d'doubtnut

India's Number 1 Education App

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

QUADRATIC EQUATION

Question Bank

1. Solve the equation $4 x^{2}+9=0$ by factorisation mathod.

- Watch Video Solution

2. Solve the equation $x^{2}-4 x+13=0$ by factorisation method.
3. Solve the equation $9 x^{2}-12 x+20=0$ by factorisation mehod.

- Watch Video Solution

4. Solve the quadratic equation $2 x^{2}-4 x+3=0$ by using the general expression for the roots of a quadratic equation.

- Watch Video Solution

5. Solve the equation $25 x^{2}-30 x+11=0$ by using the general expression for the roots of a quadratic equation.

- Watch Video Solution

6. Solve $x^{2}-\sqrt{2} i x+12$ by factrisation method.

- Watch Video Solution

7. Solve $3 x^{2}+7 i x+6=0$ by factorisation method.

- Watch Video Solution

8. Solve : $x^{2}-(3 \sqrt{2}-2 i) x-6 \sqrt{2} i=0$

- Watch Video Solution

9. Find the square roots: i

- Watch Video Solution

10. Find the square root of $-5-12 i$

- Watch Video Solution

11. Solve $x^{2}-7 i x-12=0$
12. Solve $x^{2}-(5+i) x+(18-i)=0$

- Watch Video Solution

13. Find the square root of ($3+4 i$)

- Watch Video Solution

14. Solve : $i x^{2}-4 x-4 i=0$

- Watch Video Solution

15. If exactly one root of $5 x^{2}+(a+1) x+a=0$ lies in the inteval (1,3),prove that $-12<a<-3$.
16. Solve $: x^{2}+\left(\frac{a x}{x+a}\right)^{2}=3 a^{2}, x \neq-a$

Watch Video Solution

17. Solve : $x^{2}+(\sqrt{3}-2 \sqrt{2} i) x-2 \sqrt{6} i=0$

- Watch Video Solution

18. Solve $2 x^{2}-(3+7 i) x-(3-9 i)=0$.

- Watch Video Solution

19. Solve $\frac{x^{2}-2 x-3}{x+1}=0$.

Watch Video Solution
20. Solve $2 x^{2}+x+1=0$

- Watch Video Solution

21. Solve $x^{2}+x+\frac{1}{\sqrt{2}}=0$

- Watch Video Solution

22. Form the quadratic equation, one of whose root is $2+\sqrt{3}$

- Watch Video Solution

23. For what value of m will the equation
$x^{2}-(1+3 m) x+(3+2 m)=0$ have equal roots ?

- Watch Video Solution

24. If α and $B \eta$ are roots of $a x^{2}+b x+c=0$, find the value of $(a \alpha+b)^{-3}+(a B \eta+b)^{-3}$

- Watch Video Solution

25. Prove that both the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c)=0$ are real.

- Watch Video Solution

26. Prove that the roots of $a x^{2}+2 b x+c=0$
will be real and distinct if and only if the roots of $(a+c)\left(a x^{2}+2 b x+c\right)$
$=2\left(a c-b^{2}\right)\left(x^{2}+1\right)$ are imaginary

- Watch Video Solution

27. Find all roots of equation $x^{4}+2 x^{3}-16 x^{2}-22 x+7=0$ if one root is $2+\sqrt{3}$

Watch Video Solution
28. Solve for $\mathrm{x}: 4^{x}+9^{x}=2\left(6^{x}\right)$

- Watch Video Solution

29. Solve for $\mathrm{x}: \log _{a} x+\log _{x} a=2$

- Watch Video Solution

30. Solve $x^{-2}+2 x^{-1}-3=0$

- Watch Video Solution

31. Let $f(x)=A x^{2}+B x+c$, where A, B, C are real numbers. Prove that if $f(x)$ is an integer whenever x is an integer, then the numbers $2 A, A+B$, and C are all integer. Conversely, prove that if the number $2 A, A+B$, and C are all integers, then $f(x)$ is an integer whenever x is integer.

- Watch Video Solution

32. If $\mathrm{f}(\mathrm{x})$ is a quadratic expression such that $\mathrm{f}(\mathrm{x})>0 \forall x \in R$, if $\mathrm{g}(\mathrm{x})$ is defined as $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}^{\prime \prime}(\mathrm{x})$, then prove $\mathrm{g}(\mathrm{x})>0 \forall x \in R$.

- Watch Video Solution

33. If $(c>0)$ and $2 a x^{2}+3 b x+5 c=0$ does not have any real roots, then prove that $2 a-3 b+5 c>0$.

- Watch Video Solution

34. If $2 x^{3}+a x^{2}+b x+4=0$ (a and b are positive real numbers) has 3 real roots, then prove that $a+b \geq 6\left(2^{\frac{1}{3}}+4^{\frac{1}{3}}\right)$.

- Watch Video Solution

35. If $P(x)=a x^{2}+b x+c$, and $Q(x)=-a x^{2}+d x+c, a c \neq 0$, then prove that $P(x) . Q(x)=0$ has at least two real roots.

D Watch Video Solution

36. If α, β, gaama are the roots of the cubic $x^{3}+q x+r=0$, find the equation whose roots are $(\alpha-\beta)^{2},(\beta-\gamma)^{2},(\gamma-\alpha)^{2}$.

(Watch Video Solution

37. $\mathrm{f}(\mathrm{x})=x^{2}-(m-3) x+m=0$ is a quadratic equation, find values of m for which
both roots are positive

- Watch Video Solution

38. $\mathrm{f}(\mathrm{x})=x^{2}-(m-3) x+m=0$ is a quadratic equation, find values of m for which
both roots are negative

- Watch Video Solution

39. $f(x)=x^{2}-(m-3) x+m=0$ is a quadratic equation, find values of m for which
roots are opposite in sign

- Watch Video Solution

40. $f(x)=x^{2}-(m-3) x+m=0$ is a quadratic equation, find values of m for which
one root is smaller than 2 , other root is greater than 2

- Watch Video Solution

41. $f(x)=x^{2}-(m-3) x+m=0$ is a quadratic equation, find values of m for which
exactly one root lies in the interval [2,3]

- Watch Video Solution

42. $f(x)=x^{2}-(m-3) x+m=0$ is a quadratic equation, find values of m for which
both roots lie in the interval $[2,3]$

- Watch Video Solution

43. If α be the root of equation $a x^{2}+b x+c=0$ and β be root of $-a x^{2}+b x+c=0$ then prove that there will be a root of the equation
$a x^{2}+2 b x+2 c=0$ lying between α and β, where a and c are non zero.

- Watch Video Solution

44. Find the values of ' m ' for which the equation $x^{4}-(m-3) x^{2}+m=0$ has

Four real roots

- Watch Video Solution

45. Find the values of ' m ' for which the equation $x^{4}-(m-3) x^{2}+m=0$ has

Four real roots

- Watch Video Solution

46. Find the values of ' m ' for which the equation $x^{4}-(m-3) x^{2}+m=0$ has

- Watch Video Solution

47. For what value of 'm' $\in R$, both roots of the equation
$x^{2}-6 m x+9 m^{2}-2 m+2=0$ exceed $3 ?$

- Watch Video Solution

48. Find the value(s) of 'a' for which the inequality $\tan ^{2} x+$ $(a+1) \tan x-(a-3)<0$, is true for at least one $x \in\left(0, \frac{\pi}{2}\right)$.

- Watch Video Solution

49. Find the common root of $x^{2}-3 x+2=0$ and $x^{2}+x-2=0$

- Watch Video Solution

50. Find the condition if equations $a x^{2}+b x+c=0$ and $x^{2}+2 x+3=0$ have a common root. ($a, b, c \in R$)

- Watch Video Solution

51. If $x^{2}+a x+b c=0$ and $x^{2}+b x+a c=0$ have a common root, show their other root satisfies the equation $x^{2}+c x+a b=0$

- Watch Video Solution

52. If α, β are the roots $x^{2}+p x+q=0$ and γ, δ are the roots of $x^{2}+r x+s=0$, evaluate $(\alpha-\gamma)(\alpha-\delta)(\beta-\gamma)(\beta-\delta)$ in terms of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s . Deduce the condition that the equation may have a common root.

- Watch Video Solution

53. Find condition if $a x^{3}+b x^{2}+c x+d=0$, has exactly one real root, $(a, b, c, d \in R)$

Watch Video Solution

54.

Let

$$
\equiv \frac{(x-a)(x-b)}{(c-a)(c-b)} \cdot c^{2}+\frac{(x-b)(x-c)}{(a-b)(a-c)} \cdot a^{2}+\frac{(x-c)(x-a)}{(b-c)(b-a)} \cdot b^{2}
$$

Prove that $\mathrm{P}(\mathrm{x})$ has the properly that $\mathrm{P}(\mathrm{y})=y^{2}$ for all $\mathrm{y} \in \mathrm{R}$.

- Watch Video Solution

55. Solve the equation $\left(x^{2}-6 x\right)^{2}=81+2(x-3)^{2}$

- Watch Video Solution

56. Show $\mathrm{f}(\mathrm{x})=x^{3}+p x+q=0$ has a repeated root if $4 p^{3}+27 q^{2}=0$
57. Show $x^{5}-2 x^{2}+7=0$ has atleast two imaginary roots.

