©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY ENGLISH

ROTATIONAL MECHANICS

Examples

1. Three particles of masses $1 \mathrm{~g}, 2 \mathrm{~g}$ and 3 g are
kept at points $(2 \mathrm{~cm}, 0),(0.6 \mathrm{~cm}),(4 \mathrm{~cm}, 3 \mathrm{~cm})$ find
moment of inertia of all three particles (in gm
$-c m(2)$) about (a) x-axis
(b). Y -axis
(c). Z-axis.

D Watch Video Solution

2.

Three rods each of mass m and length I are joined together to form an equilateral triangle
as shown in figure. Find the moment of inertial
of the system about an axis passing through
its centre of mass and perpendicular to the plane of the particle.

- Watch Video Solution

3.

Find the moment of inertia of a solid sphere of mass M and radius R about an axis XX shown in figure. Also find radius of gyration about the given axis.
4. Consider a uniform rod of mass m and length 21 with two particles of mass m each at its ends. Let $A B$ be a line perpendicular to the length of rod and passig through its centre.

Find the moment of inertial of the system about AB.

Find the moment of inertia of the rod $A B$ about an axis yy as shown in figure. Mass of the rod is m and length is l .

D Watch Video Solution

Rod $A B$ has length L. velocity of end A of the rod has velocity v_{0} at the given instant.
(a). Which type of motion the rod has?
(b). Find velocity of end B at the given instant.
(C). Find the angular velocity of the rod.

- Watch Video Solution

7. Find the torque of a force
$F=a(\hat{i}+2 \hat{j}+3 \hat{k}) N$ about a point O . The position vector of point of application of force about O is $r=(2 \hat{i}+3 \hat{j}-\hat{k}) m$.

- Watch Video Solution

8. A small ball of mass 1.0 kg is attached to one end of a 1.0 m long massless string and te other end of the string is hung from a point O
. When the resulting pendulum is making $30^{\circ} C$ from the vertical, what is the magnitude
of net torque about the point of suspension?
[Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$]

D Watch Video Solution

9. A force $F=(2 \hat{i}+3 \hat{j}+4 \hat{k}) N$ is acting at point $P(2 m,-3 m, 6 m)$ find torque of this force about a point O whose position vector is $(2 \hat{i}-5 \hat{j}+3 \hat{k}) \mathrm{m}$.
10. A solid sphere of mass 2 kg and radius 1 m
is free to rotate about an axis passing through
its centre. Find a constant tangential force F required to the sphere with $\omega=10 \mathrm{rad} / \mathrm{s}$ in 2 s .
A. $4 N$
B. $8 N$
C. $2 N$
D. 6 N
11. A angular positio of a point on the rim of a rotating wheel is given by $\theta=4 t-3 t^{2}+t^{3}$ where θ is in radiuans and t is in seconds.

What are the angualr velocities at
(a). $t=2.0$ and
(b). $t=4.0 s$
(c). What is the average angular acceleration
for the time interval that begins at $t=2.0 \mathrm{~s}$ and ends at $t=4.0 s$?
(d). What are the instantaneous angular
acceleration at the biginning and the end of this time interval?

- Watch Video Solution

12.

A circular disc is rotating with an angular speed (in radian per sec)
$\omega=2 t^{2}$
given, $C P=2 m$
In terms of \hat{i}, \hat{j} and \hat{k} at $t=1 s$
find,
(a). ω
(b). α
(c). linear velocity of the particle lying at P (d).
linear acceleration of the particle lying P

- Watch Video Solution

13. A particle of mass m is moving along the
line $y=b, z=0$ with constant speed v. State
whether the angular momentum of particle about origin is increasing. Decreasing or constant.

D Watch Video Solution

14. A particle of mass m is projected from origin O with speed u at an angle θ with positive x-axis. Positive y-axis is in vertically upward. Direction. Find the angular momentum of particle at any time t about O before the particle strikes the ground again.

Watch Video Solution

15.

A rod of mass 2 kg ad length 2 m is rotating about its one end O with an angular velocity
$\omega=4 \mathrm{rad} / \mathrm{s}$. Find angular momentum of the rod about the axis rotation.

D Watch Video Solution
16.

A cicular disc of mass m and radius R is set into motion on a horizontal floor with a linear speed v in the forward direction and an angular speed $\omega=\frac{v}{R}$ in clockwise direction as shown in figure. Find the magnitude of the total angular momentum of the disc about bottom most point O of the disc.

D Watch Video Solution

17. A wheel of moment of inertial I and radius R
is rotating about its axis at an angular speed
ω. It picks up a stationary particle of mass m
at its edge. Find the new angular speed of the wheel.

18.

In the figure shown $v=2 \mathrm{~m} / \mathrm{s} \omega=5 \mathrm{rad} / \mathrm{s}$
and $C P=1 m$

In terms of \hat{i} and \hat{j} find linear velocity of particle P.

- Watch Video Solution

19.

A disc of radius R has linear velocity v and angular velocity ω as shown in the figure.

Given $v=r \omega$ find velocity of point $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and

D on the disc.
20.

In the shown figure,
$a=2 m / s^{2}, \omega=(2 t) r o d s^{-1}$ and $C P=1 m$
In terms of \hat{i} and \hat{j}, find linear acceleration of
the particle at P at P at $t=1 \mathrm{~s}$

- Watch Video Solution

21.

A solid disc is rolling without slipping on a horizontal ground as shown in figure. Its total kinetic energy is 100 J . what is its translational and rotational kinetic energy?
22. A disc of radius R starts at time $t=0$
moving along the positive x-axis with linear
speed v and angular speed ω. Find the x and y
coordinates of the bottom most poitn at any
time t.

A. $(x, y) \equiv(v t-R \sin \omega t, R-R \cos \omega t)$
B. $(x, y) \equiv(2 v t-R \sin \omega t, R-R \cos \omega t)$
C. $(x, y) \equiv(v t-R \sin 2 \omega t, R-R \cos \omega t)$
D. $(x, y) \equiv(R \sin \omega t, R-R \cos \omega t)$
23.

Using the concept of instantaneous axis of rotation. Find speed of particle P as shown in figure, under pure rolling condition.
A. ωr
B. $\omega \frac{r}{2}$
C. $2 \omega r$

D. $\omega^{2} r$

D Watch Video Solution

24.

A disc is rolling (without slipping) on a horizontal surface. C is its centre and Q and P are two point equidistance from C . let v_{p}, v_{Q}
and v_{C} be the magnitude of velocities of points P, Q, and C repsectively,
(a). $v_{Q}>v_{C}>v_{P}$
(b). $v_{Q}<v_{C}<v_{P}$
(c). $v_{Q}=v_{P}, v_{C}=\frac{1}{2} v_{P}$
(d). $v_{Q}<v_{C}>v_{P}$

D Watch Video Solution

25.

In the shown figure, accelerated pure rolling with takes place, if $a=R \alpha$, find the case if.
(a). $a>R \alpha$
(b). $\alpha<R \alpha$

- Watch Video Solution

26. If accelerated pure rolling is taking place on a stationary ground, then work done by friction is always zero, comment on this.

D Watch Video Solution

M, R,I

27.

In the shown figure, M is mass of the body, R
its radius an I the moment of inertial about
an axis passing through centre. Find force of
friction f acting on the body (upwards), its
linear acceleration a (down the plane) and type of motion if:
(a) $\mu=0$
(b). $\mu<\mu_{\text {min }}$
(c). $\mu>\mu_{\text {min }}$

Where $\mu_{\min }$ is the minimum value of coefficient of friction required for pure rolling
28.

A tangential force F acts at the top of a thin spherical shell of mass m and radius R. Find the acceleration of the shell if it rolls without slipping.

D Watch Video Solution
29. A horizontal force F acts on the sphere at its centre as shown. Coefficient of friction between ground and sphere is μ. What is maximum value of F for which there is no slipping?

- Watch Video Solution

30.

A solid sphere of mass M and radius R is hit by a cue at a height h above the centre C. for what value of h the sphere will rool without slipping ?
31. A uniform sphere of mass m and radius R start rolling without slipping down an inclined plane. Find the time dependence of the angular. How will the result be affected in the case of a perfectly smooth inclined plane? The angle of inclination of the plane is θ.

D Watch Video Solution

32. A uniform cube of side a and mass m rests on a rough horizontal table. A horizontal force
F is applied normal to one of the faces at a point directly above the centre of the face, at a height $\frac{3 a}{4}$ above the base. What is the minimum value of F for which the cube begins to tip about an edge?

- Watch Video Solution

33. A uniform cylinder of height h and radius r
is placed with its circular face on a rough
inclined plane and the inclination of the plane
to the horizontal is gradually increased. If μ is
the coefficient of friction, then under what condition the cylinder will (a) slide before toppling (b) topple before sliding.

D Watch Video Solution

Solved Examples

1.

A uniform L shaped rod of mass 3 m is hinged
at point O. length $O B$ is two times the length

OA. It is in equilibrium.

Find
(a). Relation between α and β
(b). Net hinge force.

A ring of mass m is rolling without slipping with linear speed v as shown in figure. Four particles each of mass m are also attached at points A, B, C and D find total kinetic energy of the system.
3.

A uniform circular disc has radius R and mass m. A particle, also of mass m, if fixed at a point

A on the edge of the disc as shown in the
figure. The disc can rotate freely about a horizontal chord PQ that is at a distance $R / 4$ from the centre C of the disc. The line AC is
perpendicular to $P Q$. Initially the disc is held vertical with the point A at its highest position. it is then allowed to fall, so that it starts rotation about PQ. Find the linear speed of the particle as it reaches its lowest position.

D Watch Video Solution

A solid shere of mass m and radius R is kept over a rough ground. A time varying force $F=2 t$ is acting at the topmost point as shown in figure.
(a). Find angular momentum of the sphere about the bottommost point as a function of time t
(b). Does this result depend on the fact whether the ground is rough or smooth?

D Watch Video Solution

A solid sphere of mass 5 kg and radius $1 m$ is
kept over a rough surface as shown in figure. A force $F=30 N$ is acting at the topmost point.
(a). Check whether the pure rolling will take place or not
(b). Find direction and magnitude of friction actually acting on the sphere.
(c). Find linear acceleration a and angular acceleration α take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

D Watch Video Solution

6. Repeat all parts of above problem for $F=40 N$
7. A solid cylinder of mass m and radius r starts rolling down an inclined plane of inclination θ. Friction is enough to prevent slipping. Find the speed of its centre of mass when its centre of mass has fallen a height h.

8.

A small solid cylinder of radius r is released coaxially from point A inside the fixed large cylindrical bawl of radius R as shown in figure.

If the friction between the small and the large cylinder is sufficient enough to prevent any slipping then find.
(a). What fractions of the total energy are
translational and rotational when the small
cylinder reaches the bottom of the larger one?
(b). The normal force exerted by the small cylinder on the larger one when it is at the bottom.

D Watch Video Solution

9.

A small object of uniform density rolls up a
curved surface with an initial velocity v. It reaches up to a maximum height of $\frac{3 v^{2}}{4 g}$ with respect to the initial position. The object is
(a). Ring
(b). solid sphere
(c). hollow sphere
(d). disc

- Watch Video Solution

10.

A solid ball rolls down a parabolic path $A B C$
from a height h as shown in figure. Portion $A B$ of the path is rough while $B C$ is smooth. How high will the ball climb in $B C$?

D Watch Video Solution

11.

A ball moves over a fixed track as shown in the
figure. From A to B the ball rolls without slipping. If surface $B C$ is frictionless and K_{A}, K_{B} and K_{C} are kinetic energies of the ball at A, B and C respectively then
(a). $h_{A}>h_{C}, K_{B}>K_{C}$
(b). $h_{A}>h_{C}, K_{C}>K_{A}$
(c). $h_{A}=h_{C}, K_{B}=K_{C}$
(d). $h_{A}<h_{C}, K_{B}>K_{C}$

- Watch Video Solution

E.
12.

A small solid sphere of mass m is released from point A. portion $A B$ is sufficiently rough
(to provide accelerated pure rolling) $B C$ is smooth and after C the ball moves freely
under gravity find gravitational potential energy (U), rotational kinetic energy $\left(K_{R}\right)$ ad translational kinetic energy $\left(K_{T}\right)$ at points A,

B, C, D and E.

