©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

STATISTICS AND MATHEMATICAL REASONING

Question Bank

1. If the heights of 3 persons are $144 \mathrm{~cm}, 153 \mathrm{~cm}$ and 155 cm respectively, then mean height is

- Watch Video Solution

2. Arithmetic mean of the following frequency distribution
A. 13.6
B. 13.8
C. 14.0
D. None of these

Answer: B

- Watch Video Solution

3. The weighted mean of the first n natural number if their weight are the same as the number is
A. $\frac{n(n+1)}{2}$
B. $\frac{n+1}{2}$
C. $\left(\frac{2 n+1}{3}\right)$

Answer: C

- Watch Video Solution

4. The mean income of a group of persons is Rs. 400. Another group of persons has mean income Rs. 458 . If the mean income of all the persons in the two groups together is Rs. 430, then ratio of the number of persons in the groups.
A. $4 / 3$
B. 5/4
C. 5/3
D. None of these

Answer: C

- Watch Video Solution

5. The mean of a set of number is increased by λ, then mean of the new set is
A. \bar{x}
B. $\bar{x}+\lambda$
C. $(\bar{x}+1)$
D. None of these

Answer: B

- Watch Video Solution

6. The geometric mean of number $7,7^{2}, 7^{3}, \ldots, 7^{n}$ is
A. 7^{n}
B. $7^{\frac{n}{2}}$
C. $7^{\frac{n+1}{2}}$
D. None of these

Answer: C

D Watch Video Solution

7. Harmonic mean of $2,4,5$ is......
A. 4.21
B. 3.16
C. 2.98
D. None of these

Answer:

- Watch Video Solution

8. The number of runs scored by 11 players of a cricket team of school are $5,19,42,11,50,30,21,0,52,36,27$. The median is
A. 21
B. 27
C. 30
D. None of these

Answer: B

- Watch Video Solution

9. find the median of the following frequency distribution

Marks obtained	$0-10$	$10-30$	$30-60$	$60-70$	$70-90$
No. of students	15	25	30	4	10^{\cdot}

A. 4
B. 5
C. 6
D. None of these

Answer: B

D Watch Video Solution

10. Mode of the data $3,2,5,2,3,5,6,6,5,3,5,2,5$ is
A. 6
B. 4
C. 5
D. 3

Answer: C

D Watch Video Solution

11. If the value of mode and mean is 60 and 66 respectively, then the value of median is
A. 60
B. 64
C. 68
D. None of these

Answer: B
12. The mean from the following data
$340,150,210,240,300,320$ is

- Watch Video Solution

13. Marks of 5 students of a tutorial group are8, 12, 13, 15, 22 then variance is
A. 21
B. 21.2
C. 21.4
D. None of these

Answer: B

14. In a binomial distribution mean is 4 and variance is 3 , then find out number of observations.

- Watch Video Solution

15. Prove that the statement $-\sim(p \leftrightarrow q) \leftrightarrow\{(p \wedge \sim q) \vee(\sim p \wedge q)\}$ is a tautology.

- Watch Video Solution

16. Prove that
$[(p \wedge \sim q) \vee(q \wedge \sim p)] \wedge(p \vee q)=(p \vee q) \wedge(\sim q \vee \sim p) \wedge(p \vee q)$

- Watch Video Solution

17. Show that the argument "Unless we control population all advances resulting from planning will therefore, we must control population" is valid.

- Watch Video Solution

18. If x, y, z be any three elements of a Boolean lattice, show that
$(x+y) \cdot(y+z)=y+(x \cdot z)$.

- Watch Video Solution

19. Choose the correct answer:

The hybridisation of the carbon atom (underlined) present in
`(PAT_CHE_OXI_BO2_CO3_EO1_022_Q01.png" width="80\%"> is
20. Find the mean of 2,5,7 and 9

- Watch Video Solution

21. If \bar{x} is the mean of a set of n observations $x_{1}, x_{2}, x_{3} \ldots, x_{n}$ then $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)$ is equal to
A. M. D. About mean
B. S.D
C. 0
D. None of these

Answer: C

22. If the mean of $3,4, x, 7,10$ is 6 then the value of x is
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

23. Weight of 5 students is given as $54,44,47,65$ and 51 . Find the mean of the following weight
A. 51.3
B. 52.2
C. 55.2
D. 54.2