- Watch Video Solution

58. Solution set of x satisfying $\left|\frac{x}{x-1}\right|+|x|=\frac{x^{2}}{|x-1|}$ is

- Watch Video Solution

59. Solve the equation
$|x-|4-x||-2 x=4$

- Watch Video Solution

60. If α, β roots of $a x^{2}+b x+c=0$. Find the quadratic equation whose roots are :
$2 \alpha, 2 \beta$
61. If α, β roots of $a x^{2}+b x+c=0$. Find the quadratic equation whose roots are :

$$
\alpha+3, \beta+3
$$

- Watch Video Solution

62. If α, β roots of $a x^{2}+b x+c=0$. Find the quadratic equation whose roots are :
$\frac{\alpha}{4}, \frac{\beta}{4}$

- Watch Video Solution

63. If α, β roots of $a x^{2}+b x+c=0$. Find the quadratic equation whose roots are :
$\frac{1}{\alpha}, \frac{1}{\beta}$
64. Find two negative integers whose difference is 3 and sum of their squares is 89.

D Watch Video Solution

65. If α and β are roots of $a x^{2}+b x+c=0$
then prove that $\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)=\left(\frac{b^{2}-2 a c}{a c}\right)$

- Watch Video Solution

66. If $\left(p^{2}+2\right) x^{2}+2 p^{2} x+\left(P^{2}-4\right)=0$ has root of opposite sign,then find the range of ' p '.

- Watch Video Solution

67. Find the condition such that the quadratic equations $a x^{2}+b x+c=0$ and $\frac{x^{2}}{a}+\frac{x}{b}+\frac{1}{c}=0$ have exactly one root in common.

- Watch Video Solution

68. If $(x-1)$ is the factors fo polynomial $x^{3}-p x+q$, then prove that $p-q=1$

- Watch Video Solution

69. Two roots of the equation, $x^{3}+q x^{2}+11 x-p=0$ are 2 and 3 , find ($p-$ q)

- Watch Video Solution

70. Find the values of K for which the inequality $(x-3 k)(x-k-3)<0$ is satisfied for all x such that $1 \leq \mathrm{x} \leq 3$.
71. Let α and β be the roots of the equation $a x^{2}+2 b x+c=0$ and $\alpha+\gamma$ and $\beta+\gamma$ be the roots of $A x^{2}+2 B x+C=0$. Then prove that $A^{2}\left(b^{2}-a c\right)=a^{2}\left(B^{2}-A C\right)$.

- Watch Video Solution

72. If $\sin \theta, \cos \theta$ are the roots of the equation $a x^{2}+b x+c=0$ then find the value of $\frac{(a+c)^{2}}{b^{2}+c^{2}}$

- Watch Video Solution

73. If the roots α and β of the quadratic equation $a x^{2}+b x+c=0$ are real and of opposite sign.then show that roots of the equation $\alpha(x-\beta)^{2}+\beta(x-\alpha)^{2}=0$ are also real and of opposite sign.

- Watch Video Solution

74. If $x^{2}-p x+4>0$ for all real ' x ' then find ' p '

- Watch Video Solution

75. For $\mathrm{x} \in \mathrm{R}$, Prove that the given expression $\frac{x^{2}+34 x-71}{x^{2}+2 x-7}$ can not lie between 5 and 9 .

- Watch Video Solution

76. If $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}: \mathrm{a} \neq 0$ and the quadratic equation $a x^{2}+b x+c=0$ has no real root, then show that $(a+b+c) c>0$

- Watch Video Solution

77. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are such that one root in greater than 3 , and the other is smaller than 3
78. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be real. If $a x^{2}+b x+c=0$ has two real roots α, β where $\alpha<-1$ and $\beta>1$, then show that $1+\frac{c}{a}+\left|\frac{b}{a}\right|<0$.

- Watch Video Solution

79. Find the value of a which the equation $4 x^{2}-2 x+a=0$ has two roots lying in the interval $(-1,1)$

- Watch Video Solution

80. Find the set of all x for which :
$\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{x+1}$

- Watch Video Solution

81. Solve the following inequalities:
$\frac{x-1}{x^{2}-4 x+3}<1$

- Watch Video Solution

82. Solve the following inequalities :
$x^{2}-2 x-1$
$x+1<x$

- Watch Video Solution

83. Solve the following inequalities:
$\frac{x-1}{x}-\frac{x+1}{x-1}<2$

- Watch Video Solution

84. Solve the equation $\left(x^{2}-6 x\right)^{2}=81+2(x-3)^{2}$
85. Solve $\log _{\frac{1}{3}}\left(x^{2}-3 x+5\right)<-1$

- Watch Video Solution

86. If α, β, γ are the roots of $x^{3}+a x+b=0$, then the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$

- Watch Video Solution

87. Find the number of redered pairs (x, y) satisfying $x^{2}+1=y$ and
$y^{2}+1=x$

- Watch Video Solution

88. The roots of the quadratic equation $2 x^{2}+3 x+1=0$ are
B. Rational
C. Imaginary
D. none of these

Answer: B

D Watch Video Solution

89. The number of values of 'a' for which
$\left(a^{2}-3 a+2\right) x^{2}+\left(a^{2}-5 a+6\right) x+a^{2}-4=0$ is an identity is
A. 0
B. 2
C. 1
D. 3

Answer: C

90. If a and b are integers and $2-\sqrt{3}$ is a root of the equation $3 x^{2}+a x+b=0$, then value of b is

- Watch Video Solution

91. If the sum of the roots of $a x^{2}+b x+c=0$ is equal to the sum of their squares, then
A. $a^{\wedge} 2+b^{\wedge} 2=c^{\wedge} 2$
B. $a^{\wedge} 2+b^{\wedge} 2=a+b$
C. $2 a c=a b+b^{\wedge} 2$
D. $2 c+b=0$

Answer: D

- Watch Video Solution

92. If x is real number, then the minimum value of $x^{2}+x+1$ is
A. 44289
B. 1
C. 3
D. None of these

Answer: A

- Watch Video Solution

93. If α and β are the roots of $a x^{2}+b x+c=0$, then the equation $a x^{2}-b x(x-1)+c(x-1)^{2}=0$ has roots
A. $\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}$
B. $\frac{1-\alpha}{\alpha}, \frac{1-\beta}{\beta}$
C. $\frac{\alpha}{1+\alpha}, \frac{\beta}{1+\beta}$
D. $\frac{\alpha+1}{\alpha}, \frac{\beta+1}{\beta}$

Answer: C

- Watch Video Solution

94. If the quadratic equations $a x^{2}+2 c x+b=0$ and $a x^{2}+2 b x+c=0$ (b $\neq 0$) have a common root, then $a+4 b+4 c$ is equal to
A. -2
B. -1
C. 0
D. 1

Answer: C

- Watch Video Solution

95. The value of 'a' for which the equation $x^{3}+a x+1=0$ and $x^{4}+a x^{2}+1=0$, we have a common root is
A. $a=2$
B. $a=-2$
C. $a=0$
D. None of these

Answer: B

- Watch Video Solution

96. The coefficient of ' x ' in the quadratic equation $a x^{2}+b x+c=0$ was wrongly taken as 17 in place of 13 and its roots were found to be -2 and -15 , the actual roots of the equation are
A. -2 and 15
B. -3 and -10
C. -4 and -9
D. -5 and -6

Answer: B

- Watch Video Solution

97. If p and q are the roots of the equation $x^{2}+p x+q=0$, then
A. $p=1, q=-2$
B. $p=0, q=1$
C. $p=-2, q=0$
D. $p=-2, q=1$

Answer: A

Watch Video Solution

98. If one root of the equation $x^{2}+p x+12=0$ is 4 , while the equation
$x^{2}+p x+q=0$ has equal roots, then the value of q is
A. 4
B. 12
C. 3
D. $49 / 4$

Answer: D

- Watch Video Solution

99. If α, β be the roots of $x^{2}-a(x-1)+b=0$, then the value of $\frac{1}{\alpha^{2}-a \alpha}+\frac{1}{\beta^{2}-a \beta}+\frac{2}{a+b}$ is
A. $4 / a+b$
B. $1 / a+b$
C. 0
D. -1
100. If one root of the equation $x^{2}+(1-3 i) x-2(1+i)=0$ is $-1+\mathrm{i}$, then the other root is
A. $-1-i$
B. $(-1-i)$
C. i
D. 2 i

Answer: D

- Watch Video Solution

101. If α, β roots of $a x^{2}+b x+c=0$. Find the quadratic equation whose roots are :
$\frac{\alpha}{2}, \frac{\beta}{2}$
102. If α, β be the two roots of the equation $x^{2}+x+1=0$, then the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is
A. $x^{2}+x+1=0$
B. $x^{2}-x+1=0$
C. $x^{2}-x-1=0$
D. $x^{2}+x-1=0$