D Watch Video Solution

13.

A rotating disc moves in the positive direction
of the x -axis. Find the equation $y(x)$
describing the position of the instantaneous
axis of rotation if at the initial moment of the centre c of the disc was located at the point O after which it moved with constant velocity v while the disc started rotating
counterclockwise with a constant angular acceleration α. the initial angular velocity is equal to zero.

- Watch Video Solution

14. A uniform thin rod of mass m and length l
is standing on a smooth horizontal suface. A
slight disturbance causes the lower end to slip
on the smooth surface and the rod starts
falling. Find the velocity of centre of mass of the rod at the instant when it makes an angle θ with horizontal.

15.

In the arrangement shown in figure the mass
of the uniform solid cylindrical pulley of radius
R is equal to m and the masses of two bodies
are equal to m_{1} and m_{2}. The thread slipping
and the friction in the axle of the pulley are supposed to be absent. Find the angular acceleration of the cylinder and the ratio of tensions $\frac{T_{1}}{T_{2}}$ of the vertical sections of the thread in the process of motion.

D Watch Video Solution

16.
solid sphere of radius r is gently placed on a rough horizontal ground with an initial angular speed ω_{0} and no linear velocity. If the coefficient of friction is μ, find the time t when the slipping stops. in addition state the linear velocity v and angular velocity ω at the end of slipping

17.

A billiard ball, initially at rest, is given a sharp impulse by a cue. The cue is held horizontally a distance h above the centre line as shown in
figure. The ball leaves the cue with a speed v_{0} and because of its forward english (backward slipping) eventually acquires a final
speed $\frac{9}{7} v_{0}$ show that $h=\frac{4}{5} R$
Where R is the radius of the ball.

D Watch Video Solution

18.

For the given dimensions shown in figure, find
critical value of coefficient of friction μ

$$
\text { A. } \frac{1}{2}
$$

B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{5}$

- Watch Video Solution

19. In the figure shown in the text, if the block
is a cube of side a
find
(a). ω just after impact
(b). Loss of mechanical energy during impact
(c) minimum value of v so as the block overcomes the obstacle and does not turn back.

20.

Consider the arrangement shown in figure.

The string is wrapped around a uniform cylinder which rolls without slipping. The other end of the string is passed over a masslessm frictionless pulley to a falling weight, determine the acceleration of the
falling mass m in terms of only the mass of the cylinder M, the mass m and g

- Watch Video Solution

21.

A thin massless thread is wound on a reel of mass 3 kg and moment of inertial $0.6 \mathrm{~kg}-\mathrm{m}^{3}$
the hub radius is $R=10 \mathrm{~cm}$ and peripheral radius is $2 R=20 \mathrm{~cm}$ the reel is placed on a rough table and the friction is enough to prevent slipping. find the acceleration of the centre of reel and of hanging mass of 1 kg .

D Watch Video Solution

A body of mass m, radius R and moment of inertia I (about an axis passing through the centre of mass and perpendicular to plane of motion) is released from rest over a sufficiently rough ground (to provide accelerated pure rolling) find linear acceleration of the body.

Watch Video Solution

23. In the figure given in the text if mass of the rod is m then find hinge force.
(a). Just after the rod is released from the horizontal position.
(b). When rod becomes vertical

- Watch Video Solution

24. Two uniform thin rods A and B of length
0.6 m each and of masses 0.01 kg and 0.02 kg
respectively are rigidly joined end to end. The combination is pivoted at the lighter end, P as
shown in fig. Such that it can freely rotate about point P in a vertical plane. A small object of mass 0.05 kg , moving horizontally, hits the lower end of the combination and sticks to it what should be the velocity of the object so that the system could just be reised to the
horizontal position.

D Watch Video Solution

25. A rod AB of mass M and length L is lying
on a horizontal frictionless surface. A particle
of mass m travelling along the surface hits the
end A of the rod with a velocity v_{0} in a
direction perpendicular to $A B$. The collision in
elastic. After the collision the particle comes
to rest
(a). Find the ratio m / M
(b). A point P on the rod is at rest immediately after collision find the distance AP.
(c). Fid the linear speed of the point P a time $\pi L / 3 v_{0}$ after the collision.

- Watch Video Solution

1.

A thread is wound around two discs on either sides. The pulley and the two discs have the same mass and radius. There is no slipping at
the pulley and no friction at the hinge. Find
out the acceleration of the two discs and the angular acceleration of the pulley.

D Watch Video Solution

2. A uniform disc of radius r_{0} lies on a smooth
horizontal plane. A similar disc spinning with
the angular velocity ω_{0} is carefully lowered onto the first disc. How soon do both discs spin with the same angular-velocity if the friction coefficient between them is equal to μ ?

Watch Video Solution

Solved Example

1.

Determine the maximum horizontal force F
that may be applied to the plank of mass m
for which the solid sphere does not slip as it begins to roll on the plank. The sphere has a mass M and radius R. The coefficient of static
and kinetic friction between the sphere and the plank are μ_{S} and μ_{k} respectively.

- Watch Video Solution

Exercise 12.1

1. find the radius of gyration of a rod of mass
m and length $2 l$ about an axis passing
through one of its ends and perpendicular to
its length.

- Watch Video Solution

2. A mass of 1 kg is placed at ($1 \mathrm{~m}, 2 \mathrm{~m}, 0$).

Another mass of 2 kg is placed at $(3 \mathrm{~m}, 3 \mathrm{~m}, 0)$.

Find the moment of inertial of both the masses about z-axis

D Watch Video Solution

3. Four thin rods each of mass m and length l are joined to make a square. Find moment of inertia of all the four rods about any side of the square.
4. About what axis would a uniform cube have its minimum moment of inertia?

- Watch Video Solution

5. There are four solid balls with their centres
at the four corners of a square of side a. the mass of each sphere is m and radius is r. Find
the moment of inertia of the system about one of the sides of the square
A. $\frac{8}{5} m r^{2}+2 m a^{2}$
B. $\frac{5}{8} m r^{2}+2 m a^{2}$
C. $\frac{8}{5} m r^{2}+m a^{2}$
D. $\frac{8}{5} m r^{2}+4 m a^{2}$

D Watch Video Solution

6. A non-uniform rod $A B$ has a mass M ad
length $2 l$. The mass per unit length of the rod is $m x$ at a point of the rod distant x from A.
find the moment of inertia of this rod about an axis perpendicular to the rod (a) through A (b) through the mid-point of $A B$.

D Watch Video Solution

The uniform disc shown in the figure has a
moment of inertia of $0.6 \mathrm{~kg}-\mathrm{m}^{2}$ around the axis that passes through O and is perpendicular to the plane of the page. If a segment is cut out from the disc as shown, what is the moment of inertia of the remaining disc?

- Watch Video Solution

8. If two circular disks of having the same weight and thickness are made from metals having different densities. Which disk, if either
will have the larger moment of inertia about its central axis.

D Watch Video Solution

9. Particles of masses $1 \mathrm{~g}, 2 \mathrm{~g}, 3 \mathrm{~g} . . .100 \mathrm{~g}$ are kept at the marks $1 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm} \ldots, 100 \mathrm{~cm}$ respectively on a metre scale. Find the moment of inertia of the system of particles about a perpendicular bisector of the metre scale.
A. $0.43 \mathrm{kgm}^{2}$
B. $0.53 \mathrm{kgm}^{2}$
C. $1.43 \mathrm{kgm}^{2}$
D. $0.33 \mathrm{kgm}^{2}$

- Watch Video Solution

10. if l_{1} is the moment of inertia of a thin rod about an axis perpendicular to its length and passing through its centre of mass and l_{2} te moment of inertia of the ring formed by the
same rod about an axis passing through the centre of mass of the ring and perpendicular tot he plane of the ring. then find the ratio $\frac{l_{1}}{l_{2}}$.

D Watch Video Solution

Exercise 12.2

1. Find angular speed of second's clock.
2. Two point P and Q. diametrically opposite on
a disc of radius R have linear velocities v and
$2 v$ as shown in figure. Find the angular speed of the disc.

A. $\frac{v}{R}$
B. $2 \frac{v}{R}$
C. $\frac{v}{2 R}$
D. $\frac{v}{4} R$

- Watch Video Solution

3. A particle is located at (3m,4m) and moving with $v=(4 \hat{i}-3 \hat{j}) m / s$. Find its angular velocity about origin at this instant.
4. In the figure shown, the instantaneous speed of end A of the rod is v to the left. The angular velocity of the rod of length L must be

A. $\frac{v}{2} L$
B. $\frac{v}{L}$
C. $2 \frac{v}{L}$
D. None of these

- Watch Video Solution

Exercise 12.3

1. A force $F=(2 \hat{i}+3 \hat{j}-2 \hat{k}) N$ is acting on
a body at point ($2 \mathrm{~m}, 4 m,-2 m$). Find torque of this force about origin.
2. A particle of mass $m=1 \mathrm{~kg}$ is projected with speed $u=20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at angle $\theta=45^{\circ}$
with horizontal find the torque of the weight of the particle about the point of projection when the particle is at the highest point.

D Watch Video Solution

3. Point C is the centre of mass of the rigid
body shown in figure. Find the total torque
acting on the body about point C .

A. $\tau=3.71 N-m$
B. $\tau=2.71 N-m$
C. $\tau=8.91 N-m$
D. $\tau=1.71 N-m$

- Watch Video Solution

4.

Find the net torque on the wheel in figure about the point O if $a=10 \mathrm{~cm}$ and $b=25 \mathrm{~cm}$

1. A wheel rotating with uniform acceleration
covers 50 rev in the first five second after the
start. Find the angular acceleration and the angular velocity at the end of five second.

- Watch Video Solution

2. A body rotates about a fixed axis with an angular acceleration $1 \mathrm{rad} / \mathrm{s}^{2}$ through what angle does it rotates during the time in which
its angular velocity increases from $5 \mathrm{rad} / \mathrm{s}$ to
$15 \mathrm{rad} / \mathrm{s}$?

D Watch Video Solution

3. A flywheel of moment of inertia $5.0 \mathrm{~kg}-\mathrm{m}^{2}$
is rotated at a speed of $10 \mathrm{rad} / \mathrm{s}$ because of
the friction at the axis it comes to rest in 10s.

Find the average torque of the friction.

- Watch Video Solution

4. A wheel starting from rest is uniformly accelerated at $4 \mathrm{rad} / \mathrm{s}^{2}$ for 10 s . It is allowed to rotated uniformly for the next 10 s and is finally brought to rest in the next 10 s . Find the total angle rotated by the wheel.

D Watch Video Solution

5. A wheel of mass 10 kg and radius 0.2 m is rotating at an angular speed of 100 rpm , when the motion is turned off. Neglecting the
friction at the axis. Calculate the force that must be applied tangentially to the wheel to bring it to rest in 10 rev . Assumed wheel to be a disc.

D Watch Video Solution

6. A solid body rotates about a stationary axis
accordig to the law $\theta=6 t-2 t^{3}$. Here θ, is in
radian and t in seconds. Find
(a). The mean values of thhe angular velocity and angular acceleration averaged over the
time interval between $t=0$ and the complete
stop.
(b). The angular acceleration at the moment when the body stops.

Hint: if $y=y(t)$. then mean/average value of y between t_{1}
and
t_{2}
is
$<y \geq\left(\int_{t_{1}}^{t_{2}} y(t) d t\right) \frac{)}{t_{2}-t_{1}}$

- Watch Video Solution

7. A body rotating at $20 \mathrm{rad} / \mathrm{s}$ is acted upon
by a constant torque providing it a
deceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$. At what time will the body have kinetic energy same as the initial value if thhe torque continues to act?