Answer: B

- Watch Video Solution

24. The Mean of a set of numbers is \bar{x}. If each number is increased by λ, then the mean of the new set is
A. \bar{x}
B. $\bar{x}+\lambda$
C. $\lambda \bar{x}$
D. none of these

Answer: B

- Watch Video Solution

25. The mean of a set of numbers is \bar{x}. If such numbers is multiplied by λ, then the mean of the new set is
A. \bar{x}
B. $\lambda+\bar{x}$
C. $\lambda \bar{x}$
D. none of these

Answer: C

- Watch Video Solution

26. The mean of the squares of first natural numbers is
A. $\frac{1}{2} n^{2}$
B. $\frac{1}{8} n(n+1)$
C. $\frac{1}{6} n(2 n+1)$
D. $\frac{1}{6}(n+1)(2 n+1)$

Answer: D

- Watch Video Solution

27. For a continuous series the mean is computed by the following formula
A. Mean $=A+\frac{\sum f}{n}$
B. $M e a n=A+\frac{\sum d}{f}$
C. Mean $=A+\frac{\sum f}{d}$
D. $M e a n=A+\frac{\sum f d}{f}$

Answer: D

- Watch Video Solution

28. If the mean of first n natural numbers is equal to $\frac{n+7}{3}$, then n is equal to
A. 10
B. 11
C. 12
D. none of these

Answer: C
29. The mean of discrete observation $y_{1}, y_{2}, \ldots y_{n}$ is given by
A. $\sum_{i=1}^{n} \frac{y_{i}}{n}$
B. $\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} i}$
C. $\frac{\sum_{i=1}^{n} y_{i} f_{1}}{n}$
D. $\frac{\sum_{i=1}^{n} y_{i} f_{1}}{\sum_{i=1}^{n} f_{1}}$

Answer: A

- Watch Video Solution

30. The mean of $130,126,68,50,1$ is
A. 75
B. 157
C. 82
D. 80

Answer: A

- Watch Video Solution

31. If d_{i} is the deviation of a class mark y_{i} from 'a' the ' assumed mean ' and F_{1} is the frequency, then $m_{g}=x+\frac{1}{\sum f_{1}}\left(\sum f_{i} d_{i}\right)$ then x is
A. lower limit
B. assumed mean
C. number of observations
D. class size

Answer: B

- Watch Video Solution

32. The mean of first three terms is 14 and mean of next two terms is 18 . The mean of all the five terms is
A. 14.5
B. 15
C. 15.2
D. 15.6

Answer: D

- Watch Video Solution

33. Geometric mean of the numbers $2,2^{2}, 2^{3}, \ldots, 2^{n}$ numbers is
A. $2^{\frac{2}{n}}$
B. $2^{\frac{n}{2}}$
C. $2^{\frac{n-1}{2}}$
D. $2^{\frac{n+1}{2}}$

Answer: D

- Watch Video Solution

34. The geometric mean of numbers observations
$x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is
A. $\frac{\sum_{i=1}^{n}\left(x_{i}\right)}{n}$
B. $\frac{n}{\sum_{i=1}^{n}\left(\frac{1}{x_{i}}\right)}$
C. $\left(x_{1} x_{2} x_{3} \ldots x_{n}\right)^{\frac{1}{n}}$
D. none of these

Answer: C

D Watch Video Solution

35. The geometric mean of numbers observations $4,8,16$, is
A. $\frac{28}{3}$
B. 8
C. $\frac{48}{7}$
D. none of these

Answer: B

36. The harmonic mean of $4,8,16$, is
A. 6.4
B. 6.7
C. 6.85
D. 7.8

Answer: C

- Watch Video Solution

37. The harmonic mean of $3,7,8,10,14$, is
A. $\frac{3+7+8+10+14}{5}$
B. $\frac{1}{3}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{14}$
C. $\frac{\frac{1}{3}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{14}}{5}$
D. $\frac{5}{\frac{1}{3}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{14}}$

Answer: D

- Watch Video Solution

38. Product of n positive number is unity. The sum of these numbers can not be less than
A. 1
B. n
C. n^{2}
D. none of these
39. In an arranged series of n observations (n being an odd number), the median is value of
A. $\left(\frac{n}{2}\right)$ th item
B. $\left(\frac{n+1}{2}\right)$ th item
C. $\left(\frac{n}{2}+1\right)$ th item
D. $\left(n+\frac{1}{2}\right)$ th item

