© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - PATHFINDER MATHS (BENGALI

ENGLISH)

SOLUTION OF TRIANGLE AND HEIGHT AND

DISTANCE

Question Bank

1. In a triangle $A B C$, the sides are $6 \mathrm{~cm}, 10 \mathrm{~cm}$ and 14 cm .

Show that the triangle is obtuse-angled with the obtuse angle equal to 120°.

- Watch Video Solution

2. Two sides of a triangle are $\sqrt{3}-1$ and $\sqrt{3}+1$ units and their included angle is 60°. Find the other side.

D Watch Video Solution

3. Solve the triangle if $B=30^{\circ}, C=60^{\circ}$, a = 6 cm

- Watch Video Solution

4. Find the ratio of the sides of a triangle whose interior angles are $30^{\circ}, 60^{\circ}, 90^{\circ}$.

D Watch Video Solution

5. In a right -angled triangle, prove that $r+2 R=S$.

D Watch Video Solution

6. The ex-radii r_{1}, r_{2}, r_{3} or $\triangle A B C$ are in H.P. Show that its sides a,b,c are in A.P.

- Watch Video Solution

7. If the sides of a triangle are in the ratio 5:8:11 and
theta denotes the angle opposite to the largest side
of the triangle, then find the value of $\tan ^{2} \frac{\theta}{2}$.

D Watch Video Solution

8. In a triangle of base a, the ratio of the other sides is
$r(<1)$. Show that the attitude of the triangle is less than or equal to $\frac{a r}{1-r^{2} .}$

D Watch Video Solution

9. Prove that he distance between the circum-centre and the ortho-centre of a triangle $A B C$ is $R \sqrt{1-8 \cos A \cos B \cos C}$.
10. If $r_{1}=r_{2}+r_{3}+r$, prove that the triangle is right angled.

- Watch Video Solution

11. If in a $\triangle A B C$, the value of $\cot \mathrm{A}, \cot \mathrm{B}, \cot \mathrm{C}$ are in A.P. show a^{2}, b^{2}, c^{2} are in A.P.

D Watch Video Solution

12. The angle of depression of a standing bus at stopped B from the top L of a vertical monument of
height 400 metres is 60°. Find the distance of the bus from the foot of the monument.

- Watch Video Solution

13. The shadow of a pole is 9 m long when the angle of elevation of the sun is 30°. Find the length of the shadow when the angle of elevation of the sun is 60°.

- Watch Video Solution

14. From the foot of a 60 m high tower the angle of elevation of a minar is 60° and from the top, it is 30°.

Find the height of the minar.

- Watch Video Solution

15. From a point on the horizontal line through the
foot of a chimney the angle of elevation of the top of the chimney is 30°. and the angle of elevation is 60° at a point on the same straight line 50 metres nearer to the chimney. What is the height of the chimney?

D Watch Video Solution

16. A man stands at a point X on the bank of a river
and looks at the top of a tower which is situated exactly opposite to him on the other bank. The angle
of elevations is 45°. The man then walk 300 m at right angle to the bank and away from it, to the point Y.

From Y he looks at the top of the lower and finds the angle of elevations as 30°. Calculate the height of the tower and the width of the river.

D Watch Video Solution

17. The angular elevations of the top of a tower from two points in the same horizontal line with its foot and observed to be θ and ϕ respectively. Find the distance between the two points of observation, if the height of the tower is h.
18. An observer on the top of a monument 500 m above the sea level, observes the angles of depression of the two boats to be 45° and 30° respectively. Find the distance between the boats if the boats are-

On the same side of the monument,

- Watch Video Solution

19. An observer on the top of a monument 500 m above the sea level, observes the angles of depression of the two boats to be 45° and 30° respectively. Find the distance between the boats if the boats are-

On the opposite sides of the monument,

- Watch Video Solution

20. A vertical pillar of height h cm stands on the plane ground. At a fixed point on the plane ground the height of the top of the pillar and that of a point x cm below the top subtend angles 60° and 30° respectively. Prove that $x=\frac{2 h}{3}$.

- Watch Video Solution

21. A post stands on the top of a pillar 40ft high. The elevations of the tops of the pillar and the post are respectively 30° and 45° to an observer standing on
the horizontal line from the foot of the pillar. Find the lenght of the post and the distance of the observer from the pillar.

D Watch Video Solution

22. A man, standing on the bank of a river observes
that the angle of elevation of the top of a tree just on the opposite bank is 60° But the angle off elevations is 30° from a point at a distance y metres from the bank.

Show that the height of tree $h=\frac{\sqrt{3 y}}{2}$.
23. A man standing on the deck of a ship, which is 10 m
above the water level, observes the angle of elevation
of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill.

- Watch Video Solution

24. A boy standing on the ground finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the root of 20 m high building finds of angle of elevation of the same bird to 45°. The boy and the girl are on opposite sides of the bird. Find the
distance of the bird from the girl, correct to nearest cm.

D Watch Video Solution

25. From an aeroplane vertically above a straight road the angles of depression of two consecutive mile stones on the road are observed to be 45° and 30°.

Find the height of the aeroplane above the road.

D Watch Video Solution

26. A vertical post 15 ft high is broken at a certain height, and its upper part, not completely separated,
meets the ground at an angle of 30°. Find the height at which the post is broken

- Watch Video Solution

27. From the top of a cliff, 150 metres high, the angles of depression of the top and bottom of a pillar are found to be 30° and 60° respectively, find the height of the pillar.

D Watch Video Solution

28. To a person standing at the middle point of the horizontal straight line joining the feet of two vertical
posts of the same height, the angle of elevation of the top of each post appears to be 30°. After walking 40metres towards one of them , the person observes that the angle of elevation of the top of the same post has changed to 60°. Find the distance between the two posts.

- Watch Video Solution

29. From the top and bottom of a cliff the angles of depression and elevation of the top of a pillar 60 ft high are observed to be 30° and 60° respectively. Find the height of the cliff.
30. A 1.4 m tall girl sports a balloon moving with the wind in a horizontal line at a height of 91.4 m from the ground. The angle of elevation of the balloon from the eyes of the girl at that instant is 60°. After some time ,the angle of elevation reduces to 30°. Find the distance travelled by the balloon during that interval.

Take $\sqrt{3}=1.732$.

Watch Video Solution

31. The angle of elevation of a jet plane from a point on the ground is 60°. After a flight of 15 seconds, the angle of elevations changed to 30°. If the jet plane is
flying horizontally at a constant height of $1500 \sqrt{3}$ metres, find the speed of the jet plane.

D Watch Video Solution

32. A man standing in the midst of a field observes, a
flying bird in his north at an angle of elevation of 30° and after 2.5 minutes he observes the bird in his south at an angle of elevation of 60°. If the bird flies in a straight line all along at a height of $60 \sqrt{3}$ metres, what is its speed?

Watch Video Solution

33. A man on the top of a vertical observation tower
observes a car moving at a uniform speed coming directly towards it. If it takes 12 minutes for the angle of depression to changed from 30° to 45°, how soon after this will the car reach the observation tower?

Give your answer correct to the nearest second.

D Watch Video Solution

34. Two vertical poles are 120 metres apart and the height of one is double that of the other. From the middle point of the joining their feet, an observer
finds the angular elevations of their tops to be complementary. Find the heights of the poles.

- Watch Video Solution

35. The angle of elevation of a cloud from a point 200 m above a lake is 30° and the angle of depression of its reflection in the lake is 45°. Find the height of the cloud from the lake.

D Watch Video Solution

36. At the foot of a mountain, the elevation of its summit is 45°. After ascending 400 m towards the
mountain up an incline of 30°, the elevation changed to 60°. Find the height of the mountain.

