©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS
 (HINGLISH)

Application of $\mathrm{dy} / \mathrm{dx}$

Example

1. The curve $y=a x^{3}+b x^{2}+c x+5$ touches
the x -axis at $P(-2,0)$ and cuts the y -axis at
the point Q where its gradient is 3 . Find the equation of the curve completely.

D Watch Video Solution

2. Tangents are drawn from the origin to the
curve $y=\sin x$. Prove that their points of contact lie on the curve $x^{2} y^{2}=\left(x^{2}-y^{2}\right)$

D Watch Video Solution

3. In the curve $x^{a} y^{b}=K^{a+b}$, prove that the potion of the tangent intercepted between the coordinate axes is divided at its points of contact into segments which are in a constant ratio. (All the constants being positive).

D Watch Video Solution

4. if the straight line $x \cos \alpha+y \sin \alpha=p$
touches the curve $x^{m} y^{n}=a^{m+n}$ prove that $p^{m+n} m^{m} n^{n}=(m+n)^{m+n} a^{m+n} \sin ^{n} \alpha \cos ^{m} \alpha$
5. Show that the normal to the curve
$5 x^{5}-10 x^{3}+x+2 y+6=0$ at $P(0,-3)$
meets the curve again at two points. Find the equations of the tangents to the curve at these points.

D Watch Video Solution

6. Find the equation of the straight line which
is a tangent at one point and normal at
another point to the curve
$y=8 t^{3}-1, x=4 t^{2}+3$.

D Watch Video Solution

7. A man is standing on a straight bridge over a river and another man on a boat is on the river just below lthe man on the bridge. If the first man starts walking at the uniform speed of $4 \mathrm{~m} / \mathrm{min}$ and the boat moves perpendicularly to the bridge at the speed of 5 $\mathrm{m} / \mathrm{min}$ then at what rate are they separating
after 4 minutes if the height of the bridge above the boat is 3 m ?

D Watch Video Solution

8. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $T=2 \pi \sqrt{\frac{1}{g}}$ where g is constant. What is the percentage error in T when l is increased by 1% ?
9. Without use of tables and any standard value of logarithm, find the value of $\log _{e} 7$.

D Watch Video Solution

Exercise

1. Determine the quadratic curve $y=f(x)$ if it touches the line $y=x$ at the point $x=1$ and passes through the point $(-1,0)$.
2. Find the value of a, b, c such that curves
$y=x^{2}=a x+b a n d y=c x-x^{2}$ will touch
each other at the point $(1,0)$

- Watch Video Solution

3. Prove that the curves $2 y^{2}=x^{3}$ and $y^{2}=32 x$ cut each other orthogonally at the origin
4.

Prove
that
the
curves
$x y=4 a n d x^{2}+y^{2}=8$ touch each other.

D Watch Video Solution
5. Find the equation of the tangent to the
curve $y=\left(x^{3}-1\right)(x-2)$ at the points where the curve cuts the x-axis.

- Watch Video Solution

6. Show that the line $\frac{d}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-\frac{x}{a}}$ at the point where it crosses the y-axis.

- Watch Video Solution

7. The equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$ that are parallel to the line $x+2 y=0$, is

8. Find the equations of the tangents drawn to

the curve $y^{2}-2 x^{3}-4 y+8=0$.

- Watch Video Solution

9. If the tangent at $\left(x_{0}, y_{0}\right)$ to the curve $x^{3}+y^{3}=a^{3}$ meets the curve again at
$\left(x_{1}, y_{1}\right)$, then $\frac{x_{1}}{x_{0}}+\frac{y_{1}}{y_{0}}$ is equal to

D Watch Video Solution

10. Show that the length of the portion of the tangent to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=4$ at any point on it, intercepted between the coordinate axes is constant.

