©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

PROGRESSION AND SERIES

Question Bank

1. A sequence of no. $a_{1}, a_{2}, a_{3} \ldots .$. satisfies the relation $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$. Find a_{4} if $a_{1}=a_{2}=1$.

- Watch Video Solution

2. Find the sum to n terms of the series whose $n^{t} h$ term is $n(n+3)$.
3. Find the first negative term of the series 2000, 1995, 1990,1985...

- Watch Video Solution

4. If the sum of n terms of an A.P. is $n P+\frac{1}{2} n(n-1) \mathrm{Q}$, where P and Q are constants, find the common difference.

Watch Video Solution

5. The sum of n terms of two arithmetic progressions are in the ratio $(3 n+8):(7 n+15)$. Find the ratio of their $12^{t} h$ terms.

- Watch Video Solution

6. The sum of four integar in A.P is 24 and their product is 945 . Find the numbers.
7. Find the sum of the series $1 . n+2(n-1)+3(n-2)+\ldots . n .1$.

- Watch Video Solution

8. Find the sum of n terms of the series $a b+(a-1)(b-1)+(a-2)(b-2)+\ldots$. if $a b=\frac{1}{6}$ and $a+b=\frac{1}{3}$.

- Watch Video Solution

9. Insert 6 no. between 3 and 24 such that the resulting sequence is an
A.P.

- Watch Video Solution

10. Between two no. whose sum is $13 / 6$, an even no. of A.M's are inserted . If the sum of means exceeds their no. by unity find the no. of means.
11. Which term of the G.P. $2,8,32$,.... upto n terms is 131072 ?

- Watch Video Solution

12. Find the least value of n for which $1+3+3^{2}+\ldots+3^{n-1}>1000$.

- Watch Video Solution

13. If $p^{t} h, q^{t} h$ and $r^{t} h$ terms of a G.P. be a, b, $\mathrm{c}(\mathrm{a}, \mathrm{b}, \mathrm{c}>0)$), prove that ($\mathrm{q}-\mathrm{r}$) log $a+(r-p) \log b+(p-q) \log i c=0$.

- Watch Video Solution

14. Find the sum of first n terms and the sum of first 5 terms of the geometric series $1+2 / 3+4 / 9+. . . .$.
15. How many terms of the G.P $3,3 / 2,3 / 4$...... are needed to give the sum 3069/512 ?

- Watch Video Solution

16. If $a_{1}, a_{2}, a_{3}\left(a_{1}>0\right)$ are in G.P with common ratio r, then the value of r , for which the inequality $9 a_{1}+5 a_{3} \leq 14 a_{2}$ holds, can not lie in the interval.

(Watch Video Solution

17. The sum of first three terms of a G.P is $13 / 12$ and their products is -1 .

Find the common ratio and the terms.

D Watch Video Solution

18. Find the sum of the sequence $7,77,777,7777$,to n terms.

- Watch Video Solution

19. Find the natural no. a for which $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$ where the function f satisfies $f(x+y)=f(x) f(y)$ for all natural no. x, y, and further $f(1)=2$.

- Watch Video Solution

20. If $x=1+a+a^{2}+a^{3}+\ldots \ldots \infty$ and $y=1+b+b^{2}+b^{3}+\ldots \ldots \infty$ show that $1+a b+a^{2} b^{2}+a^{3} b^{3}+\ldots \infty=\frac{x y}{x+y-1}$ where 0 It alt1 and Oltblt1.

- Watch Video Solution

21. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$ upto $\infty=\frac{\pi^{2}}{6}$, then, find $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots . u p t o \infty$

- Watch Video Solution

22. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$ upto $\infty=\frac{\pi^{2}}{6}$, then, find $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$ upto ∞.

- Watch Video Solution

23. Find the sum of the series upto n terms $\left(\frac{2 n+1}{2 n-1}\right)+3\left(\frac{2 n+1}{2 n-1}\right)^{2}+5\left(\frac{2 n+1}{2 n-1}\right)^{3}+\ldots$.

- Watch Video Solution

24. Find the sum of series $4-9 x+16 x^{2}-25 x^{3}+36 x^{4}-49 x^{5}+\ldots$. . to infinite.

- Watch Video Solution

> 25. If a,b,c be in H.P
> $\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)=\frac{4}{a c}-\frac{3}{b^{2}}$

- Watch Video Solution

26. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P. show that $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are also in H.P.

- Watch Video Solution

27. Prove that the sum of n arithmatic means between two numbers is n times the single A.M between them.

- Watch Video Solution

28. Find the sum to n terms of the series: $5+11+19+29+41 . . .$. .
29. Find the sum of n terms of the series $3+7+14+24+37+\ldots . .$.

- Watch Video Solution

30. Find the sum of series $3+8+22+72+266+1036+\ldots$.

- Watch Video Solution

31. Prove that $\sum_{n=1}^{\infty} \frac{n}{4 n^{4}+1}$ equals to $\frac{1}{4}$.

- Watch Video Solution

32. Prove that $\sum_{n=1}^{\infty} \frac{n}{4 n^{4}+1}$ equals to $\frac{1}{4}$.
33. Show that the sum of $\sum_{n=1}^{\infty} \frac{n}{n^{4}+4}$ equals to $\frac{3}{8}$

- Watch Video Solution

34. Show that the sum of $\sum_{n=1}^{\infty} \frac{n}{n^{4}+4}$ equals to $\frac{3}{8}$

(Watch Video Solution

35. Find the sum of first n terms of the series $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots$.

- Watch Video Solution

36. Find the sum of the series $\frac{1}{1.2 .3 .4}+\frac{1}{2.3 .4 .5}+\frac{1}{3.4 .5 .6}+\ldots \ldots$. upto n terms.
37. Find the sum of $2.3+3.4+4.5+$.....to n terms.

- Watch Video Solution

38. If a, b, c are positive real no., then prove that $[(1+a)(1+b)(1+c)]^{7}>7^{7} a^{4} b^{4} c^{4}$.

- Watch Video Solution

39. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of a triangle and $s=\frac{a+b+c}{2}$, prove that $8(s-a)(s-b)(s-c) \leq a b c$.

- Watch Video Solution

40. Prove that $a^{4}+b^{4}+c^{4}>a b c(a+b+c)$. [a,b,c are distinct positive real number]..

- Watch Video Solution

41. Show that the greatest value of $x y z(d-a x-b y-c z) i s \frac{d^{4}}{4^{4} a b c}$.

- Watch Video Solution

42. Prove that $\left(\frac{a+b}{2}\right)^{a+b} \leq a^{a} . b^{b} .[a, b \in N]$.

- Watch Video Solution

43. N arithmetic means are inserted in between x and $2 y$ and then between $2 x$ and y. In case the rth means in each case be equal, then find the ratio x / y.

- Watch Video Solution

44. Let S_{n} denote the sum upto n terms of an AP. If $S_{n}=n^{2} P$ and $S_{m}=m^{2} P$ where $\mathrm{m}, \mathrm{n}, \mathrm{p}$ are positive integers and $\mathrm{m} \neq \mathrm{n}$, then find S_{p}.
45. If s_{1}, s_{2} and s_{3} are the sum of first $\mathrm{n}, 2 \mathrm{n}, 3 \mathrm{n}$ terms respectively of an arithmetic progression, then show that $s_{3}=3\left(s_{2}-s_{1}\right)$.

- Watch Video Solution

46. Let $a_{1}, a_{2}, a_{3} \ldots . .$. be an A.P. Prove that
$\sum_{n=1}^{2 m}(-1)^{n-1} a_{n}^{2}=\frac{m}{2 m-1}\left(a_{1}^{2}-a_{2 m}^{2}\right)$.

- Watch Video Solution

47. A G.P. consists of $2 n$ terms. If the sum of the terms occupying the odd places in S_{1} and that of the terms in the even places is S_{2} then find the common ratio in progression.

- Watch Video Solution

48. If G_{1}, G_{2} are geometric means, and A is the arithmetic mean between two positive no. then show that $\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}=2 A$.

- Watch Video Solution

49. Show that $\left|\begin{array}{lll}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|=0$ if α is not the root of the equation $\left(a x^{2}+2 b x+c\right)=0$ then a,b,c are in G.P.

- Watch Video Solution

50. If $S_{n}=1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots \ldots .+\frac{1}{2^{n-1}}$. Calculate the least value of n such that $S_{n}=2-S_{n}<\frac{1}{100}$.

- Watch Video Solution

51. Prove that the number of the sequence $121,12321,1234321, \ldots . .$. are each a perfect square of odd integer.

(Watch Video Solution

52. Find the sum of n terms of series
$1+5\left(\frac{4 n+1}{4 n-3}\right)+9\left(\frac{4 n+1}{4 n-3}\right)^{2}+13\left(\frac{4 n+1}{4 n-3}\right)^{3}+\ldots$.