D Watch Video Solution

37. A ladder leaning against a vertical wall is inclined at an angle α to the horizontal. On moving its foot 2 m away from the wall, the ladder is now inclined at an angle β. Find the vertical distance moved by the ladder.
38. If the length of the sides of the triangle ABC satisfy,
$2\left(b c^{2}+c a^{2}+a b^{2}\right)=b^{2} c+c^{2} a+a^{2} b+3 a b c, \quad$ then triangle $A B C$ is:
A. Right angled
B. Isosceles
C. Equilateral
D. none of these

Answer: C

D Watch Video Solution
39. ABC is a right angled Δ in which $\angle B=90^{\circ}$ and BC
$=$ a. If n points $L_{1}, L_{2}, L_{3}, \ldots, L_{n}$ on AB are such that
$A B$ is divided into $(n+1)$ equal parts and $L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{n} M_{n}$ are line segments parallel to BC and points $M_{1}, M_{2}, \ldots, M_{n}$ are on AC, then the sum of the lengths of $L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{n} M_{n}$ is:
A. $\frac{a(n+1)}{2}$
B. $\frac{a(n-1)}{2}$
C. $\frac{a n}{2}$
D. none of these

Answer: C
40. The perimeter $\triangle \mathrm{ABC}$ is 3 times the arithmetic mean of the sine of its of its angles. If the side ' b ' $=1$, then the angle B equal to :
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. none of these

Answer: C

41. Let $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments $A_{0} A_{1}, A_{0} A_{2}$ and $A_{0} A_{4}$ is
A. 44259
B. $\sqrt[3]{3}$
C. 3
D. $\frac{\sqrt[3]{3}}{2}$

Answer: C
42. If twice the square of the diameter of a circle is equal to half the sum of the square of the sides of inscribed $\triangle A B C$, then $\sin ^{2} A+\sin ^{2} B++\sin ^{2} C$ is equal to:
A. 1
B. 2
C. 4
D. 8

Answer: C

43. If in $\Delta A B C, \frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$, then angleC is equal to
A. 30°
B. 45°
C. 60°
D. 75°

Answer: C
44. In a $\triangle A B C$, the point D divides BC in the ratio 1:2

Also AD is perpendicular to $A B$. Then the value of the expression
$\tan B(1+2 \tan A \tan c)-2 \tan C$ is:
A. 0
B. 1
C. -1
D. none of these

Answer: A

- Watch Video Solution

45. In a triangle with sides a, b and c a semicircle touching the sides $A C$ and $C B$ is inscribed whose diameter lies on AB . Then , the radlus of the semicircle is:
A. $\frac{a}{2}$
B. $\frac{\Delta}{s}$
C. $\frac{\Delta}{a+b}$
D. $\frac{2 \Delta}{a+b}$

Answer: D

- Watch Video Solution

46. From the top of a tower, which is 240 m high, if
the angle of depression of a point on the ground is 30°. then the distance of the point from the foot of the tower is
A. $240 \times \sqrt{3} m$
B. $40 \times \sqrt{3} m$
C. $80 \times \sqrt{3} m$
D. $120 \times \sqrt{3} m$

Answer: A

- Watch Video Solution

47. If the length of the shadow of a vertical pole on the horizontal grounds is $\sqrt{3}$ times its height, then the angle of elevation of the sun is
A. 15°
B. 30°
C. 45°
D. 60°

Answer: B
48. The ratio of the length of a rod and its shadow is
$\sqrt{3}: 1:$. The angle of elevation of the sun is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

- Watch Video Solution

49. If the angles of elevation of a tower from two points distance a and $\mathrm{b}(a>b)$ from its foot and in the same straight line from it are 30° and 60°, then the height of the towers
A. $\sqrt{a} b$
B. $\sqrt{a}+b$
C. $\sqrt{a}-b$
D. $\sqrt{\frac{a}{b}}$

Answer: A
50. The angle of depression of two boatsm as observes
from the masthead of a ship, 50 m high, are 45° and 30°, respectively. The distance between the boats, if they are on the same side of the masthead, is
A. 50 m
B. $50(\sqrt{3}+1) m$
C. $50(\sqrt{3}-1) m$
D. $50\left(1-\frac{1}{\sqrt{3}}\right) m$

Answer: C

51. A tower subtends an angle of 30° at a point on the same level as its foot. At a second point h metres above the first, the depression of the foot of the tower is 60°. The height of the lower is
A. $\frac{h}{2} m$
B. $\sqrt{3} h m$
C. $\frac{h}{3} m$
D. $\frac{h}{\sqrt{3}} m$

Answer: C
52. The shadow of a tower, when the angle of elevation of the sun is 45°, is found to be 10 m longer than when it was 60°. The height of the tower is
A. 23.66 m
B. 24.56 m
C. 26.2 m
D. none of these

Answer: A

53. The angles of depression of the top and bottom of 8 m tall tower from a cliff are 30° and 45° respectively. Which of the following will be the height of the cliff?
A. $4(3+\sqrt{3}) m$
B. $4(1+\sqrt{3}) m$
C. $3(1+\sqrt{3}) m$
D. none of these

Answer: A
54. The angles of elevation of the bottom and the top of the tower fixed at the top of a 20 m high building, from a point on the ground are 45° and 60° respectively. The height of the tower is
A. $20(\sqrt{3}-1) m$
B. $20(\sqrt{3}+1) m$
C. $3(1+\sqrt{3}) m$
D. none of these

Answer: A

- Watch Video Solution

55. A tower is $10 \sqrt{3}$ metres high. If a point on the ground is 30 m away from its foot, then the angle of elevation is
A. 45°
B. 30°
C. 60°
D. 75°

Answer: B

- Watch Video Solution

56. The shadow of a vertical tower on level of ground increased by 10 m when the attitude of the sun change from 45° to 30°. Find the height of the lower.
A. $10(\sqrt{3}+1) m$
B. $5(\sqrt{3}-1) m$
C. $5(\sqrt{3}+1) m$
D. $10(\sqrt{3}-1) m$

Answer: C
57. Two posts are just on the opposite side of a road.

The heights of the posts are in the ratio $\sqrt{3}: 1$. The angle of elevation of the top of the smaller post from
the mid point of the road is 45°. What is the angle of depression of the point from the top of the other post?
A. 60°
B. 30°
C. 90°
D. 45°

Answer: A
58. A man on the top of a vertical observation tower observes a car moving at a uniform speed coming directly towards it. If it takes 12 minutes for the angle of depression to change from 30° to 45°, how soon after this will the car reach the observation tower?
A. 15 min 32 sec
B. 16 min 32 sec
C. 17 min 32 sec
D. 18 min 32 sec
59. Two men standing on either side of a tower 60m
high observe the angle of elevation of the top of the tower is to be 45° and 60° respectively. Find the distance between two men.

D Watch Video Solution

60. Two sides of a triangle are of lengths $2 a$ and $2 b$
and contain an angle of 120°. If the angle opposites
the sides 2 a is θ, then the value of $\tan \theta$ is equal to
A. $\frac{a \sqrt{3}}{2 a+b}$
B. $\frac{a \sqrt{3}}{a+2 b}$
C. $\frac{a \sqrt{3}}{2 a-b}$
D. $\frac{a \sqrt{3}}{a-2 b}$

Answer: B

D Watch Video Solution

61. An isosceles triangle has two equal sides of length
'a' and angle between them is \propto. The area of the triangle is
A. $\frac{1}{2} a^{2} \cos \propto$
B. $a^{2} \cos \propto$
C. $\frac{1}{2} a^{2} \sin \propto$
D. $a^{2} \sin \propto$

Answer: C

D Watch Video Solution

62. The height of a right circular cone is 40 cm and semi-vertical angle is 30°, the slant height of the cone is $=$?
63. The angle of elevation of the top of the tower observed from each of the three points A, B, C on the ground, forming a triangle is the same angle \propto. If R is the circum-radius of the triangle $A B C$, then the height of the tower is
A. $R \tan \propto$
B. $R \cot \propto$
C. $R \sin \propto$
D. $R \cos \propto$

Answer: C

64. A round balloon of radius 10 m subtends an angle of 60° at the eye of the observer while the angle of elevation of its centre is 30°. Which of the following is the height of the centre of the balloon?
A. $10 \sqrt{3} \mathrm{~m}$
B. 30 m
C. 20 m
D. 40 m

Answer: D

- Watch Video Solution

65. The angle of elevation of a cloud from a point h metres above a lake is 45° and the angle of depression of its reflection in the lake is 60°. Which of the following is the height of the cloud?
A. $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) h m$
B. $\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right) h m$
C. $\sqrt{3} h m$
D. $\frac{h}{\sqrt{3}} m$

Answer: A
66. In a triangle $A B C$, $a(b \cos C-c \cos B)$ is equal to
A. a^{2}
B. $b^{2}-c^{2}$
C. 0
D. none of these

Answer: B

D Watch Video Solution
67. In a triangle $\tan A+\tan B+\tan C=6$ and $\tan A \tan B=2$,
then the values of $\tan A, \tan B$ and $\tan C$ are
respectively
A. 1,2,3
B. 2,1,4
C. 1,2,0
D. none of these