D Watch Video Solution

8. A wheel whose moment of inertial is
$0.03 \mathrm{kgm}^{2}$, is accelerated from rest to $20 \mathrm{rad} / \mathrm{s}$
in 5 s . When the external torque is removed,
the wheel stops in 1 min . Find
(a). The frictional torque.
(b). The external torque.

Watch Video Solution

9. A flywheel whose moment of inertia about its axis of rotation is $16 \mathrm{~kg}-m^{2}$ is rotating freely in its own plane about a smooth axis through its centre. Its angular velocity is 9 rads $^{-1}$ when a torque is applied to bring it to rest in t_{0} seconds find t_{0} if
(a). The torque is constant and of magnitude 4
$N-m$
(b). The magnitude of the torque after t second is given by $k t$.

- Watch Video Solution

10. A shaft is turning at $65 \mathrm{rad} / \mathrm{s}$ at time zero.

Thereafter, angular acceleration is given by
$\alpha=-10 \mathrm{rad} / \mathrm{s}^{2}-5 \mathrm{trad} / \mathrm{s}^{2}$
Where t is the elapsed time
(a). Find its angular speed at $t=3.0 \mathrm{~s}$
(b). How much angle does it turn in these $3 s$?

- Watch Video Solution

11. The angular velocity of a gar is controlled according to $\omega=12-3 t^{2}$ where ω in radian
per second, is positive in the clockwise sense and t is the time in seconds. Find the net angular displacement $\Delta \theta$ from the time $t=0$ to $t=3 \mathrm{~s}$. Also, find the number of revolutions N through which the gear turns during the 3 s .

- Watch Video Solution

1.

A uniform rod of mass m is rotated about an axis passing through point O as shown. Find angular momentum of the rod about rotational law.

- Watch Video Solution

2. A particle mass 1 kg is moving along a straight line $y=x+4$. Both x and y are in
metres. Velocity of the particle is $2 m / s$. Find
the magnitude of angular momentum of the particle about origin.

D Watch Video Solution

3. A particle of mass m is projected from the ground with an initial speed u at an angle α.

Find the magnitude of its angular momentum at the highest point of its trajector about the point of projection.
4. If the angular momentum of a body is zero about some point. Is it necessary that it will be zero. About a differet point?

- Watch Video Solution

A solid sphere of mass m and radius R is
rolling without slipping as shown in figure.

Find angular momentum of the sphere about z-axis.

D Watch Video Solution

6. In example number 12.16 suppose the disc starts rotating anticlockwise with the same angular velocity $\omega=\frac{v}{R}$, then what will be the angular momentum of the disc about bottommost in this new situation?

D Watch Video Solution

7. Two particles each of mass m and speed v, travel in opposite direction along parallel lines separated by a distance d. Show that the vector angular momentum of this system of particles is the same about any point taken as origin.

- Watch Video Solution

1. A thin circular ring of mass M and radius R
is rotating about its axis with an angular speed ω_{0} two particles each of mass m are now attached at diametrically opposite points.

Find new angular speed of the ring.

- Watch Video Solution

2. If the ice at the poles melts and flows towards the equator, how will it affect the duration of day-night?
3. When tall buildings are constructed on earth, the duration of day night slightly increases. Is this statement true or false?

D Watch Video Solution

4. If radius of earth is increased, without chage
in its mass, will the length of day increase, decrease or remain same?

Exercise 12.7

In the figure shown `omega $=v / 2 R$ in terms of i
and j find the linear velocities of particles
M, N, R and S.

- Watch Video Solution

2. In the same figure. If v and ω both are constant, then find linear acceleration of point
$\mathrm{M}, \mathrm{N}, \mathrm{R}$ and S in terms of R, ω, \hat{i} and \hat{j} where R is the radius disc.

- Watch Video Solution

Exercise 12.8

1. A solid sphere is rolling is rolling without
slipping on a horizontal ground. Its rotational
kinetic energy is 10 J . Find its translational ad total kinetic energy.

D Watch Video Solution

2. Under forward slip condition, translational kinetic energy of a ring is greater than its rotational kinetic energy is this statement true of false?
3. In backward slip condition translational kinetic energy of a disc may be equal to its rotational kinetic energy is this statement true of false?
(D) Watch Video Solution

Exercise 12.9

1.

A disc is rolling without slipping with linear velocity v as shown in figure. With the concept of instantaneous axis of rotation, find velocities of point A, B, C and D.

D Watch Video Solution

A solid sphere is rolling without slipping as
shown in figure. Prove that
$\frac{1}{2} m v^{2}+\frac{1}{2} l_{C} \omega^{2}=\frac{1}{2} l_{0} \omega^{2}$

D Watch Video Solution

1. Work done by friction in pure rolling is always zero. Is this statement true or false?

- Watch Video Solution

In the figure shown, a force F is applied at the
top of a disc of mass 4 kg and radius 0.25 m .
find maximum velue of F for no slipping.

D Watch Video Solution

$$
3 .
$$

In the figure shown a solid sphere of mass 4 kg
and radius 0.25 m is placed on a rough
surface. $\left(g=10 m s^{2}\right)$
(a). Minimum coefficient of friction for pure rolling to take place,
(b). If $\mu>\mu_{\min }$ find linear acceleration of sphere.
(c). if $\mu=\frac{\mu_{\min }}{2}$, find the linear acceleration of cylinder.

Here $\mu_{\text {min }}$ is the value obtained part (a).

- Watch Video Solution

4. A ball of mass M and radius R is released on
a rough inclined plane of inclination θ. Friction
is not sufficient to prevent slipping. The coefficient friction between the ball and the plane is μ. Find
(a). The linear acceleration of the ball down the plane.
(b). the angular acceleration of the ball about its centre of mass.

5.

A spool is pulled by a force in vertical direction as shown in figure. What is the direction of friction in this case? The spool does not loose contact with the ground.

1. A cylinder is rolling down a rough inclined
plane. Its angular momentum about the point of contact remains constant. Is this statement true or false?

2.

A solid sphere and a hollow sphere both of
same mass and same radius are hit by a cue at
a height h above the centre C. In which case,
(a). Linear velocity will be more?
(b). Angular velocity will be more?
(c). rotational kinetic energy will be more?

D Watch Video Solution

Assertion And Reason

1. Assertion: Moment of inertia of a rigid body
about any axis passing through its centre of mass is minimum

Reason: From theorem of parallel axis
$I=I_{c m}+M r^{2}$
A. If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If assertion is true, but the reaction is
false.
D. If assertion is false but the reason is
true.

- Watch Video Solution

2. Assertion: A ball is released on a rough
start pure rolling after some time towards left side.

Reason: Friction will convert the pure rotational motion of the ball into pure rolling

A. Both Assertion and Reason are true and
the Reason is correct explanation of the

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true, but the reaction is
false.
D. Assertion is false but the reason is true.
3. Assertion: A solid sphere and a hollow sphere are rolling on ground with same total
kinetic energies. if translational kinetic energy of solid sphere is K , then translational kinetic energy of follow sphere should be greater than K.

Reason: In case of hollow sphere rotational kinetic energy is less than its translational kinetic energy.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. If assertion is true, but the reaction is
false.
D. If assertion is false but the reason is
true.

- Watch Video Solution

as shown. if bowl is smooth, than ball will exert more pressure at point B, compared to the situation if bowl is rough.

Reason: Linear velocity and hence, centripetal
force in smooth situation is more.
A. If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If assertion is true, but the reaction is
false.
D. If assertion is false but the reason is
true.

- Watch Video Solution

5. Assertion: A cubical block is moving on a rough ground with velocity v. During motion net normal reaction on the block from ground will not pass through centre of cube. it will shift towards right.

Reason: It is to keep the block is rotational
equilibrium

A. If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If assertion is true, but the reaction is false.
D. If assertion is false but the reason is true.

D Watch Video Solution

6. Assertion: A ring is rolling without slipping on a rough ground. It strikes elastically with a smooth wall as shown in figure. Ring will stop
after some time while travelling in opposite direction.

Reason: After impact net angular momentum about an axis passing through bottommost point and perpendicular to plane of paper is zero.
A. If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If assertion is true, but the reaction is
false.
D. If assertion is false but the reason is
true.

- Watch Video Solution

Assertion: There is a thin rod $A B$ and a dotted
line CD. All the axes we are talking about are perpendicular to plane. As we take different axes moving from A to D, moment of inertia of the rod may first decrease then increase.

Reason: Theorem of perpendicular axis cannot be applied here.
A. If both Assertion and Reason are true and the Reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If assertion is true, but the reaction is
false.

D. If assertion is false but the reason is

 true.
D Watch Video Solution

8. Assertion: If linear momentum of a particle
is constant, then its angular momentum about any point will also remain constant.

Reason: Linear momentum remains constant if
$F_{n e t}=0$ and angular momentum remains
constant if $\tau_{n e t}=0$
A. If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If assertion is true, but the reaction is
false.
D. If assertion is false but the reason is
true.

- Watch Video Solution

9.

In the figure shown A, B and C are three points
on the circumference of a disc. Let v_{A}, v_{B} and
v_{c} are speeds of these three points then
$v_{c}>v_{B}>v_{A}$
Reason: In case of rotaional plus translational motion of a rigid body, net speed of any point
(other than centre of mass) is greater than,
less than or equal to the speed of centre of mass.
A. If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. If assertion is true, but the reaction is
false.
D. If assertion is false but the reason is
true.

- Watch Video Solution

10. Assertion: There is a triangular plate as
shown. A dotted axis is lying in the plane of
slab. As the axis is moved downwards, moment of inertia of slab will first decrease then increase.

Reason: Axis is first moving towards its centre of mass and then it is receding from it.

A. Both Assertion and Reason are true and
the Reason is correct explanation of the

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true, but the reaction is
false.
D. Assertion is false but the reason is true.

11.

Assertion: A horizontal force F is applied at the centre of solid sphere placed over a plank.

The minimum coefficient of friction between
plank and sphere required for pure rolling is
μ_{1} when plank is kept at rest ad μ_{2} when plank
can move, then $\mu_{2}<\mu_{1}$
Reason: Work done by frictional force on the sphere in both cases is zero.
A. (a)If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. (b)If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. (c)If assertion is true, but the reaction is
false.
D. (d)If assertion is false but the reason is
true.