- View Text Solution

53. Find the sum of the products of the integers $1,2,3, \ldots . . n$ taken two at a time and show that it equal to half the excess of the sum of the cubes of the given integers over the sum of their squares.

- Watch Video Solution

54. Sum the series $n+(n-1) x+(n-2) x^{2}+\ldots \ldots .+2 x^{n-2}+x^{n-1}$.

- Watch Video Solution

55. Find $1+2^{2} x+3^{2} x^{2}+4^{2} x^{3}+\ldots$ to $\infty|x|<1$.

- View Text Solution

56. Find the sum of 1 st n terms of the sequence $3,6,15,42,123, \ldots$

- View Text Solution

57. Let S_{n} denote the sum of first n terms of the sequence $1,5,14,30,55, \ldots .$. then prove that $S_{n}-S_{n-1}=\sum n^{2}$.

- Watch Video Solution

58. Finds the sum of first n terms of the series $\frac{3}{1^{2} \times 2^{2}}+\frac{5}{2^{2} \times 3^{2}}+\frac{7}{3^{2} \times 4^{2}}+\ldots \ldots$ and hence deduce the sum of infinity.
59. How many terms of the series $54+51+48+45+\ldots$ must be taken to make 513 ? Explain the double answer.

- Watch Video Solution

60. If $(\mathrm{b}+\mathrm{c}),(\mathrm{c}+\mathrm{a}),(\mathrm{a}+\mathrm{b})$ are in H.P. show that a^{2}, b^{2}, c^{2} are in A.P.

- Watch Video Solution

61. Find the sum of first n terms of the series

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots .
$$

Watch Video Solution

62. If $0<\theta<\frac{\pi}{2}$ then find the least value of $\tan \theta+\cot \theta$

- Watch Video Solution

63. If x and y are positive quantities whose sum is 4 , show that $\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2} \geq 12 \frac{1}{2}$.

- Watch Video Solution

64. If $a, b, c>0$ show that $\frac{b c}{b+c}+\frac{c a}{c+a}+\frac{a b}{a+b} \leq \frac{a+b+c}{2}$.

- Watch Video Solution

65. Show that $a^{2}\left(1+b^{2}\right)+b^{2}\left(1+c^{2}\right)+c^{2}\left(1+a^{2}\right) \geq 6 a b c$.

- Watch Video Solution

66. If m, n are positive quantities, prove that $\left(\frac{m n+1}{m+1}\right)^{m+1} \geq n^{m}$.

- Watch Video Solution

67. Prove that $\left(\frac{b c+a c+a b}{a+b+c}\right)^{a+b+c} \geq(b)^{a}(c)^{b}(a)^{c}$ [where $\left.a, b, c>0\right]$.

Watch Video Solution

68. If $\log 2, \log \left(2^{n}-1\right)$ and $\log \left(2^{n}+3\right)$ are in A.P. then $\mathrm{n}=$
A. 44318
B. $\log _{2} 5$
C. $\log _{3} 5$
D. 44257

Answer: B

- Watch Video Solution

69. If the ratiio of the sum of n terms ofd two AP's is $(3 n+1):(2 n+3)$ then find the ratio of their 11th term
A. $(45: 64)$
B. 3:4
C. $(64: 45)$
D. $4: 3$

Answer: C

- Watch Video Solution

70. If $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}$ are in AP where $a_{1}>0 \forall i$ then the value of
$\frac{1}{\sqrt{a}_{1}+\sqrt{a}_{2}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a}_{3}}+\ldots \frac{.1}{\sqrt{a}_{n-1}+\sqrt{a}}=$
A. $\frac{1}{\sqrt{a}_{1}-\sqrt{a}_{n}}$
B. $\frac{1}{\sqrt{a}_{1}-\sqrt{a}_{n}}$
C. $\frac{n-1}{\sqrt{a}_{1}+\sqrt{a}_{n}}$
D. $\frac{n}{\sqrt{a}_{1}-\sqrt{a}_{n}}$

Watch Video Solution

71. Given p no. of A.P. each of which consists of an n terms. If their first terms are 1,2,3... p are in common differences are $1,3,5 . . .2 \mathrm{p}-1$ respectively, then the sum of the terms of all progressions is
A. $\frac{1}{2} n p(n p+1)$
B. $\frac{1}{2} n(p+1)$
C. $n p(n+1)$
D. none of these

Answer: A

- Watch Video Solution

72.

Answer the following question based on above passage:
The coefficient of x^{99} in the expansion of $(x-1)(x-2) \ldots . . .(x-99)(x-100)$ is
A. 100
B. -5050
C. 5050
D. -100

Answer: B

- Watch Video Solution

73. If a, b, c, d and p are distinct real number such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$ then $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in
A. AP
B. GP
C. HP
D. none of these

- Watch Video Solution

74. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P and a^{2}, b^{2}, c^{2} are in G.P. If $a<b<c$ and $a+b+c=\frac{3}{2}$ then the value of a is
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{2 \sqrt{3}}$
C. $\frac{1}{2}-\frac{1}{\sqrt{3}}$
D. $\frac{1}{2}-\frac{1}{\sqrt{2}}$

Answer: D

- Watch Video Solution

75. The value of $4^{\frac{1}{3}} \cdot 4^{\frac{1}{9}} \cdot 4^{\frac{1}{27}} \ldots \infty$ is.
A. 2
B. 3
C. 4
D. 9

Answer: A

- Watch Video Solution

76. If the sum of an infinite GP is 20 and sum of their square is 100 then common ratio will be=
A. 5
B. $3 / 5$
C. $8 / 5$
D. $1 / 5$

Answer: C

77. If $S=1+a+a^{2}+\ldots \ldots$. to ∞, then $a=$
A. $\frac{S}{S-1}$
B. $\frac{S}{1-S}$
C. $\frac{S-1}{S}$
D. $\frac{1-S}{S}$

Answer: C

- Watch Video Solution

78. If $4 a^{2}+9 b^{2}+16 c^{2}=2(3 a b+6 b c+4 c a)$ where a, b, c are non zero real number, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. A.P
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

79. If a,b,c in AP and $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n-0}^{\infty} b^{n}, z=\sum_{n-0}^{\infty} c^{n}$ then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in
A. AP
B. GP
C. HP
D. None of these

Answer: C

- Watch Video Solution

80. If a,b,c are in G.P., then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root if $\mathrm{d} / \mathrm{a}, \mathrm{e} / \mathrm{b}, \mathrm{f} / \mathrm{c}$ are in
A. AP
B. GP
C. HP
D. None of these

Answer: A

- Watch Video Solution

81. If the product of n positive number is unity, then their sum is
A. a positive integer
B. divisible by n
C. equal to $n+1 / m$
D. never less than n

D Watch Video Solution

82. If $x_{1}>0, i=1,2 \ldots .50$ and $x_{1}+x_{2}+\ldots . x_{50}=50$ then the minimum value of $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots \ldots \frac{1}{x_{50}}$ equals to.
A. 50
B. $(50)^{2}$
C. $(50)^{3}$
D. $(50)^{4}$

Answer: A

- Watch Video Solution

83. If a, b, c, d are positive real number such that $a+b+c+d=2$, then $M=(a+b)$
(c+d) satisfies the relation:
A. $0 \leq M \leq 1$
B. $1 \leq M \leq 2$
C. $2 \leq M \leq 3$
D. $3 \leq M \leq 4$

Answer: A

- Watch Video Solution

84. If $a_{1}, a_{2}, \ldots . a_{n}$ are positive real number whose product is a fixed number c , then the minimum value of $a_{1}+a_{2}+\ldots \ldots+a_{n-1}+a_{n}$ is
A. $n(c)^{\frac{1}{n}}$
B. $(n+1) c^{\frac{1}{n}}$
C. $2 n c^{\frac{1}{n}}$
D. $(n+1)(2 c)^{\frac{1}{n}}$
85. The greatest value $x^{2} y^{3}$ is, where $x>0$ and $y>0$ are connected by the relation $3 x+4 y=5$

- Watch Video Solution

86. Let $S=\frac{8}{5}+\frac{16}{65}+\ldots \ldots \frac{128}{2^{18}+1}$ then
A. $S=1088 / 545$
B. $S=545 / 1088$
C. $\mathrm{S}=1056 / 545$
D. $\mathrm{S}=545 / 1056$

Answer: A

- Watch Video Solution

87. The sum of the infinite terms of the series $\frac{5}{3^{2} .7^{2}}+\frac{9}{7^{2} .11^{2}}+\frac{13}{11^{2} .15^{2}} \ldots$. is
A. 1/12
B. $1 / 36$
C. 1/54
D. 1/72

