©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY ENGLISH

LAWS OF THERMODYNAMICS

Example

1. When a system goes from state A to state B,
it is supplied with 400 J of heat and it does

100 J of work.
(a) For this transition, what is the system's change in internal energy?
(b) If the system moves from B to A, what is the change in internal energy?
(c) If in moving from A to B along a different path in which $W_{A B}^{\prime}=400 \mathrm{~J}$ of work is done on the system, how much heat does it absorb?

- Watch Video Solution

2. Temperature of two moles of a monoatomic gas is increased by 300 K in the process
$p \propto V$.
(a) Find molar heat capacity of the gas in the given process.
(b) Find heat given to the gas in that.

D Watch Video Solution

3. In a given process work done on a gas is 40 J
and increase in its internal energy is 10J. Find heat given or taken to/from the gas in this process.
4. Temperature of two moles of a monoatomic gas is increased by 600 K in a given process.

Find change in internal energy of the gas.

D Watch Video Solution

5. Work done by a gas in a given process is
-20 J . Heat given to the gas is 60 J . Find change in internal energy of the gas.
6. By integration, make expressions of work done by gas in
(a) Isobaric process ($p=$ constant)
(b) Isothermal process ($\mathrm{pV}=$ constant)
(c) Adiabatic process ($P V^{\gamma}=$ constant)

D Watch Video Solution

$$
7 .
$$

$$
2 p_{0} p_{0}
$$

In the given $\mathrm{p}-\mathrm{V}$ diagram, find
(a) pressures at c and d
(b) work done in different processes separately
(c) work done in complete cycle abcd.
8. Method 3 of W

Mass of a piston shown in Fig. is m and area of cross-section is A. Initially spring is in its natural length. Find work done by the gas.

- Watch Video Solution

9. The temperature of n-moles of an ideal gas
is increased from T_{0} to $2 T_{0}$ through a process
$p=\frac{\alpha}{T}$. Find work done in this process.

- Watch Video Solution

10. Heat taken from a gas in a process is 80 J and increase in internal energy of the gas is

20J. Find work done by the gas in the given process.

D Watch Video Solution

11. $\mathrm{p}-\mathrm{V}$ plots for two gases during adiabatic processes are shown in the figure. Plots 1 and 2 should correspond respectively to

A. (a) H_{e} and O_{2}
B. (b) O_{2} and H_{e}
C. (c) H_{e} and A_{r}
D. (d) O_{2} and N_{2}

Answer: B

D Watch Video Solution

12. Starting with the same initial conditions, an
ideal gas expands from volume V_{1} to V_{2} in
three different ways, the work done by the gas
is W_{1} if the process is purely isothermal, W_{2} if
purely isobaric and W_{3} if purely adiabatic, then

> A. (a) $W_{2}>W_{1}>W_{3}$
> B. (b) $W_{2}>W_{3}>W_{1}$
> C. (c) $W_{1}>W_{2}>W_{3}$
> D. (d) $W_{1}>W_{3}>W_{2}$

Answer: A

D Watch Video Solution
13. When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied, which increases the internal energy of the gas, is

> A. $\frac{2}{5}$
> B. $\frac{3}{5}$
> C. $\frac{3}{7}$
> D. $\frac{5}{7}$

Answer: D

14. What is the heat input needed to raise the temperature of 2 moles of helium gas from
$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
(a) at constant volume,
(b) at constant pressure?
(c) what is the work done by the gas in part
(b)?

Give your answer in terms of R.
15. An ideal monoatomic gas at 300K expands adiabatically to twice its volume. What is the final temperature?

D Watch Video Solution

16. An ideal gas is taken through a cyclic thermodynamic process through four steps.

The amounts of heat involved in these steps
are
$Q_{1}=5960 J$,
$Q_{2}=-5585 J$,
$Q_{3}=-2980 J$ and $Q_{4}=3645 J$ respectively.
The corresponding quantities of work involved
are
$W_{1}=2200 J$,
$W_{2}=-825 J$,
$W_{3}=-1100 J$ and W_{4} respectively.
(a) Find the value of W_{4}.
(b) What is the efficiency of the cycle?

D Watch Video Solution

17. The pressure versus volume graph of one mole of an ideal monatomic gas undergoing a cyclic process is shown in figure. The molecular mass of the gas is M.

(a) Find the work done in each process.
(b) Find heat rejected by gas in one complete cycle.
(c) Find the effiency of the cycle.

D Watch Video Solution

18. Carnot engine takes one thousand kilo
calories of heat from a reservoir at $827^{\circ} \mathrm{C}$ and exhausts it to a sink at $27^{\circ} \mathrm{C}$. How, much work
does it perform? What is the efficiency of the engine?

D Watch Video Solution

19. In a refrigerator, heat from inside at 277 K is transferred to a room at 300K. How many joules of heat shall be delivered to the room
for each joule of electrical energy consumed ideally?
20. Calculate the least amount of work that must be done to freeze one gram of wate at
$0^{\circ} \mathrm{C}$ by means of a refrigerator. Temperature of surroundings is $27^{\circ} \mathrm{C}$. How much heat is passed on the surroundings in this process? Latent heat of fusion $L=80 \mathrm{cal} / \mathrm{g}$.

- Watch Video Solution

Example Type 1

1. Boiling water: Suppose 1.0 g of water vaporizes isobarically at atmospheric pressure
$\left(1.01 \times 10^{5} \mathrm{~Pa}\right)$. Its volume in the liquid state is $V_{i}=V_{\text {liquid }}=1.0 \mathrm{~cm}^{3}$ and its volume in vapour state is $V_{f}=V_{v a p o u r}=1671 \mathrm{~cm}^{3}$. Find the work done in the expansion and the change in internal energy of the system. Ignore any mixing of the stream and the surrounding air. Take latent heat of vaporization $L_{v}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
2. A metal of mass 1 kg at constant atmospheric pressure and at initial temperature $20^{\circ} \mathrm{C}$ is given a heat of 20000J.

Find the following
(a) change in temperature,
(b) work done and
(c) change in internal energy.
(Given, specific heat $=400 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$, cofficient of cubical
expansion,
$\gamma=9 \times 10^{-5} /{ }^{\circ} C$, density $\rho=9000 \mathrm{~kg} / \mathrm{m}^{3}$,
atmospheric pressure $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$)

Example Type 2

1. The ideal gas equation for an adiabatic process is

D Watch Video Solution

Example Type 3

1. A cyclic process abcd is given for a monoatomic gas ($C_{V}=\frac{3}{2} R$ and $C_{p}=\frac{5}{2} R$) as shown in figure. Find Q, W and ΔU in each of the four processes separately. Also find the efficiency of cycle.

D Watch Video Solution

1. For a Carnot cycle (or engine) discussed in article 21.4, prove that efficiency of cycle is given by

- View Text Solution

2. Find the molar specific heat of the process
$p=\frac{a}{T}$ for a monoatomic gas, a being constant.
3. At $27^{\circ} \mathrm{C}$ two moles of an ideal monatomic gas occupy a volume V . The gas expands adiabatically to a volume $2 V$. Calculate
(a) final temperature of the gas
(b) change in its internal energy and
(c) the work done by the gas during the process. [$R=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$]

- Watch Video Solution

4. Two moles of a diatomic ideal gas is taken through $p T=$ constant. Its temperature is increased from T to $2 T$. Find the work done by the system?

