©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY ENGLISH

MAGNETIC EFFECT OF CURRENT AND

MAGNETISM

For Jee Main

1. A point charge is moving in clockwise
direction in a circle with constant speed.

Consider the magnetic field produced by the charge at a fiexed point P (not at the centre of circle) on the axis of the circle. Then,
A. it is constant in magnitude only
B. it is a constant in direction only
C. it is constant in direction and magnitude
and magnitude both
D. it is not constant in magnitude and
direction both

Answer: A

- Watch Video Solution

2. Which of the following particles will describe wll experience maximum magnetic force(magnitude) when projected with the same velocity perpendicular to a magnetic field?
A. Electron
B. Proton
C. $H e^{+}$

D. Li^{++}

Answer: D

D Watch Video Solution

3. An electron is projected with velocity v_{0} in a
unifrom electric field E perpendicular to the
field Again it is projectced with velocity v_{0} perpendicular to a unifrom magnetic field B.
if r_{1} is initial radius of curvature just after entering in the electric field and r_{2} is initial
radius of curvature just after entering in magnetic field then the ratio r_{1} / r_{2} is equal to

$$
\begin{aligned}
& \text { A. } \frac{B v(2) o}{E} \\
& \text { B. } \frac{B}{E} \\
& \text { C. } \frac{E v o}{B} \\
& \text { D. } \frac{B v o}{E}
\end{aligned}
$$

Answer: D

D Watch Video Solution
4. An electron having kinetic energy K is moving i a circular orbit of radius R perpendicular to a uniform magnetic induction. If kinetic energy is douled and magnetic induction tripled, the radius will become
A. $\frac{3 R}{2}$
B. $\frac{\sqrt{3}}{2} R$
C. $\frac{\sqrt{2}}{3} R$
D. $\frac{\sqrt{4}}{3} R$

Answer: C

D Watch Video Solution

5. $O A B C$ is a current carrying square loop an
electron is projected from the center of loop
along its diagonal $A C$ as shown. Unit vector in
the direction of initial acceleration will be

A. \widehat{K}
B. $-\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)$
C. $-\widehat{K}$

Answer: B

D Watch Video Solution

6. Let current $i=2 A$ be flowing in each part of a wire frame as shown in Fig. 1.138. The
frame is a combination of two equilateral triangles ACD and CDE of side 1 m . It is placed
in uniform magnetic field $B=4 T$ acting perpendicular to the plane of frame. The
magnitude of magnetic force acting on the frame is

The pithc of the helical path followed by the particle is p. The radius of the helix will be

B. zero

C. 16 N

D. 8 N

Answer: A

D Watch Video Solution

7. A copper wire of diameter 1.6 mm carries a current of 20A. Find the maximum magnitude of the magnetic field (\vec{B}) due to this current.
8. Equal current I flows in two segments of a circular loop in the direction shown in figure.

Radius of loop is R. What is the magnitude of magnetic field induciton at the centre of the
loop?

A. zero
B. $\left(\frac{\pi-\theta}{\pi} \frac{\mu o i}{2 a}\right)$
C. $\left(\frac{2 \pi-t h e a t}{\pi}\right) \frac{\mu o i}{2 a}$
D. $\left(\frac{\theta}{2 \pi}\right) \frac{\mu o i}{2 a}$

Answer: B

D Watch Video Solution

9. An electron is moving along positive x-axis
A unifrom electric field exists towards negative y-axis. What should be the direction of magnetic field of suitable magnitude so that net force of electrons is zero .
A. positive z - axis
B. negative z-axis
C. positive y-axis
D. negative y-axis

Answer: B

D Watch Video Solution
10. A charged particle enters a unifrom magnetic field with velocity vector at angle of 45° with the magnetic field. The pitch of
the helical path followed by the particles is ρ.

The radius of the helix will be

$$
\begin{aligned}
& \text { A. } \frac{p}{\sqrt{2 \pi}} \\
& \text { B. } \sqrt{2} P \\
& \text { C. } \frac{p}{2 \pi} \\
& \text { D. } \frac{\sqrt{2 p}}{\pi}
\end{aligned}
$$

Answer: C

D Watch Video Solution

11. Ratio of magnetic field at the centre of a current carrying coil of radius R and at a distance of $3 R$ on its axis is
A. $10 \sqrt{10}$
B. $20 \sqrt{10}$
C. $2 \sqrt{10}$
D. $\sqrt{10}$

Answer: A

- Watch Video Solution

12. A current i is uniformly distributed over the cross section of a long hollow cylinderical wire of inner radius R_{1} and outer radius R_{2}. Magnetic field B varies with distance r form the axis of the cylinder is

Watch Video Solution
13. The magnitude of the magnetic field at O (centre of the circular part) due to the current carrying coil as shown is :

A. zero
B. perpendicular to paper inwards
C. perpendiculr to paper outwards
D. is perpendicular to paper inwardsd if
$\theta \pm 90^{\circ}$ and perpendicualr to paper
outwards if $90^{\circ} \pm \theta \pm 180^{\circ}$

Answer: B

(D) Watch Video Solution
14. Magnetic field at the centre of a circualr loop
of area A carrying current I is B . What is the magnetic moment of this loop?

$$
\begin{aligned}
& \text { A. } \frac{B A^{2}}{\mu_{0} \pi} \\
& \text { B. } \frac{B A}{\mu_{0}} \sqrt{A} \\
& \text { C. } \frac{2 B A \sqrt{A} \sqrt{\pi}}{\mu_{0}} \\
& \text { D. } \frac{2 B A}{\mu_{0}} \sqrt{\frac{A}{\pi}}
\end{aligned}
$$

Answer: D
15. A uniform magnetic field $\bar{B}=B_{0} \hat{j}$ exists in a space. A particle of mass m and charge q is projected towards negative x-axis with speed v from the a point $(d, 0,0)$ The maximum value v for which the particle does not hit $y-z$ plane is
A. $\frac{2 B q}{d m}$
B. $\frac{B q d}{m}$
C. $\frac{B q}{2 d m}$
D. $\frac{B q d}{2 m}$

Answer: D

- Watch Video Solution

16. A current carrying wire $P Q$ is placed near an
another long current carrying wire RS. If free to
move, wire $P Q$ will be have

A. translational motion only
B. rotational motion only
C. transitational as well as rotationakl

D. neither translational nor rotational motion

Answer: C

D Watch Video Solution

17. Figure shows a straight wire of length a carrying a current I. What is the magnitude of magnetic field induction produced by the current at P, which is lying at a perpendicular distance a from one end of the wire.

A. $\frac{\sqrt{2 \mu_{0}} i}{\pi i}$
B. $\frac{\mu_{0} i}{4 \pi i}$
C. $\frac{\sqrt{2 \mu_{0}} i}{8 \pi a}$
D. $\frac{\mu_{0} i}{2 \sqrt{2} \pi a}$

Answer: C

- Watch Video Solution

18. A nonconducing disc of radius R is rotaing about axis passing through its cente and
perpendicual its plance with an agular velocity ω
. The magnt moment of this disc is .
A. $\frac{1}{4} q \omega R^{2}$
B. $\frac{1}{2} q \omega R$
C. $q \omega R$
D. $\frac{1}{2} q \omega R^{2}$

Answer: A
(Watch Video Solution
19. A metallic wire is folded to form a square loop
a side ' a '. It carries a current ' I ' and is kept
perpendicular to a uniform magnetic field. If the shape of the loop is changed from square to a circle without changing the length of thw wire and current, the amount of work done in doing so is

$$
\begin{aligned}
& \text { A. } i B a^{2}(\pi+2) \\
& \text { B. } i B a^{2}(\pi-2) \\
& \text { C. } i B a^{2}(4 / \pi-1)
\end{aligned}
$$

D. $i B a^{2}\left(1-\frac{4}{\pi}\right)$

Answer: D

- Watch Video Solution

20. A wire of length I is bent in the form a circular coil of some turns. A current I flows through the coil. The coil is placed in a uniform magnetic field B. The maximum torqur on the coil can be

$$
\text { A. } \frac{i B l^{2}}{4 \pi}
$$

B. $\frac{i B l^{2}}{\pi}$
C. $\frac{i B l^{2}}{2 \pi}$
D. $\frac{2 i B l^{2}}{\pi}$
π

Answer: A

D Watch Video Solution

21. A charged particle enters a magnetic field at right angles to the field. The field exists for a length equal to 1.5 times the radius of circular
path of particle. The particle will be deviated
from its path by
A. 90°
B. $\sin ^{-1}(2 / 3)$
C. 30°
D. 180°

Answer: D

- Watch Video Solution

22. A circular coil having mass m is kept above ground (x-z plane) at some height. The coil carries i in the direction shown in Fig. 1.143. In which direction a uniform magnetic field \vec{B} be applied so that the magnetic force balances the weight of the coil?