Answer: D

- Watch Video Solution

88. The sum to infinity of the series $1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+\ldots$.
A. 2
B. 3
C. 4
D. 6

- Watch Video Solution

89. The sum to n terms of the series
$1+2\left(1+\frac{1}{n}\right)+3\left(1+\frac{1}{n}\right)^{2}+\ldots \ldots$. is given by
A. n^{2}
B. $\quad n(n+1)$
C. $n\left(1+\frac{1}{n}\right)^{2}$
D. none of these

Answer: A

- Watch Video Solution

90. For $|x|<1$ the value of $1+3 x+6 x^{2}+10 x^{3}+\ldots$. to ∞ is
A. $\frac{4}{(1-x)^{4}}$
B. $\frac{3}{(1-x)^{3}}$
C. $\frac{1}{(1-x)^{3}}$
D. none of these

Answer: C

- Watch Video Solution

91. If pth, qth, and rth term of an AP are equal to corresponding terms of a GP and these terms are respectively $\mathrm{x}, \mathrm{y}, \mathrm{z}$, then $x^{y-z} y^{z-x} z^{x-y}$ equals
A. 0
B. 1
C. 2
D. none of these
92. If a, b, c are positive real number, then the least value of $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ is
A. 9
B. 3
C. 44472
D. none of these

Answer: A

- Watch Video Solution

93. An infinite GP has first term x and sum 5 , then x belongs to
A. $x \leq 10$
B. $-10<x<0$
C. $0<x<10$
D. $x<10$

Answer: C

- Watch Video Solution

94. $2^{\frac{1}{4}}, 2^{\frac{2}{8}}, 2^{\frac{3}{16}}, 2^{\frac{4}{32}} \ldots \ldots \infty$ is equal to
A. 1
B. 2
C. 44257
D. 44318

Answer: A
95. Let α, β be the roots of $x^{2}-x+p=0$ and γ, δ be the roots of $x^{2}-4 x+q=0$. If α, β, γ are in GP , then the integer values of p and q respectively are:
A. $-2,-32$
B. $-2,3$
C. -6,3
D. $-6,-32$

Answer: A

- Watch Video Solution

96. If $f(x)$ is a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in N$ such that $f(1)$
$=3$ and $\sum_{x=1}^{n} f(x)=120$, then the value of n is
A. 4
B. 5
C. 6
D. none of these

Answer: A

- Watch Video Solution

97. Sum of n terms of the series $8+88+888+\ldots .$. equals
A. $\frac{8}{81}\left[10^{n+1}-9 n-10\right]$
B. $\frac{8}{81}\left[10^{n}-9 n-10\right]$
C. $\frac{8}{81}\left[10^{n+1}-9 n+10\right]$
D. none of these

Answer: A

D Watch Video Solution

98. The sum of the first n terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots \ldots . . i s \frac{n(n+1)^{2}}{2}$ when n is even.

When n is odd the sum is
A. $\frac{n^{2}(n-1)}{2}$
B. $\frac{n(n-1)(2 n-1)}{6}$
C. $\frac{n(n+1)^{2}}{2}$
D. $\frac{n^{2}(n+1)}{2}$

Answer: A

- Watch Video Solution

99. The sum of integer in between 1 to 100 which is divisible by 2 or 5 is
A. 3100
B. 3600
C. 3050
D. 3500

Answer: C

- Watch Video Solution

100. $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots$. to n terms $=$
A. $2^{n}-1$
B. $2 n-n-1$
C. $2^{-n}+n-1$
D. none of these

Answer: C

- Watch Video Solution

101.

$0<\theta<\frac{\pi}{2}, \quad$ if $\quad x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \theta, z=\sum_{n=0}^{\infty} \cos ^{2 n} \theta \sin ^{2 n} \theta$
A. $x y z=x z+y$
B. $x y z=x y+z$
C. $x y z=y z+x$
D. none of these

Answer: B

- Watch Video Solution

102. If $x \in\{1,2,3 \ldots \ldots 9\}$ and $f_{n}(x)=x x x \ldots x$ (n digits), then
$f_{n}^{2}(3)+f_{n}(2)$ is equal to
A. $2 f_{2 n}(1)$
B. $f_{n}^{2}(1)$
C. $f_{2 n}(1)$
D. $-f_{2 n}(4)$

Answer: C

- Watch Video Solution

103. Four no. are in AP. If their sum is 20 and the sum of their squares is

120 , then the middle terms are
A. 2,4
B. 4,6
C. 6,8
D. 8,10

Answer: 2

- Watch Video Solution

104. Sum of n terms of series $1.3+3.5+5.7+$....is
A. $\frac{2}{3} n(n+1)(2 n+1)+n$
B. $\frac{2}{3} n(n+1)(2 n-1)-n$
C. $\frac{2}{3} n(n-1)(2 n-1)-n$
D. none of these

Answer: 2

- Watch Video Solution

105. If the sum of an infinitely decreasing GP is 3 , and the sum of the squares of its items is $9 / 2$, the sum of the cubes of the terms is.
A. $105 / 13$
B. $108 / 13$
C. 729/8
D. none of these

- Watch Video Solution

106. $1+2.2+3.2^{2}+4.2^{3}+\ldots .100 .2^{99}$ equals
A. 99.2^{100}
B. 100.2^{100}
C. $1+99.2^{100}$
D. none of these

Answer: 3

Watch Video Solution

107. If A_{1}, A_{2} be two AM's and G_{1}, G_{2} be the two GM's between two number a and b , then $\frac{A_{1}+A_{2}}{G_{1} G_{2}}$ is equal to
A. $\frac{a+b}{2 a b}$
B. $\frac{2 a b}{a+b}$
C. $\frac{a+b}{a b}$
D. $\frac{a b}{a+b}$

Answer: 3

- Watch Video Solution

108. If $H_{1}, H_{2}, H_{3}, \ldots \ldots . H_{n}$ be n harmonic means between a and b then $\frac{H_{1}+a}{H_{1}-a}+\frac{H_{n}+b}{H_{n}-b}=$
A. 0
B. n
C. 2 n
D. 1
109. If a,b,c are in AP and a^{2}, b^{2}, c^{2} are in HP, then
A. $a=b+c$
B. $b=c+a$
C. $c=a+b$
D. $a=b=c$

Answer: 4

- Watch Video Solution

110. If between 1 and $1 / 31$ there are n H.M's and ratio of 7 th and $(n-1)^{t} h$ harmonic means is $9: 5$, then values of n is
A. 12
B. 13
C. 5
D. 14

Answer: 4

- Watch Video Solution

111. $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is AM/GM/HM, between a and b if n is equal to respectively
A. $-1,-1 / 2,0$
B. $0,1 / 2,-1 / 2$
C. $0,-1 / 2,-1$
D. none of these

Answer: 3

112. Sum of infinite terms of series $3+5 \cdot \frac{1}{4}+7 \cdot \frac{1}{4^{2}}+\ldots$. is
A. 33/4
B. 44504
C. $44 / 9$
D. $44 / 8$

Answer: 3

- Watch Video Solution

113. The value of x for which $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}$ are in AP lie in
A. $(0,1)$
B. $(1, \infty)$
C. $(0, \infty)$
D. none of these

D Watch Video Solution

114. If the non-zero numbers a, b, c are in AP and $\tan ^{-1} a, \tan ^{-1} b, \tan ^{-1} c$ are also in AP, then
A. $b^{2}=a c$
B. $a^{2}+b^{2}+c^{2}=a b+b c+c a$
C. $a^{3}+b^{3}+c^{3}=3 a b c$
D. $\sin ^{-1} a, \sin ^{-1} b, \sin ^{-1} c$

Answer: 1,2,3\&4

D Watch Video Solution

115. If a, b, c, d are distinct positive numbers in AP, then
A. $a d<b c$
B. $a+c<b+d$
C. $a+d=b+c$
D. $(a+1)(d+1)<(b+1)(c x+1)$

Answer: 1,3\&4

- Watch Video Solution

116. If $\sum_{r=1}^{n} r(r+1)(2 r+3)=a n^{4}+b n^{3}+c n^{2}+d n+e$, then
A. $a=1 / 2$
B. $b=8 / 3$
C. $c=9 / 2$
D. $e=0$

Answer: 1,2,3\&4

117. The eth term T_{p} of HP is $\mathrm{q}(\mathrm{p}+\mathrm{q})$ and qth term T_{q} is $p(p+q)$ when $p>1, q>1$, them
A. $T_{p+q}=p q$
B. $T_{p q}=p+q$
C. $T_{p+q}>T_{p q}$
D. $T_{p q}>T_{p+q}$

Answer: 1,2\&3

- Watch Video Solution

118. For a positive integer n let
$a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \ldots .+\frac{1}{\left(2^{n}\right)-1}$ then
A. $a(100)<100$
B. $a(100)>100$
C. $a(200)<100$
D. $a(200)>100$

Answer: 1\&4

- Watch Video Solution

119. A geometric progression of real number is such that the sum of its first four terms is equal to 30 and the sum of teh square of the first four terms is 340 . then
A. two such GP are possible
B. it must be a decreasing GP
C. the common ratio is always rational
D. the first term is always an even integer

Answer: 1,3\&4

120. If the first and the $(2 n-1)^{t} h$ term of an A.P,G.P anf H.P are equal and their nth term are a,b,c respectively,then
A. $a=b=c$
B. $a \geq b \geq c$
C. $a+c=b$
D. $a c-b^{2}=0$

Answer: 1,2\&4

- Watch Video Solution

121.