- Watch Video Solution

11. The sum of the intercepts made on the axes
of coordinates by any tangent to the curve
$\sqrt{x}+\sqrt{y}=\sqrt{a}$ is equal to
12. Prove that the tangent at any point on the rectangular hyperbola $x y=c^{2}$, makes a triangle of constant area with coordinate axes.

- Watch Video Solution

13. Show that the segment of the tangent to
the
curve
$y=\frac{a}{2} \operatorname{In}\left(\frac{a+\sqrt{a^{2}-x^{2}}}{a-\sqrt{a^{2}-x^{2}}}\right)-\sqrt{a^{2}-x^{2}}$
contained between the $\mathrm{y}=\mathrm{axis}$ and the point of tangency has a constant length.

- Watch Video Solution

14. If α, β are the intercepts made on the axes
by the tangent at any point of the curve $x=a \cos ^{3} \theta$ and $y=b \sin ^{3} \theta, \quad$ prove that $\frac{\alpha^{2}}{a^{2}}+\frac{\beta^{2}}{b^{2}}=1$.

- Watch Video Solution

15. Show that the segment of the tangent to
the hyperbola $y=\frac{a^{2}}{x}$ intercepted between
the axes of the coordinates is bisected at the point of contact

D Watch Video Solution

16. Find the value of $n \in N$ such that the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b).

D Watch Video Solution

17. Find the equation of the normal to the curve $y=(1+y)^{y}+\sin ^{-1}\left(\sin ^{2} x\right)$ at $x=0$.

D Watch Video Solution

18. Prove that the equation of the normal to
$x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is $y \cos \theta-x \sin \theta=a \cos 2 \theta$,
where θ is the angle which the normal makes
with the axis of x.
19. Find the equation of the normal to the curve $x^{2}=4 y$ which passes through the point (1, 2).

- Watch Video Solution

20. Find the points on the curve $9 y^{2}=x^{3}$
where normal to the curve makes equal intercepts with the axes.
21. Prove that all normals to the curve $x=a \cos t+a t \sin t, \quad y=a \sin t-a t \cos t$ are at a distance a from the origin.

D Watch Video Solution

22. Show that for any point of the curve
$x^{2}-y^{2}=a^{2}$ the segment of the normal from
the point to the point of intersection of the normal with the x-axis is equal to the distance of the point from the origin.
23. Use calculus to find the conditiion that the
line $x \cos \theta+y \sin \theta=p$ is a normal to the curve $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$.

- Watch Video Solution

24. The volume of the cylindrical trunk of a tree is proportional to the cube of its diameter and the diameter increases
uniformly from year to year,prove that the rate of increase in the volume when the diameter is
equal to 90 cm is 25 times the ratewhen it is 18 cm .

D Watch Video Solution

25. A stick of length 100 cm rests against a vertical walland the horizontal floor. If the foot of the stick slides with the constant velocity of $10 \mathrm{~cm} / \mathrm{s}$ then find the magnitude of the velocity of the middle point of the stick when it is inclined at with the floor.
26. A man running along a circular track has
the speedof 10 km per hour. A source of light
is at the centre of the circular track. A wall is
along the tangent to the circular track at the
point from which he starts. What is the speed of the shadow of the man on the wall when he
covers $\frac{1}{8}$ th of the track? (Assume thetrack to be a line.)

- Watch Video Solution

27. A point is moving along the curve $y^{3}=27 x$. The interval in which the abscissa chnages at alower rate than ordinate, is (a, b). Then $(a+b)$ is

- Watch Video Solution

28. A particle is moving along the parabola $y^{2}=12 x$ at the uniform rate of $10 \mathrm{~cm} / \mathrm{s}$.

Find the components of velocity parallel to
each of the axes when the particle is at the point $(3,6)$.

