©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

PARABOLA, ELLIPSE AND HYPERBOLA

Question Bank

1. The coordinates of focus of the parabola
$y^{2}=-5 x$ are ${ }_{\text {_ }}$
A. $(-5,0)$
B. $(0,-5 / 4)$
C. $(-5 / 4,0)$
D. $(0,-5)$

Answer: C

D Watch Video Solution

2. The equation of directrix of the parabola $4 x^{2}=3 y$ is
A. $16 x+3=0$
B. $16 y+3=0$
C. $16 x-3=0$
D. $16 y-3=0$

Answer: B

D Watch Video Solution
3. The length of latus rectum of the parabola $(y-1)^{2}=-6(x+2)$ is_
A. 6 units
B. $3 / 2$ units
C. 24 units
D. none of these

Answer: A

D Watch Video Solution
4. If the coordinates of vertex and focus of a parabola be $(2,1) \&(2,3)$ respectively, then the axis of the parabola will be
A. a) Y-axis
B. b) X -axis
C. c)Parallel to the Y-axis
D. d)Parallel to the X-axis

Answer: C

D Watch Video Solution

5. The coordinates of focus of the parabola $2 y^{2}=-5 x$ are
A. $(-5 / 8,0)$
B. $(-5 / 2,0)$
C. (0,-5/2)
D. $(0,-5 / 8)$

Answer: D

- Watch Video Solution

6. The equation of directrix of the parabola
$3 x^{2}=-4 y$ is
A. $3 y-1=0$
B. $3 x-1=0$
C. $3 y+1=0$
D. $3 x+1=0$

Answer: B

D Watch Video Solution
7. The coordinates of the vertex of the parabola $(x+1)^{2}=-9(y+2)$ are
A. $(-1,-2)$
B. $(1,2)$
C. $(-1,2)$
D. $(1,-2)$

Answer: A

D Watch Video Solution
8. Find the length of the latus rectum of the parabola $y=-2 x^{2}+12 x-17$.
A. $1 / 2$ unit
B. 2 units
C. 1 units
D. none of these

Answer: A

D Watch Video Solution
9. The vertex of a parabola is at the origin and its focus is $\left(0,-\frac{5}{4}\right)$, find the equation of
the parabola.

$$
\text { A. } x^{2}=5 y
$$

B. $y^{2}=5 x$
C. $x^{2}=-5 y$
D. $y^{2}=-5 x$

Answer: C

- Watch Video Solution

10. Find the point on the parabola $y^{2}=-36 x$ at which the ordinate is three times the abscissa .
A. $(4,12)$
B. $(-12,-4)$
C.) $-4,-12$)
D. $(12,-4)$

Answer: C

- Watch Video Solution

11. The coordinates of the vertex and focus of a parabola are (1,2) and ($-1,2$) respectively : find its equation.

D Watch Video Solution

12. Find the equation of the parabola whose
vertexi is the point $(1,-2)$ and the eqation of directrix is $y+5=0$.
13. Find the equatio of the parabola whose focus is at the origin and the equation of directrix is $x+y=1$.

D Watch Video Solution

14. Find the coordinates of vartex and the length of latus rectum of the parabola whose focus is $(0,0)$ and the directrix is the line $2 x+$ $y=1$
15. If θ is a variable paramete, then the equations
$x=\frac{1}{4}\left(3-\operatorname{cosec}{ }^{2} \theta\right), y=2+\cot \theta$
represent the equation of $a / a n$

- Watch Video Solution

16. The locus of middle points of a family of
focal chord of the parabola $y^{2}=4 a x$ is-
17. The coordinates of the two ends of latus rectum of a parabola are $(8,1)$ and $(-4,1)$, find the equation of the parabola.