- Watch Video Solution

Level 1 Objective

1. The moment of inertia of a body does not depend on
A. mass of the body
B. the distribution of the mass in the body
C. the axis of rotation of the body

D. none of the above

Answer: D

D Watch Video Solution

2. The radius of gyration of a disc of radius 25

cm about a centroidal axis perpendicular to

disc is a) 18 cm b) $12.5 \mathrm{~cm} \mathrm{c)} 36 \mathrm{~cm} \mathrm{d)} 50 \mathrm{~cm}$
A. 18 cm
B. 12.5 cm

C. 36 cm

D. 50 cm

Answer: A

D Watch Video Solution

3. A shaft initially rotating at 1725 rpm is brought to rest uniformly in 20s. The number of revolutions that the shaft will make during this time is
A. 1680
B. 575
C. 287
D. 627

Answer: C

D Watch Video Solution

4. A man standing on a platform holds weights
in his outstretched arms. The system is rotated about a central vertical axis. If the man
now pulls the weights inwards close to his body then
A. the angular velocity of the system will increase
B. the angular momentum of the system
will remain constant
C. the kinetic energy of the system will increase
D. all of the above
5. Moment of inertia of a thin semicircular disc
(mass - M\&radius $=R)$ about an axis through point O and perpendicular to plane of disc, is given by :

A. $M r^{2}$
B. $\frac{1}{2} M r^{2}$
C. $\frac{1}{4} M r^{2}$
D. $\frac{2}{5} M r^{2}$

D Watch Video Solution

6. Two bodies A and B made of same material
have the moment of inertial in the ratio
$I_{A}: I_{B}=16: 18$ The ratio of the masses
$m_{A}: m_{B}$ is given by a) cannot be obtained b)

2:3 c) $1: 1$ d) $4: 9$
A. cannot be obtained
B. $2: 3$
C. $1: 1$
D. $4: 9$

Answer: A
(Watch Video Solution
7. When a sphere rolls down an inclined plane,
then identity the correct statement related to the work done by friction force.
A. the friction force does positive translational work

> B. the friction force does negative rotational work
C. The net work done by friction is zero
D. all of the above

Answer: C

D Watch Video Solution

8. A circular table rotates about a vertical axis
with a constant angular speed ω. A circular pan rests on the turn table (with the centre coinciding with centre of table) and rotates
with the table. The bottom of the pan is
covered with a uniform small thick layer of ice
placed at centre of pan. The ice starts melting.
The angular speed of the turn table.
A. remains the same
B. decrease
C. increase
D. may increase or decrease dependingon
the thickness of ice layer

D Watch Video Solution

9. If R is the radius of gyration of a body of mass M and radius r, then the ratio of its
rotational to translational kinetic energy in
the rolling condition is
A. $\frac{R^{2}}{R_{2}+r^{2}}$
B. $\frac{R^{2}}{r^{2}}$
C. $\frac{r^{2}}{R^{2}}$
D. 1
10. A solid sphere rolls down two different inclined planes of the same height but of different inclinations
A. in ot cases the speeds and time of descend will be same
B. the speeds will be same but time of
descend will be different
C. the speeds will be different but time of
descend will be same

D. speeds and time of descend both will be

 different.Answer: B

D Watch Video Solution

11. For the same total mass, which of the
following will have the largest moment of inertia about an axis passing through the centre of mass and perpendicular to the plane of the body
A. (a)a disc of radius R
B. (b)a ring of radius R
C. (c)a square lamina of side 2 R
D. (d)four rods forming a square of side $2 R$

Answer: D

D Watch Video Solution

12. A disc and a solid sphere of same mass and radius roll down an inclined plane. The ratio of
thhe friction force acting on the disc and sphere is
A. $\frac{7}{6}$
B. $\frac{5}{4}$
C. $\frac{3}{2}$
D. depends on angle of inclination

Answer: A
(Watch Video Solution
13. A horizontal disc rotates freely with angular velocity ω about a vertical axes through its centre. A ring having the same mass and radius as the disc, is now gently placed coaxially on the disc. After some time, the two rotate with a common angular velocity. then.
A. no friction exists between te disc and
the ring
B. the angular momentum of the system is
conserved
C. the final common angular velocity is $\frac{1}{2} \omega$
D. all of the above

- Watch Video Solution

14. A solid homogeneous sphere is moving on
a rough horizontal surface, partily rolling and
partially sliding. During this kind of motion of the sphere.
A.total kinetic energy of the sphere is conserved.
B. angular momentum of the sphere about any point on the horizontal surface is conserved
C. only the rotational kinetic energy about
the centre of mass is conserved
D. none of the above

- Watch Video Solution

15. A particle of mass $m=3 \mathrm{~kg}$ moves along a
straight line $4 y-3 x=2$ where x and y are in metre, with constant velocity $v=5 \mathrm{~ms}^{-1}$ the magnitude of angular momentum about the origin is
A. $12 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$
B. $6.0 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$

C. $4.5 m g m^{2} s^{-1}$

D. $8.0 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$

- Watch Video Solution

16. A solid sphere rolls without slipping on a rough horizontal floor, moving with a speed v. It makes an elastic collision with a smooth vertical wall. After impact
A. (a)it will move with a speed v initial
B. (b)its motion will be rolling with slipping initially and its rotational motion will stop momentarily at some instant.
C. (c)its motion will be rolling without slipping only after some time
D. (d)all of the above.
17. Let I be the moment of inertia of a uniform square plate about an axis $A B$ that passes through its centre and is parallel to two of its sides. $C D$ is a line in the plane of the plate that passes through the centre of the plate and makes an angle θ with AB . The moment of inertia of the plate about the axis $C D$ is then equal to
A. $(a) I_{0}$
B. (b) $I_{0} \cos \theta$
C. $(c) I_{0} \cos ^{2} \theta$

D. (d)None of these

D Watch Video Solution

18.

A spool is pulled horizontally on rough surface
by two equal and opposite forces as shown in
the figure. Which of the following statements are correct?
A. The centre of mass moves towards left
B. the centre of mass moves towrads right
C. the centre of mass remains stationary
D. The net torque about the centre of mass
of the spool is zero.

D Watch Video Solution

19. Two identical discs are positioned on a vertical axis as shown in the figure. The bottom disc is rotating at angular velocity ω_{0} and has rotational kinetic energy K_{0}. The top
disc is initially at rest. It then falls and sticks to
the bottom disc. The change in the rotational
kinetic energy of the system is

A. $K_{0} / 2$
B. $-K_{0} / 2$

C. $-K_{0} / 4$

D. $K_{0} / 4$

- Watch Video Solution

20. The moment of inertia of hollow sphere
(mass M) of inner radius R and outer radius
$2 R$, having material of uniform density, about a diametric axis is
A. $31 M R^{2} / 70$
B. $43 M R^{2} / 90$
C. $19 M R^{2} / 80$
D. None of these

D Watch Video Solution

21. A rod of uniform cross-section of mass M
and length L is hinged about an end to swing
freely in a vertical plane. Howerver, its density
is non uniform and varies linearly from hinged
end to the free end doubling its value. The moment of inertia of the rod, about the rotation axis passing through the hinge point
A. $2 \frac{M L^{2}}{9}$
B. $\frac{3 M L^{2}}{16}$
C. $\frac{7 M L^{2}}{18}$
D. none of these

22.

Let I_{1} and I_{2} be the moment of inertia of a
uniform square plate about axes shown in the
figure. Then the ratio $I_{1}: I_{2}$ is

> А. $1: \frac{1}{7}$
> B. $1: \frac{12}{7}$

C. $1: \frac{7}{12}$

D. 1:7

- Watch Video Solution

23. Moment of inertia of a uniform rod of
length L and mass M, about an axis passing through $L / 4$ from one end and perpendicular to its length is
A. $\frac{7}{36} M L^{2}$
B. $\frac{7}{48} M L^{2}$
C. $\frac{11}{48} M L^{2}$
D. $\frac{M L^{2}}{12}$

Answer: B

D Watch Video Solution

24.

A uniform rod of legth L is free to rotate in a vertica plane about a fixed horizontal axis through B. The rod begins rotating from rest.

The angular velocity ω at angle θ is given as

> A. $\sqrt{\left(\frac{6 g}{L}\right)} \sin \left(\frac{\theta}{2}\right)$
> B. $\sqrt{\left(\frac{6 g}{L}\right)} \cos \left(\frac{\theta}{2}\right)$
> C. $\sqrt{\left(\frac{6 g}{L}\right)} \sin \theta$
> D. $\sqrt{\left(\frac{6 g}{L}\right)} \cos \theta$

D Watch Video Solution

25. Two partcles of masses 1 kg and 2 kg are placed at a distance of 3 m . Moment of inertia of the particles about an axis passing through
their centre of mass and perpendicular to the
line joining them is (in $k g-m^{2}$) a) 6 b) 9 c) 8
d) 12
A. 6
B. 9
C. 8
D. 12

Answer: A

D Watch Video Solution

xis------

26.

Find moment of inertia of a thin sheet of mass
M in the shape of an equilateral triangle about an axis as shown in figure. The length of each side is L
A. $M L^{2} / 8$
B. $(3) M L^{2} / 8$
C. $7 M L^{2} / 8$
D. none of these

- Watch Video Solution

27. A square is made by joining four rods each of mass M and length L. Its moment of inertia about an axis $P Q$, in its plane and passing
through one of its corner is

A. $6 M L^{2}$
B. $\frac{4}{3} M L^{2}$
C. $\frac{8}{3} M L^{2}$

D. $\frac{10}{3} M L^{2}$

- Watch Video Solution

28. A thin rod of length 41 , mass 4 m is bent at
the point as shown in the figure. What is the moment of inertia of the rod about the axis passing through O and perpendicular to the
plane of the paper?

A. $\frac{m l^{2}}{3}$
B. $\frac{10 m l^{2}}{3}$
C. $\frac{m l^{2}}{12}$
D. $\frac{m l^{2}}{24}$

29.

The figure shows two cones A and B with the conditions $h_{A}<h_{B}, \rho_{A}>\rho_{B}$
$R_{A}=R_{B}, m_{A}=m_{B}$. Identify the correct statement abut their axis of symmetry.
A. both have same moment of inertia
B. a has greater moment of inertia
C. B has greater moment of inertia
D. Nothing can be said
30.

Linear mass density of the two rods system, AC and $C D$ is x. moment of inertia of two rods about an axis passing through $A B$ is
A. $\frac{x l^{3}}{4 \sqrt{3}}$
B. $\frac{x l^{3}}{\sqrt{2}}$
C. $\frac{x l^{3}}{4}$
D. $\frac{x l^{3}}{}$ $6 \sqrt{2}$

(Watch Video Solution

Level 1 Subjective

1. If radius of the earth contracts to half of its
present value without change in its mass,
what will be the new duration of the day?

D Watch Video Solution

2. The radius of gyration of a uniform disc about a line perpendicular to the disc equals
ilts radius. Find the distance of the line from
the centre.

D Watch Video Solution
3. Find the moment of inertia of a uniform square plate of mass M and edge a about one of its diagonals.

- Watch Video Solution

4. Moment of inertia of a uniform rod of mass
m and length l is $\frac{7}{12} m l^{2}$ about a line perpendicular to the rod. Find the distance of
this line from the middle point of the rod.

$$
\text { A. } \frac{l^{2}}{2}
$$

B. $6 l$
C. $2 l$
D. $\frac{l}{\sqrt{2}}$

D Watch Video Solution

5. Two point masses m_{1} and m_{2} are joined by
a weightless rod of length r. Calculate the moment of inerrtia of the system about an
axis passing through its centre of mass and perpendicular to the rod.

D Watch Video Solution

6. Radius of gyration of a body about an axis at a distance 6 cm from its centre of mass is 10 cm . Find its radius of gyration about a parallel axis through its centre of mass.
7. A wheel rotates around a stationary axis so
that the rotation angle θ varies with time as
$\theta=a t^{2}$ where $a=0.2 \mathrm{rad} / \mathrm{s}^{2}$. Find the magnitude of net acceleration of the point A at the rim at the moment $t=2.5 \mathrm{~s}$ if the linear velocity of the point A at this moment is $v=0.65 \mathrm{~m} / \mathrm{s}$.
8.

Particle P shown in figure is moving in a circle of radius $R=10 \mathrm{~cm}$ with linear speed $v=2 m / s$ Find the angular speed of particle about point O .

D Watch Video Solution

9. A particle of mass m is projected from the ground with an initial speed u at angle α.

Find the magnitude of its angular momentum at the highest point of its trajector about the point of projection.
A. $\frac{(m) u^{3} \cos \alpha \sin ^{2} \alpha}{2 g}$
B. $\frac{(m) u^{3} \cos \alpha \sin ^{2} \alpha}{g}$
C. $\frac{(m) u^{3} \cos \alpha \sin ^{2} \alpha}{2}$
D. $\frac{u^{3} \cos \alpha \sin ^{2} \alpha}{2 g}$
10. Linear mss density (mass/length) of a rod depends on the distanec from one end (say A) as $\quad \lambda_{x}=(\alpha x+\beta)$ here α and β are constants, find the moment of inertia of this rod about an axis passing through A and perpendicular to the rod. Length of the rod is l
11. When a body rolls, on a stationary ground, the acceleration of the point of contact is always zero. Is this statement true or false?