A. positive x-direction
B. negative x-direction
C. positive z-direction
D. None of these

Answer: D

D Watch Video Solution

23. The magnetic field at the centre of an equilateral triangular loop of side 2 L and carrying a current i is
A. $\frac{9 \mu_{0} i}{4 \pi L}$
B. $\frac{3 \sqrt{3 \mu_{0} i}}{4 \pi L}$
C. $\frac{2 \sqrt{3 \mu_{0} i}}{\pi L}$
D. $\frac{3 \mu_{0} i}{4 \pi L}$

Answer: A

- Watch Video Solution

24. A charge q moves with a velocity $2 m / s$ along
x - axis in a unifrom magnetic field
$B=(\hat{i}+2 \hat{j}+3 \hat{k})$ tesla.
A. Charge will experience a force in $z-y$ plane
B. Charge will experience a force along- y airs
C. Charge will experience a force $+z$ aixs
D. Charge will experience a force along - z axis

Answer: A

- Watch Video Solution

25. Two long wire $A B$ abd $C D$ carry currents i_{1}
and i_{2} in the direactions show in figure

A. Force on wire $A B$ is towards left
B. Force on wire $A B$ is towards right
C. Torque on wire $A B$ is clockwise

D. Torque on wire $A B$ is anticlockwise

Answer: D

- Watch Video Solution

26. Two parallel wire carrying equal currents in
opposite directions are placed at $x= \pm a$ parralel to y-axis with $z=0$. Magnetic field at origin O is B_{1} and at $P(2 a, 0,0) i s B_{2}$. Then, the ratio B_{1} / B_{2} is

$$
\text { A. }-3
$$

B. $-\frac{1}{2}$
C. $-\frac{1}{3}$
D. 2

Answer: A

D Watch Video Solution

27. The ratio of the magnetic field at the centre of a current carrying circular coil to its magnetic moment is x . If the current and radius both are doubled the new ratio will become
A. $2 x$
B. $4 x$
C. $x / 4$
D. $x / 8$

Answer: D

D Watch Video Solution

28. A magnetic needle is kept in a non uniform magnetic field. It experiences
A. a force and a torque
B. a force but not a troque
C. a torque but not a force
D. neither a force nor a torque

Answer: A

D Watch Video Solution
29. Two thin long parallel wires seperated by a distance 'b' are carrying a current ' I' amp each .

The magnitude of the force3 per unit length exerted by one wire on the other is
A. $\frac{\mu_{0} i^{2}}{b^{2}}$
B. $\frac{\mu_{0} i^{2}}{2 \pi b^{2}}$
C. $\frac{\mu_{0} i^{2}}{2 \pi b}$
D. $\frac{\mu_{0} i}{2 \pi b^{2}}$

Answer: C

- Watch Video Solution

30. A long wire carrying a current $i=2 A$ is bent at right angles. The magnetic field lying on a perpendicular normal to the plane of the wire draw through the point of bending at distance 1 m form it isTesla.
A. 2×10^{-7}
B. $4 \sqrt{2} \times 10^{-7}$
C. $\sqrt{2} \times 10^{-7}$
D. $2 \sqrt{2} \times 10^{-7}$

Answer: D

- Watch Video Solution

31. A charge q is unifomly distrybuted over a nonconducting ring of radius R. The ring is rotated about an axis passing through its centre and perpendicular to the plane of the ring with frequency f. The ratio of electric potential to the magnetic field at the centre of the ring depends on.
A. q, f, and R
B. q and fonly
C. f and R
D. f

Answer: D

D Watch Video Solution

32. A large metal sheet carries an electric current along its surface. Current per unit length is λ.

Magnetic field induction near the metal sheet is
A. $\frac{\mu_{0} \lambda}{2}$
B. $\frac{\lambda \mu_{0}}{2 \pi}$
C. $\lambda \mu_{0}$
D. $\frac{\mu_{0}}{2 \lambda \pi}$

Answer: A

D Watch Video Solution

33. Infinite number of straight wires each
carrying current I are equally placed as shown in
the figure Adjacent wires have current in
opposite direction Net magnetic field at point P
is

A. $\frac{\mu_{0} l \operatorname{In} 2}{4 \pi \sqrt{3 a}} \widehat{K}$
B. $\frac{\mu_{0} l \operatorname{In} 4}{4 \pi \sqrt{3 a}} \widehat{K}$
C. $\frac{\mu_{0} l \ln 4}{4 \pi \sqrt{3 a}}(-\widehat{K})$
D. zero

Answer: D

D Watch Video Solution

34. A current I is flowing in a straight conductor of length L . The magnetic induction at a point distant $\frac{L}{4}$ from its centre will be
A. zero
B. $2 \pi B a I \cos \theta$
C. $2 \pi B a I \sin \theta$
D. None of these

Answer: C

D Watch Video Solution

35. Two long parallel wire A and B situated perpendicuilar to the plane of the paper at a distance $2 a$ are carrying equal currents I in opposite direction as show in the figure. The value of magnetic induction at point P situated
at equal distance r from both the wires will be

A. $\frac{\mu_{0} l a}{4 \pi r^{2}}$
B. $\frac{\mu_{0} l a}{2 \pi r^{2}}$
C. $\frac{\mu_{0} l a}{\pi r^{2}}$
D. $\frac{\mu_{0} l a \sqrt{r^{2}-a^{2}}}{\pi r^{2}}$

Answer: C

D Watch Video Solution

36. In Fig. infinite conducting rings each having
current i in the direciton shown are placed concentrically in the same plane as shown in the figure. The radii of rings are
$r, 2 r, 2^{2} r, 2^{3} r, \ldots \ldots,(\infty)$. The magnetic field at
the centre of rings will be

A. zero
B. $\frac{\mu_{0} i}{r}$
C. $\frac{\mu_{0} i}{2 r}$
D. $\frac{\mu_{0} i}{3 r}$

Answer: D

D Watch Video Solution

37. The figure shows a long striaght wire of a circular cross-section (radius a) carrying steady current I.The current I is unifromly distributed across this distance $a / 2$ and 2a from axis is
A. $2: 1$
B. $1: 2$
C. $4: 1$
D. $1: 1$

Answer: D

- Watch Video Solution

38. It is known from Curie's law that magnetic moment (m) of a paramagnetic sample is directly proporational to the ratio of the external magnetic field (B) to the absolute temperature
(T). A sample of paramagnetic salt contains 2.0×10^{24} atomic dipoles each of dipole
moment $1.5 \times 10^{-23} J T^{-1}$.

Sample is placed under a homogeneous magnetic field of $0.84 T$ and cooled to a temperature of 4.2. The drgree of magnetic saturation achevied is equal to 15%. You may assume that 85% dipoles are randomly oriented and do not contributes to the magnetisation. The total diploe moment of the sample, for a magnetic field of $0.98 T$ and a temperature of $2.8 K$, is

$$
\text { A. } 4.5 \mathrm{~J} / T
$$

$$
\text { В. } 30 J / T
$$

C. $7.9 \mathrm{~J} / \mathrm{T}$
D. $3 J / T$

Answer: C

D Watch Video Solution

39. A paramagnetic sample shows a net magnetisation of $8 A m^{-1}$ when placed in an external magnetic field of $0 \cdot 6 T$ at a temperature of $4 K$. When the same sample is
placed in an external magnetic field of $0 \cdot 2 T$ at a
temperature of $16 K$, the magnetisation will be

$$
\begin{aligned}
& \text { A. } \frac{32}{3} A m^{-1} \\
& \text { B. } \frac{2}{3} A m^{-1} \\
& \text { C. } 6 A m^{-1} \\
& \text { D. } 2.4 A m^{-1}
\end{aligned}
$$

Answer: B
40. A neutral particle at rest in a magnetic field decays into two charged particles of different mass. The energy released goes into their kinetic energy. Then what can be the path of the particles. Neglect any interaction between the two charges.
(a)

A.
B.
C.
D.

Answer: B

- Watch Video Solution

41. Every iron atom in a ferromagnetic domain
has a magnetic dipole moment equal to
$9.27 \times 10^{-24} \mathrm{Am}^{2}$. A ferromagetic domain in iron has the shape of a cube of side $1 \mu m$. The maximum dipole moment occurs when all the dipoles are alligned. The molar mass of uiron is

55 g and its specific gravity is 7.9 .The magnetisation of the domain is .
A. $8.0 \times 10^{5} \mathrm{~A} / \mathrm{m}$
B. $8.0 \times 10^{8} A / m$
C. $8.0 \times 10^{11} \mathrm{~A} / \mathrm{m}$
D. $8.0 \times 10^{14} \mathrm{~A} / \mathrm{m}$

Answer: A

D Watch Video Solution
42. A circular coil of radius $5 \pi \mathrm{~cm}$ having a total of the magnetic meridian plane (i.e. the vertical plane in the north-south direction). It is rotated about its vertical diameter by 45° and a current of $\sqrt{2 A}$ is passed through it. A magnetic needle placed at the centre of this coil points west to east. The horizontalcopmonent of the earth's magnetic field is
A. $20 \times 10^{-5} T$
B. $4 \times 10^{-5} T$
C. $4 \times 10^{-7} T$
D. $\frac{4}{\pi} \times 10^{-5} T$

Answer: B

D Watch Video Solution

43. A sample of paramagnetic salt contains
2×10^{24} atomic dipoles, each of moment
$1.5 \times 10^{-23} J T^{-1}$. The sample is placed under a homogeneous magnetic field of $0.64 T$ and cooled to a temperature of $4.2 K$. The degree of magnetic saturation archieved is equal to 15%.

What is the total dipole moment of the sample
for a mangetic field of $0.98 T$ and a temperature of $2.8 K$. (Assume Curie's law).
A. $8 \times 10^{3} J / T$
B. $10.34 J / T$
C. $8 \times 10^{-3} J / T$
D. $25 \mathrm{~J} / T$

Answer: B

D Watch Video Solution
44. In the shown arrangement magentic field at

P is :

A. zero

$$
\begin{aligned}
& \text { B. } \frac{\mu_{0} l}{2 \sqrt{2 \pi a}} \\
& \text { C. } \frac{\mu_{0} l}{\sqrt{2 \pi a}} \\
& \text { D. } \frac{\mu_{0} l}{4 \sqrt{2 \pi a}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

45. A measurement of the horizatal component
$B_{-}(H)$ of the Earth's field at the location of
Tuscon, Arizona, gave a value of $26 \mu T$. By suspending a small magent like a compass that is free to swing in a vertical plante ,it is possible to measure the angle between the field direction and the horizontal plane, called the inclination or the dip angle ϕ. The dip angle at Tucson was
measured to be 60°. Find teh magnitude at taht

location.