D Watch Video Solution

5. An ideal monoatomic gas at temperature $27^{\circ} \mathrm{C}$ and pressure $10^{6} \mathrm{~N} / \mathrm{m}^{2}$ occupies 10L volume. 10,000 cal of heat is added to the system without changing the volume.

Calculate the change in temperature of the gas. Given : $\quad R=8.31 \mathrm{~J} / \mathrm{mol}-K$ and $J=4.18 J / c a l$.

D Watch Video Solution

6. One mole of a monoatomic ideal gas is taken through the cycle shown in figure.
$A \rightarrow B$ Adiabatic expansion
$B \rightarrow C$ Cooling at constant volume
$C \rightarrow D$ Adiabatic compression.
$D \rightarrow A$ Heating at constant volume
The pressure and temperature at A, B etc., are denoted by $p_{A}, T_{A}, p_{B}, T_{B}$ etc. respectively.

Given, $\quad T_{A}=1000 K, \quad p_{B}=\left(\frac{2}{3}\right) p_{A} \quad$ and $p_{C}=\left(\frac{1}{3}\right) p_{A}$. Calculate
(a) the work done by the gas in the process
$A \rightarrow B$
(b) the heat lost by the gas in the process
$B \rightarrow C$

Given,

$$
\left(\frac{2}{3}\right)^{0.4}=0.85 \quad \text { and }
$$

$R=8.31 \mathrm{~J} / \mathrm{mol}-K$
7. A gas undergoes a process such that $p \propto \frac{1}{T}$. If the molar heat capacity for this process is $C=33.24 J / m o l-K$, find the degree of freedom of the molecules of the gas.

D Watch Video Solution

8. A gaseous mixture enclosed in a vessel consists of one gram mole of a gas A with $\gamma=\left(\frac{5}{3}\right)$ and some amount of gas B with $\gamma=\frac{7}{5}$ at a temperature T.

The gases A and B do not react with each other and are assumed to be ideal. Find the number of gram moles of the gas B if γ for the gaseous mixture is $\left(\frac{19}{13}\right)$.

D Watch Video Solution

9. An ideal gas having initial pressure p, volume V and temperature T is allowed to expand adiabatically until its volume becomes
5.66 V , while its temperature falls to $T / 2$.
(a) How many degrees of freedom do the gas
molecules have?
(b) Obtain the work done by the gas during the expansion as a function of the initial pressure p and volume V .

Given that $(5.66)^{0.4}=2$

D Watch Video Solution

Exercise 211

1. In a certain chemical process, a lab technician supplies 254 J of heat to a system.

At the same time, 73 J of work are done on the system by its surroundings. What is the increase in the internal energy of the system?

D Watch Video Solution

Exercise 212

1. A gas in a cylinder is held at a constant pressure of $1.7 \times 10^{5} \mathrm{~Pa}$ and is cooled and compressed from $1.20 m^{3}$ to $0.8 m^{3}$. The internal energy of the gas decreases by
$1.1 \times 10^{5} \mathrm{~J}$.
(a) Find the work done by the gas.
(b) Find the magnitude of the heat flow into or out of the gas and state the direction of heat flow.
(c) Does it matter whether or not the gas is ideal?

D Watch Video Solution

2. A thermodynamic system undergoes a cyclic process as shown in figure.
(a) over one complete cycle, does the system do positive or negative work.
(b) over one complete cycle, does heat flow into or out of the system.
(c) In each of the loops 1 and 2, does heat flow into or out of the system.

D Watch Video Solution
3. How many moles of helium at temperature 300 K and 1.00 atm pressure are needed to make the internal energy of the gas 100J?

D Watch Video Solution

4. Temperature of four moles of a monoatomic gas is increased by 300 K in isochoric process.

Find W, Q and ΔU.

5. Find work done by the gas in the process $A B$

 shown in the following figures.
(i)

(ii)

(iii)

D Watch Video Solution

6. Temperature of two moles of an ideal gas is
increased by 300 K in a process $V=\frac{a}{T}$, where
a is positive constant. Find work done by the gas in the given process.
7. Pressure and volume of a gas changes from
$\left(p_{0} V_{0}\right)$ to $\left(\frac{p_{0}}{4}, 2 V_{0}\right)$ in a process $p V^{2}=$
constant. Find work done by the gas in the given process.

- Watch Video Solution

1. One mole of an ideal monoatomic gas is initially at 300 K . Find the final temperature if 200J of heat are added as follows:
(a) at constant volume (b) at constant pressure.

D Watch Video Solution

2. An ideal gas expands while the pressure is kept constant. During the process, does heat
flow into the gas or out of the gas? Justify you answer.

D Watch Video Solution

3. A well insulated box contains a partition dividing the box into two equal volumees as
shown in figure. Initially, the left hand side
contains an ideal monoatomic gas and the other half is a vacuum. The partition is suddenly removed so that the gas expands throughout the entire box.
(a) Does the temperature of gas change?
(b) Does the internal energy of the system change?
(c) Does the gas work?

- Watch Video Solution

4. Find the ratio of $\frac{\Delta Q}{\Delta U}$ and $\frac{\Delta Q}{\Delta W}$ in an isobaric process. The ratio of molar heat
capacities $\frac{C_{p}}{C_{V}}=\gamma$.

D Watch Video Solution

5. Figure shows two processes a and b for a given sample of a gas. If $\Delta Q_{1}, \Delta Q_{2}$ are the amounts of heat absorbed by the system in
the two cases and $\Delta U_{1}, \Delta U_{2}$ are changes in
internal energies respectively, then

D Watch Video Solution

6. A sample of ideal gas is expanded to twice its original volume of $1.00 \mathrm{~m}^{3}$ in a quasi-static
process for which $p=\alpha V^{2}, \quad$ with $\alpha=5.00 \mathrm{~atm} / \mathrm{m}^{6}$, as shown in Fig. How much work is done by the expanding gas?

D Watch Video Solution
7. As a result of the isobaric heating by
$\Delta T=72 K$, one mole of a certain ideal gas
obtain an amount of heat $Q=1.6 k J$. Find
the work performed by the gas, the increment of its internal energy and γ.

D Watch Video Solution

Exercise 214

1. Carnot engine takes one thousand kilo calories of heat from a reseervoir at $827^{\circ} \mathrm{C}$ and exhausts it to a sink at $27^{\circ} \mathrm{C}$. How, much work does it perform? What is the efficiency of the engine?

D Watch Video Solution

2. One of the most efficient engines ever developed operated between 2100 K and 700 K .

Its actual efficiency is 40%. What percentage of its maximum possible efficiency is this?