If
a,b,c
be
in
H.P
prove
that
$\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)=\frac{4}{a c}-\frac{3}{b^{2}}$
A. $\frac{2}{b c}-\frac{1}{b^{2}}$
B. $\frac{1}{4}\left(\frac{3}{c^{2}}+\frac{2}{c a}-\frac{1}{a^{2}}\right)$
C. $\frac{3}{b^{2}}-\frac{2}{a b}$
D. none of these

Answer: 1,2\&3

- Watch Video Solution

122. Which one of the following statements is correct ?
A. $G_{1}>G_{2}>G_{3}>\ldots$
B. $G_{1}<G_{2}<G_{3}<\ldots$
C. $G_{1}=G_{2}=G_{3}=$
D. $G_{1}<G_{3}<G_{5}<\ldots$ and $G_{2}>G_{4}>G_{8}>\ldots$

Answer: C

123. Let $\sin \alpha, \cos \alpha$, be the roots of the equation $x^{2}-b x+c=0$. Then which of the following statements is/are correct ?
A. $A_{1}>A_{2} \ldots$.
B. $A_{1}>A_{2}>A_{3}>\ldots$.
C. $A_{1}>A_{3}>A_{5}>\ldots$ and $A_{2}<A_{4}<A_{6}<\ldots$.
D. $A_{1}<A_{3}<A_{5}<\ldots$ and $A_{2}>A_{4}>A_{6}>\ldots$.

Answer: A

- Watch Video Solution

124. Which one of the following statements is correct ?
A. $H_{1}>H_{2}>H_{3}>\ldots$.
B. $\mathrm{H}_{-} 1 \mathrm{ltH}$ _2ltH_3lt.....
C. $H_{1}>H_{3}>H_{5}>\ldots$. and $H_{2}<H_{4}<H_{6}<\ldots$
D. $H_{1}<H_{3}<H_{5}<\ldots$. and $H_{2}>H_{4}>H_{6}>\ldots$

D Watch Video Solution

125. The sum $V_{1}+V_{2}+\ldots . V_{n}$ is
A. $\frac{1}{12} n(n+1)\left(3 n^{2}-n+1\right)$
B. $\frac{1}{12} n(n+1)\left(3 n^{2}+n+1\right)$
C. $\frac{1}{2} n\left(2 n^{2}-n+1\right)$
D. $\frac{1}{3} n\left(2 n^{3}-2 n+3\right)$

Answer: B

Watch Video Solution
126. T_{r} is always
A. an odd number
B. an even number
C. a prime number
D. a composite number

Answer: D

- Watch Video Solution

127. Which one of the following statements is correct ?
A. $Q_{1}, Q_{2}, Q_{3} \ldots$. are in AP with common differences 5
B. $Q_{1}, Q_{2}, Q_{3} \ldots$. are in AP with common differences 6
C. $Q_{1}, Q_{2}, Q_{3} \ldots$. are in AP with common differences 11
D. $Q_{1}=Q_{2}=Q_{3}=\ldots$

Answer: B

128. Match List-I with List-II

List-1

List - II

(1) If a, b, c are non-zero real
(P) $A P$
numbers such that
$3\left(a^{2}+b^{2}+c^{2}+1\right)=2 \times(a+b$
$+c+a b+b c+c a)$, then a, b, c
are in
(2) If the square of difference of three
(Q) GP
numbers be in AP, then their
difference are in
(3) If $a-b, a x-b y, a x^{2}-b y^{2}(a, b \neq 0)$
(R) HP
are in GP, then $x, y, \frac{a x-b y}{a-b}$ are in
(S) Equal

- View Text Solution

129. The roots of equation $x^{2}+2(a-3) x+9=0$ lie between -6 and 1 and $2, h_{1}, h_{2}, \ldots . h_{20}$ [a] are in HP where [a] denotes the integral part of a and $2, a_{1}, a_{2}, \ldots \ldots a_{20}$, [a] are in AP, then $\left(\frac{a_{3} h_{18}}{3}\right)$ is equal to

[^0]130. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are distinct integer in AP such that $d=a^{2}+b^{2}+c^{2}$, then $a+b+c+d$ is

Watch Video Solution

131. If $\log _{2}(a+b)+\log _{2}(c+d) \geq 4$. Then the minimum value of the expression $a+b+c+d$ is

- Watch Video Solution

132. Let $a_{1}, a_{2}, a_{3}, \ldots \ldots a_{11}$ be real number satisfying
$a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2} \quad$ for $\quad \mathrm{k}=3,4, \ldots . .11$. If $\frac{a_{1}^{2}+a_{2}^{2}+\ldots \ldots a_{11}^{2}}{11}=90$, then the value of $\frac{a_{1}+a_{2}+\ldots . a_{11}}{11}$ is equal to

- Watch Video Solution

133. The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° and the common difference is 5°. Find the number of sides of the polygon.

- Watch Video Solution

134. Find the sum of the first n terms of the series $1^{3}+3.2^{2}+3^{3}+3.4^{2}+5^{2}+3.6^{2}+\ldots$. when n is even

- Watch Video Solution

135. Find the sum of the first n terms of the series $1^{3}+3.2^{2}+3^{3}+3.4^{2}+5^{2}+3.6^{2}+\ldots$. when n is odd

- Watch Video Solution

136. Does there exist a GP containing 27,8 and 12 as three of its terms ? If it exists, how many such progressions are possible ?
137. The sum of the squares of three distinct real numbers, which are in GP is S^{2}. If their sum is αS, show that $\alpha^{2} \in\left(\frac{1}{3}, 1\right) \cup(1,3)$.

- Watch Video Solution

138. Prove that the three successive terms of a GP will form the sides of a triangle if the common ratio satisfies the inequality $\frac{1}{2}(\sqrt{5}-1)<t<\frac{1}{2}(\sqrt{5}+1)$.

- Watch Video Solution

139. If $(m+1)^{t} h,(n+1)^{t} h$ and $(r+1)^{t} h$ terms in AP are in GP m,n,r are in HP ,show that the ratio of the common difference to the first term of the AP is $\left(-\frac{2}{n}\right)$.
140. If p be the first of n arithmetic means between two numbers and q be the first of n harmonic means between the same two numbers, then prove that the value of q can not lie between p and $\left(\frac{n+1}{n-1}\right)^{2} p$.

- Watch Video Solution

141. Show
that

$$
\frac{1^{4}}{13}+\frac{2^{4}}{3.5}+\frac{3^{4}}{5.7}+\ldots .+\frac{n^{4}}{(2 n-1)(2 n+1)}=\frac{n\left(4 n^{2}+6 n+5\right)}{48}+\frac{}{16(}
$$

- Watch Video Solution

142. Solve the following equations for x and y $\log _{10} \times+\frac{1}{2} \log _{10} x+\frac{1}{4} \log _{10} \times+\ldots=y$ and $\frac{1+3+5+\ldots+(2 y-}{4+7+10+\ldots .+3 y}$
143. Find the sum of the series $\frac{1}{1.3}+\frac{2}{1.3 .5}+\frac{3}{1.3 .5 .7}$...upto infinity

- Watch Video Solution

144. If $\sum_{r=1}^{n} T_{r}=\frac{n}{8}(n+1)(n+2)(n+3)$ then find $\sum_{r=1}^{n} \frac{1}{T_{r}}$

(Watch Video Solution

145. If $1, \log _{9}\left(3^{1-x}+2\right)$ and $\log _{3}\left(4.3^{x}-1\right)$ are in AP , then x is equal to
A. $\log _{4}^{3}$
B. $\log _{3} 4$
C. $1-\log _{3} 4$
D. $\log _{3} 0.25$

Answer: C

146. If the sum of the first $2 n$ terms of the AP $2,5,8 . . .$. .is equal to the sum of the first n terms of the AP 57,59,61, ...then n equals
A. 10
B. 12
C. 11
D. 13