A. 52 u T
B. $26 \mathrm{sqrt}(3) \mathrm{uT}^{`}$
C. $26 \mathrm{sqrt}(2) \mathrm{muT}{ }^{`}$
D. 26 uT

Answer: B

- Watch Video Solution

46. A unifrom magnetic field B existis in the space between two coaxial cylinders of radius 'a' and 'b' respectivelly. The direction of magnetic field is parallel to the axis of the cylinder a shown in figure. A negatively charged particle of change $-q$ and mass m is projected from teh outer surface of inner cyclinder with an initial velocity v_{0} in the radialy outward direction. The minimum value to of magnetic field so that the particle does not hit the surface of the outer
cyclinder is

A. $\frac{m v_{0}}{2 q(b-a)}$
B. $\frac{2 m v_{0} b}{q\left(b^{2}-a^{2}\right)}$
C. $\frac{2 m v_{0}}{q \sqrt{b^{2}-a^{2}}}$
D. $\frac{2 m v_{0}}{q(b+a)}$

Answer: B

- Watch Video Solution

Only One Option Is Correct

1. Equal currents $i=1$ A are flowing through the
wires parallel to y-axis located at
$x=+1 m, x=+2 m, x=+4 m$ and so
on...., etc. but in opposite directions as shown in

Fig The magnetic field (in tesla) at origin would be

$$
\begin{aligned}
& \text { A. }-1.33 \times 10^{-7} \widehat{K} \\
& \text { B. } 1.33 \times 10^{-7} \widehat{K} \\
& \text { C. } 2.67 \times 10^{7} \hat{k} \\
& \text { D. }-2.67 \times 10^{7} \hat{k}
\end{aligned}
$$

Answer: B

D Watch Video Solution

2. Same current i is flowing in the three infinitely
long wires along positive x-,y- and z-directions.

The magnetic filed at a point $(0,0,-a)$ would be

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} i}{2 \pi a}(\hat{j}-\hat{i}) \\
& \text { B. } \frac{\mu_{0} i}{2 \pi a}(\hat{i}+\hat{j}) \\
& \text { C. } \frac{\mu_{0} i}{2 \pi a}(\hat{i}-\hat{j}) \\
& \text { D. } \frac{\mu_{0} i}{2 \pi a}(\hat{i}-\hat{j}+\hat{k})
\end{aligned}
$$

Answer: A

- Watch Video Solution

3. Two identical particles having the same mass
m and charges $+q$ and $-q$ separated by a distance
d enter a uniform magnetic field B directed perpendicular to paper inwards with speeds
v_{1} and v_{2} as shown in Fig. 1.139. The particles
will not collide if

$$
\begin{aligned}
& \text { A. } d>\frac{m}{B q}\left(V_{1}+V_{2}\right) \\
& \text { B. } d<\frac{m}{B q}\left(V_{1}+V_{2}\right) \\
& \text { C. } d>\frac{2 m}{B q}\left(V_{1}+V_{2}\right) \\
& \text { D. } V_{1}=V_{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

4. Find the magnetic field at P due to the arrangement shown

$$
\text { A. } \frac{\mu_{0} i}{\sqrt{2 \pi a}}\left(1-\frac{1}{\sqrt{2}}\right) \otimes
$$

B. $\frac{2 \mu_{0} i}{\sqrt{2 \pi a}} \otimes$
C. $\frac{\mu_{0} i}{\sqrt{2 \pi a}} \otimes$
D. $\frac{\mu_{0} i}{\sqrt{2 \pi a}}\left(1+\frac{1}{\sqrt{2}}\right) \otimes$

Answer: A

D Watch Video Solution

5. A wire of length 1 m placed in $x-z$ plane carries
current of 1 amp. The coefficient of friction
between wire and the surface is 0.2 and mass of
the wire is 2 . The magnetic field of strengh 2 T
exists along position y direction. Then choose the correct statment .
A. Acceleration of wire is $0.5 \mathrm{~m} / \mathrm{s}^{2}$
B. Wire will not move at all
C. Accceleration of wire is m / s^{2}
D. Acceleration of wire is $2 m / s^{2}$

Answer: B

6. A charge particle having charge q expericenec a $F_{1} q=(-\hat{j}+\hat{k}) N$ in a magnetic field B when is has velocity $v_{1}=(1.0) \hat{i} \frac{m}{s}$. The force becomes $F=q(\hat{i}-\hat{k})$ when the velocity is charged to $v_{2}=1.0 \hat{j} \frac{m}{s}$ magnetic induction vector at that point is
A. $(\hat{i}+\hat{j}+\hat{k}) T$
B. $(\hat{i}-\hat{j}-\hat{k}) T$
C. $(-\hat{i}-\hat{j}+\hat{k}) T$
D. $(\hat{i}+\hat{j}-\hat{k}) T$

Answer: A

D Watch Video Solution

7. A change particule is projected with velocity v_{0} at positive x-axis . The magnetic field B is direction s negative z-aixs between $x=0$ and $x=l$. The particule emerges out (at $\mathrm{x}=\mathrm{L}$) at an angle of 60° with direction of projected (at $x=0$)
a positive x-axis. Find v so that when it emerges
out (at $x=L$) the angle made by it is 30° with the
direction projection
A. $2 v_{0}$
B. $v_{0} / 2$
C. $v_{0} / \sqrt{3}$
D. $v_{0} \sqrt{3}$

Answer: D

- Watch Video Solution

8. The dimensions of $\frac{B^{2} R^{2} C^{2}}{2 \mu_{0}}$ (Where B is magnetic filed, and μ_{0} is permeability of free
space, R resistance and C is capacitance) is
A. $\left[M L^{-1}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{2} T^{-1}\right]$
D. $\left[M L T^{2}\right]$

Answer: A

- Watch Video Solution

9. A conducting rod of length I and mass m is
moving down a smooth inclined plane of inclination θ with constant i is flowing in the conductor in a direction perpendicular to paper inwards. A vertically upward magnetic field \vec{B} exists in space. Then, magnitude of magnetic
field \vec{B} is

A. $\frac{m g}{i l} \sin \theta$
B. $\frac{m g}{i l} \tan \theta$
C. $\frac{m g \cos \theta}{i l}$
D. $\frac{m g}{i l \sin \theta}$

Answer: B

D Watch Video Solution

10. A particle of mass m and charge q has and initial velocity $\vec{v}=v_{0} \hat{j}$. If an electric field $\vec{E}=\rightrightarrows(0) \hat{i}$ and magnetic field $\vec{B}=B_{0} \hat{i}$ act on the particle, its speed will double after a time

$$
\text { A. } t=\frac{2 m v_{0}}{q E}
$$

> B. $t=\frac{2 B q}{m v_{0}}$
> C. $t=\frac{\sqrt{3} B q}{m v_{0}}$
> D. $t=\frac{\sqrt{3} m v_{0}}{q E}$

Answer: D

D Watch Video Solution

11. A rigid circular loop of radius r and mass m
lies in the $X Y$ - plane of a flat table and has a current I flowing in it. At this particular place.

The Earth's magnetic field $\vec{B}=B_{x} i+B_{z} k$. The value of I so that the loop starts tilting is :

$$
\begin{aligned}
& \text { A. } \frac{m g}{\pi r \sqrt{B_{x}^{2}+B_{2}^{z}}} \\
& \text { B. } \frac{m g}{\pi r B_{z}} \\
& \text { C. } \frac{m g}{\pi r B_{x}} \\
& \text { D. } \frac{m g}{\pi r \sqrt{B_{x} B_{z}}}
\end{aligned}
$$

Answer: C
12. A current carrying squre loop is placed near
an infinitely long current carrying wire as shown
in figure. The loop torque acting on the loop is

A. $\frac{\mu_{0}}{2 \pi}\left(\frac{i_{1} i_{2} a}{2}\right)$

B. $\frac{\mu_{0} i_{1} i_{2} a}{2 \pi}$
 C. $\frac{\mu_{0} i_{1} i_{2} a}{2 \pi} \operatorname{In}(2)$
 D. Zero

Answer: D

D Watch Video Solution

13. A conducting rod of mass m and length I is
placed over a smooth horizontal surface. A
uniform magnetic field B is acting perpendicular to the rod. Charge q is suddenly passed through
the rod and it acquires an initial velocity v on the
surface, then q is equal to

> A. $\frac{2 m v}{B I}$
> B. $\frac{B I}{2 m v}$
> C. $\frac{m v}{B I}$
> D. $\frac{B l V}{2 m}$

Answer: C

- Watch Video Solution

14. Choose the correct option:

A particle of charge per unit mass α is released from origin with a velocity $\vec{v}=v_{0} \hat{i}$ in a magnetic field
$\vec{B}=-B_{0} \hat{k}$ for $x \leq \frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}$
and $\vec{B}=0$ for $x>\frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}$
The x-coordinate of the particle at time $t\left(\frac{\pi}{3 B_{0} \alpha}\right)$ would be
A. (a) $\frac{\sqrt{3}}{2} \frac{V_{0}}{B_{0} \alpha}+\frac{\sqrt{3}}{2} v_{0}\left(t-\frac{\pi}{B_{0} \alpha}\right)$
B. (b) $\frac{\sqrt{3}}{2} \frac{V_{0}}{B_{0} \alpha}+v_{0}\left(t-\frac{\pi}{B_{0} \alpha}\right)$
C. (c) $\frac{\sqrt{3}}{2} \frac{V_{0}}{B_{0} \alpha}+\frac{v_{0}}{2}\left(t-\frac{\pi}{B_{0} \alpha}\right)$
D. (d) $\frac{\sqrt{3}}{2} \frac{V_{0}}{B_{0} \alpha}+\frac{v_{0} t}{2}$