Answer: A

D Watch Video Solution
68. If the data given to construct a triangle $A B C$ are
$\mathrm{a}=5, \mathrm{~b}=7, \sin A=\frac{3}{4}$, then it is possible to construct
A. only one triangle
B. two triangles
C. infinitely many triangles
D. no triangle

Answer: D

- Watch Video Solution

69. In a triangle ABC, if
$\left(1+\frac{a}{b}+\frac{c}{b}\right)\left(1+\frac{b}{c}-\frac{a}{c}\right)=3$, then the angle A is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. none of these

Answer: A

D Watch Video Solution

70. If in a triangle $A B C$, angles A, B, C are in A.P, sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are In G.P., then a^{2}, b^{2}, c^{2} are in
A. A.P.
B. H.P.
C. G.P.
D. none of these

Answer: A

- Watch Video Solution

71. In a triangle $A B C$, if $A=\frac{\pi}{4}$, and $\tan B \tan C=k$, then k must satisfy
A. $k^{2}-6 k+1 \leq 0$
B. $k^{2}-6 k+1=0$
C. $k^{2}-6 k+1 \geq 0$
D. $3-2 \sqrt{2}<k<3+2 \sqrt{2}$

Answer: C

D Watch Video Solution

72. Given $\mathrm{b}=2, \mathrm{c}=\sqrt{3}$ and $\mathrm{A}=30^{\circ}$, then in-radius of triangle $A B C$ is
A. $\frac{\sqrt{3}-1}{2}$
B. $\frac{\sqrt{3}+1}{2}$
C. $\frac{\sqrt{3}-1}{4}$
D. none of these

Answer: A
73. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$, where $x, y>0$. The triangle is
A. right angled
B. equilateral
C. obtuse-angle
D. none of these

Answer: C

- Watch Video Solution

74. If in a triangle $A B C, B=\frac{2 \pi}{3}$, then $\cos A+\cos C$ lies in
A. $[-\sqrt{3}, \sqrt{3}]$
B. $(-\sqrt{3}, \sqrt{3}]$
C. $\left(\frac{3}{2}, \sqrt{3}\right)$
D. $\left[\frac{3}{2}, \sqrt{3}\right]$

Answer: C

D Watch Video Solution

75. In a triangle $A B C, \sin A+\sin B+\sin C=1+\sqrt{2}$ and $\cos A+\cos B+\cos C=\sqrt{2}$. The triangle is
A. equllateral
B. isosceles only
C. right-angled only
D. right-angled isosceles

Answer: D

D Watch Video Solution

76. If $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}=\pi$, then the value of
$\sum \cos A \cos C-\sum \sin A \sin C$ is
A. -1
B. 1
C. 2
D. 0

Answer: D

D Watch Video Solution

77. If ina triangle $\mathrm{ABC}, \mathrm{b}+\mathrm{c}=3 \mathrm{a}$, then $\cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$ is equal to
A. 1
B. -1
C. 2
D. none of these

Answer: C

D Watch Video Solution

78. In a triangle $A B C, \sqrt{a}+\sqrt{b}-\sqrt{c}$ is
A. always positive
B. always negative
C. positive only when c is smallest
D. none of these

Answer: A

D Watch Video Solution

79. The area of the triangle inscribed in a circle of radius 4 and the ratio of its angles in the ratio 5:4:3 is
A. $4(3+\sqrt{3})$
B. $4(\sqrt{3}+\sqrt{2})$
C. $4(3-\sqrt{3})$
D. $4(\sqrt{3}-\sqrt{2})$

Answer: A
80. The perimeter of a triangle $A B C$ is 6 times the

Arithmetic Mean of the sine of its angles. If side a is 1 ,
then $\angle A$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. π

Answer: A
81. If in an obtuse angled triangle the obtuse angle is $\frac{3 \pi}{4}$ and the other two angle are equal to two values of θ satisfying atantheta +bsectheta=c, when $|b| \leq \sqrt{\left(a^{2}+c^{2}\right)}$, then $a^{2}-c^{2}$ is equal to
A. ac
B. 2ac
C. a/c
D. none of these

Answer: B

- Watch Video Solution

82. The radius of the circle passing through the centre of incircle of $\triangle A B C$ and through the end points of $B C$ is given by
A. $\left(\frac{a}{2}\right) \cos A$
B. $\left(\frac{a}{2}\right) \sec \left(\frac{A}{2}\right)$
C. $\left(\frac{a}{2}\right) \sin A$
D. $a \sec \left(\frac{A}{2}\right)$

Answer: B
83. In a $\triangle A B C, b^{2}+c^{2}=1999 a^{2}$, then $\frac{\cot B+\cot C}{\cot A}$ is equal to
A. $\frac{1}{999}$
B. 36161
C. 999
D. 1999

Answer: A

- Watch Video Solution

84. In a $\Delta A B C$, tanAtanBtanC=9. For such tiangle , if $\tan ^{2} A+\tan ^{2} B+\tan ^{2} C=\lambda$, then
A. $9 . \sqrt[3]{3}<\lambda<27$
B. $\lambda \leq 27$
C. $\lambda<9 . \sqrt[3]{3}$
D. $\lambda \leq 27$

Answer: B

- Watch Video Solution

85. If in a $\Delta A B C, r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}$ is equal to (where r_{1}, r_{2}, r_{3} are the exradii and 2 s is the perimeter)
A. s^{2}
B. $2 s^{2}$
C. $3 s^{2}$
D. $4 s^{2}$

Answer: A

- Watch Video Solution

86. In a $\triangle A B C, 2 \cos \mathrm{~A}=\sin \mathrm{B} / \sin C$ and $2^{\tan ^{2} B}$ is a
solution of equlation $x^{2}-9 x+8=0, \quad$ then DeltaABC is
A. equilateral
B. isosceles
C. scalene
D. right angled

Answer: A

87. The area of the circle and the area of a regular polygon inscribed the circle of n sides and of perimeter equal to that of the circle are in the ratio of
A. $\tan \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
B. $\cos \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
C. $\sin \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
D. $\cot \left(\frac{\pi}{n}\right): \frac{\pi}{n}$

Answer: A

88. If there are only two linear function f and g which
map [1.2] on $[4,6]$ and in a $\Delta A B C, \mathrm{c},=\mathrm{f}(1)+\mathrm{g}(1)$ and a is the maximum value of r^{2}, where r is the distance of a variable point on the curve $x^{2}+y^{2}-x y=10$ from the origin, then $\sin A: \sin C$ is
A. 1:2
B. 2:1
C. 1:1
D. none of these

Answer: C

89. If A, B, C, D are the angle of quadrilateral, then
$\sum \tan A$
is equal to
A. $\prod \tan A$
B. $\prod \cot A$
C. $\sum \tan ^{2} A$
D. $\sum \cot ^{2} A$

Answer: A

90. If Δ be the area of a triangle $A B C$ and length of its two sides are 3 and 5 . If c is the third side, then

$$
\begin{aligned}
& \text { A. } \Delta \leq \frac{\left(c^{2}+16 c+64\right)}{12 \sqrt{3}} \\
& \text { B. } \Delta=\frac{\left(c^{2}+16 c+64\right)}{8 \sqrt{3}} \\
& \text { C. } \Delta=\frac{\left(c^{2}+16 c+64\right)}{4 \sqrt{3}}
\end{aligned}
$$

D. none of these

Answer: A
91. Which of the following pieces of data does not uniquely determine acute angled $\triangle A B C$ ($R=$ circum radius)
A. $a, \sin A, \sin B$
B. a, b, c
C. a,sinB,R
D. $a, \sin A, R$

Answer: D

92. In a triangle $A B C,(a+b+c)(b+c-a)=k b c$ if
A. $k<0$
B. $k>6$
C. $0<k<4$
D. $k>4$

Answer: C

D Watch Video Solution
93. If $\cos A / a=\cos B / b=\cos C /$ cand the side $a=2$, then area
of triangle is
A. 1
B. 2
C. $\frac{\sqrt{3}}{2}$
D. $\sqrt{3}$

Answer: D

- Watch Video Solution

94. If λ be the perimeter of the $\triangle A B C$. then
$b \cos ^{2}\left(\frac{c}{2}\right)+c \cos ^{2}\left(\frac{B}{2}\right)$ is equal to
A. λ
B. 2λ
C. $\frac{\lambda}{2}$
D. none of these

Answer: C

- Watch Video Solution

95. If the area of a triangle $A B C$ is given by
$\Delta=a^{2}-(b-c)^{2}$ then $\tan \left(\frac{A}{2}\right)$ is equal to
A. -1
B. 0
C. $1 / 4$
D. $1 / 2$

Answer: C

D Watch Video Solution

96. If in a $\triangle A B C, \cos \mathrm{~A}+2 \cos \mathrm{~B}+\cos \mathrm{C}=2$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. A.P.
B. G.P.
C. H.P.
D.