D Watch Video Solution

12. A solid sphere of mass m rolls down an inclined plane a height h. Find rotational kinetic energy of the sphere.

- Watch Video Solution

13. The topmost and bottommost velocities of
a disc are v_{1} and $v_{2}\left(<v_{1}\right.$ in the same direction. The radius is R. Find te value of angular velocity ω.

D Watch Video Solution

14. A circular lamina of radius a and centre O
has a mass per unit area of $k x^{2}$, where x is the distance from O and k is a constant. If the mass of the lamina is M, find in terms of M and a, the moment of inertia of the lamina
about an axis through O and perpendicular to the lamina.

D Watch Video Solution

15. A solid body starts rotating about a stationary axis with an angular acceleration $\alpha=\left(2.0 \times 10^{-2}\right) t \mathrm{rad} / \mathrm{s}^{2}$ here t is in seconds. How soon after the beginning of rotation will the total acceleration vector of an arbitrary point of the body form an angle $\theta=60^{\circ}$ with its velocity vector?

Watch Video Solution

16.

A ring of radius R rolls on a horizontal ground with linear speed v and angular speed ω. For what value of θ the velocity of point P is in vertical direction $(v<R \omega)$.
17.

Two forces F_{1} and F_{2} are applied on a spool of mass M and moment of inertia I about an axis passing through its centre of mass. Find the ratio $\frac{F_{1}}{F_{2}}$. So that the force of friction is zero. Given that $I<2 M r^{2}$.
18. A disc is placed on the ground. Friction coefficient is μ. What is the minimum force required to move the disc if it is applied at the topmost point?

- Watch Video Solution

19. A cube is resting on an inclinded plane. If
the angle of inclination is gradually increased.
What must be the coefficient of friction
between the cube and plane so that,
(a). Cube slides before toppling?
(b). Cube topples before sliding?

- Watch Video Solution

20. A uniform disc of mass 20 kg and radius 0.5
m can turn about a smooth axis through its
centre and perpendicular to the disc. A constant torque is applied to the disc for 3 s
from rest and the angular velocity at the ned of that time is $\frac{240}{\pi} \mathrm{rev} / \mathrm{min}$ find the magnitude of the torque. if the torque is then
removed and the disc is brought to rest in t seconds by a constant force of 10 N applied tangentially at a point on the rim of the disc, find t

D Watch Video Solution

21. A uniform disc of mass m and radius R is
rotated about an axis passing through its
center and perpendicular to its plane with an
angular velocity ω. It is placed on a rough
horizontal plane with the axis of the disc
keeping vertical. Coefficient of friction between the disc and the surface is μ, find
(a). The time when disc stops rotating
(b). The angle rotated by the disc before stopping.

D Watch Video Solution

22. A solid body rotates about a stationary axis
so that the rotation angle θ varies with time
as $\theta=6 t-2 t^{3}$ radian. Find
(a) the angular acceleration at the moment
when the body stops and
(b) the average value of angular velocity and angular acceleration averaged over the time interval between $t=0$ and the complete stop.

- Watch Video Solution

23. A rod of mass m and length $2 R$ is fixed along te diameter of a ring of same mass m and radius R as shown in figure. The combined body is rolling without slipping along x-axis
find the angular momentum about z-axis.

A. $L=\left(-\frac{5}{3} m v R\right) \hat{k}$
B. $L=\left(-\frac{10}{3} m v R\right) \hat{k}$
C. $L=\left(-\frac{10}{5} m v R\right) \hat{k}$
D. $L=\left(-\frac{10}{7} m v R\right) \hat{k}$

24.

The figure shows a thin ring of mass $M=1 \mathrm{~kg}$
and radius $R=0.4 m$ spinning about a
vertical diameter (take $I=\frac{1}{2} M R^{2}$) A small
beam of mass $m=0.2 \mathrm{~kg}$ can slide without
friction along the ring When the bead is at the top of the ring the angular velocity is $5 \mathrm{rad} / \mathrm{s}$ What is the angular velocity when the bead slips halfwat to $\theta=45^{\circ}$?

D Watch Video Solution

25. A horizontal disc rotating freely about a
vertical axis makes 100 rpm . A small piece of
wax of mass 10 g falls vertically on the disc and
adheres to it at a distance of 9 cm from the axis if the number of revolution per minute is thereby reduced to 90 . Calculate the moment of inertia of disc.

D Watch Video Solution

26. A man stands at the centre of a circular platform holding his arms extended horizontally with 4 kg block in each hand. He is set rotating about a vertical axis at $0.5 \mathrm{rev} / \mathrm{s}$.

The moment of inertia of the man plus
platform is $1.6 \mathrm{~kg}-m^{2}$, assumed constant,
the block are 90 cm from the axis of rotation.

He now pulls the blocks in towards his body until they are 15 cm from the axis of rotation.

Find (a) his new angular velocity and (b) the initial and final kinetic energy of the man and platform (c) how much work most the man do to pull int he blocks?

Watch Video Solution

27. A horizontally oriented uniform disc of mass M and radius R rotates freely about a
stationary vertical axis passing through its centre. The disc has a radial guide along which
can slide without friction a small body of mass
m. A light thread running down through the hollow axle of the disc is tied to the body
initially the body was located at the edge of
the disc and the whole system rotated with
ann angular velocity ω_{0}. Then by means of a
force F applied to the lower and of the thread
the body was slowly pulled to the rotation
axis. find:
(a). The angular velocity of the system in its
final state.
(b). The work performed by the force F.

D Watch Video Solution

28.

Consider a cylinder of mass M and radius R
lying on a rough horizontal plane. It has a plank lying on its top as shown in figure. A force F is applied on the plank such that the plank moves and causes the cylinder to roll the plank always remains horizontal. there is
no slipping at any point of contact. Calculate
the acceleration of the cylinder and the frictional forces at the two contact.

D Watch Video Solution

29.

Find the acceleration of the cylinder of mass m and radius R and that of plank of mass M
placed on smooth surface if pulled with a force F as shown in figure. Given that sufficient friction is present between cylinder and the plank surface to prevent sliding of cylinder.

D Watch Video Solution

30. A uniform rod AB of length $2 l$ and mass m
is rotating in a horizontal plane about a
vertical axis through A, with angular velocity ω,
when the mid-point of the rod strikes a fixed
nail and is brought immediately to rest. Find the impulse exerted by the nail.

D Watch Video Solution

31. A uniform rod of length L rests on a frictionless horizontal surface. The rod is pivoted about a fixed frictionless axis at one end. The rod is initially at rest. A bulled travelling parallel to the horizontal surface and perpendicular to the rod with speed v strikes the rod at its centre and becomes
embedded in it. the mass of the bullet is onesixth the mass of the rod.
(a). What is the final angular velocity of the rod?
(b). What is the ratio of the kinetic energy of the system after the collision to the kinetic energy of te bullet the o collision?

- Watch Video Solution

32. A uniform rod $A B$ of mass $3 m$ and length 21
is lying at rest on a smooth horizontal table
with a smooth vertical axis through the end A.

A particle of mass 2 m moves with speed 2 u across the table and strikes the rod at its midpoint C if the impact is perfectly elastic. Find the speed of the particle after impact if
(a). It strikes rod normally,
(b). Its path before impact was inclinded at 60° to AC .

D Watch Video Solution

1.
in the given figure a ring of mass m is kept on
a horizontal surface while a body of equal mass m si attached through string, which is
wounded on the ring. When the system is released the ring rolls without slipping. consider the following statement and choose the correct options.
(i). Acceleration of centre of mass of ring is $\frac{2 g}{3}$
(ii). acceleration of hanging particle is $\frac{4 g}{3}$
(iii). Frictional force (on the ring) acts in backward direction.
(iv) . Frictional force (on the ring) acts in backward direction.
A. only statement (i) and (ii) are correct
B. only statement (ii) and (iii) are correct
C. only statements (iii) and (iv) are correct
D. none of these

- Watch Video Solution

2.

A solid sphere of mass 10 kg is placed on a rough surface having coefficient of frictio $\mu=0.1 A$ constant force $F=7 N$ is applied along a line passing through the centre of the
sphere as shown in the figure. The value of frictional force on the sphere is
A. 1 N
B. 2 N
C. 3 N
D. 7 N

- Watch Video Solution

3.

From a uniform square plate of side a and mass m, a square portion DEFG of side $\frac{a}{2}$ is removed. Then, the moment of inertia of remaining portion about the axis $A B$ is
A. $\frac{7 m a^{2}}{16}$
B. $\frac{3 m a^{2}}{16}$
C. $\frac{3 m a^{2}}{4}$
D. $\frac{9 m a^{2}}{16}$

- Watch Video Solution

4. A small solid sphere of mass m and radius r
starting from rest from the rim of a fixed hemispherical bowl of radius $R(\gg r)$ rolls
inside it without sliding. The normal reaction
exerted by the sphere on the hemisphere when it reaches the bottom of hemisphere is

A. $(3 / 7) m g$
B. $(9 / 7) m g$
C. $(13 / 7) m g$
D. $(17 / 7) m g$

D Watch Video Solution

5.

A uniform solid cylinder of mass m and radius
R is placed on a rough horizontal surface. A horizontal constant force F is applied at the top point P of the cylinder so that it start pure rolling. The acceleration of the cylinder is
A. $F / 3 m$
B. $2 F / 3 m$
C. $4 F / 3 m$
D. $5 F / 3 m$
6. Uniform solid cylinder of mass m and radius
R is placed on a rough horizontal surface. A
horizontal constant force is applied at the top
point P of the cylinder so that it start pure rolling . In the above question, the frictional force on the cylinder is
A. $F / 3$ towards right
B. $F / 3$ towards left
C. $2 F / 3$ towards right
D. $2 F / 3$ towards left

Watch Video Solution
ذ

A small pulley of radius 20 cm and moment of inertia $0.32 \mathrm{~kg}-\mathrm{m}^{2}$ is used to hang a 2 kg mass with the help of massless string. If the block is released, for no slipping condition acceleration of the block will be
A. $2 m / s^{2}$
B. $4 m / s^{2}$
C. $1 m / s^{2}$
D. $3 m / s^{2}$

8.

A uniform circular disc of radius R is placed on
a smooth horizontal surface with its plane
horizontal and hinged at circumference
through point O as shown. An impulse P is
applied at a perpendicular distance h from its
centre C. The value of h so that the impulse due to hinge is zero, is
A. $(a) R$
B. (b) $R / 2$
C. $(c) R / 3$
D. $(d) R / 4$

9.

A rod is supported horizontally by means of two strings of equal length as shown in figure.

If one of the string is cut. Then tension in other string at the same instant will.
A. remains unaffected
B. increase

C. decrease

D. become equal to weight of the rod.

Answer: C

(D) Watch Video Solution

10.

The figure represent two cases. In first case a block of mass M is attached to a string which is tightly wound on a disc of mass M and radius R. In second case $F=M g$ initially the disc is stationary in each case. if the same
length of string is unwound from the disc, then
A. (a)same amount of work is done on both discs
B. (b)angular velocities of both the discs
are equal
C. (c)both the discs have unequal angular
accelerations
D. (d)All of the above

11.