Answer: C

D Watch Video Solution

15. A particle of charge per unit mass α is released from the origin with velocity $v=v_{0} \hat{i}$ in the magnetic field $\vec{B}=-B_{0} \hat{k}$ for A cup of tea cools from $80^{\circ} C$ to $60^{\circ} C$ in 40 seconds. The ambient temperature is $30^{\circ} \mathrm{C}$. In cooling from
$60^{\circ} C$ to $50^{\circ} C$, it will take time:
$x \leq \frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}$ and $\vec{B}=0$ for $x>\frac{\sqrt{3}}{2} \frac{v_{0}}{B_{0} \alpha}$
The x - coordinate of the particle at time
$t\left(>\frac{\pi}{3 B_{0} \alpha}\right)$ would be
A. $-\frac{2 V_{0}}{B_{0} \alpha}$
B. $-\frac{V_{0}}{B_{0} \alpha}$
C. $\frac{2 V_{0}}{B_{0} \alpha}$
D. $-\frac{V_{0}}{B_{0} \alpha}$

Answer: C

16. Two wires AO and OC carry equal currents i as
shown in Fig. One end of both the wires extends
to infinity. Angle AOC is α. The magnitude of magnetic field is point P on the bisector of these two wires at a distance r from point O is

A. $\frac{\mu_{0}}{2 \pi} \frac{i}{r} \cot \left(\frac{\alpha}{2}\right)$
B. $\frac{\mu_{0}}{4 \pi} \frac{i}{r} \cot \left(\frac{\alpha}{2}\right)$
C. $\frac{\mu_{0}}{2 \pi} \frac{i}{r} \frac{\left(1+\frac{\cos \alpha}{2}\right)}{\sin \left(\frac{\alpha}{2}\right)}$
D. $\frac{\mu_{0}}{2 \pi} \frac{i}{r} \sin \left(\frac{\alpha}{2}\right)$

Answer: A

D Watch Video Solution

17. Choose the correct option:

Figure shows a square current carrying loop
$A B C D$ of side $2 m$ and current $i=\frac{1}{2} A$. The magnetic moment \vec{M} of the loop is
A. (a) $(\hat{i}-\sqrt{3 \hat{k}}) A-m^{2}$
B. (b) $(\hat{i}-\hat{k}) A-m^{2}$
C. (c) $(\sqrt{3 \hat{i}}+\hat{k}) A-m^{2}$
D. (d) $(\hat{i}+\hat{k}) A-m^{2}$

Answer: A

- Watch Video Solution

18. A conducting ring of mass 2 kg and radius
$0.5 m$ is placed on a smooth plane. The ring carries a current of $i=4 A$. A horizontal magnetic field $B=10 T$ is switched on at time
$t=0$ as shown in fig The initial angular acceleration of the ring will be

A. $40 \pi \mathrm{rad} / \mathrm{s}^{2}$
B. $20 \pi \mathrm{rad} / \mathrm{s}^{2}$
C. $5 \pi \mathrm{rad} / \mathrm{s}^{2}$
D. $15 \pi \mathrm{rad} / \mathrm{s}^{2}$

Answer: D

D Watch Video Solution

19. A charge praticule of sepeific charge (charge/
mass) α is realsed from origin at time $\mathrm{t}=0$ with
velocity $v=v_{0}(\hat{i}+\hat{j})$ in unifrom magnetic
fields $B=B_{0} \hat{i}$. Co-ordinaties of the particle at
time $t=\frac{\pi}{B_{0} \alpha}$ are
A. $\left(\frac{V_{0}}{2 B_{0} \alpha}, \frac{\sqrt{2 V_{0}}}{\alpha B_{0}}, \frac{-V_{0}}{B_{0} \alpha}\right)$
B. $\left(\frac{-V_{0}}{B_{0} \alpha}, 0,0\right)$
C. $\left(0, \frac{2 V_{0}}{B_{0} \alpha}, \frac{V_{0} \pi}{2 B_{0} \alpha}\right)$
D. $\left(\frac{V_{0} \pi}{2 B_{0} \alpha}, 0, \frac{-2 V_{0}}{B_{0} \alpha}\right)$

Answer: D

20. Magnetic moment of an electron in nth orbit
of hydrogen atom is
A. $\frac{\neq h}{\pi m}$
B. $\frac{\neq h}{4 \pi m}$
C. $m e h \frac{)}{2 \pi n}$
D. $\frac{m e h}{4 \pi n}$

Answer: B

- Watch Video Solution

21. Two very long straight parallel wires carry steady currents i and $2 i$ in opposite directions.

The distance between the wires is d. At a certain instant of time a point charge q is at a point equidistant from the two wires in the plane of the wires. Its instantaneous velocity \vec{v} is perpendicular to this plane. The magnitude of the force due to the magnetic field acting on t he charge at this instant is

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} i q v}{2 \pi d} \\
& \text { B. } \frac{\mu_{0} i q v}{\pi d}
\end{aligned}
$$

C. $\frac{3 \mu_{0} i q v}{2 \pi d}$
D. zero

Answer: D

D Watch Video Solution

22. In Fig. a coil of single turn is wound on a sphere of radius r and mass m. The plane of the coil is parallel to the inclined plane and lies in the equatorial plane of the sphere. If the sphere is in rotational equilibrium, the value of B is
[Current in the coil is i]

A. $\frac{m g \cos \theta}{\pi i R}$
B. $\frac{m g}{\pi i R}$
C. $\frac{m g \tan \theta}{\pi i R}$
D. $\frac{m g \sin \theta}{\pi i R}$

Answer: B

D Watch Video Solution

23. A particule having charge q enters a rection of untiormal magnetic field B (direction inwards)
and in denfectro as shown. The magnetic of the
momentum of the particles is

A. $\frac{q B y}{2}$
B. $\frac{q B y}{x}$
C. $\frac{q B}{2}\left(\frac{y^{2}}{x}+x\right)$
D. $\frac{q B y^{2}}{2 x}$

Answer: C

- Watch Video Solution

24. A particle of specific charge (charge/mass) α starts moving from the origin under the action of an electric field $\vec{E}=E_{0} \hat{i}$ and magnetic field $\vec{B}=B_{0} \hat{k}$ Its velocity at $\left(x_{0}, y_{0} .0\right)$ is $(4 \hat{i}+3 \hat{j})$ The value of x_{0} is.

$$
\begin{aligned}
& \text { A. } \frac{13}{2} \frac{\alpha E_{0}}{B_{0}} \\
& \text { B. } \frac{16 \alpha B_{0}}{E_{0}}
\end{aligned}
$$

C. $\frac{25}{2 \alpha E_{0}}$
D. $\frac{5 \alpha}{2 B_{0}}$

Answer: B

D Watch Video Solution

25. A conducting wire bent in the from of a parabola $y^{2}=2 x$ carries a current $i=2 A$ as shown in figure This wire is placed in a unifrom magnetic field
$\vec{B}=-4 \hat{k}$ Tesla The magnetic force on the wire
is (newton)

A. $-16 \hat{i}$
B. $32 \hat{i}$
C. $-32 \hat{i}$
D. $16 \hat{i}$

Answer: B

- Watch Video Solution

26. A rectangular loop PQRS made from a uniform wire has length a , width b and mass m .

It is free to rotate about the arm PQ , which remains hinged along a horizontal line taken as the y-axis (see figure). Take the vertically upward direction as the z-axis. A uniform magnetic field $\vec{B}=(3 \hat{i}+4 \hat{k}) B_{0}$ exists in the region. The loop is held in the x - y plane and a current I is passed through it. The loop is now released and is found to stay in the horizontal position in

equilibrium

(a) What is the direction of the current I in PQ ?
(b) Find the magnetic force on the arm RS.
(c) Find the expression for I in terms of $B_{0}, \mathrm{a}, \mathrm{b}$ and m
A. along $+z a \xi s$
B. along $+x a \xi s$
C. along - zaixs
D. along $-x a \xi s$

Answer: C

- Watch Video Solution

27. A circular loop of radius R carrying a current I

is placed in a uniform magnetic field B
perpendicular to the loop. The force on the loop
is
A. $i r B_{0}$
B. $2 \pi i r B_{0}$
C. zero
D. $\pi i r B_{0}$

Answer: c

- Watch Video Solution

28. A rectanguar doop carrying a current I is situated near a long straight wire such that the
wire is parallel to one of the sides of the loop. If
a steady current I is established in the wire, as
shown in figure, the loop will

A. rotate about an axis parallel to the wire
B. move away from the wire
C. move towards the wire
D. remain stationary

Answer: c

D Watch Video Solution

29. Kinetic energy of a charged particle is zero at
time t_{0}. K at time $2 t_{0}$. 2 K at time $3 t_{0}$. It remains
constant (i.e. 2 K) upto $4 t_{0}$. Choose the correct option.
A. Only electric field is present between a
time interval from t_{0} to $2 t_{0}$
B. No field is present between time interal
from interval from $3 t_{0}$ to $4 t_{0}$
C. Both (a) and (b) are correct
D. Both (a) and (b) are wrong

Answer: d

D Watch Video Solution

30. Three infinetely long wires 1,2 and 3 carry equal currents in the directions shown in fiugre.

They are placed on the vertices of an equilateral triangle. Let F be the magnitude of force between any two wires.

F_{1} is the magnitude of force on wire 1 and F_{2}
the magnitude of force on wire 2 . Then
A. $F_{1}=\sqrt{3} F$
B. $F_{2}=F$
C. Both (a) and (b) are correct
D. Both (a) and (b) are wrong

Answer: c

- Watch Video Solution

31. A change $q=1 \mathrm{C}$ is at ($3 \mathrm{~m}, 4 \mathrm{~m}$) and moving towards positive x-axis with constant velocity of $4 \mathrm{~m} / \mathrm{s}$. A long current carrying wire is at origin.