Answer: A

- Watch Video Solution

103. The harmonic mean of the roots of the equation [Math Processing Error] is'
A. 2
B. 4
C. 6
D. 8

Answer: B

- View Text Solution

104. The equation $x^{3}+5 x^{2}+p x+q=0$ and $x^{3}+7 x^{2}+p x+r=0$ have two roots in common. If their third roots be γ_{1} and γ_{2} respectively, then the ordered pair $\left(\gamma_{1}, \gamma_{2}\right)$ is
A. $(5,7)$
B. $(-5,-7)$
C. (-5,7)
D. $(5,-7)$

Answer: B

105. If the roots of $x^{2}+b x+c=0$ are both real and greater than unity, then $(b+c+1)$
A. may be less than zero
B. may be equal to zero
C. must be greater than zero
D. must be less than zero

Answer: C

- Watch Video Solution

106. Value of p, so that 6 lies between roots of the equation $x^{2}+2(p-3) x+9=0$
A. $(-\infty,+\infty)$
B. $\left(-\infty,-\frac{3}{4}\right)$
C. $(-\infty, 0) \cup(6, \infty)$
D. none of these

Answer: B

- Watch Video Solution

107. If $x^{2}-(a-3) x+a=0$ has at least one positive root, then
A. $a \in(-\infty, 0) \cup[7,9]$
B. $a \in(-\infty, 0) \cup[7,9)$
C. $a \in(-\infty, 0) \cup[9, \infty]$
D. none of these

Answer: C

- Watch Video Solution

108. If the roots of the equation $x^{2}-2 a x+a^{2}+a-3=0$ are less than 3 then
A. $a<2$
B. $2 \leq a \leq 3$
C. $3<a \leq 4$
D. $a>4$

Answer: A

- Watch Video Solution

109. The number of solutions of
$\log _{2}(x-1)=2 \log _{2}(x-3)$ is
A. 2
B. 1
C. 6

D. 7

Answer: B

- Watch Video Solution

110. If $x=(\sqrt{13}+2 \sqrt{3})$, then $x+1 / x$ is equal to ?

- Watch Video Solution

111. The sum of all real roots of the equation $|x-2|^{2}+|x-2|-2=0$ is
A. 7
B. 4
C. 1
D. 5
112. If α is a root of $4 x^{2}+2 x-1=0$, then the other root is
A. $4 \alpha^{3}-3 \alpha$
B. $3 \alpha^{3}-4 \alpha$
C. $3 \alpha^{3}+4 \alpha$
D. $4 \alpha^{3}+3 \alpha$

Answer: B

- Watch Video Solution

113. If $e^{\cos x}-e^{-\cos x}=4$, then the value of the $\cos x$ is
A. $\log (2+\sqrt{5})$
B. $-\log (2+\sqrt{5})$
C. $\log (-2+\sqrt{5})$
D. none of these

Answer: D

- Watch Video Solution

114. If $a<b<c<d$, then the roots of equation
$(x-a)(x-c)+2(x-b)(x-d)=0$, are
A. Non-real complex
B. Real and distinct
C. Real and equal
D. Data insufficient

Answer: B

- Watch Video Solution

115. If α and $\beta(\alpha<\beta)$ are the roots of the equation $x^{2}+b x+c=0$, where $(c<0<b)$, then
A. $0<\alpha<\beta$
B. $\alpha<0<\beta<|\alpha|$
C. $\alpha<\beta<0$
D. $\alpha<0<|\alpha|<\beta$

Answer: B

- Watch Video Solution

116. If \tan of angles A, B, C are the solutions of the equations $\tan ^{3} x+3 k \tan ^{2} x-3 \tan x+k=0$, then the triangle $A B C$ is
A. an isosceles triangle
B. an equilateral triangle
C. a right angled triangle
D. none of these

Answer: D

- Watch Video Solution

117. The number of solutions of the equation $\sin \left(e^{x}\right)=5^{x}+5^{-x}$ is
A. 0
B. 1
C. 2
D. infinitely many

Answer: A

- Watch Video Solution

118. If $p(x)$ be a polynomial satisfying the identity $p\left(x^{2}\right)+2 x^{2}+10 x=2 x p(x+1)+3$, then $\mathrm{p}(\mathrm{x})$ is given by
A. $2 x+3$
B. $2 x-3$
C. $3 x+2$
D. $3 x-2$

Answer: A

- Watch Video Solution

119. If $>a$, then the equation $(x-a)(x-b)-1=0$, has
A. Both the root in $[a, b]$
B. Both root in $(-\infty, a)$
C. Both roots in (b, ∞)
D. one root in $(-\infty, a)$ and other in (b, ∞)

- Watch Video Solution

120. The value of α and β such that equation $x^{2}+2 x+2+e^{a}-\sin \beta=0$ having real roots.
A. $\alpha, \beta \in R$
B. $\alpha \in(0,1), \beta \in\left(\frac{\pi}{2}, 2 \pi\right)$
C. $\alpha \in(0, \infty) \operatorname{and} \beta \in\left(\frac{\pi}{2}, \pi\right)$
D. none of these

Answer: D

- View Text Solution

121. The values of 'a' for which
$x^{2}+a x+\sin ^{-1}\left(x^{2}-4 x+5\right)+\cos ^{-1}\left(x^{2}-4 x+5\right)=0$, has at least
one solution, is
A. $(-\infty,-\sqrt{2} \pi) \cup(\sqrt{2} \pi, \infty)$
B. $-2+\pi$
C. $(-\infty,-\sqrt{2} \pi] \cup[\sqrt{2} \pi, \infty)$
D. $-2-\frac{\pi}{4}$

Answer: D

- Watch Video Solution

122. The number of real solution to the equation $-x^{2}+x-1=\sin ^{2} x$
A. 0
B. 2
C. 3
D. 4
123. If $1,2,3$ and 4 are the roots of the equation $x^{4}+a x^{3}+b x^{2}+c x+d$ $=0$ then $a+2 b+c=$

- Watch Video Solution

124. The smallest positive x satisfying $\log _{\sin x} \cos x+\log _{\cos x}(\sin x)=2$, when $x \in\left(0, \frac{\pi}{2}\right)$, is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: A

125. The set of values of 'a' for which $x^{2}-a x+\sin ^{-1}(\sin 4)>0 \forall x \in R$ is
A. R
B. $(-2,2)$
C. ϕ
D. none of these

Answer: C

- Watch Video Solution

126.

$$
\frac{a^{3}(x-b)(x-c)(x-d)}{(a-b)(a-c)(a-d)}+\frac{b^{3}(x-c)(x-d)(x-a)}{(b-c)(b-d)(b-a)}+\frac{c^{3}(x-d)(x-a)}{(c-d)(c-a)(c}
$$

$=x^{\wedge} 3$, then the equation having
A. no solution
B. one real and two imaginary roots
C. three real roots
D. infinitely many roots

Answer: D

- View Text Solution

127. Let $\mathrm{f}(\mathrm{x})=x^{3}+3 x^{2}+6 x+2 \sin x$, then the equation
$\frac{1}{x-f(1)}+\frac{2}{x-f(2)}+\frac{3}{x-f(3)}=0$,has
A. a) 2 real roots
B. b) 1 real root
C. c) 3 real root
D. d) none of these

Answer: C

128. Integral value of x for, which $(5 x-1)<(x+1)^{2}<7 x-3$
A. $\{1,2,3,4\}$
B. $\{3\}$
C. \{2\}
D. $\{4\}$

Answer: B

- Watch Video Solution

129. If $\exp \left\{\left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots\right) \operatorname{In} 2\right\}$ satisfies the quadratic equation $x^{2}-9 x+8=0$ then the value of ${ }^{\prime}(\cos \mathrm{x}) /(\cos \mathrm{x}+\sin \mathrm{x})(0 \operatorname{lot} \mathrm{x} \mid \mathrm{tpi} / 2)$
A. $\frac{1}{\sqrt{3}+1}$
B. $\frac{1-\sqrt{3}}{2}$
C. $(1+\sqrt{3})+2$
D. none of these

- Watch Video Solution

130. The number of values of the triple (a, b, c) for which a $\cos s 2 x+b \sin ^{2} x+c=0$ is satisfied by all real x , is
A. 0
B. 2
C. 3
D. infinite

Answer: D

D Watch Video Solution

131. The sum of the real roots of the equation $|x|^{2}+|x|-6=0$ is
A. 4
B. 0
C. -1
D. none of these

Answer: B

- Watch Video Solution

132. If $b<0$, then the roots x_{1} and x_{2} of the equation $2 x^{2}+6 x+b=0$, satisfy the condition $\left(\frac{x_{1}}{x_{2}}\right)+\left(\frac{x_{2}}{x_{1}}\right)<k$ where k is equal to
A. -3
B. -5
C. -6
D. -2

Watch Video Solution

133. If $\left(2 x^{2}-3 x+1\right)\left(2 x^{2}+5 x+1\right)=9 x^{2}$,then equation has
A. four real roots
B. two real and two imaginary roots
C. all imaginary
D. none of the above

Answer: A

- Watch Video Solution

134. If α, β are the roots of $x^{2}+p x+q=0$ and also of $x^{2 n}+p^{n} x^{n}+q^{n}=0$ and if $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are root of $x^{n}+1+(x+1)^{n}=0$, then n is