D Watch Video Solution

3. In a heat engine, the temperature of the source and sink are 500 K and 375 K . If the engine consumes $25 \times 10^{5} \mathrm{~J}$ per cycle, find(a)
the efficiency of the engine, (b) work done per
cycle, and (c) heat rejected to the sink per cycle.

D Watch Video Solution

4. A Carnot engine takes $3 \times 10^{6} \mathrm{cal}$. of heat from a reservoir at $627^{\circ} \mathrm{C}$, and gives it to a sink at $27^{\circ} \mathrm{C}$. The work done by the engine is

D Watch Video Solution

5. The efficiency of a Carnot cycle is $1 / 6$. If on reducing the temperature of the sink by $65^{\circ} \mathrm{C}$,
the efficiency becomes $1 / 3$, find the source and sink temperatures between which the cycle is working.

- Watch Video Solution

6. Refrigerator A works between $-10^{\circ} \mathrm{C}$ and
$27^{\circ} \mathrm{C}$, while refrigerator B works between $-27^{\circ} \mathrm{C}$ and $17^{\circ} \mathrm{C}$, both removing heat equal to 2000J from the freezer. Which of the two is the better refrigerator?

- Watch Video Solution

7. A refrigerator has to transfer an average of

263J of heat per second from temperature
$-10^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. Calculate the average power consumed, assuming no enegy losses in the process.

- Watch Video Solution

8. n moles of a monoatomic gas are taken around in a cyclic process consisting of four processes along ABCDA as shown. All the lines
on the $p-\mathrm{V}$ diagram have slope of magnitude p_{0} / V_{0}. The pressure at A and C is p_{0} and the volumes at A and C are $V_{0} / 2$ and $3 V_{0} / 2$, respectively. Calculate the percentage efficiency of the cycle.

9. Assertion: In adiabatic expansion,
temperature of gas always decreases.
Reason: In adiabatic process exchange of heat
is zero.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. (c) If Assertion is true, but the Reason is
false.
D. (d) If Assertion is false but the Reason is
true.

Answer: B

- Watch Video Solution

2. Assertion: In a thermodynamic process, initial volume of gas is equal to final volume of
gas. Work done by gas in this process should be zero

Reason: Work done by gas in isochoric process
is zero.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: D

D Watch Video Solution

3. Assertion: First law of thermodynamics can be applied for ideal gases only.

Reason: First law is simply, law of consevation of energy.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.

C. (c) If Assertion is true, but the Reason is

false.
D. (d) If Assertion is false but the Reason is
true.

Answer: D

D Watch Video Solution

4. Assertion: When ice melts, work is done by atmosphere on (ice+water) system.

Reason: On melting of ice volume of
(ice+water) system decreases.
A. (a) If both Assertion and Reason are true and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is
false.

D. (d) If Assertion is false but the Reason is

 true.
Answer: A

D Watch Video Solution

5. Assertion: Between two thermodynamic states, the value of ($\mathrm{Q}-\mathrm{W}$) is constant for any process.

Reason: Q and W are path functions.
A. (a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: B

D Watch Video Solution

6. Assertion: Efficiency of a heat engine can't be greater than efficiency of Carnot engine.

Reason: Effieciency of any engine is never 100\%
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: D

D Watch Video Solution

7. Assertion: In the process $\mathrm{pT}=$ constant, if temperature of gas is increased work done by the gas is positive.

Reason: For the given process, $V \propto T$.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.

C. (c) If Assertion is true, but the Reason is

false.

D. (d) If Assertion is false but the Reason is

true.

Answer: C

D Watch Video Solution

8. Assertion: In free expansion of a gas inside an aidabatic chamber Q, W and ΔU all are
zero.
Reason: In such an expansion $p \propto \frac{1}{V}$.
A. (a) If both Assertion and Reason are true and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is
false.

D. (d) If Assertion is false but the Reason is

 true.
Answer: B

D Watch Video Solution

9. Assertion: For an ideal gas in a cyclic process and in an isothermal process change in internal energy is zero.

Reason: In both processes there is no change in temperature.
A. (a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: A

D Watch Video Solution

10. Assertion: Isothermal and adiabatic, two
processes are shown on $\mathrm{p}-\mathrm{V}$ diagram. Process-1
is aidabatic and process-2 is isothermal.

Reason: At a given point, slope of adiabatic
process $=\gamma \times$ slope of isothermal process.

A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: A::B

Level 1 Objective

1. In a process, the pressure of an ideal gas is proportional to square of the volume of the gas. If the temperature of the gas increases in
this process, then work done by this gas
A. (a) is positive
B. (b) is negative
C. (c) is zero
D. (d) may be positive or negative

Answer: A

D Watch Video Solution

2. n moles of a gas are filled in a container at temperature T . If the gas is slowly and isothermally compressed to half its initial volume, the work done by the atmosphere on the gas is

A. (a) $\frac{n R T}{2}$
B. (b) $-\frac{n R T}{2}$
C. (c) $n R T I n 2$
D. (d) $-n R T \operatorname{In} 2$

Answer: C

D Watch Video Solution

3. A gas undergoes A to B through three different processes 1,2 and 3 as shown in the figure. The heat supplied to the gas is Q_{1}, Q_{2}
and Q_{3} respectively, then

A. (a) $Q_{1}=Q_{2}=Q_{3}$
B. (b) $Q_{1}<Q_{2}<Q_{3}$
C. (c) $Q_{1}>Q_{2}>Q_{3}$
D. (d) $Q_{1}=Q_{3}>Q_{2}$

Answer: C
4. For an adiabatic compression the quantity pV
A. (a) increases
B. (b) decreases
C. (c) remains constant
D. (d) depends on γ

Answer: A

5. The cyclic process form a circle on a pV diagram as shown in figure. The work done by the gas is

A. (a) $\frac{\pi}{4}\left(p_{2}-p_{1}\right)^{2}$
B. (b) $\frac{\pi}{4}\left(V_{2}-V_{1}\right)^{2}$
C. (c) $\frac{\pi}{2}\left(p_{2}-p_{1}\right)\left(V_{2}-V_{1}\right)$

$$
\text { D. (d) } \frac{\pi}{4}\left(p_{2}-p_{1}\right)\left(V_{2}-V_{1}\right)
$$

Answer: D

- Watch Video Solution

6. An ideal gas has initial volume V and pressure p . In doubling its volume the minimum work done will be in the process (of the given processes)
A. (a) isobaric process
B. (b) isothermal process
C. (c) adiabatic process
D. (d) same in all given processes

Answer: C

D Watch Video Solution

7. Following figure shows two process A and B for a gas. If ΔQ_{A} and ΔQ_{B} are the amount of heat absorbed by the system in two case, and ΔU_{A} and ΔU_{B} are changes in internal
energies, respectively, then :

A. (a) $\Delta Q_{1}=\Delta Q_{2}, \Delta U_{1}=\Delta U_{2}$
B. (b) $\Delta Q_{1}>\Delta Q_{2}, \Delta U_{1}>\Delta U_{2}$
C. (c) $\Delta Q_{1}<\Delta Q_{2}, \Delta U_{1}<\Delta U_{2}$