Current in this wire is 2.A and towards positive zaxis. Magnetic force on the charge at given instant is
A. $\left(1.64 \times 10^{7} \widehat{K}\right) N$
B. $-\left(1.92 \times 10^{-7} \widehat{K}\right) N$
C. $(4.8 \widehat{J}-3.2 \widehat{K}) \times 10^{-7} N$
D. $(1.6 \widehat{J}-4.8 \widehat{K}) \times 10^{-7} N$

Answer: b

D Watch Video Solution
32. Two identical magnetic dipoles of magnetic moments $1 \cdot 0 A m^{2}$ each are placed at a separation of $2 m$ with their axes perpendicular to each other. What is the resultant magnetic field at a point midway between the dipoles?
A. $5 \times 10^{-7} T$
B. $\sqrt{5} \times 10^{-7} T$
C. $10^{-7} T$
D. $2 \times 10^{-7} T$

Answer: b

Watch Video Solution

33. A cylinder wire of radius R is carrying uniformly distributed current I over its crosssection. If a circular loop of radius r is taken as amperian loop, then the variation value of $\oint \vec{B} \cdot \overrightarrow{d l}$ over this loop with radius 'r' of loop will be best represented by
(a)
A.
(b)
B.

Answer: b

D Watch Video Solution

34. A uniform magnetic field $\vec{B}=3 \hat{i}+4 \hat{j}+\hat{k}$ exists in region of space. A semicircular wire of radius of 1 m carrying current 1 A having its
centre at $(2,2,0)$ is placed in $x-y$ plane as shown
in Fig. The force on semicircular wire will be

A. $\sqrt{2}(\hat{i}+\hat{j}+\widehat{K})$
B. $\sqrt{2}(\hat{i}-\hat{j}+\widehat{K})$
C. $\sqrt{2}(\hat{i}+\hat{j}+\widehat{K})$
D. $\sqrt{2}(-\hat{i}+\hat{j}+\widehat{K})$

Answer: b

D Watch Video Solution

35. In the figure shown a current I_{1} is established in the long straight wire AB. Another wire CD carrying currrent I_{2} is placed in the plane of the paper. The line joining the ends of this wire is perpendicular to the wire $A B$. The

A. zero
B. towards negative x-axis
C. towards positive y-axis
D. None of the above

Answer: d

- Watch Video Solution

36. An α is moving along a circle of radius R with
a constant angular velocity ω. Point A lies in the
same plane at a distance $2 R$ from the centre.
Point A records magnetic field produced by the α
-particle. If the minimum time interval between
two successive time at which A records zero
magnetic field is t, the angular speed ω, in terms
of t, is
A. $\frac{2 \pi}{t}$
B. $\frac{2 \pi}{3 t}$
C. $\frac{\pi}{3 t}$
D. $\frac{\pi}{2 t}$

Answer: b

D Watch Video Solution

37. A long straight metal rod has a very long hole of radius ' a ' drilled parallel to the rod axis as shown in the figure. If the rod carries a current I,
find the magnetic field on axis of hole. Given C is
the centre of the hole and $O C=c$.

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} i c}{\pi\left(b^{2}-a^{2}\right)} \\
& \text { B. } \frac{\mu_{0} i c}{2 \pi\left(b^{2}-a^{2}\right)} \\
& \text { C. } \frac{\mu_{0} i\left(b^{2}-a^{2}\right)}{2 \pi c}
\end{aligned}
$$

D. $\frac{\mu_{0} i c}{2 \pi a b}$

Answer: b

D Watch Video Solution

38. A positive charge particle of mass m and charge q is projected with velocity v as shown in

Fig. If radius of curvature of charge particle in magnetic field region is greater than d, then find
the time spent by the charge particle in
magnetic field.

	$1 \times$	$\times \times!$
	1x	$\times \times$
	$1 \times$	$\times^{B} \times$
	1	
	$v: \times$	$\times \times i$
	$1 \times$	$\times \times 1$
	$1 \times$	$\times \times$
	1	
		d

A. $\frac{m}{2 q B}$
B. $\frac{2 m}{q B} \sin ^{-1}\left(\frac{d}{R}\right)$
C. $\frac{m}{q B}$
D. $\frac{m}{q B} \sin ^{-1}\left(\frac{d}{R}\right)$

Answer: b

- Watch Video Solution

39. Refer to the figure. Rectangle PQRS represents the cross section of a uniform magnetic field region of 0.20 T . An electron is projected at a speed of $V=2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ into
the region at an angle of 30° to the direction of the mangetic field. The length of the magnetic
field region is 0.01 m . Find the number of revolutions made by the electron before it leaves
magnetic
field

A. 28
B. 16
C. 9
D. 32

Answer: d

D Watch Video Solution

40. In a certain region of space a uniform and constant electric field and a magnetic field parallel to each other are present. A proton is fired from a point A in the field with speed $V=4 \times 10^{4} \mathrm{~m} / \mathrm{s}$ at an angle of α with the field direction. The proton reaches a point B in the
field where its velocity makes an angle β with the field direction. If $\frac{\sin \alpha}{\sin \beta}=\sqrt{3}$. Find the electric potential difference between the points A and B.

Take mp (mass of proton) $=1.6 \times 10^{-27} \mathrm{~kg}$ and e (magnitude of electronic charge)
$=1.6 \times 10^{-19} \mathrm{C}$.
A. 16 V
B. 40 V
C. 90 V
D. 30 V

Answer: a

- Watch Video Solution

41. A particle of specific charge $q / m=(\pi) C / k g$
is projected from the origin towards positive x axis with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in a uniform magnetic field $\vec{B}=-2 \widehat{K}$ Tesla. The velocity \vec{V} of the particle after time $t=1 / 6 \mathrm{~s}$ will be
A. $(5 \hat{i}+5 \sqrt{3} \hat{j}) m / s$
B. $10 \widehat{J} \mathrm{~m} / \mathrm{s}$
c. $(5 \sqrt{3} \hat{i}-5 \hat{j}) \mathrm{m} / \mathrm{s}$

D. $-10 \hat{j} m / s$

Answer: a

D Watch Video Solution

42. In a certain region of space there exists a constant and uniform magnetic field of induction B. The width of the magnetic field is a.

A charged particle having charge q is projected perpendicular to B and along the width the field.

If deflection produced by the fiel perpendicular
to the width is d, then the magnitud of the

momentum	of	the	par
	x		χ
\times	x		x
\times	\times		
\times	\times		
X			x
minn......	X	,	

A. $\frac{\left(d^{2}+a^{2}\right)}{2 d} q B$
B. $\frac{a^{2}}{2 d^{2}} q B$
C. $\frac{4 d^{2}}{(a+d)} q B$
D. $\frac{\left(a^{2}-d^{2}\right)}{2 d} q B$

Answer: a

- Watch Video Solution

43. In a certain region of space, there exists a uniform and constant electric field of strength E along x-axis and uniform constant magnetic field of induction B along z -axis. A charge particle having charge q and mass m is projected with speed v parallel to x-axis from a point ($a, b, 0$).

When the particle reaches a point ($2 \mathrm{a}, b / 2,0$) its
speed becomes 2 v . Find the value of electric field
strength in term of m, v and co-ordinates.
A. $\frac{3}{2} \frac{m v^{2}}{q a}$
B. $\frac{m v^{2}}{q b}$
C. $\frac{2 m v^{2}}{q a}$
D. $\frac{m v^{2}}{2 q a}$

Answer: a

- Watch Video Solution

44. Three long wires are placed in xy plane in a gravity free space. 'I' is the current flowing in each wire. The currents are constant in magnitude. Distance between each wire is ' d ' and
λ is the mass per unit length of each wire. Wires
' A ' and wire ' C ' are fixed and wire ' B ' is slightly displaced along ' z ' axis. The period of oscillation

A. $\frac{\pi d}{i} \sqrt{\frac{\lambda \pi}{\mu_{0}}}$
B. $\frac{2 \pi d}{i} \sqrt{\frac{\lambda \pi}{\mu_{0}}}$
C. $\frac{\pi d}{2 i} \sqrt{\frac{\lambda \pi}{\mu_{0}}}$
D. $\frac{4 \pi d}{i} \sqrt{\frac{\lambda \pi}{\mu_{0}}}$

Answer: b

- Watch Video Solution

45. A charge particle of charge ' q ' and mass ' m ' enters in a given magnetic field ' B ' and perpendicular to the magnetic field as shown in the figure. It enters at an angle of 60° with the boundary surface of magnetic field and comes out at an angle of 30° with the boundary surface of the magnetic field as shown in the
figure. Find width ' d ' in which magnetic field

exist.
A. $\frac{(\sqrt{3}-1) m v}{4 q B}$
B. $\frac{(\sqrt{3}-1) m v}{q B}$
C. $\frac{(\sqrt{3}-1) m v}{3 q B}$

$$
\text { D. } \frac{(\sqrt{3}-1) m v}{2 q B}
$$

Answer: d

D Watch Video Solution

More Than One Option Is Correct

1. A portion is fired from origin with velocity $\vec{v}=v_{0} \hat{j}+v_{0} \hat{k}$ in a uniform magnetic field
$\vec{B}=B_{0} \hat{j}$. In the subsequent motion of the proton
A. its Z co-ordinate can never be negative
B. its x co-ordinate can never be positive
C. its x and z co-ordinates cannot be zero at
the same time
D. its y co-ordinate will be proportional to its
time of flight

Answer: b,d
(D) Watch Video Solution
2. Two concentric circular coils of radii R and r
$(\ll R) \quad$ carry currents of i_{1} and i_{2}
respectively. If the smaller coil is rotated slightly about one of its diameter, it starts oscillating.

