $f: R \rightarrow R$ is a function defined by $f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi$, where $[\mathrm{x}]$ denotes the greatest integer function, then f is
A. continuous for every real $x$
B. discontinuous only at $x=0$
C. discontinuous only at non-zero integral values of $x$
D. continuous only at $x=0$

## Answer: A

## - Watch Video Solution

283. Consider the function $f(x)=|x-2|+|x-5|$,

Statement 1: $f^{\prime}(4)=0$
Statement 2: differentiable in $(2,5)$ and $f(2)=f(5)$
A. Statement 1 is false, Statement 2 is true
B. Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for statement 1
C. Statement 1 is true, Statement 2 is true, Statement 2 is not a correct
D. Statement 1 is true, Statement 2 is false

## Answer: B

## - Watch Video Solution

284. Let $R \rightarrow R$ be a function such that
$f(x+y)=f(x)+f(y) \forall x, y \in R$. If $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$, then
A. $f(x)$ is differentiable only in a finite interval containing zero
B. $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$
C. $\mathrm{f}^{\prime}(\mathrm{x})$ is constant $\forall x \in R$
D. $f(x)$ is differentiable except a finitely many points

Answer: B::C

## - Watch Video Solution

285. If $\lim _{x \rightarrow 0}\left[1+x \ln \left(1+b^{2}\right)\right]^{\frac{1}{x}}=2 b \sin ^{2} \theta, b>0 \operatorname{and} \theta \in(-\pi, \pi]$. then the value of $\theta$ is
A. $\pm \frac{\pi}{4}$
B. $\pm \frac{\pi}{3}$
C. $\pm \frac{\pi}{6}$
D. $\pm \frac{\pi}{2}$

## Answer: D

## - Watch Video Solution

286. If $f(x)= \begin{cases}-x-\frac{\pi}{2} & x \leq-\frac{\pi}{2} \\ -\cos x & -\frac{\pi}{2}<x \leq 0 \\ x-1 & 0<c \leq 1 \\ \ln x & x>1\end{cases}$
A. $\mathrm{f}(\mathrm{x})$ is continuous at $x--\frac{\pi}{2}$
B. $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$
C. $f(x)$ is differentiable at $x=1$
D. $\mathrm{f}(\mathrm{x})$ is differentiable at $x=-\frac{3}{2}$

## Answer: A::B::C::D

## - Watch Video Solution

287. $\lim _{x \rightarrow 2}\left(\frac{\sqrt{1-\cos \{2(x-2)\}}}{x-2}\right)=$ ?

## - Watch Video Solution

288. The value of $p$ and $q$ for which the function
$f(x)=\left\{((\sin (p+1) x+\sin x) / x, x\right.$ It 0$\left.),(q, x=0),\left(\left(\operatorname{sqrt}\left(x+x^{\wedge} 2\right)-s q r t x\right) / x^{\wedge}(3 / 2), x g t 0\right):\right\}$
is continuous for all x in R , is
A. $p=5 / 2, q=1 / 2$
B. $1=-3 / 2, q=1 / 2$
C. $p=1 / 2, q=3 / 2$
D. $p=1 / 2, q=-3 / 2$

## Answer: B

## - Watch Video Solution

289. The value of $\lim _{x \rightarrow 1} \frac{x+x^{2}+\ldots+x^{n}-n}{x-1}$ is
A. n
B. $\frac{n+1}{2}$
C. $\frac{n(n+1)}{2}$
D. $\frac{n(n-1)}{2}$

## Answer: C

290. $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \sin ^{2} x\right)}{x^{2}}=$
A. $\pi^{2}$
B. $3 \pi$
C. $2 \pi$
D. $\pi$

## Answer: D

## - Watch Video Solution

291. If the function
$f(x)=\left\{\begin{array}{ll}\frac{x^{2}-(A+2) x+A}{x-2} & \text { for } x \neq 2 \\ 2 & \text { for } x=2\end{array}\right.$ is continuous at $\mathrm{x}=2$, then
A. $A=0$
B. $A=1$
C. $A=-1$
D. $A=2$

## Answer: A

## Watch Video Solution

292. $f(x)= \begin{cases}{[x]+[x]} & \text { when } x \neq 2 \\ \lambda & \text { when } x=2\end{cases}$

If $f(x)$ is continuous at $x=2$, the value of $\lambda$ will be
A. -1
B. 1
C. 0
D. 2

## Answer: A

## Watch Video Solution

293. Let $\operatorname{IR}$ be the set of real numbers andf : IR be such that for all
$x, y \in I R$
$\left|f(x)-f(y) \leq|x-y|^{3}\right.$ Prove that f is a constant function.