D Watch Video Solution

97. If D is the mid point of side $B C$ of a triangle $A B C$ and
$A D$ is perpendicular to $B C$, then
A. $3 a^{2}=b^{2}-3 c^{2}$
B. $3 b^{2}=a^{2}-c^{2}$
C. $b^{2}=a^{2}-c^{2}$
D. $a^{2}+b^{2}=5 c^{2}$

Answer: B
98. If $\mathrm{f}, \mathrm{g}, \mathrm{h}$ are the internal bisectors of a $\Delta \mathrm{ABC}$ then
$1 / f \cos (A / 2)+1 / g \cos (B / 2)+1 / h \cos (c / 2)$ is equal to
A. $1 / a+1 / b-1 / c$
B. $1 / a-1 / b+1 / c$
C. $1 / a+1 / b+1 / c$
D. none of these

Answer: C

99. If a, b, c, d be the sides of a quadrilateral and $\mathrm{g}(\mathrm{x})=\mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]$, where $\quad f(x)=\frac{1}{1-x} \quad$ then $\frac{d^{2}}{a^{2}+b^{2}+c^{2}}$ is equal to
A. $>g(3)$
B. $<g(3)$
C. $>g(2)$
D. $<g(4)$

Answer: B

- Watch Video Solution

100. In a $\triangle A B C, \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$ then
A. $\cot A, \cot B, \cot C$, in A.P.
B. $\sin 2 A, \sin 2 B, \sin 2 C$ in A.P.
C. $\cos 2 \mathrm{~A}, \cos 2 \mathrm{~B}, \cos 2 \mathrm{C}$ in A.P.
D. $a \sin A, b \sin B, c \sin C$ in A.P.

Answer: C

Watch Video Solution

101. Let a, b, c be the sides of triangle whose perimeter is p and area is A, then

$$
\begin{aligned}
& \text { A. } p^{3} \leq 27(b+c-a)(c- \\
& \text { B. } p^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right) \\
& \text { C. } a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} A \\
& \text { D. } p^{4} \leq 25<A
\end{aligned}
$$

Answer: B::C

- Watch Video Solution

102. If in a $\triangle A B C, \mathrm{CD}$ is the angle bisector of the
$\angle A B C$, then CD is equal to
A. $\left(\frac{a+b}{2 a b}\right) \cos \left(\frac{c}{2}\right)$
B. $\left(\frac{a+b}{a b}\right) \cos \left(\frac{c}{2}\right)$
C. $\left(\frac{2 a b}{a+b}\right) \cos \left(\frac{c}{2}\right)$
D. $\frac{b \sin A}{\sin (B)}$

Answer: C

D Watch Video Solution

103. If A, A_{1}, A_{2}, A_{3} are the areas of the inscribed and escribed circles of a $\triangle A B C$, then
A. `sqrtA_1+sqrtA_2+sqrtA_3=sqrtpi(r_1+r_2+r_3)
B. $\frac{1}{\sqrt{A}_{1}}+\frac{1}{\sqrt{A}_{2}}+\frac{1}{\sqrt{A}_{3}}=\frac{1}{\sqrt{A}}$
C. $\frac{1}{\sqrt{A}_{1}}+\frac{1}{\sqrt{A}_{2}}+\frac{1}{\sqrt{A_{3}}}=\frac{s^{2}}{\sqrt{\pi} r_{1} r_{2} r_{3}}$
D. $\sqrt{A}_{1}+\sqrt{A}_{2}+\sqrt{A_{3}}=\sqrt{\pi}(4 R+r)$

D Watch Video Solution

104. If $\mathrm{A}+\mathrm{B}=\frac{\pi}{3}$ and $\cos \mathrm{A}+\cos \mathrm{B}=1$, then which of the following is/are true
A. $\cos (a-b)=\frac{1}{3}$
B. $|\cos A-\cos B|=\sqrt{\frac{2}{3}}$
C. $\cos (A-B)=-\frac{1}{3}$
D. $|\cos A-\cos B|=\frac{1}{2 \sqrt{3}}$

Answer: B::C
105. When any two sides and one of the opposite acute are given, under certain additional condition two triangle are possible. The case when two triangle are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is possible or only one triangle is possible or two triangle are possible.

In the ambiguous case, let a, b, and angleA are given and $c_{-} 1, c_{-} 2$ are two values of the third side $c_{\text {. }}$

Two different triangle are possible when
A. $b \sin A<a$
B. $b \sin A<a$ and $b>a$
C. $b \sin A<a$ and $b<a$
D. $b \sin A<a$ and $a=b$

Answer: B

- Watch Video Solution

106. When any two sides and one of the opposite acute are given, under certain additional condition two triangle are possible. The case when two triangle are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is possible or
only one triangle is possible or two triangle are possible.

In the ambiguous case, let a, b, and angleA are given and $c_{-} 1, c_{-} 2$ are two values of the third side c

The difference between two values of c is

$$
\text { A. } 2 \sqrt{\left(a^{2}-b^{2}\right)}
$$

B. $\sqrt{\left(a^{2}-b^{2}\right)}$
C. $2 \sqrt{\left(a^{2}-b^{2} \sin ^{2} A\right)}$
D. $\sqrt{\left(a^{2}-b^{2} \sin ^{2} A\right)}$

Answer: C

107. If p_{1}, p_{2}, p_{3} are altitudes of a triangle ABC from the vertices A, B, C respectively and Δ is the area of the triangle and s is semi perimeter of the triangle.
If $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=\frac{1}{2}$, then the least value of $p_{1} p_{2} p_{3}$ is
A. 8
B. 27
C. 125
D. 216

Answer: D

108. If p_{1}, p_{2}, p_{3} are altitudes of a triangle ABC from the vertices A, B, C respectively and Δ is the area of the triangle and s is semi perimeter of the triangle

The value of $\frac{\cos A}{p_{1}}+\frac{\cos B}{p_{2}}+\frac{\cos C}{p_{3}}$ is
A. $1 / r$
B. $1 / \mathrm{R}$
C. $\frac{a^{2}+b^{2}+c^{2}}{2 R}$
D. $\frac{1}{\Delta}$

Answer: B

- Watch Video Solution

109. Match List - I with List-II

List - 1

(1) Circular plate is expanced by heat from radius 5 cm to 5.06 cm .

Approximate increase in area is
(2) If an edge of a cube increases by 1%, then percentage increase in volume is
(3) If the rate of decrease of
$\frac{x^{2}}{2}-2 x+5$ is twice the rate of
decrease of x, then x is equal to
(rate of decreases is non-zero)
(4) Rate of increase in area of equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is

List-II

(P) 4

4

110. Match List - I with List-II

List - 1

(1) Circular plate is expanced by heat from radius 5 cm to 5.06 cm .

Approximate increase in area is
(2) If an edge of a cube increases by 1%, then percentage increase in volume is
(3) If the rate of decrease of
$\frac{x^{2}}{2}-2 x+5$ is twice the rate of
decrease of x, then x is equal to
(rate of decreases is non-zero)
(4) Rate of increase in area of equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is
(R) 3

List-II

(P) 4
(Q) 0.6π
(S) $\frac{3 \sqrt{3}}{4}$
111. In a $\Delta,(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{b}+\mathrm{c}-\mathrm{a})=\lambda b c$, when $\lambda \in I$, then greatest value of λ is

D Watch Video Solution

112. In a $\triangle A B C$ then line joining the circumcentre to the incentre is parallel to $B C$, then valueof $\cos B+\cos C$ is

D Watch Video Solution

113. If in a $\Delta A B C, a=5, \mathrm{~b}=4$ and $\cos (\mathrm{A}-\mathrm{B})=31 / 32$, then the third side c is equal to

D Watch Video Solution

114. In $\triangle A B C$, if $B C$ is unity,
$\sin \left(\frac{A}{2}\right)=x_{1}, \sin \left(\frac{B}{2}\right)=x_{2}$,
$\cos \left(\frac{A}{2}\right)=x_{3}, \cos \left(\frac{B}{2}\right)=x_{4}$
with
$\left(\frac{x_{1}}{x_{2}}\right)^{2007}-\left(\frac{x_{3}}{x_{4}}\right)^{2007}=0$, then the length of ACis

D Watch Video Solution

115. If any $\triangle A B C$, if $\sin A, \sin B, \sin C$ are in A.P. and the maximum value of $\tan \left(\frac{B}{2}\right)=\lambda$, then $\frac{1}{\lambda^{2}}$ is -
116. In $\triangle A B C(\mathrm{~b}+\mathrm{c}) / 11=(\mathrm{c}+\mathrm{a}) / 12=(\mathrm{a}+\mathrm{b}) / 13$ then prove that $(\cos \mathrm{A}) / 7=(\cos \mathrm{B}) / 19=(\cos \mathrm{C}) / 25$

D Watch Video Solution

117. In $\triangle A B C$ if $\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}=1$ then prove that $a: b: c=1: 1: \sqrt{2}$

D Watch Video Solution

118. If in a triangle $A B C, A D, B E$ and $C F$ are the attitude and R is the circum-radius then find the radius of circle
circumscribing the triangle DEF.