> A. an integer
B. an odd integer
C. an even integer
D. none of the above

Answer: C

- Watch Video Solution

135. If $3^{x} .8^{\frac{x}{x+2}}=6$, then x equals.
A. $1,-\log _{3} 36$
B. $2,-\log _{5} 65$
C. $3,-\log _{7} 49$
D. none of the above

Answer: A

136. Value (s) of 'a' for which $a x^{2}+(a-3) x+1<0$ for at least one positive x .
A. R
B. R^{+}
C. $(0, \infty)$
D. $(-\infty, 1)$

Answer: D

137. Number of solution of $\left|x^{2}+4 x+3\right|+2 x+5=0$ is/are
A. ${ }^{x}=-4,-1+-\mathrm{sqr} \mathrm{t} 3$
B. ' $x=-4,-1-\mathrm{sqrt} 3$
C. ${ }^{x}=-4,-1+$ sqrt3
D. none of the above

D Watch Video Solution

138. If roots of $x^{2}-(a-3) x+a=0$ are such that both of them is greater than 2, then
A. $a \in[7,9]$
B. $a \in[7, \infty)$
C. $a \in[9,10)$
D. $a \in[7,9)$

Answer: C

- Watch Video Solution

139. solve the inequality $\frac{(16)^{1 / x}}{\left(2^{x+3}\right)}>1$
140. Let α, β be the roots of the equation $(x-a)(x-b)=c, c \neq 0$. Then the roots of the equation $(x-\alpha)(x-\beta)+c=0$ are :

- Watch Video Solution

141. If p and q are odd integers, then the equation $x^{2}+2 p x+2 q=0$
A. has no integral root
B. has no rational root
C. has no irrational root
D. has no imaginary root

Answer: A: B

142. If $x^{2}+m x+1=0$ and $(\mathrm{b}-\mathrm{c}) x^{2}+(c-a) x+(a-b)=0$ have both roots common,then
A. $m=-2$
B. $m=-1$
C. a, b, c are in AP
D. a,b,c are HP

Answer: A::C

D Watch Video Solution

143. Solution set of x satisfying $|x-1|+|x-2|+|x-3| \geq 6$ is
A. $0 \leq x \leq 4$
B. $x \leq-2$ or $x \geq 4$
C. $x<0$ or $x>4$
D. none of these

Answer: C

- Watch Video Solution

144. The equation $\left(\frac{x}{x+1}\right)^{2}+\left(\frac{x}{x-1}\right)^{2}=\mathrm{a}(\mathrm{a}-1)$ has
A. four real roots if a >2
B. two real roots if $1<a<2$
C. no real root if $a>-1$
D. four real roots if $a>-1$

Answer: A::B::D

- Watch Video Solution

145. If α and β are roots of the equation $a x^{2}+b x+c=0$ and, if $p x^{2}+q x+r=0$ has roots $\frac{1-\alpha}{\alpha}$ and $\frac{1-\beta}{\beta}$, then r is equal is
A. $a+2 b$
B. $a+b+c$
C. $a b+b c+c a$
D. $a b c$

Answer: B

D Watch Video Solution

146. If $a x^{2}-b x+c=0$ has two distinct roots lying in the interval (0,1), a,b,c $\in \mathrm{N}$. Then
A. $\log _{5} a b c=1$
B. $\log _{6} a b c=2$
C. $\log _{5} a b c=3$
D. $\log _{6} a b c=4$
147. If $a x^{2}+b x+c=0$ and $c x^{2}+b x+a=0(a, b, c \in R)$ have a common non-real roots,then
A. $|b|>|a|$
B. $|b|>|c|$
C. $a=+-c$
D. $a=c$

Answer: A::B::D

- Watch Video Solution

148. $\operatorname{LetP}(\mathrm{x})=0$ be the polynomial equation of least possible degree with rational coefficients having $3 \sqrt{7}+3 \sqrt{49}$ as a root. Then the product of all the roots of $P(x)=0$ is
A. 56
B. 42
C. 343
D. 7

Answer: A

- Watch Video Solution

149. If $2 \mathrm{a}+3 \mathrm{~b}+6 \mathrm{c}=0(a, b, c \in R)$, then the quadratic equation $a x^{2}+b x+c=0$ has
A. at least one root in $[0,1]$
B. at least one root in (-1,1]
C. at least one root in $[0,2]$
D. none of the above

Answer: A::B::C

150. If $(\alpha, \beta) \in \mathrm{R}$ are two of an quadratic equations, then the equation will be given as $x^{2}-(\alpha+\beta) x+\alpha \beta=0$

If for a quadratic equation,the roots α, β satisfy $\alpha^{2}+\beta^{2}=5$, $3\left(\alpha^{5}+\beta^{5}\right)=11\left(\alpha^{3}+\beta^{3}\right)$,then the equations will be
A. $x^{2} \pm 3 x+2=0$
B. $x^{2}-3 x \pm 2=0$
C. $x^{2}-3 x-2=0$
D. $\pm x^{2}+3 x+2=0$

Answer: A

- Watch Video Solution

151. If $a, b \in R$ are two of an quadratic equations,then the equation will be given as $x^{2}-(\alpha+\beta) x+\alpha \beta=0$

If $\alpha \beta=-10 / 3$ (α, β related as above) then
A. $D>0$
B. $D<0$
C. $D=0$
D. none of the above

Answer: D

- Watch Video Solution

152. Letf $(\mathrm{x})=x^{2}+b_{1} x+c_{1}, \mathrm{~g}(\mathrm{x})=x^{2}+b_{2} x+c_{2}$. Real roots fo $\mathrm{f}(\mathrm{x})=0$ be α, β and real roots $\operatorname{ofg}(\mathrm{x})=0$ be $\alpha+\delta, \beta+\delta$. Least value of $\mathrm{f}(\mathrm{x})$ be $-1 / 4$. Least value of $g(x)$ occurs at $x=7 / 2$

The least value of $g(x)$ is
A. -1
B. $-1 / 2$
C. -1/4
D. $-1 / 3$

Answer: C

- Watch Video Solution

153. Lett $\mathrm{f}(\mathrm{x})=x^{2}+b_{1} x+c_{1}, \mathrm{~g}(\mathrm{x})=x^{2}+b_{2} x+c_{2}$. Real roots fo $\mathrm{f}(\mathrm{x})=0$ be α, β and real roots ofg $(\mathrm{x})=0$ be $\alpha+\delta, \beta+\delta$.Least value of $\mathrm{f}(\mathrm{x})$ be $-1 / 4$. Least value of $g(x)$ occurs at $x=7 / 2$

The least value of $g(x)$ is
A. 6
B. -7
C. 8
D. 0

Answer: B

154. match list i with list ii

List-I

(1) If the equation
$x^{2}+2(k+1) x+(9 k-5)$
$=0$ has only negative roots, then
(2) If the inequality
(Q) $k \geq 6$
$\mathrm{x}^{2}-2(4 \mathrm{k}-1) \mathrm{x}+15 \mathrm{k}^{2}-2 \mathrm{k}$
$-7>0$ is valid for all x, then
(3) $\mathrm{If} \mathrm{x}^{2}-2(\mathrm{k}-1) \mathrm{x}+(2 \mathrm{k}+1)=0$ has both roots positive, then
(R) $\mathrm{k}<-1$ or $\mathrm{k}>0$
(4) If $2 x^{2}-2(2 k+1) x+k(k+1)=0$
(S) $k \geq 4$
have one root less than k and other roots greater than k, then
155. match the equation on left with the properties on right

List-I

(1) a $<$ b $<$ c $<$ d and
equation is $(x-a)$
$(x-c)+\pi(x-b)(x-d)=0$
(2) a>0, a + b + c <0 and equation is $a x^{2}+b x+c=0$
(3) b, c, \in, I and the equation $\mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}=0$ has rational roots
(4) $a, b, c, d \in R$ are
(S) discriminant ≥ 0
in G.P. and equation is
$\left(a^{2}+b^{2}+c^{2}\right) x^{2}+$
$2(a b+b c+c a) x$
$+b^{2}+c^{2}+d^{2}=0$

D View Text Solution

156.