A uniform cylinder of mass M and radius R is
released from rest on a rough inclined surface
of inclination θ with the horizontal as shown
in figure. As the cylinder rolls down the
inclined surface, the maximum elongation it
the spring stiffness k is

> A. $\frac{3}{4} \frac{M g \sin \theta}{k}$
> B. $\frac{2 M g \sin \theta}{k}$
> C. $\frac{M g \sin \theta}{k}$
D. none of these
12. A uniform rod of mass m and length l rotates in a horizontal plane with an angular velocity ω about a vertical axis passing through one end. The tension in the rod at a distance x from the axis is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m \omega^{2} x \\
& \text { B. } \frac{1}{2} m \omega^{2}\left(1-\frac{x^{2}}{l}\right) \\
& \text { C. } \frac{1}{2} m \omega^{2} l\left(1-\frac{x^{2}}{l^{2}}\right) \\
& \text { D. } \frac{1}{2} m \omega^{2} l\left[1-\frac{x}{l}\right]
\end{aligned}
$$

A rod of length 1 m rotates in the xy plane about the fixed point O in the anticlockwise sense, as shown in figure with velocity $\omega=a+b t \quad$ where $\quad a=10 r a d s^{-1} \quad$ and
$b=5 \mathrm{rads} \mathrm{s}^{-2}$. The velocity and acceleration of the point A at $t=0$ is
A. $+10 \hat{i} m s^{-1}$ and $+5 \hat{i} m s^{-2}$
B. $+10 \hat{j} m s^{-1}$ and $(-100 \hat{i}+5 \hat{j}) m s^{-2}$
C. $-10 \hat{j} m s^{-1}$ and $(100 \hat{i}+5 \hat{j}) m s^{-2}$
D. $-10 \hat{j} m s^{-1}$ and $-5 \hat{j} m s^{-1}$
14.

A ring of radius R rolls on a horizontal surface
with constant acceleration a of the centre of mass as shown in figure. If ω is the instantaneous angular velocity of the ring.

Then the net acceleration of the point of contact of the ring with gound is
A. zero
B. $\omega^{2} R$
C. a
D. $\sqrt{a^{2}+\left(\omega^{2} R\right)^{2}}$

Answer: B

- Watch Video Solution

15. The density of a rod $A B$ increases linearly from A to B its midpoint is O and its centre of mass is at C. four axes pass through A, B, O and C, all perpendicular to the length of the
rod. The moment of inertial of the rod about
these axes are I_{A}, I_{B}, I_{O} and I_{C} respectively.
A. $I_{A}>I_{B}$
B. $I_{C}<I_{B}$
C. $I_{O}>I_{C}$
D. All of these
16. The figure shows a spool placed at rest on
a horizontal rough surface. A tightly wound string on the inner cylinder is pulled horizontally with a force F. identify the correct alternative related to the friction f acting on the spool

A. f acts left ward with $f<F$
B. f acts leftwards but nothing can be said about its magnitude
C. $f<F$ but nothing can be said about its
magnitude.
D. none of the above

flat on a horizontal smooth surface as shown
in figure. A particle of mass m, and moving
with a velocity v. Collides inelastically $(e=0)$
with the ring the angular velocity with which
the system rotates after the particle strikes
the ring is
A. $\frac{v}{2 R}$
B. $\frac{v}{3 R}$
C. $\frac{2 v}{3 R}$
D. $\frac{3 v}{4 R}$
17.

A stationary uniform rod in the upright position is allowed to fall on a smooth
horizontal surface. The figure shows the
instantaneous position of the rod. Identify the correct statement. 1) Normal reaction N is
equal to Mg 2) N does positive rotational work about the centre of mass 3) A couple of equal and opposite forces acts on the rod 4) All of the above
A. normal reaction N is equal to Mg
B. N does positive rotational work about
the centre of mass
C. a couple of equal and opposite forces
acts on the rod

D. all of the above.

- Watch Video Solution

19. A thin unifrom rod of mass m and length l is free to rotate about its upper end When it is at rest. It receives an impulse J as its lowest point, normal to its length immediately after impact.
A. the angular mumentum of the rod is
B. The angular velocity of the rod is $3 \mathrm{~J} / \mathrm{ml}$
C. The kinetic energy of the rod is $3 J^{2} / 2 m$
D. Linear velocity of the rod at the mid point is $3 \mathrm{~J} / / 2 \mathrm{~m}$

20.

A rectangular block of size $(\times h)$ moving with velocity v_{0} enters on a rough surface where the coefficient of friction is μ as shown in figure. Identify the correct statement.
A. Thenet torque acting on the block about
its COM is $\mu m \frac{g(h)}{2}$ (clockwise)
B. the net torque acting on the block about its COM is zero
C. The net torque acting on the block about its COM is in the anticlockwise
sense
D. None of the above.

A uniform rod of length L and mass m is free to rotate about a frictionless pivot at one end as shown in figure. The rod is held at rest in
the horizontal position and a coin of mass m
is placed at the free end. Now the rod is
released The reaction on the coin immediately after the rod starts falling is
A. $\frac{3 m g}{2}$
B. $2 m g$
C. zero
D. $\frac{m g}{2}$

22.

A spool is pulled at an angle θ with the horizontal on a rough horizontal surface as shown in the figure. If the spool remains at rest, the angle θ is equal to

$$
\begin{aligned}
& \text { A. } \cos ^{-1}\left(\frac{R}{r}\right) \\
& \text { B. } \sin ^{-1}\left(\sqrt{1-\frac{r^{2}}{R^{2}}}\right)
\end{aligned}
$$

C. $\pi-\cos ^{-1}\left(\frac{r}{R}\right)$
D. $\sin ^{-1}\left(\frac{r}{R}\right)$

D Watch Video Solution

Uniform rod $A B$ is hinged at end A in
horizontal position as shown in the figure. The other end is connected to a block through a massless string as shown. The pulley is smooth and massless. Mass of block and rod is
same and is equal to m Then acceleration of block just after release from this position is
A. $(a) 6 g / 13$
B. $(b) g / 4$
C. $(c) 3 g / 8$
D. (d)None of these

D Watch Video Solution

24. A cylinder having radius 0.4 m initially rotating (at $r=0$) with $\omega_{0}=54 \mathrm{rad} / \mathrm{s}$ is placed on a rough inclinded plane with
$\theta=37^{\circ}$ having friction coefficient $\mu=0.5$
the time taken by the cylinder to start pure rolling is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. 5.4 s
B. 2.4 s
C. 1.4 s
D. none of these

25.

A disc of mass M and radius R is rolling purely with centre's velcity v_{0} on a flat horizontal floor when it hits a step in the floor of height $R / 4$ The corner of the step is sufficiently rough to prevent any slippoing of
the disc against itself. What is the velocity of the centre of the disc just after impact?
A. $4 v_{0} / 5$
B. $4 v_{0} / 7$
C. $5 v_{0} / 6$
D. none of these
26.

A solid sphere is rolling purely on a rough
horizontal surface (coefficient of kinetic
friction $=\mu$) with speed of centre $=u$. It collides inelastically with a smooth vertical wall at a certain moment, the coefficient of restituting being $\frac{1}{2}$. The sphere will begin pure rolling after a time.
A. $(a) \frac{3 u}{7 \mu g}$
B. $(b) \frac{2 u}{7 \mu g}$
C. (c) $\frac{3 u}{5 \mu g}$
D. $(d) \frac{2 u}{5 \mu g}$

- Watch Video Solution

Level 2 Multiple Correct

1. A thin hollow sphere of mass m is completely filled with non viscous liquid of mass m. When the sphere roll-on horizontal ground such that centre moves with velocity v, kinetic enerrgy of the system is equal to
A. $m v^{2}$
B. $\frac{4}{3} m v^{2}$
C. $\frac{4}{5} m v^{2}$
D. none of these
2. A solid uniform disc of mass m rols without slipping down a fixed inclined plank with an acceleration a. The frictional force on the disc due to surface of the plane is

$$
\begin{aligned}
& \text { A. } \frac{1}{4} m a \\
& \text { B. } \frac{3}{2} m a \\
& \text { C. } m a \\
& \text { D. } \frac{1}{2} m a
\end{aligned}
$$

- Watch Video Solution

3. A uniform slender rod of mass m and length
L is released from rest, with its lower end touching a frictionaless horizontal floor. At the initial moment, the rod is inclined at an angle $\theta=30^{\circ}$ with the vertical. Thent he value of normal reaction from the from the floor just after release will be
A. $4 m g / 7$
B. $5 \mathrm{mg} / 9$
C. $2 m g / 5$
D. None of these

D Watch Video Solution

4. A uniform slender rod of mass m and length
L is released from rest, with its lower end touching a frictionaless horizontal floor. At the initial moment, the rod is inclined at an angle $\theta=30$ 。 with the vertical. Thent he value of normal reaction from the from the floor just
after release will be $4 \mathrm{mg} / 7$ In the above problem, the initial acceleration of the lower end of the rod will be
A. $g \sqrt{3} / 4$
B. $g \sqrt{3} / 5$
C. $3 g \sqrt{3} / 7$
D. None of these
5. A disc of radius R is rolling purely on a flat horizontal surface, with a constant angular velocity. The angle between the velocity ad acceleration vectors of point P is

A. zero
B. 45°
C. $\tan ^{-1}(2)$
D. $\tan ^{-1}(1 / 2)$

- Watch Video Solution

6. A straight rod AB of mass M and length L is placed on a frictionless horizontal surface. A force having constant magnitude F and a fixed direction start acting at the end A. The rod is
initially perpendicular to the force. The initial acceleration of end B is
A. zero
B. $2 F / M$
C. $4 F / M$
D. None of these
7. A particle mass parallel to x-axis with constant velocity v as shown in the figure. The angular velocity of the particle about the

origin O
A. remains constant
B. continuously increases

C. continuously decreases

D. oscillates.

- Watch Video Solution

8. A thin uniform rod mass M and length L is
hinged at its upper end. And released from rest from a horizontal position. The tenstion at a point located at a distance $L / 3$ from the hinge point, when the rod become vertical will
A. $22 M g / 27$
B. $11 M g / 13$
C. $6 M g / 11$
D. $2 M g$

9.

A uniform rod AB of length L and mass m is
suspended freely at A and hangs vertically at
rest when a particle of same mass m is fired
horizontally with speed v to strike the rod at
its mid point. If the particle is brought to rest after the impact. Then the impulsive reaction at A is horizontal direction is
A. $(a) m v / 4$
B. $(b) m v / 2$
C. $(c) m v$
D. $(d) 2 m v$
10.

A child with mass m is standing at the edge of
a merry go round having moment of inertia I,
radius R and initial angular velocity ω as
shown in the figure. The child jumps off the
edge of the merry go round with tangential velocity v with respect to the ground. The new angular velocity of the merry go round is
A. $(a) \sqrt{\frac{I \omega^{2}-m v^{2}}{I}}$
B. $(b) \sqrt{\frac{\left(I+m R^{2}\right) \omega^{2}-m v^{2}}{I}}$
C. $(c) \frac{I \omega-m v R}{I}$
D. $(d) \frac{\left(I+m R^{2}\right) \omega-m v R}{I}$

11.

A racing car is travelling along a straight track at a constant velocity of $40 \mathrm{~m} / \mathrm{s}$. A fixed TV camera is recording the even as shown in figure. In order to keep the car in view in the
position shown the angular velocity of camera

should be

A. (a) $3 \mathrm{rad} / \mathrm{s}$
B. (b) $2 \mathrm{rad} / \mathrm{s}$
C. (c) $4 \mathrm{rad} / \mathrm{s}$
D. $(d) 1 \mathrm{rad} / \mathrm{s}$

12.

A uniform rod OA of length l, resting on smooth surface is slightly distributed from its
vertical position P is a point on the rod whose
locus is a circle during the subsequent motion of the rod, then the distance OP is equal to
A. $l / 2$
B. $l / 3$
C. $l / 4$
D. there is no such point.
13. A uniform rod OA of length I, resting on smooth surface is slightly distributed from its
vertical position P is a point on the rod whose locus is a circle during the subsequent motion of the rod, then the distance $O P$ is equal to
'//4'. In the above question, the velocity of end
O when end A hits the gournd is
A. zero
B. along the horizontal
C. along the vertical
D. at some inclination of the ground $\left(\neq 90^{\circ}\right)$

- Watch Video Solution

14. A uniform rod $O A$ of length I resting on smooth surface slightly disturbed from its vertical position . P is a ipoint on the rod whose locus is a circle during the subsequent motion of the rod. the OP distance is I/4. In
the above question, the velocity of end A at the instant it hits the ground is

> A. $\sqrt{3 g l}$
> B. $\sqrt{12 g l}$
> C. $\sqrt{6 g l}$
D. none of these
15.