Then, which of the following statement(s)
A. The oscillations are simple harmnic in
nature

B. The frequency of oscillation is proportional

to product $i_{1} i_{2}$
C. The frequency of oscillation is proportional
of square root of R
D. The frequency of osillation is independent
of radius r

Answer: a,d

- Watch Video Solution

3. A circular coil of n turns and radius r carries a
current I. The magnetic field at the centre is
A. $\frac{\mu_{0} i}{2 R}$
B. $\frac{i}{2 c^{2} \varepsilon_{0} R}$
C. $\frac{\mu_{0} i}{2 \pi R}$
D. $\frac{i c^{2}}{2 \varepsilon_{0} R}$

Answer: a,b

- Watch Video Solution

4. A particle is projected in a plane perpendicular to a uniform magnetic field. The area bounded by the path described by the particle is proportional to
A. directly proportional to kinetic energy of particle
B. directly proportional to momentum of the particle
C. inversely proportional to magnetic field
strength
D. inversely proportional to charge on

particle

Answer: a,c,d

D Watch Video Solution

5. In a region where both non-zero uniform
electric field and magnetic field coexist, the path
of a charged particle
A. can not be a circle
B. may be a circle
C. may be a straight line
D. may be a helix

Answer: a,c,d

D Watch Video Solution

6. Which of the following statement(s) is / are correct ?
A. Units of magnetic field B can be written as
$\frac{N}{A-m}$
B. Units of magnetic permeability μ_{0} can be
wirtten as $\frac{N}{A^{2}}$
C. Units of magnetic flux ϕ can be written as

$$
\frac{N}{A-m^{2}}
$$

D. Units of magnetic flux can be $\frac{N-m^{2}}{A}$

Answer: a,b

7. A rectangular loop of dimensions $(a \times b)$ carries a current i. A uniform magnetic field $\vec{B}=B_{0} \hat{i}$ exists in space. Then :

A. torque on the loop is $i a b B_{0} \sin \theta$
B.torque on the loop is in negative y direction
C. if allowed to move, the loop turn so as to increases θ

D. if allowed to move, the loop turn so as to

decrease θ

Answer: a,b,d

D Watch Video Solution

8. A charged particle with velocity $\hat{v}=x \hat{i}+y \hat{j}$ moves in a magnetic field $\vec{B}=y \hat{i}+x \hat{j}$. The force acting on the particle has magnitude F .

Which one of the following statements is are

correct?

A. No force will act on particle, if $x=y$
B. $F \propto\left(x^{2}-y^{2}\right)$ if x is greater than y
C. The force will act along z-axis, if x greater
than y
D. The force will act along y-axis, if y greater
than x

Answer: a,b,c
9. Velocity and acceleration vector of a charged particle moving in a magnetic field at some instant are $\vec{v}=3 \hat{i}+4 \hat{j}$ and $\vec{a}=2 \hat{i}+x \hat{j}$. Select the correct options.
А. $x=-1.5$
B. $x=3$
C. Magnetic field is along z-direction
D. Kinetic energy of the particle is constant

- Watch Video Solution

10. A proton enters in a uniform electric and magnetic fields E and B respectively. Velocity of proton is v . All the three vectors are mutually perpendicular. The proton is deflected along positive x-axis when either of the fields or both are switched on simultaneously. Which of the following statement(s) is/are correct ?
A. V may be along positive y-axis
B. E is along positive x -axis
C. B may be along positive z-axis
D. B may be along negative y-axis

Answer: a,b,c

D Watch Video Solution

11. Two identical charged particles enter a uniform magnetic field with same speed but at angles 30° and 60° with field Let a, b and c be the ratio of their time periods, radii and pitches of the helical paths than.
A. $a b c=1$
B. $a b c>1$
C. $a b c<1$
D. $a=b c$

Answer: a,d

D Watch Video Solution

12. A wire $A B C D E F$ (with each side of length L
) bent as shown in figure and carrying a current
I is placed in a uniform magnetic induction B
parallel to the positive y-direction. The force experienced by the wire is In the direction.

A. the force experienced by the wire is I LB
B. the force experienced by the wire is $3 i \operatorname{LB}$
C. the net force in the wire is in negative z -
D. the net force in the wire is in positive z -

direction

Answer: a,d

D Watch Video Solution

13. A particle of charge $-q$ and mass m enters a uniform magnetic field \vec{B} (perpendicular to paper inward) at P with a velocity v_{0} at an angle α and leaves the field at Q with velocity v at
angle β as shown in fig.

A. $\alpha=\beta$
B. $v=v_{0}$
C. $P Q=\frac{2 m v_{0} \sin \alpha}{B q}$
D. particle remains in the field for time

$$
t=\frac{2 m(\pi-\alpha)}{B q}
$$

Answer: all

- Watch Video Solution

14. A charged particle of specific charge α moves with a velocity $\vec{v}=v_{0} \hat{i}$ in a magnetic field $\vec{B}=\frac{B_{0}}{\sqrt{2}}(\hat{j}+\hat{k})$. Then (specific charge=charge per unit mass)
A. path of the particle is a heix
B. path of the particle is a circle
C. distance moved by the particle in time

$$
t=\frac{\pi}{B_{0} \alpha} \text { is } \frac{\pi}{B_{0}}
$$

D. velocity of particle after time $t=\frac{\pi}{B_{0} \alpha}$ is

$$
\left(\frac{v_{0}}{2} \hat{i}+\frac{v_{0}}{2}\right)
$$

Answer: b,c
(D) Watch Video Solution
15. A particle of charge $+q$ and mass m moving under the influence of a uniform electric field $E \hat{i}$ and uniform magnetic field $B \hat{k}$ follows a trajectory from $P \rightarrow Q$ as shown in fig. The velocities at P and Q are $v \hat{i}$ and $-2 v \hat{j}$. which of the following statement(s) is/are correct ?

$$
\text { A. } E=\frac{3}{4}\left(\frac{m v^{2}}{q a}\right)
$$

B. Rate of work done by the electric field at P

$$
\text { is } \frac{3}{4}\left(\frac{m v^{3}}{a}\right)
$$

C. Rate of work done by electric field at P is
zero
D. Rate of work done by both the fields at Q is
zero

Answer: a,b,d
(Watch Video Solution
16. A charged particle of unit mass and unit
charge
$\vec{v}=(8 \hat{i}+6 \hat{j}) m s^{-1}$ in magnetic field of
$\vec{B}=2 \hat{k} T$. Choose the correct alternative (s).
A. (a) the path of the particle may be

$$
x^{2}+y^{2}-4 x-21=0
$$

B. (b) the path of the particle may be

$$
x^{2}+y^{2}=25
$$

C. (c) the path of the particle may be

$$
y^{2}+z^{2}=25
$$

D. (d) the time period of the particle will be

$$
3.14 \mathrm{~s}
$$

Answer: a,b,d

D Watch Video Solution

17. A charged particle moves in a uniform magnetic field $B=(2 \hat{i}-3 \hat{j}) \mathrm{T}$
A. (a) if velocity of the particles is $(6 \widehat{K}) \mathrm{m} / \mathrm{s}$, particle moves in a circle
B. (b) if velocity of the particle is
$(-4 \hat{i}+6 \hat{j}) m / s$, particle moves in a
straight me
C. (c) if velocity of the particle is
$(\hat{i}+2 \hat{j}) m / s$, particle moves in a helical
path
D. (d) In all the above three cases speed of
the particle remains unchanged

Answer: all
18. Four infinitely long wires carring equal currents are placed parallel and equidistant as shown in figure. Then magnitude of force

3
4

A. on 1 and 4 are equal
B. on 2 and 3 are equal
C. on 2 is maximum
D. on 4 is minimum

Answer: a,b

Watch Video Solution
19. Velocity of a charged particle can remain unchanged. If
A. it is moving only in electric field
B. it is moving only in magnetic field
C. it is moving both in electric and magnetic
fields

D. neither in electric nor in magnetic fields

Answer: b,c,d

D Watch Video Solution

20. Two identical coils are placed coaxially. They
carry equal currents in same direction

NOTE in parts (a), (b) and (c) exclude the points at infinity.
A. (a)on their axis there are two points where net magnetic field is zero
B. (b) on their axis there are three points
where net magnetic field is zero
C. (c)on their axis there is no such point
where net magnetic field is zero
D. (d)on moving from the centre of one coil to the other, magnetic field will first decrease then increase

Answer: c

D Watch Video Solution

21. A wire B of finite length is kept on the right hand side of a long wire A as shown. Direction of currents on both the wires are shown in figure.

Suppose F is the force on wire B and τ the

A. F is upward
B. F is downward
C. τ is clockwise
D. τ is anticlockwise

Answer: a,c

D Watch Video Solution

22. An α-particle and a proton having same kineti energy enetrs in uniform magnetic field perpendicularly. Let x be the ratio of their magnitude of accelation any y the ratio of their
time periods. Then

$$
\begin{aligned}
& \text { А. } x=\frac{1}{(2)^{3 / 2}} \\
& \text { В. } x=\frac{1}{4}
\end{aligned}
$$

C. $y=2$
D. $y=4$

Answer: b,c

D Watch Video Solution

23. In the given diagram, there are two semicircular parts one having radius 'a' and another having radius '3a' as shown. If resistance of ACB part is R and resistance of ADB part is $3 R$.