Answer: C

- Watch Video Solution

147. If $\mathrm{x} \in \mathrm{R}$, the number $5^{1+x}+5^{1-x}, \frac{a}{2}, 25^{x}+25^{-x}$ form an AP , then a must lie in the interval
A. $[1,5]$
B. $[2,5]$
C. $[5,12]$
D. $[12, \infty]$

Answer: D

- Watch Video Solution

148. If an AP $a_{7}=9$ and $a_{1} a_{2} a_{7}$ is least, then common difference is
A. $13 / 20$
B. $23 / 20$
C. $33 / 20$
D. $43 / 20$

Answer: C

- Watch Video Solution

149. Consider an infinite geometric series with first term a and common ratio r, if its sum is 4 and the second term is $3 / 4$ then
A. $a=\frac{7}{4}, r=\frac{3}{7}$
B. $a=2, r=\frac{3}{8}$
C. $a=\frac{3}{2}, r=\frac{1}{2}$
D. $a=3, r=\frac{1}{4}$

Answer: D

- Watch Video Solution

150. The value of $a^{\log _{b}(x)}=$ (where, $\quad \mathrm{a}=0.2, \mathrm{~b}=\mathrm{sqr} 5$), $\mathrm{x}=$ $(1 / 4+1 / 8+1 / 16+\ldots . .$. infty $),{ }^{\prime}$ is
A. 1
B. 2
C. 44198
D. 4

Answer: D

- Watch Video Solution

151. If a,b,c are in HP and $a>c>0$, then $\frac{1}{b-c}-\frac{1}{a-b}$.
A. is positive
B. is zero
C. is negative
D. has no fixed sign

Answer: A

- Watch Video Solution

152. Let the positive numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be in AP , Then $\mathrm{abc}, \mathrm{abd}, \mathrm{acd}, \mathrm{bcd}$ are
A. Not in AP/GP/HP
B. in AP
C. in GP
D. in HP

Answer: D

- Watch Video Solution

153. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in HP, thn the value of $\frac{b+a}{b-a}+\frac{b+c}{b-c}$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

154. If $x_{1}>0, i=1,2 \ldots .50$ and $x_{1}+x_{2}+\ldots . x_{50}=50$ then the minimum value of $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots \ldots \frac{1}{x_{50}}$ equals to.
A. 150
B. 100
C. 50
D. $(50)^{2}$

Answer: C

- Watch Video Solution

155. If three positive real number a, b, c are in AP with $a b c=4$, then the minimum value of b is
A. $4^{\frac{1}{3}}$
B. 3
C. 2
D. 44198

Answer: A

- Watch Video Solution

156. The sum of 10 terms of the series $0.7+.77+.777+\ldots .$. is
A. $\frac{7}{9} \cdot\left(89+\frac{1}{10^{10}}\right)$
B. $\frac{7}{81} \cdot\left(89+\frac{1}{10^{10}}\right)$
C. $\frac{7}{81} \cdot\left(89+\frac{1}{10^{9}}\right)$
D. none of these

Answer: B

- Watch Video Solution

157. Find the sum of the series upto n terms 1.3.5+3.5.7+5.7.9+....
A. $8 n^{2}+12 n^{2}-2 n-3$
B. $n\left(8 n^{3}+11 n^{2}-n-3\right)$
C. $n\left(2 n^{3}+8 n^{2}+7 n-2\right)$
D. none of these

Answer: C

- Watch Video Solution

158. Find the sum of first n terms of the series $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots$.
A. $\frac{6 n}{n+1}$
B. $\frac{9 n}{n+1}$
C. $\frac{12 n}{n+1}$
D. $\frac{15 n}{n+1}$

Answer: A

- Watch Video Solution

159. If the sum to infinity to the series $1+4 x+7 x^{2}+10 x^{3}+\ldots$. is $35 / 16$ the value of x is
A. 44201
B. $19 / 7$
C. 44396
D. none of these

Answer: B

- Watch Video Solution

160. Consider an AP with first term a and the common difference 'd' Let S_{k} denote the sum of its first k terms. If $\frac{S_{k x}}{S_{x}}$ is independent of x then
A. $a=d / 2$
B. $a=d$
C. $a=2 d$
D. none of these

Answer: C

- Watch Video Solution

161. If p, q, r are three positive real number are in $A P$, then the roots of the quadratic equation $p x^{2}+q x+r=0$ are all real for
A. $\left|\frac{r}{p}-7\right| \geq 4 \sqrt{3}$
B. $\left|\frac{p}{r}-7\right|<4 \sqrt{3}$
C. all p and r
D. no p and r

Answer: A

- Watch Video Solution

162. The solution of the equation (8) ${ }^{\left(1+\left[\cos x\left|\div\left|\cos ^{2} x\right| \div\right| \cos ^{3} x\right] \div \ldots .=4^{3}\right.}$ in thge interval $(-\pi, \pi)$ are
A. $\pm \frac{\pi}{3}, \pm \frac{\pi}{6}$
B. $\pm \frac{\pi}{3}, \pm \pi$
C. $\pm \frac{\pi}{3}, \pm \frac{2 \pi}{3}$
D. none of these

Answer: A

D Watch Video Solution

163. If $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots\left(1+x^{128}\right)=\sum_{r=0}^{n} x^{r}$ then n is
A. 255
B. 127
C. 60
D. none of these

Answer: A

(Watch Video Solution

164. If $a_{n}>1 \quad$ for
all $n \in N$,then
$\log _{a_{2}} a_{1}+\log _{a 3} a_{2}+\ldots .+\log _{a n} a_{n-1}+\log _{a 1} a_{n}$ has the minimum value
A. N
B. 2
C. 0
D. none of these

Answer: A

- Watch Video Solution

165. Let $S_{k}=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \frac{1}{(k+1)^{i}}$. Then $\sum_{k=1}^{n} k S_{k}$ equals
A. $\frac{n(n+1)}{2}$
B. $\frac{n(n-1)}{2}$
C. $\frac{n(n+2)}{2}$
D. $\frac{n(n+3)}{2}$

Answer: C

- Watch Video Solution

166. If $a_{1}, a_{2}, a_{3} \ldots a_{n}$ are in HP and $f(k)=\sum_{r=1}^{n} a_{r}-a_{k}$, then $\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(2)}, \frac{a_{3}}{f(3)}, \ldots \ldots . \frac{a_{n}}{f(n)}$ are in
A. AP
B. GP
C. HP
D. none of these

Answer: A

167. $\sum_{r=1}^{n} r^{2}-\sum_{m=1}^{n} \sum_{r=1}^{m} r$ is equal to
A. 0
B. $\frac{1}{2}\left(\sum_{r=1}^{n} r^{2}+\sum_{r=1}^{n}\right)$
C. $\frac{1}{2}\left(\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r\right)$
D. none of these

Answer: A

- Watch Video Solution

168. The sum of the integer from 1 to 100 which is not divisible by 3 or 5 is
A. 2489
B. 4735
C. 2317
D. 2632

Answer: D

- Watch Video Solution

169. If $a b^{2} c^{3}, a^{2} b^{3} c^{4}, a^{3} b^{4} c^{5}$ are in AP (a,b,cgt0) thgen the minimum value of $a+b+c$ is
A. 1
B. 3
C. 5
D. 9

Answer: C

- Watch Video Solution

170. If the sum of n terms of the series

$$
\frac{1}{1^{3}}+\frac{1+2}{1^{3}+2^{3}}+\frac{1+2+3}{1^{3}+2^{3}+3^{3}}+\ldots . \text { is } S_{n}, \text { then } S_{n} \text { exceeds } 1.99 \text { for }
$$

all n greater than
A. 99
B. 50
C. 199
D. 100

Answer: C

- Watch Video Solution

171. The coefficient of x^{n-2} in the polynomial $(x-1)(x-2)(x-3) \ldots(x-n)$ is
A. $\frac{n\left(n^{2}+2\right)(3 n+1)}{24}$
B. $\frac{n\left(n^{2}-2\right)(3 n+1)}{24}$
C. $\frac{n\left(n^{2}-1\right)(3 n+4)}{24}$
D. none of these

Answer: D

- Watch Video Solution

172. The series of natural number is divided into groups as follows, (1), $(2,3),(4,5,6),(7,8,9,10)$ and so on. Find the sum of the number in the nth group is
A. $\frac{1}{2}\left[n\left(n^{2}+2\right)\right]$
B. $\frac{n\left(n^{2}+1\right)}{4}$
C. $\frac{2 n(n+1)}{3}$
D. $\frac{n^{2}(n+1)}{2}$

Answer: B

D Watch Video Solution

173. The sum of 10 terms of the series

$$
\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\ldots . \text { is }
$$