A solid sphere of mass m and radius R is gently placed on a conveyer belt moving with constant velocity v_{0}. If coefficient of friction between belt and sphere is $2 / 7$ the distance traveled by the centre of the sphere before it starts pure rolling is

$$
\begin{aligned}
& \text { A. } \frac{v_{0}^{2}}{7 g} \\
& \text { B. } \frac{2 v_{0}^{2}}{49 g}
\end{aligned}
$$

C. $\frac{2 v_{0}^{2}}{5 g}$
D. $\frac{2 v_{0}^{2}}{7 g}$

- Watch Video Solution

16. A mass m of radius r is rolling horizontally
without any slip with a linear speed v. It then
rolls up to a height given by $\frac{3}{4} \frac{v^{2}}{g}$
A. the body is identified to be a disc or a
solid cylinder
B. the body is a solid sphere
C. moment of inertia of the body about instantaneous axis of rotation is $\frac{3}{2} m r^{2}$
D. moment of inertial of the body about
instantaneous axis of rotation is $\frac{7}{5} m r^{2}$

D Watch Video Solution

17. Four identical rods each of mass m and
length l are joined to form a rigid square
frame. The frame lies in the xy plane, with its centre at the origin and the sides parallel to the x and y axes. Its moment of inertia about
A. the x-axis is $\frac{2}{3} m l^{2}$
B. the z -axis is $\frac{4}{3} m l^{2}$
C. an axis parallel to the z-axis and passing
through a corner is $\frac{10}{3} m l^{2}$
D. one side is $\frac{5}{3} m l^{2}$

A uniform circular ring rolls without slipping on a horizontal surface. At any instant, its position is as shown in the figure. Then
A. (a) section $A B C$ has greater kinetic energy than section ADC
B. (b) section $B C$ has greater kinetic energy
than section CD.
C. (c) section $B C$ has the same kinetic energy as section DA
D. (d) the section CD and DA have the same
kinetic energy.

A cylinder of radius R is to roll without
slipping between two planks as shown in the
figure. Then
A. (a)angular velocity of the cylinder is $\frac{v}{R}$
counter clockwise
B. (b)angular velocity of the cylinder is $\frac{2 v}{R}$ clockwise
C. (c)velocity of centre of mass of the cylinder is v towards left
D. (d)velocity of centre of mass of the cylinder is $2 v$ towards right.

A uniform rod of mass $m=2 k g$ and length
$l=0.5 m$ is sliding along two mutually perpendicular smooth walls with the two ends P and Q having velocities $U_{P}=4 m / s$ and $v_{Q}=3 m / s$ as shown then
A. The angular velocity of rod,

$\omega=10 \mathrm{rad} / \mathrm{s}$ counter clockwise

B. The angular veloicty of rod
$\omega=5.0 \mathrm{rad} / \mathrm{s}$ counter clockwie
C. The velocity of centre of mass of rod

$$
v_{c m}=2.5 \mathrm{~m} / \mathrm{s}
$$

D. The total kinetic energy of rod,

$$
K=\frac{25}{3} \text { joule }
$$

21.

A wheel is rolling without slipping on a
horizontal plane with velocity v and acceleration a of centre of mass as shown in
figure. Acceleration at
A. A is vertically upwards
B. B may be vertically downwards
C. C cannot be horizontal
D. A point on the rim may be horizontal leftwards.

- Watch Video Solution

22. A uniform rod of length l and mass 2 m
rests on a smooth horizontal table. A point mass m moving horizontally at right angles to
the rod with velocity v collides with one end of the rod and sticks it. Then
A. angular velocity of the system after
collision is $\frac{2}{5} \frac{v}{l}$
B. angular velocity of the system after
collision is $\frac{v}{2 l}$
C. The loss in kinetic energy of the system
as a whole as a result of the collision
$\frac{3}{10} m v^{2}$
D. The loss in kinetic energy of the system as a whole as a result of the collision

$$
\frac{7 m v^{2}}{24}
$$

D Watch Video Solution

23. A non-uniform ball of radius R and radius
of gyration about geometric centre $=R / 2$ is kept on a frictionless surface. The geometric centre coincides with the centre of mass. The
ball is struck horizontally with a sharp impulse
$=J$ the point of application of the impulse is
at a height h above the surface. then.
A. (a)The ball will slip on surface for all
cases
B. (b)the ball will roll purely if $h=5 R / 4$
C. (c)the ball will roll purely if $h=3 R / 2$
D. (d)there will be no rotation if $h=R$
24. A hollow spherical ball is given an initial push, up an incline of inclination angle α. The ball rolls purely coefficient of static friction between ball and incline $=\mu$. During its upwards journey.
A. friction acts up along the incline
B. $\mu_{\text {min }}=(2 \tan \alpha) / 5$
C. friction will be no rotation if $h=R$
D. $\mu_{\text {min }}=(2 \tan \alpha) / 7$

Watch Video Solution

25. A uniform disc of mass m and radius R rotates about a fixed vertical axis passing through its centre with angular velocity ω. A particle of same mass m and having velocity of
$2 \omega R$ towards centre of the disc collides with the disc moving horizontally and sticks to its rim. Then
A. the angular velocity of the disc will become $\omega / 3$
B. the angular veloicity of the disc will become $5 \omega / 3$
C. the impulse on the particle due to disc is

$2 m \omega R$

D.

The end B of the $\operatorname{rod} A B$ which makes angle θ
with the floor is being pulled with a constant
velocity v_{v} as shown. The length of the rod is l.
A. (a)At $\theta=37^{\circ}$ velocity of end A is $\frac{4}{3} v_{0}$
downwards
B. (b)At $\theta=37^{\circ}$ angular velocity of rod is
$\frac{5 v_{0}}{3 l}$
C. (c)Angular velocity of rod is constant
D. (d) velocity of end A is constant.

27.

A uniform rod of mass m and length l is applied pivoted at point O. The rod is initially in vertical position and touching a block of mass M which is at rest on a horizontal
surface. The rod is given a slight jerk and it starts rotating about point O this causes the block to move forward as shown The rod loses
contact with the block at $\theta=30^{\circ}$ all surfaces
are smooth now answer the following
questions.
Q. The value of ratio M / m is a) 2:3 b) 3:2 c)

4:3 d) 3:4
A. $(a) 2: 3$
B. $(b) 3: 2$
C. $(c) 4: 3$
D. $(d) 3: 4$

28.

A uniform rod of mass m and length l is applied pivoted at point O. The rod is initially in vertical position and touching a block of mass M which is at rest on a horizontal surface. The rod is given a slight jerk and it starts rotating about point O this causes the
block to move forward as shown The rod loses
contact with the block at $\theta=30^{\circ}$ all surfaces
are smooth now answer the following questions.
Q. The velocity of block when the rod loses contact with the block is
A. $\frac{\sqrt{3 g l}}{4}$
B. $\frac{\sqrt{5 g l}}{4}$
C. $\frac{\sqrt{6 g l}}{4}$
D. $\frac{\sqrt{7 g l}}{4}$

- Watch Video Solution

29.

A uniform rod of mass m and length l is applied pivoted at point O. The rod is initially in vertical position and touching a block of mass M which is at rest on a horizontal surface. The rod is given a slight jerk and it
starts rotating about point O this causes the block to move forward as shown The rod loses contact with the block at $\theta=30^{\circ}$ all surfaces are smooth now answer the following questions.
Q. The acceleration of centre of mass of rod, when it loses contact with the block is
A. $5 g / 4$
B. $5 g / 2$
C. $3 g / 2$
D. $3 g / 4$

- Watch Video Solution

30.

A uniform rod of mass m and length l is
applied pivoted at point O. The rod is initially
in vertical position and touching a block of mass M which is at rest on a horizontal
surface. The rod is given a slight jerk and it starts rotating about point O this causes the block to move forward as shown The rod loses contact with the block at $\theta=30^{\circ}$ all surfaces are smooth now answer the following questions.
Q. The hinge reaction at O on the rod when it loses contact with the block is
A. $\frac{3 m g}{4}(\hat{i}+\hat{j})$
B. $\left(\frac{m g}{4}\right) \hat{j}$
C. $\left(\frac{m g}{4}\right) \hat{i}$

$$
\text { D. } \frac{m g}{4}(\hat{i}+\hat{j})
$$

- Watch Video Solution

31. Consider a uniform disc of mass m, radius r rolling without slipping on a rough surface with linear acceleration a and angular acceleration α due to an external force F as shown in the figure coefficient of friction is μ.
Q. The work done by the frictional force at the
instant of pure rolling is

A. $\frac{\mu m g a t^{2}}{2}$
B. $\left.\mu m g a t^{2}\right)$
C. $\mu m \frac{g\left(a t^{2}\right)}{\alpha}$
D. zero
32.

Consider a uniform disc of mass m, radius r rolling without slipping on a rough surface with linear acceleration a and angular acceleration α due to an external force F as shown in the figure coefficient of friction is μ.
Q. The magnitude of frictional force acting on the disc is
A. $m a$
B. $\mu m g$
C. $\frac{m a}{2}$
D. zero
33.

Consider a uniform disc of mass m, radius r rolling without slipping on a rough surface with linear acceleration a and angular acceleration α due to an external force F as shown in the figure coefficient of friction is μ.
Q. Angular momentum of the disc will be conserved about
A. centre of mass
B. point of contact
C. a point at a distance $3 R / 2$ vertically
above the point of contact
D. a point at a distance $4 R / 3$ vertically above the point of contact.
34.

A tennis ball, starting from rest, rolls down the
hill in the drawing. At the end of the hill the ball becomes airborne, leaving at an angle of 37° with respect to the ground treat the ball as a thin-walled spherical shell.
Q. The velocity of projection v is
A. $\sqrt{2 g h}$
B. $\sqrt{\frac{10}{7} g h}$
C. $\sqrt{\frac{5}{7} g h}$
D. $\sqrt{\frac{6}{5} g h}$

- Watch Video Solution

35.

A tennis ball, starting from rest, rolls down the
hill in the drawing. At the end of the hill the ball becomes airborne, leaving at an angle of 37° with respect to the ground treat the ball as a thin-walled spherical shell.
Q. Maximum height reached by ball H above ground is
A. $\frac{9 h}{35}$
B. $\frac{18 h}{35}$
C. $\frac{18 h}{25}$
D. $\frac{27 h}{125}$
36.

A tennis ball, starting from rest, rolls down the
hill in the drawing. At the end of the hill the ball becomes airborne, leaving at an angle of 37° with respect to the ground treat the ball as a thin-walled spherical shell.
Q. Range x of the ball is

- Watch Video Solution

1.

A disc of radius R is spun to angualr speed
ω_{0} about its axis and then imparted a horizontal velocity of magnitude $\frac{\omega_{0} R}{4}$. The coefficient of friction is μ. The sense of rotation and direction of linear velocity are shown in the figure. The disc will return to its initial position.
A. if the value of $\mu<0.5$
B. irrespective of the value of μ
C. if the value of $0.5<\mu<1$

D. if $\mu>1$

(Watch Video Solution

Level 2 Subjective

1.

Figure shows three identical yo-yos initially at rest on a horizontal surface. For each yo-yo
the string is pulled In the direction shown. In each case there is sufficient friction for the yo-
yo to roll without slipping. Draw the free-body diagram for each yo-yo in what direction will each yo-yo rotate?

D Watch Video Solution

2.

A uniform rod of mass m and length l is held horizontally by two vertical strings of negligible mass, as shown in the figure.
(a). Immediately after the right string is cut, what is the linear acceleration of the end of
the rod?
(b). Of the middle of the rod?
(c). Determine the tension in the left string immediately after the right string is cut.