D Watch Video Solution

18. A parabola passes through the points (0.0)
,(2,2) and ($-2,-6$) and its asix ia parallel to y-axis .

Find its equation.
19. If $\left(a t^{2}, 2 a t\right)$ be the coordinate of an extremity of a focal chord of the parabola $y^{2}=4 a x$, then the length of the chord is-

D Watch Video Solution

20. The directrix of a parabola is $x+y+4=0$ and vertix is the point $(-1,-1)$. Find (i) the position of focus and (ii) the equation of the parabola.

- Watch Video Solution

21. Show that the equation of the chord of the parabola $y^{2}=4 a x$ through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on its ${ }^{`}\left(y-y_{-}\right)\left(y-y_{-} 2\right)=y^{\wedge} 2-$ $4 a x$.

- Watch Video Solution

22. The pt. $(2+4 \cos \theta, 1+2 \sin \theta)$ represents
the parametric coordinates of any point on the ellipse centre is
A. a. $(-2,1)$
B. b. $(2,1)$

C. c. $(2,-1)$

D. d. $(-2,-1)$

Answer: B

D Watch Video Solution

23. If eccentricities of the ellipse
$\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\left(a^{2}<b^{2}\right)$
be equal, then $a: b=$
A. 4,3
B. 9,5
C. 3:5
D. 5:6

Answer: D

D Watch Video Solution

24. The length of the latus rectum of the ellipse $2 x^{2}+4 y^{2}=16$ is
A. $\sqrt{2}$ units
B. 2 units
C. $2 \sqrt{2}$ units
D. none of these

Answer: C

D Watch Video Solution
25. The coordinates of the foci of the ellipse
$20 x^{2}+4 y^{2}=5$ are
A. $(0, \pm 1)$
B. $(0, \pm \sqrt{2})$
C. $(\pm 1,0)$
D. $(\pm \sqrt{2}, 0)$

Answer: A

D Watch Video Solution

26. The length of the semi-major axis of an ellipse is 13 and its eccentricity is $12 / 13$. Then
the length of the semi-minor axis is
A. 12
B. 6
C. 10
D. 5

Answer: D

D Watch Video Solution

27. The eccentricy of the ellipse
$x^{2}+4 y^{2}+2 x-24 y+33=0$ is
28. find the length of the latus rectum of the
ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
A. 16/3 units
B. $32 / 3$ units
C. 3/4 units
D. 9/2 units

Answer: D

D Watch Video Solution
29. The coordinates of the point on the ellipse $9 x^{2}+16 y^{2}=144$ are $\left(2, \frac{3 \sqrt{3}}{2}\right)$, find the eccentric angle of the point .
A. 60°
B. 30°
C. 45°
D. none of these
30. If the distance between the foci of an ellipse is equal to the length of the latus rectum, then its eccentricity is

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{5}+1}{2} \\
& \text { B. } \frac{\sqrt{5}-1}{2} \\
& \text { C. } \frac{\sqrt{5}-1}{4} \\
& \text { D. } \frac{\sqrt{5}-1}{4}
\end{aligned}
$$

- Watch Video Solution

31. Find the eccentricity, the length of latus rectum and the centre of ellipse

$$
9 x^{2}+16 y^{2}-54 x+64 y+1=0
$$

A. 44320
B. $\frac{\sqrt{7}}{3}$
C. $\frac{\sqrt{7}}{4}$
D. $\frac{\sqrt{3}}{2}$
32. Find the eccentricity of the ellipse if
the length of minor axis is equal to half the distance between the foci of the ellipse .
A. $\frac{2}{\sqrt{5}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{\sqrt{7}}{4}$
D. $\frac{\sqrt{7}}{3}$
33. The eccentricity of an ellipse whose distance between the foci is 4 and distance between the directories is 16 is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{3}}$
C. 44256
D. 44228
34. Taking major and minor axes as x and y axes respectively, find the equation of the ellipse
whose eccentricity is $\frac{1}{\sqrt{2}}$ and the sum of the squares of major and minor axes is 24 .