If
the
quadratic
polynomial,
$y=(\cot \alpha) x^{2}+2(\sqrt{\alpha}) x+\frac{1}{2} \tan \alpha, \alpha \in[0,2 \pi]$, can \quad take negative values for all $\xi n R$, then the value of $\alpha \in\left(\left(5 \frac{\pi}{\lambda}\right), \pi\right)$,then the value of λ is

(Watch Video Solution

157. If α, β be the roots $x^{2}+p x-q=0$ and γ, δ be the roots of $x^{2}+p x+r=0, p+r \phi 0$, then $\frac{(\alpha-\gamma)(\alpha-\delta)}{(\beta-\gamma)(\beta-\delta)}$ is equal to

- Watch Video Solution

158. The smallest value of k, for which both roots of the equation $x^{2}-8 k x+16\left(k^{2}-k+1\right)=0$ are real,distinct and have values at least 4 , is

- Watch Video Solution

159. Let (x, y, z) be points with Integer coordinates satisfying the system of homogeneous equations $3 x-y-z=0,-3 x+2 y+z=0,-3 x+z=0$. Then the number of such points for which $x^{2}+y^{2}+z^{2} \leq 100$ is
160. If roots of the equation $x^{2}-10 c x-11 d=0$ are a, b and those of $x^{2}-10 a x-11 b=0$ are c, d,then the sum of the digits of $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ must be equal to (a, b, c and d are distinct numbers)

- Watch Video Solution

161. If α, β, γ are such that $\alpha+\beta+\gamma=4, \alpha^{2}+\beta^{2}+\gamma^{2}=6, \alpha^{3}+\beta^{3}+\gamma^{3}$ $=8$, then the value of $\left[\alpha^{4}+\beta^{4}+\gamma^{4}\right]$ must be equal to (where[.] denotes the greatest integer function)

- Watch Video Solution

162. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are real and distinct
163. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are equal

- Watch Video Solution

164. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are not real

- Watch Video Solution

165. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are opposite in sign
166. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are equal in magnitude but opposite in sign

- Watch Video Solution

167. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are positive

- Watch Video Solution

168. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are negative

- Watch Video Solution

169. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are such that one root in greater than 3 , and the other is smaller than 3

- Watch Video Solution

170. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are greater than 3

- Watch Video Solution

171. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are smaller than 3
172. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are such that exactly one root lies in the interval $(1,3)$

- Watch Video Solution

173. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are such that both the root lies in the interval $(1,3)$

- Watch Video Solution

174. Find the values of the parameter a for which the roots of the quadratic equation $x^{2}+2(a-1) x+a+5=0$ are such that one root is greater than 3 and the other root is smaller than 1

- Watch Video Solution

175. Show that the equation
$\frac{A^{2}}{x-a}+\frac{B^{2}}{x-b}+\frac{C^{2}}{x-c}+\ldots .+\frac{H^{2}}{x-h}=k$ has no imaginary root, where $\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots . . \mathrm{H}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c} \ldots$, , and $K \in R$.

- Watch Video Solution

176. Solve the equation $\left(x^{2}-6 x\right)^{2}=81+2(x-3)^{2}$

- Watch Video Solution

177. $\left|x^{2}-3 x-4\right|=9-\left|x^{2}-1\right|$

- Watch Video Solution

178. Find the values of 'a' which $4^{t}-(a-4) 2^{t}+\frac{9}{4} a<0, \forall t \in(1,2)$

- Watch Video Solution

179. Find values of a for which the quadratic equation $3 x^{2}+2\left(a^{2}+1\right) x+\left(a^{2}-3 a+2\right)=0$ possesses roots of opposite sign.

- Watch Video Solution

180. For what real ' p ' do the roots of $x^{2}-2 x-p^{2}+1=0$ lie between the roots of $x^{2}-(p+1) x+(p-1)=0$?

- Watch Video Solution

181. If $a x^{2}-b x+c=0$ has two distinct roots lying in the interval $(0,1), \mathrm{a}, \mathrm{b}, \mathrm{c}$ $\in \mathrm{N}$. Then

- Watch Video Solution

182. Find the values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfying the equation, $(1-\tan \theta)(1+\tan \theta) \sec ^{2} \theta+2^{\tan ^{2} \theta}=0$

- Watch Video Solution

183. Find the value of λ for which the inequality $3-|x-\lambda|>x^{2}$ is satisfied by atleast one negative $x \in R$.

- Watch Video Solution

184. The equation $x-2 /(x-1)=1-2 /(x-1)$ has
A. no root
B. one root
C. two equal roots
D. infinitely many roots
185. Let α, β be the equation $x^{2}-p x+r=0$ and $\frac{\alpha}{2}, 2 \beta$ be the roots of the equation $x^{2}-q x+r=0$. Then, the value of r is
A. $2 / 9(p-q)(2 q-p)$
B. $2 / 9(q-p)(2 p-q)$
C. $2 / 9(q-2 p)(2 q-p)$
D. $2 / 9(2 p-q)(2 q-p)$

Answer: D

- Watch Video Solution

186. If α, β, γ are the roots of the equation $x^{3}+x+1=0$, then the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$ is.
187. α, β are the roots of the equation $(a-2) x^{2}-(5-a) x-5=0$
.Find 'a' if $|\alpha-\beta|=2 \sqrt{6}$

Watch Video Solution

188. If $\mathrm{f}(\mathrm{x})=g(x)^{3}+x h(x)^{3}$ is divisible by $x^{2}+x+1$, then
A. Both $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ are divisible by ($\mathrm{x}-1$)
B. $\mathrm{g}(\mathrm{x})$ is divisible by $(\mathrm{x}-\mathrm{l})$ but not $\mathrm{h}(\mathrm{x})$
C. $\mathrm{h}(\mathrm{x})$ is divisible by $(\mathrm{x}-\mathrm{l})$ but $\operatorname{not} \mathrm{g}(\mathrm{x})$
D. None of these

Answer: A

- Watch Video Solution

189. If the roots of the equation
$a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal,then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. A.P.
B. G.P.
C. H.P.
D. None of these

Answer: C

- Watch Video Solution

190. If the roots of the equation $6 x^{3}-11 x^{2}+6 x-1=0$ are in H.P., then the roots are
A. 1,1/2,1/3
B. $1 / 2,1 / 3,1 / 4$
C. $1 / 3,1 / 4,1 / 5$
D. $1 / 4,1 / 5,1 / 6$
191. A value of b for which the equations $x^{2}+b x-1=0, \mathrm{x}^{\wedge} 2+\mathrm{x}+\mathrm{b}=0$ ' have one root in common is
A. $-\sqrt{2}$
B. $-i \sqrt{3}$
C. $i \sqrt{5}$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

192. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P., then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root if $\mathrm{d} / \mathrm{a}, \mathrm{e} / \mathrm{b}, \mathrm{f} / \mathrm{c}$ are in
B. G.P.
C. H.P.
D. None of these

Answer: A

D Watch Video Solution

193. In what interval 'm' must lie so that the root of the equation $x^{2}-2 m x+m^{2}-1=0$ lie between -2 and $4 ?$
A. $(0,1)$
B. $(-\infty, \infty)$
C. $(-1,3)$
D. $[-1,3]$

Answer: C

194. The necessary and sufficient condition for the equation $\left(1-a^{2}\right) x^{2}+2 a x-1=0$ to have roots lying in the interval $(0,1)$ is
A. $a=\phi$
B. $a>0$
C. $a<0$ or $a>2$
D. none of these

Answer: C

- Watch Video Solution

195. For all ' x ', $x^{2}+2 a x+(10-3 a)>0$, then the interval .In which 'a' lies is

$$
\text { A. } a<-5
$$

B. $-5<a<2$
C. $a>-5$
D. $2<a<5$

Answer: B

- Watch Video Solution

196. The maximum value of $2-3 x-4 x^{2}$
A. 2
B. $41 / 16$
C. 44340
D. 9/64

Answer: B

197. Number of solution of equation $\sin ^{-1} x+\cos ^{-1}\left(x^{2}\right)=\frac{\pi}{2}$
A. No value
B. greater than or equal to 1
C. less than or equal to 1
D. equal to 2

Answer: D

- Watch Video Solution

198. The equation $\sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1}$ has
A. no solution
B. one solution
C. two solution
D. more than two solutions

D Watch Video Solution

199. Solve $x^{\left[\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}\right]}=\sqrt{2}$
A. at least one real solution
B. exactly three real solutions
C. exaxtly one irrational solution
D. All the above

Answer: D

- Watch Video Solution

200. $x .[x],\{x\}$ are in G.P. then x equals
A. $\frac{\sqrt{5}-1}{2}$
B. $\frac{\sqrt{5}+1}{2}$
C. $\frac{\sqrt{5} \pm 1}{2}$
D. none of these

Answer: B

- Watch Video Solution

201. The roots of the equation $x^{\sqrt{x}}=\sqrt{x^{x}}$ are
A. 0 and 4
B. 0 and 1
C. 0,1 and 4
D. 1 and 4

Answer: D

202. The number of real solution of the equation $e^{x}=x$ is
A. 1
B. 2
C. 0
D. infinite

Answer: C

- Watch Video Solution

203. Let $\mathrm{f}(\mathrm{x})=x^{2}+b x+c$, where $\mathrm{b}, \mathrm{c} \in \mathrm{R}$. If $\mathrm{f}(\mathrm{x})$ is a factor of both $x^{4}+6 x^{2}+25$ and $3 x^{4}+4 x^{2}+28 x+5$, then the least value of $\mathrm{f}(\mathrm{x})$ is
A. 2
B. 3
C. 44232
D. 4

Answer: D

D Watch Video Solution

204. Find the remainder when the polynomial is divided by $(x-1)(x-2)$, if it leaves the remainder 2 when divided by ($x-1$) and 1 when divided by ($x-2$)
A. $3-x$
B. $x-3$
C. 0
D. None of these

Answer: A

- Watch Video Solution

205. If $\mathrm{f}(\mathrm{x})=x-[x], x(\phi 0) \in R$, where $[\mathrm{x}]$ is greatest integer less than or equal to x, then the number of solution of $f(x)+f(1 / x)=1$ are
A. 0
B. 1
C. infinite
D. 2