Answer: B

- Watch Video Solution

40. The median of $10,14,11,9,8,12,6$, is
A. 10
B. 12
C. 14
D. 11

Answer: A

- Watch Video Solution

41. If a variable takes the discrete values
$\alpha+4, \alpha-\frac{7}{2}, \alpha-\frac{5}{2}, \alpha-3, \alpha-2, \alpha+\frac{1}{2}, \alpha-\frac{1}{2}, \alpha+5(\alpha>0)$
then the median is
A. $\alpha-\frac{5}{4}$
B. $\alpha-\frac{1}{2}$
C. $\alpha-2$
D. $\alpha+\frac{5}{4}$

- Watch Video Solution

42. In an arranged discrete series in which total number of observations ' n ' is even then the median is
A. $\frac{n}{2}$ th item
B. $\left(\frac{n}{2}+1\right)$ th item
C. the mean of $\frac{n}{2}$ th and $\left(\frac{n}{2}+1\right)$ th item
D. none of these

Answer: C

- Watch Video Solution

43. The mode of following items $0,1,6,7,2,3,7,6,6,2,6,0,5,6,0$ is
A. 0
B. 5
C. 6
D. 2

Answer: C

- Watch Video Solution

44. Choose the correct answer:

The hybridisation of the carbon atom (underlined) present in
`(PAT_CHE_OXI_BO2_CO3_E01_022_Q01.png" width="80\%">
A. 6
B. 10
C. 8
D. none of these

Answer: A

- Watch Video Solution

45. For a normal distribution, we have
A. mean = median
B. median $=$ mode
C. mode = mean
D. mean $=$ median $=$ mode

Answer: D

- Watch Video Solution

46. The relationship between mean median and mode for a moderately skewed distribution is
A. mode $=$ median -2 mean
B. mode $=2$ median - mean
C. mode $=2$ median -3 mean
D. mode $=3$ median -2 mean

Answer: D

- Watch Video Solution

47. If the mode of a data is 18 and the mean is 24 then median is
A. 18
B. 24
C. 22
D. 21

Answer: C

D Watch Video Solution

48. Which of the following is not a measure of dispersion ?
A. variance
B. mean deviation
C. standard deviation
D. mode

Answer: D

- Watch Video Solution

49. For a frequency distribution, mean deviation about mean is computed by
A. $M . D=\frac{\sum\left(d_{i}\right)}{\sum\left(f_{i}\right)}$
B. $M . D=\frac{\sum\left(f_{i} d_{1}\right)}{\sum\left(f_{i}\right)}$
C. $M . D=\frac{\sum\left(f_{i}\left|d_{1}\right|\right)}{\sum\left(f_{i}\right)}$
D. $M . D=\frac{\sum f_{i}}{\sum\left(f_{i}\left|d_{1}\right|\right)}$

Answer: C

50. The mean for the observation $1,2,3,4$ is
A. 4
B. 2.5
C. 3.6
D. none of these

Answer: B

D Watch Video Solution

51. The variance of $2,4,6,8,10$, is
A. 8
B. $\sqrt{8}$
C. 6
D. none of these

Answer: A

- Watch Video Solution

52. The S.D of 7 scores $1,2,3,4,5,6,7$, is
A. 4
B. 2
C. $\sqrt{7}$
D. none of these

Answer: B

53. If the standard deviation of $1,2,3,4, \ldots . .10$ is σ, then the standard deviation of $11,12,13,14, \ldots . .20$ is
A. $\sigma+10$
B. 10σ
C. σ
D. None of these

Answer: C

- Watch Video Solution

54. S.D. of numbers observation $a_{1}, a_{2}, a_{3}, \ldots . a_{n}$ is σ then the S.D. of the observations $\lambda a_{1}, \lambda a_{2}, \lambda a_{3}, \lambda a_{3}, \ldots \ldots . \lambda a_{n}$ is
A. $\lambda \sigma$
B. $-\lambda \sigma$
C. $|\lambda| \sigma$
D. σ

Answer: C

- Watch Video Solution

55. If each observation of a raw data whose variance is σ^{2} is increased by λ then the variance of the new set is
A. σ^{2}
B. $\lambda^{2} \sigma^{2}$
C. $\lambda+\sigma^{2}$
D. $\lambda^{2}+\sigma^{2}$