- Watch Video Solution

119. If x, y, z are the perpendiculars from the vertices of a triangle $A B C$ on the opposite sides a, b, c respectively,
then show that $\frac{b x}{c}+\frac{c y}{a}+\frac{a z}{b}=\frac{a^{2}+b^{2}+c^{2}}{2 R}$

D Watch Video Solution

$$
\begin{aligned}
& \text { 120. In a } \Delta A B C \text { prove that: } \\
& a^{3} \cos (B-C)+b^{3} \cos (C-A)+c^{3} \cos (A-B)=3 a b c
\end{aligned}
$$

121. In $\triangle A B C$, D is the mid point of side BC . If AD is perpendicular to AC. then prove that $\cos A \cos C$ $=\frac{2\left(c^{2}-a^{2}\right)}{3 c a}$

D Watch Video Solution

122. For a $\Delta A B c$, it is given that $\cos \mathrm{A}$ $+\cos B+\cos C=3 / 2$. prove that the Δ is equilateral.

D Watch Video Solution

123. If any $\triangle A B C$, show that : $\frac{\sin ^{2} A+\sin A+1}{\sin A} \geq 3$

D Watch Video Solution

124. In a $\triangle A B C$, if $\cot A+\cos B+\cot C=\operatorname{sqrt3}$
. provett̂heDelta is equilateral.

- Watch Video Solution

125. Perpendiculars are drawn from the angles $A, B, C, o f$ an acute angles Δ on the opposite sodes and products to meet the circumscribing circle. If these produced parts be \propto, β, γ respectively, show that $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}=2(\tan A+\tan B+\tan C$
126. $A B C D$ is a trapezium such that $A B, D C$.are parallel and $B C$ is perpendicular to them. If
$\angle A D B=\theta, B C=p$ and $C D=q$, show that $\mathrm{AB}=$ $\left(p^{2}+q^{2}\right) \sin \theta$ $\overline{p \cos \theta+q \sin \theta}$

D Watch Video Solution

127. For any triangle $A B C$,

$$
\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}} \text { is }
$$

equal to
A. $\cos ^{\wedge} 2 \mathrm{~A}$
B. $\sin ^{\wedge} 2 A$
C. $\cos A \cos B \cos C$
D. none of these

Answer: B

- Watch Video Solution

128.

$$
\text { if } a=5, b=4 \text { and } \cos (A-B)=\frac{31}{32} \text {,then the }
$$ perimeter of triangle is

A. 15
B. 14
C. 13
D. none of these

Answer: A

- Watch Video Solution

129. If in triangle $A B C, \cot (A / 2)=(b+c) / a$, then the triangleABC is
A. isosceles
B. equilateral
C. right-angled
D. none of these

Answer: C

D Watch Video Solution

130. In a triangleABC, $\tan \left(\frac{A}{2}\right)=\frac{5}{6}, \tan \left(\frac{C}{2}\right)=\frac{2}{5}$.

Then which of the following is correct?
A. a, c, b are in A.P.
B. a,b,c are in A.P.
C. b,a,c are in A.P.
D. a,b,c are in G.P.

Answer: B
131. In a triangle $\mathrm{ABC}, c^{2}=a^{2}+b^{2}, 2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$. Then $4 s(s-a)(s-b)(s-c)$ is equal to
A. $5^{\wedge} 4$
B. $b^{\wedge} 2 c^{\wedge} 2$
C. $c^{\wedge} 2 a^{\wedge} 2$
D. $a^{\wedge} 2 b^{\wedge} 2$

Answer: D

- Watch Video Solution

132. In a triangle $A B C, \operatorname{acos} A=b \cos B$. Then the triangle is
A. equilateral
B. scalene
C. isosceles
D. none of these

Answer: C

D Watch Video Solution

133. Sides of a triangle $A B C$ are in A.P. If $a<\min \{b, c\}$,then $\cos A$ may be equal to
A. $\frac{3 c-4 b}{2 b}$
B. $\frac{3 c-4 b}{2 c}$
C. $\frac{4 c-3 b}{2 b}$
D. $\frac{4 c-3 b}{2 c}$

Answer: D

- Watch Video Solution

134. Angles A, Band C of a triangle $A B C$ are in A.P.If $b / c=$ $\frac{\sqrt{3}}{\sqrt{2}}$, then angle A is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $5 \frac{\pi}{12}$
D. $\frac{\pi}{2}$

Answer: C

135. In a triangle $A B C$, $b \cot A+c a c o t B+c$ abcot C is equal to ?

D Watch Video Solution

136. In a triangle $A B C,(a \cos A+b \cos B+c c c \cos C) /(a+b+c)$
is equal to
A. R / r
B. $\mathrm{R} /(2 \mathrm{r})$
C. r / R
D. $(2 r) / R$

Answer: C

D Watch Video Solution

137. In a triangle $\mathrm{ABC}, \angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$. Let D divide side $B C$ internally in the ratio 1:3.

Then $\frac{\sin (\angle B A D)}{\sin (\angle C A D)}$ is
A. $\frac{1}{\sqrt{6}}$
B. $\frac{1}{3}$
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{\frac{2}{3}}$
138. If in a \quad triangle
$\frac{2 \cos A}{a}+\frac{\cos B}{b}+\frac{2 \cos C}{c}=\frac{a}{b c}+\frac{b}{a c}$,$\quad$ then
A. 90°
B. 45°
C. 135°
D. none of these

Answer: A
139. If the bisector of angle A of triangle $A B C$ makes an angle θ with BC , then $\sin \theta$ is
A. $\cos \left(\frac{B-C}{2}\right)$
B. $\sin \left(\frac{B-C}{2}\right)$
C. $\sin \left(B-\frac{A}{2}\right)$
D. $\sin \left(C-\frac{A}{2}\right)$

Answer: A
140. If P is a point on the altitude $A D$ of the triangle ABC such that $\angle C B P=\frac{B}{3}$, then APis
A. $2 a \sin \left(\frac{C}{3}\right)$
B. $2 b \sin \left(\frac{C}{3}\right)$
C. $2 c \sin \left(\frac{B}{3}\right)$
D. $2 c \sin \left(\frac{C}{3}\right)$

Answer: C
141. For a regular of n sides, sides are a , and circum radius is R and in-radius $=r$, then $r+R$ is
A. $\frac{a}{2} \cot \left(\frac{\pi}{n}\right)$
B. $a \cot \left(\frac{\pi}{2 n}\right)$
C. $\frac{a}{4} \cot \left(\frac{\pi}{2 n}\right)$
D. $\frac{a}{2} \cot \left(\frac{\pi}{2 n}\right)$

Answer: D
142. If p_{1}, p_{2}, p_{3} are altitudes of a triangle ABC from the vertices A, B, C respectively and Δ is the area of the triangle and s is semi perimeter of the triangle.