Answer: C

- Watch Video Solution

206. The inequation
$3^{72}\left(\frac{1}{3}\right)^{x}\left(\frac{1}{3}\right)^{\sqrt{x}}>1$ for all x belongs to
A. $[0,64)$
B. $(0,64]$
C. $(81, \infty)$
D. none of these

Watch Video Solution

207. If $\mathrm{f}(\mathrm{x})=x^{2}+2 b x+2 c^{2}, g(x)=-x^{2}-2 c x+b^{2}$, such that min
$f(x)$ gyt $\max g(x)$,then
A. no real band c
B. $0<c<b \sqrt{2}$
C. $|c|>\sqrt{2}|b|$
D. $|c|<2|b|$

Answer: C

- Watch Video Solution

208. Let $f(x)=a x^{2}+b x+c, b, c \in R, a \phi 0$, satisfying $\mathrm{f}(1)+\mathrm{f}(2)$
A. no real roots
B. 1 and 2 as real roots
C. two equal roots
D. two distinct real roots

Answer: D

D Watch Video Solution

209. The value of α, for which the equation $x^{2}-(\sin \alpha-2) x-(1+\sin \alpha)=0$ has root whose sum of square is least, is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: C

210. The equation $|x+1||x-1|=a^{2}-2 a-3$ can have real solutions for x if 'a' belongs to
A. $(-\infty,-1) \cup[3, \infty)$
B. $[1-\sqrt{5}, 1+\sqrt{5}]$
C. $[1-\sqrt{5},-1] \cup[3,1+\sqrt{5}]$
D. both (1) and (3)

Answer: A

- Watch Video Solution

211. Solution set of x satisfying $x^{2}-|x+2|+x>0$ is
A. $(-\infty,-2) \cup(2, \infty)$
B. $(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$
C. $(-\infty,-1) \cup(1, \infty)$
D. $(\sqrt{2}, \infty)$

Answer: B

- Watch Video Solution

212. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides fo a triangle where $a \neq b \neq c$ and $\lambda \in R$, if roots of the equation $x^{2}+2(a+b+c) x+3 \lambda(a b+b c+c a)=0$ are real, then
A. $\lambda<\frac{4}{3}$
B. $\lambda>\frac{5}{3}$
C. $\lambda \in\left(\frac{1}{3}, \frac{5}{3}\right)$
D. $\lambda \in\left(\frac{4}{3}, \frac{5}{3}\right)$

Answer: A

- Watch Video Solution

213. Let α, β, γ be the roots of $\mathrm{f}(\mathrm{x})=0$, where $f(x)=x^{3}+x^{2}-5 x-1$. Then $[\alpha]+[\beta]+[\gamma]$ is, where $[$.$] is greatest integer function$
A. 1
B. -2
C. 4
D. -3

Answer: D

- Watch Video Solution

214. The entire graphs of the equation $y=x^{2}+k x-x+9$ is strictly above the x-axis if and only if
A. $k<7$
B. $-5<k<7$
C. $k>-5$
D. None of these

Answer: B

- Watch Video Solution

215. The largest interval for which $x^{12}-x^{9}+x^{4}-x+1>0$ is

$$
\text { A. }-4<x \leq 0
$$

B. $0<x<1$
C. $-100<x<100$
D. $-\infty<x<\infty$

Answer: D

- Watch Video Solution

216. The quadratic equations $x^{2}-6 x+a=0$ and $x^{2}-c x+6=0$ have one root in common. Other two roots of the equations are integers and they are in the ration 4:3. Then the common root is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

217. If α and β are the roots of the equation $a x^{2}+b x+c=0, a \neq 0, a, b, c \in R$ then $\left(1+\alpha+\alpha^{2}\right)\left(1+\beta+\beta^{2}\right)=$
A. 0
B. positive
C. negative
D. None of these

Answer: D

- Watch Video Solution

218. Roots
of the quadratic
equation
$\left(x^{2}-4 x+3\right)+\lambda\left(x^{2}-6 x+8\right)=0, \lambda \in R$ will be
A. always real
B. real only when λ is positive
C. real only when λ is negative
D. always imaginary

Answer: A

219. The number of real solution of the equation $|x|^{2}-4|x|+3=0$ is
A. 4
B. 2
C. 1
D. 3

Answer: A

220. For what values of $K \in R$ the expression
$2 x^{2}+K x y+3 y^{2}-5 y-2$ can be expressed as
$\left(a_{1} x+b_{1} y+c_{1}\right) \cdot\left(a_{2} x+b_{2} y+c_{2}\right)$
A. $-3,-4$
B. 2,3
C. 3,4

D. 7,-7

Answer: D

- Watch Video Solution

221. How many real solutions does the equation
$x^{7}+14 x^{5}+16 x^{3}+30 x-560=0$ have $?$
A. 1
B. 3
C. 5
D. 7

Answer: A

222. Set of value of $k(k \in R)$ for which equation $x^{2}-4|x|+3-|k-1|=0$ will have exactly four roots is
A. $(-2,4)$
B. $(-4,4)$
C. $(-4,2)$
D. $(-1,0)$

Answer: A

- Watch Video Solution

223. It is given that equation $4 x^{3}-3 x-p=0$ has a unique root in the interval $[1 / 2.1]$, where $-1 \leq p \leq 1$. The value of this root is
A. 44257
B. $\sin \left(\frac{1}{3} \sin ^{-1} p\right)$
C. $\cos \left(\frac{1}{3} \cos ^{-1} p\right)$
D. none of these

Answer: C

- Watch Video Solution

224. If $3^{x+2}-9^{-1 / x}>0$, then the interval of x can be
A. $x \in(0, \infty)$
B. $x \in(0,250)$
C. $x \in R$
D. $x \in(-250,250)$

Answer: A::B

(Watch Video Solution

225. The roots of the equation
$(a+\sqrt{b})^{x^{2}-15}+(a-\sqrt{b})^{x^{2}-15}=2$ a where $\left(a^{2}-b\right)=1$ are
A. +-3
B. ± 4
C. $\pm \sqrt{14}$ and ± 4
D. $\pm \sqrt{5}$

Answer: B::C

- Watch Video Solution

226. For what real value of 'a' do the roots of $x^{2}-2 x-\left(a^{2}-1\right)=0$ lie between the-root $x^{2}-2(a+1) x+a(a-1)=0$
227. The real solutions of the equation
$\sqrt[4]{97-x}+\sqrt[4]{x}=5$
A. 9,81
B. 16,18
C. 16,81
D. 61,81

Answer: C

- Watch Video Solution

228. Consider the equation
$x^{2}+x-a=0, a \in N$
If equation has integral roots,then
A. $a=2$
B. $a=6$
C. $a=12$
D. $a=20$

Answer: A::B::C::D

- Watch Video Solution

229. A function $f: R \rightarrow R$ where R is the set of real numbers, is defined by $f(x)=\frac{\alpha x^{2}+6 x-8}{\alpha+6 x-8 x^{2}}$
value of α for which f is onto.
A. $(2,14)$
B. $[2,4]$
C. $(-2,2)$
D. $[-4,4]$

Answer: A::B

230. If $b^{2} \geq 4 a c$ for the equations $a x^{4}+b x^{2}+c=0$ then all the roots of the equation will be real if
A. $b>0, a<0, c>0$
B. $b<0, a>0, c>0$
C. $b>0, a>0, c>0$
D. $b>0, a<0, c<0$

Answer: B::D

- Watch Video Solution

231. The real roots of the equation

A. 0,3
B. 1,3
C. 1,2
D. none of these

Answer: A

- Watch Video Solution

232. $\log _{x^{2}+6 x+8} \log _{2 x^{2}+2 x+3}\left(x^{2}-2 x\right)=0$ holds for
A. $x=\{1\}$
B. $x \in(0,1)$
C. $x=\{-1,-3\}$
D. $x=\{-1\}$

Answer: D

233. The values of 'a' for which the equation $4^{x}-a 2^{x}-a+3=0$ has at least one solution.
A. $a \in[2, \infty)$
B. $a \in(-\infty,-6]$
C. $a \in R$
D. none of these

Answer: A

- Watch Video Solution

234. Let the roots of $\mathrm{f}(\mathrm{x})=\mathrm{xbe} \alpha$ and β where $\mathrm{f}(\mathrm{x})$ is quadratic polynomial $a x^{2}+b x+c . \alpha$ and β are also the roots of $\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$. Let the other two roots of $\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$ be γ and λ

Statement I: if α and β are real unequal then γ and λ are also real.
Statement II : if α and β are imaginary then γ and λ are also imaginary.