D. (d) $\Delta Q_{1}>\Delta Q_{2}, \Delta U_{1}=\Delta U_{2}$

Answer: D

D Watch Video Solution

8. A Carnot engine works between 600 K and 300K. The efficiency of the engine is
A. (a) 50%
B. (b) 70%
C. (c) 20%

D. (d) 80%

Answer: A

- Watch Video Solution

9. A gas is contained in a metallic cylinder
fitted with a piston. The piston is suddenly moved in to compress the gas and is maintained at this position. As time passes the pressure of the gas in the cylinder
A. (a) increaes
B. (b) decreases
C. (c) remains the same
D. (d) may increase or decrease depending on the nature of the gas

Answer: B

D Watch Video Solution

10. A cycle pump becomes hot near the nozzle after a few quick strokes even if they are smooth because
A. (a) the volume of air decreases
B. (b) the number of air molecules
increases
C. (c) the compression is adiabatic
D. (d) collision between air particles
increases

Answer: C
11. In an adiabatic change, the pressure p and temperature T of a diatomic gas are related by the relation $p \propto T^{\alpha}$, where α equals
A. (a) 1.67
B. (b) 0.4
C. (c) 0.6
D. (d) 3.5

Answer: D

D Watch Video Solution
12. A diatomic gas obeys the law $p V^{x}=$ constant. For what value of x, it has negative molar specific heat?
A. (a) $x>1.4$
B. (b) $x<1.4$
C. (c) $1<x<1.4$
D. (d) $0<x<1$

Answer: C

D Watch Video Solution
13. The molar specific heat at constant volume of gas mixture is $\frac{13 R}{6}$. The gas mixture consists of
A. (a) 2 moles of O_{2} and 4 moles of H_{2}
B. (b) 2 moles of O_{2} and 4 moles of argon
C. (c) 2 moles of argon and 4 moles of O_{2}
D. (d) 2 moles of CO_{2} and 4 moles of argon

Answer: C

- Watch Video Solution

14. If $W_{A B C}$ is the work done in process
$A \rightarrow B \rightarrow C$ and $W_{D E F}$ is work done in process $D \rightarrow E \rightarrow F$ as shown in the figure, then

A. (a) $\left|W_{D E F}\right|>\left|W_{A B C}\right|$
B. (b) $\left|W_{D E F}\right|<\left|W_{A B C}\right|$
C. (c) $\left|W_{D E F}\right|<\left|W_{A B C}\right|$

$$
\text { D. (d) } W_{D E F}=-W_{A B C}
$$

Answer: D

D Watch Video Solution

Level 1 Objective Questions

1. Heat energy absorbed by a system in going
through a cyclic process as shown in figure [V
in litre and p in $k P a$] is

A. (a) $10^{7} \pi J$
B. (b) $10^{4} \pi J$
C. (c) $10^{2} \pi J$
D. (d) $10^{3} \pi J$

Answer: C

1. How many moles of helium at temperature 300K and 1.00 atm pressure are needed to make the internal energy of the gas 100J?

- Watch Video Solution

2. Show how internal energy U varies with T in isochoric, isobaric and adiabatic process?
3. A system is taken around the cycle shown in
figure from state a to state b and then back to
state a. The absolute value of the heat transfer during one cyle is 7200 . (a) Does the system
absorb or liberate heat when it goes around
the cycle in the direction shown in figure? (b)
What is the work W done by the system in one
cycle? (c) If the system goes around the cycle
in a counter-clock wise direction, does it absorb or liberate heat in one cycle? What is
the magnitude of the heat absorbed or
liberated in one counter-clockwise cycle?

D Watch Video Solution

4. For the thermodynamic cycle shown in
figure find (a) net output work of the gas during the cycle, (b) net heat flow into the gas
per cycle.

D Watch Video Solution

5. A thermodynamic system undergoes a cyclic process as shown in figure. The cycle consists of two closed loops, loop I and loop II. (a) Over one complete cycle, does the system do positive or negative work? (b) In each of loops

I and II, is the net work done by the system positive or negative? (c) Over one complete cycle, does heat flow into or out of the system? (d) In each of loops I and II, does heat flow into or out of the system?

6. A gas undergoes the cycle shown in figure.

The cycle is repeated 100 times per minute.

Determine the power generated.
p (atm)

D Watch Video Solution

7. One mole of an ideal monoatomic gas is initially at 300K. Find the final temperature if

200J of heat are added as follows:
(a) at constant volume (b) at constant pressure.

D Watch Video Solution

8. A closed vessel 10 L in volume contains a diatomic gas under a pressure of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

What amount of heat should be imparted to
the gas to increase the pressure in the vessel
five times?

D Watch Video Solution
9. One mole of an ideal monatomic gas is taken round the cyclic process $A B C A$ as shown in figure. Calculate
(a) the work done by the gas.
(b) the heat rejected by the gas in the path CA and the heat absorbed by the gas in the path
$A B$,
(c) the net heat absorbed by the gas in the path BC,
(d) the maximum temperature attained by the
gas during the cycle.

D Watch Video Solution
10. A diatomic ideal gas is heated at constant volume until its pressure becomes three times.

It is again heated at constant pressure until
its volume is doubled. Find the molar heat capacity for the whole process.

D Watch Video Solution

11. Two moles of a certain gas at a temperature
$T_{0}=300 K$ were cooled isochorically so that
the pressure of the gas got reduced 2 times.

Then as a result of isobaric process, the gas is allowed to expand till its temperature got back to the initial value. Find the total amount of heat absorbed by gas in this process.
12. Five moles of an ideal monoatomic gas with an initial temperature of $127^{\circ} \mathrm{C}$ expand and in the process absorb 1200J of heat and do 2100J of work. What is the final temperature of the gas?

- Watch Video Solution

13. Find the change in the internal energy of $2 k g$ of water as it heated from $0^{0} C \rightarrow 4^{0} C$.

The specific heat capacity of water is
$4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and its densities at $0^{0} \mathrm{C}$ and
$4^{0} \mathrm{C}$ are $999.9 \mathrm{kgm}^{-3}$ and $1000 \mathrm{kgm}^{-3}$ respectively. atmospheric pressure $=10^{5} \mathrm{~Pa}$.

D Watch Video Solution

14. Calculate the increase in the internal energy of $10 g$ of water when it is heated from $0^{0} C \rightarrow 100^{\circ} C$ and converted into steam at $100 k P a$. The density of steam $=0.6 \mathrm{kgm}^{-3}$, specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kgC}$
,latent heat of vaporization of water

$$
=2.25 \times 10^{6} \mathrm{Jkg}^{-1}
$$

D Watch Video Solution

15. One gram of water $\left(1 \mathrm{~cm}^{3}\right)$ becomes $1671 \mathrm{~cm}^{3}$ of steam when boiled at a constant pressure of $1 \mathrm{~atm}\left(1.013 \times 10^{5} \mathrm{~Pa}\right)$. The heat of vaporization at this pressure is
$L_{v}=2.256 \times 10^{6} \mathrm{~J} / \mathrm{kg}$. Compute (a) the work
done by the water when it vaporizes and
its increase in internal energy.
16. A gas in a cyclinder is held at a constant pressure of $2.30 \times 10^{5} \mathrm{~Pa}$ and is cooled and compressed from $1.70 \mathrm{~m}^{3}$ to $1.20 \mathrm{~m}^{3}$. The internal energy of the gas decreases by $1.40 \times 10^{5} \mathrm{~J}$. (a) Find the work done by the gas. (b) Find the absolute value $|Q|$ of the heat
flow into or out of the gas and state the direction of the heat flow. (c) Does it matter
whether or not the gas is ideal? Why or why not?