Answer: A

56. Let σ be the standard deviation of n observations. Each of the n observation is multiplied by a constant c . Then the standard deviation of the resulting numbers is
A. σ
B. $c \sigma$
C. $\sigma \sqrt{c}$
D. None of these

Answer: B

57. For a frequency distribution, standard deviation is computed by
A. $\sigma=\frac{\sum f_{i}\left(x_{i}-\bar{x}\right)}{\sum f_{i}}$
B. $\sigma=\frac{\sqrt{\sum f_{i}\left(x_{i}-\bar{x}\right) 2}}{\sum f_{i}}$
C. $\sigma=\sqrt{\frac{\sum f_{i}\left(x_{i}-\bar{x}\right) 2}{\sum f_{i}}}$
D. $\sigma=\sqrt{\frac{\sum f_{i}\left(x_{i}-\bar{x}\right)}{\sum f_{i}}}$

Answer: C

- Watch Video Solution

58. Mean of first n natural numbers is
A. $\frac{n(n-1)}{2}$
B. $\frac{n(n+1)}{2}$
C. $\frac{(n+1)}{2 n}$
D. $\frac{(n+1)}{2}$

Answer: D

- Watch Video Solution

59. $\left(x_{1}-\bar{x}\right)+\left(x_{2}-\bar{x}\right)+\ldots+\left(x_{n}-\bar{x}\right)=$
A. 0
B. 1
C. \bar{x}
D. None of these

Answer: A
60. If the mean of the table is 8 , then find the value of P.

x_{i}	3	5	8	9	1	13
f_{i}	$\cdot 6$	8	5	P	8	4

A. 70.25 kg
B. 70.50 kg
C. 70.75 kg
D. None of these

Answer: A

- Watch Video Solution

61. A factory employs 100 workers of whom 60 in the first shift and 40 work in the second shift. The average wage of all the 100
workers is Rs. 38 If the average wage of 60 workers of the first shift is Rs. 40, then the average wage of the remaining 40 workers of the second shift is
A. 35
B. 40
C. 45
D. None of these

Answer: A

- Watch Video Solution

62. Geometric mean of 3,9 and 27 is
A. 18
B. 6
C. 9
D. None of these

Answer: C

- Watch Video Solution

63. The median of the items $6,10,4,3,11,22,18$, is
A. 9
B. 10
C. 9.5
D. 11

Answer: C

64. If median $=($ mode +2 mean $)$ Mean, then Mean is equal to
A. 3
B. $\frac{1}{3}$
C. 2
D. None of these

Answer: B

- View Text Solution

65. The scores of a batsman in ten innings are : 38, 70, 48, 34, 42,
$55,63,46,54,44$,then the mean is
A. 48.4
B. 49.2
C. 48.6
D. 49.4

Answer: D

- Watch Video Solution

66. The Standard Deviation of scores $1,2,3,4,5$ is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: C

67. If the mean of the first n odd natural numbers be numbers itself, then n is
A. 1
B. 2
C. 3
D. any natural number

Answer: D

- Watch Video Solution

68. The A.M of the series $1,2,4,8,16 \ldots, 2^{n}$ is
A. $\frac{2^{n}-1}{n}$
B. $\frac{2^{n+1}-1}{n+1}$
C. $\frac{2^{n}+1}{n}$
D. $\frac{2^{n}-1}{n+1}$

Answer: A

D Watch Video Solution

69. If the mean of the numbers $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ is \bar{x}, then the mean of the numbers $x_{i}+2$, is, where $1 \leq i \leq n$
A. $\bar{x}+2 n$
B. $\bar{x}+n+1$
C. $\bar{x}+2$
D. $\bar{x}+n$

Answer: B

- Watch Video Solution

70. Mean of the first n terms of the A.P
$a,(a+d),(a+2 d), \ldots$. is
A. $a+\frac{n d}{2}$
B. $a+\frac{(n-1) d}{2}$
C. $a+((n-1) d)$
D. $a+n d$

Answer: B

- Watch Video Solution

71. If μ is the mean of a distribution, then $\sum f_{i}\left(y_{i}-\mu\right)$ is equal to
A. M.D
B. S.D
C. 0
D. none of these