A. Current through ACB is $I / 4$
B. Current through ADB is $I / 4$
C. Magnitude of magnteic field at O due to

ACB part is $\frac{3 \mu_{0} I}{16 a}$
D. Magnitude of magnetic field at O due to

ADB part is $\frac{\mu_{0} I}{48 a}$

Answer: b,c,d

- Watch Video Solution

24. Choose the correct option:

Consider a cube of side 'a' as shown. Eight point charges are placed at the corners. The cube is rotated about the central axis with constant
angular velocity ω :

A. (a) Net magnetic field at the centre of cube
is zero
B. (b) Net magnetic field at the centre of cube
is $\sqrt{\frac{2 \mu_{0} q \omega}{\pi a}}$
C. (c) Net magnetic field at the centre of cube
is $\frac{8}{3 \sqrt{3}} \frac{\mu_{0} q \omega}{\pi a}$
D. (d) if polarity of any four charges are reversed, then magnetic field at the centre of cube will be zero

Answer: c,d

25. Two infinitely long straight current carrying wires are placed parallel to y-axis in $x y$ plane. Each wire carries current I in opposite directions as shown. A charged particle of charge $+q$ and mass m is project from position $\mathrm{P}(0,0,0 a)$ with initial velocity $\mathrm{v}=\mathrm{i}$. Then

A. The magnitude of initial acceleration of the
particle $\frac{\mu_{0} l q v}{2 \pi a m}$
B. The direction of initial acceleration of the particle is parallel to positve x-axis
C. The direction of initial acceleration of the
particle is parallel to positive y-axis
D. The radius of curvature of the path of the
particle just after it is projected is $\frac{2 \pi m a v}{\mu_{0} l q}$

Answer: a,c,d

Comprehension Type Questions

1. Magnetic force on a charged particle is given by $\vec{F}_{m}=q(\vec{v} \times \vec{B})$ and electrostatic force
$\vec{F}_{e}=q \vec{E}$. A particle having charge $\mathrm{q}=1 \mathrm{C}$ and mass 1 kg is released from rest at origin. There are electric and magnetic field given by
$\vec{E}=(10 \hat{i}) N / C f$ or $x=1.8 m$
$\vec{B}=-(5 \hat{k}) T$ for $1.8 m \leq x \leq 2.4 m$
A screen is placed parallel to y-z plane at
$x=3 m$. Neglect gravity forces.

The speed with which the particle will collide the
screen is
A. 3
B. 6
C. 9
D. 12

Answer: b

D Watch Video Solution
2. Magnetic force on a charged particle is given
by $\vec{F}_{m}=q(\vec{v} \times \vec{B})$ and electrostatic force
$\vec{F}_{e}=q \vec{E}$. A particle having charge $\mathrm{q}=1 \mathrm{C}$ and
mass 1 kg is released from rest at origin. There
are electric and magnetic field given by
$\vec{E}=(10 \hat{i}) N / C f$ or $x=1.8 m$
and
$\vec{B}=-(5 \hat{k}) T$ for $1.8 m \leq x \leq 2.4 m$
A screen is placed parallel to $y-z$ plane at $x=3 m$. Neglect gravity forces.
y-coordinate of particle where it collides with screen (in meters) is

$$
0.6(\sqrt{3}-1)
$$

A. $\frac{(\sqrt{3}}{\sqrt{3}}$
B. $\frac{0.6(\sqrt{3}+1)}{\sqrt{3}}$
C. $1.2(\sqrt{3}+1)$
D. $\frac{1.2(\sqrt{3}-1)}{\sqrt{3}}$

Answer: d

- Watch Video Solution

3. Magnetic force on a charged particle is given
by $\vec{F}_{m}=q(\vec{v} \times \vec{B})$ and electrostatic force
$\vec{F}_{e}=q \vec{E}$. A particle having charge $\mathrm{q}=1 \mathrm{C}$ and
mass 1 kg is released from rest at origin. There are electric and magnetic field given by
$\vec{E}=(10 \hat{i}) N / C f$ or $x=1.8 m$
and
$\vec{B}=-(5 \hat{k}) T$ for $1.8 m \leq x \leq 2.4 m$
A screen is placed parallel to y-z plane at $x=3 \mathrm{~m}$. Neglect gravity forces.

The speed with which the particle will collide the screen is

$$
\begin{aligned}
& \text { A. } \frac{1}{5}\left(3+\frac{\pi}{6}+\frac{1}{\sqrt{3}}\right) \\
& \text { B. } \frac{1}{5}\left(6+\frac{\pi}{3}+\sqrt{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{1}{3}\left(5+\frac{\pi}{6}+\frac{1}{\sqrt{3}}\right) \\
& \text { D. } \frac{1}{3}\left(6+\frac{\pi}{18}+\sqrt{3}\right)
\end{aligned}
$$

Answer: a

- Watch Video Solution

4. A charged particle (q.m) released from origin
with velocity $v=v_{0} \hat{i}$ in a uniform magnetic field
$B=\frac{B_{0}}{2} \hat{i}+\frac{\sqrt{3} B_{0}}{2} \widehat{J}$.
Pitch of the helical path described by the particle is
A. $\frac{2 \pi m v_{0}}{B_{0} q}$
B. $\frac{\sqrt{3} \pi m v_{0}}{2 B_{0} q}$
C. $\frac{\pi m v_{0}}{B_{0} q}$
D. $\frac{2 \sqrt{3} \pi m v_{0}}{B_{0} q}$

Answer: c

D Watch Video Solution

5. A charged particle (q.m) released from origin
with velocity $v=v_{0} \hat{i}$ in a uniform magnetic field
$B=\frac{B_{0}}{2} \hat{i}+\frac{\sqrt{3} B_{0}}{2} \widehat{J}$.
Z-component of velocity is $\frac{\sqrt{3} v_{0}}{2}$ after in $\mathrm{t}=$.
A. $\frac{2 \pi m}{B_{0} q}$
B. $\frac{\pi m}{B_{0} q}$
C. $\frac{\pi m}{2 B_{0} q}$
D. $\frac{2 \pi m}{4 B_{0} q}$

Answer: c

- Watch Video Solution

6. A charged particle (q.m) released from origin
with velocity $v=v_{0} \hat{i}$ in a uniform magnetic field
$B=\frac{B_{0}}{2} \hat{i}+\frac{\sqrt{3} B_{0}}{2} \widehat{J}$.
Maximum z-coordinate of the particle is

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{3} m v_{0}}{B_{0} q} \\
& \text { B. } \frac{2 \sqrt{3} m v_{0}}{B_{0} q} \\
& \text { C. } \frac{2 m v_{0}}{B_{0} q} \\
& \text { D. } \frac{m v_{0}}{B_{0} q}
\end{aligned}
$$

7. A charged particle (q.m) released from origin
with velocity $v=v_{0} \hat{i}$ in a uniform magnetic field
$B=\frac{B_{0}}{2} \hat{i}+\frac{\sqrt{3} B_{0}}{2} \widehat{J}$.
Maximum z-coordinate of the particle is
A. (a) $v_{x}=0$
B. (b) $v_{y}=v_{0}$
C. (c)Both (a) and (b) are correct
D. (d)Both (a) and (b) are wrong

Answer: d

- Watch Video Solution

8. A current carrying ring with its center at origin
and moment of inertia $2 \times 10^{-2} \mathrm{~kg}-\mathrm{m}^{2}$ about
an axis passing through its centre and perpendicular to its plane has magnetic moment $M=(3 \hat{i}-4 \hat{j}) \quad A-m^{2}$. At time $\quad \mathrm{t}=0 \quad \mathrm{a}$ magnetic field $B=(4 \hat{i}+3 \hat{j}) \mathrm{T}$ is switched on.

Angular acceleration of the ring at time $t=0$, in $\mathrm{rad} / \mathrm{s}^{2}$ is
A. 5000
B. 1250
C. 2500
D. zero

Answer: c

D Watch Video Solution

9. A current carrying ring with its center at origin
and moment of inertia $10^{-2} \mathrm{~kg}-\mathrm{m}^{2}$ about an axis passing through its centre and
perpendicular to its plane has magnetic moment $M=(3 \hat{i}-4 \hat{j}) \quad A-m^{2}$. At time $\mathrm{t}=0 \quad \mathrm{a}$ magnetic field $B=(4 \hat{i}+3 \hat{j}) \mathrm{T}$ is switched on. Maximum angular velocity of the ring in $\mathrm{rad} / \mathrm{s}$ will be
A. $50 \sqrt{2}$
B. $25 \sqrt{2}$
C. $100 \sqrt{2}$
D. $150 \sqrt{2}$

Answer: a
10. A particle is released from rest from origin O.

There is a uniform magnetic field in negative z direction. Positive y-direction is vertically upwards. After falling through 5 m the velocity
vector makes an angle 30° with x-axis.

The path of the particle is

A. circular

B. helical with increasing pitch
C. straight line
D. None of the above

Answer: a

D Watch Video Solution

11. A particle is released from rest from origin O .

There is a uniform magnetic field in negative z^{-} direction. Positive y-direction is vertically upwards. After falling through 5 m the velocity vector makes an angle 30° with x-axis.