- Watch Video Solution

17. $\mathrm{p}-\mathrm{V}$ diagram of an ideal gas for a process
$A B C$ is as shown in the figure.
(a) Find total heat absorbed or released by the gas during the process $A B C$.
(b) Change in internal energy of the gas during the process $A B C$.
(c) Plot pressure versus density graph of the
gas for the process $A B C$.

D Watch Video Solution

18. In the given graph, an ideal gas changes its
state from A to C by two paths $A B C$ and $A C$.
(a) Find the path along which work done is
less.
(b) The internal energy of gas at A is 10 J and the amount of heat supplied in path AC is 200J. Calculate the internal energy of gas at C.
(c) The internal energy of gas at state B is 20 J.

Find the amount of heat supplied to the gas to go from A to B.

19. When a gas expands along $A B$, it does 500J of work and absorbs 250 J of heat. When the gas expands along AC, it does 700J of work and absorbs 300J of heat.
(a) How much heat does the gas exchange along Bc ?
(b) When the gas makes the transition from C
to A along CDA, 800 J of work are done on it
from C to D. How much heat does it exchange
along CDA?

- Watch Video Solution

20. A 1.0 kg bar of copper is heated at atmospheric pressure $\left(1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$. If
its temperature increases from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$,
calculate the change in its internal energy.
$\alpha=7.0 \times 10^{-6} /{ }^{\circ} C, \quad \rho=8.92 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
and $c=387 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$.

D Watch Video Solution

21. One mole of an ideal monoatomic gas occupies a volume of $1.0 \times 10^{-2} m^{3}$ at a pressure of $2.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
(a) What is the temperature of tha gas?
(b) The gas undergoes an adiabatic
compression until its volume is decreased to
$5.0 \times 10^{-3} \mathrm{~m}^{3}$. What is the new gas
temperature?
(c) How much work is done on the gas during
the compression?
(d) What is the change in the intenal energy of the gas?

- Watch Video Solution

22. A bullet of mass 10 g travelling horizontally
at $200 \mathrm{~m} / \mathrm{s}$ strikes and embeds in a pendulum
bob of mass 2.0 kg .
(a) How much mechanical energy is dissipated in the collision?
(b) Assuming that C_{v} for the bob plus bullet is

3 R , calculate the temperature increase of the system due to the collision. Take the molecular mass of the system to be $200 \mathrm{~g} / \mathrm{mol}$.

D Watch Video Solution

23. An ideal gas is carried through a thermodynamic cycle consisting of two
isobaric and two isothermal processes as
shown in figure. Show that the net work done
in the entire cycle is given by the equation.
$W_{n e t}=p_{1}\left(V_{2}-V_{1}\right) \operatorname{In} \frac{p_{2}}{p_{1}}$

24. An ideal gas is enclosed in a cyclinder with
a movable piston on top. The piston has mass
of 8000 g and an area of $5.00 \mathrm{~cm}^{2}$ and is free to
slide up and down, keeping the pressure of
the gas constant. How much work is done as
the temperature of 0.200 mol of the gas is raised from $200^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$?

- Watch Video Solution

Level 2 Single Correct

1. The equation of a state of a gas is given by $p(V-b)=n R T$. If 1 mole of a gas is isothermally expanded from volume V and 2 V , the work done during the process is

$$
\begin{aligned}
& \text { A. (a) } R T \ln \left|\frac{2 V-b}{V-b}\right| \\
& \text { B. (b) } R T \ln \left|\frac{V-b}{V}\right| \\
& \text { C. (c) } R T \operatorname{In}\left|\frac{V-b}{2 V-b}\right| \\
& \text { D. (d) } R T \operatorname{In}\left|\frac{V}{V-b}\right|
\end{aligned}
$$

Answer: A

2. The cyclic process for 1 mole of an ideal gas
is shown in the V-T diagram. The work done in
$A B, B C$ and $C A$ respectively is
im.

A. (a) 0, $R T_{2} \operatorname{In}\left|\frac{V_{2}}{V_{1}}\right|, R\left(T_{1}-T_{2}\right)$
B. (b) $R\left(T_{1}-T_{2}\right), 0, R T_{1} \operatorname{In}\left|\frac{V_{1}}{V_{2}}\right|$

$$
\begin{aligned}
& \text { C. (c) } 0, R T_{1} \operatorname{In}\left|\frac{V_{1}}{V_{2}}\right|, R\left(T_{1}-T_{2}\right) \\
& \text { D. (d) } 0, R T_{2} \operatorname{In}\left|\frac{V_{2}}{V_{1}}\right|, R\left(T_{2}-T_{1}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

3. Ten moles of a diatomic perfect gas are allowed to expand at constant pressure. The initial volume and temperature are V_{0} and T_{0} respectively. If $\frac{7}{2} R T_{0}$ heat is transferred to
the gas, then the final volume and temperature are
A. (a) $1.1 V_{0}, 1.1 T_{0}$
B. (b) $0.9 V_{0}, 0.9 T_{0}$
C. (c) $1.1 V_{0}, \frac{10}{11} T_{0}$
D. (d) $0.9 V_{0}, \frac{10}{9} T_{0}$

Answer: A

D Watch Video Solution

4. An ideal monoatomic gas is carried around
the cycle ABCDA as shown in the figure. The efficiency of the gas cycle is

A. $\frac{4}{21}$
B. $\frac{2}{21}$
c. $\frac{4}{31}$
D. $\frac{2}{31}$

Answer: A

D Watch Video Solution

5. In the process shown in figure, the internal energy of and ideal gas decreases by $\frac{3 p_{0} V_{0}}{2}$ in going from point C to A. Heat transfer along
the process $C A$ is

A. (a) $\left(-3 p_{0} V_{0}\right)$
B. (b) $\left(-5 p_{0} V_{0} / 2\right)$
C. (c) $\left(-3 p_{0} V_{0} / 2\right)$
D. (d) zero

Answer: B

D Watch Video Solution

6. One mole of an ideal monoatomic gas at temperature T_{0} expands slowly according to
the law $\frac{p}{V}=$ constant. If the final temperature is $2 T_{0}$, heat supplied to the gas is
A. (a) $2 R T_{0}$
B. (b) $\frac{3}{2} R T_{0}$
C. (c) $R T_{0}$