Answer: C

- Watch Video Solution

72. If the mean of n observations $1^{2}, 2^{2}, 3^{2}, \ldots . n^{2}$ is $\frac{46 n}{11}$ then n equal to
A. 11
B. 12
C. 23
D. 22

Answer: A

- Watch Video Solution

73. The mean of 50 observations is 36 . If two observations 30 and 42 are deleted, then mean of the remaining observations is
A. 48
B. 36
C. 38
D. none of these

Answer: B

- Watch Video Solution

74. the weighted mean of first n natural numbers whose weights are equal to the squares of corresponding numbers, is
A. $\frac{n+1}{2}$
B. $\frac{3 n(n+1)}{2(2 n+1)}$
C. $\frac{(n+1)(2 n+1)}{6}$
D. $\frac{n(n+1)}{2}$

Answer: B

- Watch Video Solution

75. A group of 10 items has mean 6 If the mean of 4 of these items is 7.5 then the mean of the remaining items is
A. 6.5
B. 5.5
C. 4.5
D. 5

Answer: D

- Watch Video Solution

76. The mean of a set of observations is \bar{x} If observations is divided by $\alpha, \alpha \neq 0$, and then is increased by 10 then the mean of the new set is
A. $\frac{\bar{x}}{\alpha}$
B. $\frac{\bar{x}+10}{\alpha}$
C. $\frac{\bar{x}+10 \alpha}{\alpha}$
D. $a \bar{x}+10$

Answer: C

D Watch Video Solution

77. The geometric mean of the first n terms of the G.P. $a, a r, a r^{2}$,....is
A. $a r^{\frac{n}{2}}$
B. $a r^{n}$
C. $\operatorname{ar}(n-1)(/ 2)$
D. $a r^{n-1}$

Answer: C

- Watch Video Solution

78. The geometric mean of the observations $2,4,8,16,32,64$, is
A. $2^{\frac{5}{2}}$
B. $2^{\frac{7}{2}}$
C. 33
D. none of these

Answer: B

- Watch Video Solution

79. A boy goes to school from him home at a speed of $x \mathrm{~km} / \mathrm{hr}$. and comes back at a speed of $\mathrm{y} \mathrm{km} / \mathrm{hr}$. then the average speed of the boy is given by
A. $\frac{x+y}{2} \mathrm{~km} / \mathrm{hr}$
B. $\sqrt{x} \mathrm{~km} / \mathrm{hr}$
C. $\frac{2 x y}{x+y} \mathrm{~km} / \mathrm{hr}$
D. Any of these

Answer: C

- Watch Video Solution

80. Ram spends equal amounts on purchasing three kinds of pens being sold at Rs 5 Rs 10 Rs 15 per piece Average cost of each pen is
A. Rs. 10
B. Rs..(90)/(11)'
C. 9
D. none of these

Answer: B

- Watch Video Solution

81. An automobile driver travels from plain to a hill station 120 km distant at an average speed of 30 km per hour. He then makes the return trip at an average speed of 25 km per hour. He covers another 120 km distance on plain at average speed of 50 km . per hour. His average speed over the entire distance of 360 km will be

$$
\text { A. } \frac{30+25+50}{3}
$$

B. $(30 \times 25 \times 50)^{\frac{1}{3}}$
C. $\frac{3}{\frac{1}{30}+\frac{1}{25}+\frac{1}{50}} \mathrm{~km} / \mathrm{hr}$
D. none of these

Answer: C

- Watch Video Solution

82. If a, b, c, are any three positive numbers, then the least value of $(a+b+c)\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}\right)$ is
A. 3
B. 6
C. 9
D. none of these

Answer: C

- Watch Video Solution

83. The median of the data $13,14,16,18,20,22$ is
A. 17
B. 16
C. 18
D. none of these

Answer: A

- Watch Video Solution

84. For a continuous series the mode is computed by the formula
A. $l+\frac{f_{m-1}}{f_{m}-f_{m-1}-f_{m+1}} \times c$
B. $l+\frac{f_{m}-f_{m-1}}{f_{m}-f_{m-1}-f_{m+1}} \times c$
C. $l+\frac{f_{m}-f_{m-1}}{2 f_{m}-f_{m-1}-f_{m+1}} \times c$
D. $l+\frac{2 f_{m}-f_{m-1}}{f_{m}-f_{m-1}-f_{m+2}} \times c$