- Watch Video Solution

3. A solid disk is rolling without slipping on a level surface at a constant speed of $2.00 \mathrm{~m} / \mathrm{s}$. How far can it roll up a 30° ramp before it stops? (take $g=9.8 m / s^{2}$)
4. A lawn roller in the form of a thin-walled hollow cylinder of mass M is pulled horizotally with a constant horizontally force F applied by a handle attached to the axle. If it rolls without slipping. Find the acceleration and the friction forces.

- Watch Video Solution

5.

Due to slipping points A and B on the rim of
the disk have the velocities shown. Determine
the velocities of the centre point C and point F at this instant.

- Watch Video Solution

A uniform cylider of mass M and radius R has
a string wrapped around it. The string is held
fixed and the cylinder falls vertically, as in
figure.
(a). Show that the acceleration of the cylinder
is downward with magnitude $a=\frac{2 g}{3}$
(b). Find the tension in the string.

D Watch Video Solution

7.

A uniform disc of mass M and radius R is
pivoted about the horizontal axis through its
centre C A point mass m is glued to the disc at its rim, as shown in figure. If the system is
released from rest, find the angular velocity of the disc when m reaches the bottom point B.

D Watch Video Solution

8. A disc of radius R and mass m is projected on to a horizontal floor with a backward spin such that its centre of mass speed is v_{0} and angular velocity is ω_{0}. What must be the minimum value of ω_{0} so that the disc eventually returns back?

9.

A ball of mass m and radius r rolls along a circular path of radius R its speed at the bottom $\left(\theta=0^{\circ}\right)$ of the path is v_{0} find the force of the path on the ball as a function of θ.

10.

A heavy homogeneous cyliner has mass m and radius R. It is accelerated by a force F which is applied through a rope wound around a light drum of radius r attached to the cylinder
(figure) the coefficient of static friction is
sufficient for the cylinder to roll without slipping.
A. Find the friction force.
B. Find the acceleration a of the centre of
the cylinder
C. it is possible to choose r, so that a is
greater than $\frac{F}{m}$? How ?
D. What is the direction of the friction in
the circumstances of part(C)?
11. A man pushes a cylinder of mass m_{1} with
the help of a plank of mass m_{2} as shown in figure. There in no slipping at any contact. The horizontal component of the force applied by the man is F.
(a) the acceleration fo the plank and the center of mass of the cylinder, and

(b) the magnitudes and direction of frictional
force at contact points.

- Watch Video Solution

12.

For the system shown in figure, $M=1 \mathrm{~kg}$

$$
m=0.2 \quad \mathrm{~kg}, \quad r=0.2 m \quad \text { calculate }
$$

$\left(g=10 m / s^{2}\right)$
(a). The linear acceleration of hoop,
(b). The angular acceleration of the hoop of mass M and
(c). The tension in the rope.

- Watch Video Solution

13. A cylinder of mass m is kept on the edge of
a plank of mass $2 m$ and length $12 m$, which in
turn is kept on smooth ground. Coefficient of
friction between the plank and the cylinder is
0.1. The cylinder is given an impulse, which imparts it a velocity $7 m s^{-1}$ but no angular velocity. Find the time after which the cylinder falls off the plank.

D Watch Video Solution

14.

The 9 kg cradle is supported as shown by two uniform disks that roll without sliding at all surfaces of contact. The mass of each disk is $m=6 \mathrm{~kg}$ and the radius of each disk is $r=80 \mathrm{~mm}$. Knowing that the system is initially at rest, determine the velocity of the cradle after it has moves 250 mm .

15.
the disc of the radius r is confined to roll without slipping at A and B if the plates have
the velocities shown, determine the angular velocity of the disc.

D Watch Video Solution

16.

A thin uniform rod AB of mass $m=1 \mathrm{~kg}$
moves translationally with acceleration
$a=2 m / s^{2}$ and to two anitiparallel forces F_{1}
and F_{2}. The distance between the points at
which these forces are applied is equal to
$l=20 \mathrm{~cm}$ besides it is known that $F_{2}=5 N$
find the length of the rod.

- Watch Video Solution

The assembly of two discs as shown in figure is
placed on a rough horizontal surface and the
front disc is given an initial angular velocity ω_{0}
. Determine the final linear and angular
velocity when both the discs start rolling. it is given that friction is sufficient to sustain
rolling the rear wheel from the starting of motion.

- Watch Video Solution

18.

A horizontal plank having mass m lies on a smooth horizontal surface. A sphere of same
mass and radius r is spined to angular frequency ω_{0} and gently placed on the plank as shown in the figure. If coefficient of friction between the plank and the sphere is μ. Find the distance moved by the plank till sphere starts pure rolling on the plank. the plank is long enough.

D Watch Video Solution

19. A ball rolls without sliding over a rough horizontal floor with velocity $v_{0}=7 \mathrm{~m} / \mathrm{s}$
towards a smooth vertical wall. If coefficient of restitution between the wall and the ball is
$e=0.7$. Calculate velocity v of the ball after the collision.

- Watch Video Solution

20. A sphere a disk and a hoop made of
homogeneous materials have the same radius
(10 cm) and mass (3 kg) They are released from
rest at the top of a 30° incline and roll down
without slipping through a vertical distance of
$2 \mathrm{~m} .\left(g=9.8 m / s^{2}\right)$
(a). What are their speeds at the bottom?
(b). findt the friction force f each case
(c). if they start together at $t=0$, at what time does each reach the bottom?

D Watch Video Solution

21. $A B C$ is a triangular framwork of three uniform rods each of mass m and length $2 l$. It
is free to rotate in its own plane about a smooth horizontal axis through A which is
perpendicular to $A B C$. If it is released from rest when $A B$ is horizontal and C is above $A B$. Find the maximum velocity of C in the subsequent motion.

D Watch Video Solution

22. A uniform stick of length L and mass M
hinged at end is released from rest at an angle
θ_{0} with the vertical show that when the angle
with the vertical is θ. The hinge exerts of force
F_{r} along the stick and F_{t} perpendicular tot he
and $F_{t}=\frac{1}{4} M g \sin \theta$

D Watch Video Solution

23. A uniform rod $A B$ of mass $3 m$ and length $4 I$, which is free to turn in a vertical plane about a smooth horizontal axis through A, is released
from rest when horizontal. When the rod first becomes vertical, a point C of the rod, where
$A C=31$ strikes a fixed peg. Find the linear impulse exerted by the peg on the rod if
(a). The rod is brought to rest by the peg.
(b). The rod rebounds and next comes to instantaneous rest inclined to the downward vertical at an angle $\frac{\pi}{3}$ radian.

D Watch Video Solution

24.

A uniform rod of length 41 and mass m is free
to rotate about a horizontal axis passing
through a point distant l from its one end.

When the rod is horizontal its angular velocity
is ω as shown in figure. calculate
(a). reaction of axis at this instant,
(b). Acceleration of centre of mass of the rod at this instant.
(c). reaction of axis and acceleration of centre mass of the rod when rod becomes vertical for the first time.
(d). minimum value of ω, so that centre of rod can complete circular motion.
25.

A stick of length l lies on horizontal table. It
has a mass M and is free to move in any way on the table. A bal of mass m moving perpendicularly to the stick at a distance d from its centre with speed v collides elastically with it as shown in figure. what quantities are
conserved in the collision ? what must be the mass of the ball, so that it remains at rest immediately after collision?

D Watch Video Solution

26.

A rod of length l forming an angle θ with the
horizontal strikes a frictionless floor at A with
its centre of mass velocity v_{0} and no angular
velocity. Assuming that the impact at A is perfectly elastic. Find the angular velocity of the rod immediately after the impact.

D Watch Video Solution

27. Three particles A, B and C each of mass m, are connected to each other by three massless
rigid rods to form a rigid, equilateral triangular body of side I. This body is placed
on a horizontal frictionless table ($x-y$ plane)
and is hinged to it at the point A so that it can
move without friction about the vertical axis
through A. the body is set into rotational motion on the table about A with a constant angular velocity ω.

(a) Find the magnitude of the horizontal force exerted by the hinge on the body.
(b) At time T , when the side BC is parallel to
the x-axis, a force F is applied on B along $B C$
(as shown). Obtain the x-component and the y component of the force exerted by the hinge on the body, immediately after time T .

- Watch Video Solution

28.

A semicircular track of radius $R=62.5 \mathrm{~cm}$ is
cut in a block. Mass of block having track, is
$M=1 \mathrm{~kg}$ and rests over a smooth horizontal
floor. A cylinder of radius $r=10 \mathrm{~cm}$ and mass
$m=0.5 \mathrm{~kg}$ is hanging by thread such that axes of cylinder and track are in same level and
surface of cylinder is in contact with the track
as shown in figure When the thread is burnt,
cylinder starts to move down the track.

Sufficient friction exists between surface of cylinder and track, so that cylinder does not slip.

Calculate velocity of the block when it reaches bottom of the track. Also find force applied by block on the floor at that moment. $\left(g=10 m / s^{2}\right)$

D Watch Video Solution

29. A uniform circular cylinder of mass m and
radius r is given an initial angular velocity ω and no initial translational velocity it is placed in contact with a plane inclined at an angle α
to the horizontal. If there is a coefficient of
friction μ for sliding between the cylinder and
plane. Find the distance the cylinder moves up before sliding stops also calculate the maximum distance it travels up the plane assume $\mu>\tan \alpha$.
30. Show that if a rod held at angle θ to the horizontal and released, its lower end will not slip if the friction coefficient between rod and ground is greater than $\frac{3 \sin \theta \cos \theta}{1+3 \sin ^{2} \theta}$

- Watch Video Solution

and length l is placed on a rough horizontal
surface and it is held stationary in horizontal
position by means of a light thread as shown
in the figure. The thread is then burnt and the rod start rotating about the edge. Find the angle between the rod and the horizontal
when it is about to slide on the edge. The coefficient of friction between the rod and surface is μ.

- Watch Video Solution

32.
in figure the cylinder of mass 10 kg and radius

10 cm has a tape wrapped round it. The pully
weighs 100 N and has a radius 5 cm . When the
system is released the 5 kg mass comes down and the cylinder rolls without slipping. Calculate the acceleration and velocity of the mass as a function of time.

D Watch Video Solution

A cylinder is sandwiched between two planks.
Two constant horizontal forces F and $2 F$ are applied on the planks as shown. Determine the acceleration of the centre of mass of cylinder and the top plank. If there is no slipping at the top and bottom of cylinder.

34.

A ring of mass m and radius r has a particle of mass m attached to it at a point A. the ring
can rotate about a smooth horizontal axis
which is tangential to the ring at a point B diametrically opposite to A. The ring is released from rest when $A B$ is horizontal. find the angular velocity and the angular
acceleration of the body when $A B$ has turned through an angle $\frac{\pi}{3}$.

D Watch Video Solution

35.
a hoop is placed on the rough surface such
that it has an angular velocity $\omega=4 \mathrm{rad} / \mathrm{s}$ and an angular deceleration $\alpha=5 \mathrm{rad} / \mathrm{s}^{2}$
also its centre has a velocity of $v_{0}=5 \mathrm{~m} / \mathrm{s}$ and a deceleration $a_{0}=2 m / s^{2}$ determine the magnitude of acceleration of point B at this instant.
36.

A thin plank of mass M and length l is pivoted at one end. The plank is releaed at 60° from the vertical. What is the magnitude and direction of the force on the pivot when the plank is horizontal?

- Watch Video Solution

Subjective Questions

1. A uniform rod of mass m and length l rests
on a smooth horizontal surface. One of the
ends of the rod is struck in a horizontal direction at right angles to the rod. As a result the rod obtains velocity v_{0}. Find the force with which one-half of the rod will act ont he other in the process of motion.
2.

v_{0}

A boy mass m runs on ice with velocity v and steps on the end of a plank of length l and mass M which is perpendicular to his path.
(a). Describe quantitatively the motion of the
system after the boy is on the plank. Neglect friction with the ice.
(b). One point on the plank is at rest immediately after the collision. Where is it?

- Watch Video Solution