D. (d) $\frac{1}{2} R T_{0}$

Answer: A

D Watch Video Solution

7. A mass of gas is first expanded isothermally and then compressed adiabatically to its original volume. What further simplest operation must be performed on the gas to restore it to its original state?
A. (a) An isobaric cooling to bring its temperature to initial value
B. (b) An isochoric cooling to bring its pressure to its initial value
C. (c) An isothermal process to take its
pressure to its initial value
D. (d) An isochoric heating to bring its temperature to initial value

Answer: B

8. A monoatomic ideal gas, initially at temperature T_{1}, is enclosed in a cylinder fitted with a friction less piston. The gas is allowed to expand adiabatically to a temperature T_{2} by releasing the piston
suddenly. If L_{1} and L_{2} are the length of the gas column before expansion respectively, then $\frac{T_{1}}{T_{2}}$ is given by
A. (a) $\left(\frac{L_{1}}{L_{2}}\right)^{\frac{2}{3}}$
B. (b) $\frac{L_{1}}{L_{2}}$
C. (c) $\frac{L_{2}}{L_{1}}$
D. (d) $\left(\frac{L_{2}}{L_{1}}\right)^{\frac{2}{3}}$

Answer: D

D Watch Video Solution

9. One mole of an ideal gas is taken through a
cyclic process. The minimum temperature during the cycle is 300 K . Then, net exchange of
heat for complete cycle is

A. (a) $600 R I n 2$
B. (b) $300 R I n 2$
C. (c) $-300 R \operatorname{In} 2$
D. (d) $900 R I n 2$

Answer: B
10. Two moles of an ideal gas are undergone a cyclic process $1-2-3-1$. If net heat exchange in the process is 300 J, the work done by the gas in the process $2-3$ is

A. (a) $-500 J$
B. (b) $-5000 J$
C. (c) $-3000 J$
D. (d) None of these

Answer: D

D Watch Video Solution

11. Two cylinders A and B fitted with pistons contain equal amounts of an ideal diatomic gas at 300 K . The piston of A is free to move,
while that B is held fixed. The same amount of
heat is given to the gas in each cylinder. If the rise in temperature of the gas in A is 30 K , then the rise in temperature of the gas in B is
A. (a) 30 K
B. (b) 18 K
C. (c) 50 K
D. (d) 42 K

Answer: D

12. A gas follows a process
$T V^{n-1}=$ constant, where $T=$ absolute temperature of the gas and $V=$ volume of
the gas. The bulk modulus of the gas in the process is given by
A. (a) $(n-1) p$
B. (b) $p /(n-1)$
C. (c) $n p$
D. (d) p / n

Answer: C

D Watch Video Solution

13. One mole of an ideal gas at temperature T expands slowly according to the law $\frac{p}{V}=$ constant.

Its final temperature is T_{2}. The work done by the gas is

$$
\text { A. (a) } R\left(T_{2}-T_{1}\right)
$$

B. (b) $2 R\left(T_{2}-T_{1}\right)$

$$
\begin{aligned}
& \text { C. (c) } \frac{R}{2}\left(T_{2}-T_{1}\right) \\
& \text { D. (d) } \frac{2 R}{3}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

Answer: C

- Watch Video Solution

14.600J of heat is added to a monoatomic gas
in a process in which the gas performs a work of 150 J. The molar heat capacity for the process is
A. (a) 3 R
B. (b) $4 R$
C. (c) $2 R$
D. (d) $6 R$

Answer: C

D Watch Video Solution
15. The internal energy of a gas is given by $U=2 p V$. It expands from V_{0} to $2 V_{0}$ against a
constant pressure p_{0}. The heat absorbed by
the gas in the process is
A. (a) $2 p_{0} V_{0}$
B. (b) $4 p_{0} V_{0}$
C. (c) $3 p_{0} V_{0}$
D. (d) $p_{0} V_{0}$

Answer: C
(Watch Video Solution
16. The figure shows two paths for the change of state of a gas from A to B. The ratio of molar heat capacities in path 1 and path 2 is is

A. (a) <1
B. (b) <1
C. (c) 1

D. (d) Data insufficient

Answer: A

D Watch Video Solution

17. p -T diagram of one mole of an ideal monatomic gas is shown. Processes $A B$ and $C D$ are adiabatic. Work done in the complete cycle

A. (a) $2.5 R T$
B. (b) $-2 R T$
C. (c) $1.5 R T$

$$
\text { D. (d) }-3.5 R T
$$

- Watch Video Solution

18. An ideal monoatomic gas undergoes a process in which its internal energy U and density ρ vary as $U \rho=$ constant. The ratio of change in internal energy and the work done by the gas is
A. (a) $\frac{3}{2}$
B. (b) $\frac{2}{3}$
C. (c) $\frac{1}{3}$
D. (d) $\frac{3}{5}$

Answer: A

D Watch Video Solution

19. The given figure shows the variation of
force applied by ideal gas on a piston which
undergoes a process during which piston position changes from 0.1 to 0.4 m . If the internal energy of the system at the end of the process is 2.5 J higher, then the heat absorbed

during the process is

A. (a) 15 J
B. (b) 17.5J
C. (c) 20 J
D. (d) 22.5J

Answer: C

D Watch Video Solution

20. A gas can expand through two processes :
(i) isobaric, (ii) $\frac{p}{V}=$ constant. Assuming that the initial volume is same in both processes and the final volume which is two times the initial volume is also same in both processes, which of the following is true?
A. (a) Work done by gas in process (i) is greater than the work done by the gas in process (ii)
B. (b) Work done by gas in process (i) is
smaller than the work done by the gas in
process (ii)
C. (c) Final pressure is greater in process (i)
D. (d) Final temperature is greater in process (i)

- Watch Video Solution

21. An ideal gas of adiabatic exponent γ is expanded so that the amount of heat transferred to the gas is equal to the decrease of its internal energy. Then, the equation of the process in terms of the variables T and V is
A. (a) $T V^{\frac{(\gamma-1)}{2}}=C$
B. (b) $T V^{\frac{(\gamma-2)}{2}}=C$
C. (c) $T V^{\frac{(\gamma-1)}{4}}=C$

$$
\text { D. (d) } T V^{\frac{(\gamma-2)}{4}}=C
$$

Answer: A

- Watch Video Solution

22. A thermodynamical process is shown in the
figure with $p_{A}=3 \times p_{a t m}, V_{A}=2 \times 10^{-4} \mathrm{~m}^{3}$,
$p_{B}=8 \times p_{a t m}, \quad V_{C}=5 \times 10^{-4} m^{3} . \quad$ In the
process $A B$ and $B C, 600$ J and 200J heat are added to the system. Find the change in internal energy of the system in the process

CA. $\left[1 p_{a t m}=10^{5} \mathrm{~N} / \mathrm{m}^{2}\right]$

A. (a) 560 J
B. (b) $-560 J$
C. (c) $-240 J$
D. (d) $+240 J$

Answer: B

- Watch Video Solution

23. A gas takes part in two processes in which
it is heated from the same initial state 1 to the
same final temperature. The processes are shown on the $\mathrm{p}-\mathrm{V}$ diagram by the straight
lines $1-3$ and $1-2.2$ and 3 are the points on the same isothermal curve. Q_{1} and Q_{2} are the
heat transfer along the two processes. Then,