- Watch Video Solution

35. Find the equation of the ellipse whose foci
$(0, \pm 4)$ and the equation of directries is
$y= \pm 9$.

- Watch Video Solution

36. The eccentricity of an ellipse is $\frac{2}{3}$ focus is
$\mathrm{S}(5,4)$ and the major axis and directrix intersect at $Z(8,7)$. Find the coordinates of the centre of the ellipse .
37. Find the equation to the ausiliary circle of the ellipse
$4 x^{2}+9 y^{2}-24 x-36 y+36=0$.

D Watch Video Solution

38. The coordinates of the focus of an ellipse are $(1,2)$ and eccentricity is $\frac{1}{2}$, the equation of its directrix is $3 x+4 y-5=0$. Find the equation of the ellipse.
39. Find the length of the latus rectum, eccentricity, coordinates of centre and foci of the ellipse $3 x^{2}+4 y^{2}+6 x-8 y-5=0$.

- Watch Video Solution

40. Find the equation of the ellipse whose
vertices are $(-3,5)$ and $(9,5)$ and eccentricity is
$\frac{\sqrt{5}}{3}$.

D Watch Video Solution
41. A line segment of length ($a+b$) units moves on a plane in such a way that its end points always lie on the coordinates axes. Suppose that P is a point on the line segment it in the ratio a:b. Prove that the locus of P is an ellipse.

- Watch Video Solution

42. Find the eccentricity and equations of the directrices of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{36}=1$.

Show that the sum of the focal distances of any point on this ellipse is constant.

D Watch Video Solution

43. If the chord joining the points $P(\theta)^{\prime}$ and
' $Q(\phi)$ ' of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ subtends
a right angle at $(a, 0)$ prove that
$\tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\phi}{2}\right)=-\frac{b^{2}}{a^{2}}$.

D Watch Video Solution

44. P and Q be the extremities of the two conjugate diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, Show that the locus of the middle point of PQ is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{2}$.

- Watch Video Solution

45. The length of latus rectum of the hyperabola $9 y^{2}-4 x^{2}=36$ is -
A. $9 / 2$ units
B. 9 units
C. 7/2 units
D. 8 units

Answer: B

D Watch Video Solution
46. If the latus rectum of a hyperbola is equal
to half of its transverse axis, then its eccentricity is -
A. $\sqrt{2}$
B. $\sqrt{\frac{2}{3}}$
C. $\sqrt{\frac{3}{2}}$
D. none of these

Answer: C

- Watch Video Solution

47. The centre of the hyperbola
$9 x^{2}-16 y^{2}-18 x+64 y-199=0$ is
A. $(1,2)$
B. $(1,-2)$
C. $(-1,2)$
D. $(-1,-2)$

Answer: A

D Watch Video Solution

48. If foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ coincide
with the foci of the hyperbola
$\left(\frac{x^{2}}{144}-\frac{y^{2}}{81}\right)=\frac{1}{25}$, then the value of b^{2} is -
A. 6
B. 7
C. 8
D. 9

Answer: B

D Watch Video Solution

49. The eccentricity of the hyperbola $x^{2}-y^{2}=4$ is
A. 2
B. $2 \sqrt{2}$
C. $\sqrt{2}$
D. none of these

Answer: C

D Watch Video Solution
50. Find the equation to the locus represented

by the parametric equations
 $x=2 t^{2}+t+1, y=t^{2}-t+1$.