A. $\left(\frac{x^{20}-1}{x^{2}-1}\right)\left(\frac{x^{22}+1}{x^{20}}\right)+20$
B. $\left(\frac{x^{18}-1}{x^{2}-1}\right)\left(\frac{x^{11}+1}{x^{9}}\right)+20$
c. $\left(\frac{x^{18}-1}{x^{2}-1}\right)\left(\frac{x^{11}-1}{x^{9}}\right)+20$
D. none of these

Answer: C

- Watch Video Solution

174. If the sequence $1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, \ldots$... where n consecutive terms has value n then 1025th term is
A. 2^{9}
B. 2^{10}
C. 2^{11}
D. 2^{8}

Answer: B

175. Sum of n terms of the series $(2 n-1)+2(2 n-3)+3(2 n-5)+\ldots .$. is
A. $\frac{n(n+1)(2 n+1)}{6}$
B. $\frac{n(n+1)(2 n-1)}{6}$
C. $\frac{n(n-1)(2 n-1)}{6}$
D. none of these

Answer: A

- Watch Video Solution

176. The cubes of the natural numbers are grouped as $1^{3},\left(2^{3}, 3^{3}\right),\left(4^{3}, 5^{3}, 6^{3}\right) \ldots$... then sum of the number in the nth group is
A. $\frac{1}{8} n^{3}\left(n^{2}+1\right)\left(n^{2}+3\right)$
B. $\frac{1}{16} n^{3}\left(n^{2}+16\right)\left(n^{2}+12\right)$
C. $\frac{n^{3}}{12}\left(n^{2}+2\right)\left(n^{2}+4\right)$
D. none of these

D Watch Video Solution

177. Let $f(n)=\left[\frac{1}{2}+\frac{n}{100}\right]$ where $[\mathrm{x}]$ denote the integral part of x . Then the value of $\sum_{n=1}^{100} f(n)$ is
A. 50
B. 51
C. 1
D. none of these

Answer: B

- Watch Video Solution

178. ABC is a right angled triangle in which $\angle B=90^{\circ}$ and $\mathrm{BC}=\mathrm{a}$. If n points $L_{1}, L_{2}, \ldots . L_{n}$ on AB are such that AB is divided in $\mathrm{n}+1$ equal parts
and $L_{1} M_{1}, L_{2} M_{2}, \ldots L_{n} M_{n}$ are line segments parallel to BC and $M_{1}, M_{2}, \ldots M-n$ are on AC . Then the sum og the lengths of $L_{1} M_{1}, L_{2} M_{2}, \ldots . . L_{n} M_{n}$ is
A. $\left(\frac{a(n+1)}{2}\right)$
B. $\frac{a(n-1)}{2}$
C. $\frac{a n}{2}$
D. impossible to find from the given data

Answer: A

- Watch Video Solution

179. If a, b, c are three distinct positive real number such that $a^{2}+b^{2}+c^{2}=1$, then $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=1$ is
A. less than 1
B. equal to 1
C. greater than 1
D. any real number

Answer: A

- Watch Video Solution

180. The sum of the series $1^{3}-2^{3}+3^{3}-\ldots .+9^{3}=$
A. 300
B. 125
C. 425
D. 0

Answer: B

- Watch Video Solution

181. If x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} are both in G.P. with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
A. are vertices of a triangle
B. lie on a straight line
C. lie on an ellipse
D. lie on a circle

Answer: B

- Watch Video Solution

182. Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation
A. $x^{2}+18 x+16=0$
B. $x^{2}-18 x+16=0$
C. $x^{2}+18 x-16=0$
D. $x^{2}-18 x-16=0$

Answer: C

- Watch Video Solution

183. The sum of the first n terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots \ldots . i s \frac{n(n+1)^{2}}{2}$ when n is even.

When n is odd the sum is
A. $\frac{n^{2}(n+1)}{2}$
B. $\frac{n(n+1)(2 n+1)}{6}$
C. $\frac{n(n+1)^{2}}{2}$
D. $\frac{n^{2}(n+1)^{2}}{2}$

Answer: A

184. Let $a_{1}, a_{2}, a_{3}, \ldots$ be terms of an A.P. if $\frac{a_{1}+a_{2}+\ldots .+a_{p}}{a_{1}+a_{2}+\ldots+a_{q}}=\frac{p^{2}}{q^{2}} \cdot p \neq q$ then $\frac{a_{6}}{a_{21}}$ equals
A. 44379
B. 44234
C. 11/41
D. $41 / 11$

Answer: C

- Watch Video Solution

185. If $a_{1}, a_{2}, \ldots . a_{n}$ are in H.P., then the expression $a_{1} a_{2}+a_{2} a_{3}+\ldots+a_{n-1} a_{n}$ is equal to
A. $(n-1)\left(a_{1}-a_{n}\right)$
B. $n a_{1} a_{n}$
C. $(n-1) a_{1} a_{n}$
D. $n\left(a_{1}-a_{n}\right)$

Answer: C

(Watch Video Solution

186. If the sum of first n natural numbers is $1 / 5$ times the sum of their squares, then the value of n is
A. 5
B. 6
C. 7
D. 8

Answer: C

187. $\log _{3} 2, \log _{6} 2$ and $\log _{12} 2$ are in
A. A.P.
B. G.P.
C. H.P.
D. None of these

Answer: C

- Watch Video Solution

188. If x be the $A M$ and y, z be two GM's between two positive numbers, then $\frac{y^{3}+z^{3}}{x y z}$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

189. If $\ln (a+c), \ln (c-a), \ln (a-2 b+c)$ are in A.P., then
A. a,b,c are in A.P.
B. a^{2}, b^{2}, c^{2} are in A.P.
C. a, b, c are in G.P.
D. a, b, c are in H.P

Answer: D

- Watch Video Solution

190. The
sum of the numerical
$\frac{1}{\sqrt{3}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{11}}+\frac{1}{\sqrt{11}+\sqrt{15}}+\ldots$ upto n terms is
A. $\frac{\sqrt{3+4 n}-\sqrt{3}}{4}$
B. $\frac{n}{\sqrt{3+4 n}+\sqrt{3}}$
C. less than n
D. greater than $\frac{\sqrt{n}}{2}$

Answer: A::B::C

- Watch Video Solution

191. Suppose that $\mathrm{F}(\mathrm{n}+1)=\frac{2 F(n)+1}{2}$ for $\mathrm{n}=1,2,3,$, , and $\mathrm{F}(1)=2$. Then $F(101)$ is
A. >50
B. 52
C. 54
D. 60

Answer: A::B

- Watch Video Solution

192. The series of natural number is divided into groups $1,2,3,4, \ldots . .$. and so on. Then the sum of the numbers in the nth group is
A. A. $(2 n-1)\left(n^{2}-n+1\right)$
B. В. $n^{3}-3 n^{2}+3 n-1$
C. C $. n^{3}+(n-1)^{3}$
D. D. $\frac{n^{3}+n}{2}$

Answer: A::C

- Watch Video Solution

193. $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$ is equal to
A. $\frac{n(n+1)(n+2)}{6}$
B. $\sum n^{2}$
C. ${ }^{\wedge} n C_{3}$
D. ${ }^{\wedge}(n+2) C_{3}$

Answer: A::D

D Watch Video Solution

194. The sides of a right angle triangle from a G.P. the tangent of the smallest angle is
A. $\sqrt{\frac{\sqrt{5}+1}{2}}$
B. $\sqrt{\frac{\sqrt{5}-1}{2}}$
C. $\sqrt{\frac{2}{\sqrt{5}+1}}$
D. $\sqrt{\frac{2}{\sqrt{5}-2}}$

Answer:

Watch Video Solution

195. If the first \& the $(2 n+1)$ th terms of an A.P. , a G.P \& an H.P. of positive terms are equal and their $(\mathrm{n}+1)$ th terms are a, b \& c respectively, then
A. $a=b=c$
B. $a \geq b \geq c$
C. $a+c=2 b$
D. $a c=b^{2}$

Answer: A::B::D

196. If the arithmetic mean of two positive numbers $\mathrm{a} \& \mathrm{~b}(a>b)$ is twice their geometric mean, then $\mathrm{a}: \mathrm{b}$ is
A. $2+\sqrt{3}: 2-\sqrt{3}$
B. $4+4 \sqrt{3}: 1$
C. $1: 7-4 \sqrt{3}$
D. $2: \sqrt{3}$

Answer: A::B::C

- Watch Video Solution

197. If S_{n} denotes the sum to n terms of the series $(1 \leq n \leq 9) 1+22+$ $333+\ldots+999999999$ then for $n \geq 2$
A. $S_{n}-s_{n-1}=\frac{1}{9}\left(10^{n}-n^{2}+n\right)$
B. $S_{n}=\frac{1}{9}\left(10^{n}-n^{2}+2 n-2\right)$
C. $9\left(S_{n}-S_{n-1}\right)=n\left(10^{n}-1\right)$
D. $S_{3}=356$