The correct statement are
A. I only
B. II only
C. both I and II
D. neither I nor II

Answer: B

- Watch Video Solution

235. Let the roots of $\mathrm{f}(\mathrm{x})=\mathrm{xbe} \alpha$ and β where $\mathrm{f}(\mathrm{x})$ is quadratic polynomial $a x^{2}+b x+c . \alpha$ and β are also the roots of $\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$. Let the other two roots of $f(f(x))=x$ be γ and λ

Statement I: if α and β are real unequal then γ and λ are also real.
Statement II: if α and β are imaginary then γ and λ are also imaginary.
The correct statement are
A. I and II
B. III and IV
C. II and III
D. I and IV

Answer: B

- Watch Video Solution

236. Let $x_{1}, x_{2}, x_{3}, x_{4}$, be the roots (real or complex) of the equation
$x^{4}+a x^{3}+b x^{2}+c x+d=0$.
If $x_{1}+x_{2}=x_{3}+x_{4}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}$, then
If $a=2$, then the value of $b-c$ is
A. -1
B. 1
C. -2
D. 2

Answer: B

237. Let $x_{1}, x_{2}, x_{3}, x_{4}$, be the roots (real or complex) of the equation
$x^{4}+a x^{3}+b x^{2}+c x+d=0$.
If $x_{1}+x_{2}=x_{3}+x_{4}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}$, then
If $b<0$, then how many different values of 'a' we many have
A. 3
B. 4
C. 1
D. 0

Answer: C

- Watch Video Solution

List -

(1) $\quad \alpha, \beta$ are the roots of $x^{2}-3 x$
(P) -1
$+a=0, a \in R$ and $\alpha<1<\beta$,
then a can be
(2) The equation $c x^{2}+2 b x-3 a$
(Q) 2
$=0$ has non-real roots and
$\frac{3 a}{4}<(b+c)$, then a can be
(3) If $\sin ^{2} x+\sin x-a=0, \forall x \in R$,
(R) 1
then a can be
(4) If $\frac{a x^{2}+3 x+4}{x^{2}+2 x+2}<5, \forall x \in R$,
(S) $\frac{5}{2}$
then a can be
238. '

View Text Solution
2. Match List - I with List - II

List - 1

(1) Number of rational roots of $2 x^{3}-3 x^{2}-11 x+6=0$, are
(2) Number of integral root of
(Q) 0 $5 x^{3}-11 x^{2}+12 x-2=0$
(3) If rational roots of (R) 1
$16 x^{4}-64 x^{3}+56 x^{2}+16 x-15=0$ are in AP, the common difference is
(4) If rational roots of
(S) 2
$2 x^{3}-21 x^{2}+63 x-54=0$ are in GP then common ratio is
239.

View Text Solution
240. Number of solutions for $x^{2}-2-2[x]=0$, (where[.] denotes greatest integer function is
241. The even root of the equation greater than 2 of $(x-2)^{6}+(x-4)^{6}=64$ is

- Watch Video Solution

242. If α and β are the distinct roots of the equation
$x^{2}-p(x+1)-b=0$, then
$\mathrm{E}=\frac{\alpha^{2}+2 \alpha+1}{\alpha^{2}+2 \alpha+b}+\left(\operatorname{beta}{ }^{\wedge} 2+2 b e t a+1\right) /\left(b e t{ }^{2} \wedge 2+2 b e t a+b\right)^{\prime}=$ \qquad

- Watch Video Solution

243. The number of non-zero solutions of the equation, $x^{2}-5 x-(\operatorname{sgn}) 6=0$ is

- Watch Video Solution

244. If the equation $x^{2}+2(k+1) x+9 k-5=0$ has only negative roots, then the value of k is

- Watch Video Solution

245. If $P(x)=a x^{2}+b x+c$, and $Q(x)=-a x^{2}+d x+c, a c \neq 0$, then prove that $P(x) \cdot Q(x)=0$ has at least two real roots.

- Watch Video Solution

246. If, α be the root of equation $a x^{2}+b x+c=0$ and β be root of $-a x^{2}+b x+c=0$ then prove that there will be a root of the equation $a x^{2}+2 b x+2 c=0$ lying between α and β, where a and c are non zero.

- Watch Video Solution

247. Let x, y, z be real variable satisfying the equations $x+y+z=6$ and $x y+y z+z x=7$. Then find the range in which the variable can lie.

Watch Video Solution

248. If one root of the quadratic equation $a x^{2}+b x+c=0$ is equal to the $n^{t} h$ power of the other root then show that, $\left(a c^{n}\right)^{\frac{1}{n+1}}+\left(a^{n} c\right)^{\frac{1}{n+1}}+b=0$

- Watch Video Solution

249. Find all real values of a for which the equation
$x^{4}+(a-1) x^{3}+x^{2}+(a-1) x+1=0$
possesses at least two distinct positive roots.

- Watch Video Solution

250. Solve the equation $(x+2)(x+3)(x+8)(x+12)=4 x^{2}$

- Watch Video Solution

251. Solve the equation $x^{\log _{x}(x+3)^{2}}=16$

- Watch Video Solution

252. If x is real, find the values of k for which $\frac{\left|x^{2}+k x+1\right|}{\left|x^{2}+x+1\right|}<3$

- Watch Video Solution

253. Let S be the set of all non-zero real numbers α such that the quadratic equation $\alpha x^{2}-x+\alpha=0$ has two distinct real roots x_{1} and x_{2} satisfying the inequality $\left|x_{1}-x_{2}\right|<1$. Which of the following intervals is (are) a subset(s) of S ?
A. $\left(-\frac{1}{2},-\frac{1}{\sqrt{5}}\right)$
B. $\left(-\frac{1}{\sqrt{5}}, 0\right)$
C. $\left(0, \frac{1}{\sqrt{5}}\right)$
D. $\left(\frac{1}{\sqrt{5}},-\frac{1}{2}\right)$

Answer: A: D

- Watch Video Solution

254. Let α and β be the roots of the equation $x^{2}-6 x-2=0$. If $a_{n}=\alpha^{n}-\beta^{n}$, for $n \geq 1$, then the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is equal to
A. -6
B. 3
C. -3
D. 6

Answer: B

Watch Video Solution

255. If α, β are the roots of $x^{2}-p x+1=0$ and γ is a root of $x^{2}+p x+1=0$, then $(\alpha+\gamma)(\beta+\gamma)$ is
A. 0
B. 1
C. -1
D. p

Answer: A

- Watch Video Solution

256. The quadratic expression $(2 x+1)^{2}-p x+q \neq 0$ for any real x if
A. $p^{2}-16 p-8 q<0$
B. $p^{2}-8 p-16 q<0$
C. $p^{2}-8 p-16 q<0$
D. $p^{2}-16 p-8 q<0$

Answer: C

- Watch Video Solution

257. Given that x is a real number satisfying $\frac{5 x^{2}-26 x+5}{3 x^{2}-10 x+3}<0$, then
A. $x<\frac{1}{5}$
B. $\frac{1}{5}<x<3$
C. $x>5$
D. $\frac{1}{5}<x<\frac{1}{3}$ or $3<x<5$

Answer: D

- Watch Video Solution

258. Let $\mathrm{f}: \mathrm{R}$ to R be defined as $\mathrm{f}(\mathrm{x})=\frac{x^{2}-x+4}{x^{2}+x+4}$. Then the range of the function $f(x)$ is
A. $[3 / 5,5 / 3]$
B. $(3 / 5,-5 / 3)$
C. $\left(-\infty, \frac{3}{5}\right) \cup\left(\frac{5}{3}, \infty\right)$
D. $[-5 / 3,-3 / 5]$

Answer: A

- Watch Video Solution

259. If $2+\mathrm{i}$ and $\sqrt{5}-2 i$ are the roots of the equation $\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=0$, where $a, b, c, \mathrm{~d}$ are real constants, then product of all roots of the equation is
A. 40
B. $9 \sqrt{5}$
C. 45
D. 35

Answer: C

- Watch Video Solution

260. Which of the following is/are always false ?
A. A quadratic equation with rational coefficients has zero or two irrational roots
B. A quadratic equation with rational coefficients has zero or two nonreal roots
C. A quadratic equation with rational coefficients has zero or two rational roots
D. A quadratic equation with rational coefficients has zero or two irrational roots

- Watch Video Solution

261. The quadratic equations $p(x)=0$ with real coefficients has purely imaginary roots. Then the equation $p(p(x))=0$ has

(Watch Video Solution

262. If $\mathrm{a} \in \mathrm{R}$ and the equation $-3\left(x-[x]^{2}\right)+2(x-[x])+a^{2}=0$ (where $[\mathrm{x}]$ denotes the greatest integer $\leq \mathrm{x}$) has no integral solution, then all possible values of a lie in the interval :
A. $(-2,-1)$
B. $(\infty,-2) \cup(2, \infty)$
C. $(-1,0) \cup(0,1)$
D. $(1,2)$

- Watch Video Solution

263. Let α and β be the roots of equation $p x^{2}+q x+r=0, p \neq 0$. If p , q, r are in A.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=4$, then the value of $|\alpha-\beta|$ is :
A. $\frac{\sqrt{34}}{9}$
B. $\frac{2 \sqrt{13}}{9}$
C. $\frac{\sqrt{61}}{9}$
D. $\frac{2 \sqrt{17}}{9}$

Answer: B

- Watch Video Solution

264. In a $\Delta \mathrm{ABC}, \tan A$ and $\tan B$ are roots of pq $\left(x^{2}+1\right)=r^{2} x$. Then Δ $A B C$ is
A. a right angled triangle
B. an acute angled triangle
C. an obtuse angled triangle
D. an equilateral triangle