A. (a) $Q_{1}=Q_{2}$
B. (b) $Q_{1}<Q_{2}$
C. (c) $Q_{1}>Q_{2}$
D. (d) Insufficient data

Answer: C

- Watch Video Solution

24. A closed system receives 200 kJ of heat at constant volume. It then rejects 100 kJ of heat while it has 50kJ of work done on it at constant pressure. If an adiabatic process can
be found which will restore the system to its initial state, the work done by the system during this process is
A. (a) 100 kJ
B. (b) 50 kJ
C. (c) 150 kJ
D. (d) 200kJ

Answer: C

D Watch Video Solution

25. 100 moles of an ideal monatomic gas undergoes the thermodynamic process as shown in the figure
$A \rightarrow B: \quad$ isothermal expansion $B \rightarrow C:$
adiabatic expansion
$C \rightarrow D: \quad$ isobaric compression $\quad D \rightarrow A:$ isochoric process The heat transfer along the process AB is $9 \times 10^{4} \mathrm{~J}$. The net work done by the gas during the cycle is [Take $\left.R=8 J K^{-1} \mathrm{~mol}^{-1}\right]$
$\left(10^{5} \mathrm{Nm}^{-2}\right)$

A. (a) $-0.5 \times 10^{4} J$
B. (b) $+0.5 \times 10^{4} J$
C. (c) $-5 \times 10^{4} J$
D. (d) $+5 \times 10^{4} J$

Answer: D

D Watch Video Solution

26. Two moles of an ideal monoatomic gas are expanded according to the equation $\mathrm{pT}=$ constant form its initial state $\left(p_{0}, V_{0}\right)$ to
the final state due to which its pressure becomes half of the initial pressure. The change in internal energy is

A. (a) $\frac{3 p_{0} V_{0}}{4}$
B. (b) $\frac{3 p_{0} V_{0}}{2}$
C. (c) $\frac{9 p_{0} V_{0}}{2}$
D. (d) $\frac{5 p_{0} V_{0}}{2}$

Answer: B

- Watch Video Solution

27. The state of an ideal gas is changed
through an isothermal process at temperature
T_{0} as shown in figure. The work done by the gas in going from state B to C is double the work done by gas in going from state A to B . If the pressure in the state B is $\frac{p_{0}}{2}$, then the
pressure of the gas in state C is

A. (a) $\frac{p_{0}}{3}$
B. (b) $\frac{p_{0}}{4}$
C. (c) $\frac{p_{0}}{6}$
D. (d) $\frac{p_{0}}{8}$

Answer: D

- Watch Video Solution

Level 2 More Than One Correct

1. An ideal gas is taken from the state A
(pressure p , volume V) to the state B (pressure
$\frac{p}{2}$, volume 2 V) along a straight line path in the $\mathrm{p}-\mathrm{V}$ diagram. Select the correct statement(s) from the following.
A. (a) The work done by the gas in the process A to B is negative
B. (b) In the T-V diagram, the path $A B$
becomes a part of parabola
C. (c) In the $p-T$ diagram, the path $A B$
becomes a part of a hyperbola
D. (d) In going from A to B, the temperature T of the gas first increases to a maximum value and then decreases.

- Watch Video Solution

2. In the process $p V^{2}=$ constant, if temperature of gas is increased, then
A. (a) change in internal energy of gas is positive
B. (b) work done by gas is positive
C. (c) heat is given to the gas
D. (d) heat is taken out from the gas

Answer: A::C

- Watch Video Solution

3. T-V diagram of two moles of a monoatomic gas is as shown in figure.

For the process abcda choose the correct
options given below

A. (a) $\Delta U=0$
B. (b) work done by gas >0
C. (c) heat given to the gas is $4 R T_{0}$
D. (d) heat given to the gas is $2 R T_{0}$
4. Density (ρ) versus internal energy (U) graph of a gas is as shown in figure. Choose the correct options.

Here, W is work done by gas and Q is heat given to the gas.

A. (a) $Q_{b c}=0$
B. (b) $W_{b c}=0$
C. (c) $W_{c a}<0$
D. (d) $Q_{a b}>0$

Answer: C::D

- Watch Video Solution

5. Temperature of a monoatomic gas is increased from T_{0} to $2 T_{0}$ in three different processes:
isochoric, isobaric and adiabatic. Heat given to
the gas in these three processes are
Q_{1}, Q_{2} and Q_{3} respectively. Then, choose the correct option.
A. (a) $Q_{1}>Q_{3}$
B. (b) $Q_{2}>Q_{1}$
C. (c) $Q_{2}>Q_{3}$
D. (d) $Q_{3}=0$

Answer: A::B::C::D

6. A cyclic process 1-2-3-4-1 is depicted on $\mathrm{V}-\mathrm{T}$ diagram. The $\mathrm{p}-\mathrm{T}$ and $\mathrm{p}-\mathrm{V}$ diagrams for this cyclic process are given below. Select the correct choices (more than one options is/are correct)

A. (a)
B. (b)
C. (c)
D. (d) None of these

Answer: A::B

D Watch Video Solution

Level 2 Passage I

1. One mole of a monatomic ideal gas is taken along the cycle ABCA as shown in the diagram.

The net heat absorbed by the gas in the given
cycle is

A. (a) $p V$
B. (b) $\frac{p V}{2}$
C. (c) 2 pV
D. (d) 4 pV

Answer: B

D Watch Video Solution

2. One mole of a monatomic ideal gas is taken
along the cycle ABCA as shown in the diagram.

The ratio of specific heat in the process CA to
the specific heat in the process $B C$ is
A. (a) 2
B. (b) $\frac{5}{3}$
C. (c) 4
D. (d) None of these

Answer: B
(D) Watch Video Solution

Level 2 Passage li

1. One mole of a monoatomic ideal gas is taken
through the cycle $A B C D A$ as shown in the
figure.

$\left[\right.$ Assume $\left(\frac{2}{3}\right)^{0.4}=0.85$
 $\left.R=\frac{25}{3} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$

The temperature at B is

$$
T_{A}=1000 K \text { and } 2 p_{A}=3 p_{B}=6 p_{C}
$$

$\longrightarrow V$
A. (a) 350 K
B. (b) 1175 K
C. (c) 850 K
D. (d) 577 K

Answer: C

D Watch Video Solution

2. One mole of a monoatomic ideal gas is taken through the cycle ABCDA as shown in the figure.
$T_{A}=1000 K$ and $2 p_{A}=3 p_{B}=6 p_{C}$
$\left[\right.$ Assume $\left(\frac{2}{3}\right)^{0.4}=0.85$
$\left.R=\frac{25}{3} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
Work done by the gas in the process $A \rightarrow B$
A. (a) 5312 J
B. (b) 1875 J
C. (c) 6251J
D. (d) 8854 J