If $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=\frac{1}{2}$, then the least value of $p_{1} p_{2} p_{3}$ is
A. 8
B. 27
C. 125
D. 216

Answer: D

143. In a triangle if the sum of two sides is x and this product is $y(\geq 2 \sqrt{x})$ such that $x^{2}-z^{2}=y$, where z is the third side, then in-radius of the triangle is
A. $\frac{y}{2(x+z)}$
B. $\frac{z}{2(x+y)}$
C. $\frac{y \sqrt{3}}{2(x+z)}$
D. $\frac{z \sqrt{3}}{(x+y)}$

Answer: C

144. If $P_{1} P_{2} P_{3}$ are altitude of a triangle which circumscribes a circle of diameter $\frac{16}{3}$ unit. then the least value of $P_{1}+P_{2}+P_{3}$ is
A. 12
B. 24
C. 22
D. none of these

Answer: B

D Watch Video Solution
145. A nine-side regular polygon with side length 2 , is inscribed in a circle. The radius of the circle is
A. $\sec \left(\frac{\pi}{9}\right)$
B. $\sin \left(\frac{\pi}{9}\right)$
C. $\operatorname{cosec}\left(\frac{\pi}{9}\right)$
D. $\tan \left(\frac{\pi}{9}\right)$

Answer: C
146. A circle is inscribed in an equilateral triangle of side length a. The area of any square inscribed in the circle is
A. $\frac{a^{2}}{4}$
B. $\frac{a^{2}}{6}$
C. $\frac{a^{2}}{9}$
D. $\frac{2 a^{2}}{3}$

Answer: B

D Watch Video Solution
147. In a triangle $\mathrm{ABC}, \angle C=\frac{\pi}{2}$. If r is the in-radius and R is the circum-radius of the triangle $A B C$, then $2(r+R)$ is equal to
A. $a+b-c / 2$
B. $b+c$
C. $\mathrm{c}+\mathrm{a}$
D. $a+b+c$

Answer: A

D Watch Video Solution
148. In an ambiguous case of solving a triangle when $a=\sqrt{5}, b=2, \angle A=\frac{\pi}{6}$ and the two possible value of third side are c_{1} and c_{2} then
A. $\left|c_{1}-c_{2}\right|=2 \sqrt{6}$
B. $\left|c_{1}-c_{2}\right|=4 \sqrt{6}$
C. $\left|c_{1}-c_{2}\right|=4$
D. $\left|c_{1}-c_{2}\right|=6$

Answer: C

149. In an equilateral triangle , $R: r: r_{2}$ is equal to
A. 1:1:1
B. 1:2:3
C. 3:2:1
D. 3:2:4

Answer: C

D Watch Video Solution

150. In a $\triangle A B C$, angles A, B, C are in A.P. Then $\lim _{A \rightarrow C} \frac{\sqrt{3-4 \sin A \sin C}}{|A-C|}$ is
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

151. If $a, b, c, d, b e$ the sides of a quadrilateral and $g(x)=f[f\{f(x)\}]$, where $f(x)=1 /(1-x), \frac{d^{2}}{a^{2}+b^{2}+c^{2}}$ is equal to
A. $>g(3)$
B. $<g(3)$
C. $>g(2)$
D. $<g(4)$

Answer: B

(D) Watch Video Solution

152. In $\triangle A B C$, let $A=\frac{\pi}{3}, \mathrm{~b}=40, \mathrm{c}=30$, AD is a median, them the value of $A D$ is
A. $6 \sqrt{13}$
B. $4 \sqrt{5}$
C. $3 \sqrt{34}$
D. $5 \sqrt{37}$

Answer: D

D Watch Video Solution

153. In a $\triangle A B C$, sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and $\frac{2}{1!9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{8^{a}}{2 b}!$, then the maximum value of $\tan A \tan B$ is equal to
A. 44228
B. 44256
C. 44287
D. $1 / 3$

Answer: B
154. In an isosceles triangle $A B C, A B=A C$. If vertical angle A is 20°, then $a^{3}+b^{3}$ is equal to
A. $3 a^{2} b$
B. $3 b^{2} c$
C. $3 c^{2} a$
D. $a b c$

Answer: C

155. If f, g, h are the internal bisectors of a $\triangle A B C$,
then $\frac{1}{f} \cos \left(\frac{A}{2}\right)+\frac{1}{g} \cos \left(\frac{B}{2}\right)+\frac{1}{h} \cos \left(\frac{C}{2}\right)$ is equal to
A. $1 / a+1 / b-1 / c$
B. $1 / a-1 / b+1 / c$
C. $1 / a+1 / b+1 / c$
D. none of these

Answer: C

D Watch Video Solution
156. Let $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments $A_{0} A_{1}, A_{0} A_{2}$ and $A_{0} A_{4}$ is
A. 44289
B. $3 \sqrt{3}$
C.
D. $(3 \mathrm{sqrt}(3)) / 2$

Answer: C
$\cot A=\left(x^{3}+x^{2}+x\right)^{1 / 2, \cot B=}\left(\mathrm{x}+\mathrm{x}^{\wedge}-1+1\right)^{\wedge}(1 / / 2)$
and $\cot C=\left(x^{\wedge}-3+x^{\wedge}-2 \quad+x^{\wedge}-1\right)^{\wedge}(1 / / 2)^{\wedge}$ then the triangle is
A. equilateral
B. isosceles
C. right angled
D. obtuse angled

Answer: C

158. If the sine of the angles of $\triangle A B C$ satisfy the equation $c^{3} x^{3}-c^{2}(a+b+c) x^{2}+I x+m=0$ (where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the sides of $\triangle A B C$), then $\triangle \mathrm{ABC}$ is
A. always right angled for any I,m
B. right angled only when

$$
I=c(a b+b c+c a)=c \sum a b, m=-a b c
$$

C. right angled only when

$$
I=\frac{c \sum a b}{4}, m=-\frac{a b c}{8}
$$

D. never right angled
159. In a triangle ABC, $r^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+a^{2}+b^{2}+c^{2}$ is equal to (where r is inradius and r_{1}, r_{2}, r_{3} are exradil a,b,c are the sides of $\Delta A B C$)
A. $2 R^{2}$
B. $4 R^{2}$
C. $8 R^{2}$
D. $16 R^{2}$

Answer: D

160. If in a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$, then the triangle is
A. right angled
B. isosceles
C. equilateral
D. none of these

Answer: A

D Watch Video Solution
161. If I is the incenter of $\triangle A B C$, then the ratio IA:IB:IC is equal to
A. $\cos e c\left(\frac{A}{2}\right): \cos e c\left(\frac{B}{2}\right): \operatorname{cosec}\left(\frac{C}{2}\right)$
B. $\sin \left(\frac{A}{2}\right): \sin \left(\frac{B}{2}\right): \sin \left(\frac{C}{2}\right)$
C. $\sec \left(\frac{A}{2}\right): \sec \left(\frac{B}{2}\right): \sec \left(\frac{C}{2}\right)$
D. none of the above

Answer: A

D Watch Video Solution

162. If in a $\Delta A B C, a^{2} \cos ^{2} A=b^{2}+c^{2}$, then
A. $A<\frac{\pi}{4}$
B. $\frac{\pi}{4}<A<\frac{\pi}{2}$
C. $A>\frac{\pi}{2}$
D. $A=\frac{\pi}{2}$

Answer: C

D Watch Video Solution

163. In any $\triangle A B C, \prod \frac{\sin ^{2} A+\sin A+1}{\sin A}$ is always greater than
A. 9
B. 3
C. 27
D. none of these

Answer: C

D Watch Video Solution

164. In any triangle $A B C, \sum \frac{\sin ^{2} A+\sin A+1}{\sin A}$ is always greater than
A. 9
B. 3
C. 27
D. none of these

D Watch Video Solution

165. In
$\triangle A B C$,
the
value
of
$\frac{\left(r_{1}+r_{2}\right)\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)}{R(s)^{2}}$ is
A. 3
B. 4
C. 2
D. 1

Answer: B
166. If in a triangle $\frac{s-a}{11}=\frac{s-b}{12}=\frac{s-c}{13}$, then $\tan ^{2}\left(\frac{A}{2}\right)$
A. 44317
B. 19/34
C. 13/33
D. none of these

Answer: C
167. If in a triangle $\mathrm{ABC}, \angle B=60^{\circ}$, then

$$
\begin{aligned}
& \text { A. }(a-b)^{2}=c^{2}-a b \\
& \text { B. }(a-b)^{2}=b^{2}-a b \\
& \text { C. }(c-a)^{2}=b^{2}-a c \\
& \text { D. } a^{2}+b^{2}+c^{2}=a c
\end{aligned}
$$