A. circle
B. parabola
C. ellipse
D. hyperbola

Answer: D

51. The equation of the auxiliary circle of the
hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
A. 1. $x^{2}+y^{2}=a^{2}$
B. 2. $x^{2}+y^{2}=4 a^{2}$
C. 3. $x^{2}+y^{2}=b^{2}$
D. 4. $x^{2}+y^{2}=4 b^{2}$

Answer: A

- Watch Video Solution

52. The eccentricity of the curve

$$
9 x^{2}-25 y^{2}=225 \text { is }
$$

A. 44320
B. $\frac{\sqrt{34}}{5}$
C. 44289
D. $\frac{\sqrt{34}}{4}$

Answer: B
(Watch Video Solution
53. The foci of the hyperbola $4 x^{2}-9 y^{2}=36$ is

$$
\begin{aligned}
& \text { A. }\left(0, \pm \frac{\sqrt{13}}{2}\right) \\
& \text { B. }\left(\pm \frac{\sqrt{13}}{2}, 0\right) \\
& \text { C. }(0, \pm \sqrt{13} \\
& \text { D. }(\pm \sqrt{13}, 0)
\end{aligned}
$$

Answer: C

D Watch Video Solution

54. If the length of conjugate axis and the length of latus rectum of a hyperbola are equal, find its eccentricity.

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}} \\
& \text { B. } \sqrt{2} \\
& \text { C. } \frac{4}{\sqrt{3}} \\
& \text { D. } \frac{2}{\sqrt{2}}
\end{aligned}
$$

Answer: B
55. The equations of directrices of hyperbola $4 x^{2}-9 y^{2}-16 x-54 y-101=0$ are

$$
\begin{aligned}
& \text { A. } x=2 \pm \frac{3}{\sqrt{13}} \\
& \text { B. } y=2-+\frac{3}{\sqrt{13}} \\
& \text { C. } x=2-+\frac{9}{\sqrt{13}} \\
& \text { D. } y=2-+\frac{9}{\sqrt{13}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

56. Find the equation of the hyperbola whose eccentricity is 3 , focus is $(-1,1)$ and equation of directrix is $x-y+3=0$.

- Watch Video Solution

57. Show that the difference of the distances
from each focus of any point on the hyperbola $9 x^{2}-16 y^{2}=144$ is equal to the length of the transverse axis.

- Watch Video Solution

58. Show that the eccentricities of the
hyperbolas $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ and $\frac{x^{2}}{64}-\frac{y^{2}}{36}=1$ are equal.

D Watch Video Solution

59. Find the equation of the hyperbola, whose axes are axes of coordinates and transverse axis is 2 a and the vertex bisects the line segment joining the centre and focus.
60. Find the equation of the hyperbola whose vertices are $(\pm 4,0)$ and $\operatorname{foci}(\pm 6,0)$.

D Watch Video Solution

61. Show that $3 x^{2}-3 y^{2}-18 x+12 y+2=0$
represents a rectangular hyperbola. Find its
centre, foci and eccentricity.
(D) Watch Video Solution
62. In a rectangular hyperbola $x^{2}-y^{2}=a^{2}$,
prove that $S P . S^{\prime} P=C P^{2}$, where C is the centre and S, S are the foci and P is any point on the hyperbola.

D Watch Video Solution

63. If e_{1} and e_{2} be the eccentricities of a hyperbola and its conjugate, show that $\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}=1$.

D Watch Video Solution

64. Find the equation of the hyperbola, whose axes are axes of coordinates and distance between the foci is 10 and length of conjugate axis is 6 .

- Watch Video Solution

65. The length of the intercepts on the x and y axes of a circle are 2 a and 2 b unit respectively.

Prove that the locus of the centre of the circle

$$
\begin{aligned}
& \text { is hyperbola whose equation } \\
& x^{2}-y^{2}=a^{2}-b^{2} \text {. Translating the origin to a }
\end{aligned}
$$

suitable point show that the equation
$5 x^{2}-4 y^{2}-20 x-8 y-4=0$ represents a hyperbola. Find its eccentricity, coordinates of foci and equations of the directrices.

D Watch Video Solution

66. If the chord joining the points
$(a \sec \theta, b \tan \theta)$ and $(a \sec \phi, b \tan \phi)$ on the
hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ passes through the focus (ae,0), prove that
$\tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\phi}{2}\right)+\frac{e-1}{e+1}=0$.

- Watch Video Solution