Answer: C::D

- Watch Video Solution

198. If a, b, c are in H.P. , then
A. $\frac{a}{b+c-a}, \frac{b}{c+a-b}, \frac{c}{a+b-c}$ are in H.P.
B. $\frac{2}{b}=\frac{1}{b-a}+\frac{1}{b-c}$
C. $\mathrm{a}-\mathrm{b} / 2, \mathrm{~b} / 2, \mathrm{c}-\mathrm{b} / 2$ are in G.P.
D. $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in H.P

Answer: A::B::C::D

- Watch Video Solution

199. Let S_{1}, S_{2},, , be squares such that for each $n \geq 1$ the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a sides of S_{1} is 10 cm , then for which of the following values of n in the ares of S_{n} less than 1 sq. cm ?
A. 7
B. 8
C. 9
D. 10

Answer: B::C::D

- Watch Video Solution

200. Given a sequence t_{1}, t_{2}, \ldots. if its possible to find a function $\mathrm{f}(\mathrm{r})$ such that $t_{r}=f(r+1)-f(r)$
then $\sum_{r=1}^{n} t_{r}=f(n+1)-f(1)$
Sum of the $\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)}$ is
A. 1
B. 44198
C. 44200
D. 44204

Answer: C

D View Text Solution

201. Given a sequence t_{1}, t_{2}, \ldots. if its possible to find a function $f(r)$ such that $t_{r}=f(r+1)-f(r)$
then $\sum_{r=1}^{n} t_{r}=f(n+1)-f(1)$
Sum of the $\sum_{r=1}^{n} r(r+3)(r+6)$ is

$$
\text { A. } 1 / 3 n(n+3)(n+9)
$$

B. $n^{4}+7 n^{2}+20 n$
C. $1 / 4 n(n+3)(n+5)(n+9)$
D. None of these

Answer: D

- Watch Video Solution

202. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ be the arithmetic means between -2 and 1027 and let $g_{1}, g_{2}, g_{3} \ldots \ldots \ldots, g_{n}$ be the geometric mean between 1 and 1024. $g_{1} g_{2} \ldots \ldots g_{n}=2^{45}$ and $a_{1}+a_{2}+a_{3}+\ldots .+a_{m}=1025 \times 171$ The value of n is :
A. 5
B. 9
C. 11
D. None of these

- Watch Video Solution

203. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ be the arithmetic means between -2 and 1027 and let $g_{1}, g_{2}, g_{3} \ldots \ldots \ldots, g_{n}$ be the geometric mean between 1 and 1024. $g_{1} g_{2} \ldots \ldots g_{n}=2^{45}$ and $a_{1}+a_{2}+a_{3}+\ldots .+a_{m}=1025 \times 171$ The value of m is :
A. 339
B. 342
C. 345
D. None of these

Answer: B

D Watch Video Solution

204. If A, G and H are respectively arithmetic, geometric and harmonic means between a and b both being unequal and positive, then
$A=\frac{a+b}{2} \Rightarrow a+b=2 A, G=\sqrt{a} b \Rightarrow a b=G^{2}$
$H=\frac{2 a b}{a+b} \Rightarrow G^{2}=A H$.
From above discussion we can say that a, b are the roots of the equation
$x^{2}-2 A x+G^{2}=0$
Now, quadratic equation $x^{2}-P x+Q=0$ and quadratic equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ have a root common and satisfy the relation $\mathrm{b}=\frac{2 a c}{a+c}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers.

The value of [P] is (where [.] denotes the greatest integer function)
A. -2
B. -1
C. 2
D. 1

Answer: C

205. If A, G and H are respectively arithmetic, geometric and harmonic means between a and b both being unequal and positive, then
$A=\frac{a+b}{2} \Rightarrow a+b=2 A, G=\sqrt{a} b \Rightarrow a b=G^{2}$
$H=\frac{2 a b}{a+b} \Rightarrow G^{2}=A H$.
From above discussion we can say that a, b are the roots of the equation
$x^{2}-2 A x+G^{2}=0$
Now, quadratic equation $x^{2}-P x+Q=0$ and quadratic equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ have a root common and satisfy the relation $\mathrm{b}=\frac{2 a c}{a+c}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers.

The value of [2P-Q] is (where [.] denotes the greatest integer function)
A. 2
B. 3
C. 5
D. 6

Answer: B

206. Let a_{1}, a_{2}, a_{3}...... be an A.P. Prove that
$\sum_{n=1}^{2 m}(-1)^{n-1} a_{n}^{2}=\frac{m}{2 m-1}\left(a_{1}^{2}-a_{2 m}^{2}\right)$.

(Watch Video Solution

207. A three digit number whose consecutive digits from a G.P. If we subtract 792 from this number, we get a number consisting of the same digits written in the reverse order. Now if we increase the second digit of the required number by 2 , the resulting digits will from an A.P. find the number in the tenth place

(Watch Video Solution

208. If a_{n} denotes the coefficient of x^{n} in $\mathrm{P}(\mathrm{x})=$ $\left(1+x+2 x^{2}+3 x^{3}+\ldots+n x^{n}\right)^{2}$. then the last digit of a_{24} must be
209. Two consecutive numbers from $1,2,3, \ldots . ., \mathrm{n}$ are removed, then arithmetic mean of the remaining numbers is $105 / 4$, then $n / 10$ must be equal to

- Watch Video Solution

210. The value of $x y z$ is 55 or $343 / 55$ according as the sequence a, x, y, z, b is an A.P. or H.P. Find the sum $(a+b)$ given that a and b are positive integers

D Watch Video Solution

211. If a, b a c are in $H P$ and if $\left(\frac{a+b}{2 a-b}\right)+\left(\frac{c+b}{2 c-b}\right)>\sqrt{\lambda \sqrt{\lambda \sqrt{\lambda \ldots \infty}}}$, then the value of λ must be
A.
B.
C.
D.

Answer:

- Watch Video Solution

212. If $\alpha_{1}, \alpha_{2}, \ldots . ., \alpha_{n}$ are in A.P, whose common difference is d , show that $\sin d\left[\sec \alpha_{1} \sec \alpha_{2}+\sec \alpha_{2} \sec \alpha_{3}+\ldots \ldots .+\sec \alpha_{n-1} \sec \alpha_{n}\right]=\tan \alpha_{n}-\tan$

- Watch Video Solution

213. 25 trees are plants in a straight line 5 metre apart from each other.

To water them the gardener must bring water for each tree separately from a well 10 metre from the first tree in line with the trees. How far will
he move in order to water all the trees beginning with the first if he starts from the well.

- Watch Video Solution

214. The nth term of a series is given by $t_{n}=\frac{n^{5}+n^{5}}{n^{4}+n^{2}+1}$ and if sum of its n terms can be expressed as $s_{n}=a_{n}^{2}+a+\frac{1}{b_{n}^{2}+b}$, where a_{n} and b_{n} are the nth terms of some arithmetic progression and a, b are some constants, then prove that $\frac{b_{n}}{a_{n}}$ is a constant.

- Watch Video Solution

215. If $a_{1} . a_{2} \ldots \ldots . a_{n}$ are positive and $(\mathrm{n}-1) \mathrm{s}=a_{1}+a_{2}+\ldots .+a_{n}$ then prove that
$\left(a_{1}+a_{2}+\ldots .+a_{n}\right)^{n} \geq\left(n^{2}-n\right)^{n}\left(s-a_{1}\right)\left(s-a_{2}\right) \ldots \ldots . .\left(s-a_{n}\right)$
216. Find the sum to n terms of the series
$\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots$

- Watch Video Solution

217. Evaluate, $\mathrm{S}=\sum_{n=0}^{\infty} \frac{2^{n}}{a^{2^{n}}+1}($ where $a>1)$

- Watch Video Solution

218. Evaluate, $\sum_{i=0}^{i} \infty \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^{i} \cdot 3^{j} \cdot 3^{k}}(i \neq j \neq k)$

- Watch Video Solution

219. If a, b, c, d are four distinct numbers in A.P., show that
$\frac{1}{a}+\frac{1}{d}>\frac{1}{b}+\frac{1}{c}>\frac{4}{a+d}$
220. Let $A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots .+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$, B_n $=1$ - A_n. Find a least odd natural number n_{0}, so that $B_{n}>A_{n} \forall n \geq n_{0}$.