Answer: C

D Watch Video Solution

168. Given an isosceles triangle with equal sides of length b,base angle $\alpha<\frac{\pi}{4}$ and R, r the radii and o , ।
the centres of the circumcricle and incircle, respectively. Then
A. $R=\frac{1}{2} b \cos e c \alpha$
B. $\Delta 2 b^{2} \sin 2 \alpha$
C. $r=\frac{b \sin 2 \alpha}{2(1+\cos \alpha)}$
D. $O I\left|\frac{b \cos \left(\frac{3 \alpha}{2}\right)}{2 \sin \alpha \cos \left(\frac{\alpha}{2}\right)}\right|$

Answer: A::C::D

- View Text Solution

169. In $\triangle A B C, A=15^{\circ}, b=10 \sqrt{2} \mathrm{~cm}$ the value of 'a' for which these will be a unique triangle meeting
these requirement is
A. $10 \sqrt{2} \mathrm{~cm}$
B. 15 cm
C. $5(\sqrt{3}+1) c m$
D. $5(\sqrt{3}-1) \mathrm{cm}$

Answer: A::D

D Watch Video Solution
170. In $\triangle A B C, a=5, b=4, A=\left(\frac{\pi}{2}\right)+B$, thenC
A. cannot be evaluated
B. $\tan ^{-1}\left(\frac{9}{40}\right)$
C. $\tan ^{-1}\left(\frac{1}{40}\right)$
D. $2 \tan ^{-1}\left(\frac{1}{9}\right)$

Answer: B

- Watch Video Solution

171. If $\tan A, \tan B$ are the roots of the quadratic $a b x^{2}-c^{2} x+a b=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of a triangle. then
A. $\tan A=\frac{a}{b}$
B. $\tan B=\frac{b}{a}$
C. $\cos C=0$
D. $\tan A+\tan B=\frac{c^{2}}{a b}$

Answer: A::B::C::D

D Watch Video Solution

172. There exist a triangle $A B C$ satisfying
A. $\tan A+\tan B+\tan C=0$
B. $\sin A / 2=\sin B / 3=\sin C / 7$
C. $(a+b)^{2}=c^{2}+a b$
and
$\sqrt{2}(\sin A+\cos A)=\sqrt{3}$
D. $\sin A+\sin B=\frac{(\sqrt{3}+1)}{2}$
$\cos A \cos B=\frac{\sqrt{3}}{4}=\sin A \sin B$

Answer: C::D

- Watch Video Solution

173. In a $\triangle A B C, \tan C<0$. Then
A. $\tan A \tan B<1$
B. $\tan A \tan B>1$
C. $\tan A+\tan B+\tan C<0$
D. $\tan A+\tan B+\tan C>0$

Answer: A::C

D Watch Video Solution

174. If the since of the angles A and B of a triangle

ABCsatisfy the equation $c^{2} x^{2}-c(a+b) x+a b=0$, then the triangle
A. is acute angled
B. is right angled
C. is obtuse angled
D. satisfies $(\sin A+\cos A)=\frac{(a+b)}{c}$
175. In a $\triangle A B C \tan \mathrm{~A}$ and $\tan \mathrm{B}$ satisfy the equation
$\sqrt{3} x^{2}-4 x+\sqrt{3}<0$, then
A. $a^{2}+b^{2}+a b>c^{2}$
B. $a^{2}+b^{2}-a b<c^{2}$
C. $a^{2}+b^{2}>c^{2}$
D. none of these

Answer: A::B

176. For a triangle $A B C$, which of the following is true?
A. $\cos A / a=\cos B / b=\cos C / c$
B. $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$
C. $\frac{\sin A}{a}+\frac{\sin B}{b}+\frac{\sin C}{c}=\frac{3}{2 R}$
D. $\frac{\sin 2 A}{a^{2}}=\frac{\sin 2 B}{b^{2}}=\frac{\sin 2 C}{c^{2}}$

Answer: B::C

- Watch Video Solution

177. $A B C D$ be a cycle quadrilateral inscribed in a circle of radius R. The sides of a quadrilateral which can be
inscribed in a circle are $6,6,8$ and 8 cm . Then radius of circumcircle is
A. $5 / 2 \mathrm{~cm}$
B. $24 / 7 \mathrm{~cm}$
C. $11 / 7 \mathrm{~cm}$
D. none of these

Answer: D

D Watch Video Solution

178. A quadrilateral $A B C D$ is such that one circle can be inscribed in it and another circle circumscribed about
it, then $\tan ^{2}\left(\frac{A}{2}\right)$ is equal to
A. bc/ad
B. ab/cd
C. $a d-b c / a d+b c$
D. $a+c / b+d$

Answer: A

D Watch Video Solution

179. $A B C D$ be a cyclic quadrilateral inscribed in a circle of radius R. In previous problem the radius of the latter circle is
A. $\frac{\sqrt{(a b c d)}}{(a+b+c+d)}$
B. $\frac{\sqrt{2 a b c d}}{(a+b+c+d)}$
C. $\frac{2 \sqrt{(2 a b c d)}}{(a+b+c+d)}$
D. $\frac{2 \sqrt{(a+c)(b+d)}}{a+b+c+d}$

Answer: C

D Watch Video Solution

180. When any two sides and one of the opposite acute are given, under certain additional condition two triangle are possible. The case when two triangle are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is possible or only one triangle is possible or two triangle are possible.

In the ambiguous case, let a, b, and angleA are given and $c_{-} 1, c_{-} 2$ are two values of the third side $c_{\text {. }}$

Two different triangle are possible when
A. $b \sin A<a$
B. $b \sin A<a$ and $b>a$
C. $b \sin A<a$ and $b<a$
D. $b \sin A<a$ and $a=b$
181. When any two sides and one of the opposite acute are given, under certain additional condition two triangle are possible. The case when two triangle are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is possible or only one triangle is possible or two triangle are possible.

In the ambiguous case, let a, b, and angleA are given and $c_{-} 1, c_{-} 2$ are two values of the third side c

The difference between two values of c is

$$
\text { A. } 2 \sqrt{\left(a^{2}-b^{2}\right)}
$$

B. $\sqrt{\left(a^{2}-b^{2}\right)}$
C. $2 \sqrt{\left(a^{2}-b^{2} \sin ^{2} A\right)}$
D. $\sqrt{\left(a^{2}-b^{2} \sin ^{2} A\right)}$

Answer: C

- Watch Video Solution

182. When any two sides and one of the opposite acute are given, under certain additional condition two triangle are possible. The case when two triangle are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is possible or
only one triangle is possible or two triangle are possible.

In the ambiguous case, let a, b, and angleA are given and $c_{-} 1, c_{-} 2$ are two values of the third side c

The difference between two values of c is
A. $4 \mathrm{a} \cos \mathrm{A}$
B. $4 a^{2} \cos A$
C. $4 a \cos ^{2} A$
D. $4 a^{2} \cos ^{2} A$

Answer: D

List - 1

(1) Circular plate is expanced by heat from radius 5 cm to 5.06 cm .

Approximate increase in area is
(2) If an edge of a cube increases by
(Q) 0.6π
1%, then percentage increase in volume is
(3) If the rate of decrease of $\frac{x^{2}}{2}-2 x+5$ is twice the rate of decrease of x, then x is equal to (rate of decreases is non-zero)
(4) Rate of increase in area of equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is

D Watch Video Solution

184. Match List - I with List-II

List - 1

List-II

(P) 4
(1) Circular plate is expanced by
heat from radius 5 cm to 5.06 cm .
Approximate increase in area is
(2) If an edge of a cube increases by
(Q) 0.6π
1%, then percentage increase in volume is
(3) If the rate of decrease of
(R) 3
$\frac{x^{2}}{2}-2 x+5$ is twice the rate of
decrease of x, then x is equal to
(rate of decreases is non-zero)
(4) Rate of increase in area of
(S) $\frac{3 \sqrt{3}}{4}$ equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is

- Watch Video Solution

185. In a triangle $A B C$, right angled at A. The radius of
the inscribed circle is 2 cm . Radius of the circle touching the side $B C$ and also sides $A B$ and $A C$ produced is 15 cm . The length of the side $B C$ measured in cm is a , then $9 \mathrm{a} / 13$ is

- Watch Video Solution

186. If in a $\Delta A B C, B C=5, \mathrm{CA}=4, \mathrm{AB}=3$ and D, E are the point on BC such that $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$, then $8 \tan (\angle C A E)$ must be
187. Three circle touch one another externally. The tangents at their points of contact meet at a point whose distance from the point of contant is 4 . If the ratio of the product of the radii to the sum of the radii of the circle is λ, then $\frac{\lambda}{2}$ is