Answer: A

- Watch Video Solution

265. If α, β are the roots of the quadratic equation $x^{2}+p x+q=0$, then the values of $\alpha^{3}+\beta^{3}$ and $\alpha^{4}+\alpha^{2} \beta^{2}+\beta^{4}$ are respectively
A. $3 p q-p^{3}$ and $p^{4}-3 p^{2} q+3 q^{2}$
B. $-p\left(3 q-p^{2}\right)$ and $\left(p^{2}-q\right)\left(p^{2}+3 q\right)$
C. $p q-4$ and $p^{4}-q^{4}$
D. $3 p q-p^{3}$ and $\left(p^{2}-q\right)\left(p^{2}-3 q\right)$
266. Let p, q be real numbers. If α is the root of $x^{2}+3 p^{2} x+5 q^{2}=0, \beta$ is a root of $x^{2}+9 p^{2} x+15 q^{2}=0$ and $0<\alpha<\beta$, then the equation $x^{2}+6 p^{2} x+10 q^{2}=0$ has a root γ that always satisfies.
A. $\gamma=\frac{\alpha}{4}+\beta$
B. $\beta<\gamma$
C. $\gamma=\frac{\alpha}{2}+\beta$
D. $\alpha<\gamma<\beta$

Answer: D

- Watch Video Solution

267. Let α, β be the roots of $x^{2}-x-1=0$ and $S_{n}=\alpha^{n}+\beta^{n}$, for all integers $n \geq 1$. Then for every integer $n \geq 2$,
A. $S_{-} n+S_{-}(n+1)=S_{-}(n+1)^{\text {' }}$
B. $S_{-} n-S_{-}(n-1)=S_{-}(n+1)^{\prime}$
C. $S_{n-1}=S_{n+1}$
D. $S_{-} n+S_{-}(n-1)=2 S_{-}(n+1)^{\prime}$

Answer: A

- Watch Video Solution

268. If α, β are the roots fo $a x^{2}+b x+c=0(a \neq 0)$ and $\alpha+h, \beta+h$ are the roots of $p x^{2}+q x+r=0(p \neq 0)$ then the ration of the squares of their discriminants is
A. $a^{2}: p^{2}$
B. $a: p^{2}$
C. $a^{2}: p$
D. $\mathrm{a}: 2 \mathrm{p}$

- Watch Video Solution

269. The equation $\sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1}$ has
A. 2
B. 0
C. 3
D. 1

Answer: B

Watch Video Solution
270. If a, b and c are positive numbers in a G.P., then the roots of the quadratic equation $\left(\log _{e} a\right) x^{2}-\left(2 \log _{e} b\right) x .+\left(\log _{e} c\right)=0$ are
A. -1 and $\frac{\log _{e} c}{\log _{e} a}$
B. 1 and $-\frac{\log _{e} c}{\log _{e} a}$
C. 1 and $\log _{a} c$
D. -1 and $\log _{c} a$

Answer: C

- Watch Video Solution

271. If the equation $x^{2}+2 x+3=0$ and $a x^{2}+b x+c=0, a, b, c \in R$, have a common root, then a:b:c is
A. 3:2:1
B. 1:3:2
C. 1:2:3
D. 3:1:2

Answer: C

272. If α and β are the roots of $x^{2}-x+1=0$, then the value of $\alpha^{2013}+\beta^{2013}$ is equal to
A. 2
B. -2
C. -1
D. 1

Answer: B

- Watch Video Solution

273. If α, β are the roots of the quadratic equation $x^{2}+a x+b=0$, $(b \neq 0)$, then the quadratic equation whose roots are $\alpha-\frac{1}{\beta}, \beta-\frac{1}{\alpha}$ is

$$
\text { A. } a x^{2}+a(b-1) x+(a-1)^{2}=0
$$

B. $b x^{2}+a(b-1) x+(b-1)^{2}=0$
C. $x^{2}+a x+b=0$
D. $a b x^{2}+b x+a=0$

Answer: B

- Watch Video Solution

274. Let $p(x)$ be a quadratic polynomial with constant term 1. Suppose $p(x)$ when divided by $x-1$ leaves remainder 2 and when divided by $x+1$ leaves remainder 4 . Then the sum of the roots of $p(x)=0$ is
A. -1
B. 1
C. $1 / 2$
D. 4

Answer: D

275. If α, β are the roots of the quadratic equation $a x^{2}+b x+c=0$ and $3 b^{2}=16 a c$ then
A. $\alpha=4 \beta$ or $\beta=4 \alpha$
B. $\alpha=-4 \beta$ or $\beta=-4 \alpha$
C. $\alpha=-3 \beta$ or $\beta=-3 \alpha$
D. $\alpha=-3 \beta$ or $\beta=-3 \alpha$

Answer: C

- Watch Video Solution

276. Let $\sin \alpha, \cos \alpha$, be the roots of the equation $x^{2}-b x+c=0$. Then which of the following statements is/are correct ?
A. $c \leq \frac{1}{2}$
B. $b \leq \sqrt{2}$
C. $c>\frac{1}{2}$
D. $b>\sqrt{2}$

Answer: A: B

- Watch Video Solution

277. What is the calorific value of 80 gms of carbohydrate, 15 gms of protein and 10.4 gms of fat in a breakfast? What is physiological fuel value of food?

- Watch Video Solution

278. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has
A. infinite number of real roots
B. no real root
C. exactly one real root
D. exactly four real roots

Answer: B

D Watch Video Solution

279. The equations $x^{2}+x+a=0$ and $x^{2}+a x+1=0$ have a common real root
A. for no value of a
B. for exactly one value of a
C. for exactly two value of a
D. for exactly three value of a

Answer: B

280. If $(\alpha+\sqrt{\beta})$ and $(\alpha-\sqrt{\beta})$ are the roots of the equation $x^{2}+p x+q=0$ where $\alpha, \beta, \mathrm{p}$ and q are real, then the roots of the equation $\left(p^{2}-4 q\right)\left(p^{2} x^{2}+4 p x\right)-16 q=0$ are
A. $\left(\frac{1}{\alpha}+\frac{1}{\sqrt{\beta}}\right)$ and $\left(\frac{1}{\alpha}-\frac{1}{\sqrt{\beta}}\right)$
B. $\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\beta}\right)$ and $\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\beta}\right)$
c. $\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}\right)$ and $\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\sqrt{\beta}}\right)$
D. $(\sqrt{\alpha}+\sqrt{\beta})$ and $(\sqrt{\alpha}-\sqrt{\beta})$

Answer: A

- Watch Video Solution

281. If a, b, c are in arithmetic progression, then the roots of the equation $a x^{2}-2 b x+c=0$ are
A. 1 and c / a
B. $-1 / a$ and $-c$
C. -1 and $-c / a$
D. -2 and $-c / 2 a$

Answer: A

- Watch Video Solution

282. The quadratic equation $2 x^{2}-\left(a^{3}+8 a-1\right) x+a^{2}-4 a=0$ possesses roots of opposite sign. Then
A. $a \leq 0$
B. $0<a<4$
C. $4 \leq a<8$
D. $a \geq 8$

Answer: B

283. A value of b for which the equations $x^{2}+b x-1=0, x^{\wedge} 2+\mathrm{x}+\mathrm{b}=0^{`}$ have one root in common is
A. $-\sqrt{2}$
B. $-i \sqrt{3}$
C. $i \sqrt{5}$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

284. Let α and β be the roots of the equation $x^{2}-6 x-2=0$. If $a_{n}=\alpha^{n}-\beta^{n}$, for $n \geq 1$, then the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is equal to
A. 1
B. 2
C. 3

Answer: C

- Watch Video Solution

285. Let α, β be real and z be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line $\operatorname{Re} \mathrm{z}=1$, then it is necessary that
A. $\beta \in(-1,0)$
B. $|\beta|=1$
C. $\beta \in[1, \infty)$
D. $\beta \in(0,1)$

Answer: B

- Watch Video Solution

286. If $\sin \theta$ and $\cos \theta$ are the roots of the equation $a x^{2}-b x+c=0$, then a, b and c satisfy the relation
A. $a^{2}+b^{2}+2 a b c=0$
B. $a^{2}-b^{2}+2 a c=0$
C. $a^{2}+c^{2}+2 a b c=0$
D. $a^{2}-b^{2}-2 a b c=0$

Answer: C

- Watch Video Solution

287. Let a, b, c be three number such that $a+2 b+4 c=0$. Then the equation $a x^{2}+b x+c=0$
A. has both the roots complex
B. has its roots lying within $-1<x<0$
C. has one of roots equal to $1 / 2$
D. has its roots lying within $2<x<6$

Answer: C

- Watch Video Solution

288. If the ratio of the roots of the equation $p x^{2}+q x+r$ is a:b, then $a \frac{b}{(a+b)^{2}}=$
A. $\frac{p^{2}}{q r}$
B. $\frac{p r}{q^{2}}$
C. $\frac{q^{2}}{p r}$
D. $\frac{p q}{r^{2}}$

Answer: B

- Watch Video Solution

289. If α and β are the roots of the equation $x^{2}+x+1=0$, then the equation whose roots are α^{19} and β^{7} is