- Watch Video Solution

221. Let the harmonic mean of two positive real numbers a and b be 4 . If q is a positive real number such that $\mathrm{a}, 5, \mathrm{q}, \mathrm{b}$ is an arithmetic progression , then the value (s) of $|q-a|$ is (are)
A. 1
B. 2
C. 3
D. 5

Answer: B::D

222. Suppose that all the terms of an arithmetic progression (A.P) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is $6: 11$ and the seventh terms lies in between 130 and 140 , then the common difference of this A.P. is

- Watch Video Solution

223. The sum of first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots \ldots .$. is
A. 96
B. 142
C. 192
D. 71

Answer: A

- Watch Video Solution

224. If m is the A.M. of two distinct real number I and $\mathrm{n}(\mathrm{I}, \mathrm{n}>1)$ and G_{1}, G_{2} and G_{3} are three geometric means between I and n , then $G_{1}^{4}+2 G_{2}^{4}+G_{3}^{4}$ equals.
A. $4 l m^{2} n$
B. $4 l m n^{2}$
C. $4 l^{2} m^{2} n^{2}$
D. $4 l^{2} m n$

Answer: A

- Watch Video Solution

225. If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\frac{x^{4}}{8}+\ldots.\right)=\frac{\pi}{6}$ where $|x|<2$ then the value of x is
A. 44230
B. 44257
C. $2 / 3$
D. $-3 / 2$

Answer: A

- Watch Video Solution

226. Let $\mathrm{d}(\mathrm{n})$ denotes the number of divisors of n including 1 and itself. Then $\mathrm{d}(225), \mathrm{d}(1125)$ and $\mathrm{d}(640)$ are
A. in $A P$
B. in HP
C. in GP
D. consecutive integers

Answer: C

227. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive integers such that b / a is an integer. if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in geometric progression and the arithmetic mean of a, b, c is $b+2$, then the value of $\frac{a^{2}+a-14}{a+1}$ is

- Watch Video Solution

228. If $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9}=k(10)^{9}$ then k is equal to :
A. 100
B. 110
C. 121/10
D. $441 / 100$

Answer: A

229. Three positive numbers from an increasing G.P. If the middle term in this G.P is double, the new numbers are in A.P then the common ratio of the G.P. is :
A. $2-\sqrt{3}$
B. $2+\sqrt{3}$
C. $\sqrt{2}+\sqrt{3}$
D. $3+\sqrt{2}$

Answer: B

- Watch Video Solution

230. Let $f(x)=x+1 / 2$, then the number of real values of x for which the three unequal terms $f(x), f(2 x), f(4 x)$ are in H.P. is
A. 1
B. 0
C. 3
D. 2

Answer: A

- Watch Video Solution

231. If a, b and c are positive numbers in a G.P., then the roots of the quadratic equation $\left(\log _{e} a\right) x^{2}-\left(2 \log _{e} b\right) x .+\left(\log _{e} c\right)=0$ are
A. -1 and $\frac{\log _{e} c}{\log _{e} a}$
B. 1 and $\frac{\log _{e} c}{\log _{e} a}$
C. 1 and $\left(\log _{e} c\right)$
D. -1 and $\left(\log _{e} a\right)$

Answer: C

- Watch Video Solution

232. The minimum value of $2^{\sin x}+2^{\cos x}$ is
A. $2^{1-\frac{1}{\sqrt{2}}}$
B. $2^{1+\frac{1}{\sqrt{2}}}$
C. $2 \sqrt{2}$
D. 2

Answer: A

233. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in A.P and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are also in A.P.,then
A. $2 x=3 y=6 z$
B. $6 x=3 y=2 z$
C. $6 x=4 y=3 z$
D. $x=y=z$

- Watch Video Solution

234. The sum of first 20 terms of the sequence $0.7,0.77,0.777, . .$. is
A. $\frac{7}{9}\left(99-10^{-20}\right)$
B. $\frac{7}{9}\left(99+10^{-20}\right)$
C. $\frac{7}{81}\left(179+10^{-20}\right)$
D. $\frac{7}{81}\left(179-10^{-20}\right)$

Answer: C

D Watch Video Solution

235. The value of $1000\left[\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\ldots \ldots \ldots+\frac{1}{999 \times 1000}\right]$
A. 1000
B. 999
C. 1001
D. $1 / 999$

Answer: B

- Watch Video Solution

236. Let $f: R \rightarrow R$ be such that f is is injective and $f(x) f(y)=f(x+y)$ for all $x, y \in R$. If $f(x), f(y), f(z)$ are in G.P. then x, y, z are in
A. A.P always
B. G.P always
C. A.P depending on the values of x, y, z
D. G.P depending on the values of x, y, z
237. Five number are in H.P. The middle term is 1 and the ratio of the second and the fourth terms is $2: 1$. Then the sum of the first three terms is
A. $\frac{11}{2}$
B. 5
C. 2
D. $\frac{14}{3}$

Answer: A

Watch Video Solution

238. If a, b, c are in A.P ., then the straight line $a x+2 b y+c=0$ will always pass through a fixed point whose coordinates are
A. $(1,-1)$
B. $(-1,1)$
C. $(1,-2)$
D. $(-2,1)$

Answer: A

- Watch Video Solution

239. Six possible number are in G.P . such that their product is 1000 . If the fourth term is 1 , then the last term is
A. 1000
B. 100
C. $1 / 100$
D. 1/1000

Answer: C

240. Five number are in A.P. with common difference $\neq 0$. If the 1 st , 3 rd , and 4 th terms are in G.P. , then
A. the 5 th term is always 0
B. the 1st term is always 0
C. the middle term is always 0
D. the middle term is always -2

Answer: A

- Watch Video Solution

241. Let $\mathrm{f}(\mathrm{x})=x\left(\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}\right), x>1$, Then
A. $f(x) \leq 1$
B. $1<f(x) \leq 2$
C. $2<f(x) \leq 3$
D. $f(x)>3$

Answer: D

- Watch Video Solution

242. Let a_{1}, a_{2}, \ldots be in harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<0$
A. 22
B. 23
C. 24
D. 25

Answer: D

243. Statement 1 : The sum of the series
$1+(1+2+4)+(4+6+9)+(9+12+16)+\ldots+(361+380+400)$ is 8000.
Statement 2 : $\sum_{k=1}^{n}\left(k^{3}(k-1)^{3}\right)=n^{3}$ for any natural number n .
A. Statement 1 is false, statement 2 is true
B. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is true, statement 2 is a not correct explanation for statement 1.
D. Statement 1 is true, statement 2 is false.

Answer: B

- Watch Video Solution

244. If 100 times the 100 th term of an AP with non zero common different equals the 50 times its 50th term, then the 150th term of this AP
A. -150
B. 150 times its 50 th term
C. 150
D. zero

Answer: D

- Watch Video Solution

245. Six number are in A.P. such that their sum in 3 . The first term is 4 times the third term. Then the fifth term is
A. -15
B. -3
C. 9
D. -4
246. If $64,27,36$ are the Pth, Qth and Rth terms of a G.P., then $P+2 Q$ is equal to
A. R
B. 2 R
C. 3R
D. 4 R

Answer: C

- Watch Video Solution

247. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{p}, \mathrm{q}, \mathrm{r}$ be positive real numbers such that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. and $a^{p}=b^{q}=c^{r}$. Then
A. p,q,r are in G.P
B. p,q,r are in A.P
C. p,q,r are in H.P
D. p^{2}, q^{2}, r^{2} are in A.P.

Answer: C

- Watch Video Solution

248. Let S_{k} be the sum of an infinite G.P. series whose first term is k and common ratio is $\frac{k}{k+1}(k>0)$. Then the value of $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{s_{k}}$ is equal to
A. $\log _{e} 4$
B. $\log _{e} 2-1$
C. $1-\log _{e} 2$
D. $1-\log _{e} 4$

- Watch Video Solution

249. Let $a_{1}, a_{2}, \ldots ., a_{100}$ be an arithmetic progression with $a_{1}=3$ and $S_{p}=\sum_{j=1}^{p} a_{j}, 1 \leq p \leq 100 . F$ or any $\int e \geq$ rnwith 1 le $n \quad$ le 20
$, \leq t m=5 n, \quad$ if \quad S_m $_{-} /$S_ndoes $\neg n$, thena_ $2{ }^{2}$ is

- Watch Video Solution

250. A man saved Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increase by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11,040 after
A. 19 months
B. 20 months
C. 21 months
D. 18 months

Answer: C

- Watch Video Solution

251. The sequence $\log a, \frac{\log a^{2}}{b}, \frac{\log a^{3}}{b^{2}}, \ldots$. is
A. a G.P.
B. an A.P.
C. a H.P.
D. Both a G.P. and H.P.

Answer: B

- Watch Video Solution

252. The harmonic mean of two numbers is 4 . Their arithmetic mean A and the geometric mean A and the geometric mean G satisfy the relation $2 A+G^{2}=27$. Find the numbers.

[^0]: Watch Video Solution