Answer: C

D Watch Video Solution

85. If mean $=(3$ median - mode $) x$, then the value of x is
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{3}{2}$

Answer: C

- Watch Video Solution

86. The mean deviation from median is
A. greater then that measured from any other value
B. less than that measured from any other value
C. equal to that measured from any other value
D. maximum if all observations are positive

Answer: A

- Watch Video Solution

87. The mean deviation from the median is
A. greater then that measured from any other value
B. less than that measured from any other value
C. equal to that measured from any other value
D. maximum if all observations are positive

Answer: B

- Watch Video Solution

88. If each observation of a rew data, whose variance is σ^{2} is multiplied by λ then the variance of the new set is
A. σ^{2}
B. $\lambda^{2} \sigma^{2}$
C. $\lambda+\sigma^{2}$
D. $\lambda+\sigma^{2}$

- Watch Video Solution

89. The standard deviation of a variate x is σ The standard deviation of the variable $\frac{a X+b}{c}: \mathrm{a}, \mathrm{b} \mathrm{c}$, are constants, is
A. $\frac{a}{2} \sigma$
B. $\left|\frac{a}{c}\right| \sigma$
C. $\left(\frac{a^{2}}{c^{2}}\right) \sigma$
D. none of these

Answer: B

- Watch Video Solution

90. If mean of $4,7, x, 8$ is 5 , then the value of x is.
A. 5
B. 7
C. 3
D. 1

Answer: D

D Watch Video Solution

91. The S.D of the first n natural numbers is
A. $\frac{n+1}{2}$
B. $\sqrt{\frac{n(n+1)}{2}}$
C. $\sqrt{\frac{\left(n^{2}-1\right)}{12}}$
D. none of these

Answer: C

- Watch Video Solution

92. The mean and variance of a random variable X having a binomial distribution are 4 and 2 respectively. Then $p(x=1)$ is
A. $\frac{1}{4}$
B. $\frac{1}{32}$
C. $\frac{1}{16}$
D. $\frac{1}{8}$

Answer: B

93. Which of the following is not a fallacy?

A. $p \wedge \sim p$
B. $p \wedge f$
C. $p \vee f$
D. none of these

Answer: C

- Watch Video Solution

94. Which of the following is a tautology? (p being any statement)
A. $p \wedge f$
B. $p \vee f$
C. $p \vee \sim p$
D. $p \wedge t$

Answer: C

- Watch Video Solution

95. Which of the following is true?
A. $(p \wedge q)=(\sim p) \vee(\sim q)$
B. $(p \vee q)=(\sim p) \wedge(\sim q)$
C. $p \rightarrow q=\sim p \vee q$
D. $\sim(p \vee q)=\sim p \vee q$

Answer: D

96. Which of the following is different from the others?

A. $p \rightarrow q$
B. $(\sim q) \rightarrow(\sim p)$
C. $\sim p \rightarrow q$
D. none of these

Answer: C

D Watch Video Solution

97. Which of the following is different from the others?
A. $\sim(p \leftrightarrow q)$
B. $\sim p \leftrightarrow q$
C. $p \leftrightarrow \sim q$
D. none of these

Answer: D

- Watch Video Solution

98. In each of the statements $p \rightarrow \sim q \sim r \rightarrow q$ and p is true, then
A. r is false
B. r is true
C. q is true
D. none of these

Answer: B

99. Additive identity of the Boolean algebra of logical statement
is
A. \wedge
B. V
C. ~
D. none of these

Answer: B

- Watch Video Solution

100. Multiplicative identity of the Boolean algebra of logical statements is
A. \wedge
B. \vee
C. ~
D. none of these

Answer: A

- Watch Video Solution

101. Let X be a non-empty set, then $P(X)=\{A: A \subset X\}$ is a Boolean lattice w.r.t. the operations
$A+B=A \cup B, A . B=A \cap B$ and $A^{\prime}=X-A$ for all A, B in $P(X)$ The additive identity of this Boolean algebra is
A. X
B. ϕ
C. '\{phi\}
D. none of these

Answer: B

- Watch Video Solution

102. Which of the following is true?
A. $p \wedge \sim p=t$
B. $p \vee \sim p=f$
C. $p \rightarrow q=q \rightarrow p$
D. $p \rightarrow q=(\sim q) \rightarrow(\sim p)$