- Watch Video Solution

188. If the radius of the circumcircle of a triangle is 12
and that of the incircle is 4 . The sum of radii of the
escribed circle is λ, then $\frac{\lambda}{13}$ is

- Watch Video Solution

189. In a $\triangle A B C$, the maximum value of
$4\left(\frac{\sum a \cos ^{2}\left(\frac{A}{2}\right)}{a+b+c}\right)$ must be

D Watch Video Solution

190. The sides of a cyclic quadrilateral are in A.P., the shortest is 6 and the difference of the longest and the shortest is also 6. The square of the area of the quadrilateral is \qquad
191. In $\triangle A B C, \frac{r}{r_{1}}=\frac{1}{2}$, then the value of $\tan \left(\frac{A}{2}\right)\left(\tan \left(\frac{B}{2}\right)+\tan \left(\frac{C}{2}\right)\right)$ must be

D Watch Video Solution

192. In a triangle $A B C$, the incircle touches the sides $B C$,
$C A$ and $A B$ at D, E, F respectively. If radius of incircle is 4 unit and $B D, C E$ and $A F$ be consecutive natural numbers. The sum of the cubes of the length of the sides is λ, then $\frac{\lambda}{2079}$ is.
193. In triangle $A B C, a=5, b=4, c=3$. G is the centroid of triangle. If R_{1} be the circumradius of triangle GAB, then the value of $\frac{325}{R_{1}^{2}}$ must be

D Watch Video Solution

194. In the adjacent figure ' P ' is any arbitrary interior point of the triangle ABC. H_{a}, H_{b} and H_{c} are the length of altitudes draw from vertices A, B and C respectively. If x_{a}, x_{b} and x_{c} represent the distance of ' P ' from sides $B C$, $C A$ and $A B$ respectively, then the minimum value of $\left(\frac{H_{a}}{x_{a}}+\frac{H_{b}}{x_{b}}+\frac{H_{c}}{x_{c}}\right)$ must be
195. Prove that $\operatorname{asin}(B-C)+b \sin (C-A)+c \sin (A-B)=0$.

D Watch Video Solution

196. Prove that $1-\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)=\frac{2 c}{a+b+c}$.

- Watch Video Solution

197. Prove that $a \cos A+b \cos B+c \cos C=2 a s i n B \sin C$.

D Watch Video Solution
198. prove that $\cos A+\cos B+\cos C=1+r / R$.

D Watch Video Solution

199. The sides of a triangle are $x^{2}+3 x+3,2 x+3, x^{2}+2 x$. Find the greatest angle of the triangle.

(D) Watch Video Solution

200. If P_{1}, P_{2}, P_{3} be the altitudes of a triangle from
the vertices A, B, C Respectively and Δ be the area the
triangle,
then
prove
$\frac{1}{P_{1}^{2}}+\frac{1}{P_{2}^{2}}+\frac{1}{P_{3}^{3}}=\frac{\cot A+\cot B+\cot C}{\Delta}$.

- Watch Video Solution

201. If in $\triangle A B C, a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$ then find $\angle C$

D Watch Video Solution

202. Let h_{1}, h_{2}, h_{3} be the altitudes of the $\triangle A B C$ and let the inradius be r. Then show that $\frac{h_{1}+r}{h_{1}-r}+\frac{h_{2}+r}{h_{2}-r}+\frac{h_{3}+r}{h_{3}-r} \geq 6$.
203. For any triangle $A B C$, find the value of $b c \cos ^{2}\left(\frac{A}{2}\right)+c a \cos ^{2}\left(\frac{B}{2}\right)+a b \cos ^{2}\left(\frac{C}{2}\right)$

$$
a+b+c
$$

- Watch Video Solution

204.

If
in a
$\triangle A B C$,
$\sin ^{3} A+\sin ^{3} B+\sin ^{3} C=3 \sin A \cdot \sin B \cdot \sin C$,
then find the value of determinant, $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$

D Watch Video Solution
205. AD is a median of the $\triangle A B C$.If AE and AFare medians of the triangles $A B D$ respectively, and $A D=$ $m_{1}, A E=m_{2} A F=m_{3}$, then find the value of $\frac{a^{2}}{8}$.

D Watch Video Solution

206. In a triangle $\Delta X Y Z$, let a, b and c be the lengths of the sides opposite to the angles X, Y and Z, respectively. If $2\left(a^{2}-b^{2}\right)=c^{2}$ and $\lambda=\frac{\sin (X-Y)}{\sin Z,}$ then possible values of n for which $\cos (n \pi \lambda)=0$ is (are)

D Watch Video Solution

207. In a triangle $\Delta X Y Z$, let a, b, and c be the length of the sides opposites to the angles X, Y and Z, respectively.lf $1+\cos 2 X-2 \cos 2 Y=2 \sin X \sin Y$, then possible value(s) of a / b is (are)

- Watch Video Solution

208. If the angles of elevation of the top of a water
from three collinear points, B and C, on a line leading to the foot of the tower, are $30^{\circ}, 45^{\circ}$ and 60° respectively, then the ratio, $\mathrm{AB}: \mathrm{BC}$, ,is:
A. $\sqrt{3}: \sqrt{2}$
B. $1: \sqrt{3}$
C. 2:3
D. $\sqrt{3}: 1$

Answer:

D Watch Video Solution

209. If in a triangle $\triangle A B C, a^{2} \cos ^{2} A-b^{2}-c^{2}=0$, then
A. $\frac{\pi}{4}<A<\frac{\pi}{2}$
B. $\frac{\pi}{2}<A<\pi$
C. $A=\frac{\pi}{2}$
D. $A<\frac{\pi}{4}$

- Watch Video Solution

210. In a triangle $\mathrm{ABC}, \angle C=90^{\circ}, \mathrm{r}$ and R are the inradius and circumradius of the triangle $A B C$ respectively, then $2(r+R)$ is equal to
A. b+c
B. $\mathrm{c}+\mathrm{a}$
C. $a+b$
D. $a+b+c$
211. A bird is sitting on the top of a vertical pole 20 m high and its elevations from a point O on the ground is 45°. It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30°. Then the speed (in m / s) of the bird is
A. $20 \sqrt{2}$
B. $20(\sqrt{3}-1)$
C. $40(\sqrt{2}-1)$
D. $40(\sqrt{3}-\sqrt{2})$

Answer: B

D Watch Video Solution

212. In a $\triangle A B C, \tan \mathrm{~A}$ and $\tan \mathrm{B}$ are the roots of $p q\left(x^{2}+1\right)=r^{2} x$. Then $\Delta A B C$ is
A. a right angled triangle
B. an acute angled triangle
C. an obtuse angled triangle
D. an equilateral triangle

Answer: A
213. In a $\Delta A B C$, a,b,c are the sides of the triangle opposite to the angles A, B, C respectively. Then the value
$a^{3} \sin (B-C)+b^{3} \sin (C-A)+c^{3} \sin (A-B)$ is equal to
A. 0
B. 1
C. 3
D. 2
214. Let $P Q R$ be a triangle of area Δ with $a=2, b=\frac{7}{2}$ and $c=\frac{5}{2}$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R respectively. Then $\left(\frac{2 \sin P-\sin 2 P}{2 \sin P+\sin 2 P}\right)$ equals
A. $\frac{3}{4 \Delta}$
B. $\frac{45}{4 \Delta}$
C. $\left(\frac{3}{4 \Delta}\right)^{2}$
D. $\left(\frac{45}{4 \Delta}\right)^{2}$

Answer: C
215. Let p, q, r be the sides opposite to the angles P, Q, R respectively in a triangle $P Q R$. Then $2 p r \sin \left(\frac{P-Q+R}{2}\right)$ equal
A. $p^{2}+q^{2}+r^{2}$
B. $p^{2}+r^{2}-q^{2}$
C. $q^{2}+r^{2}-p^{2}$
D. $p^{2}+q^{2}-r^{2}$

Answer: B
216. Let p, q, r be the altitudes of a triangle with area s and perimeter $2 t$. Then the value of $1 / p+1 / q+1 / r$ is
A. s / t
B. t / s
C. $s /(2 t)$
D. $(2 \mathrm{~s}) / \mathrm{t}$

Answer: B

D Watch Video Solution
217. If in a triangle $A B C, \sin A, \sin B, \sin C$ are in A.P., then
A. the altitudes are in A.P.
B. the altitudes are in H.P.
C. the angles are in A.P.
D. the angles are in H.P

Answer: B

- Watch Video Solution