- Watch Video Solution

3. One mole of a monoatomic ideal gas is taken through the cycle ABCDA as shown in the figure.
$T_{A}=1000 K$ and $2 p_{A}=3 p_{B}=6 p_{C}$
$\left[\right.$ Assume $\left(\frac{2}{3}\right)^{0.4}=0.85$
and
$\left.R=\frac{25}{3} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
Heat lost by the gas in the process $B \rightarrow C$ is
A. (a) 5312 J
B. (b) 1875 J
C. (c) 6251J
D. (d) 8854 J

Answer: A

D View Text Solution

Level 2 Subjective

1. Two moles of helium gas undergo a cyclic process as shown in Fig. Assuming the gas to
be ideal, calculate the following quantities in this process
(a) The net change in the heat energy
(b) The net work done
(c) The net change in internal energy

2. 1.0 k -mol of a sample of helium gas is put through the cycle of operations shown in figure. $B C$ is an isothermal process and $p_{A}=1.00 \mathrm{~atm}, V_{A}=22.4 \mathrm{~m}^{3}, p_{B}=2.00 \mathrm{~atm}$. What are T_{A}, T_{B} and V_{C} ?

3. The density (ρ) versus pressure (p) graph of one mole of an ideal monoatomic gas undergoing a cyclic process is shown in figure.

Molecular mass of gas is M .
(a) Find work done in each process.
(b) Find heat rejected by gas in one complete cycle.
(c) Find the efficiency of the cycle.

- Watch Video Solution

4. An ideal gas goes through the cycle abc. For the complete cycle 800J of heat flows out of the gas. Process $a b$ is at constant pressure and process $b c$ is at constant volume. In process $\mathrm{c}-\mathrm{a}, p \propto V$. States a and b have temperature $T_{a}=200 \mathrm{~K}$ and $T_{b}=300 \mathrm{~K}$. (a) Sketch the $\mathrm{p}-\mathrm{V}$ diagram for the cycle. (b) What is the work done by the gas for the process ca?

- Watch Video Solution

5. A cylinder of ideal gas is closed by an 8 kg movable piston of area $60 \mathrm{~cm}^{2}$. The atmospheric pressure is 100 kPa . When the gas is heated form $30^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, the piston rises 20 cm . The piston is then fastened in the place and the gas is cooled back to $30^{\circ} \mathrm{C}$. If
ΔQ_{1} is the heat added to the gas during heating and ΔQ_{2} is the heat lost during cooling, find the difference.
6. Three moles of an ideal gas $\left(C_{p}=\frac{7}{2} R\right)$ at pressure p_{0} and temperature T_{0} is isothermally expanded to twice its initial volume. It is then compressed at a constant pressure to its original volume.
(a) Sketch $\mathrm{p}-\mathrm{V}$ and $\mathrm{p}-\mathrm{T}$ diagram for complete process.
(b) Calculate net work done by the gas.
(c) Calculate net heat supplied to the gas during complete process.
(Write your answer in terms of gas constant =R)

D Watch Video Solution

7. Two moles of helium $\operatorname{gas}(\lambda=5 / 3)$ are initially at temperature $27^{\circ} \mathrm{C}$ and occupy a volume of 20 litres. The gas is first expanded at constant pressure until the volume is doubled. Then it undergoes an adiabatic change until the temperature returns to its initial value.
(i) Sketch the process on a p-V diagram.
(ii) What are the final volume and pressure of the gas?
(iii) What is the work done by the gas ?

D Watch Video Solution

8. An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston of crosssection $8.0 \times 10^{-3} m^{2}$. Initially the gas is at 300 K and occupies a volume of $2.4 \times 10^{-3} \mathrm{~m}^{3}$ and the spring is in its relaxed (unstretched,
unompressed) state, fig. The gas is heated by a small electric heater until the piston moves out slowly by 0.1 m . Calculate the final temperature of the gas and the heat supplied
(in joules) by the heater. The force constant of the spring is $8000 \mathrm{~N} / \mathrm{m}$, atmospheric pressure is $1.0 \times 10^{5} \mathrm{Nm}^{-2}$. The cylinder and the piston are thermally insulated. The piston is massless and there is no friction between the piston and the cylinder. Neglect heat loss
through lead wires of the heater. The heat capacity of the heater coil is negligible.

Assume the spring to be massless.

- Watch Video Solution

9. An ideal diatomic gas $\left(\gamma=\frac{7}{5}\right)$ undergoes
a process in which its internal energy relates
to the volume as $U=\alpha \sqrt{V}$, where α is a constant.
(a) Find the work performed by the gas to increase its internal energy by 100J.
(b) Find the molar specific heat of the gas.

- Watch Video Solution

10. For an ideal gas the molar heat capacity
varies as $C=C_{V}+3 a T^{2}$. Find the equation of the process in the variables (T, V) where a is a constant.
11. One mole of an ideal monatomic gas undergoes the process $p=\alpha T^{1 / 2}$, where α is
a constant.
(a) Find the work done by the gas if its temperature increases by 50 K .
(b) Also, find the molar specific heat of the gas.

- Watch Video Solution

12. One mole of a gas is put under a weightless piston of a vertical cylinder at temperature T .

The space over the piston opens into
atmosphere. Initially, piston was in
equilibrium. How much work should be performed by some external force to increase isothermally the volume under the piston to twice the volume? (Neglect friction of piston).

D Watch Video Solution

13. An ideal monatomic gas undergoes a process where its pressure is inversely proportional to its temperature.
(a) Calculate the molar specific heat of the
process.
(b) Find the work done by two moles of gas if the temperature change from T_{1} to T_{2}.

D Watch Video Solution

14. The volume of one mode of an ideal gas
with adiabatic exponent γ is varied according
to the law $V=a / T$, where a is constant.

Find the amount of heat obtained by the gas
in this process, if the temperature is increased by ΔT.

Watch Video Solution

15. Two moles of a monatomic ideal gas undergo a cyclic process $A B C D A$ as shown in
figure. BCD is a semicircle. Find the efficiency of the cycle.

16. Pressure p, volume V and temperature T for
a certain gas are related by
$p=\frac{\alpha T-\beta T^{2}}{V}$
where, α and β are constants. Find the work done by the gas if the temperature changes
from T_{1} to T_{2} while the pressure remains the constant.
17. An ideal gas has a specific heat at constant pressure $C_{p}=\frac{5 R}{2}$. The gas is kept in a closed vessel of volume V_{0} at temperature T_{0} and pressure p_{0}. An amount fo $10 p_{0} V_{0}$ of heat is supplied to the gas.
(a) Calculate the final pressure and temperature of the gas.
(b) Show the process on $\mathrm{p}-\mathrm{V}$ diagram.

- Watch Video Solution

18. Three moles of an ideal gas being initially
at a temperature $T_{i}=273 K$ were
isothermally expanded 5 times its initial
volume and then isochorically heated so that
the pressure in the final state becomes equal
to that in the initial state. The total heat supplied in the process is 80 kJ . Find
$\gamma\left(=\frac{C_{p}}{C_{V}}\right)$ of the gas.

D Watch Video Solution