Answer: D

- Watch Video Solution

103. Consider the 2-place Boolean function $f:\{0,1\} \rightarrow\{0,1\}$ defined by $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} . x_{2}$ Then following $f(0,1)$ is equal to
A. 0
B. 1
C. not defined
D. none of these

Answer: B

- Watch Video Solution

104. If x, y are any two elements of a Boolean lattice, then ($\left.x^{\prime}+y^{\prime}\right)^{\prime}$ is equal to
B. $x+y$
C. $x^{\prime} . y^{\prime}$
D. none of these

Answer: A

- Watch Video Solution

105. The mean of the data set comprising of 16 observations is 16 . If one of the observation valued 16 is deleted and three new observations valued 3,4 and 5 are added to the data then mean of the resultant data is :
A. 16
B. 15.8
C. 14
D. 16.8

Answer: A

- Watch Video Solution

106. The variance of first 20 natural numbers is
A. $\frac{133}{4}$
B. $\frac{279}{12}$
C. $\frac{133}{2}$
D. $\frac{399}{4}$

Answer: A

107. The negation of $\sim s \vee(\sim r \wedge s)$ is equivalent to
A. $\sim s \wedge(r \wedge \sim s)$
B. $\sim s \vee(r \vee \sim s)$
C. $s \wedge r$
D. $s \wedge-r$

Answer: C

D Watch Video Solution

108. the variance of first 50 even natural numbers is,
A. 437
B. $\frac{437}{4}$
C. $\frac{833}{4}$

Answer: D

- Watch Video Solution

109. The statement $\sim(p \leftrightarrow \sim q)$ is
A. a tautology
B. a fallacy
C. equivalent to $p \leftrightarrow q$
D. equivalent to \sim pharrq

Answer: C

- Watch Video Solution

110. All the students of a class perfomed poorly in mathematic.

The techer decided to give grace marks of 10 to every student Which of the following statistical measure will not change even after the grace marks were given ?
A. median
B. mode
C. mean
D. variance

Answer: D

- Watch Video Solution

111. Statement I $:(p \wedge \sim q) \wedge(\sim p \wedge q)$ is a fallacy.

Statement II: $(p \rightarrow q) \leftrightarrow(\sim q \rightarrow \sim p)$ is a tautology.
A. Statement 1 is true, Statement-2 is true.

Statement-2 ia not a correct explation for Statement-1
B. Statement-1 is true, Statement-2 is false
C. Statement-1 is false, Statement-2 is true
D. Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1

Answer: C

D Watch Video Solution

112. Let $x_{1}, x_{2}, \ldots \ldots, x_{n}$ be nobservations, and $\leq t \mathrm{barx}$ betheirarithimeticmean and sigma^2
betheirvariance. Statement1:Varianceof2x_1, 2x_2,....,2x_nis4 alpha^2Statement 2 : Arithmeticmeanof2x_1, $\quad 2 x _2, \ldots . . ., 2 x_{-} n i s 4$ barx.
A. Statement-1 is false, Statement-2 is true
B. Statement-1 is true, Statement-2 is true, Statement 2 is a correct explanation for statement-1
C. Statement-1 is true, Statement-2 is true, Statement 2 is not a correct explanation for statement-1
D. Statement-1 is true, Statement-2 is false

Answer: D

D Watch Video Solution

113. The negation of the statement "If I become teacher, then I will open a school" is
A. I will become a teacher and I will not open a school
B. Either I will not become a teacher or I will not open a school
C. Neither I will become a teacher nor I will not open a school
D. I will not become a teacher or I will open a school

Answer: A

- Watch Video Solution

114. If the mean deviation about the median of the numbers a,
$2 \mathrm{a}, . .50 \mathrm{a}$ is 50 then $|a|$ equal
A. 3
B. 4
C. 5
D. 2

Answer: B
115. Consider the following statements
P : suman is brilliant,

Q : suman is rich
R: Suman is honest
The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as
A. $\sim(\sim Q \leftrightarrow(P \wedge \sim R))$
B. $\sim Q \leftrightarrow \sim P \wedge R$
C. $(P \wedge \sim R) \leftrightarrow Q$
D. $P \wedge(Q \leftrightarrow \sim R)$

Answer: C