D Watch Video Solution

29. A spherical balloon is being inflated so that itsvolume increases uniformly at the rate of
$40 \mathrm{~cm} 3 / \mathrm{min}$. How fast is its surface area increasing when the radius is 8 cm ? Find how much approximately the radius will increase during the next $\frac{1}{2}$ minute.
30. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $T=2 \pi \sqrt{\frac{1}{g}}$ where g is constant. What is the percentage error in T when l is increased by 1% ?

- Watch Video Solution

31. The time t of a complete oscillation of a simple pendulum of length l is given by the
equation $T=2 \pi \sqrt{\frac{1}{g}}$ where g is constant.
What is the percentage error in T when l is increased by 1% ?

- Watch Video Solution

32. A spherical iceball is melting, such that the
radius is decreasing at a constant rate of
$0.1 \mathrm{~cm} / \mathrm{s}$. Find the amount of water formed in one second when the radius of the sphere is

7 cm . (Given $\pi=\frac{22}{7}$, sp. gr. ofice $=0.9$.)
33. Use differentials to obtain a resonable approximation to $(8.01)^{\frac{4}{3}}+(8.01)^{2}$.

- Watch Video Solution

34. Let C be the curve $y^{3}-3 x y+2=0$. If H is
the set of points on the curve C, where the tangent is horizontal and V is the set of points on the curve C, where the tangent is vertical, then $\mathrm{H}=\ldots$ and $\mathrm{V}=\ldots$...

Watch Video Solution

35. A spherical rain drop evaporates at a rate proportional to its surface area at any instant
t. The differential equation giving the rate of change of the radius of the rain drop is

- Watch Video Solution

36. The law of rectilinear motion of a body of mass 10 kg is given by $s=2 t^{2}+3 t+4$. Then
the kinetic energy $\frac{1}{2} m v^{2}$ of the body after 5 s from the start is

D Watch Video Solution
37. The slope of the tangent to the curve
$r^{2}=a^{2} \cos 2 \theta, \quad$ where
$x=r \cos \theta$ and $y=r \sin \theta, \quad$ at the point
$\theta=\frac{\pi}{6}$ is
38. A balloon is pumped at the rate of 10 cu $\mathrm{cm} / \mathrm{min}$. The rate of increase of its radius will beits radius is 15 cm .

D Watch Video Solution

39. If the line $a x+b y+c=0$ is a normal to
the curve $\quad x y=1, \quad$ then $\quad a>0, b>0$
$a>0, b<0 a\langle 0, b\rangle 0$ (d) $a<0, b<0$ none of
these
A. a ge $0, b$ ge 0

B. a ge 0, b le 0

C. a le 0,b ge 0
D. a le 0, ble 0

Answer:

D Watch Video Solution
40. The angle between the curves $y=\sin x$
and $y=\cos x$ is
A. pi/4
B. $\tan ^{\wedge}-1(2 \mathrm{sqrt}(2))$
C. $\tan ^{\wedge}-1($ frac $\{1\}\{2 \operatorname{sqrt}(2)\})$
D. None of these

Answer:

D Watch Video Solution
41. The point on the ellips $9 x^{2}+16 y^{2}=400$ at which the abscissa and ordinate decrease at the same rate is
42. IF slope of tangent to curve $y=x^{3}$ at a point is equal to ordinate of point, then point is
A. $(0,0)$
B. $(27,3)$
C. $(3,27)$
D. none of these

Answer:
43. Find the equations of the tangent and the
normal
to
the
$x=3 \cos \theta-\cos ^{3} \theta, \quad y=3 \sin \theta-s \in^{3} \theta$
curve

- Watch Video Solution

44. Let $f(x)$ be a differentiable function and
$f(x)>0$ for all x . Prove that the curves
$y=f(x)$ and $y=\sin k x \cdot f(x)$ touch each
other at the points of intersection of the two
curves.

- Watch Video Solution

45. Prove that the curve $y=e^{|x|}$ cannot have
a unique tangent line at the point $x=0$.

Find the angle between the one-sided tangents to the curve at the point $x=0$.

D Watch Video Solution