C. (c)Both (a) and (b) are correct
D. (d)Both (a) and (b) are wrong

Answer: c

D Watch Video Solution

12. A wire of length L, mass m and carrying a current I is suspended from point O as shown,

An another infinitely long wire carrying the same current I is at a distance L below the lower end of the wire. Given $\mathrm{i}=2 \mathrm{~A}, \mathrm{~L}=1 \mathrm{~m}$ and $\mathrm{m}=0.1 \mathrm{~kg}$ (In

What is the angular acceleration of the wire just after it is released from the position shown ?
A. $6.2 \times 10^{-8} \frac{r a d}{s^{2}}$
B. $2.1 \times 10^{-4} \frac{\mathrm{rad}}{\mathrm{s}^{2}}$
C. $4.5 \times 10^{-5} \frac{\mathrm{rad}}{\mathrm{s}^{2}}$
D. $9.3 \times 10^{-6} \frac{r a d}{s^{2}}$

Answer: d

D Watch Video Solution

13. A wire of length L, mass m and carrying a current I is suspended from point O as shown,

An another infinitely long wire carrying the same
current I is at a distance L below the lower end
of the wire. Given $\mathrm{i}=2 \mathrm{~A}, \mathrm{~L}=1 \mathrm{~m}$ and $\mathrm{m}=0.1 \mathrm{~kg}$ (In
$2=0.693$)

What want to keep the suspended wire stationary by palcing a third inifinitely long wire carrying an upward current. Then this wire should be placed
A. to the left of suspended wire
B. to the right of suspended wire

C. we can't keep suspended wire stationary by

placing a third wire to the right or to the
left of it
D. we can keep it either to the right or to the
left. It will depend on the magnitude of the
current in the third wire

Answer: a

- Watch Video Solution

14. A wire of length L, mass m and carrying a current I is suspended from point O as shown,

An another infinitely long wire carrying the same
current I is at a distance L below the lower end
of the wire. Given $\mathrm{i}=2 \mathrm{~A}, \mathrm{~L}=1 \mathrm{~m}$ and $\mathrm{m}=0.1 \mathrm{~kg}$ (In
$2=0.693$)

What want to keep the suspended wire stationary by palcing a third inifinitely long wire carrying an upward current. Then this wire should be placed
A. 2.9 m
B. 1.9 m
C. 1.3 m
D. 2.4 m

Answer: c

15. A 100 turn closely wound circular coil of radius 10 cm carries a current of $3 \cdot 2 A$. What is the field at the centre of the coil?
A. $2 \times 10 T$
B. $2 \times 10^{-3} \mathrm{~T}$
C. $2 \times 10^{-6} \mathrm{~T}$
D. $2 \times 10^{-9} \mathrm{~T}$

Answer: b

D Watch Video Solution
16. A 100 turn closely wound circular coil of radius 10 cm carries a current of $3 \cdot 2 A$. (i) What is the field at the centre of the coil? (ii) What is the magnetic moment of this arrangement?
(Watch Video Solution

Matrix Matching Type Questions

1. For the path of a charged particle math the following.

Table-1	Table-2
(A) in uniform electric field	(P) Straight line
(B) in uniform magnetic field	(Q) Parabola
(C) in uniform electric and	
magnetic field	(R) Circle

- Watch Video Solution

2. In magnetic field $B=(2 \hat{i}+3 \hat{j})$ T, velocity of a charged particle is given in table-1.

Corresponding magnetic force is given in table-2.

Match the two tables.

Table-1	Table-2
(A) $(4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$	(P) zero
(B) $(4 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$ (Q) maximum (C) $(6 \hat{\mathbf{k}}) \mathrm{m} / \mathrm{s}$ (R) may be along positive z-direction	
(S) must be along positive z-direction	

- Watch Video Solution

3. In magnetic field, for a charged particle (in
motion) match the following table

- Watch Video Solution

4. A charged particle is moving in a circular path
in uniform magnetic field. Match the following.

Table-1	Table-2
(A) Equivalent current	(P) is proportional to v
due to motion of	
charged particle	
(B) Magnetic moment	(Q) is proportional to v^{2}
(C) Magnetic field at	(R) is proportional to v°
centre of circle due	
to motion of	
charged particle	(S) None

(Watch Video Solution
5. A circular current carrying loop is placed in $x-y$
plane as shown in figure. A uniform magnetic
field $B=B_{0} \widehat{K}$ is present in the region. Match
the

- Watch Video Solution

6. An inifinitely long wire bent at 90° at point O
shown in figure. Match the following.

Table-1
(A) Magnotic field at P
(B) Magnetic field at Q
(P) inwards
(Q) outwards
(R) $\frac{\mu_{0}}{2 \pi} \frac{i}{r}$
(S) $\frac{\mu_{0}}{4 \pi} \frac{i}{r}$

- Watch Video Solution

- Watch Video Solution

8. Equal currents I flow in two wires along x and y

Table 1

(A) Magnetic field in first quadrant
(B) Magnetic field in second quadrant
(C) Magnetic field in third quadrant
(D) Magnetic field in fourth quadrant

Table-2
(P) inwards
(Q) Outwards
(R) may be inwart or outwards
9. A current carrying wire is as shown in figure.

An electron from point P moves with velocity v. Direction of v is given in table- 1 and its deflection in table-2. Match the following.

$->$

10. There are four situations given in Table-1
involving a magnetic dipole of dipole moment M
placed in uniform external magnetic field B.
Table-2 gives corresponding results. Match the
situations in Table-1 with the corresponding

Table-1	Table-2
(A) Magnetic dipole moment M is parallel to unitorm external magnetic hield B (angle between both vectors is zero). (B) Magnetic dipole mome (M, is perpendicular to unifoin external magnetic field M	(P) force on dipole is zero (Q) torque on dipole is zero
Anolo between magnetic clipole moment M and uiliorm external magnetic fleld B is acute	(e) magnitude of torque is (MB)
Anole between magnetic dipole moment M and uniliorm external magnetic field B is 180°.	(S) potential aniergy of dipole viue to external megnotic field is (MB)

D Watch Video Solution

11. Some current carrying wires are given in Table-1 and graph of variation of magnetic field versus position of point P are given in Table-2.

Match the graph given in Table-2 for the current
carrying
wire
in
Table-2.

Table-1
Table- 2
(A)

(P)

A long straight current carrying wire, placed along y-axis. Its magnetic field at point $P(x, 0,0)$.
(B)

Two long paralle wires placed on $x y$ plane. O is origin. Its magnetic field is observed at onint $P(0,0, z)$.
(C)

Two long parallel wires are placed one along y-axis and the other parallel to x-axis. Its magnetic field is observed at point $P(x, 0,0)$.
(D)

A current carrying ring is placed on $y-z$ plane. Origin is at the centre of ring. It magnetic field is observed at point $P(x, 0,0)$.

(Q)

(S)

(R)
12. Magnetic field exists in a space and given as
$B=-\frac{B_{0}}{a} y \widehat{K}$, where B_{0} and a are constants.
A wire PQ , having current I lies inside the magnetic field. If co-ordinates of P and Q are as given, then find the force acting on the wire as given in Table-2. Match the two Table.

Table-1
(A) $(a, a, 0)$ and $(2 a, a, 0)$
(B) $(a, a, 0)$ and $(a 2 a, 0)$
(C) $(a, a, 0)$ and $(21,2 a, 0)$
(D) (a, a, a) and $(2 a, 2 a, 2 a)$

Table-2
(P) $3\left(B_{0} a\right)$ l
(Q) $\frac{3}{\sqrt{2}} B_{0} a l$
(R) $\frac{3}{2} B_{0} a l$
(S) Boal

Integer Type Questions

1. Two parallel, long wires carry currents i_{1} and i_{2}
with $i_{1}>i_{2}$. When the currents are in the same
direction, the magnetic field at a point midway between the wires is $10 \mu \mathrm{~T}$. If the direction of i_{2} is reversed, the field becomes $30 \mu \mathrm{~T}$. Find the ratio $\frac{i_{1}}{i_{2}}$.
2. A charged particle enters into a uniform magnetic field with velocity v_{0} perpendicular to it, the length of magnetic field is $x=(\sqrt{3} / 2) \mathrm{R}$, where R is the radius of the circular path of the particle in the field. The magnitude fo change in
velocity of the particle when it comes out of the field is

D Watch Video Solution
3. A uniformly charged disc of radius r and having charge q rotates with constant angular velocity ω. The magnetic dipole moment of this disc is $\frac{1}{n} q \omega r^{2}$. Find the value of n.

- Watch Video Solution

4. An electron is shot into one end of a
solenoid.As it enters the uniform magnetic field
within the solenoid, its speed is $800 \mathrm{~m} / \mathrm{s}$ and its
velocity vector makes an angle of 30° with the
central axis of the solenoid. The solenoid carries
4.0 A current and has 8000 turn along its length.Find number of revolutions made by the electron within the solenoid by the time it emerges from the solenoid's opposite end. (Use charge of mass ratio $\frac{e}{m}$ for electron $\left.=\sqrt{3} \times 10^{11} C / k g\right)$ Fill your answer in multiple of 10^{3} (neglect end effect)

Watch Video Solution

5. A particle of charge +q eneters a region of uniform magnetic field B (directed into the plane of paper) as shown in the figure. Particle is deflected by a distance d along y-axis after travelling a distance of a along x axis. Find magnitude of linear momentum of particle in Newton-sec. (Given: $\mathrm{a}=3 \mathrm{~m}, \mathrm{~d}=4 \mathrm{~m}, \mathrm{~Bq}=0.32 \mathrm{c}$-Tesla)

6. consider a triangular loop of wire with sides a and b. The loop carries a current l in the direction shown and is placed in a uniform magnetic field that has magnitude B and points
in the same direction as the current in side $O M$
of the loop. At the moment shown in the figure
the torque on the current loop is τ. Find the
value of $I a b B / \tau$

- Watch Video Solution

7. In a region, magnetic field along X-axis changes with time according to the given garph.

A charged particle of mass 1 kg and charge 1 C
located at origin starts moving with initial velocity $\left(\frac{2}{\pi} \hat{i}+2 \sqrt{3} \hat{j}\right) m / s$. Completes one revolution in T_{0} time. Find the displacement (in m) of particle at time ${ }^{`}\left(5 T_{-}(0)\right) /(4)$.

- Watch Video Solution

8. Figure shows a conducting loop in shape of a trapezium carrying a current $i=10 A$. Find the magnetic field $B(\in \mu T)$ at a point P . It is given that $\mathrm{a}=10 \mathrm{~cm}$.

9. Side of the regular hexagon is 2 meter.

Magnetic field at point O due to the network shown in the figure $\sqrt{3} B_{0} \times 10^{-7} \mathrm{~T}$. Find value of B_{0}

- Watch Video Solution

10. A positive charge particle enters and comes out (at 60° and 37° as shown) from a uniform magnetic field which is perpendicular to paper inwards in a finite space of width 60 cm as shown in the figure. Find the radius of curvature of the charged particle (in meter) when it is
inside the magnetic field.

D Watch Video Solution

